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Semantic Access to Databases

Diagnostic Queries with STARQL

Research Challenges

Demo Scenario Optique Platform

Large enterprise databases
§  Many complex different schemata
§  Siemens
o  about 100s turbines produce data
o  life, archived streams, static RDBs
o  data access is hard: 

up to 80% of analytics time 

Ontology Based Data Access
§  Ontology: conceptual domain model
§  Mappings: ontological terms to DBs

Deployment support 
§  semi-automatic for ontologies and mappings 

Query language 
§  over ontologies, streaming and static data
§  efficient query enrichment and transformation

Backend 
§  to optimise large numbers of queries 
§  efficiently execution over distributed 

streaming and static data

Demo Description
§  Siemens diagnostics tasks
o  e.g., calculate the Pearson correlation coefficient between 

turbine data streams
§  Siemens data
o  950 turbines, 2002 – 11 years
o  anonumised 

§  Data distribution
o  from 1 to 128 nodes 
o  each node: 2 proc., 4GB RAM

Demo Scenarios
§  Diagnostics with our deployment
§  Performance showcase of our deployment
§  Diagnostics with user’s deployment Main features 

§  End-to-end OBDA system
o  fully integrated 

§  For IT specialists
o  the whole OBDA life cycle
o  flexible configuration

§  For end-users
o  intuitive query formulation 
o  monitoring dash-boards
o  integration with GIS systems

Main Features of STARQL
§  Query language over ontologies 
§  Syntax: extension of SPARQL 

o  basic graph patterns 
o  typical mathematical, statistical, and event pattern features 

needed in real-time diagnostic scenarios 
§  Semantics 

o  combination of open and closed world reasoning 
o  extends snapshot semantics for window operators with 

sequencing semantics that can handle integrity constraints 
such as functionality assertions

§  Efficient query enrichment and transformation 
o  enrichment: PTime in the size of OWL 2 QL ontology 
o  unfolding: in EXASTREAM hybrid queries 
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Stream-Static Query Processing with EXASTREAM
Main Features
§  Highly optimised query 

processing system 
§  Supported queries

o  Extension of SQL
o  Hybrid stream-static

§  High-throughput 

User Defined Functions
§  For complex stream processing
§  Arbitrary user code

Architecture 
§  Parallelism by distributing Q. pro- 

cessing across multiple nodes
§  Query preprocessing

o  registered at Gateway Server
o  passed through Parser
o  fed into Scheduler

§  Query execution
o  Scheduler finds Worker Nodes  

based on their load
o  Scheduler places stream &  

relations on selected Workers
o  Worker Nodes execute queries
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1 PREFIX ex : <http ://www.siemens.com/onto/gasturbine/>
2
3 CREATE PULSE examplePulse WITH START = NOW , FREQUENCY = 1min
4
5 CREATE STREAM StreamOfSensorsInCriticalMode AS
6 CONSTRUCT GRAPH NOW { ?sensor a :InCriticalMode }
7
8 FROM STATIC ONTOLOGY ex:sensorOntology , DATA ex:sensorStaticData
9 WHERE { ?sensor a ex:Reliable }

10
11 FROM STREAM sensorMeasurements [NOW - 1min , NOW]-> 1sec
12 referenceSensorMeasurements 1year <-[NOW - 1min , NOW]-> 1sec ,
13 USING PULSE examplePulse
14 SEQUENCE BY StandardSequencing AS MergedSequenceOfMeasurementes
15 HAVING EXISTS i IN MergedSequenceOfMeasurementes
16 (GRAPH i { ?sensor ex:hasValue ?y. ex:refSensor ex:hasValue ?z })
17 HAVING PearsonCorrelation (?y, ?z) > 0.75

Fig. 1: Running example query expressed in STARQL

at Siemens [18], explicit aggregate concepts of DL-LiteaggA give us significant modelling
and query formulation advantages over DL-LiteA since in such applications concepts
are naturally based on aggregate values of potentially many different attributes. For
instance, in Siemens the notion of reliability is naturally based on aggregation over various
attributes, i.e., it should be modelled as E

i

v Reliable for many dfferent aggregate
concepts E

i

, and reliability is also commonly exploited in diagnostic queries. In the case
of DL-LiteaggA , in all such diagnostic queries it suffices to use only one atom Reliable(x).
In contrast, in the case of DL-LiteA, each such diagnostic query would have to contain the
whole union Reliable(x) [

i

Q

Ei(x). Thus, Siemens diagnostics queries over DL-LiteA
would be much more complex than the ones over DL-LiteaggA . Moreover, in the case of
DL-LiteA, Q

Ei(x)s in such diagnostics queries will have to be adjusted each time the
notion of reliability is modified, while, in the case of DL-LiteaggA , only the ontology and
not the queries should be adjusted.

2.2 Query Language

In this section we will give an overview of the main language constructs and semantics of
STARQL, and illustrate it on our running example (see [24] for more details). Each
STARQL query takes as input a static DL-LiteaggA ontology and dataset as well as a
set of live and historic streams. The output of the query is a stream of timestamped
data assertions about objects that occur in the static input data and satisfy two kinds of
filters: a conjunctive query over the input static ontology and a diagnostic query over the
input streaming data that may involve typical mathematical, statistical, and event pattern
features needed in real-time diagnostic scenarios. The syntax of STARQL is inspired by
the W3C standardised SPARQL query language; it also allows for nesting of queries.
Moreover, STARQL has a formal semantics that combines open and closed-world
reasoning and extends snapshot semantics for window operators [4] with sequencing
semantics that can handle integrity constraints such as functionality assertions.

In Fig. 1 we present a STARQL query that captures the diagnostic task from our
running example and uses concepts, roles, and attributes from our Siemens ontology [18]
and Eq. (1). The query has three parts: declaration of the output stream (Lines 5 and 6),
sub-query over the static data (Lines 8 and 9) that in the running example corresponds to
‘return all temperature sensors that are reliable, i.e., with the average score of validation
tests at least 90%’ and sub-query over the streaming data (Lines 11–17) that in the
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