
A Framework for Visualizing Object-Oriented Systems

Volker Haarslev∗

Xerox Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304, USA

haarslev@parc.xerox.com

Abstract

This paper describes a new approach to visualizing pro-
gram systems within the object-oriented paradigm. This
approach is based on a TEX-like notation which has been
extended and generalized for specifying graphical layout
of arbitrary objects. The CLOS meta-level architecture
is used to associate visualization and application objects.
We propose several useful techniques such as indirect val-
ues, slot and method demons, and instance-specific meta-
objects. Our techniques require no modifications to the
systems which are selected for visualization. We demon-
strate the feasibility of our approach using application do-
mains such as CLOS debugging and constraint systems.

1 Introduction

Although programming has mostly been done in textual
terms users have always had a notion of visualizing their
programs. Programs have been entered as lines of text but
soon users started to indent their programs and also used
comments for separating or emphasizing particular pro-
gram parts. Tools were developed which pretty-print or
format source code. Modern programming environments
offer debugging tools such as browsers and inspectors pro-
viding users with views of program structure and execu-
tion states. But these views display their information more
textually than visually (pictorially). A further disadvan-
tage of these environments is their lack of offering program
designers adequate tools for visualizing and animating pro-
grams, which support both structural and conceptual vi-
sualization.

This paper discusses within the paradigm of object-orient-
ed programming the use of structural and conceptual vi-
sualization techniques. We describe a new approach com-
bining both techniques, which is based upon TEX-like lay-
out specifications. Furthermore, we discuss the usefulness
of meta-level architectures for implementing visualization
techniques. We implemented a prototyping environment
consisting of a set of extensible fundamental components
which offer varying degrees of support. It is implemented
in Macintosh Allegro Common Lisp and based upon the
PCL implementation of the Common Lisp Object System
[2, 17] (CLOS). We applied our visualization techniques

∗ New address: University of Hamburg, Computer Science De-
partment, Bodenstedtstr. 16, D-2000 Hamburg 50, FRG,
haarslev@rz.informatik.uni-hamburg.dbp.de

Ralf Möller
University of Hamburg, AI Laboratory

Bodenstedtstr. 16, D-2000 Hamburg 50, FRG
moeller@rz.informatik.uni-hamburg.dbp.de

to several application domains such as CLOS debugging,
graphical editing, constraint systems, line routing, and
concurrent logic programming (see also [24, 14]).

Conceptual visualizations of programs are mostly created
by hand. This hand-design is basically caused by the fun-
damental problem that geometrical and graphical infor-
mation necessary to create suitable visualizations cannot
automatically be derived from corresponding data. The
major problem is to define interesting events which should
be visualized. But very often interesting events are only
indirectly reflected by algorithms. We refer to [5] for a
detailed discussion of these problems.

Structural visualization uses program and data structures
to generate relevant geometrical information. An impor-
tant problem related to structural interpretation is that
conceptual information about data can only indirectly be
derived (e.g. from naming of identifiers). A very common
approach to structural visualization is to guide the visual-
ization process by underlying programming styles or com-
putational models. Many approaches to visualizing im-
perative systems use flow charts or diagrams. The Trans-
parent Prolog Machine [9] is an example for relational or
logic systems. A more radical approach is presented by
Pictorial Janus [16]. It defines complete visualizations of
concurrent logic programs and captures static as well as
dynamic information about these programs.

There exist many approaches to visualizing data flow of
functional systems, e.g. VIPEX [13], Pluribus [30], and
Prograph [23, 6]. A diagramming approach to tracing
object-oriented systems as an extension to a Smalltalk-80
debugger is described in [8]. GraphTrace [19] is also in-
tended for understanding behavior of objects. It provides
graphical traces of program executions. Both approaches
are primarily focused on structural visualizations. In con-
trast to our approach they offer no support for conceptual
visualizations.

Besides structural and conceptual visualization techniques
it is also important to support flexible schemes for aesthet-
ically laying out combinations of units. With respect to
forms-oriented user interfaces allocation of space and po-
sition is mostly constrained by the space globally available.
Graphical interfaces usually also add local constraints. A
typical application is a browser generating net-like rep-
resentations of rule sets, classes, or objects. The spatial
allocation of nodes may depend on adjoining nodes or the
topology of edges (e.g. in order to avoid line crossing or
long winding paths). This problem is addressed by many
constraint-oriented systems. ThingLab I [4] and II [22] are
examples for describing layout of graphical objects with
constraints. [27] also presented a toolkit using constraints

(let ((left-table (make-dialog-item ...))

(right-table (make-dialog-item ...))
(graph-view (make-layout-view ...)))

(make-layout-dialog :layout

(:vbox (:width :filler :height :filler)

(:hbox (:height 1/4 :width :filler)

(:fbox () left-table) (:fbox () right-table))

(:fbox () graph-view)))

(setf (layout graph-view) ...))

Figure 1: Layout specification of Figure 2 (schematically).

and active values. In contrast to constraint-oriented ap-
proaches we decided to provide a simpler but more com-
pact and predictable notation for specifying layout. Fur-
thermore, our approach has the advantage that it requires
only 2n + log(n) steps, be n the number of boxes. Thus,
our algorithm has a computational complexity of O(n) (see
[15, 14] for details).

The remainder of this paper is structured as follows. The
next two sections introduce our TEX-like specifications.
Section 4 introduces box items which are suited for more
general applications. The next section demonstrates a
straightforward extension of a CLOS class browser which
serves as an example for the flexibility of our approach.
Afterwards we discuss the use of the CLOS meta-object
protocol for program visualization and demonstrate some
of these considerations using a simple constraint system
as example. Section 7 compares our approach with re-
lated work. This paper concludes with a summary and a
discussion of future work.

2 Layout Specifications

We adopted the “box-and-glue” metaphor of TEX [20] for
specifying layout of objects. Layouts are composed of a set
of rectangular regions, so-called boxes. Laying out boxes
and positioning objects are associated with corresponding
box types. Our system offers a set of predefined layout
algorithms and box types. More general box types are
discussed in Section 3.

2.1 Vertical and Horizontal Boxes

The fundamental scheme aligns boxes as a list of horizontal
and vertical boxes. This layout technique has been found
very useful for standard (forms-oriented) dialog windows
(see Section 7 for a discussion of related work). A layout
of a dialog window is specified as a combination of boxes
with optional size specifications. Boxes may be arbitrar-
ily nested. The size of boxes and the spatial relationship
between them is expressed by an amount of glue or filler
describing either a horizontal or vertical distance. Fillers
can be specified as fixed (e.g. in pixel) or variable. Vari-
able fillers depend on the space available to their enclosing
box. We distinguish relative and constrained fillers. A rel-
ative filler is expressed as a fixed ratio to the size of its
superior box. Constrained fillers can shrink (stretch) to a
given lower (upper) limit. Default constraints are zero as
lower limit and box size as upper limit. Several fillers as
elements of the same box work together like springs. They
share the available space and in general every filler claims

Figure 2: A DAG graph of a standard class hierarchy.

the same amount of space which is only constrained by its
lower and upper limit.

A vertical or horizontal box (<box-type> either :vbox or
:hbox) is specified by the lisp form (<box-type> (:width

h :height v) box-item-1 ...). Its box items are laid out
vertically resp. horizontally. If the size specification is
omitted the width and height of a vertical or horizontal
box are set to a filler with default constraints. In general
this layout algorithm keeps the size of box elements un-
changed. If elements require more space than available to
their surrounding box they are allowed to extend beyond
their box’s boundaries. Boxes are also allowed to over-
lap one another. But this behavior is not always desired.
Therefore, we introduced a frame box (:fbox) which con-
strains the size of its element in order to match exactly the
frame box size. A frame box contains only one box item:
(:fbox (:width h :height v) box-item).

2.2 Filler Specification

The complete form specifying a filler is (:filler :min m

:max n), :min and :max are optional. We defined :filler

as short-form of (:filler :min 0 :max box-size). It is
also possible to define the (minimal/maximal) size of a
box with respect to its elements. Then, the size of this
box is set to the result achieved by laying out its elements
and shrinking fillers to their lower limit (see [14] for more
details). Thus, the box has a minimal size satisfying all
lower bound constraints.

The Figures 1 and 2 show a layout specification and the
resulting dialog window for a simple CLOS browser which
displays a class hierarchy. The right table contains all
direct subclasses of the class listed in the left table. The
tables can be replaced by direct super resp. subclasses,
scrolled, and shifted to focus on “interesting” classes. The
lower part of the window displays a graph of the selected
class hierarchy.

The browser dialog is specified as a vertical box with
:filler as width and height. Its first item is a horizontal

(let ((upper-offset 10)

(left-offset 10))

(:vbox () upper-offset

(:hbox () left-offset

(:gbox

(:dag

roots

#'successors

max-depth

#'appearance

...)))))

:vbox

:gbox

:hbox

10

10

Figure 3: A general layout specification in combination
with a box-style layout.2

box whose height is set to 1/4 of that of the vertical box.
The horizontal box contains two scrollable tables which
are enclosed by frame boxes. The height of these frame
boxes is constrained by their surrounding horizontal box.
Their width is not explicitly specified, therefore the default
value :filler is chosen and half of the width of the hor-
izontal box is assigned to each frame box (and its inferior
table). The second item of the vertical box is a frame box
surrounding the box element graph-view which generates
the class graph. A layout form which is similar to that
defining graph-view is shown in Figure 3.

3 Layout Protocols

Our basic layout algorithms are based on an abstract pro-
tocol for manipulating boxes and box items. Therefore,
every object conforming to this protocol can be laid out
and every (rectangular) region can be interpreted as a box.
The protocol is implemented as a set of generic functions.
Multi-object methods can be supplied for different kinds
of boxes and items, which may represent position and size
in different ways. The use of multi-object methods also
has the advantage that layout of objects may depend on
their context. Our layout protocol also allows to spec-
ify whether the layout algorithm has to be reapplied if
global constraints (e.g. by resizing the window) have been
changed.

Apparently it is not reasonable to describe every layout
with the box-and-glue metaphor. An obvious example is
a set of nodes arranged as a graph. Therefore, our lay-
out language has the notion of a general box : (:gbox

(<layout-name> <arg-1>...<arg-n>)). For instance, this
box is used to specify the layout of directed acyclic graphs
(DAGs) (see Figure 3).

In this example the items to be arranged are defined in-
ductively by a set of roots, a successor function and a max-
imal depth. The appearance function is used to compute
the graphical representation of nodes (e.g. class objects
for an inheritance graph). Position and size of the general
box (:gbox) are defined implicitly by a closure rectangle
around all graph items (see Figure 3). This rectangle de-
fines a box which may be arranged using the box layout
specifications already known.

2 The indentation of the boxes is used for demonstration pur-
poses only.

One may also think of other arrangements of box items in
a general box. We use the DAG example mentioned above
in order to explain our protocol for supplying a new layout
specification interpreter.3

(defmethod layout-spec-p-using-key

((key (eql ':dag))) t)

(defmethod parse-layout-spec-using-key

((key (eql ':dag)) layout-specs)

"Returns (generated and) laid out :gbox items."

(interpret-dag-layout layout-specs))

The layout name (e.g. :dag) of a general box form is used
as a key to discriminate the corresponding layout inter-
preter method, the rest of the form is bound to the pa-
rameter layout-specs.

This extension scheme exploits that CLOS methods are
not only attached to objects (or their classes) but can be
also discriminated on every Lisp object. Layout forms are
represented as lists, i.e. layout descriptions can easily be
manipulated (e.g. by pattern matching algorithms).

4 Interaction Objects and Views

Interaction objects represent box items of layout specifi-
cations. Interaction objects (e.g. all standard elements of
the Macintosh Toolbox, graph nodes, graph edges) are in-
stances of CLOS classes. We defined an additional inter-
action object, a so-called view. Views provide a frame-
work for handling non-standard interaction components.
These components are called view items. View items can
be freely added to and removed from views. The inter-
active behavior of view items can easily be modified by
adding certain predefined superclasses (mixins) to their
class definitions. Typical desired behaviors are to move,
select, or mark items. The algorithms ensuring a consis-
tent image on the screen are provided by views. Views can
also be declared as scrollable.

The system evaluates generic functions to draw and delete
visible items if required. Edges of graphs are also repre-
sented as view items. Edges use another feature of view
items which is not subject to this paper: size and posi-
tion of particular view items can be defined by referencing
other view items. References are also specified using our
box approach. For instance, the shape and position of each
edge in the DAG view (Figure 2) is defined by referencing
the nodes which are connected. We refer to [24, 15, 14] for
more details.

5 Extended Class Browser

This section shows a slightly modified class browser. This
version additionally displays direct slots of classes (see Fig-
ure 4). These extensions were easily achieved by defining
appropriate methods for the generic functions successors
and appearance (see layout form in Figure 3). These mod-
ifications serve as an example for the flexibility of our ap-
proach. A discussion of more sophisticated user interfaces
is presented in [24].

3 Layout forms are usually defined as macros evaluating the
right expressions (in the right scope).

Figure 4: A DAG graph of a class hierarchy with local
class slots.

(defmethod successors ((any t))

"Do not show arbitrary objects"

nil)

(defmethod successors ((class standard-class))

"Show direct subclasses and slots"

(append (class-direct-subclasses class)

(class-direct-slots class)))

(defmethod appearance ((class standard-class))

"Create a graphical class representation"

(make-label class ...))

(defmethod appearance

((slot standard-slot-description))

"Create a graphical slot representation"

(make-label slot ...))

6 Meta-Level Techniques for Separating
Application and Visualization

Application and visualization objects have to be separated.
In the following we discuss how to use the meta-object
protocol of CLOS for separating application and visual-
ization layers. We explain these considerations by using
an animated visualization of a simple constraint system as
second example.

Our approach associates visualization objects with given
application objects without requiring any modifications to
the application. We support multiple views as well as con-
trollers for manipulating the application’s data structures.
Several other mechanisms have been developed (Model-
View-Controller-Scheme [11], CLUE [18], Presentation-Types
[26]). In this section we also discuss how basic features of
these systems can be realized using our approach.

As example application we chose a simple constraint net.
There is no need to present the application code since ev-
erything can be found in detail in [29]. Our visualization
was generated without any modifications to the applica-
tion code. The application provides a simple model of a

Figure 5: The upper and lower bounds are indicated by
shaded rectangles [29]. The gauges show the estimation
interval from 0 (bottom) to 1 (top).

stock exchange scenario. When are some stocks to split?
The participants have uncertain knowledge and are influ-
enced by one another. A constraint net models these in-
fluences by propagating certainty estimation intervals be-
tween 0 and 1. This interval of a ‘broker’ might be visu-
alized by a gauge as found in [29]. The implementation
distinguishes assertion objects (brokers, mystics, virtual
intermediates, etc.) and constraint objects (or, and). Fig-
ure 5 shows an overview of an example configuration with
gauges for assertions and simple nodes for constraints.

The visualization in Figure 5 can be described with the
following layout descriptions.

(defun stock-exchange-connections-visualization

(participants)

"Opens a window and shows the connections of

the given participants in a scrollable view."

(let ((stock-exchange-view

(make-layout-view

:scroll-bars ':both :bordered-p nil

:auto-scrolling t)))

(make-stock-exchange-dialog

(:fbox () stock-exchange-view))

(setf

(layout stock-exchange-view)

(:vbox () 10

(:hbox () 10

(:gbox

(:dag participants

#'stock-exchange-wizard

max-connection-depth

#'application-visualization-coupler

...)))))))

The whole dialog consists of a view (laid out with an
:fbox). The graph is defined by the set of participants
and the successor function stock-exchange-wizard.

The function application-visualization-coupler de-

fines a mapping from application objects to visualization
objects. Both functions are generic, i.e. different mappings
may be specified for different classes of application objects.

(defmethod stock-exchange-wizard

((participant assertion))

"Wizard's inf. about conn. of assertion objects."

(assertion-constraints participant))

(defmethod stock-exchange-wizard

((participant constraint))

"Wizard's inf. about conn. of constraint objects."

(list (constraint-output participant)))

6.1 Indirect Values for Visualization Objects

Visualization objects have to refer to objects of the appli-
cation side. There should exist a “dynamic” binding which
could be easily maintained provided that classes of visu-
alization objects offer support for some kind of active val-
ues [3]. We present a simplified CLOS metaclass support-
ing non-nested active values which we call indirect values.
Indirect values are defined by the form #`(object reader

writer) where writer is optional. The following method
sketches an implementation using a new metaclass and a
corresponding meta-level method for the generic slot ac-
cessor function slot-value-using-class. Writing to slots
with indirect values can be implemented analogously.

(defclass indirect-slots-class (standard-class) ())

(defmethod check-super-metaclass-compatibility

((x indirect-slots-class) (y standard-class))

t) ; We do not care about that in this paper.4

(defmethod slot-value-using-class

((class indirect-slots-class) object slot-name)

(let ((direct-slot-value (call-next-method)))

(if (indirectp direct-slot-value)

(funcall (indirect-reader direct-slot-value)

(indirect-object direct-slot-value))

direct-slot-value)))

Visualization objects have indirect-slots-class as meta-
class. Using indirect slot values every slot access is dele-
gated to the corresponding application object if required.
Using the meta-object protocol it would be easy to deter-
mine all indirect objects or that indirect object referred
to by a specific slot. The gauges for the stock exchange
example use this metaclass to refer to the exchange par-
ticipants. But what about the other direction: the gauges
have to be “informed” if the participants’ estimations of
stock splits change.

6.2 Slot Demons for Application Objects

An assertion object has one slot for the lower bound and
one for the upper bound estimation. The corresponding
visualization objects have to be informed when either of
these slot values change. The most obvious way to achieve
this is to define the assertion class with a metaclass that
allows demon functions to be attached to slots. The “re-
al” value of a slot is a structure that provides a value facet
and an if-modified facet [25]. All slot demon functions

4 We refer to [12].

are evaluated when the slot value changes. The imple-
mentation of slot demons is similar to the one of indirect
slot values. We introduce a metaclass demon-slots-class
and define modified versions of slot-value-using-class
and (setf slot-value-using-class) which access the
value facet. The latter one evaluates the demons in the
if-modified facet. Slot demons should be made remov-
able.

Thus, the function application-visualization-coupler

mentioned above can be defined as follows.

(defmethod application-visualization-coupler

((participant assertion))

(let

((assertion-gauge

(make-two-level-gauge ; indirect values

#`(participant assertion-lower-bound)

#`(participant assertion-upper-bound))))

(add-slot-if-modified-demon

participant ; object

'lower-bound ; slot name

#'(lambda ; demon function

(assertion-obj name-of-modified-slot

old-value new-value)

(gauge-update assertion-gauge)))

(add-slot-if-modified-demon

participant ; object

'upper-bound ; slot name

#'(lambda ; demon function

(assertion-obj name-of-modified-slot

old-value new-value)

(gauge-update assertion-gauge)))

assertion-gauge))

(defmethod application-visualization-coupler

((participant or-box))

(make-label "OR"))

Demon functions are closures which provide access to the
corresponding visualization object. The gauges for asser-
tion objects (broker, etc.) use indirect values to access
assertion objects. The objects representing labels for con-
straints are the same as in the class browser example.

6.3 Method Demons

Slot demons offer an elegant way of defining slot accesses
as interesting events and hence updating corresponding vi-
sualization objects. Not only slot accesses are subject to
updating a visualization. Every method might define an
event of interest. Slot accesses are only special cases. Gen-
eral method demons can be implemented using the meta-
object protocol of CLOS. The idea5 is to wrap a method
with a so-called wrapper method which has slots to refer
to both the demon functions and the original method (see
Figure 6). When all demons are removed the wrapper
method itself is removed, too. In this case there is no
overhead as with a metaclass which provides own methods
for slots accesses that overwrite the standard slot accessor
methods (e.g. for indirect values).

A major disadvantage of this wrapping slot accessor is that
demons are evaluated for all instances, i.e. they are slot

5 An implementation proposal for CLOS was originally out-
lined by Gregor Kiczales.

Wrapper-Method
 wrapped-method
 before-demons
 after-demons
 method-function
 (lambda (...)
 (dolist (demon (before-demons Wrapper-Method))
 (funcall demon))
 (funcall (method-function
 (wrapped-method Wrapper-Method)))
 (dolist (demon (after-demons Wrapper-Method))
 (funcall demon)))

Generic function methods

Method
 method-function
 (lambda (...) ...)

Figure 6: Outline of a wrapper method.

but not instance-specific. Method demons do not solve
the problem of compound slot accesses, either.

6.4 Instance-Specific Meta-Objects

The CLOS meta-object system assigns to metaclasses the
responsibility for both structure (implementation) and be-
havior of instances. There are other meta-level systems
which distinguish between structural and computational
meta-objects [10]. In this section we present ideas to pro-
vide some kind of dynamic meta-level influence in CLOS
[7]. We implement meta-objects as instances of the class
standard-meta-object which is not a CLOS metaclass.
The standard slot access protocol which uses the method
slot-value-using-class is analogously extended for these
“simple” meta-objects.

(defclass standard-meta-object () ())

(defmethod slot-value-using-meta-object

((mobj standard-meta-object) object slot-name)

(call-next-meta-method))

(defmethod (setf slot-value-using-meta-object)

((mobj standard-meta-object) object slot-name)

(call-next-meta-method))

Meta-objects can be assigned to instances with metaclass
extensible-standard-class. This metaclass describes
classes with instances that have one additional or implicit
slot called meta-objects (see Figure 7). A set of meta-
objects can be assigned to this slot.

An example method handling slot accesses is defined as
follows.

(defmethod slot-value-using-class

((class extensible-standard-class) object slot-name)

(if (eq slot-name 'meta-objects)

(call-next-method)

(let

((*meta-objects* (slot-value object 'meta-objects))

(*meta-class-generic-function*

#'(lambda () (call-next-method)))

(*meta-object-generic-function*

#'(lambda (meta-object)

(slot-value-using-meta-object meta-object

object

slot-name))))

Instance

Class

Metaclass (extensible-standard-class)

other slots
Meta-Object Meta-Object…

slot meta-objects

Figure 7: Meta-objects for instances with metaclass
extensible-standard-class.

(declare (special *meta-objects*

meta-object-generic-function

meta-class-generic-function))

(if (null *meta-objects*)

(call-next-method)

(call-next-meta-method)))))

The function call-next-meta-method is comparable to
the predefined function call-next-method. It evaluates
slot-value-using-meta-object for the “next” meta-ob-
ject in the list of meta-objects (see Figure 7). The default
behavior of slot-value-using-meta-object is to evalu-
ate call-next-meta-method again (s.a.). This default be-
havior may be augmented or overwritten by subclasses of
standard-meta-object (s.b.). When there are no meta-
objects (left), call-next-meta-method invokes the “nor-
mal” slot access functionality of standard-class. There
is also some additional code needed to enable passing of
different parameters to the next metamethod just as with
call-next-method.

(defun call-next-meta-method ()

(declare (special *meta-objects*

meta-object-generic-function

meta-class-generic-function))

(if (endp *meta-objects*)

(funcall *meta-class-generic-function*)

(funcall *meta-object-generic-function*

(pop *meta-objects*))))

We use these meta-level techniques to extend our con-
straint example. Using the protocol described above visu-
alizations of particular instances can be provided with lit-
tle programming effort. For instance, a meta-object could
be defined by the class visualizer-meta-object. This
class combines a visualization object with a list of inter-
esting slots. Every writing access to these slots is followed
by calling the instance-specific visualization object.

(defclass visualizer-meta-object

(standard-meta-object)

((visualizer :initarg :visualizer

:accessor visualizer

:initform #'(lambda (&rest ignore) nil))

(interesting-slots :initarg :interesting-slots

:reader interesting-slots))

(:default-initargs :interesting-slots nil))

(defmethod (setf slot-value-using-meta-object)

:after (new-value (mobj visualizer-meta-object)

object slot-name)

(if (member slot-name (interesting-slots mobj))

(funcall (visualizer mobj) object slot-name)))

We define a new metaclass for assertion objects which com-
bines slot demons and meta-objects.

(defclass extensible-standard-class-with-slot-demons

(extensible-standard-class demon-slots-class) ())

Be your-opinion the assertion object of our constraint
example. We add only to this object a corresponding meta-
object which prints your-opinion’s decision about buying
stocks. This behavior can be easily reverted by removing
this meta-object from the implicit slot meta-objects (see
Figure 7).

(add-meta-object

your-opinion

(make-instance

'visualizer-meta-object

:interesting-slots '(lower-bound upper-bound)

:visualizer

#'(lambda (assertion slot-name)

(if (> (assertion-lower-bound assertion) 0.75)

(print 'buy) ; or any other visual feedback

(print 'donot-buy)))))

Another behavior might be to temporarily modify a read-
ing access to a slot value. After adding a meta-object
of class buying-indicator-meta-object to the object
your-opinion each reading access to the slot lower-bound
of your-opinion returns the slot value and a buying indi-
cator.

(defclass buying-indicator-meta-object

(standard-meta-object) ())

(defmethod slot-value-using-meta-object

((mobj buying-indicator-meta-object)

object slot-name)

(if (eq slot-name 'lower-bound)

(let ((slot-value (call-next-meta-method)))

(if (> slot-value 0.75)

(values slot-value 'buy)

(values slot-value 'donot-buy)))

(call-next-meta-method)))

(add-meta-object

your-opinion

(make-instance 'buying-indicator-meta-object))

One may of course argue that this implementation is a lit-
tle impure because of using different mechanisms: meta-
classes and meta-objects. Moreover not all meta-objects
may be compatible. There remains also some overhead
although no meta-objects are attached to an instance.

7 Related Work

The SymbolicsTM programming environment GeneraTM of-
fers also means for specifying layout of windows [26]. Sub-
windows (panes) can be arranged in a frame in columns or

rows. Window sizes can be determined as absolute (fixed),
relative, or with respect to objects being allocated. These
features can be compared with our box model. Filler speci-
fications are also supported. Size specifications can be con-
strained by minimal and maximal distances. Genera only
supports layouts for panes, but our layout algorithms can
be applied to every object conforming to the underlying
abstract protocol. Genera offers the notion of presentation
types which can be compared with our view item classes.
Presentation types are also associated with handling user
input. In contrast to Genera our approach offers a more
uniform and orthogonal layout scheme combined with a
compact and elegant TEX-notation.

Recently, two other approaches were proposed which use
TEX-like layout schemes for user interfaces. They also use
constructs such as boxes and fillers for expressing window
layout. The InterViews System [21] is a user-interface
toolkit based on X windows and implemented in C++.
Fillers and boxes are implemented as objects. With re-
spect to our Lisp environment we found the representa-
tion of boxes as a combination of ordinary lists and macros
more efficient for manipulation and pattern matching. Our
layout scheme is in several respects more powerful than In-
terViews’ scheme. A filler-like size specification of boxes
is not possible in InterViews. Important and useful no-
tions such as a frame box which constrains the size of a its
box element or a general box which invokes user-defined
parsers for layout specifications are not available.

The FormsVBT system [1] offers a two-view approach to
designing user interfaces. The layout of a dialog win-
dow can be specified using both a TEX-like textual and
a direct-manipulative graphical representation. Changes
made in either representation are immediately updated in
the other representation. FormsVBT is implemented in a
dialect of Modula-2. Its specification language supports
no macros and offers no support for new box types and
layout schemes. Furthermore, we see the problem that the
functionality of the textual specification notation has to
conform with the graphical user interface. Mostly, this re-
quires to reduce the functionality of the textual notation.

8 Summary and Future Work

This paper presented a framework for visualizing object-
oriented systems. It consists of a compact, flexible nota-
tion for specifying layout of graphical objects. This no-
tation is fully integrated into a Lisp environment based
on CLOS. Advantages of this TEX-like notation are its
expressiveness, user-predictable layouts, and efficient im-
plementation schemes. The CLOS meta-level architecture
is used to associate visualization and application objects.
Supported techniques are indirect values, slot and method
demons, and instance-specific meta-objects. These visual-
ization techniques require no modifications to the systems
which are selected for visualization.

Next steps might be to combine the advantages of TEX-
style notations with the general flexibility of constraint
systems. Another useful extension to box specifications

might be to support local variables which could represent
box attributes such as box width and height (see [14] for
details). We also plan to address the problem of interpret-
ing several different generic functions as a single interesting
event. One solution might be to define higher-level demons
combining demons of different methods. Furthermore, re-
search is necessary to extend this approach to 2-1/2 or 3-D
layout.

Acknowledgements

We like to thank Roman Cunis and Ken Kahn for com-
ments on a draft of this paper. The first author has been
partly supported by a DAAD scholarship granted by the
NATO science committee.

References

[1] G. Avrahami, K.P. Brooks, M.H. Brown, A Two-
View Approach to Constructing User Interfaces, ACM
Computer Graphics 23, 3 (July 1989), 137–146.

[2] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E.
Keene, G. Kiczales, D.A. Moon, Common Lisp Ob-
ject System Specification, ACM Sigplan Notices 23,
9 (Sept. 1988).

[3] D.G. Bobrow, M. Stefik, The LOOPS Manual, Xerox
Corporation, December 1983.

[4] A. Borning, The Programming Language Aspects of
ThingLab, a Constraint-Oriented Simulation Labora-
tory, ACM Transactions on Programming Languages
and Systems 3 (1981), 353–387.

[5] M.H. Brown, Algorithm Animation, ACM Distin-
guished Dissertations Series, MIT Press, 1988.

[6] P.T. Cox, F.R. Giles, T. Pietrzykowski, Prograph:
a step towards liberating programming from textual
conditioning, In: Proceedings, 1989 IEEE Workshop
on Visual Languages, Rome (Italy), Oct. 4-6, IEEE
Computer Society Press, 1989, pp. 150–156.

[7] R. Cunis, Some Ideas on Integrating Reflective As-
pects into CLOS-type Object Systems, Internal Re-
port, University of Hamburg, Computer Science De-
partment, 1990.

[8] W. Cunningham, K. Beck, A Diagram for Object-
Oriented Programs, ACM Sigplan Notices 21, 11
(1986), 361–367.

[9] M. Eisenstadt, M. Brayshaw, The Transparent Prolog
Machine (TPM): An Execution Model and Graphical
Debugger for Logic Programming, Journal of Logical
Programming 5 (1988), 277–342.

[10] J. Ferber, Computational Reflection in Class-Based
Object-Oriented Languages, ACM Sigplan Notices
24, 10 (1989), 317–335.

[11] A. Goldberg, D. Robson, Smalltalk-80: The Language
and its Implementation, Addison-Wesley, Reading,
Mass., 1983.

[12] N. Graube, Metaclass Compatibility, ACM Sigplan
Notices 24, 10 (1989), 305–315.

[13] V. Haarslev, R. Möller, VIPEX: Visual Program-
ming of Experimental Systems, In: Visual Languages
and Visual Programming, S.K. Chang (ed.), Plenum
Press, New York and London, 1990, pp. 185–212.

[14] V. Haarslev, R. Möller, Visualization and Graphical
Layout in Object-Oriented Systems, Technical Re-
port, System Sciences Lab, Xerox PARC, 1990.

[15] V. Haarslev, R. Möller, A Declarative Formalism for
Specifying Graphical Layout, In: [28], pp. 54–59.

[16] K.M. Kahn, V.A. Saraswat, Complete Visualizations
of Concurrent Programs and their Executions, In:
[28], pp. 7–14. See also Technical Report SSL-90-38
[P90-00099], Xerox Palo Alto Research Center, 1990.

[17] S. Keene, Object-Oriented Programming in CLOS -
A Programmer’s Guide to CLOS, Addison-Wesley,
1989.

[18] K. Kimbrough, O. LaMotte, Common Lisp User In-
terface Environment, Preprint, Texas Instruments
Inc., July 1989.

[19] M.F. Kleyn, P.C. Gingrich, GraphTrace - Under-
standing Object-Oriented Systems Using Concur-
rently Animated Views, ACM Sigplan Notices 23, 11
(1988), 191–205.

[20] D.E. Knuth, TEX and Metafont – New Directions in
Typesetting, Digital Press, 1979.

[21] M.A. Linton, J.M. Vlissides, P.R. Calder, Composing
User Interfaces with InterViews, IEEE Computer 22,
2 (1989), 8–22.

[22] J.H. Maloney, A. Borning, B.N. Freeman-Benson,
Constraint Technology for User-Interface Construc-
tion in ThingLab II, ACM Sigplan Notices 24, 10
(1989), 381–388.

[23] S. Matwin, T. Pietrzykowski, PROGRAPH: A Pre-
liminary Report, Computer Languages 10, 2 (1985),
91–126.

[24] R. Möller, AI-Based Visualization Tools in Object-
Oriented Systems (in German), Technical Report
FBI-HH-B-149/90, University of Hamburg, Com-
puter Science Department, 1990.

[25] R.E. Roberts, I.P. Goldstein, The FRL Manual, AI
Memo 409 Edition, MIT Lab., 1977.

[26] Handbooks of Symbolics Programming Environment,
7A, Programming the User Interface – Concepts,
Symbolics Inc., 1988.

[27] P.A. Szekely, B.A. Myers, A User Interface Toolkit
Based on Graphical Objects and Constraints, ACM
Sigplan Notices 24, 10 (1989), 36–45.

[28] Proceedings, 1990 IEEE Workshop on Visual Lan-
guages, Skokie, Illinois, Oct. 4-6, IEEE Computer So-
ciety Press, 1990.

[29] P.H. Winston, B.K.P. Horn, LISP, 3rd edition,
Addison-Wesley, 1989.

[30] S. Wright, W. Feuerzeig, J. Richards, pluribus: A
Visual Programming Environment for Education and
Research, in: 1988 IEEE Workshop on Languages
for Automation, Symbiotic and Intelligent Robotics,
Univ. of Maryland, College Park, Maryland, Aug. 29–
31, IEEE Soc. Press, 1985, pp. 29–31.

