
A Partial Logical Reconstruction of PLAKON/KONWERK

Carsten Schröder and Ralf Möller and Carsten Lutz
Universität Hamburg, Fachbereich Informatik,

Vogt-Kölln-Straße 30, 22527 Hamburg, Germany,
{schroeder,moeller,lutz}@kogs.informatik.uni-hamburg.de

1 Introduction

The main goal of the projects TEX-K and
PROKON, carried out at the Dept. of Computer
Science, University of Hamburg in the years of 1986–
1990 and 1991–1995, respectively, and dealing with
knowledge-based configuration in technical domains,
was to develop suitable representation languages tai-
lored to the needs of the configuration domain and a
methodology for actually solving configuration tasks
[Cunis et al. 1991, Günter 1995b]. The emphasis of
these efforts was on building practical, useful soft-
ware tools instead of formal methods and culminated
in the system Plakon and its successor Konwerk.

In this contribution we argue that the methods of
formal knowledge representation, especially descrip-
tion logics, first, are valuable tools for analyzing ex-
isting systems and open problems, second, should
be used by developers in order to make clear state-
ments about the performance of their systems, and
third, can even directly be used for building sys-
tems. In the following we present a partial logical re-
construction of Plakon and Konwerk. Section 2
introduces the view that the methodology used in
Plakon and Konwerk for solving configuration
tasks can be seen as a special instance of a process re-
sulting from a precise definition of the configuration
problem in logical terms. Section 3 shows how most
of the concept definitions and some of the constraint
definitions using Plakon’s representation languages
can be transformed to terminological axioms of a de-
scription logic and explains some of the peculiarities
of the languages. Section 4 discusses how the use of
formal methods helps in understanding open prob-
lems of the configuration domain. The paper ends
with a conclusion.

2 The Configuration Methodology

In this section we give an introduction to the way
the configuration space is defined in Plakon and
Konwerk. After dicussing how a given configu-
ration task is solved in these systems by repeated
application of four basic configuration steps we give
a formal interpretation of the configuration process
in terms of a description logic and a specific method
for satisfiability testing.

2.1 Defining the Configuration Space

Plakon’s as well as Konwerk’s approach to con-
figuration of technical devices is a model-based one.
The main idea of the configuration methodology of
both systems is to use a conceptual domain model
to describe the space of possible configurations of
the devices in a certain domain. For defining the
conceptual domain model, a frame-based language
is used. A configuration task is given as a goal ob-
ject (defined by instantiating a certain concept of the
domain model) and optionally a set of additional ob-
jects (components) which must be part of the goal
object in the final configuration. The construction
process of Plakon and Konwerk proceeds by ap-
plying the following four basic configuration steps
until the goal object is completely specified.

1. Determine a slot (or parameter) value for a con-
struction object (either a concrete value or a
value restriction).

2. Specialize a construction object by asserting
(i.e. hypothesizing) that it is an instance of one
of the explicitly given subconcepts of its current
concept.

3. Aggregate a set of construction objects, i.e. cre-
ate a new object by instantiating the concept
the construction objects to be aggregated must
be parts of, or add an object to an existing ag-
gregate.

4. Decompose a construction object and configure
the parts.

Obviously, more than one step might be applicable
in a certain state during the configuration process
and, in turn, with each step different possibilities
are available. For instance, there might exist several
ways to decompose an object into its parts. Plakon

and Konwerk provide an explicit control module to
structure the configuration search space (applying a
construction step is called a “heuristic decision” in
Plakon’s and Konwerk’s terminology). The con-
trol module can be adapted to the problem using an
explicit model with “strategies” for traversing the
construction space (see [Günter 1991]). The con-
struction of the goal object, i.e. the configuration of
the required device, is finished either if none of the

four construction steps can be applied any more, or
if there does not exist a consistent solution. Thus,
each of the construction objects contained in the so-
lution is specialized as much as possible, i.e., it is an
instance of a leaf node of the concept hierachy given
by the domain model, and all required parts and pa-
rameter values of each of the construction objects
are determined.

In the following section we will present a logical
interpretation of this process.

2.2 Formal Interpretation of the
Configuration Process

One of the first formal approaches to configuration
problems was given by Owsnicki-Klewe [1988]. He
used the terminological language of a kl-one-like
description logic for defining a domain model and
the corresponding assertional language for specifying
the device to be configured (the goal object). Given
a knowledge base of his logic he then used the ob-
ject classification service (i.e. realization) provided
by description logics for computing the most special
concepts of the objects given in the specification.
These concepts were defined to be the solution of the
configuration problem: They provide a description
of all the properties of the given objects. However,
this process only generates interesting solutions, if
the concepts of the domain model are properly de-
fined by giving necessary as well as sufficient condi-
tions, for object classification is a purely deductive
process. If only necessary conditions are given, no
new information can be generated (except the de-
tection of inconsistent specifications, of course). In
addition, note that no new objects are generated by
this process. Neither does it aggregate objects to
a new one nor does it construct the required parts
of an object. It is quite obvious that this formal
approach to configuration does not explain the ap-
proach taken by Plakon and Konwerk: although
deductive reasoning is clearly needed, hypothetical
reasoning1 is needed as well.

However, the methodology used in Plakon and
Konwerk for generating solutions of a configura-
tion task described above can be seen to be a spe-
cial instance of the model construction approach of
Buchheit et al. [1995] tailored to the peculiarities of
the Bhibs representation language. Following this
approach, a solution of a configuration task is de-
fined to be a logical model of the given knowledge
base containing both the conceptual domain model
as well as the task specification. A logical model con-
sists of a set of objects (the domain of discourse) as
well as an interpretation function which maps object
names to the objects of the domain of discourse and
concepts as well as slot names to unary and binary
relations on the domain of discourse, respectively,

1We hesitate to call it abductive reasoning, for config-
uration is not a task of generating explanations.

and it is required to satisfy the formulas of the given
knowledge base.

A bit of analysis reveals that the set of objects and
relations represented by slots which are constructed
by the configuration process in Plakon and Kon-

werk is a representation of a logical model of itself
as well as the domain model containing the concept
descriptions. This model maps each object to itself,
each concept to the set of instances of this concept
contained in the constructed configuration and each
slot to the set of object/filler tuples.

Interestingly, although the classification services
usually provided by description logics are not the
central mechanisms needed for configuration (as
noted by Günter [1995a]), the tableau calculi which
became popular for realizing these services can be
directly used as a basis for configuration systems
[Buchheit et al. 1995]. The algorithm for the satisfi-
ability test provided by these calculi tries to contruct
a logical model of the given knowledge base. When a
logical model can be constructed, a knowledge base
is satisfiable. Therefore, extended by suitable con-
trol mechanisms tableau calculus algorithms can be
used for emulating the configuration technique used
in Plakon and Konwerk.

Note, however, that the language proposed by
Buchheit et al. [1995] which is based on a feature
logic is not suitable for the configuration domain.
One of its central notions, the whole-part relation
[Lutz 1996], cannot be represented using functional
roles (features).

3 The Language

Plakon provides a language called Bhibs which can
be used for modeling a domain by defining concepts
[Cunis 1991]. In this section we present the main
ideas behind Bhibs and illustrate how the language
constructs can be transformed to description logics
or, if this is not possible, to First-Order Predicate
Logic.

3.1 Concept Descriptions

Bhibs is a frame language using single inheritance
which allows one to describe the properties of in-
stances by specifying restrictions for the required
values of named slots. The values can be either sin-
gle objects or sets and sequences of objects, and the
restrictions can be specified extensionally by directly
giving concrete values like numbers, symbols or in-
stances of concepts, or by intensionally describing
sets and sequences of objects. The following exam-
ple of an expression of the Bhibs-language describes
the concept of a cylinder:

(is! (a Cylinder)
(a Motorpart

(part-of (a Motor))
(capacity [1ccm 1000ccm])
(has-parts

(:set #[(a Cylinderpart) 4 6] :=

#[(a Piston) 1 1]
#[(a Connecting-Rod) 1 1]
#[(a Valve) 2 4]))))

A Cylinder is required to be a Motorpart, to be part-
of a Motor, to have a capacity of 1 to 1000ccm, and
to have a set of 4 to 6 parts (has-parts) which are
all Cylinderparts and it consists of exactly 1 Piston,
exactly 1 Connecting-Rod, and 2 to 4 Valves. This
expression can be transformed to a terminological
inclusion axiom of a description logic providing con-
crete domains [Hanschke 1992] as follows (the term
λVol c. (. . .) is a unary predicate of a numeric con-
crete domain for the dimension Volume with base
unit m3):

Cylinder � Motorpart �
(= 1 part-of) � ∀ part-of .Motor �
(= 1 capacity) �
∀ capacity . λVol c. (0.001 ≤ c ∧ c ≤ 1) �
∀ has-parts .

(Cylinderpart �
(Piston� Connecting-Rod � Valve)) �

(≥ 4 has-parts Cylinderpart) �
(≤ 6 has-parts Cylinderpart) �
(= 1 has-parts Piston) �
(= 1 has-parts Connecting-Rod) �
(≥ 2 has-parts Valve) �
(≤ 4 has-parts Valve)

Note that the given restrictions are only necessary
conditions for a Cylinder. This is not at all clear
on first sight, but was deduced from the procedural
semantics of Bhibs defined by the system Plakon.

In an effort to provide a formal declarative seman-
tics for Bhibs we found that all concept definitions
except those containing sequence description can be
transformed to terminological inclusion axioms. Fig-
ure 1 specifies a set of transformation rules. Read
the functions tta and tsd as Transform TBox Ax-
iom and Transform Slot Description, respectively. A
Measure is a number either with or without a unit
for a specific dimension, e.g. 42 or 25km. The func-
tion dim returns the dimension of a “measure”, e.g.
Vol for 1000ccm, and the function value returns the
value of a given “measure”, 1000 in this example.

There are a few things to note in this transfor-
mation. First, we are using more than one con-
crete domain—one for each dimension—although all
of them are numeric. This helps in seperating the
dimensions from each other, they can be handled in-
dependently. Second, what we have called a SlotDe-
scription (in accordance with one of the developers
of the system Konwerk) is transformed to a con-
cept term of a description logic, for it intensionally
describes a set of objects of the domain. Third, in
Plakon as well as in Konwerk the slots of an ob-
ject are assumed to have only one filler. This might

be either a single object (a number, a symbol, or
an instance of a concept) or a set of objects. We
transform slots to roles of a description logic which
may have more than one filler. Slots are not trans-
formed to features which are interpreted as partial
functions. Therefore, objects having a set of objects
as a slot filler are seen as objects having multiple
fillers of a role in our transformation, so, there is no
reification of a set of objects.

After transforming a Bhibs knowledge base by ap-
plying the rules shown in Figure 1 some additional
axioms must be added in order to retain the in-
tended meaning. In Plakon as well as in Kon-

werk, the domain model given by a knowledge
base is assumed to be complete in the sense that
all the different types of objects (i.e. concepts) are
known and explicitly given (see [Cunis et al. 1991,
Günter 1995b]). Therefore, concepts are assumed
to be completely covered by its direct subconcepts,
and the direct subconcepts are assumed to be pair-
wise disjoint. In both systems these assumptions
manifest themself in configuration step 2 shown in
Section 2.1. Objects are specialized to a leaf node of
the concept hierarchy. In our transformation these
assumptions must be made explicit by adding a num-
ber of cover and disjointness axioms (see Buchheit
et al. [1995]). If, for example, a concept A has the
direct subconcepts B, C, and D, then the following
axioms must be added to the TBox:

A � B � C �D

B � ¬C B � ¬D C � ¬D

After adding cover and disjointness axioms, “special-
ization to leaf concepts” is done by a model construc-
tion process as well. Note that this formalization of
the original assumption of a complete domain model
easily shows that it does not correspond to a closed
world assumption as claimed by Cunis et al. [1991]

and Günter [1995a].
The basic Plakon and Konwerk systems sup-

port only incomplete reasoning services for checking
the domain model. For instance, the cover axioms,
might implicitly add additional restrictions to A. Let
us assume the following declarations impose restric-
tions on B, C and D.

A � (≥ 10 r) � (≤ 60 r)

B � A � (≥ 15 r) � (≤ 20 r)

C � A � (≥ 20 r) � (≤ 30 r)

D � A � (≥ 30 r) � (≤ 50 r)

The generated cover axiom A � B � C � D imposes
the following additional restrictions on A:

A � (≥ 15 r) � (≤ 50 r)

Thus, there is more to TBox reasoning than only
consistency checking. The Konwerk system tries
to support these inferences with an extension module

tta((is! (a ConceptName)
(a SuperConceptName

SlotDescription1
SlotDescription2
...))

→
ConceptName � SuperConceptName �

tsd(SlotDescription1) �
tsd(SlotDescription2) �
. . .

tta((def-relation :name SlotName1
:inverse SlotName2))

→ SlotName1
.
= SlotName2−1

tsd((SlotName (a ConceptName))) → (=1 SlotName) �
∀SlotName .ConceptName

tsd((SlotName
{ObjectName1 ObjectName2 ...}))

→ (=1 SlotName) �
∀SlotName . {ObjectName1 ObjectName2 . . .}

tsd((SlotName [Measure1 Measure2])) →
(=1 SlotName) �
∀SlotName .
λdim(Measure1) x.
(val(Measure1) ≤ x ∧ x ≤ val(Measure2))

tsd((SlotName
(:some (a ConceptName) m n)))

→ (≥m SlotName ConceptName) �
(≤n SlotName ConceptName)

tsd((SlotName
(:set (:some (a ConceptName1) m1 n1) :>

(:some (a ConceptName2) m2 n2)
(:some (a ConceptName3) m3 n3)
...)))

→

∀SlotName .ConceptName1 �
tsd((SlotName

(:some (a ConceptName1) m1 n1))) �
tsd((SlotName

(:some (a ConceptName2) m2 n2))) �
tsd((SlotName

(:some (a ConceptName3) m3 n3))) �
. . .

tsd((SlotName
(:set (:some (a ConceptName1) m1 n1) :=

(:some (a ConceptName2) m2 n2)
(:some (a ConceptName3) m3 n3)
...)))

→

∀ SlotName .
(ConceptName1 �
(ConceptName2 � ConceptName3 � . . .)) �

tsd((SlotName
(:some (a ConceptName1) m1 n1))) �

tsd((SlotName
(:some (a ConceptName2) m2 n2))) �

tsd((SlotName
(:some (a ConceptName3) m3 n3))) �

. . .

Figure 1: Rules for transforming a Bhibs terminology.

called TAX [Günter 1995a]. The main idea of using
TAX is to reduce the search space for constructing
objects. For instance, if a construction object is spe-
cialized to an A, it will be known in beforehand that
there is no need to try whether e.g. only ten role
fillers for r are sufficient for an A. [Günter 1995a]

uses an example with intervals to demonstrate the
facilities of TAX.

In our reconstruction of Plakon and Konwerk

using description logics with the model construction
view of realizing the satisfiability test we used the
following language constructs:

• Conjunction,

• Qualified number restrictions,

• Qualified existential restriction,

• Negation and disjunction with primitive con-
cept names and

• Concrete domains over �.

Furthermore, it should be noted that formulas are
not arbitrarily nested, i.e. we use a limited kind of
description logic.

Considering the formal semantics for Bhibs we
defined in this paper, it is obvious that reasoning
would be incomplete if the TAX module was not
loaded into the Konwerk system. Currently, it is
still not clear whether the inference services of Bhibs

together with TAX are complete with respect to the
semantics we defined in this paper

3.2 Mixins and Views

Plakon’s and Konwerk’s concept languages are
restricted to single inheritance. The restriction to
single inheritance can easily be understood when
Plakon’s and Konwerk’s technique used for gen-
erating solutions of a configuration task is seen from
a logical point of view. If multiple inheritance were
used, construction step 2 (see Section 2.1) would
not be sufficient to traverse the configuration space.

Motorbike Car Truck

Domain-Object

Vehicle

Motor-Vehicle

Mode-of-Operation

Motorized Non-motorized

Gas-driven Diesel-driven Electricity-driven

Fire-Truck UPS-Truck...

...

Figure 2: Example for a concept hierarchy with mix-
ins.

When a concept is specialized to a certain subcon-
cept with multiple predecessors it must also be spe-
cialized to subconcepts of these superconcepts, i.e.,
in general, there would no single leaf concept to de-
scribe a configuration object. Furthermore, since the
subconcepts of a concept are defined to be pairwise
disjoint (see the semantics of Bhibs), declaring two
concepts A and B as a superconcept for a concept
C would result in an inconsistency (we assume that,
implictly, every concept is a subconcept of the cen-
tral root Domain-Object).

However, single inheritance causes modeling re-
dundancy in many domains. In order to provide
a more flexible modeling language, Hotz & Vietze
[1995a] extended the concept language of Konwerk

by introducing the notion of mixins (see Figure 2 for
an example). Mixins are not instantiated but they
provide a restricted form of multiple inheritance and
can be seen as macro definitions. The restrictions
defined for a mixin are inserted where the name of
a mixin appears in a concept definition.

The control mechanism of Konwerk does not
attempt to specialize objects to any subconcept of
a mixin because mixins are expanded like macros.
In the description logic translation, mixins can be
transformed to terminological axioms as well, but in
contrast to normal concepts no cover and disjoint-
ness axioms are created for subconcepts of a mixin.
Mixins are translated to terminological equality ax-
ioms because the semantics for using a mixin name
in a concept definition and for directly including the
mixin definition term (right side of the concept def-
inition) should be identical.

To support the knowledge acquisition phase,
Plakon suggests the notion of a view. The main
idea of using views is to provide a structured way to
use multiple inheritance while preserving a domain
model skeleton with single inheritance. The seman-
tics of views was not very well understood and quite
confusing when first specified by Cunis [1991]. Re-
cently, Hotz & Vietze [1995a] gave an interpretation
of this notion in terms of a restricted form of multi-

Domain-Object

Vehicle

Motor-Vehicle

Mode-of-Operation

Motorized Non-motorized

Gas-driven Diesel-driven Electricity-driven

Operation-Medium

WaterLand

Figure 3: Example for a concept hierarchy with
views.

ple inheritance with mixins.

A view is used to describe aspects of an object that
can be separated from other aspects. For instance,
the mode of operation of a vehicle (Gas-driven, Diesel-
driven, Electricity-driven) can be separated from the
medium the vehicle is constructed for (land, water).
In Figure 3 the Mode-of-Operation mixin concept
tree from Figure 2 is presented as a view.

A view is a separate concept hierarchy with sin-
gle inheritance that is coupled to the main hierar-
chy. In Figure 3 the nodes for Mode-of-Operation and
Operation-Medium are linked to Vehicle and the con-
cept Motorized is linked to Motor-Vehicle. In the fol-
lowing we will consider the Mode-of-Operation view
only.

The semantics of view links is different to that of
mixin links (see Figure 2). The procedural seman-
tics of view links as given by Hotz & Vietze is defined
as follows. For each main concept C that is linked
to a view concept V, two sets are constructed. The
first set (C-Set) contains the leaf subconcepts of the
main concept C that can be reached by traversing
the subclass inheritance hierarchy without touching
a concept that is also linked to a view concept. The
second set (V-Set) contains the leaf concepts that
can be found by traversing the view subconcept hier-
archy starting from V without touching a view that
is also linked to a main concept. The elements of
the cross-product C-Set × V-Set define new subcon-
cepts of C. In Figure 4 the new subconcepts for the
main and view hierarchy of Figure 3 are presented:
For Vehicle an additional subconcept Non-motorized-
Vehicle and for Motor-Vehicle three new subconcepts
Gas-driven-Motor-Vehicle, Diesel-driven-Motor-Vehicle
and Electricity-driven-Motor-Vehicle. The new con-
cepts are created to avoid multiple inheritance. For
each of these new concepts, the view concept of the
corresponding cross-product tuple is used as a mixin,
i.e. the concept definition is expanded like a macro
and only a single superconcept remains. In order
to avoid a combinatorial explosion, the new con-
cepts are created on demand, i.e. a concept Diesel-
driven-Motor-Vehicle is only created when an object
is known to be Motor-Vehicle.

With description logics no restructuring of the in-

Domain-Object

Vehicle

Motor-Vehicle

Mode-of-Operation

Motorized Non-motorized

Gas-driven Diesel-driven Electricity-driven

Non-motorized-
Vehicle

Gas-driven-
Motor-Vehicle

Diesel-driven-
Motor-Vehicle

Electricity-driven-
Motor-Vehicle

Figure 4: Expanded concept hierarchy.

heritance graph is necessary. View links (dotted lines
in Figure 4) are treated as ordinary superconcept
links. A view concept V connected to a main concept
C via a view link is simply included in the concept
definition of C as an additional restriction. Similar
to the approach presented above, for each concept
in the view hierarchy cover and disjointness axioms
are generated. However, only the view subconcepts
are combined in a disjunction (or cover) term. For
instance, for the main concept Motor-Vehicle and for
the view concept Motorized (see Figure 4) the follow-
ing axioms are generated:

Motor-Vehicle � Vehicle � Motorized

Motorized � Gas-driven �Diesel-driven �
Electricity-driven

Gas-driven � ¬Diesel-driven

Gas-driven � ¬Electricity-driven

Diesel-driven � ¬Electricity-driven

Considering the model construction process of the
description logic reasoner, the axioms ensure that a
Motor-Vehicle will be either Gas-driven, Diesel-driven
or Electricity-driven. Using the facilities of descrip-
tion logics, there is no need to create additional con-
cepts (see the cross-products mentioned above).

3.3 Object Descriptions

During the configuration process, instances are cre-
ated (see the configuration steps in Section 2.1).
These instances are then manipulated by the con-
trol system of Plakon or Konwerk.

In a description logic, assertions about concrete
instances are gathered in the so called ABox. The as-
sertional language of a description logic can be used
for specifying a device to be constructed in a configu-
ration task as well as for representing the solutions of
the configuration task. The configuration steps men-
tioned in Section 2.1 generate the following kinds of
ABox assertions:

• Creation of instances (construction steps 3
and 4)

• Asserting primitive concepts for instances (con-
struction step 1)

• Asserting concrete fillers for roles (construction
step 2)

• Asserting restrictions for role fillers for a specific
instance (construction step 2).

In Plakon and Konwerk there does not exists a
simple language for making these assertions. Making
assertions about instances is explicitly done by using
the functions slot-value and (setf slot-value)

of the underlying implementation language Clos as
well as a number of other functions. For the sake
of a simple description we invented a language with
a single construct (set-slot) and provide a formal
declarative symantics for it by showing how it can
be transformed to the assertional language of a de-
scription logic. Figure 5 specifies the set of transfor-
mation rules. Read the function taa as Transform
ABox Axiom.

As mentioned earlier, Plakon’s and Konwerk’s
concept languages are frame languages based on the
idea of slots. From a logical point of view this has
no effect on the interpretation of the languages. It
does have an effect on the expressivity of the asser-
tional language, however. If, for example, a Motor-
Vehicle and its subconcept Truck (see Figure 2) are
not required to have a color, while the subconcept
Fire-Truck is required to have the color RED and, for
instance, a UPS-Truck is required to have the color
BROWN, then in Plakon as well as Konwerk it
is not possible to construct any Motor-Vehicle with
color RED other than a Fire-Truck, and worse, when
specifying a device to be configured, it is not possi-
ble to specify a Motor-Vehicle with color RED. The
absence of a color slot must not be confused with
the requirement of not having a color, however, for a
Fire-Truck clearly is a Motor-Vehicle. The assertional
language simply does not allow to express something
like this. This anomaly of the language must be
taken into account when modeling a domain, and it
clearly prevents something like innovative configura-
tion (see Section 4).

This feature of the assertional language of
Plakon and Konwerk has an additional effect:
Whenever a slot which is defined to be the inverse
of another slot is used in a SlotDescription of a con-
cept, its inverse must be used in a SlotDescription
of the concept of the fillers of the slot. In order to
provide adequate restrictions for the configuration
space, value restrictions must be declared for the
corresponding slots. Note that this might result in
cyclic concept definitions.

The control system of Plakon or Konwerk can
be configured to use different strategies for travers-
ing the configuration space (chronological backtrack-
ing, TMS-based construction of a single version of an
artifact with knowledge-based backtracking, ATMS-
based construction of multiple versions of an arti-

taa((set-slot
ObjectName1 SlotName ObjectName2))

→ (ObjectName1,ObjectName2) : SlotName

taa((set-slot
ObjectName SlotName Measure))

→ ObjectName : (∃ SlotName .
λdim(Measure) x. (x = val(Measure)))

taa((set-slot
ObjectName SlotName ObjectDescriptor))

→ ObjectName : tsd((SlotName ObjectDescriptor))

Figure 5: Rules for transforming assertions.

tsd((has-parts
(:ct (:kk-menge (a Vertex) m1 n1

(an Edge) m2 n2))))
→

∀ has-parts . (Vertex � Edge) �
(≥m1 has-parts Vertex) �
(≤ n1 has-parts Vertex) �
(≥m2 has-parts Edge) �
(≤ n2 has-parts Edge)

tsd((has-parts
(:ct (Vertex Vertex Vertex Vertex)

((Edge 1 2) (Edge 2 3) (Edge 3 4)))))
→

{ a | ∃ v1, v2, v3, v4, e1, e2, e3 :
has-parts(a, v1) ∧ · · · ∧ has-parts(a, v4)∧
has-parts(a, e1) ∧ · · · ∧ has-parts(a, e3)∧
Vertex(v1) ∧ · · · ∧ Vertex(v4)∧
Edge(v1) ∧ · · · ∧ Edge(v3)∧
has-vertex(e1, v1) ∧ has-vertex(e1, v2)∧
has-vertex(e2, v2) ∧ has-vertex(e2, v3)∧
has-vertex(e3, v3) ∧ has-vertex(e3, v4) }

Figure 6: Rules for transforming graph structure specifications.

fact). Different strategies can also be implemented
for the model construction system for testing satis-
fiability (see Section 2.2).

3.4 Constraints

Plakon’s constraint language [Cunis et al. 1991,
Chapter 6] can be used to express n-ary constraints
on the fillers of role chains of objects. These include
equality as well as inequality constraints, which in
some cases are identical to the well known role value
maps, as well as numeric constraints.

Role value maps are important for describing has-
parts relations. For instance, in the following TBox
we define graph structures. A graph consists of ver-
tices and edges which also are set into relation to
one another.

has-vertex
.
= vertex-of−1

has-parts
.
= part-of−1

Graph-Object � (= 1 part-of)

Vertex � Graph-Object

Edge � Graph-Object �
∀ has-vertex .Vertex �
(= 2 has-vertex) �
¬Vertex

Graph-Object � Vertex � Edge

Graph
.
= ∀ has-parts .Graph-Object �

((has-parts|Edge ◦ has-vertex)=

has-parts|Vertex) �
((has-parts|Vertex ◦ vertex-of)=

has-parts|Edge)

Role value maps are required to ensure that if an
edge is part of a graph, then the vertices that are
set into relation to an edge are part of the same
graph.

In case of a numeric constraint, if the arguments
of an n-ary constraint are specified by n differently
named slots, then this can be transformed to a pred-
icate of a concrete domain. In general, however,
the constraint language is much too expressive to be
transformed to description logics; it allows to quan-
tify over more than one or two variables. The con-
straint reasoner of Plakon and Konwerk is in-
complete in general, it uses local propagation. Fur-
thermore, constraint solving can be explicitly post-
poned by defining a certain control strategy (see Sec-
tion 2.1).

In this section we have used general graph struc-
tures as an example for the use of constraints. More
specific graph structures are discussed in the next
section.

3.5 Configuration of Graph Structures

In Konwerk special modeling constructs have been
added to Bhibs to represent the construction space
for graph structures (see [Bartuschka 1995]). In
a similar way as the object descriptors presented
above, special constructors for vertex and edge struc-
tures are supported. Figure 6 defines the map-
ping for slot descriptions that contain graph struc-
ture specifications. While the first descriptor can
be mapped to description logic constructs, the sec-
ond descriptor is mapped to First-Order Predicate
Logic. In this description, the parts are explicitly
named (see the existential quantifier). The second

graph (polyline with three edge elements) requires
seven parts to be named. Thus, in general, the con-
struction or configuration space for graph structures
cannot be represented in description logics.

v1

v4

v3

v2

e1

e3

e2

Figure 7: Two examples for configurations of ver-
tices and edges: a star and a polyline.

In Figure 7 we present a few examples for graph
structures. From a data representation point of
view, graph structures (e.g. a star) can easily be rep-
resented in the ABox. Furthermore, it is not very
difficult to define a TBox that can be used to “rec-
ognize” a certain graph structure. In this paper, we
discuss a small TBox for recognizing the star of Fig-
ure 7:

End-Vertex
.
= Vertex �

(≤ 1 vertex-of)

Middle-Vertex
.
= Vertex �

(= 3 vertex-of) �
∀ vertex-of .End-Edge �
¬End-Vertex

Star
.
= Graph �

(= 7 has-parts) �
(= 3 has-parts Edge) �
(= 3 has-parts End-Edge) �
(= 4 has-parts Vertex) �
(= 3 has-parts End-Vertex) �
(= 1 has-parts Middle-Vertex)

To represent configurations like the star in Figure 7
corresponding concepts and relations are defined.
Furthermore, initial assertions must be submitted
to the ABox.

v1 : Vertex, v2 : Vertex, v3 : Vertex, v4 : Vertex

e1 : Edge, e2 : Edge, e3 : Edge,

(e1, v1) : has-vertex, (e1, v4) : has-vertex

(e2, v2) : has-vertex, (e2, v4) : has-vertex

(e3, v3) : has-vertex, (e3, v4) : has-vertex

It can easily be seen that the ABox classifies the
vertices v1, v2 an d v3 as End-Vertices. Therefore,
all edges are End-Edges and v4 is a Middle-Vertex.
The graph the objects are part of is classified as a

Star. The main idea of the “recognition process” has
been published in [Haarslev et al. 1994].

In a model construction prover the object repre-
senting the graph is automatically generated. If a
structural subsumption prover is used, an aggregate
to actually represent the star can be created using a
rule. The vertex v4 can be seen as a representative
for the star and Middle-Vertex can be used in the
antecedent part of the rule. A semantics for rules
with epistemic operators and the use of rules to cre-
ate aggregates is defined in [Hanschke 1993]. Han-
schke [1993] also introduces transitive closure as an
extension to role specifications. Transitive closures
are required e.g. to represent polylines. Transitive
closures are also required to augment the task spec-
ification in Plakon and Konwerk. We have seen
that one main goal object and a set of additional goal
objects can be given as a specification of a construc-
tion task. The additional objects must be part-of*
the main goal object.

We have seen that graph structures can be inter-
preted as a special case of part-whole relations. The
quintessence is that the construction space for graph
structures in general cannot be represented with de-
scription logics. However, for “recognizing” specific
graph structures, adequate concepts and relations
can be defined. That is what description logic is
all about: It provides a basis that allows domain-
specific concepts and relations to be defined and,
thus, allows inference steps to be formally modeled.
Completeness of a description logic ABox reasoner
ensures that a model developer must not deal with
control aspects such as the correct sequence of el-
ementary inference steps or the administration of
trigger events etc. If concepts and relations can-
not be defined using the constructs of description
logics, a more expressive logic could be used. How-
ever, if full First-Order Predicate Logic were used,
the satisfiability problem would be undecidable, i.e.
the reasoner must be incomplete.

3.6 Defaults

Plakon’s and Konwerk’s concept languages pro-
vide a means for specifying defaults for the slots of
certain objects, but their intended meaning is not
quite clear. They are used for focusing the search
mechanism, but there is no notion of quality of so-
lutions in Plakon and Konwerk. By using the
approach of Quantz & Royer [Quantz & Royer 1992]

(“Preferential Default Description Logics”) defaults
can be used for defining a preference relation on the
set of solutions. However, it can be shown that
Plakon’s and Konwerk’s use of defaults for fo-
cusing search does not guarantee the generation of
the optimal solution with respect to this preference
relation.

4 Innovation and Creativity in
Configuration Tasks

A formal, logical approach to configuration as advo-
cated in this contribution might be very helpful for
analyzing open problems, e.g. the intended meaning
of notions like innovative or even creative configura-
tion [Hotz & Vietze 1995b]. In this paper we define
innovation in the context of configuration problems
in terms of in description logics as a process of dy-
namic classification. The definition is motivated by
an example.

Let us assume there exists a domain model with
concepts for various real world objects, for instance,
ships, houses etc. Maybe houses of different kinds
are represented using defined concepts (i.e. concepts
with necessary and sufficient conditions) and houses
and ships are not disjoint. In our example we assume
the initial construction task is to design a Ship that
satisfies certain restrictions (e.g. number of persons,
number of bedrooms as well as convenience or luxury
criteria). Let us further assume that a certain ship
s1 has been designed. Due to the cover axioms in
the TBox (see above), the ABox instance s1 is sub-
sumed by a leaf subconcept of Ship. After the design
has been completed, the customer is asked whether
he is satisfied with the result. Maybe the customer
adds additional constraints to the designed artifact
s1 using the relations defined in the domain model.
The additional restrictions might cause the sufficient
conditions for a House concept to be satisfied. If this
happenes, the construction process will try to fur-
ther specialize the ship s1 using the house concepts
(see the cover and disjointness axioms). Thus, the
designed Ship can also be used as House. The fact
that the ABox discovers that House (a sibling of the
initial concept Ship) also holds and the subsequent
specialization of the sibling concept can be inter-
preted as the task of designing a houseboat. The
House concept (or a subconcept of House) serves as
a dynamically instantiated view in this respect that
imposes additional constraints because of the asso-
ciated cover axioms. The new artifact might better
satisfy certain optimization criteria.

In this case, innovative design is possible because
additional restrictions are asserted for a single ABox
instance s1 (innovative design by imposing addi-
tional restrictions). Note that there is no concept
definition for a Houseboat in the domain model. If
there had been such a concept definition as a subcon-
cept of Ship (with the same additional restrictions),
the TBox classification process would have inferred
in advance that the defined concept House is a su-
perconcept of Houseboat. Thus, there would be no
innovation at all. Innovation can be defined to be
a task reformulation by adding restrictions in order
to find additional defined concepts to hold together
with the subsequent specialization of these defined
concepts. When the concept term describing the in-
stance s1 is computed and inserted into the TBox,

a new concept Houseboat is created (of course, the
name would have to be computed by additional pro-
cesses).

Note that this is impossible when storage-oriented
slots are used as a basis for expressing ABox re-
strictions. With Plakon’s and Konwerk’s limited
ABox expressibility (see Section 3.3), additional re-
strictions that trigger the derivation of House cannot
be expressed without knowing in beforehand that a
Ship s1 is also a House.

Innovation can also require goal-directed relax-
ation of restrictions. For instance, minimum car-
dinality restrictions for certain roles might be re-
laxed such that more restricted maximum cardinali-
ties can be asserted (either explicitly or by applying
the closed world assumption by “closing” a role). In
our example, the “goal” would be to relax the con-
straints of s1 such that a defined concept (like House)
can be proved to hold. This concept will again be
subclassified to leaf concepts etc.

5 Conclusion

The paper demonstrates that Plakon and Kon-

werk can be interpreted as a special purpose de-
scription logic reasoner, i.e. a model-constructing
prover for a very specific description logic with a
limited sort of ABox. The construction or configu-
ration process as defined by Plakon and Konwerk

can be “simulated” by a model-constructing satisfia-
bility prover for description logics. The constructed
logical model represents the artifact to be designed.

The semantics for Plakon and Konwerk we
gave in this paper indicates what kinds of term
constructors are required for Bhibs and its exten-
sions (see Section 3.1 and Section 3.4). Further in-
vestigations must show whether the resulting lan-
guage is decidable. Although, in general, including
role value maps leads to an undecidable language
(see Hanschke-92a), we must be careful here because
there are some restrictions on term forming opera-
tors (e.g. negation and disjunction only with names
for primitive concepts).

In our opinion, Günter’s [1995a] and Richter’s
[1995] argument that terminological systems are in-
adequate for reasons of efficiency is misleading as
long as the complexity of configuration tasks is un-
known, for a careful analysis of the terminological
language used in our transformation might show that
the satisfiability problem – which is central for con-
figuration tasks – is intractable or even undecidable
for this language. Efficiency (or tractability) is not
a question of using a description logic or not but it
is a question of how complete a solution to a con-
figuration problem is expected to be wrt. a formally
defined semantics.

With the implementation of Konwerk, several
prototype applications have been built. In compari-
son to Plakon, in Konwerk many additional mod-
ules have been added (Fuzzy values, optimization

strategies, etc.). This research clearly demonstrates
the necessity of adequate representation and reason-
ing systems. In this paper, we cannot discuss all
aspects of this large system (see also, for instance,
[Heinsohn 1992] for an approach for modeling uncer-
tainty in description logics). Especially, we do not
claim that the usual syntax for description logics is
adequate for all users. Maybe the syntax and mod-
eling philosophy of Bhibs (with object descriptors,
see Figure 1) is better suited to engineers. With this
paper however, we hope to provide a basis for defin-
ing an integrated semantics for the submodules of
Konwerk. The contribution shows that both ap-
proaches – practical and theoretical approaches – are
valuable contributions to AI research and both can
complement each other.

Acknowledgments

We thank Lothar Hotz for explaining numerous de-
tails of the systems Plakon and Konwerk.

References

[Bartuschka 1995] Ulrike Bartuschka. Repräsenta-
tion von Graphstrukturen. In Günter [1995b],
chapter 19.

[Buchheit et al. 1995] Martin Buchheit, Rüdiger
Klein, and Werner Nutt. Constructive Prob-
lem Solving: A Model Construction Approach
towards Configuration. DFKI Technical Memo
TM-95-01, Deutsches Forschungszentrum für
Künstliche Intelligenz, Saarbrücken, January
1995.

[Cunis et al. 1991] Roman Cunis, Andreas
Günter, and Hellmut Strecker, editors. Das
PLAKON-Buch – Ein Expertensystemkern
für Planungs- und Konfigurierungsaufgaben
in technischen Domänen, volume 266 of
Informatik-Fachberichte. Springer-Verlag, Berlin
– Heidelberg – New York, 1991.

[Cunis 1991] Roman Cunis. Modellierung technis-
cher Systeme in der Begriffshierarchie. In Cunis
et al. [1991], chapter 5.

[Günter 1991] Andreas Günter. Begriffshierarchie-
orientierte Kontrolle. In Cunis et al. [1991], chap-
ter 7.

[Günter 1995a] Andreas Günter. Ein pragmatis-
cher Ansatz zur Auswertung von taxonomis-
chen Relationen bei der Konfigurierung. In
[Günter 1995b], chapter 7.

[Günter 1995b] Andreas Günter, editor. Wissens-
basiertes Konfigurieren – Ergebnisse aus dem
Projekt PROKON. infix, Sankt Augustin, 1995.

[Haarslev et al. 1994] Volker Haarslev, Ralf Möller,
and Carsten Schröder. Combining Spatial and
Terminological Reasoning. In Bernhard Nebel
and Leonie Dreschler-Fischer, editors, KI-94:

Advances in Artificial Intelligence – Proc. 18th
German Annual Conference on Artificial Intelli-
gence, Saarbrücken, September 18–23, 1994, vol-
ume 861 of Lecture Notes in Artificial Intelli-
gence, pages 142–153. Springer-Verlag, Berlin –
Heidelberg – New York, 1994.

[Hanschke 1992] Philipp Hanschke. Specifying Role
Interactions in Concept Languages. In [KR 1992],
pages 318–329.

[Hanschke 1993] Philipp Hanschke. A Declara-
tive Integration of Terminological, Constraint-
based, Data-driven, and Goal-directed Reason-
ing. DFKI Research Report RR-93-46, Deutsches
Forschungszentrum für Künstliche Intelligenz,
Kaiserslautern, October 1993.

[Heinsohn 1992] Jochen Heinsohn. A Hybrid Ap-
proach for Modeling Uncertainty in Terminolog-
ical Logics. DFKI Research Report RR-92-24,
Deutsches Forschungszentrum für Künstliche In-
telligenz, Kaiserslautern, August 1992.

[Hotz & Vietze 1995a] Lothar Hotz and Thomas
Vietze. Erweiterung der Begriffshierarchie um
Sichten und Mehrfachvererbung. In Günter
[1995b], chapter 11.

[Hotz & Vietze 1995b] Lothar Hotz and Thomas
Vietze. Innovatives Konfigurieren als Er-
weiterung des modellbasierten Ansatzes. In
Günter [1995b], chapter 4.

[KR 1992] Bernhard Nebel, Charles Rich, and
William Swartout, editors. Principles of Knowl-
edge Representation and Reasoning – Proc. of
the Third International Conference KR’92, Cam-
bridge, Mass., October 25–29, 1992. Morgan
Kaufmann Publ. Inc., San Mateo, CA, 1992.

[Lutz 1996] Carsten Lutz. Untersuchungen zu Teil-
Ganzes-Relationen – Modellierungsanforderun-
gen und Realisierung in Beschreibungslogiken.
Memo FBI-HH-M-258/96, Fachbereich Infor-
matik, Universität Hamburg, April 1996.

[Owsnicki-Klewe 1988] Bernd Owsnicki-Klewe.
Configuration as a Consistency Maintenance
Task. In Wolfgang Hoeppner, editor, GWAI-88
12th German Workshop on Artificial Intelli-
gence, Eringerfeld, September 1988, volume
181 of Informatik-Fachberichte, pages 77–87.
Springer-Verlag, Berlin – Heidelberg – New York,
1988.

[Quantz & Royer 1992] Joachim Quantz and
Véronique Royer. A Preference Semantics for
Defaults in Terminological Logics. In [KR 1992],
pages 294–305.

[Richter 1995] Michael M. Richter. Kommen-
tierung und Wertung der PROKON-Ergebnisse.
In Günter [1995b], chapter 7.

