
A Declarative Formalism for Specifying Graphical Layout

Volker Haarslev∗

Xerox Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304, USA

haarslev@parc.xerox.com

Abstract

This paper describes a new approach to specifying graph-
ical layouts of arbitrary objects, which is based on a TEX-
like notation. Our simplest scheme offers specifications
similar to TEX’s box-and-glue metaphor. Size and po-
sition of boxes and glue can be specified by constraints.
Advantages of this TEX-like formalism are its expressive-
ness, user-predictable layouts, and efficient implementa-
tion schemes for the underlying layout algorithms. We
extend and generalize this forms-oriented scheme for spec-
ifying advanced graphical user interfaces (e.g. CLOS class
browser).

1 Introduction

This paper discusses a new approach combining structural
and conceptual visualization techniques, which is based
upon TEX-like layout specifications. We implemented a
prototyping environment consisting of a set of extensible
fundamental components which offer varying degrees of
support. It is implemented in Macintosh Allegro Common
Lisp and based upon the PCL implementation of the Com-
mon Lisp Object System [2, 11] (CLOS). Our visualization
techniques are based on the CLOS meta-object protocol
and require no modifications to the application systems
which are selected for visualization. We support multiple
views as well as controllers for manipulating the appli-
cation’s data structures. A detailed discussion of these
meta-level techniques is presented in [8, 9].

In order to verify the feasibility of our approach we applied
our visualization techniques to several application domains
such as CLOS debugging, graphical editing, constraint sys-
tems, line routing, and concurrent logic programming (see
[15, 9] for details).

Conceptual visualizations of programs are mostly created
by hand. This hand-design is basically caused by the fun-
damental problem that geometrical and graphical infor-
mation necessary to create suitable visualizations cannot
automatically be derived from corresponding data. The
major problem is to define interesting events which should
be visualized. But very often interesting events are only
indirectly reflected by algorithms. We refer to [4] for a
detailed discussion of these problems.

Structural visualization uses program and data structures
to generate relevant geometrical information. An impor-
tant problem related to structural interpretation is that

∗ New address: University of Hamburg, Computer Science De-
partment, Bodenstedtstr. 16, D-2000 Hamburg 50, FRG,
haarslev@rz.informatik.uni-hamburg.dbp.de

Ralf Möller
University of Hamburg, AI Laboratory

Bodenstedtstr. 16,
moeller@rz.informatik.uni-hamburg.dbp.de

conceptual information about data can only indirectly be
derived (eg. from naming of identifiers). A very common
approach to structural visualization is to guide the visual-
ization process by underlying programming styles or com-
putational models. Many approaches to visualizing im-
perative systems use flow charts or diagrams. The Trans-
parent Prolog Machine [6] is an example for relational or
logic systems. A more radical approach is presented by
Pictorial Janus [10]. It defines complete visualizations of
concurrent logic programs and captures static as well as
dynamic information about these programs. There exist
many approaches to visualizing data flow of functional sys-
tems, e.g. VIPEX [7] and Prograph [5].

Another important consideration — and the primary focus
of this paper — is to allow flexible schemes for aestheti-
cally laying out combinations of units. With respect to
forms-oriented user interfaces allocation of space and po-
sition is mostly constrained by the space globally available.
Graphical interfaces usually also add local constraints. A
typical application is a browser generating net-like rep-
resentations of rule sets, classes, or objects. The spatial
allocation of nodes may depend on adjoining nodes or the
topology of edges (e.g. in order to avoid line crossing or
long winding paths). This problem is addressed by many
constraint-oriented systems. ThingLab I [3] and II [14] are
examples for describing layout of graphical objects with
constraints. [16] also presented a toolkit using constraints
and active values. In contrast to constraint-oriented ap-
proaches we decided to provide a simpler but more com-
pact and predictable notation for specifying layout. Fur-
thermore, our approach has the advantage that it requires
only 2n + log(n) steps, be n the number of boxes. Thus,
our algorithm has a computational complexity of O(n).

The remainder of this paper is structured as follows. The
next section introduces our TEX-like specifications. Sec-
tion 3 generalizes our notion of box items and introduces
a mechanism for specifying references between box items.
The next section explains our box layout algorithm in more
detail. Section 5 compares our approach with related work.
This paper concludes with a summary and a discussion of
future work.

2 Layout Specifications

We adopted the “box-and-glue” metaphor of TEX [12] for
specifying layout of objects. Layouts are composed of a set
of rectangular regions, so-called boxes . Laying out boxes
and positioning objects are associated with corresponding



(let ((left-table (make-dialog-item ...))

(right-table (make-dialog-item ...))

(graph-view (make-layout-view ...)))

(make-layout-dialog :layout

(:vbox (:width :filler :height :filler)

(:hbox (:height 1/4 :width :filler)

(:fbox () left-table) (:fbox () right-table))

(:fbox () graph-view)))

(setf (layout graph-view) ...))

Figure 1: Layout specification of Figure 2 (schematically).

box types. Our system offers a set of predefined layout
algorithms and box types.

These algorithms are based on an abstract protocol for ma-
nipulating boxes and box items. Therefore, every object
conforming to this protocol can be laid out and every (rect-
angular) region can be interpreted as a box. The protocol
is implemented as a set of generic functions. Multi-object
methods can be supplied for different kinds of boxes and
items, which may represent position and size in different
ways. The use of multi-object methods also has the advan-
tage that layouts of objects may depend on their context.
Our layout protocol also allows to specify whether the lay-
out algorithm has to be reapplied if global constraints (e.g.
by resizing of a window) have been changed.

2.1 Vertical and Horizontal Boxes

The fundamental scheme aligns boxes as a list of horizontal
and vertical boxes. This layout technique has been found
very useful for standard (forms-oriented) dialog windows
(see Section 5 for a discussion of related work). A layout
of a dialog window is specified as a combination of boxes
with optional size specifications. Boxes may be arbitrar-
ily nested. The size of boxes and the spatial relationship
between them is expressed by an amount of glue or filler
describing either a horizontal or vertical distance. Fillers
can be specified as fixed (e.g. in pixel) or variable. Vari-
able fillers depend on the space available to their enclosing
box. We distinguish relative and constrained fillers. A rel-
ative filler is expressed as a fixed ratio to the size of its
superior box. Constrained fillers can shrink (stretch) to a
given lower (upper) limit. Default constraints are zero as
lower limit and box size as upper limit. Several fillers as
elements of the same box work together like springs. They
share the available space and in general every filler claims
the same amount of space which is only constrained by its
lower and upper limit.

A vertical or horizontal box (<box-type> either :vbox or
:hbox) is specified by the lisp form (<box-type> (:width

h :height v) box-item-1 ...). Its box items are laid out
vertically resp. horizontally. If the size specification is
omitted the width and height of a vertical or horizontal
box are set to a filler with default constraints. In general
this layout algorithm keeps the size of box elements un-
changed. If elements require more space than available to
their surrounding box they are allowed to extend beyond
their box’s boundaries. Boxes are also allowed to over-
lap one another. But this behavior is not always desired.

Figure 2: A DAG graph of a standard class hierarchy.

Therefore, we introduced a frame box (:fbox) which con-
strains the size of its element in order to match exactly the
frame box size. A frame box contains only one box item:
(:fbox (:width h :height v) box-item).

2.2 Filler Specification

The complete form specifying a filler is (:filler :min m

:max n), :min and :max are optional. We defined :filler

as short-form of (:filler :min 0 :max <box-size>). It
is also possible to define the (minimal/maximal) size of a
box with respect to its elements. Then, the size of this
box is set to the result achieved by laying out its elements
and shrinking fillers to their lower limit (see [9] for more
details). Thus, the box has a minimal size satisfying all
lower bound constraints.

The Figures 1 and 2 show a layout specification and the
resulting dialog window for a simple CLOS browser which
displays a class hierarchy (DAG). The right table contains
all direct subclasses of the class listed in the left table.
The tables can be replaced by direct super resp. subclasses,
scrolled, and shifted to focus on “interesting” classes.

The browser dialog is specified as a vertical box with
:filler as width and height. Its first item is a horizon-
tal box whose height is set to 1/4 of that of the vertical
box. The second item is a frame box. It surrounds an-
other box element (graph-view) which displays a graph of
the selected class hierarchy. The horizontal box contains
two scrollable tables which are enclosed by frame boxes.
The height of these frame boxes is constrained by their
surrounding horizontal box. Their width is not explicitly
specified, therefore the default value :filler is chosen and
half of the width of the horizontal box is assigned to each
frame box (and its inferior table).

2.3 General Boxes

Apparently it is not reasonable to describe every layout
with the box-and-glue metaphor. An obvious example is



(let ((upper-offset 10)

(left-offset 10))

(:vbox () upper-offset

(:hbox () left-offset

(:gbox

(:dag

roots

#'successor-function

depth

#'map-function ...)))))

:vbox

:gbox

:hbox

10

10

Figure 3: A general layout specification in combination
with a box-style layout.2

a set of nodes arranged as a graph. Therefore, our lay-
out language has the notion of a general box : (:gbox

(<layout-name> <arg-1>...<arg-n>)). For instance, this
box is used to specify the layout of directed acyclic graphs
(DAGs) (see Figure 3).

In this example the items to be arranged are defined in-
ductively by a set of roots, a successor function, and a
maximal depth. The map function is used to compute
the graphical representation of nodes (e.g. class objects
for an inheritance graph). Position and size of the general
box (:gbox) are defined implicitly by a closure rectangle
around all graph items (see Figure 3). This rectangle de-
fines a box which may be arranged using the box layout
specifications already known.

One may also think of other arrangements of box items in
a general box. We use the DAG example mentioned above
in order to explain our protocol for supplying a new layout
specification interpreter.3

(defmethod layout-spec-p-using-key

((key (eql ':dag))) t)

(defmethod parse-layout-spec-using-key

((key (eql ':dag)) layout-specs)

"Returns (generated and) laid out :gbox items."

(interpret-dag-layout layout-specs))

The layout name (e.g. :dag) of a general box form is used
as a key to discriminate the corresponding layout inter-
preter method, the rest of the form is bound to the pa-
rameter layout-specs.

This extension scheme exploits that CLOS methods may
not only be attached to objects (or their classes) but can
be also discriminated on every Lisp object. Layout forms
are represented as lists, i.e. layout descriptions can easily
be manipulated (e.g. by pattern matching algorithms). [9]
contains the complete EBNF syntax of layout specifica-
tions. The next section describes the implementation of
the DAG graph in more detail.

3 Interaction Objects and Views

We introduce box items which are suited for more gen-
eral applications and describe their application to our class

2 The indentation of the boxes is used for demonstration pur-
poses only.

3 Layout forms are usually defined as macros evaluating the
right expressions (in the right scope).

browser which serves as a simple example for describing
the basic features of our layout language. We refer to [15,
9] for a discussion of more sophisticated user interfaces.

3.1 Interaction Objects

Interaction objects represent box items of layout specifi-
cations. Interaction objects (e.g. all standard elements of
the Macintosh Toolbox, graph nodes, graph edges) are in-
stances of CLOS classes. We defined an additional inter-
action object, a so-called view . Views provide a frame-
work for handling non-standard interaction components.
These components are called view items. View items can
be freely added to and removed from views. The inter-
active behavior of view items can easily be modified by
adding certain predefined superclasses (mixins) to their
class definitions. Typical desired behaviors are to move,
select, or mark items. The algorithms ensuring a consis-
tent image on the screen are provided by views. Views can
also be declared as scrollable.

The system evaluates generic functions to draw and delete
visible items if required. For the nodes in the class browser
example (Figure 2) we might use the following definitions.

(defclass label-view-item

(movable-view-item-mixin view-item)

((label :initarg :label :accessor label)))

(defun make-label (...) ...)

Class label-view-item is defined by inheriting the base
class for view items and a ‘mixin’ which allows to move
items interactively. The generic function view-item-draw

is evaluated to draw view items:

(defmethod view-item-draw

:after ((item label-view-item) view dialog)

(let ((position (view-item-position item))

(size (view-item-size item)))

(frame-round-rect dialog std-gcontext ...)

(move-to dialog ...)

(draw-string dialog std-gcontext (label item))))

The drawing functions use graphical contexts4 defining co-
ordinate transformations and drawing attributes. The po-
sition and the drawing vector of a view item define a draw-
ing rectangle (see Figures 4 and 5) which is used as clip-
ping rectangle. Specialized methods depending on partic-
ular drawing contexts (e.g. views or dialogs) can easily be
defined.

3.2 Referencing View Items

View items may reference other view items. References to
other view items are also declaratively described. The cor-
responding coordinates are automatically computed. This
scheme defines edges as view items which reference their
corresponding nodes. For instance, the standard drawing
function of an edge retrieves the references to its nodes
and computes coordinates used to draw the connecting
line. References are described by a so-called reference box
(:rbox). A reference box consists of two view item, the

4 The notion of a graphical context is defined by views.



vertical component

horizontal component

reference box of a 
referenced item

:filler

:filler

:filler :filler

B

A

Figure 4: Referenced Location of Item B.

referencing item (e.g. A) and the referenced item (e.g. B),
and a pair of horizontal and vertical coordinates specifying
the location which is referenced.

(:rbox A B (:horizontal :filler :reference :filler)

(:vertical :filler :reference :filler))

This box defines a reference from item A to item B. The
keyword :reference specifies the referenced point. Figure
4 shows an example for this type of reference. The start
point of item A (gray vector) is defined as reference to
the center of item B (circle). The reference box of item B

is shown as gray rectangle. It is defined as the drawing
rectangle of item B. The usage of filler specifications in the
horizontal and vertical coordinates ensure the centering of
A’s reference point to B.

Edges of graphs are also represented as view items. We
apply the concepts introduced insofar to define a class
line-view-item representing edges. The end points of an
edge are specified as references to its nodes. The drawing
function of line-view-item uses the predefined functions
references-of-this-item and reference-position in
order to compute the coordinates of the two points defining
the edge (see Figure 5).

(defclass line-view-item (view-item) ())

(defmethod view-item-draw

:after ((item line-view-item) view dialog)

(let* ((references (references-of-this-item item))

(p1 (reference-position (first references)))

(p2 (reference-position (second references))))

(move-to dialog p1)

(line-to dialog std-gcontext p2)))

References may also be used to define an erase function
specialized for edges. Only the line representing an edge
is erased.

(defmethod view-item-undraw ((item line-view-item)

view dialog

position size references)

(using-gcontext

((eraser-gcontext :pen-pattern *white-pattern*))

(let ((p1 (reference-position (first references)))

(p2 (reference-position (second references))))

(move-to dialog p1)

(line-to dialog eraser-gcontext p2)))))

If the location of the rounded rectangles (Class-1,
Class-2) is changed the reference points P1 and P2 are
recomputed and the line is redrawn.

P1

P2

Class-1

Class-2

drawing rectangle

Figure 5: Location of edges defined by node references.

The layout specification of our class browser uses refer-
ence boxes to define node-connecting edges. The following
specifications replace the DAG specification in Section 2.

(setf (layout graph-view) ...

(:dag

(list (find-class class-name)) ; list of DAG roots

#'class-direct-subclasses ; successor function

*hierarchy-depth* ; max. expansion depth

#'(lambda (class) t) ; expansion predicate

#'(lambda (class) ; node-creating function

(make-label (class-name-as-string class)))

#'make-line-view-item ; edge-creating function

#'western-reference ; start point of edge

#'eastern-reference)) ; end point of edge

(defun western-reference (referencing-object

referenced-object)

"Definition of reference points with :rbox form"

(:rbox referencing-object referenced-object

(:vertical :filler :reference :filler)

(:horizontal :reference :filler)))

(defun eastern-reference ...)

4 The Box Layout Algorithm Revisited

This section discusses the basic box layout algorithm in
more detail. Important features of this algorithm are the
allocation of arbitrary (interaction) objects conforming to
the underlying protocol. The size of interaction objects
may depend on predefined values or space constraints.
These constraints can be expressed by minimal and max-
imal expansion values. Their usefulness is exemplified by
another example. This example is part of a user interface
of a CLOS inspector and browser which has been imple-
mented within our framework. The inspector displays a
window consisting of tabular subwindows. Figure 6 shows
information about a class tv:window. It displays the class
precedence list, super and subclasses, slot information, and
direct (locally defined) methods. If necessary, tables may
be scrolled provided the space available to a table is not
sufficient for displaying all table elements.

The corresponding layout specification is composed of sev-
eral parts and the constraints are partially computed at
runtime. Therefore, we only explain its general outline.
The upper rows are specified as horizontal boxes contain-
ing three frame boxes which represent tables. The width
and height of the frame boxes are defined by constrained
fillers. Each filler acts like a spring. All fillers compete for
the space available to them which, in fact, is constrained
by their surrounding horizontal box. Therefore, after a
relaxation process each filler acquires 1/3 of the available
space. Roughly, the horizontal boxes compete for the ver-
tical space in a similar manner. Minimal and maximal



Figure 6: CLOS class inspector window.

constraints guarantee that sparse tables have a visually
appealing uniform shape.

Our notion of constrained fillers is important for describing
layout. Our formalism provides the user with a fast layout
algorithm which is also easy to understand and anticipate.
Boxes may be arbitrarily nested but only fillers at the same
level compete for the available space. Figure 7 exemplifies
this feature.

The (vertical) fillers of level 1 are independent of the (verti-
cal) fillers of level 3. This restriction reduces considerably
the computational complexity of the layout algorithm. An-
other advantage is that the semantics of constrained fillers
are easy to comprehend by the user. Even this scheme
requires a simple relaxation algorithm for satisfying these
constraints. Figure 8 illustrates our algorithm.

Each water jug models a filler with its minimal and max-
imal expansion value. The current extension of a filler
corresponds to the water contents of a jug. The space
available to fillers is modeled by an external water reser-
voir with capacityR0. The extension of a filler is computed
by the following steps:

1. Initially each water jug j is filled to a level Lj
0. It

is guaranteed that every water jug j is at least filled
to its minimum minj. An additional demand for wa-
ter which cannot be satisfied by the external water
reservoir5 is satisfied by a “water pipe”. Then, the
remainder R1 of the water reservoir is distributed.

2. Each water jug gets a portion Pi = Ri/Ni of the
reservoir (be Ni the number of water jugs in the ith
iteration). Step 1 may have caused for different water
levels of the jugs. Therefore, every jug is filled to a

5 This is an indication that the available space is not sufficient
to fulfill the space requirements. Items could extend beyond
the boundary of their surrounding box.

level 1 vertically

level 3 vertically

item

level 2 horizontally

Figure 7: Schematic representation of nested boxes. Ar-
rows represent fillers.

Max

Min

Max

Min

Max

Min

Figure 8: Water jugs modeling fillers.

common minimal level

Li = Mi + Pi with Mi = min
j∈1..Ni

Lj
i−1

3. Caused by the minimum satisfaction guarantee the
level of a jug may already be higher than Li or its
maximum maxj. The amount of water of a jug whose
level6 exceeds either Li or maxj is returned to the
reservoir. A jug which has reached its maximal level
becomes inactive (Ni = Ni − 1).

4. Start again with step 2 (Ni+1 = Ni; i = i + 1) pro-
vided the water reservoir is not empty and there is at
least one jug j left whose water level is below maxj.
This algorithm terminates if all jugs have become in-
active (Ni = 0) or the water reservoir is empty.

The algorithm’s termination is guaranteed since each cycle
either makes one jug inactive or removes water from the
reservoir. If no jug becomes inactive at least one jug is
filled to the level Mi. Rounding errors are summed up.
As final step this sum is rounded and added to the last
filler.7

5 Related Work

The SymbolicsTM programming environment GeneraTM of-
fers also means for specifying layout of windows. Subwin-
dows (panes) can be arranged in a frame in columns or
rows. Window sizes can be determined as absolute (fixed),
relative, or with respect to the objects being allocated.
These features can be compared with our box model. Filler
specifications are also supported. Size specifications can
be constrained by minimal and maximal distances. Gen-
era only supports layouts for panes, but our layout algo-
rithms can be applied to every object conforming to the

6 The capacity of a jug be temporarily unlimited.
7 This is needed for frame boxes which may otherwise not ex-

actly fit to their box’s lower border.



underlying abstract protocol. Genera offers the notion of
presentation types which can be compared with our view
item classes. Presentation types are also associated with
handling of user input. In contrast to Genera our approach
offers a more uniform and orthogonal layout scheme com-
bined with a compact and elegant TEX-notation.

Recently, two other approaches have been proposed which
also use TEX-like layout schemes for user interfaces. They
also use constructs such as boxes and fillers for express-
ing window layout. The InterViews System [13] is a user-
interface toolkit based on X windows and implemented in
C++. Fillers and boxes are implemented as objects. With
respect to our Lisp environment we found the representa-
tion of boxes as a combination of ordinary lists and macros
more efficient for manipulation and pattern matching. Our
layout scheme is in several respects more powerful than In-
terViews’ scheme. A filler-like size specification of boxes is
not possible in InterViews. Important and useful notions
such as a frame box which constrains the size of its box el-
ement or a general box which invokes user-defined parsers
for layout specifications are not available.

The FormsVBT system [1] offers a two-view approach to
designing user interfaces. The layout of a dialog win-
dow can be specified using both a TEX-like textual and
a direct-manipulative graphical representation. Changes
made in either representation are immediately updated in
the other representation. FormsVBT is implemented in a
dialect of Modula-2. Its specification language supports no
macros and offers no support for new box types and layout
schemes. Furthermore, we see the problem that the func-
tionality of the textual notation has to conform with the
graphical user interface. Mostly, this requires to reduce
the functionality of the textual notation.

6 Summary and Future Work

This paper presented a compact, flexible notation for spec-
ifying layout of graphical objects. This notation is fully
integrated into a Lisp environment based on CLOS. Ad-
vantages of this TEX-like declarative formalism are its ex-
pressiveness, user-predictable layouts, and efficient imple-
mentation schemes.

Next steps might be to combine the advantages of TEX-
style notations with the general flexibility of constraint
systems. Furthermore, research is necessary to extend this
approach to 2-1/2 or 3-D layout.

Acknowledgements

We like to thank Ken Kahn for comments on a draft of
this paper. The first author has been partly supported by
a DAAD scholarship granted by the NATO science com-
mittee.

References

[1] G. Avrahami, K.P. Brooks, M.H. Brown, A Two-
View Approach to Constructing User Interfaces, ACM
Computer Graphics 23, 3 (July 1989), 137–146.

[2] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E.
Keene, G. Kiczales, D.A. Moon, Common Lisp Ob-
ject System Specification, ACM Sigplan Notices 23,
9 (Sept. 1988).

[3] A. Borning, The Programming Language Aspects of
ThingLab, a Constraint-Oriented Simulation Labora-
tory, ACM Transactions on Programming Languages
and Systems 3 (1981), 353–387.

[4] M.H. Brown, Algorithm Animation, ACM Distin-
guished Dissertations Series, MIT Press, 1988.

[5] P.T. Cox, F.R. Giles, T. Pietrzykowski, Prograph:
a step towards liberating programming from textual
conditioning, In: Proceedings, 1989 IEEE Workshop
on Visual Languages, Rome (Italy), Oct. 4-6, IEEE
Computer Society Press, 1989, pp. 150–156.

[6] M. Eisenstadt, M. Brayshaw, The Transparent Prolog
Machine (TPM): An Execution Model and Graphical
Debugger for Logic Programming, Journal of Logical
Programming 5 (1988), 277–342.

[7] V. Haarslev, R. Möller, VIPEX: Visual Program-
ming of Experimental Systems, In: Visual Languages
and Visual Programming, S.K. Chang (ed.), Plenum
Press, New York and London, 1990, pp. 185–212.

[8] V. Haarslev, R. Möller, A Framework for Vi-
sualizing Object-Oriented Systems, In: Proceed-
ings, ECOOP/OOPSLA’90, European Conference on
Object-Oriented Programming and Object Oriented
Programming: Systems, Languages and Applications,
Oct. 21-25, 1990, Ottawa/Canada, ACM Sigplan No-
tices 25, 10 (Oct. 1990), 237–244.

[9] V. Haarslev, R. Möller, Visualization and Graphical
Layout in Object-Oriented Systems, Technical Re-
port, System Sciences Lab, Xerox PARC, 1990.

[10] K.M. Kahn, V.A. Saraswat, Complete Visualizations
of Concurrent Programs and their Executions, In:
Proceedings, 1990 IEEE Workshop on Visual Lan-
guages, Skokie/IL, Oct. 4-6, 1990, IEEE Computer
Society Press, 1990, pp. 7–14. .

[11] S. Keene, Object-Oriented Programming in CLOS -
A Programmer’s Guide to CLOS, Addison-Wesley,
1989.

[12] D.E. Knuth, TEX and Metafont – New Directions in
Typesetting, Digital Press, 1979.

[13] M.A. Linton, J.M. Vlissides, P.R. Calder, Composing
User Interfaces with InterViews, IEEE Computer 22,
2 (1989), 8–22.

[14] J.H. Maloney, A. Borning, B.N. Freeman-Benson,
Constraint Technology for User-Interface Construc-
tion in ThingLab II, ACM Sigplan Notices 24, 10
(1989), 381–388.

[15] R. Möller, AI-Based Visualization Tools in Object-
Oriented Systems (in German), Technical Report
FBI-HH-B-149/90, University of Hamburg, Com-
puter Science Department, 1990.

[16] P.A. Szekely, B.A. Myers, A User Interface Toolkit
Based on Graphical Objects and Constraints, ACM
Sigplan Notices 24, 10 (1989), 36–45.


