
Analyzing configuration systems

with description logics: A case study

Ralf Möller Carsten Schröder
Carsten Lutz

University of Hamburg, Computer Science Department,
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany,

{moeller,schroeder,lutz}@kogs.informatik.uni-hamburg.de

November 14, 1997

Corresponding author: Ralf Möller,
Tel: ++49 40 5494 2571
Fax: ++49 40 5494 2572

1

Analyzing configuration systems
with description logics: A case study

Ralf Möller, Carsten Schröder and Carsten Lutz
University of Hamburg, Computer Science Department,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{moeller,schroeder,lutz}@kogs.informatik.uni-hamburg.de

Abstract

In this contribution we argue that the methods of formal knowledge
representation, especially description logics, first, are valuable tools for
analyzing existing configuration systems and open problems in configura-
tion systems research, second, should be used by developers in order to
make clear statements about the performance of their systems, and third,
can even directly be used for building practical systems. As a case study we
analyze two languages dealing with knowledge-based configuration in tech-
nical domains. The paper demonstrates that specialized languages (e.g.
object-oriented languages developed for configuration problems) can be in-
terpreted as a special purpose description logic. It is demonstrated that
the construction or configuration process can be “simulated” by a model-
constructing satisfiability prover. The constructed logical model represents
the artifact to be designed. We also show a methodology for describing
the meaning of specialized languages by applying syntactical transforma-
tions from language constructs to description logic formulae. Considering
these transformations, a language designer can easily estimate the com-
putational costs of intended constructs.

Keywords— Methods for configuration, Configuration representa-
tions, Description logics.

2

1 Introduction

In this contribution we argue that the methods of formal knowledge repre-
sentation, especially description logics, first, are valuable tools for analyzing
existing configuration systems and open problems in configuration systems re-
search, second, should be used by developers in order to make clear statements
about the performance of their systems, and third, can even directly be used
for building practical systems. As a case study we analyze two languages deal-
ing with knowledge-based configuration in technical domains. The systems are
called Plakon and Konwerk and have been developed at the Dept. of Com-
puter Science, University of Hamburg as part of a research project to develop
a knowledge-based methodology for solving configuration problems (see [Neu-
mann 1988, Cunis et al. 1991, Günter 1995b] for an overview and [Kopisch &
Günter 1992] for an application example). The representation language of the
Plakon and Konwerk systems is called Bhibs and is used to define and struc-
ture a configuration space for a specific domain. Strategies for actually finding
a solution in the configuration space can be defined in a domain-dependent way.

In the following we present a methodology for deriving a (partial) logical
reconstruction of configuration languages such as Plakon and Konwerk. Sec-
tion 2 introduces the view that the methodology used in configuration systems
for solving configuration tasks can be seen as a special instance of a satisfi-
ability test for terms of a logical language. Section 3 shows how most of the
concept definitions and some of the constraint definitions of the Bhibs represen-
tation language can be transformed to terminological axioms of a description
logic. This section also explains the consequences with respect to estimating
the complexity of a configuration process. The presentation is complementary
to [Baader et al. 1996] who develop a specialized description logic for solving
specific configuration problems rather than a general language for building con-
figuration system development environments [Günter 1995b]. Section 4 discusses
how the use of formal methods based on description logic helps in understanding
open problems of the configuration domain.

2 The Configuration Methodology

As part of our case study we give an introduction to the configuration language
Bhibs and to the way the configuration space is defined in Plakon and Kon-

werk. After dicussing how a given configuration task is solved in these systems
by repeated application of four basic configuration steps we give a formal in-
terpretation of the configuration process in terms of a description logic and a
specific method for testing satisfiability of description logic terms based on a
semantics given for Bhibs expressions.

2.1 Defining the Configuration Space

Similar to other many other configuration systems (e.g. those based on CLAS-
SIC [Borgida et al. 1989, McGuiness & Resnick 1995, McGuiness et al. 1995]),

3

Plakon’s as well as Konwerk’s approach to configuration of technical de-
vices is a model-based one. The main idea of the configuration methodology
of both systems is to use a conceptual model to describe the space of possible
configurations of the devices in a certain domain. For defining the conceptual
domain model, a frame-based language is used. A configuration task is given as
a goal object (defined by instantiating a certain concept of the domain model)
and optionally a set of additional objects (components) which must be part of
the goal object in the final configuration. The construction process of Plakon

and Konwerk proceeds by applying the following four basic configuration steps
until the goal object is completely specified (operational semantics).

1. Determine a slot (or parameter) value for a construction object (either a
concrete value or a value restriction).

2. Specialize a construction object by asserting (i.e. hypothesizing) that it
is an instance of one of the explicitly given subconcepts of its current
concept.

3. Aggregate a set of construction objects, i.e. create a new object by in-
stantiating the concept the construction objects to be aggregated must be
parts of, or add an object to an existing aggregate.

4. Decompose a construction object and configure the parts.

Obviously, more than one step might be applicable in a certain state during
the configuration process and, in turn, with each step different possibilities are
available. For instance, there might exist several ways to decompose an object
into its parts. Plakon and Konwerk provide an explicit control module to
structure the configuration search space (as usual, applying a construction step
is called a “heuristic decision”). The control module can be adapted to the
problem using an explicit model with “strategies” for traversing the construction
space (see [Günter & Cunis 1992]). The construction of the goal object, i.e.
the configuration of the required device, is finished either if none of the four
construction steps can be applied any more, or if there does not exist a consistent
solution. Thus, each of the construction objects contained in the solution is
specialized as much as possible, i.e., it is an instance of a leaf node of the concept
hierarchy given by the domain model, and all required parts and parameter
values of each of the construction objects are determined.

In the following section we will present a logical interpretation of this process.

2.2 Using description logics for configuration problems

2.2.1 The Abstract Domain

In a description logic (DL) a factual world consists of named individuals and
their relationships that are asserted through binary relations. Descriptions for
different sets of individuals form the terminological knowledge. Descriptions
(or terms) about sets of individuals are called concepts and binary relations
are called roles . Descriptions consist of identifiers denoting concepts, roles, and

4

individuals, and of description constructors. Concepts or roles may be either
primitive or defined . A specification of a primitive concept is denoted with
the declaration operator ‘�’ and represents membership conditions that are
necessary but not sufficient. The specification of a defined concept is denoted
by ‘ .=’ and represents conditions that are both necessary and sufficient. For
any individual x the set {y|r(x, y)} is called the set of fillers of role r for the
individual x.

Concept specifications may consist of concept terms and concept names.
Unary operators (e.g. ¬) are used as modifiers and binary operators (e.g. �,
�) are used as connectives. A concept term can also be given as a restriction
for role fillers. Value restrictions constrain the range of roles, i.e. fillers are
constrained to be individuals of a specific concept (e.g. (∀ has father male)).
Number restrictions specify the maximum or minimum number of allowed fillers
(e.g. (≤ 3 has child), (≥ 1 has father)). Roles with an implicit ‘≤1’ number
restriction are called attributes or features . These concept specifications are
only a subset of all possible specifications. Section 2.2.3 lists the model-theoretic
semantics of DL elements mentioned in this paper. The reasoning services a
DL inference engine provides are defined with respect to the semantics of the
representation language. In most description logics, the terminology must not
contain cyclic definitions because the semantics of cycles cause theoretical and
practical difficulties. Furthermore, on the left-hand side of a definition only
concept names may apprear and a concept name must occur only once on the
left-hand side in the definitions of a terminology. The expressiveness of a DL
and the tractability of reasoning algorithms for a particular DL depends on the
type and possible combinations of connectives and restrictions (see e.g. [Woods
& Schmolze 1992]).

DL systems (i.e. implementations of a DL) usually distinguish two separate
reasoning components. The terminological reasoner or classifier classifies con-
cepts with respect to subsumption relationships between these concepts and
organizes them into a taxonomy. The TBox language is designed to facilitate
the construction of concept expressions describing classes (types) of individuals.
The classifier automatically performs consistency checking of concept definitions
and offers retrieval facilities about the classification hierarchy. The (forward-
chaining) assertional reasoner or realizer recognizes and maintains the “type”
(i.e. concept membership) of individuals. The purpose of the ABox language
is to state constraints or facts (usually restricted to unary or binary predica-
tions) that apply to a particular world model. Assertional reasoners support a
query language in order to access stated and deduced constraints. Some query
languages offer the expressiveness of the full first-order calculus.

2.2.2 The Concrete Domain

Baader and Hanschke [Baader & Hanschke 1991, Hanschke 1993] have explored
the idea of separating the domain of a description logic into an abstract and a
concrete part. A DL with a concrete domain extends a standard DL by adding
predicates and individuals for the concrete domain. The predicates can be used
to define new concepts in the abstract domain. Attribute fillers can be restricted

5

by predicates of the concrete domain (see below).
Basically, (i) the set of predicate names defined by a concrete domain has

to be closed under negation and has to contain a predicate name for domain
membership, and (ii) the satisfiability problem for finite conjunctions of cor-
responding predicates has to be decidable (see [Hanschke 1993] for a detailed
definition).

Another approach for integrating other domains into description logics has
been proposed by [Borgida et al. 1996]. This approach is specific to the descrip-
tion logic CLASSIC [Borgida et al. 1989] which—as we will see in the following
sections—is not expressive enough to model the facilities offered by the config-
uration systems Plakon and Konwerk considered in this contribution.

2.2.3 Semantics of DL Elements

Let C be the set of concepts, R the set of roles, and P the set of concrete
predicates in a DL theory. The model-theoretic semantics of a DL is based
on the notion of an interpretation which is defined as a pair 〈D, ξ〉 where the
domain D is subdivided into two subsets, the abstract and the concrete objects
(e.g. real numbers), D = DA ∪ DC ,DA ∩ DC = ∅. Furthermore, we have two
disjoint sets, the set of concept names C (atomic concepts) and the set of role
names R (the elements of a subset F of the roles are defined to be features,
i.e. partial functions. ξ is an assignment function such that ξ : C −→ 2DA ,
ξ : R −→ 2R

′
where R′ = (DA × (DA ∪ DC)). ξ must satisfy the following

conditions for mapping syntactical terms to semantical entities (concept names
are denoted by c, possibly with index, role names by r, features by f, and
concrete predicate names by p). We only list the semantics for the DL elements
mentioned in this paper (for a detailed introduction to description logics see
[Woods & Schmolze 1992]).

ξ[()] = DA

ξ[(⊥)] = ∅
ξ[concept name] ⊆ DA

ξ[feature name] ⊆ DA × DA or
ξ[feature name] ⊆ DA × DC

ξ[role name] ⊆ DA × DA

ξ[predicate name] ⊆ DC

ξ[¬c] = DA\ξ[c]
ξ[(c1 � . . . � cn)] = ∩n

i=1ξ[ci]
ξ[(c1 � . . . � cn)] = ∪n

i=1ξ[ci]
ξ[(≥ n r c)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r] ⇒ y ∈ ξ[c]}‖ ≥ n}
ξ[(≤ n r c)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r] ⇒ y ∈ ξ[c]}‖ ≤ n}

ξ[(∃ f p)] = {x| ∃y : (x, y) ∈ ξ[f] ⇒ y ∈ ξ[p]}

6

Note that other known operators can be seen as syntactic abbreviations for spe-
cial qualifying number restrictions (we also use the operator = for a conjunction
of the respective formulas with ≤ and ≥):

(∀ r c) := (≤ 0 r ¬c),
(∃ r c) := (≥ 1 r c),

(≥ n r) := (≥ n r),
(≤ n r) := (≤ n r)

In the TBox the two special symbols ‘ .=’ and ‘�’ are used for introducing de-
fined and primitive concepts, respectively. The definitions are mapped onto
set-inclusion axioms.

• Cname
.= C is mapped onto ξ[Cname] = ξ[C]

• Cname � C is mapped onto ξ[Cname] ⊆ ξ[C]
The semantics of ABox assertions is defined analogously:

• Iname : C is mapped onto ξ[Iname] ∈ ξ[C]
• (Iname1, Iname2) : Rname is mapped onto

(ξ[Iname1], ξ[Iname2]) ∈ ξ[Rname]
An interpretation that satisfies all axioms in a terminology is called a model .
The notion of a model is used to define the reasoning services a DL inference
engine has to provide: subsumption and consistency checking which are closely
related. A term A subsumes another term B if and only if for every model 〈D, ξ〉
ξ[B] ⊆ ξ[A] holds. A term A is coherent if and only if there exists a model 〈D, ξ〉
such that ξ[A] �= ∅.

2.2.4 A Formal Interpretation of the Configuration Process

One of the first formal approaches to configuration problems was given by
Owsnicki-Klewe [1988]. He used the terminological language of a kl-one-like
description logic for defining a domain model and the corresponding assertional
language for specifying the device to be configured (the goal object). Given a
knowledge base of his logic he then used the object classification service (i.e.
realization) provided by description logics for computing the most special con-
cepts of the objects given in the specification. These concepts were defined to be
the solution of the configuration problem: They provide a description of all the
properties of the given objects. However, this process only generates interesting
solutions, if the concepts of the domain model are properly defined by giving
necessary as well as sufficient conditions, for object classification is a purely
deductive process. If only necessary conditions are given, no new information
can be generated (except the detection of inconsistent specifications, of course).
In addition, note that no new objects are generated by this process. Neither
does it aggregate objects to a new one nor does it construct the required parts
of an object. It is quite obvious that this formal approach to configuration does
not explain the approach taken by Plakon and Konwerk: although deductive

7

reasoning is clearly needed, hypothetical reasoning1 is needed as well.
However, the methodology used in our case study Plakon and Konwerk

as well as in other configuration system for generating solutions of a configu-
ration task described above can be seen to be a special instance of the model
construction approach of Buchheit et al. [1995] tailored to the peculiarities of the
respective representation language (see also the work of Baader et al. [1996]).
Following this approach, a solution of a configuration task is defined to be a
logical model of the given knowledge base containing both the conceptual do-
main model as well as the task specification. A logical model consists (i) of a
set of objects (the domain of discourse), (ii) of an interpretation function which
maps object names to the objects of the domain of discourse and concepts and
slot names to unary and binary relations, respectively, and (iii) it is required
to satisfy the formulas of the given knowledge base. A more thorough analy-
sis reveals that the set of objects and relations represented by slots which are
usually constructed by configuration processes is a representation of a logical
model of itself as well as the domain model containing the concept descriptions.
This model maps each object to itself, each concept to the set of instances of
this concept contained in the constructed configuration and each slot to the set
of object/filler tuples.

Although the classification services usually provided by description logics
are not the central mechanisms needed for configuration, the tableau calculi
which became popular for realizing these services can be directly used as a
basis for configuration systems [Buchheit et al. 1995]. The algorithm for the
satisfiability test provided by these calculi tries to contruct a logical model of
the given knowledge base. When a logical model can be constructed, a knowledge
base is satisfiable. Therefore, extended by suitable control mechanisms, tableau
calculus algorithms can be used for emulating configuration techniques such as
those found in our case study Plakon and Konwerk. Note, however, that the
language proposed by Buchheit et al. [1995] which is based on a feature logic
is not suitable for the configuration domain. One of its central notions, the
part-whole relation, cannot be represented using functional roles (i.e. features).2

Using our example systems Plakon and Konwerk, the next chapter ex-
plains the main idea of describing specialized configuration systems with de-
scription logic theory.

3 The Language

As explained before, Plakon provides a language called Bhibs which can be
used for modeling a domain by defining concepts [Cunis et al. 1989]. In this
section we present the main ideas behind Bhibs and illustrate how the language
constructs can be transformed to description logics. We would like to emphasize

1We hesitate to call it abductive reasoning, because configuration is not a task of generating
explanations.

2Many reports on whole-part relations have been published. In particular, from a descrip-
tion logic point of view, see e.g. [Artale et al. 1996, Lutz 1996, Sattler 1995].

8

that Bhibs is used as an example here. For other object-oriented (configuration)
languages known today, similar reconstructions can be provided.

3.1 Concept Descriptions

Bhibs is a frame language using single inheritance which allows one to describe
the properties of instances by specifying restrictions for the required values of
named slots. The values can be either single objects or sets and sequences of
objects, and the restrictions can be specified extensionally by directly giving
concrete values like numbers, symbols or instances of concepts, or by inten-
sionally describing sets and sequences of objects. The following example of an
expression of the Bhibs-language describes the concept of a cylinder:

(is! (a Cylinder)

(a Motorpart

(part-of (a Motor))

(capacity [1ccm 1000ccm])

(has-parts

(:set #[(a Cylinderpart) 4 6] :=

#[(a Piston) 1 1]

#[(a Connecting-Rod) 1 1]

#[(a Valve) 2 4]))))

A Cylinder is required to be a Motorpart, to be part-of a Motor, to have a capacity
of 1 to 1000ccm, and to have a set of 4 to 6 parts (has-parts) which are all
Cylinderparts and it consists of exactly 1 Piston, exactly 1 Connecting-Rod, and
2 to 4 Valves. This expression can be transformed to a terminological inclusion
axiom of a description logic providing concrete domains as follows (the term
λVol c. (. . .) is a unary predicate of a numeric concrete domain for the dimension
Volume with base unit m3):

Cylinder � Motorpart �
(= 1 part-of) � (∀ part-of Motor) �
(= 1 capacity) �
(∃ capacity λVol c. (0.001 ≤ c ∧ c ≤ 1)) �
(∀ has-parts (Cylinderpart � (Piston � Connecting-Rod� Valve))) �
(≥ 4 has-parts Cylinderpart) �
(≤ 6 has-parts Cylinderpart) �
(= 1 has-parts Piston) �
(= 1 has-parts Connecting-Rod) �
(≥ 2 has-parts Valve) �
(≤ 4 has-parts Valve)

Note that the given restrictions are only necessary conditions for a Cylinder.
This was not at all clear on first sight, but was deduced from the procedural

9

semantics of Bhibs defined by the system Plakon. This example shows the
importance of defining a logical semantics for a configuration system.

In an effort to provide a formal declarative semantics for Bhibs we found
that all concept definitions except those containing sequence descriptions can
be transformed to terminological inclusion axioms. Figure 1 specifies a set of
transformation rules. Read the functions tta and tsd as Transform TBox
Axiom and Transform Slot Description, respectively. A Measure is a number
either with or without a unit for a specific dimension, e.g. 42 or 25km. The
function dim returns the dimension of a “measure”, e.g. Vol for 1000ccm, and
the function value returns the value of a given “measure”, 1000 in this example.

tta((is! (a ConceptName)
(a SuperConceptName

SlotDescription1
SlotDescription2
...))

→
ConceptName � SuperConceptName �

tsd(SlotDescription1) �
tsd(SlotDescription2) �
. . .

tta((def-relation :name SlotName1
:inverse SlotName2))

→ SlotName1
.
= SlotName2−1

tsd((SlotName (a ConceptName))) → (= 1 SlotName) �
(∀SlotName ConceptName)

tsd((SlotName
{ObjectName1 ObjectName2 ...}))

→ (= 1 SlotName) �
(∀SlotName {ObjectName1 ObjectName2 . . .})

tsd((SlotName [Measure1 Measure2])) →
(= 1 SlotName) �
(∃SlotName

λdim(Measure1) x.
(val(Measure1) ≤ x ∧ x ≤ val(Measure2)))

tsd((SlotName
(:some (a ConceptName) m n)))

→ (≥m SlotName ConceptName) �
(≤n SlotName ConceptName)

tsd((SlotName
(:set (:some (a ConceptName1) m1 n1) :>

(:some (a ConceptName2) m2 n2)
(:some (a ConceptName3) m3 n3)
...)))

→

(∀SlotName ConceptName1) �
tsd((SlotName

(:some (a ConceptName1) m1 n1))) �
tsd((SlotName

(:some (a ConceptName2) m2 n2))) �
tsd((SlotName

(:some (a ConceptName3) m3 n3))) �
. . .

tsd((SlotName
(:set (:some (a ConceptName1) m1 n1) :=

(:some (a ConceptName2) m2 n2)
(:some (a ConceptName3) m3 n3)
...)))

→

∀ SlotName .
(ConceptName1 �
(ConceptName2
 ConceptName3
 . . .)) �

tsd((SlotName
(:some (a ConceptName1) m1 n1))) �

tsd((SlotName
(:some (a ConceptName2) m2 n2))) �

tsd((SlotName
(:some (a ConceptName3) m3 n3))) �

. . .

Figure 1: Rules for transforming a Bhibs terminology.

There are several things to point out in this transformation. First, we are
using more than one concrete domain—one for each dimension—although all of
them are numeric. This helps in seperating the dimensions from each other, they

10

can be handled independently. Second, what we have called a SlotDescription
(in accordance with one of the developers of the system Konwerk) is trans-
formed to a concept term of a description logic, for it intensionally describes a
set of objects of the domain. Third, in Plakon as well as in Konwerk the slots
of an object are assumed to have only one filler. This might be either a single
object (a number, a symbol, or an instance of a concept) or a set of objects. We
transform slots to roles of a description logic which may have more than one
filler. Slots are not transformed to features (i.e. roles with an implicit “at least
one” number restriction). Therefore, objects having a set of objects as a slot
filler are seen as objects having multiple fillers of a role in our transformation,
so, in transformed expressions, there is no reification of a set of objects.

After transforming a Bhibs knowledge base by applying the rules shown in
Figure 1 some additional axioms must be added in order to retain the intended
meaning. In Plakon as well as in Konwerk, the domain model given by a
knowledge base is assumed to be complete in the sense that all the different
types of objects (i.e. concepts) are known and explicitly given (see [Cunis et
al. 1991, Günter 1995b]). Therefore, concepts are assumed to be completely
covered by its direct subconcepts, and the direct subconcepts are assumed to
be pairwise disjoint. In both systems these assumptions manifest themselves
in configuration step 2 shown in Section 2.1. Objects are specialized to a leaf
node of the concept hierarchy. In our transformation these assumptions must
be made explicit by adding a number of cover and disjointness axioms (see also
Buchheit et al. [1995]). If, for example, a concept C0 has the direct subconcepts
C1, C2, and C3, then the following axioms must be added to the TBox.

C0 � C1 � C2 � C3

C1 � ¬C2 C1 � ¬C3 C2 � ¬C3

After adding cover and disjointness axioms, “specialization to leaf concepts” is
done by a model construction process as well.

The basic Plakon and Konwerk systems support only incomplete rea-
soning services for checking the domain model. Let us assume the following
declarations impose restrictions on B, C and D.

A � (≥ 10 r) � (≤ 60 r)
B � A � (≥ 15 r) � (≤ 20 r)
C � A � (≥ 20 r) � (≤ 30 r)
D � A � (≥ 30 r) � (≤ 50 r)

The generated cover axiom A � B � C � D imposes the following additional
restrictions on A:

A � (≥ 15 r) � (≤ 50 r)

11

Thus, there is more to TBox reasoning than only consistency checking. The
Konwerk system tries to support these inferences with an extension module
called TAX [Günter 1995a]. The main idea of using TAX is to reduce the
search space for constructing objects. For instance, if a construction object is
specialized to an A, it will be known in advance that there is no need to try
whether e.g. only ten role fillers for r are sufficient for an A.

In our reconstruction of Plakon and Konwerk using description logics
with the model construction view of realizing the satisfiability test we used the
following language constructs:

• conjunction,

• negation and disjunction with atomic concepts,

• value restrictions,

• qualifying number restrictions (see [Hollunder & Baader 1991]),

• inverse roles (e.g. for has-parts),

• one-of (or sets [Schaerf 1994], see the fourth translation rule in Figure 1),

• concrete domains over � (see [Baader & Hanschke 1991]).

It should be noted that due to the special form of the Bhibs syntax, the
description logic formulas are not arbitrarily nested, i.e. in principle we use a
limited kind of description logic. Considering the formal semantics for Bhibs

we defined in this paper, it is obvious that reasoning would be incomplete if
the TAX module were not loaded into the Konwerk system. In a specific con-
figuration system that is implemented with Bhibs, this kind of incompleteness
would result in a larger configuration space to be explored (possibly searching
for solutions where no solutions can be found). The list of construct required for
the Bhibs semantics (see above) reveals that the complexity of the satisfiability
test will at least be exponential (see e.g. [Baader et al. 1996]). Severe problems
concerning decidability can be expected by the circularity of TBox axioms in-
troduced by the implicit cover axioms (unrestricted terminological axioms with
generalized concept inclusions (GCIs), see also the language ALCQ with cardi-
nality restrictions on concepts [Baader et al. 1996]). As Baader [1991] has shown,
with respect to the greatest fixpoint semantics the concept defining facilities of
a language with cycles are also available in a language with transitive closure
of roles. This relationship is important because in another contribution Baader
& Hanschke [1991] have shown that in languages with concrete domains (e.g.
ALC(D)) the introduction of transitive roles leads to undecidability of the sat-
isfiability problem (i.e. ALC(D) with transitive closure of roles is undecidable).
Although we do not have a formal proof, it is extremely likely that Baader’s
PCP reduction proof technique can also be applied with the constructs offered
by the Bhibs language. Thus, checking a Bhibs concept for consistency with a
given (cyclic) TBox might be undecidable, i.e. the configuration process might
not terminate.

12

The analysis of the Bhibs language that we have presented as a case study
in this section reveals the necessity of a formal analysis of the semantics of a
specific language for defining the configuration space. In the following we will
discuss some of the additional knowledge modeling features found in configura-
tion systems.

3.2 Mixins and Views

Plakon’s and Konwerk’s concept languages are restricted to single inher-
itance. The restriction to single inheritance can easily be understood when
Plakon’s and Konwerk’s technique used for generating solutions of a con-
figuration task is seen from the operational semantics point of view (see Sec-
tion 2.1). If multiple inheritance were used, construction step 2 would not be
sufficient to traverse the configuration space. When a concept is specialized to
a certain subconcept with multiple predecessors it must also be specialized to
subconcepts of these superconcepts, i.e., in general, there would be no single
leaf concept to describe a configuration object. Furthermore, since in the ba-
sic Bhibs inheritance scheme the subconcepts of a concept are defined to be
pairwise disjoint (see the semantics of Bhibs), declaring two concepts A and
B as a superconcept for a concept C would result in an inconsistency (we as-
sume that, implictly, every concept is a subconcept of the central root concept
Domain-Object).

However, single inheritance causes modeling redundancy in many domains.
In order to provide a more flexible modeling language, Hotz & Vietze [1995a]
extended the concept language of Konwerk by introducing the notion of mixins
(see Figure 2 for an example). Mixins are not instantiated but they provide a
restricted form of multiple inheritance and can be seen as macro definitions.
The restrictions defined for a mixin are inserted where the name of a mixin
appears in a concept definition.

The control mechanism of Konwerk does not attempt to specialize objects
to any subconcept of a mixin because mixins are expanded like macros. In the
description logic translation, mixins can be transformed to terminological ax-
ioms as well, but in contrast to normal concepts no cover and disjointness axioms
are created for subconcepts of a mixin. Mixins are translated to terminological
inclusion axioms.

To support the knowledge acquisition phase, Plakon suggests the notion
of a view. The main idea of using views is to provide a structured way to
use multiple inheritance while preserving a domain model skeleton with single
inheritance. A view is used to describe aspects of an object that can be separated
from other aspects. For instance, the mode of operation of a vehicle (Gas-driven,
Diesel-driven, Electricity-driven) can be separated from the medium the vehicle is
constructed for (land, water). In Figure 3 the Mode-of-Operation mixin concept
tree from Figure 2 is presented as a view.

A view is a separate concept hierarchy with single inheritance that is cou-
pled to the main hierarchy. In Figure 3 the nodes for Mode-of-Operation and
Operation-Medium are linked to Vehicle and the concept Motorized is linked to

13

Motorbike Car Truck

Domain-Object

Vehicle

Motor-Vehicle

Mode-of-Operation

Motorized Non-motorized

Gas-driven Diesel-driven Electricity-driven

Fire-Truck UPS-Truck...

...

Figure 2: Example for a concept hierarchy with mixins. The main inheritance
links (single inheritance) are indicated with normal lines, mixin links are shown
with dashed lines.

Motor-Vehicle. In the following we will consider the Mode-of-Operation view
only.

The operational semantics of view links as given by Hotz & Vietze is de-
fined as follows. For each main concept C that is linked to a view concept
V, two sets are constructed. The first set (C-Set) contains the leaf subcon-
cepts of the main concept C that can be reached by traversing the subclass
inheritance hierarchy without touching a concept that is also linked to a view
concept. The second set (V-Set) contains the leaf concepts that can be found
by traversing the view subconcept hierarchy starting from V without touching
a view that is also linked to a main concept. As conjunctions, the elements of
the cross-product C-Set × V-Set define new subconcepts of C. In Figure 4 the
new subconcepts for the main and view hierarchy of Figure 3 are presented: For
Vehicle an additional subconcept Non-motorized-Vehicle and for Motor-Vehicle
three new subconcepts Gas-driven-Motor-Vehicle, Diesel-driven-Motor-Vehicle and
Electricity-driven-Motor-Vehicle. The new concepts are created to avoid multiple
inheritance. For each of these new concepts, the view concept of the corre-
sponding cross-product tuple is used as a mixin, i.e. the concept definition is
expanded like a macro and only a single superconcept remains. In order to
avoid a combinatorial explosion, the new concepts are created on demand, i.e.
a concept Diesel-driven-Motor-Vehicle is only created when an object is known
to be Motor-Vehicle.

The declarative semantics is much simpler. With description logics no re-
structuring of the inheritance graph is necessary. View links (dotted lines in
Figure 4) are treated as ordinary superconcept links. A view concept V con-
nected to a main concept C via a view link is simply included in the concept
definition of C as an additional restriction. Similar to the approach presented

14

Domain-Object

Vehicle

Motor-Vehicle

Mode-of-Operation

Motorized Non-motorized

Gas-driven Diesel-driven Electricity-driven

Operation-Medium

WaterLand

Figure 3: Example for a concept hierarchy with views.The main inheritance
links (single inheritance) are indicated with normal lines, view links are shown
with dashed lines.

above, for each concept in the view hierarchy cover and disjointness axioms
are generated. However, only the view subconcepts are combined in a disjunc-
tion (or cover) term. For instance, for the main concept Motor-Vehicle and for
the view concept Motorized (see Figure 4) the following inclusion axioms are
generated:

Motor-Vehicle � Vehicle � Motorized

Motorized � Gas-driven � Diesel-driven �
Electricity-driven

Gas-driven � ¬Diesel-driven

Gas-driven � ¬Electricity-driven

Diesel-driven � ¬Electricity-driven

Considering the model construction process of the description logic reasoner,
the axioms ensure that a Motor-Vehicle will be either Gas-driven, Diesel-driven
or Electricity-driven. Using the facilities of description logics, there is no need to
create additional concepts (see the cross-products mentioned above). It becomes
clear that mixins and views as defined in Bhibs are important for knowledge
engineers but—from a logical point of view—do not enhance the power of the
inference systems.

3.3 Object Descriptions

During the configuration process, instances are created (see the configuration
steps in Section 2.1). These instances are then manipulated by the control
system of Plakon or Konwerk.

In a description logic, assertions about concrete instances are gathered in
the so called ABox. The assertional language of a description logic can be used
for specifying a device to be constructed in a configuration task as well as for

15

Domain-Object

Vehicle

Motor-Vehicle

Mode-of-Operation

Motorized Non-motorized

Gas-driven Diesel-driven Electricity-driven

Non-motorized-
Vehicle

Gas-driven-
Motor-Vehicle

Diesel-driven-
Motor-Vehicle

Electricity-driven-
Motor-Vehicle

Figure 4: Expanded concept hierarchy.

representing the solutions of the configuration task. The configuration steps
mentioned in Section 2.1 generate the following kinds of ABox assertions:

• Creation of instances (construction steps 3 and 4)

• Asserting primitive concepts for instances (construction step 1)

• Asserting concrete fillers for roles (construction step 2)

• Asserting restrictions for role fillers for a specific instance (construction
step 2).

In Plakon and Konwerk there does not exist a simple language for making
these assertions. Making assertions about instances is explicitly done by using
the functions slot-value and (setf slot-value) of the underlying implemen-
tation language Clos as well as a number of other functions. For the sake of a
simple description we invented a language with a single construct (set-slot)
and provide a formal declarative symantics for it by showing how it can be
transformed to the assertional language of a description logic. Figure 5 speci-
fies the set of transformation rules. Read the function taa as Transform ABox
Axiom.

As mentioned earlier, Plakon’s and Konwerk’s concept languages are
frame languages based on the idea of slots. From a logical point of view this
has no effect on the interpretation of the languages. It does have an effect on
the expressivity of the assertional language, however. If, for example, a Motor-
Vehicle and its subconcept Truck (see Figure 2) are not required to have a
color, while the subconcept Fire-Truck is required to have the color RED and, for
instance, a UPS-Truck is required to have the color BROWN, then in Plakon

as well as Konwerk it is not possible to construct any Motor-Vehicle with

16

taa((set-slot
ObjectName1 SlotName ObjectName2))

→ (ObjectName1 , ObjectName2) : SlotName

taa((set-slot
ObjectName SlotName Measure))

→ ObjectName : (∃ SlotName .
λdim(Measure) x. (x = val(Measure)))

taa((set-slot
ObjectName SlotName ObjectDescriptor))

→ ObjectName : tsd((SlotName ObjectDescriptor))

Figure 5: Rules for transforming assertions.

color RED other than a Fire-Truck, and worse, when specifying a device to be
configured, it is not possible to specify a Motor-Vehicle with color RED. The
absence of a color slot must not be confused with the requirement of not having
a color, however, for a Fire-Truck clearly is a Motor-Vehicle. The assertional
language simply does not allow to express something like this. This anomaly
of the language must be taken into account when modeling a domain, and it
clearly prevents something like innovative configuration (see Section 4).

This feature of the assertional language of Plakon and Konwerk has an
additional effect: Whenever a slot which is defined to be the inverse of another
slot is used in a SlotDescription of a concept, its inverse must be used in a
SlotDescription of the concept of the fillers of the slot. In order to provide
adequate restrictions for the configuration space, value restrictions must be
declared for the corresponding slots. Note that this might result in cyclic concept
definitions.

The control system of Plakon or Konwerk can be configured to use differ-
ent strategies for traversing the configuration space (chronological backtracking,
TMS-based construction of a single version of an artifact with knowledge-based
backtracking, ATMS-based construction of multiple versions of an artifact). Dif-
ferent strategies can also be implemented for the model construction system for
testing satisfiability (see Section 2.2).

3.4 Constraints

Plakon’s constraint language [Cunis et al. 1991, Chapter 6] can be used to
express n-ary constraints on the fillers of role chains of objects. These include
equality as well as inequality constraints, which in some cases are identical to
the well known role value maps, as well as numeric constraints.

Role value maps are important for describing has-parts relations. For in-
stance, in the following TBox we define graph structures. A graph consists of

17

vertices and edges which also are set into relation to one another.

has-vertex
.= vertex-of−1

has-parts
.= part-of−1

Graph-Object � (= 1 part-of)
Vertex � Graph-Object

Edge � Graph-Object �
(∀ has-vertex Vertex) �
(=2 has-vertex) �
¬Vertex

Graph-Object � Vertex � Edge

Graph
.= (∀ has-parts Graph-Object) �

((has-parts|Edge ◦ has-vertex)=

has-parts|Vertex) �
((has-parts|Vertex ◦ vertex-of)=
has-parts|Edge)

Role value maps are required to ensure that if an edge is part of a graph, then
the vertices that are set into relation to an edge are part of the same graph.
The example uses additional constructs such as range restriction and role com-
position. In general, checking satisfiability (and subsumption) of concept terms
containing role value maps (agreements) and role compositions is undecidable
(see [Hanschke 1992, Hanschke 1993]). However, in Konwerk and Plakon,
constraints are not evaluated at the concept level, i.e. constraints are checked
only for ABox objects. This might result in a larger search space during the con-
figuration phase. The constraint satisfaction algorithm for checking consistency
of ABox structures used in Plakon and Konwerk is incomplete in general, it
uses local propagation techniques. Furthermore, constraint solving can be ex-
plicitly postponed by defining a certain control strategy (see Section 2.1). This
design decision has been made to keep constraint reasoning tractable.

In case of a numeric constraint, if the arguments of an n-ary constraint
are specified by n differently named slots, then this can be transformed to a
predicate of a concrete domain. In general, however, the constraint language of
Bhibs is much too expressive to be transformed to description logics; it allows to
quantify over more than one or two variables (for a discussion of the relationship
between description logics and predicate logic see [Borgida 1996]).

3.5 Defaults

Plakon’s and Konwerk’s concept languages provide a means for specifying
defaults for the slots of certain objects, but their intended meaning is not quite
clear. They are used for focusing the search mechanism, but there is no notion
of quality of solutions in Plakon and Konwerk. By using the approach of
Quantz & Royer [1992] (“Preferential Default Description Logics”) defaults can

18

be used for defining a preference relation on the set of solutions. However, it can
be shown that Plakon’s and Konwerk’s use of defaults for focusing search
does not guarantee the generation of the optimal solution with respect to this
preference relation. Due to space restrictions we cannot discuss this in detail in
this contribution.

4 Innovation and Creativity in Configuration Tasks

A formal, logical approach to configuration as advocated in this contribution
might be very helpful for analyzing open problems, e.g. the intended meaning of
notions like innovative or even creative configuration [Hotz & Vietze 1995b]. In
this paper we define innovation in the context of configuration problems in terms
of in description logics as a process of dynamic classification. The definition is
motivated by an example.

Let us assume there exists a domain model with concepts for various real
world objects, for instance, ships, houses etc. Maybe houses of different kinds are
represented using defined concepts (i.e. concepts with necessary and sufficient
conditions) and houses and ships are not disjoint. In our example we assume
the initial construction task is to design a Ship that satisfies certain restrictions
(e.g. number of persons, number of bedrooms as well as convenience or luxury
criteria). Let us further assume that a certain ship s1 has been designed. Due to
the cover axioms in the TBox (see above), the ABox instance s1 is subsumed by
a leaf subconcept of Ship. After the design has been completed, the customer
is asked whether he is satisfied with the result. Maybe the customer adds
additional constraints to the designed artifact s1 using the relations defined
in the domain model. The additional restrictions might cause the sufficient
conditions for a House concept to be satisfied. If this happenes, the construction
process will try to further specialize the ship s1 using the house concepts (see
the cover and disjointness axioms). Thus, the designed Ship can also be used
as House. The fact that the ABox discovers that House (a sibling of the initial
concept Ship) also holds and the subsequent specialization of the sibling concept
can be interpreted as the task of designing a houseboat. The House concept (or
a subconcept of House) serves as a dynamically instantiated view in this respect
that imposes additional constraints because of the associated cover axioms. The
new artifact might better satisfy certain optimization criteria.

In this case, innovative design is possible because additional restrictions are
asserted for a single ABox instance s1 (innovative design by imposing additional
restrictions). Note that there is no concept definition for a Houseboat in the
domain model. If there had been such a concept definition as a subconcept
of Ship (with the same additional restrictions), the TBox classification process
would have inferred in advance that the defined concept House is a superconcept
of Houseboat. Thus, there would be no innovation at all. Innovation can be
defined to be a task reformulation by adding restrictions after the configuration
has been comppleted in order to find additional defined concepts to hold together
with the subsequent specialization of these defined concepts. When the concept
term describing the instance s1 is computed and inserted into the TBox, a new

19

concept Houseboat is created (of course, the name would have to be computed
by additional processes).

Note that this is impossible when storage-oriented slots are used as a basis for
expressing ABox restrictions. With Plakon’s and Konwerk’s limited ABox
expressibility (see Section 3.3), additional restrictions that trigger the derivation
of House cannot be expressed without knowing in advance that a Ship s1 is also
a House.

Innovation can also require goal-directed relaxation of restrictions. For in-
stance, minimum cardinality restrictions for certain roles might be relaxed such
that more restricted maximum cardinalities can be asserted (either explicitly or
by applying the closed world assumption by “closing” a role). In our example,
the “goal” would be to relax the constraints of s1 such that a defined concept
(like House) can be proved to hold. This concept will again be subclassified to
leaf concepts etc. Other kinds of innovation might require the automatic defi-
nition of new ontological vocabulary. How this can be achieved is still an open
question.

5 Conclusion of the Case Study

Using the languages Plakon and Konwerk as a case study, the paper demon-
strates that specialized languages (e.g. developed for configuration problems)
can be interpreted as a special purpose description logic. The construction or
configuration process as defined by Plakon and Konwerk can be “simulated”
by a model-constructing satisfiability prover. The constructed logical model
represents the artifact to be designed. We also demonstrate a methodology for
describing the meaning of specialized languages by applying syntactical trans-
formations to description logic formulae. Considering these transformations,
a language designer can easily estimate the computational costs of intended
constructs by exploiting the rich research literature on description logics.

With the implementation of Konwerk, several prototype applications have
been built. In this paper, we cannot discuss all aspects of this large system.
Especially, we do not claim that the usual syntax for description logics is ade-
quate for all users. Maybe the syntax and modeling philosophy of Bhibs (with
object descriptors, see Figure 1) is better suited to engineers. With this paper
however, we hope to provide a basis for defining an integrated semantics for
application-oriented configuration development environments. The results hold
also for distributed or Web-based systems. The article shows that both ap-
proaches – practical and theoretical approaches – are valuable contributions to
AI research and both can complement each other. The semantics for Plakon

and Konwerk we gave in this paper indicates what kinds of term construc-
tors are required for Bhibs and its extensions (see Section 3.1 and Section 3.4).
The term constructs used in the semantics make clear that at least EXPTIME
algorithms are required to check consistency of Bhibs concepts. We have seen
that in some cases it is difficult to verify that the resulting language is decidable
at all. The analysis reveals that efficiency (or tractability) is not a question of
using a description logic or not but it is a question of how complete a solution

20

to a configuration problem is expected to be wrt. a formally defined semantics.

Acknowledgments

We thank Lothar Hotz and Bernd Neumann for interesting discussions and for
explaining details about the systems Plakon and Konwerk.

References

[Artale et al. 1996] A. Artale, E. Franconi, N. Guarino, L. Pazzi. Part-Whole
Relations in Object-Centered Systems: An Overview. In Data and Knowl-
edge Engineering, 20 (1996) 347-383, North-Holland, Elsevier.

[Baader 1991] Franz Baader. Augmenting Concept Languages by Transitive
Closure of Roles: An Alternative to Terminological Cycles. DFKI-Research
Report RR-90-13, also published in Proc. IJCAI-91.

[Baader & Hanschke 1991] Franz Baader, Philipp Hanschke. A Scheme for In-
tegrating Concrete Domains into Concept Languages. DFKI-Research Re-
port RR-91-10, also published in Proc. IJCAI-91.

[Baader et al. 1996] Franz Baader, Martin Buchheit, and Bernhard Hollunder.
Cardinality restrictions on concepts. Artificial Intelligence, 88 (1996), 195–
213, shorter version published in: Proc. KI-94: Advances in Artificial Intel-
ligence, Lecture Notes in Artificial Intelligence 861, Springer 1994.

[Borgida et al. 1989] Alex Borgida, Ron Brachman, Deborah McGuiness, Lori
Alperin Resnick. CLASSIC: A Structural Data Model for Objects. In Proc.
ACM SIGMOD-89 International Conference on Management of Data, pp.
59–67, 1989.

[Borgida 1996] Alex Borgida. On the relative expressiveness of description
logics and predicate logics. Artificial Intelligence, 82 (1996), 353–367.

[Borgida et al. 1996] Alex Borgida. Reasoning with Black Boxes: Handling
Test Concepts in CLASSIC. In Proc. DL-96, Boston, 1996.

[Buchheit et al. 1995] Martin Buchheit, Rüdiger Klein, and Werner Nutt. Con-
structive Problem Solving: A Model Construction Approach towards Con-
figuration. DFKI Technical Memo TM-95-01, Deutsches Forschungszentrum
für Künstliche Intelligenz, Saarbrücken, January 1995.

[Cunis et al. 1991] Roman Cunis, Andreas Günter, and Hellmut Strecker, edi-
tors. Das PLAKON-Buch – Ein Expertensystemkern für Planungs- und Kon-
figurierungsaufgaben in technischen Domänen, volume 266 of Informatik-
Fachberichte. Springer-Verlag, Berlin – Heidelberg – New York, 1991.

[Cunis et al. 1989] Roman Cunis, Andreas Günter, Ingo Syska, Heino Peters,
H. Bode. PLAKON–An approach to domain-independent construction. In
Proc. 2. IEA/AIE, Tennesse, USA, ACM-Press, pp. 866–874, 1998.

21

[Günter & Cunis 1992] Andreas Günter, Roman Cunis. Flexible Control in
Expert Systems for Construction Tasks. In Int. Journal Applied Intelligence,
Kluwer Acadmic Press Vol. 2, 1992.

[Günter 1995a] Andreas Günter. Ein pragmatischer Ansatz zur Auswertung
von taxonomischen Relationen bei der Konfigurierung. In [Günter 1995b],
chapter 18.

[Günter 1995b] Andreas Günter, editor. Wissensbasiertes Konfigurieren –
Ergebnisse aus dem Projekt PROKON. Infix, Sankt Augustin, 1995.

[Hanschke 1992] Philipp Hanschke. Specifying Role Interactions in Concept
Languages. In [KR 1992], pages 318–329.

[Hanschke 1993] Philipp Hanschke. A declarative integration of terminologi-
cal, constraint-based, data-driven, and goal-directed reasoning. Deutsches
Forschungszentrum für Künstliche Intelligenz: Research Reports; RR-93-46.

[Hollunder & Baader 1991] Bernhard Hollunder, Franz Baader. Qualifying
Number Restrictions in Concept Languages. DFKI-Research Report RR-
91-03.

[Hotz & Vietze 1995a] Lothar Hotz and Thomas Vietze. Erweiterung der Be-
griffshierarchie um Sichten und Mehrfachvererbung. In Günter [1995b], chap-
ter 11.

[Hotz & Vietze 1995b] Lothar Hotz and Thomas Vietze. Innovatives Konfig-
urieren als Erweiterung des modellbasierten Ansatzes. In Günter [1995b],
chapter 4.

[KR 1992] Bernhard Nebel, Charles Rich, and William Swartout, editors. Prin-
ciples of Knowledge Representation and Reasoning – Proc. of the Third Inter-
national Conference KR’92, Cambridge, Mass., October 25–29, 1992. Mor-
gan Kaufmann Publ. Inc., San Mateo, CA, 1992.

[Kopisch & Günter 1992] Manfred Kopisch, Andreas Günter. Knowledge-
based Support for the Layout Development of the AIRBUS-A340 Passenger
Cabin. Proc. 12th International Conference on Artificial Intelligence, Expert
Systems and Natural Language, Avignon 1992, Vol. 2, pp. 507–517.

[Lutz 1996] Carsten Lutz. Untersuchungen zu Teil-Ganzes-Relationen – Mod-
ellierungsanforderungen und Realisierung in Beschreibungslogiken. Memo
FBI-HH-M-258/96, Fachbereich Informatik, Universität Hamburg, April
1996.

[McGuiness & Resnick 1995] Deborah McGuiness, Lori Alperin Resnick. De-
scription Logic-based Configuration for Consumers. In: Proc. DL-95, 1995,
pp. 109–111.

22

[McGuiness et al. 1995] Deborah McGuiness, Lori Alperin Resnick, Charles Is-
bell. Description Logic in Practice: A CLASSIC Application. In the Proc.
IJCAI’95, Montreal, Canada, 1995.

[Neumann 1988] Bernd Neumann. Configuration Expert Systems: a Case
Study and Tutorial. In: Artificial Intelligence in Manufacturing, Assembly
and Robotics, H. Bunke (Ed.), Oldenbourg, Munich, 1988.

[Owsnicki-Klewe 1988] Bernd Owsnicki-Klewe. Configuration as a Consistency
Maintenance Task. In Wolfgang Hoeppner, editor, GWAI-88 12th German
Workshop on Artificial Intelligence, Eringerfeld, September 1988, volume
181 of Informatik-Fachberichte, pages 77–87. Springer-Verlag, Berlin – Hei-
delberg – New York, 1988.

[Quantz & Royer 1992] Joachim Quantz and Véronique Royer. A Preference
Semantics for Defaults in Terminological Logics. In [KR 1992], pages 294–
305.

[Sattler 1995] Ulrike Sattler. A Concept Language for an engeneering applica-
tion with part-whole relations. In Proc. of the International Workshop on
Description Logics, pp. 119–123, Rome, 1995.

[Schaerf 1994] Andrea Schaerf. Reasoning with individuals in concept lan-
guages. Data & Knowledge Engineering Vol. 13, No. 2, 1994, pp. 141–176.

[Woods & Schmolze 1992] W.A. Woods and J.G. Schmolze. The KL-ONE
Family. In F. Lehmann, editor, Semantic Networks in Artificial Intelligence,
pages 133–177. Pergamon Press, Oxford, England, 1992.

23

