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Abstract The paper presents a method for terminological reasoningabout spatial
objects on the basis of a KL-ONE-like framework (LOOM). We apply this method
to the domain of deductive geographic information systems and parsing of visual
languages. In contrast to existing work, which mainly focusseson reasoningabout
qualitative spatial relations, we integrate quantitative information with conceptual
or terminological reasoningby the use of “generative”qualitative relations. These
relations allow a modularization of systems for terminological reasoning and
domain-specificstorageand indexingof, e.g., spatial data. Qualitative relations are
computed on demand from quantitative data during forward-chaining assertional
reasoning.

1 Introduction

A lot of inference processes of knowledge-based systems are based on different kinds
of spatial reasoning. In this paper we present an inference scheme which combines
terminological reasoning with inferences about spatial data. This scheme is useful
for interpreting spatial data in different application domains. In terms of terminological
reasoning an interpretation is defined as the most specialized classification of the objects
of the domain. Here, classification of spatial objects depends on the specific relations
found in a concrete spatial “constellation”.

1.1 Spatio-Terminological Inferences

Current research about spatial reasoning mostly concentrates on inference processes
about qualitative spatial relations and how they can be combined to model spatial
reasoning [10, 22]. Calculi for qualitative relations are proposed to represent intrinsic
properties of space (like neighborhood). Two-level representations have been proposed
to integrate logical representations for qualitative spatial relations (like upon, over,
above) and coordinate-oriented, i.e., quantitative information [6, 20].

However, since qualitative relations are considered as the basis for reasoning pro-
cesses, in current proposals there is no adequate transition from quantitative information
to terminological or conceptual reasoning via, e.g., qualitative relations. Thus, termi-
nological reasoning is not integrated with spatial reasoning in a well-formalized way.
Besides concept classification (in the TBox), we are especially interested in using spatial
information during forward-chaining object classification processes (ABox reasoning).
We would like to propose the term “spatio-terminological inferences” for a three-level
view of inference processes combining quantitative, qualitative and conceptual repre-
sentations.



1.2 Overview

In order to demonstrate how spatial reasoning can be efficiently combined with termi-
nological reasoning, Sect. 2 presents two examples from two different domains: image
interpretation and parsing of visual programming languages. Section 3 compares our
appoach with a proposal for combining propositionaland analogical representations and
the work concerning deductive databases for Geographic Information Systems. After
discussing open problems we conclude with a summary.

2 Spatio-Terminological Reasoning for Interpretation Tasks

In the first example, which deals with aerial image interpretation, object classification
is used to model recognition of meaningful “constellations” of concrete spatial objects.
With this example we discuss what patterns of inferences are useful for modeling spatio-
terminological reasoning. The second example extends this work and uses a complete set
of spatial relations for declaratively specifying knowledge for parsing “constellations”
of graphical objects (rectangles, lines, etc.) as part of a visual programming language.

In our examples, the basic representation of spatial objects is quantitative in nature.
For simplification purposes we use a two-dimensional representation where objects
are represented by bounding boxes. Furthermore, we assume that these spatial data are
stored in a special database that provides adequate indexing mechanisms for the retrieval
of geometric objects (e.g., R-Trees [11], see also [2]). These databases are called spatial
databases from now on. Spatial databases have been developed for Geographic Infor-
mation Systems (GIS). Similar systems have also been implemented to support spatial
reasoning for diagnostic purposes [23]. However, none of these systems implements
models that combine spatial reasoning with terminological reasoning. The examples in
this paper show how this can be exploited for interpretation tasks.

Each of the examples we would like to discuss introduces problems that have to be
dealt with when terminological reasoning is to be used in practical applications:

• How can the assertional knowledge base (ABox) be coupled with a spatial database?
• How to deal with a huge number of spatial objects?
• How to control the computation of qualitative spatial relations during forward-

chaining?

2.1 Image Interpretation by Object Classification

In the context of an aerial image interpretation system we assume that there exists a
two-dimensional model of a geographic scene stored in a GIS. In this system multi-
spectral images are interpreted, for example, in order to detect changes in the scene. To
speak of an interpretation of an image, e.g. a change has to be described not only at the
geometrical level but also at the conceptual level. For a description of an aerial image
interpretation project where reconstructions of, e.g., airports are to be recognized see
[8].

We use the terminological knowledge representation system LOOM (actually LOOM
2.1, [19]) to represent a model of an example world. Types of spatial objects are
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Figure1. A configuration of houses in a village.

represented by concepts using the TBox of LOOM. For illustration purposes we con-
sider a small example where houses, villas, water surfaces and swimming pools are
represented:1

spatial�objectvC �

spatial�relation vR spatial�object × spatial�object

water�surfacevC spatial�object

house vC spatial�object

swimming�pool
.
=C water�surface u (≥ 1 near : house)

villa
.
=C house u (≥ 1 near : swimming�pool)

In our application, concepts like house and water�surface can be adequately defined
as primitive concepts, because we assume that a rectangle can definitely be asserted to
be a water surface or a house. Our example presupposes that the underlying image
interpretation process is not only able to detect rectangular areas but will also determine
the material of any object found in an image (e.g., by using spectral analysis).

The definitions can be paraphrased using natural language. A swimming�pool is
a water�surface with at least one house in the neighborhood (relation near). A
villa is a special house with at least one swimming�pool in the neighborhood. The
definitions of villa and swimming�pool use defined relations (i.e., relations with
sufficient as well as necessary conditions) with value and range restrictions for near.

Figure 1 provides a sketch of a village where an initial scene with several houses
(light-gray rectangles) is shown in the left part. The objects are assumed to be asserted
using LOOM’s tell facility. Furthermore, we assume that houses are stored in a spatial
database with appropriately defined coordinates.

When interpreting an image of this scene, a new object might be found in the
neigborhood of a certain house (house���). The image interpretation process detects
a water surface (water�surface���, small dark-gray rectangle in the right part of
Fig. 1) which is then asserted as an instance in LOOM’s ABox. For “interpreting” the
image the following deductions are needed. When a water�surface is found near a
house, this water�surfacewill be considered as a swimming�pool.2 However, when
1 Whenever possible, we use the common abstract syntax instead of the concrete LOOM syntax.

See [3] for a definition of the syntax and semantics of the complete abstract language.
2 In a full-size knowledge-base there might also be a garden pond concept, but this is another

topic.



it is known to be a swimming�pool, the housewill have to be classified (or recognized)
as a villa.

Note, that we are interested in the most specialized classification of any object visible
in the scene, so the object classification must be performed in a forward-chaining manner.
However, the recognition of every relation holdingbetween any pair of objects might not
necessarily be of interest. It therefore suffices to compute them in a backward-chaining
way only when needed for classifying an object.

How can this simple pattern of inference be modeled using a KL-ONE system and
what extensions are advantageous? Consider the following declaration of near as a
defined relation:3

�defrelation near

�is ��and spatial�relation ��satisfies ��x �y� ������

According to our definition of spatial�relation,near can only hold between spatial
objects.

There are several problems with this declaration. First, the definition ofnear requires
every pair of spatial objects to be explicitly declared as a member of spatial�relation
because spatial�relation is primitive. Second, in order to determine for a given
object whether there exists any other object in the relation near to it, a standard
ABox inference system (like LOOM) would have to check the predicate specified in
the �satisfies-form for every other spatial object. In a real application there will
be far too many objects for this complex operation to be efficient. Even worse, when
forward-chaining is not only used for object classification but for the recognition of
defined relations as well, this has to be done for each pair of spatial objects.

However, in our example application, spatial indexing mechanisms can be used
which provide quick access to the objects in the neighborhood of, for instance, water�
surface���. It would be unfortunate if the services of a spatial database could not be
made available to the reasoning system.

We propose the followingview. The spatial database can be interpreted as a surrogate
for a set of ABox terms (or assertions) for spatial relations. In LOOM terminology, this can
be paraphrased as a set of implicit assertions like �tell �near water�surface���

house�����. Thus, during the forward-chaining process of object classification we
need a mechanism that accesses these statements on demand and makes them available
to the ABox inference processes. Or, put in another way, while considering object
specialization possibilities, the ABox reasoner must be able to use an efficient candidate
generator.

The necessary integration of the ABox reasoning mechanisms with the functionality
of a spatial database can be achieved by a special LOOM feature called functional relation.
The following definition shows the use of a function as a generator for the tuples of the
relation near.

�defrelation near

�function ��x� �compute�nearby�objects �spatial�database� x��

�characteristics ��multiple�values �symmetric��

3 The �satisfies-form allows a concept to be defined using a query formula.



The function is used as follows. LOOM specializes an instance if there still exists a
defined subconcept and the sufficient conditions for this subconcept can be proven
to hold (process of forward-chaining). Since we defined swimming�pool as a sub-
concept of water�surface with at least one house in the near-relation, the ABox
inference engine tries to find a corresponding tuple of near with water�surface���

in the domain. The function compute�nearby�objects will be evaluated.4 In our
example from Fig. 1 the function returns house���. This house can, in turn, be
specialized when there is a swimming�pool found to be in the near-relation. Thus,
compute�nearby�objects is evaluated again,5 now with house��� as an input pa-
rameter. In this case, swimming�pool��� is returned and house��� is specialized to a
villa.

This example shows that spatio-terminological domain-level inferences can be car-
ried out using the definitions of a terminological knowledge base. Furthermore, quali-
tative spatial relations can be computed on demand and with access to efficient storage
and computation systems. If generative relations (via functions) were not available in
terminological description languages, we had to define relations like near as given
in our first defrelation-form. During forward-chaining object classification, e.g. of
water�surface���, the ABox inferencer will have to use backward-chaining to prove
whether a corresponding object is found to exist in the range of the near�relation.
Thus, near had to be a defined relation using the query-defining term �satisfies.
The disadvantage is that the ABox inferencer can hardly exploit domain knowledge to
preselect candidates. In the worst case the inferencer tries to prove whether the predicate
near holds for every spatial object in the knowledge base.

In this example we used the relation near. The same problems occur with other
spatial relations. The next section introduces the definition of other qualitative spatial
relations and demonstrates how the same pattern of inference can be applied to other
domains.

2.2 Visual Parsing by Object Classification

This section presents the application of spatio-terminological reasoning to parsing of vi-
sual programming languages. These languages are represented by (at least 2D) graphics
instead of text. Syntax and semantics of “pure” visual languages are mostly expressed
by pictorial relationships between (graphical) language elements6. Programs expressed
in a visual language are graphically represented and are defined as meaningful “constel-
lations” of abstract spatial objects. Therefore, we consider parsing of visual languages
as an image interpretation or object classification process.

Pictorial Janus as Example Domain. The example described in this section has been
fully implemented using LOOM. It is based on a full treatment of the visual programming
language Pictorial Janus (PJ) [16]. PJ is a language for the domain of flat guarded horn

4 In this paper we do not consider the details of this function.
5 Since near is declared to be symmetric a cache might also be used. Note however, that a

linguistic analysis reveals that in general the relation near is not symmetric [21].
6 Also simply referred to as objects.
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Figure2. Linking situation in a Pictorial Janus program.

clauses. PJ’s syntax and semantics are defined through topological relations which have
to hold between language elements. Nearly all basic language elements (agents, rules,
ports, primitive functions, constraints, constants, arrays, bags) are represented as closed
contours, others are represented as (directed) lines (links, channels, call arrows). We
refer to Haarslev [12] for more details about this approach.

In the following we assume the existence of a spatial database storing information
about elements of visual programs. Programs might be entered into the database by
using appropriate techniques (e.g. via graphic editors, by scanning (hand)drawings,
etc.) For sake of simplicity we ignore any low-level vision processes and assume an
object-oriented representation based on rectangles, straight line segments, and arrows.
Figure 2 gives an example for a typical subpart of PJ programs. This subpart consists
of four rectangles R��…�R	 and three line segments L��…�L	. The rectangles R� and
R
 are connected via a chain of line segments.

A Small Knowledge Base. We present a simplified subpart of a knowledge base devel-
oped for Pictorial Janus. A lot of (more complex) concept, relation and rule definitions are
left out for sake of simplicity. The concept definitions make use of primitive generative
relations that model qualitative, topological relationships between language elements.
Due to space limitations, however, we left out many explanations for number and value
restrictions of roles.

We define two concepts line�segment and area as a spatial�object with
dimension 1 or 2, respectively. Dim is a primitive generative relation which associates
spatial objects with their geometric dimension.

�defrelation dim

�function ��x� �compute�dimension�of x���

line�segment
.
=C spatial�object u (dim : 1)

area
.
=C spatial�object u (dim : 2)

Areas—either classified as port or body-area—are basic building blocks of PJ programs.
Ports are used for denoting data-item handles, for connecting list elements, and as
arguments of other entities. A body area is used to represent PJ language elements such
as messages, rules, and agents.



empty�area
.
=C area u (≤ 0 containing) u (≤ 0 covering)

port
.
=C empty�area u (≤ 3 touching) u (≤ 1 touching : area) u

(≤ 2 touching : line�segment)

body�area
.
=C area u (≤ 0 covered�by) u (∀ touching : empty�area) u

(≤ 0 touching : line�segment)

A port can be further classified as interior (R�) or exterior (R
), empty or linked
(R��R
). An interior port (R�) denotes the object (R�) that covers this port. Ports
usually serve as “docking place” for connecting lines. See Fig. 2 for the examples.

interior�port
.
=C port u (1 covered�by) u (∀ covered�by : body�area) u

(≤ 1 touching) u (∃ touching : line�handle) u

(≤ 1 touching : segment) u (≤ 0 touching : area)

exterior�port
.
=C port u (∃ touching : body�area) u (≤ 0 covered�by)

empty�port
.
=C port u (1 touching : body�area) u (≤ 0 touching : segment)

linked�port
.
=C port u (∃ touching : line�handle)

A true�segment is defined as a line�segment which satisfies some restrictions
on the number of objects touching it. The concepts end�segment and middle�
segment are specializations of true�segment and specify corresponding geometric
situations.

true�segment
.
=C line�segment u (≥ 1 touching) u (≤ 4 touching)

end�segment
.
=C true�segment u (≤ 3 touching) u

(≤ 1 touching : line�segment) u (≥ 1 touching : (dim : f�, �g))

middle�segment
.
=C true�segment u (∀ touching : (dim : f	,�g)) u

(2 touching : line�segment)

Touching is defined as a primitive generative relation which associates touching ob-
jects. The other relations crossing, covering, covered�by are analogously defined.

�defrelation touching

�function ��x� �compute�touching�of x��

�characteristics �multiple�values�

Touching as well as the other basic topological relations are defined as generative
relations in the same way as near in the introductory example. The formal definition
of these relations is based on a proposal by Clementini et al. [7]. The advantage of
their approach compared to similar proposals (e.g. see [9]) is its ability to deal with
intersections of lines and regions. It is also important to note that their relations are
complete and mutually exclusive.

There are several constraints on the types of geometric objects: Areas have to be
convex, connected and without holes, lines must not be self-intersecting, are either
circular or directed, and have exactly two end points.



The possible relationships are defined by the dimension of intersections between
mathematical point-sets representing the geometric objects mentioned above. Every
object is composed of a boundary and an interior. The boundary of a region is a circular
line. The boundary of a line is either an empty point-set (circular line) or a point-set
consisting of two end points (non-circular line), the boundary of a point is an empty
point-set. The interior of an object is the object without its boundary. In case of circular
lines and points the interior is identical to the object itself.

Using these definitions six binary topological relations can be defined (see also [7]).
The boundary of λn is formally denoted by ∂λn, its interior by λo

n.
• touching: touching(λ1, λ2) ⇔ (λ1 ∩ λ2 ≠ Ø) ∧ (λo

1 ∩ λo
2 =Ø)

Only the boundaries are intersecting; touching is symmetric and applies to every
situation except point/point.

• overlapping: overlapping(λ1, λ2) ⇔ (λ1 ∩ λ2 ≠ λ1)∧ (λ1 ∩ λ2 ≠ λ2)∧ (dim(λo
1 ∩

λo
2) = dim(λo

1) = dim(λo
2))

The intersection is either a line or a point which has to be different to both objects;
overlapping is symmetric and applies only to area/area and line/line situations.

• crossing: crossing(λ1, λ2) ⇔ (λ1 ∩ λ2 ≠ λ1) ∧ (λ1 ∩ λ2 ≠ λ2) ∧ dim(λo
1 ∩

λo
2) = (max(dim(λo

1), dim(λo
2)) − 1)

Two lines are crossing if their intersection is an internal point. A line crosses a
region if the line is partly inside and outside of this region; crossing is symmetric
and applies only to line/line and line/area situations.

• containing/inside: containing(λ1, λ2) ⇔ (λ1 ∩ λ2 = λ2) ∧ (λo
1 ∩ λo

2 ≠ Ø)
An object λ1 contains an object λ2 if the intersection between λ1’s and λ2’s regions
is equal to λ2 and the interiors of their regions intersect; the inverse containing is
inside. They are transitive and apply to every situation.

• equal: equal(λ1, λ2) ⇔ λ1 ∩ λ2 = λ1 = λ2

The intersection is equal to both objects; equal is symmetric, transitive and applies
to every situation.

• disjoint: disjoint(λ1, λ2) ⇔ λ1 ∩ λ2 =Ø
The intersection is empty; disjoint is symmetric and applies to every situation.

With respect to our application domain, we defined a seventh relation which is a spe-
cialization of ‘containing’ and ‘inside’:
• covering/covered-by: covering(λ1, λ2) ⇔ containing(λ1, λ2) ∧ dim(∂λ1 ∩ ∂λ2) =

dim(∂λ2)
An object λ1 covers an object λ2 if λ1’s region contains λ2’s region and the intersec-
tion of their boundaries has a dimension equal to the dimension of λ2’s boundary; the
inverse of covering is covered-by. They apply to every situation except point/point.

These seven relations may hold between geometric objects and their boundary and
interior. Additionally, we defined a relation dimension (also called dim) which applies
to any object.

Parsing PJ Programs. Rectangles and line segments as presented in Fig. 2 define the
input to the assertional reasoning process. For example, as the result of this reasoning,
a rectangle like R� is specialized to an interior�port since it is an empty�area and
can be proven to be in the covered�by-relation to R�which, in turn, is a body�region.



Similar deductions will be performed for other graphical objects. Figure 2 illustrates
the complete result of this reasoning process (denoted by arrows).

2.3 Summary of the Examples

The last example shows how spatio-terminological reasoning can be applied to parsing
problems. A complete set of topological spatial relations together with appropriately
defined concepts is used for interpreting constellations of geometrical objects. A subset
of visual languages is completely specifiable by terminological definitions, and parsing
is reduced to assertional reasoning. Thus, spatio-terminological reasoning is applicable
not only to toy problems but scales up to be the basic reasoning mechanism for various
applications.

3 Related Work

In the AI literature representations with domain-specific indexing mechanisms are also
discussed in the context of “analogical” representations. In the project “LILOG” there
have been attempts to couple a propositional representation and reasoning system with a
special system for representing spatial information (“depictional system”, [13, 5]) using
cell matrices. The depictional system supports special “imagination” and “inspection”
processes in the sense of Kosslyn [18]. The propositional representation system of
LILOG integrates some aspects of terminological description languages with a theorem
prover for a sorted logic. The connection to the depictional (non-logical) component
is done by explicit switching statements declared inside of LILOG rules (see [17],
p. 38). In LILOG, the spatial (depictional) representation system is not used for object
classfication.

Recently, research in spatial databases has concentrated on providing databases with
deductive capabilities. Especially, work in geographic data handling proposes the use of
extended Prolog systems to describe domain knowledge on the basis of primitive spatial
relations [1]. In our group, we used CLP(R) [15] to model spatial domain knowledge
using Horn clauses and constraints. The results were that adequate indexing mechanisms
for spatial data beyond the standard Prolog (and CLP(R)) resolution mechanisms are
necessary due to severe performance problems. However, the main problem with Prolog-
like backward-chaining systems is that in order to drive inference processes, goals have
to be set up. Therefore, in our first image interpretation example, we have to directly ask
whether a given house is a villa. Unfortunately, in an image interpretation domain the
“right” questions (or queries) are almost never known in advance. In addition to object
classification by forward-chaining, terminological description systems (like LOOM) also
support backward-chaining inferences as a by-product.

4 Open Problems and Future Work

In the examples of Sect. 2 we have shown how a generator function using a proper
indexing mechanism can be used for classifying objects in a forward-chaining manner
based on quantitative spatial information. However, this approach has some problems
with the revision of information.



4.1 Reason Maintenance

What happens when the quantitative spatial information is revised? Consider the case
were water�surface��� near house��� is removed. Then, the condition (≥1 near :
swimming�pool) for house��� being a villa is no longer fulfilled, and the classifi-
cation as a villa must be retracted. Unfortunately, by using a function generating the
tuples of the near-relation in an extra-logical way, the ABox reasoning mechanism has
no information about the dependencies and, therefore, an automatic retraction is not
possible. In order to allow for reason maintenance of the near-relation a mechanism
must be provided for declaring the information the relation depends on.

What is the information a relation tuple depends on? In our case the near-relation
of a house and a water�surface depends on the existence of both the house and
the water�surface and on their respective location. In general, all the ABox-objects
and all the relation-tuples used in a generator function must be “marked” to allow for a
correct reason maintenance.

However, the use of generator functions in combinationwith a means for marking the
information a relation depends on, has one major disadvantage: the user is responsible
for consistently and correctly using these mechanisms. More desirable would be an
intra-logical, declarative construct for defining spatial relations were the information
needed for reason maintenance could be acquired automatically. This would require a
means for declaring defined relations and powerful, expressive constructs for declaring
spatial contraints. Recently, Baader & Hanschke [4, 14] proposed a very general scheme
for integrating special domains with their own reasoning mechanisms into a description
logic. However, their language ALCFP (D) does not allow for the declaration of defined
roles and, therefore, cannot be directly used for our purposes. Whether this approach
can be appropriately extended, has to be explored in the future.

4.2 Intrinsic Properties of the Domain

We have shown how terminological inferences can be drawn on the basis of certain
spatial relations and concepts. Other inferences, however, most notably those which are
based on intrinsic properties of space, are still missing. For example, non-penetrable
objects cannot overlap in space. This fact can be used for ABox- as well as TBox-
reasoning. Trying to assert two different objects located at the same place must result in
an inconsistency, and a concept requiring at least 2 different spatial objects at overlapping
locations must be detected as being inconsistent.

For another example, assume that the spatial region under consideration in an ap-
plication is completely covered or filled by non-penetrable objects. This might give
rise to another line of reasoning: asserting an object as being a villa and assuming
there is only one object near to it which is classified as a spatial�object, then this
spatial�objectwould have to be specialized to a swimming�pool.

For these kinds of reasoning the intrinsic properties of the domain must be axioma-
tisized in a description logic. When the reasoning services of a real system are based
on a consistency or satisfiability test as proposed by Schmidt-Schauß & Smolka [24]
this might be done by extending the rule sets of the satisfiability test by certain rules
realizing the spatial axioms. Again, this has to be explored by future work.



5 Conclusion

Our proposal shows that non-logical representations can directly and consistently be
combined with the ABox resoning services of a KL-ONE-like description logic. The
examples indicate that for an interesting subset of problem domains this hybrid com-
bination is sufficient to realize the necessary inference processes. We discussed an
augmentation of the ABox of LOOM with a system that provides efficient access func-
tions for spatial data. We also showed that (distributed) explicit switching statements
(placed in rules like in LILOG) are not necessary if we use the concept of functional
or generative relations. In our proposal the services of the external database system
can even be described in terms of ABox (tell) statements. Furthermore, for our appli-
cations, the discussion of a canonical analogical representation system (in the context
of the “imagery debate”) is not important. Our point of view is that we want to pro-
vide the most suitable representation for application-specific computational processes.
Terminological description languages are suitable for deductive reasoning involving
classification while, e.g., R-Trees are suitable for efficiently accessing spatial data. Both
systems are coupled in a well-formalized way. However, our current approach requires
the reasoning to be monotonous.
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Approach to the Detectionand Interpretation of Changes in Aerial Images. In Sadao Fujimura,
editor, 1993 International Geoscienceand Remote Sensing Symposium (IGARSS’93), Tokyo,
August 1993, volume I, pages 159–161. Institute of Electrical and Electronics Engineers,
1993.

9. M. J. Egenhofer. Reasoningabout Binary TopologicalRelations. In Oliver Günther and H.-J.
Scheck, editors, Advances in Spatial Databases, Zürich, August 28–30 1991, volume 525 of
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