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Lifted Approximate Inference

One way to get an approximate lifted inference 

approach is to replace “conditioning” by “sampling” in 

recursive conditioning approaches [see e.g. Gogate, Jha, 

Venugopal NIPS’12; Venugopal, Sarkhel, Gogate AAAI’15]

Lifted Belief Propagation [Jaimovich-UAI07, Singla-AAAI08, Kersting-UAI09]

Lifted Bisimulation/Mini-buckets [Sen-VLDB08, Sen-UAI09]

Lifted Importance Sampling [Gogate-UAI11, Gogate-AAAI12]

Lifted Relax, Compensate & Recover (Generalized BP) [VdB-UAI12]

Lifted MCMC [Niepert-UAI12, Niepert-AAAI13, Venugopal-NIPS12]

Lifted Variational Inference [Choi-UAI12, Bui-StarAI12]

Lifted MAP-LP [Mladenov-AISTATS14, Apsel-AAAI14] and many more …



Lifted Approximate Inference

One way to get an approximate lifted inference 
approach is to replace “conditioning” by “sampling” in 
recursive conditioning approaches [see e.g. Gogate, Jha, 
Venugopal NIPS’12; Venugopal, Sarkhel, Gogate AAAI’15]

• Here, we want to take an algebraic, group-theoretical 
view on approximate lifted inference
• This provides a general understanding across 

different families of inference algorithms. 
• To do so, we start by lifting (loopy) belief propagation



Lifted Loopy Belief Propagation Exploiting computational symmetries

[Singla, Domingos AAAI’08; Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13]

Big
Model

Run a modified
Loopy Belief Propagation

Small

Model

automatically
compressed

Run 
Loopy Belief Propagation

What are symmetries in 
(loopy) belief propagation?

If exchanging two variables 
preserves optimality, group them 

together



• Color nodes according to the evidence you
have
• No evidence, say red
• State „one“, say brown
• State „two“, say orange
• ...

• Color factors distinctively according to their
equivalences For instance, assuming f1 and f2 to
be identical and B appears at the second
position within both, say blue

[Singla, Domingos AAAI’08; Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13]

Compression: Pass the colors around*
*can also be done at the „lifted“, i.e., relational level



1. Each factor collects the colors of its neighboring nodes

Compression: Pass the colors around*
*can also be done at the „lifted“, i.e., relational level

[Singla, Domingos AAAI’08; Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13]



1. Each factor collects the colors of its neighboring nodes
2. Each factor „signs“ ist color signature with its own color

Compression: Pass the colors around*
*can also be done at the „lifted“, i.e., relational level
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1. Each factor collects the colors of its neighboring nodes
2. Each factor „signs“ ist color signature with its own color
3. Each node collects the signatures of its neighboring factors
4. Nodes are recolored according to the collected signatures

Compression: Pass the colors around*
*can also be done at the „lifted“, i.e., relational level

[Singla, Domingos AAAI’08; Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13]



1. Each factor collects the colors of its neighboring nodes

2. Each factor „signs“ ist color signature with its own color

3. Each node collects the signatures of its neighboring factors

4. Nodes are recolored according to the collected signatures

5. If no new color is created stop, otherwise go back to 1

Compression: Pass the colors around*
*can also be done at the „lifted“, i.e., relational level

[Singla, Domingos AAAI’08; Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13]



Compression can considerably
speed up inference and training

Parameter training using a lifted stochastic gradient
CORA entity resolution

State-of-the-art

114x faster

The higher, 
the better

The lower, the better

converges before data has been seen once

What is going on 
algebraically?

Can we generalize this to
other ML approaches?

Probabilistic inference using lifted (loopy) belief propagation

[Singla, Domingos AAAI’08; Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13; Van Haaren, Van den Broeck,  Meert, Davis MLJ‘16]



It turns out that color passing is well known in graph theory

(1) The Weisfeiler-Lehman 
Algorithm

• AKA Naive Vertex Classification

• Basic subroutine for GI testing

• Computes LP-relaxations of 

GA-ILP, aka. fractional automorphisms

• Quasi-linear running time  O((n+m)log(n)) when using

asynchronous updates [Berkholz, Bonsma, Grohe ESA´13]

• Part of graph tool SAUCY [See e.g. Darga, Sakallah, Markov DAC´08]

[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14, Mladenov, Globerson, Kersting 

UAI ´14, AISTATS ´14, Mladenov, Kersting UAI ´15, Kersting, Mladenov, Tokmatov AIJ´17]



(2) Realize that WL computes (fractional) 
automorphisms of mathmetical programs

[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14, Mladenov, Globerson, Kersting 
UAI ´14, AISTATS ´14, Mladenov, Kersting UAI ´15, Kersting, Mladenov, Tokmatov AIJ´17]
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(3) Apply this to probabilistic inference

[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14, Mladenov, Globerson, Kersting 
UAI ´14, AISTATS ´14, Mladenov, Kersting UAI ´15, Kersting, Mladenov, Tokmatov AIJ´17]



View the mathematical program as a colored graph

Lifted Mathematical Programming
Exploiting computational symmetries

Reduce the mathematical program (MP) by running Weisfeiler-
Lehman on the MP-Graph

[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14,
Kersting, Mladenov, Tokmatov AIJ´17]

Solve the reduce MP using any solver



[Mladenov, Globerson, Kersting UAI 2014; Mladnov, Kersting UAI 2015]

lifting

refine

Attention: For special-purpose solvers such as message-passing (via 
coordinate descent ) for probabilistic inference we may have to 
reparameterize the lifted model

Any Solver? Well, you can lifted optimization by 
reparametrization



The more observed the more lifting. Faster end-to-end even despite Gurobi‘s fast pre-solving heuristics

[Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17]
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Why does this work?

Feasible region 
of LP and the objective 
vectors

Span of the fractional auto-
morpishm of the LP

Projections of the feasible 
region onto the span of the 
fractional auto-morphism



Compute Equitable
Partition (EP) of the LP 
using WL

Intuitively, we group together variables resp. 
constraints that interact in the very same way in 
the LP. 
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Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

IntuiCvely,$we$group$together$variables$
resp.$constraints$that$interact$in$the$
very$same$way$in$the$LP.$
$

Figure 7: Using symmetry to speed up linear programming: (a) the feasible region of LP
and the objective vector (in pink); (b) the span of the fractional automorphism of the LP
(grey); (c) the lifted LP is obtained by projecting the feasible region onto the span of the
fractional automorphism.

5.2. Equitable Partitions and Fractional Automorphisms

Let L = (A,b, c) be an LP withA 2 Rm⇥n, that is, we havem constraints
and n variables. In the following, we aim to partition the variables and
constraints into mutually-exclusive classes, which behave identically. Thus
we define a partition of the LP to be the set P = {P1, . . . , Pp

;Q1, . . . , Qq

},
where the sets [p

i=1Pi

= {1, . . . , n} , P
i

\P
j

= ;, partition the variables, and
the sets [q

i=1Qi

= {1, . . . ,m} , Q
j

\Q
j

= ;, partition the constraints of the
LP into (equivalence) classes. Hence, we also require that P

i

\Q
j

= ; for all
appropriate i, j.

We say that a partition P = {P1, . . . , Pp

;Q1, . . . , Qq

} of L = (A,b, c) is
equitable if the following conditions hold.

i. For any two variables i, j in the same class P , c
i

= c
j

. For any two
constraints i, j in the same class Q, b

i

= b
j

;

ii. For any two variables i, j in the same class P , and for any constraint
class Q and real number c:

|{k 2 Q | A
ik

= c}| = |{l 2 Q | A
jl

= c}| .
Analogously, for any two constraints i, j in the same class Q, and for
any constraint class P and real number c:

|{k 2 P | A
ki

= c}| = |{l 2 P | A
lj

= c}| .
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LP variables 

Partition of  
LP constraints 

$
$

•  (Same$objecCve$resp.$bound)$$
–  For$i$and$j$in$class$P$it$holds$ci=cj$$$
–  For$i$and$j$in$class$Q$it$holds$bi=bj$$

•  (Same$InteracCons)$$
–  For$i$and$j$in$class$P$and$for$any$class$Q$$
$
–  For$i$and$j$in$class$Q$and$for$any$class$P$$
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(grey); (c) the lifted LP is obtained by projecting the feasible region onto the span of the
fractional automorphism.
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|{k 2 Q | Aik = c}| = |{l 2 Q | Ajl = c}|

|{k 2 P | Aki = c}| = |{l 2 P | Alj = c}|

If$we$fix$any$class$of$constraints$Q,$then$the$
number$of$constraints$in$Q$where$an$LP$
variable$i$in$P$parCcipates$with$coefficient$c$
should$be$equal$for$all$other$j$in$P.$$$

Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

Frac+onal$Automorphsims$of$LPs$
The$EP$induces$an$fracConal$automorphism$of$
the$coefficient$matrix$
$
$
where$$$$$$$$$$and$$$$$$$$$$are$doubly6stochas+c$
matrices$(relaxed$form$of$automorphism).$

XQA = AXP

XQ XP

(XP )ij =

(
1/|P | if both vertices i, j are in the same P ,

0 otherwise.

(XQ)ij =

(
1/|Q| if both vertices i, j are in the same Q,

0 otherwise

Frac+onal$Automorphisms$
Preserve$Solu+ons$

If$$$$$is$feasible,$then$$$$$$$$$$$$$is$feasible,$too.$$
By$inducCon,$one$can$show$that$lec7mulCplying$with$a$
doubly7stochasCc$matrix$preserves$direcCons$of$
inequaliCes.$Hence,$$

$
$

x XPx

Ax  b ) XQAx  XQb , AXPx  b

[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14,
Kersting, Mladenov, Tokmatov AIJ´15]



Fractional Automorphisms of LPs

The EP induces a fractional automorphism of the 
coefficient matrix A

where XQ and Xp are doubly-stochastic matrixes (relaxed form of automorphism)
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x XPx
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Fractional Automorphisms Preserve Solutions

If x is feasible, then Xpx is feasible, too.
By induction, one can show that left-multiplying with a double-
stochastic matrix preserves directions of inequalities. Hence,
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Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

IntuiCvely,$we$group$together$variables$
resp.$constraints$that$interact$in$the$
very$same$way$in$the$LP.$
$

Figure 7: Using symmetry to speed up linear programming: (a) the feasible region of LP
and the objective vector (in pink); (b) the span of the fractional automorphism of the LP
(grey); (c) the lifted LP is obtained by projecting the feasible region onto the span of the
fractional automorphism.

5.2. Equitable Partitions and Fractional Automorphisms

Let L = (A,b, c) be an LP withA 2 Rm⇥n, that is, we havem constraints
and n variables. In the following, we aim to partition the variables and
constraints into mutually-exclusive classes, which behave identically. Thus
we define a partition of the LP to be the set P = {P1, . . . , Pp

;Q1, . . . , Qq

},
where the sets [p
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the sets [q

i=1Qi
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We say that a partition P = {P1, . . . , Pp

;Q1, . . . , Qq

} of L = (A,b, c) is
equitable if the following conditions hold.
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= c
j
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|{k 2 Q | Aik = c}| = |{l 2 Q | Ajl = c}|

|{k 2 P | Aki = c}| = |{l 2 P | Alj = c}|

If$we$fix$any$class$of$constraints$Q,$then$the$
number$of$constraints$in$Q$where$an$LP$
variable$i$in$P$parCcipates$with$coefficient$c$
should$be$equal$for$all$other$j$in$P.$$$

Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

Frac+onal$Automorphsims$of$LPs$
The$EP$induces$an$fracConal$automorphism$of$
the$coefficient$matrix$
$
$
where$$$$$$$$$$and$$$$$$$$$$are$doubly6stochas+c$
matrices$(relaxed$form$of$automorphism).$

XQA = AXP

XQ XP

(XP )ij =

(
1/|P | if both vertices i, j are in the same P ,

0 otherwise.

(XQ)ij =

(
1/|Q| if both vertices i, j are in the same Q,

0 otherwise

Frac+onal$Automorphisms$
Preserve$Solu+ons$

If$$$$$is$feasible,$then$$$$$$$$$$$$$is$feasible,$too.$$
By$inducCon,$one$can$show$that$lec7mulCplying$with$a$
doubly7stochasCc$matrix$preserves$direcCons$of$
inequaliCes.$Hence,$$

$
$

x XPx

Ax  b ) XQAx  XQb , AXPx  b



If x* is optimal, then Xpx* is optimal, too.
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Frac+onal$Automorphisms$
Preserve$Solu+ons$

If$$$$$$$is$op+mal,$then$$$$$$$$$$$$$$is$op+mal,$too.$
Since$by$construncCon$$$$$$$$$$$$$$$$$$$$$$$$$$$and$hence$$

XPx
⇤

x

⇤

c

T (XPx) = c

T
x

cTXP = cT

What$have$we$established$so$far?$

Instead$of$considering$the$original$LP$$
$
it$is$sufficient$to$consider$
$
$

i.e.$we$„average“$parts$of$the$polytop.$$$$
$

(A,b, c)

(AXP ,b,XP
T c)

But$why$is$this$dimensionality$reduc+on?$

Dimensionality$Reduc+on$
The$doubly7stochasCc$matrix$$$$$$$$$can$be$wriren$
as$$
$
$

BiP =

(
1p
|P |

if vertex i belongs to part P ,

0 otherwise.

XP

XP = BBT

Dimensionality$Reduc+on$
The$doubly7stochasCc$matrix$$$$$$$$$can$be$wriren$
as$$
$
$
Since$the$column$space$of$B$is$equivalent$to$the$
span$of$$$$$$$$$,$it$is$actually$sufficient$to$consider$
only$$
$

BiP =

(
1p
|P |

if vertex i belongs to part P ,

0 otherwise.

(ABP ,b,B
T
P c)

XP

XP = BBT

XP

Fractional Automorphisms Preserve Solutions
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Dimensionality Reduction
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This is of reduced size, and actually we can also 
drop any constraints that becomes identical



Actually, there is a whole body of work on (fractional) 
automorphisms for probabilistic inference, see the book, and we
have focused here on the arguably simplest view.



Reparameterized BP
?

Reparameterized
Lifting as preprocessing
Run any existing MP solver

RMPLP

RCE

LBP

LCE

BP

Modified MP

Beliefs

Pseudo Beliefs
MAP-LP Prop Lifted

MPLP 
and Co

Concave 
energies

LMPLP

Lifted inference =
Inference in a smaller, reparameterized model

[Mladenov, Globerson, Kersting UAI 2014; Mladnov, Kersting UAI 2015]

This can also speed up learning



Lifted Learning of MRF Language Models

• Word distribution for all 
sentences together
• Dependencies on size K 

context per sentence
• Exploit symmetries

[Jernite, Rush, Sontag ICML 2015]

And extends lifting to statistical ML



Lifted Convex Quadratic Programs

Papers that cite each other should be on the same side of the hyperplane

Reduce the QP by running Weisfeiler-Lehman on the QP-Graph

CORA entity resolution

3.
6%

6.
4%

the higher, the betterOn par with state-of-the-art by 
just four lines of code

[Mladenov, Kleinhans, Kersting AAAI´17]



Approximately Lifted SVM: 

Cluster data points via K-means 
using sorted distance vectors. 
Solve SVM on cluster 
representatives only

PAC-style general. bound: 
the approximately lifted SVM will 
very likely have a small expected 
error rate if it has a small empirical 
loss over the original dataset.
Similar predictive performance but 47x faster 

M
NI

ST
 im

ag
e 

cla
ss

ifi
ca

tio
n

Original SVM

Original SVM
37800

38
0x

 fa
st

er

the higher, the 
better

the lower, the 
better

Symmetry-based 
Data Augmentation: 

fractional autom. of label-
preserving data 
transformations 

Same should work for deep learning

[Mladenov, Kleinhans, Kersting AAAI´17]



Industrial Strength Solvers such as CPLEX and GUROBI



Algebraic 
Decision Diagrams

Formulae parse 
trees

Matrix Free 
Optimization

( è ) +

And, there are other “-02”, “-03”, … flags, 
e.g symbolic-numerical interior point solvers

Applies to QPs but here illustrated on MDPs for a factory agent which must paint two objects and connect them. The objects must 
be smoothed, shaped and polished and possibly drilled before painting, each of which actions require a number of tools which are
possibly available. Various painting and connection methods are represented, each having an effect on the quality of the job, and 
each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting factor of 0. 9 was used used

>4.8x faster

[Mladenov, Belle, Kersting AAAI´17, Kolb, Mladenov, Sanner, Belle, Kersting IJCAI ECAI´18]

New field: Symbolic-numerical AI



Algebraic 
Decision Diagrams

Formulae parse 
trees

Matrix Free 
Optimization

( è ) +

And, there are other “-02”, “-03”, … flags, 
e.g symbolic-numerical interior point solvers

Applies to QPs but here illustrated on MDPs for a factory agent which must paint two objects and connect them. The objects must 
be smoothed, shaped and polished and possibly drilled before painting, each of which actions require a number of tools which are
possibly available. Various painting and connection methods are represented, each having an effect on the quality of the job, and 
each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting factor of 0. 9 was used used

>4.8x faster

[Mladenov, Belle, Kersting AAAI´17, Kolb, Mladenov, Sanner, Belle, Kersting IJCAI ECAI´18]

New field: Symbolic-numerical AI

All this opens the general 
machine learning toolbox for 
symbolic-numerical machines: 
feature selection, least-squares regression, 
label propagation, ranking, collaborative 
filtering, community detection, deep 
learning, … 



Symmetries can also be 
exploited to speed up 
sampling



[Niepert UAI 2012, Van den Broeck, Niepert AAAI 2015]

Orbital Markov Chain Monte Carlo

True state 
of a variable

False state 
of variable

Feature/clause a 
variable participates in

States of a variable 
should not be in the 
same orbit

true and false states have the same color, and all clauses/features 
that have the same weight 

Color-passing/Saucy

Symmetry classes of variables

Jump between symmetric states uniformly



[Niepert UAI 2012, Van den Broeck, Niepert AAAI 2015]

In each sampling iteration:

1. run a step of a traditional MCMC chain TM first and 
then

2. sample the state of M at the next time uniformly at 
random from the orbit of the state of the original 
chain TM at time t, i.e., select an equivalent state 
uniformly at random

Orbital MCMC Sampling



Orbital MCMC on a 6x6 Ising grid
[Niepert UAI 2012, Van den Broeck, Niepert AAAI 2015]



Lifted Metropolis-Hastings
[Niepert UAI 2012, Van den Broeck, Niepert AAAI 2015]

Given an orbital Metropolis chain A: 

and an ordinary (base) Markov chain B, 
with prob. α follow B and with (1-α) 
follow A

Color-passing
/Saucy

This can also 
account for

evidence that may
break symmetries, 
using e.g. approx. 

symmetries



Lifted Metropolis-Hastings on WebKB
[Niepert UAI 2012, Van den Broeck, Niepert AAAI 2015]



Take away

• Lifted inference exploits (fractional) symmetries
• Fractional symmetries can be computed in quasi-

linear time
• Symmetries allow one to study lifted inference in 

an algebraic way, i.e., independent of the 
underlying algorithm
• Essentially, the whole family of approximate 

inference methods is liftable
• Lifted inference of  interest to Optimization, ML, 

and AI in general (SVMs, RL, IRL, Deep Networks, …)


