

Abstract.

For interface development, it is important that decisions about the
structure of the interface and the appearance of graphical objects be based on
conceptual information about domain objects and user actions because, at
development time, concrete objects are not available. This paper presents a
new approach to model dialog structuring knowledge for interactive infer-
faces to realize dialog structuring on the basis of a Description Logic knowl-
edge base.

1 INTRODUCTION

For many knowledge-based systems the interface for the

end-user

 is
an integral part of the whole system architecture. For these applica-
tions, the knowledge-based development approach should also be
applied to the interface, i.e. interfaces should not be treated merely
as backends for the “real” applications. Research on Human-Com-
puter Interaction has shown the problems of prototyping approaches
for system development. While some HCI approaches use formal
models to prepare manual system implementation, more and more
semi-automatic User Interface Development Environments have
been introduced (see e.g. the survey in [5]) that allow the automatic
construction of interface components from models about domain
objecs, user actions etc. There are several mutual influences between
domain objects and user actions. On the one hand, domain knowl-
edge required for the implementation of application functions is
influenced by interface design constraints (e.g. for a movement
action, it must be possible to compute the possible positions in
beforehand). On the other hand, domain knowledge also influences
the selection of appropriate interaction techniques for user actions.

This paper describes a new approach to formally model these
influences using the derivation processes of Description Logics. In
contrast to other approaches which also model user actions with task
models for interface design (see e.g. [6]), the approach presented in
this paper is used (i) to automatically derive concepts for user
actions (or user tasks) from partial information about domain objects
at system construction time (ii) to structure the interface and (iii) to
automatically derive the contents of graphical interfaces based on
models for knowledge about user tasks and

geometric

 information
about domain objects rather than standard interaction gadgets (see
e.g. [12]) or objects known from drawing programs (see e.g. [14]).

In order to support a system development methodology where
graphical interface components are first-class citizens which directly
shape the specification of required program components, the system
HAMVIS has been developed (HAMburg VIsualization System, see
[9]).

1.1 The context: HAMVIS

HAMVIS supports a declarative way of specifying interface services
and allows visualizations of domain objects to be systematically
composed. The idea is to specify the interface of an application from
an action-oriented point of view. HAMVIS provides generic con-
cepts for user actions and domain objects. The application designer
uses these concepts to define subconcepts to model domain objects
and to specify an application-specific Action Decomposition Model.
The Action Decomposition Model is used to derive (i) what has to be
displayed, (ii) when this should take place, (iii) how the objects are
displayed and (iv) how the displayed objects can be acted upon

using a generic library of interface gadgets defined for a class of
applications. Within an Action Decomposition Model, the designer
describes actions of end-users by selecting generic action concepts
provided by the HAMVIS. Instead of focussing on surface acts (e.g.,
gestures like “click” or “drag-and-drop”) the generic action knowl-
edge base of HAMVIS models concepts for user actions on a deep
level, i.e. at the level of manipulations of domain objects rather than
at the level of manipulations of graphical objects.

Interface development with the methodology behind HAMVIS
roughly consists of the following substeps which are dependent on
one another:
1. Development of models for domain objects using a Description

Logic as an extension to a basic model provided by HAMVIS
(HAMVIS uses CLASSIC [12] as a concrete DL implementa-
tion).

2. Interactive definition of an Action Decomposition Model using
predefined generic action concepts for user actions.

3. Derivation of a

dialog structure

 to prepare the mapping to UIMS
services.

4. Determination of presentation attributes like color, line thickness
or additional metagraphical objects (e.g. arrows for highlighting)
in relation to the information encoded in the dialog structure.

5. Automatic code generation for a UIMS.
For the development of the HAMVIS prototype, the application
class of interactive construction systems has been considered. In this
paper, an example application for laying out the interior of an air-
craft (called XKL) is discussed. Concrete physical objects must be
interactively located while layout constraints are automatically
maintained and possible placement areas are automatically com-
puted (for a handmade Object-Oriented Design Environment of this
class see e.g. Fischer et al. [4]).

Inspired by Intelligent Multimedia Presentation Systems (IMPS,
see e.g. [15]), HAMVIS supports a communication-oriented per-
spective for UI development. In contrast to automatic IMP systems,
HAMVIS examines how interaction and presentation knowledge can
be used in an

interactive

 system development approach. The goal is
to support an interface designer with high-level specification sub-
systems. Thus, HAMVIS strictly distinguishes between

develop-
ment-time activities

 and

runtime activities

 which are supported by
standard UIMS architectures.

1.2 The dialog structuring phase

The communication-oriented view of HAMVIS assumes that each
object to be displayed has a certain status in the discourse of interac-
tion and fulfills a specific discourse purpose that constrains the way
the object is presented. In addition, visualizations should be con-
structed in such a way that more than one action is supported by a
single graphic in order to save screen space. The resulting interface
can be specified by a dialog structure (DS) which describes required
windows, panes and pane classes, view types and interaction tech-
niques. The development of a DS for the interface of an application
must be based on

conceptual information

 about domain objects (to
be actually computed at runtime) because, at

system development-
time

, concrete objects are not necessarily available.
This paper focusses on the third system development step (see

above) and presents a new approach to

model dialog structuring
knowledge for interactive inferfaces

 that realizes dialog structuring
on the basis of a DL knowledge base. Due to the nature of the rea-
soning process involving

conceptual

 information of domain objects,
a DL provides an adequate representation mechanism for dialog
structuring knowledge because conceptual reasoning about domain
objects is easily extended to conceptual reasoning about communi-
cation purposes.

Knowledge-Based Dialog Structuring for Graphics Interaction

Ralf Möller

1

1 University of Hamburg, Computer Science Department, D-22257
Hamburg, Vogt-Kölln-Straße 30, Germany

 1996 R. Möller
ECAI 96,

12th European Conference on Artificial Intelligence

,
Edited by W. Wahlster
Published in 1996 by John Wiley & Sons, Ltd.

Published in Proc.: ECAI’96, Budapest, Hungary, August, 1996.

Intelligent User Interfaces 272 R. Möller

The paper is organized as follows. The next section discusses
aspects of the action-based specification approach for defining the

basic information content

. The example describes the input to the
dialog structuring phase, gives a flavor of the generic HAMVIS
knowledge bases and sketches the mapping to UIMS services. The
third section formalizes the notion of a dialog structure, sketches
how a DS can be derived using DL concepts and presents some
extensions to DL used to model the DS derivation process. The
paper concludes with a comparison to IMP Systems.

2 THE DIALOG STRUCTURING TASK

2.1 Prerequisites: Basic information content

An action decomposition model specifies the domain-specific action
structure and declares the relationships between

user actions

 and

application functions

. The term “application function” is used as an
abstraction for program components which do

not require user inter-
action

 but might be realized by knowledge-based subsystems. The
results of application functions must be displayed in order for user
actions to become applicable. An action is actually carried out by the
end-user with an appropriate gesture (e.g., via drag and drop or using
a specific gadget) and, as a result, new objects are passed to subse-
quent functions which are automatically applied when the input
objects become available. This kind of dataflow can be formally
modeled using Petri nets (so-called runtime nets). HAMVIS pro-
vides an interactive interface for the application developers to sup-
port a convenient way to specify such a model. An example for the
action decomposition for XKL is shown in Figure 1. The XKL appli-
cation basically consists of two separate activities (Get-customer-
data and Construct-cabin) which are realized at the UIMS level by
different windows which are presented one after the other. The
selected activity Construct-Cabin consists of three alternative subac-
tions (Delete-cabin-object, Create-cabin-object, Move-cabin-
object). Composite actions are action

alternatives

 which can be
repeatedly executed until the associated activity is finished. The
main window describes the decomposition of the composite actions.
The first Petri net defines Move-cabin-objects. The Petri net pre-
sented below models the action Create-cabin-object which consists
of two elementary user actions: a selection action (select-cabin-

object) and a localization action (localize-cabin-object). Information
about selected transitions and places is presented in the pane below
(in this case for the place has-reference-object). The objects to be put
into the place at runtime must inherit from the concepts non-over-
lapped-spatial-object and placement-area. The action model for the
localization action requires a certain view (called model class).

When the window of an activity is presented at runtime, the inter-
action cycle starts. The initial transitions of the runtime net fire, i.e.
the initial application functions (without input parameters) are evalu-
ated. The results are put into the corresponding output places in the
runtime net. Some places contain objects that must be displayed in a
pane of the activity window. In the screen shot of the HAMVIS
interface in Figure 1, these places are indicated with dark gray. The
goal is to present objects in such a way that they are mouse-sensitive
and can be used as gadgets. For instance, the HAMVIS library con-
tains gadgets for moving objects within certain boundaries. A move-
ment gadget generates a new value for the position which is passed
to the subsequent application function (in addition to the moved
object itself). When the last transition of a subnet has fired, the inter-
action cycle starts again, i.e. the initial application functions are
evaluated etc. The UIMS is responsible for managing the resulting
drawing requests and screen updates.

Conceptual knowledge about user actions is modeled with DL
concepts and roles. A sketch of the definition of the concept localiza-
tion-in-xy-bounding-rectangle for the action localize-cabin-object is
given below. Roles and concepts are presented with some extensions
to the KRSS syntax [11]. The keyword :asserted-concepts is an
abbreviation for a rule that triggers on the concept being defined and
asserts the conjunction of the specified concepts.

(define-primitive-role has-localized-entity
 has-manipulated-object)

(define-concept spatial-localization
 (and localization
 (all has-localized-entity spatial-object)
 (all has-reference-object spatial-object)))

(define-concept localization-in-xy-bounding-rectangle
 (and spatial-localization ...
 (all has-loc-entity-ref-object-relation in))
 (:asserted-concepts
 (all has-reference-object
 non-overlapped-spatial-object) ...))

Selected place

Figure 1.

Action model of the XKL application visualized as a Petri net (user actions are indicated by a “U” icon, functions are marked by a “C”).

Intelligent User Interfaces 273 R. Möller

The generic action knowledge base of HAMVIS models concepts
for user actions (with case roles) with respect to a

HAMVIS Upper
Model

. Domain-specific concepts for domain objects must inherit
from concepts defined in the HAMVIS Upper Model. For instance,
the XKL concept placement-area (see the place has-reference-
objects in Figure 1) must inherit from a concept spatial-object
defined in the HAMVIS Upper Model.

The generic HAMVIS Action Model determines

which

case roles
describe

domain objects

 that must be displayed and

which concepts

the objects will have. The application-specific Action Decomposi-
tion Model defines

when

 this should take place. The interfaces for
the declaration of this model and the reasoning services for action
modeling provided by HAMVIS are explained in detail in [10].

2.2 Bottom-up dialog structuring

In contrast to IMP systems which compute the dialog structure top-
down, HAMVIS uses a bottom-up approach. The basic information
content for HAMVIS is not given with (agent-oriented) “presenta-
tion goals” to be expanded top-down (for instance with plan opera-
tors that operate on the mental state of the perceiver). The Action
Decomposition Model declares information about the objects to be
communicated in order to support the end-user’s actions and repre-
sents restrictions on the view (e.g., perspective) that will be used to
display the objects (see Figure 1). However, like IMP systems,
HAMVIS must extend the basic information content given by the
Action Decomposition Model to support information processing
activities of the end-user. For example, the actions in the XKL
example presented above require a reference frame (e.g., the cabin
body) to be presented. In addition to content completion, panes of
certain types for displaying objects for interactive manipulation must
be allocated (e.g., for the selection action in Figure 1 a palette pane
is required). The composite actions Create-cabin-object and Move-
cabin-object can be realized by a single presentation because the ref-
erence frame can be shared (the associated action concepts allow the
same view). As an example, the final interface for the XKL activity
Construct-cabin which has been generated with the services pro-
vided by HAMVIS is presented in Figure 2. The former action can
be realized by a drag-and-drop gesture, the latter by clicking on a
cabin object and dragging it inside its associated placement area.

Figure 2.

The final interface for the Construct-cabin activity generated by
HAMVIS with mouse documentation. Missing cabin objects (e.g., a “Lateral
Galley of Type 1”) are shown in a palette window and can be dragged into
automatically computed placement areas (dark rectangles) being presented in
the graphic pane when dragging starts (cf. Figure 1). Other cabin objects pre-
viously located are also shown and can be moved with the mouse.

In addition to a Petri net interpreter, the runtime system to be gener-
ated from a dialog structure includes a

display manager

 which is
responsible for managing presented objects. For instance, the place-
ment areas required for the action Create-cabin-objects are displayed
only “temporarily” while the display status of a localized object (see
the place localized-object in Figure 1) should be “permanent”. Fur-
thermore, a reference system (the cabin body) must be “statically”
presented. Thus, in order to generate adequate presentations that
reflect the end-user’s expectations, objects found in places of the
runtime net are transferred to the display manager which needs addi-
tional information concerning the

discourse status

 and the

discourse
purpose

 of presented objects. The discourse purpose represents the

reason why an object is displayed and influences the selection of
drawing attributes. The discourse information for the display man-
ager depends on the user actions and can be derived at system devel-
opment time. The definition of the information content, visualization
composition, the definition of required display panes and the deriva-
tion of discourse purposes and status of displayed objects should be
realized using declarative dialog structuring models rather than by
programming and rapid prototyping.

2.3 Interactive approach

HAMVIS supports an interactive approach to build a DS. The inter-
face designer can build a DS by clicking on the gray places of the
runtime net. For instance, if the place has-reference-object was the
first place to be selected, HAMVIS would compute the initial dialog
structure presented in Figure 3 (called ds4345). A DS can be devided
into three levels: the pane level, an intermediate level (called aggre-
gate level) and the level of DS segments which describe information
about displaying objects found in places of the runtime net. For dis-
playing placement areas for a localization action (place has-refer-
ence-object) at least one pane is required (called pane-2).
Furthermore, Figure 3 indicates that in the pane a reference object
and the objects in the environment of the reference objects must be
displayed.

Figure 3.

Snapshot of the initial dialog structure derived for considering the
place has-reference-object.

HAMVIS computes several alternatives for considering a place in
the DS. Information about the discourse status can be examined by
clicking on DS nodes etc. The interface designer can keep several
alternatives for exploring them in parallel (using the interactive
interfaces of HAMVIS) or can reject structuring alternatives. If a
dialog structure cannot be derived, HAMVIS informs the interface
designer about the reason. It might be the case that either the domain
models or the Action Decomposition Model must be modified or
extended. The rest of the paper focusses on the mechanisms behind
the surface, presents a formalization of the associated knowledge
sources and describes the incremental reasoning processes for build-
ing dialog structure alternatives.

3 THE INTERNAL LOGICAL VIEW

In IMP systems, presentation knowledge is usually expressed from
the “external” viewpoint of a presentation agent which reasons about
the mental state(s) of the perceiver. For instance, the fact that a refer-
ence frame is required might be represented in such a way that the
perceiver “wants to know” something about the reference system
(see [15]). The advantage of this approach over simpler schema-
based approaches is that presentation constituents can be related to
each other (via their effects on the mental states of the perceiver).

However, even for evaluation purposes of interactive graphical
interfaces, defining mental models is very difficult. The HCI litera-
ture is full of different proposals that cover only a small range of
effects. HAMVIS uses a different approach which avoids the explicit
definition of mental states of the user. Instead of using an external
point of view to relate presentation constituents, HAMVIS models
the influences between presentation constituents form an internal
points of view. We say that a presentation constituent requires a

modification

 (see [7]) which is induced by another constituent (the
modifier). In the following it is shown how the construction of a dia-
log structure can be interpreted as the fulfilment of modification
requirements which, in turn, can be realized by conceptual reasoning
with DL.

Intelligent User Interfaces 274 R. Möller

3.1 “Driving” Bottom-Up DS construction with DL

From an internal, logical point of view, selecting a place for DS inte-
gration corresponds to generating a set of assertions for a certain DS
segment and assuming that a DS can be built, i.e. the assertions are
logically consistent. Using CLASSIC as a DL, HAMVIS represents
each of the DS layers with appropriate concepts (DS-unit, DS-aggre-
gate and DS-segment). The graph structure is defined by the relation
has-ds-component, its inverse ds-component-of and subrelations for
distinguishing main objects (has-nucleus) and additional objects
which represent information about required modifiers for the nucleus
(has-satellite).

(define-primitive-role has-nucleus has-ds-component)
(define-primitive-role has-satellite has-ds-component)
(define-primitive-concept ds-segment
 (and (at-least 1 ds-component-of)
 (all ds-component-of ds-aggregate)
 (at-most 1 generated-by-action)
 (at-most 1 has-discourse-purpose)))

(define-primitive-concept ds-aggregate
 (and (at-least 1 has-nucleus) (at-most 1 has-nucleus)))

For each place to be integrated into a DS, internally an individual
representing known information about a DS segment is created:

(state (instance dss-1 ds-segment))
(state (instance dss-1
 (all describes-displayed-object placement-area)))
(state (related dss-1 localize-cabin-object
 generated-by-action)))

Though a DS segment is related to at least one DS node via the role
ds-component-of (see the definition of ds-segment), this node is not
necessarily known and the DL system does not automatically gener-
ate an individual representing this node. Creating the corresponding
individual (node at the aggregate level) requires some set of addi-
tional assertions (either that a newly created node is not equal to an
existing one or that an existing node might by “reused”). In other
words: the initial set of assertions is in some sense

incomplete

 and a
set of additional assertions must be generated.

3.1.1 Notion of “incompleteness”

In order to define which individuals require a set of known fillers for
a certain role, a new concept schema has been introduced to KRSS-
CLASSIC. In lower-bound cardinality restrictions, a so-called K-
operator may be used in the consequences part of a rule (K-cardinal-
ity restriction). An example is given by the following definition:

(define-concept spatial-action-ds-segment
 (and ds-segment
 (all describes-displayed-object spatial-object)
 (all generated-by-action
 (and user-action
 (all has-manipulated-object spatial-object))))
 (:asserted-concepts
 reference-frame-requiring-dss
 environment-requiring-dss

(at-least 1 (k ds-component-of))

 (at-least 1 (k has-discourse-purpose))
 (all has-discourse-purpose
 descriptor-for-manipulated-object)))

When a ds-segment is classified as a spatial-action-ds-segment by
ABox reasoning (which is actually the case for dss-1, s.b.), a func-
tion compute-role-fillers is automatically applied to the individual
and the role (actually the role name). The function must return the
required fillers for the relation ds-component-of. In the example
from above, one filler has to be created. It will be set into relation
with dss-1 and will be automatically classified as a ds-aggregate (see
the definition of ds-segment).

If less than the number of required fillers are returned, the indi-
vidual is called incomplete. When an instance is found to be incom-
plete, this means that there exists not enough information to prove
the initial set of assertions, i.e. a dialog structure cannot be found.

3.1.2 Computation of assertions

When a concept like spatial-action-ds-segment is declared (during
the development phase of HAMVIS itself), corresponding defini-

tions to compute the respective role fillers are defined. This kind of
incremental definition of functions is most easily supported by
generic functions and methods. Therefore, CLASSIC has been
extended with CLOS-like generic functions which dispatch on
CLASSIC concepts and on CLOS classes [8]. For the dialog struc-
turing concepts defined by HAMVIS, the corresponding methods
have already been defined. As an example, the method for spatial-
action-ds-segment and the role ds-component-of is presented.

(define-method compute-role-fillers
 ((ind spatial-action-ds-segment)
 (role (eql ‘ds-component-of)))
 (cl-create-ind (gensym "DSA")
 `(fills has-nucleus ,(cl-name ind))))

This function computes an instance (say dsa-1) which is used as a
filler for the role ds-component-of of dss-1. In addition, an addi-
tional assertion is generated: dss-1 is the nucleus of the dsa (has-
nucleus is a subrole of has-ds-component, see above).

3.2 Derivation of display information

The initial ds-segment dss-1 is classified as a spatial-action-ds-seg-
ment because (i) placement-areas are subsumed by spatial-object
and (ii) localize-cabin-object is a user-action whose manipulated
object is a spatial-object (see the definition of the action and its case
roles mentioned in Section 2). Cabin objects like galleys and lavato-
ries are also spatial objects. The defined concept spatial-action-ds-
segment serves as a trigger for a rule that asserts modification
requirements expressed with the concepts reference-frame-requir-
ing-dss and environment-requiring-dss. Modifiers (satellites) are
indirectly set into relation to nuclei via a ds-aggregate individual
which is generated by the K-operator. The HAMVIS dialog structur-
ing knowledge base contains several additional concepts and roles
for ds-aggregates. For example, reasoning about reference frames at
the aggregate level is modeled by the following definitions.

(define-primitive-role has-reference-frame-satellite
 has-satellite)

(define-concept dsa-with-ref-frame-requiring-nucleus
 (and ds-aggregate
 (all has-nucleus reference-frame-requiring-dss))
 (:asserted-concepts
 (at-least 1 (k has-reference-frame-satellite))
 (at-least 1 (k ds-component-of
 / (at-least 1 (k has-nucleus))
 (at-least 1
 (k has-reference-frame-satellite))))
 (all has-reference-frame-satellite
 reference-frame-ds-segment)))

The ds-aggregate dsa-1 is subsumed by dsa-with-ref-frame-requir-
ing-nucleus. As a consequence, the ds-aggregate requires a role filler
for the role has-reference-frame-satellite. This role filler is the modi-
fier for the nucleus segment. Furthermore, the ds-aggregate must be
inserted into the dialog structure. However, this should only happen
if the nucleus and the associated reference frame modifier are actu-
ally known. In order to support a

conditional role filler computation

in a K-operator, a set of K-cardinality restrictions can be given after
a slash (read as “under the condition that”). Filler computation for
the role ds-component-of is delayed until the other fillers are actu-
ally known as concrete individuals.

3.2.1 Discourse purposes represented as individuals

The display manager needs information about the discourse purpose
associated with a place in the runtime net in order to derive con-
straints for presentation attributes. Each DS segment is associated
with an individual describing the discourse purpose (see the use of
the K-operator in the definition of spatial-action-ds-segment). The
HAMVIS knowledge base contains several different concepts for
describing discourse purposes. With each discourse purpose concept,
a set of contraints for selecting presentation attributes and a dis-
course status is associated. The discourse status is required for dis-
play management. Currently, the HAMVIS display manager
distinguishes the following status descriptors: dynamic, dynamic-
persistent and static. A dynamic object will be presented right after
the place has been filled. It will be erased at the end of the action. A

Intelligent User Interfaces 275 R. Möller

segment with discourse status dynamic-persistent describes places
that will contain objects that should not be erased after the action is
finished.

(define-concept descriptor-for-manipulated-object
 (and discourse-purpose
 (fillers has-discourse-status dynamic-persistent)))

A static object will be displayed before any action is carried out. An
example is a reference system. For a reference frame modifier, the
DS segment knowledge base contains the following definitions.

(define-concept reference-frame-ds-segment
 (and (all has-discourse-purpose
 reference-frame-modifier) ...)
 (:asserted-concepts
 (at-least 1 (k has-discourse-purpose)))

(define-concept reference-frame-modifier
 (and discourse-purpose
 (fillers has-discourse-status static))
 (:asserted-concepts
 (at-least 1 (k has-static-reference-object))))

The current version of HAMVIS requires that reference objects (a
filler of the role has-static-reference-objecct) be known at system
development time. Thus, the corresponding method for compute-
role-fillers must be able to derive a reference object right from the
conceptual information known about the object to be found in the
place at runtime. The reference object is found by considering
restrictions for part-whole relations defined in the HAMVIS Upper
Model. This is possible when concepts for domain objects (e.g.
cabin objects) are defined with respect to static individuals:

(define-primitive-concept cabin-object
 (and spatial-object ...
 (at-most 1 spatially-enclosed-by)
 (fillers spatially-enclosed-by uac-cabin-body)))

Part-whole relations like spatially-enclosed-by are also considered
for automatically deriving modification functions for computing
objects in the environment of a set of other objects. This is required
for environment modifiers (see Figure 3) but due to space limita-
tions, this cannot be discussed in detail here.

3.2.2 DS construction variants

The dialog structure constructed so far can be extended by selecting
another gray place. If the next place was has-moved-entity (see
Figure 1), HAMVIS would allocate another pane with an associated
reference frame etc. For XKL, it would be advantageous to use a sin-
gle pane for object movement and for object creation, especially
because the reference system (the cabin body) will be the same for
both actions. In the context of IMP systems, André calls this effect
“structure sharing” [1]. In order to support this reasoning step,
HAMVIS computes a DS variant which restructures the initial DS,
“reuses” the first pane and “shares” the reference system etc. The
knowledge sources and restructuring algorithms cannot be described
in this paper.

3.2.3 Interpreting a DS: Runtime net extension

When all places of a runtime net for a certain activity of an applica-
tion are considered in the DS, each place is associated with its pane,
the discourse purpose and status of the objects etc. Some modifica-
tion requirements lead to an expansion of the runtime net. Modifica-
tion functions (e.g., a function for computing the objects in the
environment of a set of objects or a function for computing a refer-
ence frame) are represented by new transitions with new output
places. The extended runtime net and the dialog structure provide
the input to the code generation component of HAMVIS.

4 CONCLUSION

With HAMVIS it is shown that design models can be formalized
such that knowledge-based UI design support frameworks can be
built. Interface “services” provided by HAMVIS are defined as
action concepts in a DL knowledge base (compare this to a specifi-
cation of network “services” in a distributed object-oriented system
using type descriptions).

In contrast to IMP systems which operate with concrete objects
(at runtime), in the HAMVIS scenario it is important that decisions
about the interface structure and about the appearance of graphical
interface components be based (mostly) on conceptual information
about domain objects and user actions. This paper has shown how
this can be supported with DL knowledge bases. Compared to rule-
based approaches to dialog (or discourse) structuring (cf. [2]), the
approach presented in this paper does not require additional repre-
sentation mechanims but allows the (bottom-up) construction of a
concrete DS directly in terms of ABox statements. The logical mech-
anisms are hidden behind the HAMVIS user interfaces (see [9] for
examples that demonstrate how a UI designer interacts with HAM-
VIS).

HAMVIS is a first step toward a knowledge-based interface
development methodology that allows the UI designer to specify
interaction components by explicity modeling relations between
visualizations and visualization constituents (for more examples see
[9]). The discourse status and discourse purposes of visualization
constituents provide the basis for automatically selecting drawing
attributes. It has been shown how communication-oriented modeling
techniques known from IMP systems can be made available by DL
reasoning at system development-time for the construction of stan-
dard interfaces which require

less computational resources

. HAM-
VIS currently supports code generation for CLIM [3] but other
backends could also be supported.

REFERENCES

[1] E. André,

Ein planbasierter Ansatz zur Generierung multimedialer
Präsentationen

, in German, Dissertation, Univserity of Saarbruecken,
Computer Science Department, 1995.

[2] Y. Arens, E. Hovy, S. van Mulken,

Structure and Rules in Automated
Multimedia Presentation Planning

, in: Proc. of the IJCAI-93, 1993.
[3]

Common Lisp Interface Manager, User Guide

, Franz Inc., 1994.
[4] G. Fischer, R. McCall, J. Ostwald, J. Reeves, F. Shipman,

Seeding,
Evolutionary Growth and Reseedings: Supporting the Incremental
Development of Design Environments

, in: Proc.CHI’94 Human Fac-
tors in Computing Systems, ACM Press, 1994, pp. 292-298.

[5] J.D. Foley, P.N. Sukaviriya, History, Results, and Bibliography of the
User Interface Design Environment (UIDE), an Early Model-Based
System for User Interface Design and Implementation, in

Interactive
Systems: Design, Specification, and Verification

 (ed. F. Paternó),
Springer, 1995, pp. 3-14.

[6] H.R. Hartson, K.A. Mayo, A Framework for Precise, Reusable Task
Abstraction, in

Interactive Systems: Design, Specification, and Verifi-
cation

, (ed. F. Paternó), Springer, 1995, pp. 279-297.
[7] M. Leyton,

Symmetry, Causality and Mind

, MIT Press, 1994.
[8] R. Möller,

A Functional Layer for Description Logics: Knowledge
Representations Meets Object-Oriented Programming

, to appear in:
Proc. OOPSLA’96, San Jose, 1996.

[9] R. Möller,

HAMVIS: Generierung von Visualisierungen in einem Rah-
mensystem zur systematischen Entwicklung von Benutzungsschnitts-
tellen

, in German, Dissertation, in preparation, University of Hamburg,
Computer Science Department, 1996.

[10] R. Möller,

Reasoning About Domain Knowledge and User Actions for
Interactive Systems Development

, in: Proc. IFIP Working Groups 8.1/
13.2 Conference, Domain Knowledge for Interactive System Design,
Geneva 8-10th May, Chapman & Hall Publishers, 1996.

[11] P.F. Patel-Schneider, B. Swartout,

Description Logic Specification
from the KRSS Effort

,

ksl.stanford.edu:/pub/knowledge-
sharing/papers/dl-spec.ps

.
[12] A.R. Puerta, H. Eriksson, J.H. Gennari, M. Musen,

Beyond Data Mod-
els for Automated User Interface Generation

, in People and Computer
IX, Proceedings of HCI’94 (ed. Cockton, G., Draper, S.W., Weir,
G.R.S.), Glasgow, August 1994, pp. 353-366.

[13] L.A. Resnick, A. Borgida, R.J. Brachman, D.L. McGuiness, P.F., Patel-
Schneider, K.C. Zalondek,

CLASSIC Description and Reference Man-
ual for the Common Lisp Implementation

, Version 2.2, 1993.
[14] P. Szekely, P. Luo, R. Neches, Beyond Interface Builders: Model-

Based Interface Tools, in

Proc. of INTERCHI’93

, pp. 383-390.
[15] W. Wahlster, E. André, W. Finkler, H.-J. Profitlich, T. Rist,

Plan-Based
Integration of Natural Language and Graphics Generation

, Artificial
Intelligence, 63, 1993, pp. 387-427.

Intelligent User Interfaces 276 R. Möller

