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1. Parameter estimation

2. Vanilla relational (structure) learning

3. Boosting

How do we learn relational 
models?



Parameter estimation for 
relational models



Relational Parameter Estimation
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Parameter tying
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Parameter tying

Tying of parameters similar to CNNs

Number of groundings is large in 
relational models

Need to combine multiple 
groundings of relations



So, we can apply „standard“ EM
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Aggregators: 
We may also have to combine instances of the same rule

Population

Rain1Temp1 Rain2Temp2 Rain3Temp3

AverageRainAverageTemp

Deterministic

Problem: Does not take into account the interaction between  Rain and Temp

Stochastic



Population
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• Top 3 distributions share parameters

• The 3 distributions are combined into one final distribution

• Gradient-descent and EM Methods exist

Combining Rules: 
We may also have to combine instances of the same rule



Of course, we can also make use of gradients: 
E.g. MLN Weight Learning
• Parameter tying: Groundings of same clause

• It is #P-complete to count the number of true 
groundings. Therefore, one often sticks to 
approximations such as 

• Generative learning: Pseudo-likelihood
• Discriminative learning: Cond. likelihood

No. of times clause i is true in data

Expected no. times clause i is true according to MLN
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Pseudo-likelihood
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Function to optimize:

Gradient:



Pseudo-likelihood
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Function to optimize:

Gradient:

While effective, still hard to count in many 
data sets

Approximate counting techniques exist
(Sarkhel et al. AAAI 2016, Das et al. SDM 
2016)



What’s Different to standard graphical models?

• Counting groundings need to be efficient
• Ensure parameter tying
• Population growth



Structure Learning of 
Relational Models

Top-down approach: 
GSL[Kok & Domingos, 2005], DSL[Biba et al., 2008]
Start from unit clauses and search for new clauses

Bottom-up approach: 
BUSL [Mihalkova & Mooney, 2007], Hypergraph Lifting [Kok & Domingos, 2009], Structural 
Motifs [Kok & Domingos , 2010]
Use data to generate candidate clauses

Max-Margin Approach:
Discriminative learning [Huynh & Mooney, 2008]
Effectively learns horn clauses 
Uses regularization to force parameters to zero
Later extended to online setting



• Given:
• Examples: first-order atomic formulas (atoms), each 

labeled positive or negative.
• Background knowledge: definite clause (if-then rules) 

theory.
• Language bias: constraints on the form of interesting new 

rules (clauses).

Inductive Logic Programming = 
Machine Learning + Logic Programming

The Problem Specification
[Muggleton, De Raedt JLP96]



ILP Specification

• Find:
A hypothesis h that meets the language 
constraints and that, when conjoined with B, 
implies (lets us prove) all of the positive examples 
but none of the negative examples.

• To handle real-world issues such as noise, we 
often relax the requirements, so that h need 
only entail significantly more positive 
examples than negative examples.



Illustration

c c

c c

c c

n

o

Find set of general rules
mutagenic(X) :- atom(X,A,c),charge(X,A,0.82)
mutagenic(X) :- atom(X,A,n),...

Examples E
Pos(mutagenic(m1)
Pos(mutagenic(m2)
Neg(mutagenic(m3)

Background Knowledge B
molecule(m1)    molecule(m2)
atom(m1,a11,c)    atom(m2,a21,o)
atom(m1,a12,n)    atom(m2,a22,n)
bond(m1,a11,a12)     bond(m2,a21,a22)
....



A Common Approach

• Use a greedy covering algorithm.
Repeat while some positive examples remain 
uncovered (not entailed):

1. Find a good clause (one that covers as many 
positive examples as possible but no/few 
negatives).

2. Add that clause to the current theory, and remove 
the positive examples that it covers.

• ILP algorithms use this approach but vary in 
their method for finding a good clause.



:- true

Coverage = 0.5,0.7

Coverage = 0.6,0.3

Coverage = 0.4,0.6

:- atom(X,A,c)

:- atom(X,A,n)

:- atom(X,A,f)

Coverage = 0.8

Coverage = 0.6

:- atom(X,A,c),bond(A,B)

:- atom(X,A,n),charge(A,0.82)

Example ILP Algorithm: FOIL 
[Quinlan MLJ 5:239-266, 1990]

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)

…

Some objective function, e.g. 
percentage of covered
positive examples



Vanilla Structure learning 
for Probabilistic relational 
models



Vanilla SRL Approach[De Raedt, Kersting ALT04]

• Traverses the hypotheses space a la ILP

• Replaces ILP’s 0-1 covers relation by a “smooth”, 
probabilistic one [0,1]

0

1

…
Ú

Ú

º 1
mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)

…
=0.882



If data is complete:
To update score after local change,  
only re-score (counting) families 
that changed

If data is incomplete:
To update score after local change, 
reran parameter estimation algorithm

So, essentially like in the propositional case !
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Relational Boosting



Relational Gradient Boosting
Learn multiple weak models rather than a single 
complex model

Data

Predictions

- Gradients=Current Model

+
+

Induce

Iterate

Final Model = + + + +…

ψm

Friedman et al 2001, Dietterich et al. 2004, Natarajan et al. MLJ 2012



• Probability of an example 

• Functional gradient
• Maximize

• Gradient of log-likelihood w.r.t ψ

• Sum all gradients to get final ψ

Functional Gradients for SRL Models
x Δ

target(x1) 0.7

target(x2) -0.2

target(x3) -0.9

Can be extended to multiple SRL models & in presence of hidden data



Boosting RDNs/MLNs
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Algo Likelihood AUC-ROC AUC-PR Time

Boosting 0.810 0.961 0.930 9s

RPT 0.805 0.894 0.863 1s

MLN 0.730 0.535 0.621 93 hrs

Predicting the 

advisor for a 

student

Movie Recommendation Citation Analysis Discovering Relations Learning from

Demonstrations

Scale of Learning Structure
- 150 k facts describing the citations

- 115k drug-disease interactions

- 11 M facts on NLP tasks 

Natarajan et al. MLJ’12, Khot et al. ICDM ’11, Natarajan et al. IJCAI ’11, Natarajan et al. IAAI ’13

Weiss et al. IAAI ’12 AI Magazine ‘12, Natarajan et al. IJMLC ’13, Khot et al. MLJ’ 14

Information Extraction

It works



Try it out yourself!

https://starling.utdallas.edu/software/boostsrl/wiki/



Learning to act optimally

Generally, many AI tasks are amenable to relational 
modelling and lifting. The LP/QP approaches already 
show this. Let’s consider e.g.

Much more exists: relational random walks (Cohen et 
al.), relational embeddings (Riedel et al.), relational 
neural networks (Niepert et al., Zelezny et al., d'Avila
Garcez et al.) and so on



Relational Variant of Dynamic Programming for
solving relational Markov Decision Processes (MDPs)

Goal states º V0

1-step-to-go
2-steps-to-go

3-steps-to-go
n-steps-to-go

3

Vt+1

maximizing
4

Vt

Qt+1

combining

Qpartial

regression

valuating

1

2

4 steps (indicated by color)

Given a relational encoding of a MDP, compute
the value function using dynamic programming



Relational MDPs (using a simplified representation)

• States: interpretations, i.e., set of ground atoms
• Abstract states: conjunction of atoms („query“)
• Actions: each outcome a probabilistic STRIP rule
• Abstract value functions: set of rules of the form

where c is a value and B a conjunction
• Reward Function: initial value function V0

a

b

on(a,b)

10.0

on(X,Y), cl(X), cl(Z)
X ¹ Y, Y ¹ Z, X ¹ Z

cl(X), cl(Y), on(X,Z)
X ¹ Y, Y ¹ Z, X ¹ Z 

0.9:move(X,Y,Z)

postcondition precondition
Action name
and parameters



Step 1: Regression

on(X,Y), cl(X), cl(Z)
X ¹ Y, Y ¹ Z, X ¹ Z

cl(X), cl(Y), on(X,Z)
X ¹ Y, Y ¹ Z, X ¹ Z 

0.9:move(X,Y)

move(a,b)
cl(a), cl(b), on(a,Z), 
a ¹ b, a ¹ Z, b ¹ Z

a

bZ

Match on(a,b) with on(X,Y)a

b

m
ove(X,Y)

cl(X), cl(Y), on(X,Z), 
X ¹ Y, Y ¹ Z, X ¹ Z

and on(a,b) ¹ on(X,Y) 
and on(a,b) ¹ on(X,Z)

a

b Y

X

Z

on(a,b) does not m
atch on(X,Y)



Steps 2&3: Valuation & Combination, 
i.e., computing Q-rules

0.9 : move(a,b)

Z
Vt = 10

Qt+1 = 0 + 0.9 × g × 10 = 8.1

Vt = 0

b

Step 2:
Computing values 
for a single outcome

Step 3: 
Combining outcomes

o1 o2

Greatest 
lower 
bound

a a

b

Z Z

Q1 = 8.1 Q2 = 0.0

Z

Q = 8.1

+

Outcome 1 Outcome 2

a X a

b Y b



Step 3: Maximizing, i.e., computing 
the next value function
• Maximizing Q-rules, i.e., Vt+1(s) = maxa Qt+1(s,a)

Q=10
Q=10

Q=5
Q=4

Q=3
Q=0

Q =10 = V

Q =10 = V

Q = 4 = V

Q = 0 = V

10 : move(X,Y) ß cl(X), cl(Y) 
5   : move(a,b) ß cl(a), cl(b) 10 : move(X,Y) ß cl(X), cl(Y)

V(cl(X), cl(Y)) = 10



Logistics Domain

Resulting value function is independent of the 
actual domain size. This is lifted inference!



Blocks World: cl(a)



Blocks World: on(a,b)

Value functions can often be much more complex 
to represent than the corresponding policy



Direct Policy Learning
When policies have much simpler representations than 
the corresponding value functions, direct search in policy 
space can be a good idea

Goal: cl(a)

Policy: put each block on top of a on the floor

Let’s apply boosting as used already for learning 
relational probabilistic models



• Assume policy to be expressed using an arbitray potential function

• Do functional gradient search w.r.t. world-value  

Non-Parametric Policy Gradients
[Kersting, Driessens ICML08]
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Some Experimental Results

Relational Regression Trees Standard Regression Trees

Allows one to treat propositional, continuous and 
relational features in a unified way!



What have we learnt?

• Early learning methods extended standard 
graphical model learning
• Parameter tying exploited when learning relational 

models
§ Vanilla relational learning approach does a greedy 

search by adding/deleting literals/clauses using 
some (probabilistic) scoring function

§ Learning many weak rules of how to change a 
model can be much faster

§Many if not most AI algorithms can be lifted to the 
relational level


