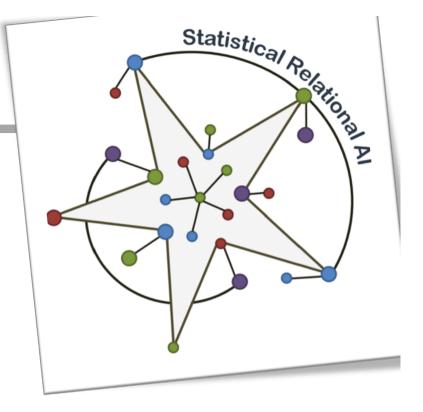
Approximate Lifted Inference on Relational Models

Statistical Relational AI

Tutorial at KI-2018



Tanya Braun, Universität zu Lübeck **Kristian Kersting**, Technische Universität Darmstadt Ralf Möller, Universität zu Lübeck

Lifted Approximate Inference

One way to get an approximate lifted inference approach is to replace "conditioning" by "sampling" in recursive conditioning approaches [see e.g. Gogate, Jha, Venugopal NIPS'12; Venugopal, Sarkhel, Gogate AAAI'15]

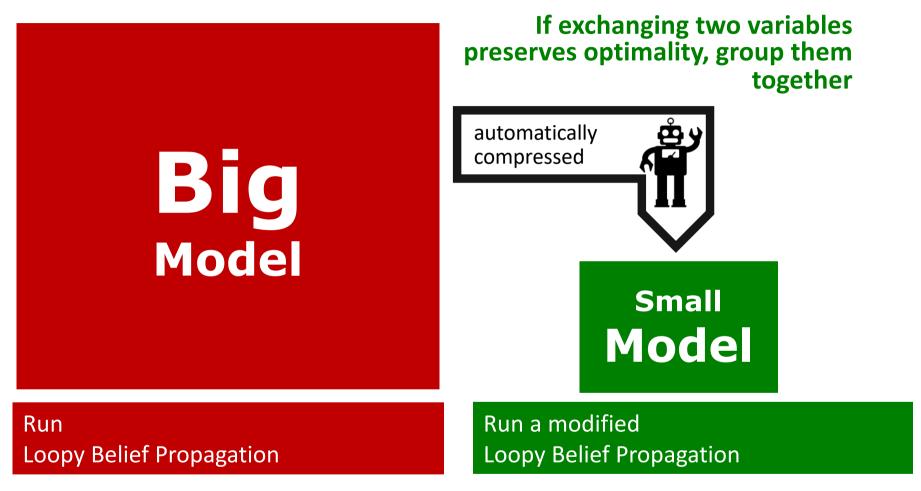
Lifted Belief Propagation [Jaimovich-UAI07, Singla-AAAI08, Kersting-UAI09] Lifted Bisimulation/Mini-buckets [Sen-VLDB08, Sen-UAI09] Lifted Importance Sampling [Gogate-UAI11, Gogate-AAAI12] Lifted Relax, Compensate & Recover (Generalized BP) [VdB-UAI12] Lifted MCMC [Niepert-UAI12, Niepert-AAAI13, Venugopal-NIPS12] Lifted Variational Inference [Choi-UAI12, Bui-StarAI12] Lifted MAP-LP [Mladenov-AISTATS14, Apsel-AAAI14] and many more ...

Lifted Approximate Inference

One way to get an approximate lifted inference approach is to replace "conditioning" by "sampling" in recursive conditioning approaches [see e.g. Gogate, Jha, Venugopal NIPS'12; Venugopal, Sarkhel, Gogate AAAI'15]

- Here, we want to take an algebraic, group-theoretical view on approximate lifted inference
- This provides a general understanding across different families of inference algorithms.
- To do so, we start by lifting (loopy) belief propagation

Lifted Loopy Belief Propagation Exploiting computational symmetries

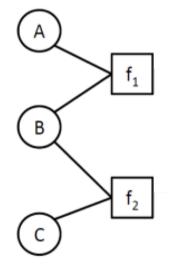


What are symmetries in (loopy) belief propagation?

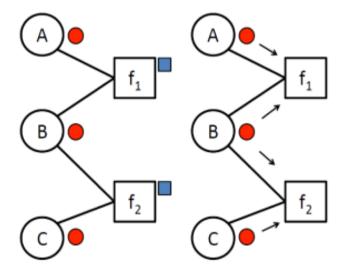
Compression: Pass the colors around*

*can also be done at the "lifted", i.e., relational level

- Color nodes according to the evidence you have
 - No evidence, say red
 - State "one", say brown
 - State ",two", say orange
 - . . .
- Color factors distinctively according to their equivalences For instance, assuming f₁ and f₂ to be identical and B appears at the second position within both, say **blue**

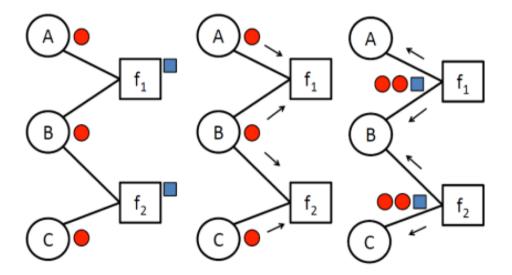


Compression: Pass the colors around* *can also be done at the "lifted", i.e., relational level



Each factor collects the colors of its neighboring nodes 1.

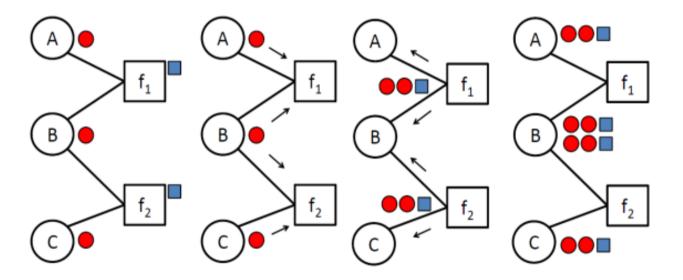
Compression: Pass the colors around* * can also be done at the "lifted", i.e., relational level



- Each factor collects the colors of its neighboring nodes 1.
- Each factor "signs" ist color signature with its own color 2.

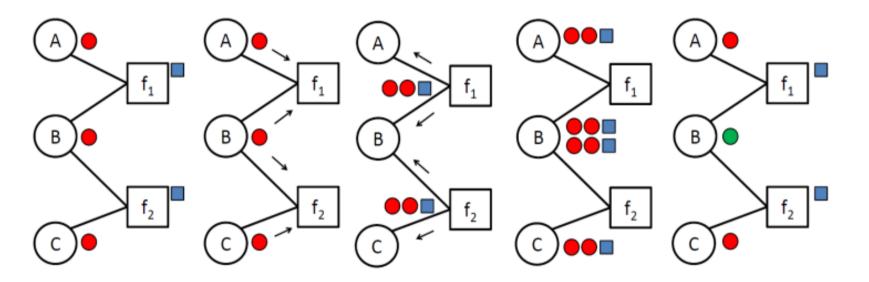
Compression: Pass the colors around*

*can also be done at the "lifted", i.e., relational level



- Each factor collects the colors of its neighboring nodes 1.
- 2. Each factor "signs" ist color signature with its own color
- 3. Each node collects the signatures of its neighboring factors

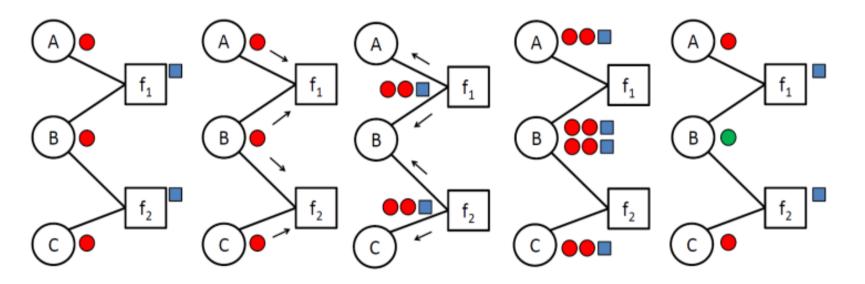
Compression: Pass the colors around* * can also be done at the "lifted", i.e., relational level



- Each factor collects the colors of its neighboring nodes 1.
- 2. Each factor "signs" ist color signature with its own color
- Each node collects the signatures of its neighboring factors 3.
- Nodes are recolored according to the collected signatures 4.

ompression: Pass the colors around*

*can also be done at the "lifted", i.e., relational level



- Each factor collects the colors of its neighboring nodes 1.
- 2. Each factor "signs" ist color signature with its own color
- 3. Each node collects the signatures of its neighboring factors
- 4. Nodes are recolored according to the collected signatures
- 5. If no new color is created stop, otherwise go back to 1

Compression can considerably speed up inference and training

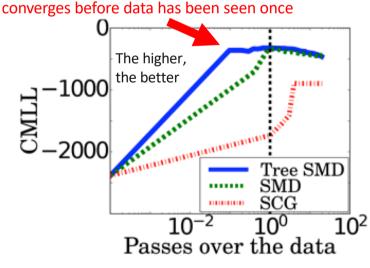
Probabilistic inference using lifted (loopy) belief propagation

Domain	Time (in seconds)				The lower, the better		No. of (Super) Features	
	Construction		BP		Total			
	Ground	Lifted	Ground	Lifted	Ground	Lifted	Ground	Lifted
Cora	263.1	1173.3	12368.4	3997.7	12631.6	5171.1	2078629	295468
UW-CSE	6.9	22.1	1015.8	602.5	1022.8	624.7	217665	86459
Friends & Smokers	38.8	89.7	10702.2	4.4	10741.0	94.2	1900905	58

114x faster

Parameter training using a lifted stochastic gradient

CORA entity resolution



What is going on algebraically?

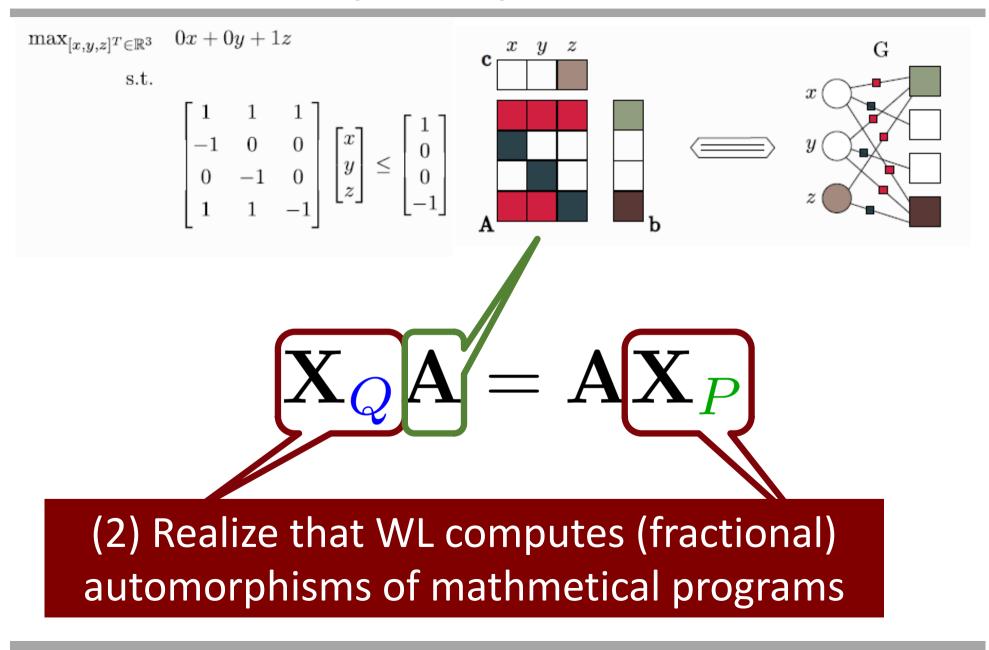
Can we generalize this to other ML approaches?

State-of-the-art

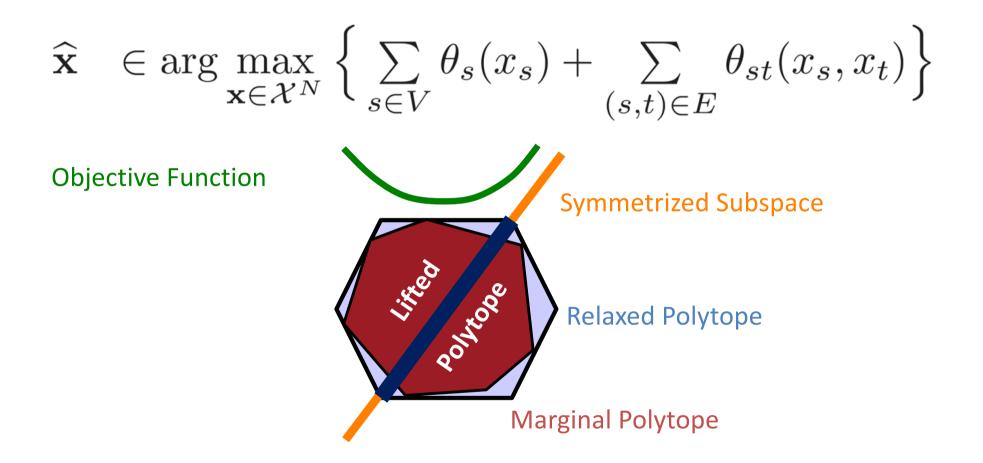
[Mladenov, Ahmadi, Kersting AISTATS '12, Grohe, Kersting, Mladenov, Selman ESA '14, Mladenov, Globerson, Kersting UAI '14, AISTATS '14, Mladenov, Kersting UAI '15, Kersting, Mladenov, Tokmatov AIJ '17]

- AKA Naive Vertex Classification
- Basic subroutine for GI testing
- Computes LP-relaxations of GA-ILP, aka. fractional automorphisms
- Quasi-linear running time O((n+m)log(n)) when using asynchronous updates [Berkholz, Bonsma, Grohe ESA'13]
- Part of graph tool SAUCY [See e.g. Darga, Sakallah, Markov DAC'08]

It turns out that color passing is well known in graph theory (1) The Weisfeiler-Lehman Algorithm [Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Mladenov, Globerson, Kersting UAI 14, AISTATS 14, Mladenov, Kersting UAI 15, Kersting, Mladenov, Tokmatov AIJ 17]



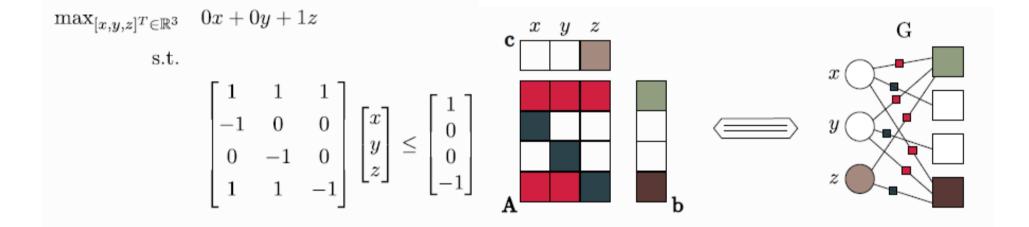
[Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Mladenov, Globerson, Kersting UAI 14, AISTATS 14, Mladenov, Kersting UAI 15, Kersting, Mladenov, Tokmatov AIJ 17]



(3) Apply this to probabilistic inference

Lifted Mathematical Programming Exploiting computational symmetries

[Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Kersting, Mladenov, Tokmatov AIJ 17]



View the mathematical program as a colored graph

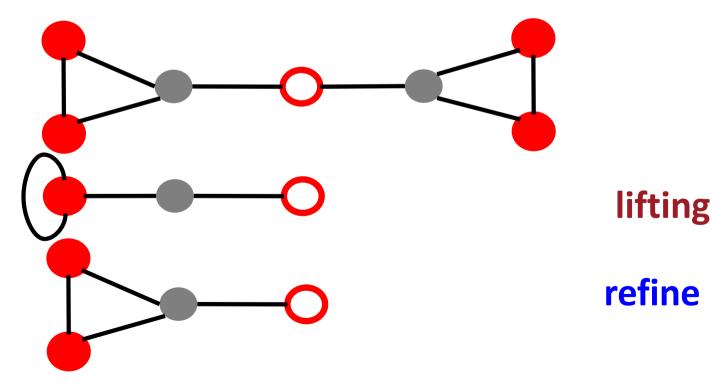
Reduce the mathematical program (MP) by running Weisfeiler-Lehman on the MP-Graph

Solve the reduce MP using <u>any</u> solver

Any Solver? Well, you can lifted optimization by reparametrization

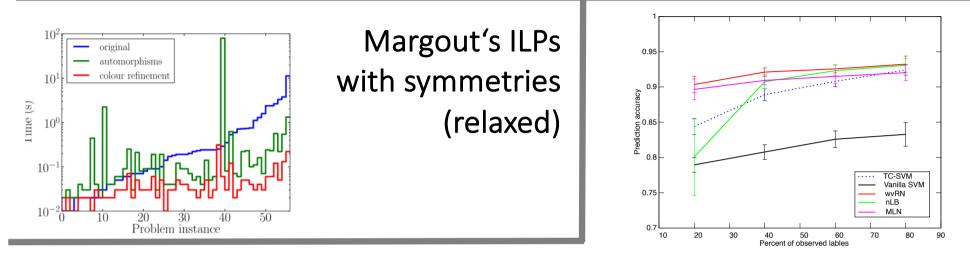
Attention: For special-purpose solvers such as message-passing (via coordinate descent) for probabilistic inference we may have to reparameterize the lifted model

[Mladenov, Globerson, Kersting UAI 2014; Mladnov, Kersting UAI 2015]



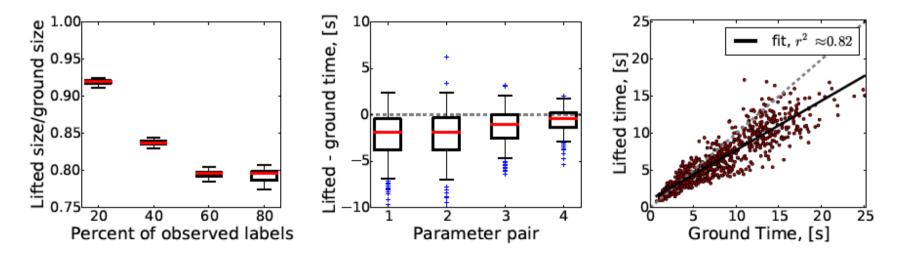
[Grohe, Kersting, Mladenov, Selman ESA '14, Kersting, Mladenov, Tokmatov AlJ '17]

Lifted Linear Programming

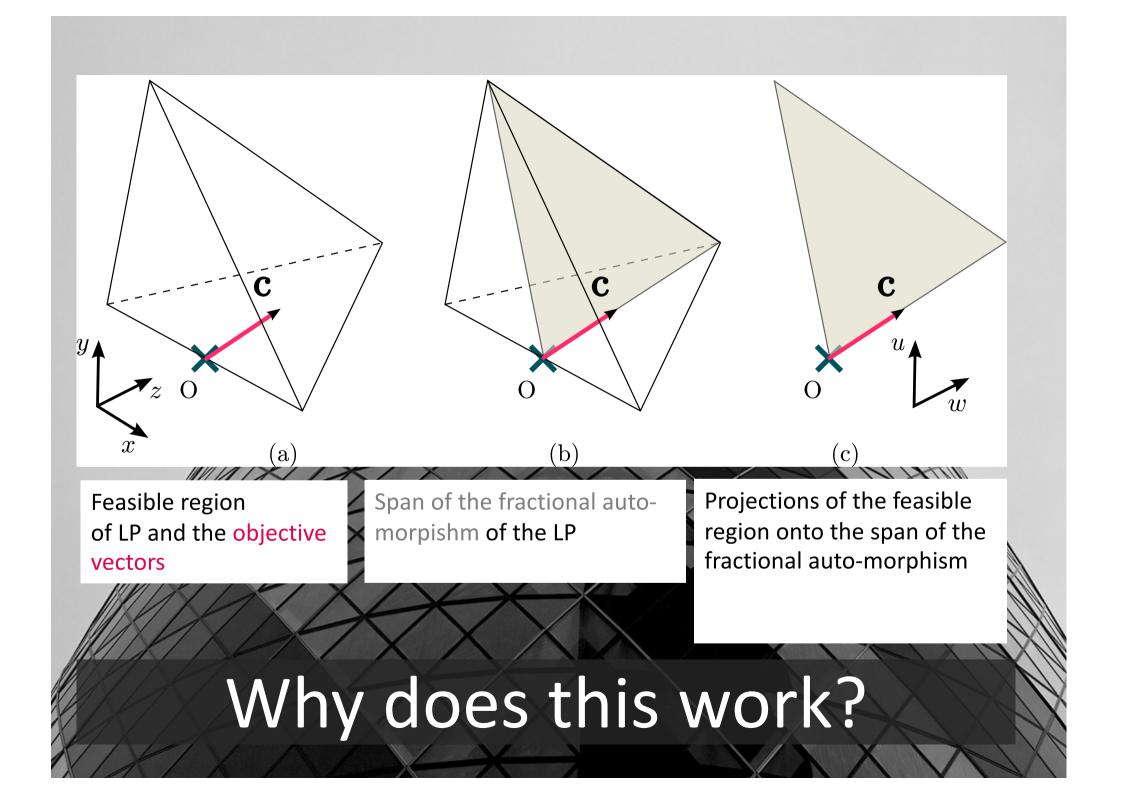


Collective Classification

Cora (most common vs. rest)

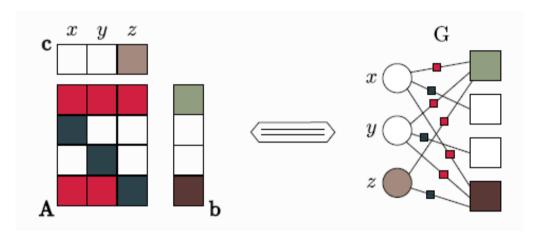


The more observed the more lifting. Faster end-to-end even despite Gurobi's fast pre-solving heuristics



[Mladenov, Ahmadi, Kersting AISTATS [']12, Grohe, Kersting, Mladenov, Selman ESA [']14, Kersting, Mladenov, Tokmatov AIJ [']15]

Compute Equitable Partition (EP) of the LP using WL



$$\mathcal{P} = \{P_1, \dots, P_p; Q_1, \dots, Q_q\}$$
Partition of
LP variables
LP constraints

Intuitively, we group together variables resp. constraints that interact in the very same way in the LP.

Fractional Automorphisms of LPs

The EP induces a fractional automorphism of the coefficient matrix **A**

$$\mathbf{X}_{Q}\mathbf{A} = \mathbf{A}\mathbf{X}_{P}$$

where X_Q and X_p are doubly-stochastic matrixes (relaxed form of automorphism)

$$(\mathbf{X}_{P})_{ij} = \begin{cases} 1/|P| & \text{if both vertices } i, \ j \text{ are in the same } P, \\ 0 & \text{otherwise.} \end{cases}$$
$$(\mathbf{X}_{Q})_{ij} = \begin{cases} 1/|Q| & \text{if both vertices } i, \ j \text{ are in the same } Q, \\ 0 & \text{otherwise} \end{cases}$$

If **x** is feasible, then $\mathbf{X}_{p}\mathbf{x}$ is feasible, too.

By induction, one can show that left-multiplying with a doublestochastic matrix preserves directions of inequalities. Hence,

$\mathbf{A}\mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{X}_{\boldsymbol{Q}}\mathbf{A}\mathbf{x} \leq \mathbf{X}_{\boldsymbol{Q}}\mathbf{b} \Leftrightarrow \mathbf{A}\mathbf{X}_{\boldsymbol{P}}\mathbf{x} \leq \mathbf{b}$

If \mathbf{x}^* is optimal, then $\mathbf{X}_{p}\mathbf{x}^*$ is optimal, too.

Since by construction $\mathbf{c}^T \mathbf{X}_P = \mathbf{c}^T$ and hence $\mathbf{c}^T (\mathbf{X}_P \mathbf{x}) = \mathbf{c}^T \mathbf{x}$ What have we established so far?

Instead of considering the original LP

$$(\mathbf{A},\mathbf{b},\mathbf{c})$$

It is sufficient to consider

$$(\mathbf{A}\mathbf{X}_{P}, \mathbf{b}, \mathbf{X}_{P}^{T}\mathbf{c})$$

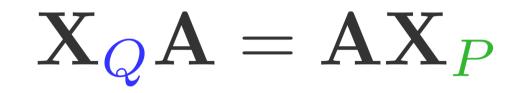
i.e. we "average" parts of the polytope.

But why is this dimensionality reduction?

The doubly-stochastic matrix \mathbf{X}_P can be written as $\mathbf{X}_P = \mathbf{B}\mathbf{B}^T$ $\mathbf{B}_{iP} = \begin{cases} \frac{1}{\sqrt{|P|}} & \text{if vertex } i \text{ belongs to part } P, \\ 0 & \text{otherwise.} \end{cases}$

Since the column space of B is equivalent to the span of \mathbf{X}_P , it is actually sufficient to consider only $(\mathbf{AB}_P, \mathbf{b}, \mathbf{B}_P^T \mathbf{c})$

This is of reduced size, and actually we can also drop any constraints that becomes identical



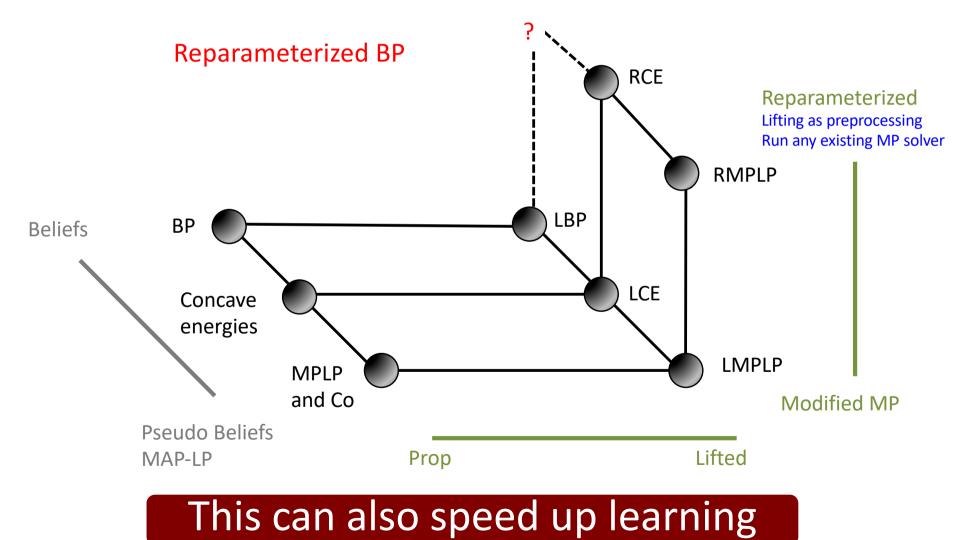
Fractional automorphisms provide an algebraic tool to study lifted inference

Actually, there is a whole body of work on (fractional) automorphisms for probabilistic inference, see the book, and we have focused here on the arguably simplest view.

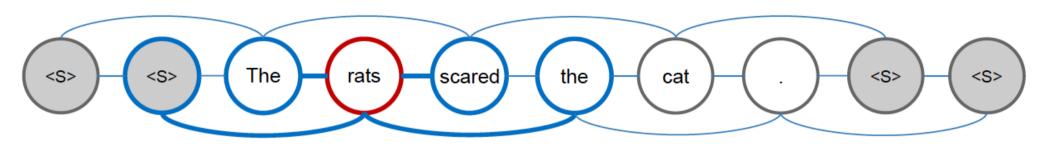
This has resulted in an important insight ...

Lifted inference =

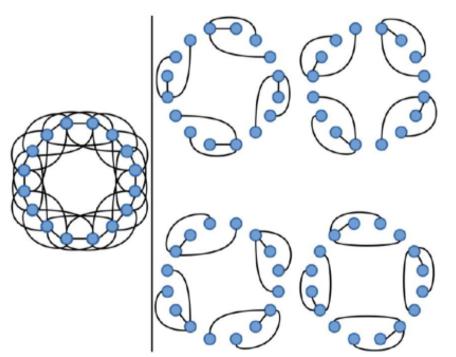
Inference in a smaller, reparameterized model



Lifted Learning of MRF Language Models



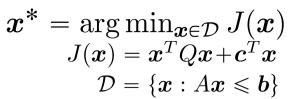
- Word distribution for all sentences together
- Dependencies on size K context per sentence
- Exploit symmetries

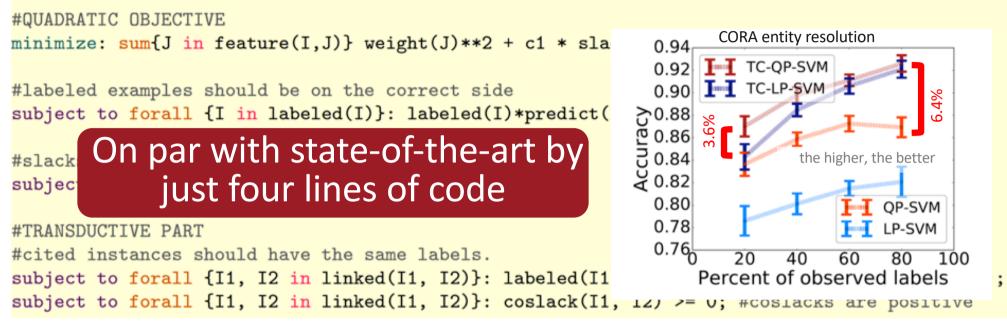


And extends lifting to statistical ML

[Mladenov, Kleinhans, Kersting AAAI '17]

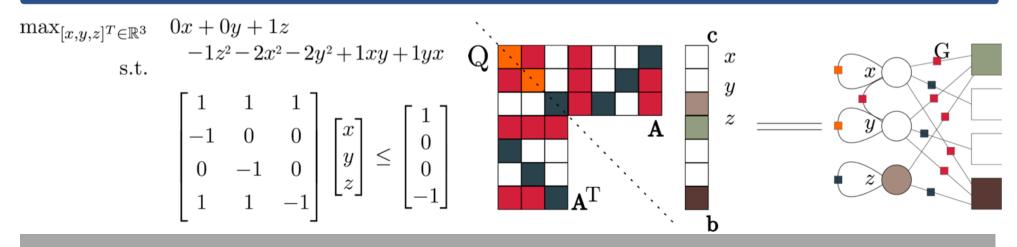
Lifted Convex Quadratic Programs





Papers that cite each other should be on the same side of the hyperplane

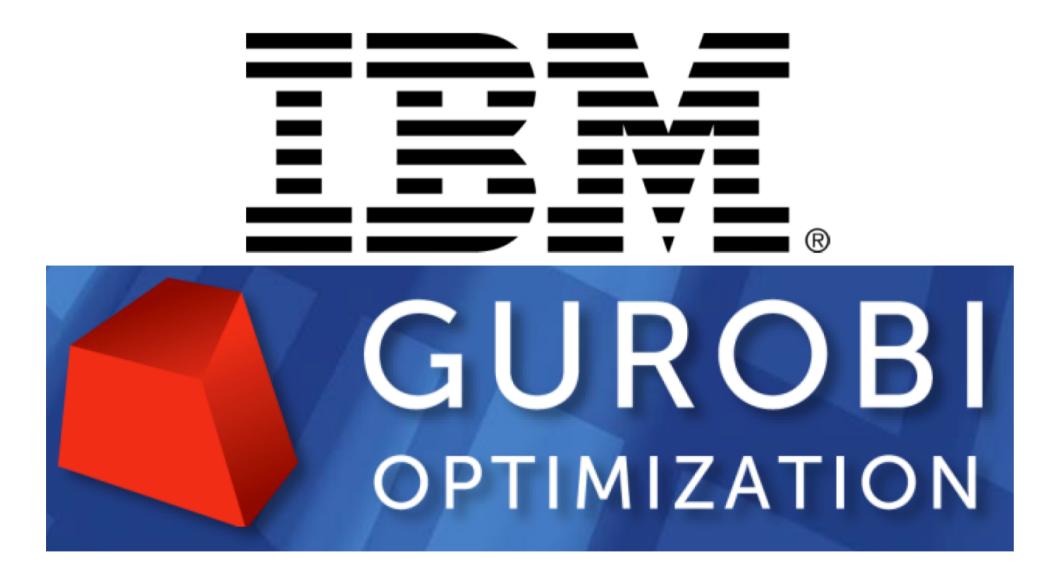
Reduce the QP by running Weisfeiler-Lehman on the QP-Graph



[Mladenov, Kleinhans, Kersting AAAI ['] 17] Approximately Lifted SVM:	Symmetry-based Data Augmentation:
Cluster data points via K-means using sorted distance vectors. Solve SVM on cluster representatives only	fractional autom. of label- preserving data transformations
	0.95 0.90 0.85 0.85 0.85 1 x = p = s 1 p = x, s = x/2 1 p = 36, s = x 0.80 4 8 12 16 20 24 28 32 36
PAC-style general. bound: the approximately lifted SVM will very likely have a small expected error rate if it has a small empirical loss over the original dataset.	* of [plartitions (red, blue)/# of (s]amples (green) Original SVM Original SVM Original SVM H p = 36, 5 = x the lower, the better the lower, the better the lower, the better the lower, the better (green) (d) Learning time: Translation
loss over the original dataset. Similar predictive performance but 47x faster	0 4 8 12 16 20 24 28 32 36 # of [p]artitions (red, blue)/# of [s]amples (green)

Same should work for deep learning

Industrial Strength Solvers such as CPLEX and GUROBI



[Mladenov, Belle, Kersting AAAI '17, Kolb, Mladenov, Sanner, Belle, Kersting IJCAI ECAI '18]

And, there are other "-02", "-03", ... flags, e.g symbolic-numerical interior point solvers

New field: Symbolic-numerical Al

5			ab c c c c c c c c c c c c c c c c c	+	$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{m1} & a_{m2} \end{bmatrix}$	$\cdots a_{2n}$ $\therefore \vdots$		
Formulae parse Algebraic					Matrix Free			
trees Decision Diagrams			Optimization					
Problem Statistics					Symbolic IPM Ground II			
name	#vars	#constr	$nnz(A)$	IADDI	time[s]	time[s]		
factory	131.072	688.128	4.000.000	1819	6899	516		
factory0	524.288	2.752.510	15.510.000	1895	6544	7920		
factory1	2.097.150	11.000.000	59.549.700	2406	34749	159730		
factory2	4.194.300	22.020.100	119.099.000	2504	36248	\geq 48hrs.		

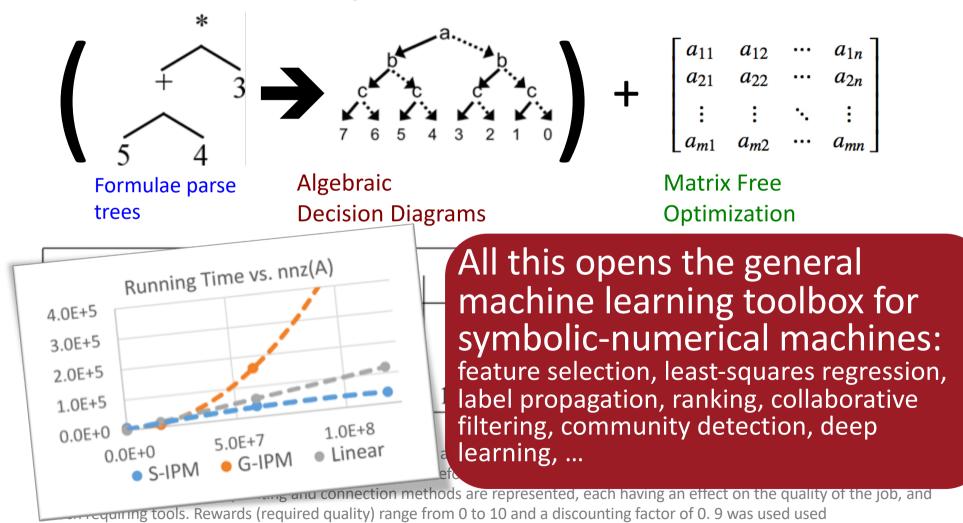
Applies to QPs but here illustrated on MDPs for a factory agent which must paint two objects and connect them. The objects must be smoothed, shaped and polished and possibly drilled before painting, each of which actions require a number of tools which are possibly available. Various painting and connection methods are represented, each having an effect on the quality of the job, and each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting factor of 0. 9 was used used

>4.8x faster

[Mladenov, Belle, Kersting AAAI '17, Kolb, Mladenov, Sanner, Belle, Kersting IJCAI ECAI '18]

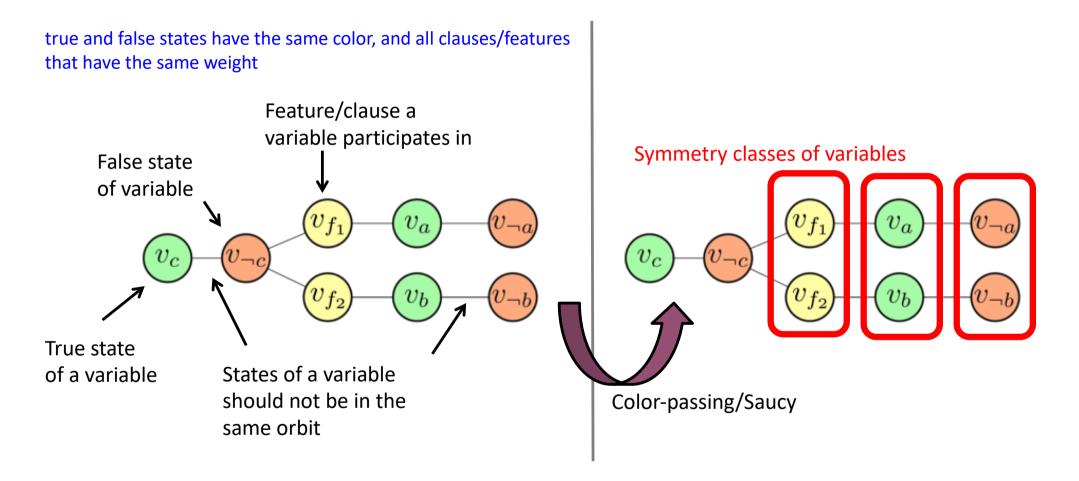
And, there are other "-02", "-03", … flags, e.g symbolic-numerical interior point solvers

New field: Symbolic-numerical Al



Symmetries can also be exploited to speed up sampling

Orbital Markov Chain Monte Carlo



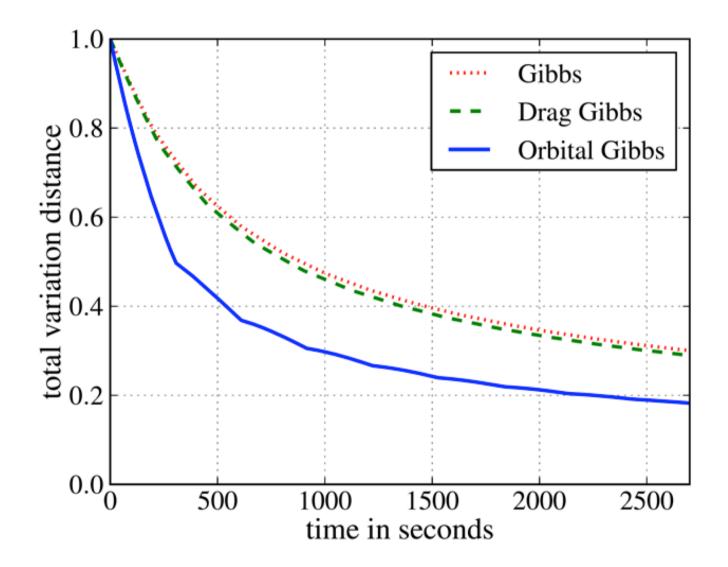
Jump between symmetric states uniformly

Orbital MCMC Sampling

In each sampling iteration:

- 1. run a step of a traditional MCMC chain TM first and then
- 2. sample the state of M at the next time uniformly at random from the orbit of the state of the original chain TM at time t, i.e., select an equivalent state uniformly at random

Orbital MCMC on a 6x6 Ising grid



Lifted Metropolis-Hastings

Given an orbital Metropolis chain A:

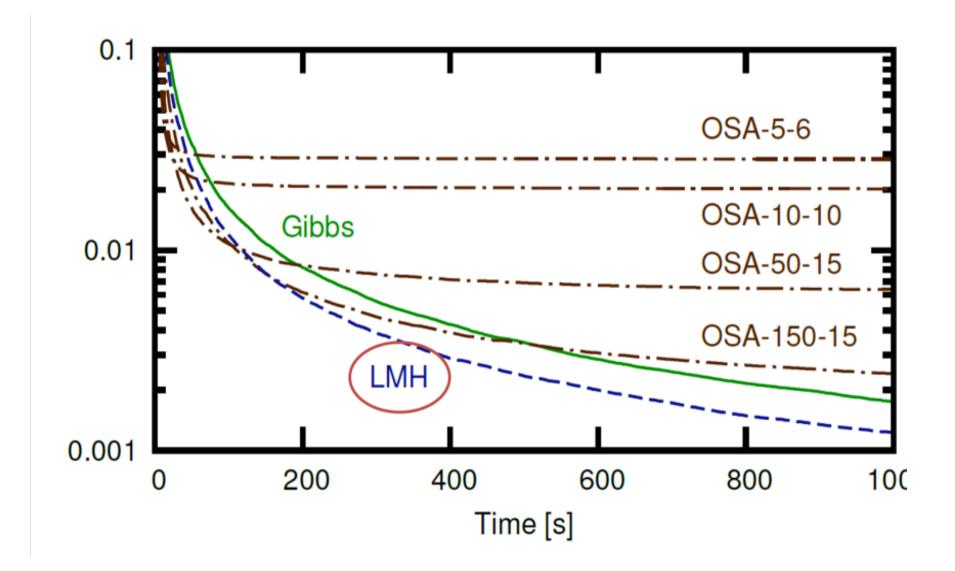
- Given symmetry group G (approx. symmetries)
- Orbit **x**^G contains all states approx. symm. to **x**
- In state x:
 - 1. Select **y** uniformly at random from \mathbf{x}^{G}
 - 2. Move from **x** to **y** with probability min $\left(\frac{\Pr(y)}{\Pr(x)}, 1\right)$
 - 3. Otherwise: stay in x (reject)
 - 4. Repeat

and an ordinary (base) Markov chain B, with prob. α follow B and with (1- α) follow A

This can also account for evidence that may break symmetries, using e.g. approx. symmetries

Color-passing /Saucy

Lifted Metropolis-Hastings on WebKB



Take away

- Lifted inference exploits (fractional) symmetries
- Fractional symmetries can be computed in quasilinear time
- Symmetries allow one to study lifted inference in an algebraic way, i.e., independent of the underlying algorithm
- Essentially, the whole family of approximate inference methods is liftable
- Lifted inference of interest to Optimization, ML, and AI in general (SVMs, RL, IRL, Deep Networks, ...)