Learning Probabilistic

Relational Models

Statistical Relational Al
Tutorial at KI-2018

Tanya Braun, Universitat zu LUbeck
Kristian Kersting, Technische Universitat Darmstadt
Ralf Moller, Universitat zu Lubeck

&7, TECHNISCHE
&//>\ UNIVERSITAT
97> DARMSTADT

How do we learn relational
models?

1. Parameter estimation

2. Vanilla relational (structure) learning

3. Boosting

Parameter estimation for
relational models

Relational Parameter Estimation

g

Background
m(ann,dorothy),
f(brian,dorothy),
ily,fred),
Jfred),

|| bihenryj=a, I
bt(fred)=?, ~Model(3)
bt(kim)=a, = pc(rex)=b,

bt(bob)=b bt(doro)=a,
bt(brian)=?

Model(1)
pc(brian)=b,
bt(ann)=a.
bt Model(2)
bt bt(cecily)=ab,

<+

 Father | -
— Mother

 Person

=

Relational Parameter Estimation

Background

Model(1 m(ann,dorothy),

po(brian)=b, - ¢4 ian, dorothy),

bt(ann)=a. i

o Model(2 ily,fred),

pt(Di(cecily)=ab, .
bob),

bt(henry)=a, [
bt(fred)=?, Model(3)
bt(kim)=a, = pc(rex)=b,
bt(bob)=b bt(doro)=a,
bt(brian)="?

<+

o ®
oo oo

- ﬁ,

Person

o« €

Parameter tying

Relational Parameter Estimation

Background
Model(1 m(ann,dorothy),

po(brian)=b, |t rian dorothy),

bt(ann)=a
bt(Model(2)

bt(bt(cecily)=ab,

ily,fred),

Jfred),

bt(henry)=a, ob),

bt(fred)=?, Model(3

bt(ki
b

LN

Tying of parameters similar to CNNs

\/

{]
s Number of groundings is large in

relational models

Need to combine multiple
groundings of relations

So, we can apply ,standard” EM

Background

Model(1) m(ann,dorothy),
. sl etz f(brian,dorothy),
Logic Program L] . bt(aﬂ“‘zal-z iy, fred),
ode
FFFFF = iterate until convergence ‘e i
-« -« W bt(henry)=a, ?Ob)’

(
FFFFFF (,
nnnnn : . = bt(fred)=?, Model(3)
<< Expectation o e |
bt(bob)=b bt(doro)=a,
bt(brian)="?

PPPPPP

Initial Parameters q0

.. Inference

Current

 Model Expected counts of a clause
_(m,qk) |

E E P(head(Gl), body(Gl) | DC)
Ground Instance DataCase DC
Gl
E E P(head(Gl), body(Gl) | DC)

glround Instance DataCase DC M aXI m |Zat|0n
E E P(body(Gl) | DC) Update parameters (ML, MAP)

Ground Instance DataCase DC
Gl

Aggregators:

We may also have to combine instances of the same rule

Deterministic ‘ \

Stochastic

Population

Problem: Does not take into account the interaction between Rain and Temp

Combining Rules:
We may also have to combine instances of the same rule

———— —_ ———— -——
- ~~. - -

- — -
-~

-

Population
e Top 3 distributions share parameters P

e The 3 distributions are combined into one final distribution

e Gradient-descent and EM Methods exist

Of course, we can also make use of gradients:
E.g. MLN Weight Learning

« Parameter tying: Groundings of same clause

% log P, (x) 4 m, () HE, [m 0]

No. of times clause i is true in data

Expected no. times clause i is true according to MLN

* It is #P-complete to count the number of true
groundings. Therefore, one often sticks to
approximations such as

* Generative learning: Pseudo-likelihood
 Discriminative learning: Cond. likelihood

Pseudo-likelihood

Function to optimize: pr(x)=[]P(X, = x, | MB(x))

log PL(x) :ZlogP(X =X, | MB(x,))
P(x) |
P('X[XZ:O]) T P(X[Xz=1])

B 1/ Z exp(Zwn,(x))
1/ Z exp(Zwn,(x;y o) + 1/ Z exp(Ewn, (x5 _;)))

P(X, =x, | MB(x))) =

Gradient:

éwilogPL(X) =D 1,(x) = P(X; = 0| MB(X))) n,(x5, o)

’ Z - P(X, :1|MB(XZ))nj(x[XI:1])
= an(x) — Ex,' [nj(x[)(,zx,'])]

Pseudo-likelihood

Function to optimize: PL(x)=[| P(X, =x, | MB(x,))

log PL(x) =) _log P(X, = x, | MB(x,))

While effective, still hard to count in many
data sets

Approximate counting techniques exist
(Sarkhel et al. AAAI 2016, Das et al. SDM
2016)

What'’s Different to standard graphical models?

* Counting groundings need to be efficient
* Ensure parameter tying
* Population growth

Top-down approach:
GSL[Kok & Domingos, 2005], DSL[Biba et al., 2008]
Start from unit clauses and search for new clauses

Bottom-up approach:

BUSL [Mihalkova & Mooney, 2007], Hypergraph Lifting [Kok & Domingos, 2009], Structural
Motifs [Kok & Domingos , 2010]

Use data to generate candidate clauses

Max-Margin Approach:
Discriminative learning [Huynh & Mooney, 2008]
Effectively learns horn clauses
Uses regularization to force parameters to zero
Later extended to online setting

Structure Learning of
Relational Models

Inductive Logic Programming =
Machine Learning + Logic Programming

The Problem Specification
[Muggleton, De Raedt JLP96]

e Given:

* Examples: first-order atomic formulas (atoms), each
labeled positive or negative.

* Background knowledge: definite clause (if-then rules)
theory.

* Language bias: constraints on the form of interesting new
rules (clauses).

ILP Specification

e Find:

A hypothesis h that meets the language
constraints and that, when conjoined with B,

implies (lets us prove) all of the positive examples
but none of the negative examples.

* To handle real-world issues such as noise, we
often relax the requirements, so that h need
only entail significantly more positive
examples than negative examples.

Illustration

4 O
Examples E
Pos(mutagenic(m1)
Pos(mutagenic(m?2)
Neg(mutagenic(m3)

_ /

Find set of general rules

mutagenic(X) :- atom(X,A,c),charge(X,A,0.82)
mutagenic(X) :- atom(X,A,n),...

molecule(m1) molecule(m2)
atom(m1,a11,c) atom(m2,a21,0)
atom(m1,a12,n) atom(m2,a22,n)
bond(m1,a11,a12) bond(m2,a21,a22)

]

.<n /Background Knowledge B R
/

A Common Approach

* Use a greedy covering algorithm.

Repeat while some positive examples remain
uncovered (not entailed):

1. Find a good clause (one that covers as many
positive examples as possible but no/few
negatives).

2. Add that clause to the current theory, and remove
the positive examples that it covers.

* ILP algorithms use this approach but vary in
their method for finding a good clause.

Example ILP Algorithm: FOIL

[mutagenic(X) :- atom(X,A,n),charge(A,0.82)]

[mutagenic(X) :- atom(X,A,c),bond(A,B)]

.- atom(X,A,c)
Coverage = 0.5,0.7 .- atom(X,A,c),bond(A,B)]

Coverage = 0.8

_ 1
- atom(X,A,n) | { - atom(X,A,n),charge(A,0.82)]
Coverage = 0.6,0.3

Coverage = 0.6

.- atom(X,A,f)]

[Coverage = 0.4,0.6 Some objective function, e.g.
percentage of covered

positive examples

Vanilla Structure learning
for Probabilistic relational
models

Vanilla SRL Approach

[mutagenic(X) .- atom(X,A,n),charge(A,0.82)]

[mutagenic(X) - atom(X,A,c),bond(A,B)] =(0.882

* Traverses the hypotheses space a la ILP

* Replaces ILP’s 0-1 covers relation by a “smooth”,
probabilistic one [0,1]

cover(e, H,B) = P(elH,B)
cover(E,H,B) =] _; cover(e, H, B)

So, essentially like in the propositional case |

\
If data is complete:
To update score after local change,

only re-score (counting) families '
¢ P
pad

that changed

If data is incomplete:

To update score after local change,

reran parameter estimation algorithm
N J

Relational Boosting

Relational Gradient Boosting

Learn multiple weak models rather than a single
complex model

U

==l

|:"> Predictions

o\ =
terat

. N

Friedman et al 2001, Dietterich et al. 2004, Natarajan et al. MLJ 2012

Current Model

<+

Functional Gradients for SRL Models

* Probability of an example x| a |
ew(wi;Pa(wi)) target(x1) 0.7
P(ZEZ = tTU€|Pa(fvi)) — oV (z:;Pa(z;)) +1 target(x2) -0.2
target(x3) -0.9

* Functional gradient
* Maximize
LL(X=x) =) logP(x;Pa(x;))

T; EX

* Gradient of log-likelihood w.r.t Y

Ax;) = gij(gxi(li(a(;;)) = I(z; = true; Pa(z;)) — P(x; = true; Pa(x;))

* Sum all gradients to get final Y

Vm = %o+ A1+ ...+ Ay

Can be extended to multiple SRL models & in presence of hidden data

Boosting RDNs/MLNs

Generate
Example

Boosting RDNs/MLNs

Generate
Example

00000

Boosting RDNs/MLNs

Generate
Example

Boosting RDNs/MLNs

Generate
Example

Induce 0 S
Regression e By y oF,. 1 og P(yl|z; Frn—1)
Tree

Boosting RDNs/MLNs

Generate
Example

Update Model

Induce 0 S
Regression — Egy oF,. 1 og P(y|z; Frm—1)
Tree

Boosting RDNs/MLNs

O : ‘:‘: ‘:
o O e o © Fy+ Aq
O O o o

Generate

Pl

Update Model

Induce 0
Regression By 8F. . log P(y|z; Frm—1)
Tree

It works
predicting the

advisor for a Boosting 0.810 0.961 0.930
student RPT 0.805 0.894 0.863 1s
MLN 0.730 0.535 0.621 93 hrs

Movie Recommendation Citation Analysis Discovering Relations Learning from
Demonstrations

Unstructured Structured

Web Text Sequences Scale of Learning Structure
s - 150 k facts describing the citations

- 115k drug-disease interactions
- 11 M facts on NLP tasks

Information Extraction

Natarajan et al. MLJ’12, Khot et al. ICDM "11, Natarajan et al. IJCAl “11, Natarajan et al. IAAl "13
. Weiss et al. IAAI “12 Al Magazine ‘12, Natarajan et al. JMLC ’13, Khot et al. ML)’ 14 I

Try it out yourself!

https://starling.utdallas.edu/software/boostsrl/wiki/

StERLNGL AR

BOOSTSRL BASICS

Getting Started

File Structure

Basic Parameters
Advanced Parameters
Basic Modes
Advanced Modes

ADVANCED BOOSTSRL

Default (RDN-Boost)

MLN-Boost

Regression

One-Class Classification
Cost-Sensitive SRL

Learning with Advice

Approximate Counting
Discretization of Continuous-Valued
Attributes

Lifted Relational Random Walks
Grounded Relational Random Walks

APPLICATIONS

Natural Language Processing

People Publications Projects Software Datasets Blog Q

BoostSRL Wiki

BoostSRL (Boosting for Statistical Relational Learning) is a gradient-boosting based approach to
learning different types of SRL models. As with the standard gradient-boosting approach, our
approach turns the model learning problem to learning a sequence of regression models. The key
difference to the standard approaches is that we learn relational regression models i.e., regression
models that operate on relational data. We assume the data in a predicate logic format and the
output are essentially first-order regression trees where the inner nodes contain conjunctions of
logical predicates. For more details on the models and the algorithm, we refer to our book on this
topic.

Sriraam Natarajan, Tushar Khot, Kristian Kersting and Jude Shavlik, Boosted Statistical Relational
Learners: From Benchmarks to Data-Driven Medicine . SpringerBriefs in Computer Science, ISBN:
978-3-319-13643-1, 2015

Much more exists: relational random walks (Cohen et

al.), relational embeddings (Riedel et al.), relational
neural networks (Niepert et al., Zelezny et al., d'Avila

Garcez et al.) and so on

Generally, many Al tasks are amenable to relational
modelling and lifting. The LP/QP approaches already
show this. Let’s consider e.g.

Learning to act optimally

Relational Variant of Dynamic Programming for
solving relational Markov Decision Processes (MDPs)

et T 4 steps (indicated by color)
\ Viei(s) = max Y T(s,a,s")[R(s,a,5) +~Vi(s)]

Qpartial

Goal states =V,
1-step-to-go
2-steps-to-go
3-steps-to-go 2
P 9 valuating
n-steps-to-go

Given a relational encoding of a MDP, compute

the value function using dynamic programming

Re | ath ﬂ a | I\/I D PS (using a simplified representation)

cl(a),cl(b),on(a, c)

/

States: interpretations, i.e., set of ground atoms

10.0 < on(a,b) Abstract states: conjunction of atoms (,,query*)

Actions: each outcome a probabilistic STRIP rule

0.0 — true

Abstract value functions: set of rules ¢f the form

¢ «— B where cis a value and B/a conjunction

Reward Function: initial value fungtion Vg

/

on(X,Y), cl(x), cl(z) 0.9:move(X,Y,2) cl(x), c(Y), on(X,2)
XY, Yz#Z, X%Z < Xz2Y,Yz2Z X#Z

" Action name -
postcondition and parameters precondition

Step 1: Regression

on(X,Y), c(X), cl(Z) 0.9:move(X,Y) c(X), cl(Y), on(X,2)
Xz2Y,Yz22Z, X2 < Xz2Y,Yz2Z, X=%2Z

cl(a), cl(b), on(a,2),
azb,azZ, b=+Z2

cl(X), cl(Y), on(X,Z),
Xz2zY, Y22, Xz2Z

and on(a,b) # on(X,Y)
and on(a,b) # on(X,2)

Steps 2&3: Valuation & Combination,
l.e., computing Q-rules

Q.,=0+0.9 -y -10 = 8.1

Step 2:
Computing values
for a single outcome

Step 3:
Combining outcomes
ol 02
>
Greatest

0.9 : move(a,b)

Q! =8.1 Q2 =0.0

Outcome 1 Outcome 2

lower
bound

Step 3: Maximizing, i.e., computing
the next value function

* Maximizing Q-rules, i.e., V,4(s) = max, Q;,4(s,2)

10 : move(X,Y) € cl(X), cl(Y)
5 - move(a,b) ya Cl(a), Cl(b) * 10 : move(X,Y) < CI(X), CI(Y)

v
V(cl(X), cl(Y)) = 10
1 Q=10 — Q=10=V
Q=10 — Q =10 =V
Q=5
Q=4 -> Q=4=V
Q=3

Q=0 Q=0=V

Logistics Domain

Vi
abstract states RN R E N E RN TE.E
bin(b,p). 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000
tin(A,p), on(b,A), not_rain. | 8.100 8.820 S.895 8.901 8901 8.901 8.901 8.901 8.901 8.901
tin(A,p), on(b,A), rain. 6.300 8.001 8.460 8.584 B8.618 8.627 8.629 8.630 8.630 8.630
tin(A,B), on(b, 1), not_rain. 7.200 7.946 8.006 8.010 8.011 8011 8011 8011 8.011
tin(A,B), on(b,A), rain. 5.670 7.201 7.614 7.726 7T.756 7T.764 T.766 T.T6T T.767
tin(d,B), bin(b, B), sot_rain. 5905 6.968 7.111 7.128 7.180 7.181 7.131 7.131
tin(A,B), bin(b, B), rain. 8572 5.501 6.282 6.563 6.658 6.689 6.699 6.702
tin(A,B), bin(b, C), not_rain. 5.314 6.271 6.400 6.416 6.417 6.418 6.418
tin(A,B), bin(b, C), rain, 3.215 4951 B.654 5007 5.993 6.020 6.020
tin(A,B). 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Convergence on both structural and value level.

(In about 2 min.)

Resulting value function is independent of the

actual domain size. This is lifted inference!

Blocks World: cl(a)

10 89 7.92 7.05, 6.28,5.59, 497, 4.39,3.73,2.72, 1.22

Blocks World: on(a,b)

6.56 5.91,5.31,4.78, 4.31, 3.87, 3.49

Value functions can often be much more complex

to represent than the corresponding policy

Direct Policy Learning

When policies have much simpler representations than
the corresponding value functions, direct search in policy
space can be a good idea

Goal: cl(a)

B

10 89 7.92 7.05, 6.28, 5.59, 4.97, 4.39, 3.73,2.72, 1.22

Policy: put each block on top of a on the floor

Let’'s apply boosting as used already for learning

relational probabilistic models

Non-Parametric Policy Gradients

[Kersting, Driessens ICMLOS8]

e Assume policy to be expressed using an arbitray potential function

‘P(S a)

Z P (s,b)

* Do functional gradient search w.r.t. world-value

n(s,a,V)=

compute

locally
o 223 remareslS

4" (s) @ (s.a) 5”(‘? 9)

Local Evaluation

JC . ..
Monte-CarIo estimate or actor critic
0, (S,a)|

e‘I’(s,a)

~ on(s,a)
M (s,a)
or(s,a)
M (s,b)

= 7(s,a)(1— 7(s,a))

=—7n(s,a)7(s,Dh)

Fercemtage ol Solved T

Some Experimental Results

REL-TG s—
RREL-RIB s
REL-Trendi e
TroeNPPG se—

SD RRL-TG e
SDREL-RIB e
SDRRL-Trend| s—
SD-TroeNPPO s

Number of Learning Episodes

Relational Regression Trees
Allows one to treat propositional, continuous and

0osS

Standard Regression Trees

relational features in a unified way!

What have we learnt?

* Early learning methods extended standard
graphical model learning

* Parameter tying exploited when learning relational
models

= Vanilla relational learning approach does a greedy
search by adding/deleting literals/clauses using
some (probabilistic) scoring function

" Learning many weak rules of how to change a
model can be much faster

" Many if not most Al algorithms can be lifted to the
relational level

