
 

Abstract

 

This paper introduces an approach for modeling and simulating a
technical device for diagnostic purposes. A resistive network is used
as a component-oriented device model which is automatically trans-
formed into a simulation model that explicitly represents the global
topological structure of the circuit. The simulation model is based
on qualitative descriptions of behavior deviations and supports an
interval-based qualitative calculus for reasoning about deviations.

 

1 Introduction

 

Current approaches for developing model-based diagnosis
systems differ significantly in their strategy for deriving a
simulation model from an initially given component-oriented
system model. Many approaches use the initial component
model directly as the basis for a simulation system without
explicitly representing the global topological structure (see
e.g. [Struss and Dressler, 1989]). In order to model causal
influence chains for discriminating broken elements, simula-
tion methods often use local propagation constraint solving
algorithms that operate directly on the components defined in
the initially given schematic diagram. However, with this
technique not all circuit topologies can be handled adequately
because local propagation is suitable only for acyclic causal
influence chains. In many cases, the structure of the whole
circuit has to be considered as well. Therefore, another class
of approaches transforms the initial model into another model
which explicitly represents information about the global topo-
logical structure of circuit components (e.g. [Mauss and Neu-
mann, 1996]). The introduction of connectivity variables for
ports in [Struss et al., 1995] can also be considered as a kind
of model transformation. 

Considering a real-world technical diagnosis problem, this
paper introduces an extended approach of the second class for
deriving a behavior model based on relative descriptions of
component behavior. A device is simulated using qualitative
descriptions of behavior deviations. With the reasoning
method presented in this paper, qualitative reasoning prob-
lems about cascading defects can be solved that are either not
handled in previous approaches or are handled in a more com-
plex way (e.g. [Tatar, 1996]).

The behavior model of a specific system is used to com-
pute a fault relation which explicitly represents the relation-
ship between faults of single components and corresponding
values of voltages and currents at predefined metering points.
Model-based reasoning is used in a preprocessing phase to
derive a runtime system which defines a predefined serializa-
tion of required queries and measurements. In order to find
measurements that definitely identify faults and to avoid
unneccessary measurements at runtime, no spurious ambigu-

ities in behavior descriptions computed at development-time
should be introduced.

 

1.1 An application scenario

 

A subcomponent of an electricity-powered motor is the field
regulator. We consider a specific field regulator that is used in
a certain fork-lift. A schematic diagram of the circuit is pre-
sented in Figure 1. The components shown in the figure are
already abstractions of the physical components used in the
circuit. For instance, the control switches T1 to T4 are imple-
mented with transistors and diodes. We assume that a graphi-
cal model editor is used for defining the circuit structure as
required for diagnostic purposes. For diagnosis, several oper-
ating states have to be examined. For instance, T2 and T3
might be closed, T1 and T4 might be opened and vice versa.
In the first operating state the current through the field coil
flows from right to left (see the I

 

F

 

 metering point), in the sec-
ond it flows in the other direction. We assume that operating
states are stable states.

We assume that each of the components is taken from a
library. The component library defines a set of model frag-
ments (in the spirit of [Falkenhainer et al., 1994]) to be appli-
cable under certain circumstances. In order to compute the
fault relation for all single faults, we iterate over the list of
circuit components and, for each component, we assume that
a fault model fragment holds. As an example we consider a
stuck-at-closed fault model for the switch T4. This fault
model asserts that T4 has no longer its “normal”, infinite
resistance but a “lower” resistance, “too low” but larger than
zero. Note that qualitative descriptions like “normal” or “too
low” are defined in relation to the operating state of the cir-
cuit. In the application domain, qualitative value descriptions

Figure 1. Field regulator (resistors, controlled switches T1 to T4) 
with field coil (black rectangle), a fuse and predefined metering 
points for voltages (UB, M1, M2) and currents (IF). In this figure, 
the electronic circuit for controlling the switches has been omitted.
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like “normal” correspond to intervals in the quantitative
domains of the variables. The widths of the intervals are
largely unknown, i.e. only qualitative knowledge is appli-
cable because the component models are already coarse-
grained abstractions from the concrete physical compo-
nents.

Inserting a fault model for a single component has a
cascading effect on variables of other components. As a
result, the set of model fragments valid at a certain time-
point might change. If T4 becomes shorted, its resistance
will be “too low” and, as a consequence, the fuse might
blow because the current through the fuse might be “too
high.” In our approach, the fuse blow is represented as a
discrete state change (see Figure 2).

State 0 represents the normal behavior with no failure.
In State 1 we assume that the switch T4 becomes shorted
(cf. a stuck-at-closed fault model). State 2 describes the
subsequent model fragments which are induced by the cur-
rent through the fuse being “too high.” Note that “too
high” means the fuse 

 

might

 

 blow. If this does not happen,
the system will remain in State 1 (see the loop edge in
Figure 2). For all fault models of each component addi-
tional successor states for State 0 are generated. The dis-
crete model of changes over time is comparable to the
DME approach presented in [Iwasaki and Low, 1991]. It is
important to note that the blow model fragment for the
fuse is no fault model. However, there might be a fault
model which represents blow behavior due to ageing
effects. Although this model will be inserted as one of the
fault models for components, in this paper, we only con-
sider the normal behavior blow model which induces
another system state (represented as State 2 in Figure 2).

Motivated by the necessary abstractions in the applica-
tion domain, we need a 

 

qualitative

 

 calculus for 

 

deriving
state changes in system behavior

 

 caused by 

 

behavior devi-
ations

 

. In our application domain, we only need compo-
nents with 

 

piecewise linear and monotonic 

 

behavior

descriptions. We assume that for each linear part of a com-
ponent’s characteristic, a different model fragment holds
(one model fragment per state). Therefore, all components
are described by model fragments that have a resistor-like
characteristic. Considering the topology of the field regula-
tor circuit, it becomes clear that the calculus must support
reasoning about deviations in 

 

bridge circuits

 

 (see
Figure 1), a circuit topology that is not handled well in
most qualitative approaches known today. Bridge circuits
can also often be found when possible short circuits are
explicitly modeled. 

 

1.2 Reasoning about deviations in bridge circuits

 

The problem with bridge circuits is that the direction of the
current through the bridge resistor cannot be derived based
on qualitative confluence values, i.e. it depends on the con-
crete quantitative values of the components’ parameters.
However, in this paper it will be shown that reasoning
about 

 

deviations

 

 in bridge circuits can be modeled with a
qualitative theory. The paper also shows that reasoning
about deviations is suitable for building the state-space
graph for a circuit (see Figure 2). In general, the problem
of state space derivation is to rule out impossible behavior
deviations. For instance, in our fuse example, it might not
be wrong to assume that the fuse might blow. However, if
it can be proven at model development time that – accord-
ing to the model – cascading effects like fuse blows cannot
happen at runtime, unnecessary measurements in the final
diagnosis system can be avoided.

The qualitative calculus introduced in this paper sup-
ports the derivation of effects of model fragment changes
for bridge circuits. It will be shown that in our diagnosis
application a behavioral model can be derived by propa-
gating qualitative values 0, “too low,” “normal,” “too high”
and 

 

∞

 

 in a transformed model. The combination of these
values is defined in accordance with a formal quantitative
semantics. Even bridge circuit topologies can be handled
adequately.

 

2 SDSP Model Transformation

 

Our approach for explicitly representing the topological
structure of a circuit uses a series-parallel grouping circuit
transformation (so-called sp-analysis, see also [Lee and
Ormsby, 1992] and [Mauss and Neumann, 1996]). In order
to make this transformation applicable, the well-known
star-delta transformation is applied in a preprocessing step
(hence the name SDSP model transformation). In Figure 3
the field regulator from Figure 1 has been simplified for
presentation purposes. The parallel configuration of resis-
tor and controlled switch is represented as a resistor aggre-
gate. For sp-analysis the star represented by the resistors
R1, R2 and R3 is transformed into a delta (see Figure 4).
We assume that the current through the bridge resistor is
arbitrarily defined to be directed toward the center of the
star and the currents through the other resistors are
directed as indicated in Figure 3. The following equations
describe the correspondences between the original and the
delta resistors and their respective currents and voltages.

Figure 2. States of the field regulator circuit: normal operation 
(State 0), short of T4 (State 1) and blow of the fuse (State 2).

State 1
New model fragment

for T4

State 0
Normal behavior

operation state

State 2
New model fragment

for fuse

Fault model
for T4 assumed:
resistance too low

Cascading effect:
Current through fuse too high
Consequence:
Fuse burnout cannot be ruled out

Figure 3. A bridge circuit being used as an abstraction for the 
field regulator circuit in Figure 1.
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The equation for I3 indicates that, in a qualitative calculus
based on confluences, the backward transformation might
be ambiguous (e.g. when two positive currents are sub-
tracted).

For the calculus presented below, the direction of cur-
rent flow through each component has to be fixed such that
all currents and voltages are positive. Assuming the distri-
bution voltage is applied to S10 (the topmost node of the
Sp-tree, see Figure 5), the corresponding direction can be
propagated downward. By this process the direction of
current flow and voltage drop is defined for each resistor in
the network (see Figure 4: current flow from “hill” to “val-
ley”). If the directions do not correspond to the directions
assumed for the star-delta transformation, the correspond-
ing preceding signs in the equations above have to changed
accordingly.

The sp-tree of a network (see Figure 5) can be used to
compute the effects of behavior deviations when fault
models are inserted for certain resistors. This will be
explained in the next section. It is shown that physical

knowledge can be represented in such a way that changes
in the currents and voltages of other resistors can be com-
puted based on local propagation techniques for qualitative
descriptions.

 

3 A qualitative calculus for reasoning about 
deviations in resistive networks

 

In the introduction the use of qualitative domains for com-
ponent variables has been motivated. The components
required for diagnosis are already abstractions from the
real physical objects used to implement a component.
Thus, we assume that a value “normal” in the qualitative
domain denotes an interval in the quantitative domain. The
same holds for “too low” and “too high”. For presentation
purposes we use the notation V

 

l

 

, V

 

n

 

 and V

 

h

 

 as an abbrevia-
tion for “Variable V has value l, n or h” (see the upper part
of Figure 6). The two specific qualitative values 0 and 

 

∞

 

denote the respective quantitative values.
In order to compute the compensation resistance for

series groupings (see Figure 5), we must define a qualita-
tive version of the addition operation in such a way that the
quantitative semantics is supported. For monotonic func-
tions the quantitative interval calculus reduces interval
arithmetic to end-point arithmetic (e.g. [A

 

left

 

, A

 

right

 

] +
[B

 

left

 

, B

 

right

 

] = [A

 

left

 

 + B

 

left

 

, A

 

right 

 

+ B

 

right

 

).
The value “normal” characterizes the faultless behavior,

i.e. for a series grouping of resistors the compensation
resistor must be “normal” when both resistors are “nor-
mal”. Therefore, in our calculus we define that “normal” +
“normal” = “normal” but with a longer “normal” interval
for the result. What about adding a value that is “too low”
and a “normal” value (see the lower part of Figure 6:
[C

 

left

 

, C

 

right

 

] := A

 

l

 

 + B

 

n

 

)? In this case, the result is ambigu-
ous: C will be either “normal” or “too low.” This can be
shown when the resulting interval boundaries are consid-
ered (see Figure 6, the “normal” interval is indicated with
subscripts “min” and “max”). C

 

left

 

 will be less or equal
than C

 

min

 

 because C

 

left

 

 = 0 + B

 

min

 

 and C

 

min

 

 = A

 

min

 

 + B

 

min

 

with A

 

min

 

 

 

≥

 

 0. C

 

right

 

 will be between C

 

min

 

 and C

 

max

 

because C

 

right

 

 = A

 

min

 

 + B

 

max

 

 

 

≤

 

 A

 

max

 

 

 

+ B

 

max

 

.

 

 Thus “nor-
mal” + “too low” = (“normal” 

 

∨

 

 “too low”). Similar deri-
vations can be given for each combination of the
qualitative values {0, l, n, h, 

 

∞

 

}. In each derivation, a
reduction to the quantitative landmark values {0, C

 

min

 

,
C

 

max

 

, 

 

∞

 

} is possible. Table 1 lists the result for the qualita-
tive addition of these derivation descriptions. A parallel
grouping of two resistors can also be replaced by a com-
pensation resistor: P = (R1 

 

⋅

 

 R2) / (R1 + R2). However, as

R32 R2 R3 R2 R3⋅
R1

------------------+ += R2 R12 R32⋅
R12 R13 R32+ +
-------------------------------------------=

R13 R3 R1 R3 R1⋅
R2

------------------+ += R3 R13 R32⋅
R12 R13 R32+ +
-------------------------------------------=

I1 I12 I13+= U12 U1 U2+=

I2 I12 I32+= U13 U1 U3–=

I3 I32 I13–= U32 U2 U3+=

Figure 4. The circuit from Figure 3 after a star-delta transforma-
tion.
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Figure 5. Sp-tree describing the topological structure of the 
circuit in Figure 4 in terms of serial (Si) and parallel (Pi) resis-
tor substitutions. See the text for the meaning of the entries in 
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has been shown by [Struss, 1990] a naïve application of
primitive operations like addition and multiplication on
intervals results in solution intervals that are too large. The
reason is that the worst-case approach for interval arith-
metic does not take into account that an interval variable
might be mentioned more than once in a term (e.g., see the
previous equation). Thus, each equation must be “opti-
mized” by hand. For a parallel grouping of resistors this
would result in a compensation resistor with the following
interval for the resistance: 

The partial derivatives wrt. R1 and R2 are each positive
and therefore the left and right interval borders are inserted
to minimize and maximize the expressions, respectively.
The complete set of rules for combining qualitative values
is summarized in Table 1 and Table 2.

3.1 Bottom-up propagation
With the two rules from Table 1 and Table 2 the resistance
values for the compensation resistors of the sp-analysis in
Figure 4 can be computed. In Figure 5, the lower part of a
resistor box contains the possible qualitative values. In the
beginning, this is the set {0, l , n, h, ∞}. For the leaves, cor-
responding constraints for the assumptions are inserted,
i.e. the value “too low” for R4 and “normal” for the others.
The rules are used as constraints to compute the sets of
values for the series and parallel compensations resistors.
Restrictions are propagates from leaf resistors to the top
compensation resistor using the rules in Table 1 and
Table 2 (bottom-up propagation, see also the approach in
[Mauss and Neumann, 1996]). The result of the propaga-
tion process indicates that the complete compensation
resistance (node S10) will be either “too low” or “normal”.
The latter value implies that in the whole context, the devi-
ation of R4 is neglectable. Besides the resistances, the cur-
rents and voltages must be computed for each resistor. So
far, we have only restrictions for the voltage of S10. The
voltage drop at S10 is identical to the distribution voltage.
Based on this knowledge, restrictions for other voltages
and currents in the sp-tree can be derived in a top-down
propagation phase.

3.2 Top-down propagation
In this section, it is shown that physical knowledge can be

represented in such a way that constraints for derivations
of voltages and currents can be derived by local propaga-
tion in the sp-tree (top-down and lateral propagation).
Once the possibilities for the resistance of S10 are known,
the possibilities for the current through S10 can be con-
strained (Ohm’s Law: I = U / R). In Table 3 the required
rules for the qualitative division for our domain {0, l , n, h,
∞} are summarized.

Thus, I10 is either “normal” or “too high” (see the aug-
mented sp-tree in Figure 7). Restrictions for the voltage
drop (U = R ⋅ I) can be computed with a qualitative multi-
plication (see Table 4).

Other physical laws are exploited to derive further infer-
ences. For instance, the voltage drops at each resistor of a
parallel grouping are the same. The same rule holds for
currents in series groupings. Furthermore, we have the
Voltage Divider Equation for series groupings and, as a
dual, the Current Divider Equation for parallel groupings
of resistors.

The Voltage Divider Rule is discussed here as an exam-
ple. If we have two resistors R1 and R2 in a series group-
ing with voltage drop U3 for the compensation resistor,
then the following equations hold: 

A + B 0 l n h ∞
0 0 l l / n l / n / h ∞
l l l l / n l / n / h ∞
n l / n l / n n n / h ∞
h l / n / h l / n / h n / h h ∞
∞ ∞ ∞ ∞ ∞ ∞

Table 1: Qualitative addition.

R1  R2 0 l n h ∞
0 0 0 0 0 0
l 0 l l / n l / n / h l / n / h
n 0 l / n n n / h n / h
h 0 l / n / h n / h h h
∞ 0 l / n / h n / h h ∞

Table 2: Parallel Resistors Rule.

Pleft
R1 R2⋅
R1 R2+
--------------------

min

R1left R2left⋅
R1left R2left+
---------------------------------------= =

Pright
R1 R2⋅
R1 R2+
--------------------

max

R1right R2right⋅
R1right R2right+
-----------------------------------------------= =

A / B 0 l n h ∞
0 ? 0 0 0 0
l ∞ l / n / h l / n l 0
n ∞ n / h n l / n 0
h ∞ h n / h l / n / h 0
∞ ∞ ∞ ∞ ∞ ?

Table 3: Qualitative division (required for Ohm’s Law). 

A ⋅ B 0 l n h ∞
0 0 0 0 0 ?
l 0 l l / n l / n / h ∞
n 0 l / n n n / h ∞
h 0 l / n / h n / h h ∞
∞ ? ∞ ∞ ∞ ∞

Table 4: Qualitative multiplication (required for Ohm’s Law).
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h
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?
?
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l
n
h

Table 5: Voltage Divider and Current Divider Rules.

U1left
R1

R1 R2+
-------------------- U3⋅

min

R1left
R1left R2right+
------------------------------------------- U3left⋅= =

U1right
R1

R1 R2+
-------------------- U3⋅

max

R1right
R1right R2left+
------------------------------------------- U3right⋅= =



The respective minimum and maximum is given to the
right in terms of interval end-points. For instance, U1 can
be minimized (U1left) by using the maximum value of R2
(R2 is in the denominator) and the minimum of U3. U1
will also be minimized if the minimum of R1 is inserted
(the partial derivative wrt. R1 is positive). Other proofs are
similar. Table 5 shows the complete composition table for
all qualitative values. The Current Divider Rule is given
below:

 

Note that for the Current Divider Rule R1 and R2 must be
reversed in the composition table (see Table 5).

With these additional rules, further constraints can be
derived for the voltages and currents of other resistors.
Figure 7 shows the result after all rules have been applied.
It is important to note that sometimes the rules for Ohm’s
Law and sometimes the Current and Voltage Divider Rules
impose more restrictive constraints. For instance, for the
node R12 in Figure 7 the Current Divider Rule imposes the
constraint l / n / h on I12. The qualitative division (I12 =
U12 / R12) even rules out the h. For node P6 the Voltage
Divider Rule constrains U6 to be one of l / n / h whereas
the qualitative multiplication (U6 = R6 ⋅ I6) also eliminates
the l in this node. If only the multiplication rule were
applied at node P7, the voltage would only have been
restricted to l / n / h. However, with the Voltage Divider
Rule, U7 is restricted to l / n.

Therefore, all rules must be applied for each node in the
tree. The sp-tree in Figure 7 describes all resistances, volt-
ages and currents for the circuit from Figure 4. Now, the
star-delta transformation can be reversed. The star-delta
transformation equations from above indicate that we also
need a qualitative subtraction: I3 = I32 - I13. It is not guar-
anteed that the result of the subtraction of two intervals is
always a positive interval. We introduce a new set of vari-
ables {“too Low” (L), “Normal” (N), “too High” (H)}.
These values do not represent any information about signs,
and therefore, they cannot be combined with the other val-
ues introduces above. The qualitative subtraction rules are
given here as Table 6. 

The interpretation of the subtraction results is discussed
with an example. Since I32 = l / n and I13 = n / h (see
Figure 7), I3 = L / N. Thus, the current through the bridge
resistor is either “too Low” (L) or “Normal” (N). However,
being “too Low” can even mean that the absolute value is
higher because the direction is reversed. The values of sub-
tractions are only interpreted wrt. required measurements.

3.3 Interpretation of propagation results
The values computed by the propagation process are used
(i) for defining fault-discriminating measurements and (ii)
for deriving possible state changes. On the one hand, the
fault model for R5 influences the field current and, there-

fore, one candidate measurement to detect that R5 is too
low is the field current at metering point IF (see Figure 1).
On the other hand, the sp-tree node for the fuse indicates
that the current through the fuse will be “normal” or “too
high.” This means that it cannot be ruled out that the fuse
might blow. This behavior is anticipated with State 2. In
this state, another model fragment for the fuse with R = ∞
is used. Figure 8 summarizes the results of the constraint
propagation process in the corresponding sp-tree.

The figure indicates that in State 2 all currents will be zero.
The voltage drop at the fuse will be normal or higher (R5
is still lower in this state).

With an additional set of rules, the sp-tree can be used to
derive the fault relation of the whole system. Due to space

A – B 0 l n h
0 L/N/H L/N/H L/N L
l L/N/H L/N/H L/N L
n N/H N/H N L/N
h H H N/H L/N/H

Table 6: Qualitative subtraction (for star-delta transformation).

I1
R2left

R1right R2left+
------------------------------------------- I3left⋅

R2right
R1left R2right+
------------------------------------------- I3right⋅,∈

Metering Point
Fault Model

UB or U9 M1 or U2 IF or I3 M2 or U5 State

... ... ... ... ... ...
R5 too low l / n l / n L/N l / n 1
R5 too low 0 0 L/N/H 0 2

... ... ... ... ... ...

Table 7: Fault relation (U2 = I2 * R2 = (I12 + I32) * R2).
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Figure 7. Sp-tree, augmented with voltages and currents.
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limitations, in this paper we discuss only a sketch of the
fault relation which is presented here in Table 7. As an
interpretation of the fault relation, a measurement at meter-
ing point UB (see also Figure 1) might be used to discrimi-
nate State 2 in the final runtime system etc. 

As we have seen, in this example we have two devia-
tions from normal behavior (the fuse and the resistor R5).
The question is whether the calculus presented above
always computes the most restrictive value sets for domain
variables and under what circumstances. This leads us to
an evaluation of the approach.

3.4 Evaluation of the approach
The problem of computing deviations in resistive networks
is solved by an algorithm that restricts the set of possible
values for component variables by applying a set of pre-
defined rules. The initial model must be transformed (into
the sp-tree data structures) in order to make the rules appli-
cable. 

The algorithm terminates because at each propagation
step the set of possible values for a variable is reduced. It
can be easily seen that the complexity of the algorithm is
linear. The algorithm is sound, i.e. the constraints imposed
on component variables by the propagation rules described
above are not too restrictive. This can be shown by induc-
tion on all operations presented in the tables. We have
sketched the proofs with some examples above (for details
see [Milde, 1997]). The algorithm is complete, i.e. the
computed value sets for component variables (e.g. l / n / h)
are restricted as much as possible, when only one compo-
nent variable shows non-normal behavior and no fault
model with “resistance too low” or “resistance too high” is
assumed for the bridge resistor (for the proof see [Milde,
1997]). Note that our notions of soundness and complete-
ness differ from those defined in [Struss, 1990].

In the example circuit shown in Figure 9 with R2 being
“too high” and R3 being “too low”, the calculus computes
l / n / h for the voltages and currents of R2 and R3. How-
ever, in this special constellation, it can be proven that e.g.
the current through R2 will be “too low” or “normal” and
the current through R3 will be “normal” or “too high”. In
our scenario (with the single fault assumption), a similar
situation can only occur when the bridge resistor is faulty
(more than one star-delta substitution resistor has non-nor-
mal behavior). Simple situations like these can be detected
with special model fragments that impose additional con-
straints on component variables when the components are
used in certain component constellations and operating
conditions.

4 Conclusion
The calculus for model-based reasoning about behavior
deviations in resistive networks supports the generation of

a fault relation as an off-line preprocessing step to the gen-
eration of a complete diagnosis system (runtime system).
In constrast to [de Kleer and Raiman, 1995] who propose a
runtime strategy called “computing and probing” to reduce
computational costs, our calculus ensures that behavior
ambiguities are avoided for single faults and, therefore, it
is possible to simulate devices at development-time (pre-
processing step) with a linear algorithm. The deviation cal-
culus presented in this paper is more powerful than the
approach presented in [Mauss and Neumann, 1996]
because the changes can be interpreted to suggest mea-
surements in bridge circuit topologies even with qualita-
tive values for component variables. In contrast to [Neitzke
and Neumann, 1994] the normal behavior is represented
by an interval rather than a point. This is important
because in practice differential deviations are always
present in concrete technical devices.
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Figure 9. Example circuit with two non-normal resistors.


