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Abstract
This paper presents a method for reasoning about
spatial objects and their qualitative spatial rela-
tionships (e.g. touches, overlaps etc.) on the basis
of a description logic framework. We apply this
method to the domain of deductive geographic in-
formation systems. In contrast to existing work,
which mainly focuses on reasoning about qualita-
tive spatial relations alone, we integrate quantita-
tive and qualitative information with terminologi-
cal reasoning by extending description logics with
a space box reasoner which is inspired by an ex-
tension to description logics called “concrete do-
mains.” With the space box reasoner presented in
this paper it is possible to combine qualitative spa-
tial reasoning and description logic classification
processes.

Keywords— Qualitative spatial reasoning, de-
scription logics, deductive geographical informa-
tion systems.

1 Introduction

Qualitative relations play an important role in for-
mal reasoning systems. We emphasize that inferences
about spatial relations should not be considered in iso-
lation but should be integrated with formal inferences
about concepts (e.g. automatic consistency checking
and classification). The semantics of qualitative rela-
tions should be grounded in a quantitative represen-
tation of spatial data. In our opinion, the abstrac-
tions provided by qualitative spatial relations can be
interpreted as an interface from a conceptual model
about the world to quantitative spatial data repre-
senting spatial information about domain objects.

The combination of conceptual and spatial infer-
ence services can be used to solve important applica-
tion problems. Continuing our work presented in [10]
we show how terminological inferences with spatial
relations can be used for image interpretation. The
characteristic of these problems is that it is often very
difficult to describe a fixed algorithm that defines an
exact sequence of “interpretation steps” because sev-
eral different “cues” have to be integrated. In other
words: the solution must be computed by adequately
integrating partial information about domain objects.

The information about objects is given by conceptual
background knowledge, the image itself and different
kinds of intermediate interpretation results. Accord-
ing to the work of Schröder and Neumann [19] who are
inspired by the MAPSEE approach [17], image inter-
pretation can be defined as a (re-)construction process
of a specific possible world that is consistent with the
given knowledge (see also Section 5).

In this paper, we consider a map interpretation
problem and demonstrate how conceptual background
knowledge can be exploited for image interpretation
tasks. As an example, a subsection of a map from
the city of Hamburg is shown in Figure 1. In a geo-
graphical information system, queries like “search for
a living area in a border district with recreation ar-
eas” might be defined. We assume that the necessary
data are automatically gathered using image interpre-
tation techniques. Note that in our setting image in-
terpretation starts with vector data, i.e. areas are de-
fined by polygons (see the emphasized polygon in the
center of Figure 1). Polygons from the image data
are already annotated with labels like “living-area”,
“ordinary-road” etc. In order to interpret the image,
different kinds of world knowledge are required. For
instance, with background knowledge one can infer
that the large number 7434 in the upper right corner
of Figure 1 cannot be a zip code nor can it describe the
height of a mountain (not in Northern Germany). The
required inference steps can be formalized by combin-
ing spatial and terminological reasoning.

The spatial part of the theory is based on Egen-
hofer’s set of topological relations. In contrast to [10]
and [9] where topological relations are used as prim-
itives in the sense of logic (i.e. they are semantically
uninterpreted), we extend the treatment of topologi-
cal relations by interpreting their semantic definition
with respect to concept entailment (cf. the notion of
subsumption: one concept is more general than an-
other) and demonstrate their influence on automatic
concept classification.

Thus, the theory presented in this paper allows to
detect both inconsistencies and implicit information
in formal conceptual models for spatial domain ob-
jects. On the one hand, it can be shown that concept
definitions and subsumption (or inheritance) relations
restrict the set of possible relations between domain
objects. On the other hand, definitions about topolog-



Figure 1: Subsection of Öjendorf, a district of the city
of Hamburg.

ical relations might define implicit subsumption rela-
tionships which have to be automatically detected to
capture all kinds of possible inferences that are sanc-
tioned by the semantics of the representation formal-
ism.

The major contribution of this paper is the incor-
poration of characteristics of space into the seman-
tics of the inference system. The main idea is to
treat a region as a set of points and to extend the
subsumption relationship between concepts to sub-
sumption between spatial regions. A region R1 can
be defined to subsume another region R2 when R1
“contains” R2 (see Section 2 for a formal definition
of spatial relations). Basically, for spatial subsump-
tion, the same set-inclusion semantics as for concept
languages is used. For our application we consider
spatial point sets defined by polygons. Qualitative re-
lations between two dimensional areas are defined by
topological relations between polygons.

2 Qualitative Modeling

The previous section motivated the formalization
(qualitative modeling) of space with the help of con-
ceptual and spatial inference services. This section
introduces the formal tools used for qualitative model-
ing. We define spatial regions and their qualitative re-
lationships and combine them with a description logic
framework extended by a space box reasoner.

2.1 Objects and their Spatial Relationships

The definition of basic geometric objects usually relies
on topology which is itself a basis for defining relation-
ships between objects. In the following we assume the
usual concepts of point-set topology with open and
closed sets [20]. The interior of a set λi (denoted by
λo

i) is the union of all open sets in λi. The closure
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of λi (denoted by λi) is the intersection of all closed
sets containing λi. The complement of λi (denoted
by λ−1

i ) with respect to the embedding space <n is
the set of all points of <n not contained in λi. The
boundary of λi (denoted by ∂λi) is the intersection of
the closure of λi and the closure of the complement of
λi.

The following restrictions apply to every pair of
sets. (1) λi, λj be n-dimensional and λi, λj ⊂ <n,
(2) λi, λj 6= ∅, (3) all boundaries, interiors, and com-
plements are connected, and (4) λi = λo

i and λj = λo
j.

Using these definitions we can define 13 binary
topological relations that are organized in a subsump-
tion hierarchy (see Figure 2). The leaves of this graph
represent eight mutually exclusive relations that cover
all possible cases with respect to the restrictions men-
tioned above. The eight relations are also referred
to as elementary relations. The elementary relations
are equivalent to the set of eight relations defined by
Egenhofer [7] and others [16, 6]. Figure 3 illustrates
five of these eight relations (the inverses and the rela-
tion equal are omitted). The 13 relations are defined
as follows:

• spatially related: Two objects have a spatial rela-
tionship between each other. This relation is de-
fined as the disjunction of its two mutually exclusive
subrelations disjoint and connected.
spatially related(λ1, λ2) ≡

disjoint(λ1, λ2) ∨ connected(λ1, λ2)

• disjoint: Two objects are disjoint if their intersec-
tion is empty; disjoint is symmetric.
disjoint(λ1, λ2) ≡ λ1 ∩ λ2 = ∅

• connected: Two objects are connected if their in-
tersection is non-empty; connected is symmetric.
connected(λ1, λ2) ≡ λ1 ∩ λ2 6= ∅
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• g overlapping: Two objects are generally overlap-
ping . This relation is defined as the disjunction of
its two mutually exclusive subrelations touching and
s overlapping; g overlapping is symmetric.

g overlapping(λ1, λ2) ≡
touching(λ1, λ2) ∨ s overlapping(λ1, λ2)

• touching: Two objects are touching if only their
boundaries are intersecting; touching is symmetric.

touching(λ1, λ2) ≡
connected(λ1, λ2) ∧ (λo

1 ∩ λo
2 = ∅)

• s overlapping: Two objects are strictly overlapping
if they are connected and their intersection is not
equal to either of them; s overlapping is symmetric.

s overlapping(λ1, λ2) ≡
connected(λ1, λ2) ∧ (λ1 ∩ λ2 6= λ1) ∧
(λ1 ∩ λ2 6= λ2) ∧ (λo

1 ∩ λo
2 6= ∅)

• g contains/g inside: An object λ1 generally con-
tains an object λ2. This relation is defined as the
disjunction of its three mutually exclusive subrela-
tions equal, t contains, and s contains; g inside is the
inverse of g contains; g contains and g inside are re-
flexive, antisymmetric, and transitive.

g contains(λ1, λ2) ≡
t contains(λ1, λ2) ∨
s contains(λ1, λ2) ∨ equal(λ1, λ2)

• equal: The relation equal is symmetric and transi-
tive.

equal(λ1, λ2) ≡ λ1 = λ2

• t contains/t inside: An object λ1 tangentially con-
tains an object λ2 if their intersection is equal to
λ2 and the intersection of their boundaries is non-
empty; the inverse of t contains is t inside; t contains
and t inside are asymmetric.

t contains(λ1, λ2) ≡
(λ1 ∩ λ2 = λ2) ∧ (λ1 ∩ λ−1

2 6= ∅) ∧
(∂λ1 ∩ ∂λ2 6= ∅)

• s contains/s inside: An object λ1 strictly contains
an object λ2 if their intersection is equal to λ2 and
only the interiors of their regions intersect; the in-
verse of s contains is s inside; s contains and s inside
are asymmetric and transitive.

s contains(λ1, λ2) ≡
(λ1 ∩ λ2 = λ2) ∧ (λ1 ∩ λ−1

2 6= ∅) ∧
(∂λ1 ∩ ∂λ2 = ∅)

2.2 Description Logic

We model terminological knowledge about our GIS
domain using description logic (DL) theory that has
also been proven as a useful formalism for modeling in
technical domains (see e.g. [22] and [14] for example
applications). In addition, the formal properties of
description logics have been extensively studied (see
e.g. [15] and [21]).

The following sections give a brief introduction to
some aspects of DL theory. We do not attempt to give
a thorough overview and formal account of DL theory.
However, we try to summarize the notions important
for this paper and refer to [5, 3, 11] for more complete
information about description logic theory.

2.2.1 DL: The Abstract Domain

In a DL a factual world consists of named individuals
and their relationships that are asserted through bi-
nary relations. Hierarchical descriptions about sets of
individuals form the terminological knowledge. De-
scriptions (or terms) about sets of individuals are
called concepts and binary relations are called roles.
Descriptions consist of identifiers denoting concepts,
roles, and individuals, and of description constructors.
Concepts or roles may be either primitive or defined .
A specification of a primitive concept is denoted with
the declaration operator ‘v’ and represents member-
ship conditions that are necessary but not sufficient.
The specification of a defined concept is denoted by
‘ .=’ and represents conditions that are both necessary
and sufficient. For any individual x the set {y|r(x, y)}
is called the set of fillers of role r.

Concept specifications may consist of concept terms
and concept names. Unary (e.g. ¬) are used as modi-
fiers and binary operators (e.g. ∧, ∨) are used as con-
nectives. A concept term can also be given as a re-
striction for role fillers. Value restrictions constrain
the range of roles and allow only fillers that are indi-
viduals of a specific concept (e.g. (∀ has father male)).
Number restrictions specify the maximum or mini-
mum number of allowed fillers (e.g. (∃≤3 has child),
(∃≥1 has father)). Roles with an implicit ‘∃≤1’ number
restriction are called attributes . These concept speci-
fications are only a subset of all possible specifications.
Section 2.2.3 lists the model-theoretic semantics of DL
elements mentioned in this paper. The semantics de-
fines the reasoning services a DL inference engine has
to provide. In most description logics, the terminology
must not contain cyclic definitions because the seman-
tics of cycles cause tremendous theoretical and prac-
tical difficulties. Furthermore, a concept name must
occur only once on the left-hand side in the definitions
of a terminology. The expressiveness of a DL and the
tractability of reasoning algorithms for a particular
DL depends on the type and possible combinations of
connectives and restrictions (see e.g. [21]).
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DL systems (i.e. implementations of a DL) usu-
ally distinguish two separate reasoning components.
The terminological reasoner or classifier classifies con-
cepts with respect to subsumption relationships be-
tween these concepts and organizes them into a taxon-
omy. The TBox language is designed to facilitate the
construction of concept expressions describing classes
(types) of individuals. The classifier automatically
performs consistency checking of concept definitions
and offers retrieval facilities about the classification hi-
erarchy. The (forward-chaining) assertional reasoner
or realizer recognizes and maintains the “type” (i.e.
concept membership) of individuals. The purpose of
the ABox language is to state constraints or facts
(usually restricted to unary or binary predications)
that apply to a particular domain or world. Asser-
tional reasoners support a query language in order to
access stated and deduced constraints. Some query
languages offer the expressiveness of the full first-order
calculus.

2.2.2 DL: The Concrete Domain

Baader and Hanschke [2, 11] have explored the idea
of separating the domain of a description logic into
an abstract and concrete part. An important objec-
tive of our approach is to develop a DL formaliza-
tion of space with two separate domains: the abstract
and space domain . The concept specifications for the
abstract domain are used to represent terminological
knowledge about spatial objects (e.g. in geography)
at an abstract logical level. The (concrete) space do-
main extends the abstract domain by adding struc-
tured mathematical entities for polygons and allows
access to efficient reasoning algorithms for concrete
spatial regions (e.g. polygons in maps).

A DL with a concrete domain extends a standard
DL by adding predicates and individuals for the con-
crete domain. The predicates can be used to define
new concepts in the abstract domain. Role and at-
tribute fillers can be restricted by predicates of the
concrete domain.

Basically, (i) the set of predicate names defined by a
concrete domain has to be closed under negation and
has to contain a predicate name for domain member-
ship, and (ii) the satisfiability problem for finite con-
junctions of corresponding predicates has to be decid-
able (see [11] for a detailed definition).

2.2.3 Semantics of DL Elements

Let C be the set of concepts, R the set of roles, and
P the set of concrete predicates in a DL theory. The
model-theoretic semantics of a DL is based on the no-
tion of an interpretation which is defined as a pair
〈D, ξ〉 where D = DC ∪ DP , DC ∩ DP = ∅ and ξ is
an assignment function such that ξ : C −→ 2(DC∪DP),
ξ : R −→ 2R′

where R′ = (DC × (DC ∪ DP)). ξ must

satisfy the following conditions for mapping syntac-
tical terms to semantical entities (concept names are
denoted by c, role names by r, and concrete predicate
names by p). We only list semantics for DL elements
mentioned in this paper.

ξ[(>)] = DC

ξ[(⊥)] = ∅
ξ[concept name] ⊆ DC or
ξ[concept name] ⊆ DP

ξ[role name] ⊆ DC × DC or
ξ[role name] ⊆ DC × DP

ξ[predicate name] ⊆ DP

ξ[(c1 ∧ . . . ∧ cn)] = ∩n
i=1ξ[ci]

ξ[(∃≥n r)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r]}‖ ≥ n}
ξ[(∃≤n r)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r]}‖ ≤ n}
ξ[(∀ r c)] = {x| ∀y : (x, y) ∈ ξ[r] ⇒ y ∈ ξ[c]}
ξ[(∀ r p)] = {x| ∀y : (x, y) ∈ ξ[r] ⇒ y ∈ ξ[p]}

In the TBox the two special symbols ‘ .=’ and ‘v’ are
used for introducing defined and primitive concepts,
respectively. The definitions are mapped onto set-
inclusion axioms.
• Cname .= C is mapped onto ξ[Cname] = ξ[C]
• Cname v C is mapped onto ξ[Cname] ⊆ ξ[C]
The semantics of ABox assertions is defined analo-
gously:
• Iname : C is mapped onto Iname ∈ ξ[C]
• 〈Iname1, Iname2〉 : Rname is mapped onto

(Iname1, Iname2) ∈ ξ[Rname]
An interpretation that satisfies all axioms in a termi-
nology is called a model . The notion of a model is
used to define the reasoning services a DL inference
engine has to provide: subsumption and consistency
checking which are closely related. A term A subsumes
another term B if and only if for every model 〈D, ξ〉
ξ[B] ⊆ ξ[A] holds. A term A is coherent if and only if
there exists a model 〈D, ξ〉 such that ξ[A] 6= ∅.

3 A Space Box for Polygons

This section introduces a space box reasoner that re-
alizes inference services over 2D polygons. We demon-
strate that the reasoning services provided by current
description logics with a concrete domain extension
are insufficient for the formalization of space and pro-
pose several extensions.

The fundamental idea of the SBox reasoner is the
treatment of spatial regions as subsets of <2 and to
define subsumption between polygons with respect to
the relation g contains as defined in Section 2.1 (see
also Figure 2). The relation g contains has the prop-
erties of an order relation (reflexive, antisymmetric,
transitive), i.e. it has the same properties as the sub-
sumption relation for concepts. With this definition
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of spatial subsumption we can reduce the satisfiability
problem to the decision whether a set of polygons is
connected (i.e. there exists a non-empty intersection)
or disjoint.

We restrict the concrete predicates to the descrip-
tion of polygons. With the polygon restriction we
gain applicability of efficient algorithms (e.g. the sim-
plex procedure) for solving the satisfiability problem.
We use concrete predicates for expressing equality
(equalp) or containment (g insidep) of a polygon with
respect to the reference polygon p which is used as
the second argument of the relation. We assume an
attribute has area whose filler is from the spatial do-
main (i.e. a concrete predicate).

For instance, we can now define a concept
northern german region by using the ‘for-all’ construc-
tor (∀ r P):

northern german region .= (∀ has area g insidep5
)

For northern german region the possible filler of
has area is restricted to a polygon inside of p5. The
polygon p5 defines the area of Northern Germany. The
construct g insidep5

subsumes every region of North-
ern Germany whose associated polygon is g inside of
p5. Additionally, we need a concrete predicate for
expressing equality of polygons since subsumption of
arbitrary subregions is not always desired. For in-
stance, the concept federal state hh (HH is part of the
car license number for Hamburg) contains the equality
condition in order to prevent subsumption with sub-
regions of the city of Hamburg area (see also Figure
5):

federal state hh .= . . . ∧ (∀ has area equalp2
)

The polygon p2 defines the area of the federal state
Hamburg. equalp2

does not subsume any subregion
of p2. Note that due to the definition of g inside,
g insidep2

subsumes equalp2
.

We also define similar concrete predicates with re-
spect to the other spatial relations mentioned in the
previous section. The idea is to convert a spatial rela-
tion into a concept (a one-place predicate) by provid-
ing the second argument of the relation as a constant.
The reference polygon is required due to the syntax of
the concept term constructor. The set of predicates is
closed under negation and fulfills the decidability re-
quirement of concrete domains (cf. the notion of ‘ad-
missibility’ of concrete domains).

However, we need more expressivity in order to ade-
quately characterize spatial relations between certain
individuals. For instance, the concept definition for
hh border district specifies that every subsumed indi-
vidual is associated with a polygon that is t inside of
another polygon that, in turn, is referred to by an ob-
ject which is subsumed by the concept federal state hh.

Figure 4: Relationship between abstract and spatial
domain

This situation is illustrated in Figure 4.

hh border district .= . . . ∧
(© t inside federal state hh)

In order to support this constructor we have to ex-
tend existing description logics beyond concrete do-
mains (i.e. we have to extend the description logics
defined by Hanschke [11]). In a first approach, we
propose a new concept-forming operator © that cap-
tures the intuition indicated above. The assignment
function is extended for © concept terms (be sr a
name for an elementary spatial relation as defined in
Section 2.1 and c be a concept term):

ξ[(© sr c)] = {x| ∃y1, y2, z : (x, y1) ∈ ξ[has area],
(z, y2) ∈ ξ[has area],
(y1, y2) ∈ ξ[sr], x 6= z,

z ∈ ξ[c]}

Please note that this concept-forming operator is
restricted since only elementary spatial relations and
not abstract roles are allowed in place of sr. We are
currently investigating the consequences of this new
operator with respect to the completeness of a DL
inference algorithm.

Another possible solution to the problems dis-
cussed above is the proposal of a role-forming oper-
ator that combines abstract attributes and concrete
predicates. For instance, by using a defined abstract
role t inside role we could express the above example
as follows:

t inside role .= ∃(has area)(has area).t inside

hh border district .=
. . . ∧ (∀ t inside role federal state hh)

The operator’s formal properties and its applicabil-
ity are currently under investigation (see also Section
6). The semantics of this new construct is defined as
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p1

p5

p2 p3

p4

Figure 5: A sketch of the northern part of Germany
with polygons for Germany (p1), Northern Germany
(p5), the federal states Schleswig-Holstein (p4) and
Hamburg (p2) as well as a small district of Hamburg
(p3). Polygon p3 is assumed to be inside p2 but p2 is
not inside p4.

follows (be P a concrete predicate and r1, r2 attributes
with concrete individuals as fillers):

ξ[∃(r1)(r2).P] = {(x, y)| ∃z1, z2 : (x, z1) ∈ ξ[r1],
(y, z2) ∈ ξ[r2], (z1, z2) ∈ ξ[P]}

4 Spatioterminological Inferences: an
Extended Example

The use of the constructs presented in the previous
section is demonstrated with the map example from
Figure 1. The surrounding area is presented in Figure
5. Hamburg (represented by polygon p2) is located in
Germany (p1), especially in Northern Germany (p5)
and directly near the federal state Schleswig-Holstein
(p4). The district Öjendorf (p3) of the map in Figure
1 is inside Hamburg. Actually, it is a border district
to Schleswig-Holstein.

The formal model is presented with a description
logic TBox which is presented below. The areas (poly-
gons) for Germany and Hamburg are explicitly rep-
resented with named concepts. The Tbox classifier
will detect the implicit subsumption relationship be-
tween german area and hamburg area. The concept
german federal state is a primitive concept, i.e. it is de-
fined only with necessary conditions. In our example
domain, the filler of has area must be a concrete ob-
ject which is restricted to german area which, in turn,
describes a polygon inside p1.

Because the concept german federal state is prim-
itive, it does not subsume northern german region.
However, due to space subsumption, the con-
cept northern german region subsumes federal state hh
and also federal state sh (the concept for Schleswig-
Holstein). The concrete predicates minn which means
[n . . . ∞] and maxn which means [−∞ . . . n] are defined

over natural numbers and are also provided by most
DL systems.

Another northern german region is district of hh.
Note again that the area of district of hh is not a
german federal state because this concept is primitive
(see above). The same holds for district of sh.

german area .= g insidep1

hamburg area .= g insidep2

german federal state v
(∀ has area german area)

northern german region .=
(∀ has area g insidep5

)

federal state hh .=
german federal state ∧ (∀ has area equalp2

)

federal state sh .=
german federal state ∧ (∀ has area equalp4

)

district of hh .=
(∀ has area hamburg area)

district of sh .=
(∀ has area g insidep4

)

sh border district .=
(∀ has area g insidep4

) ∧
(© t inside federal state sh)

hh border district .=
district of hh ∧ (© t inside federal state hh)

hh border district to sh .=
district of hh ∧
(© spatially related federal state hh) ∧
(© touching federal state sh)

While the implicit subsumption relationships dis-
cussed above are quite obvious, the last two
concept definitions provide more difficult exam-
ples. Based on the definitions given above, it
can be proven that hh border district to sh is sub-
sumed by hh border district. A hh border district is a
district of hh which touches the area of federal state hh
from the inside (relation t inside). The poly-
gon of federal state hh is explicitly given by the
predicate equalp2

(see the concept definition of
federal state hh). If a district of hh touches the poly-
gon of federal state sh, its corresponding area must be
tangentially inside the polygon of federal state hh.

A TBox classifier that deals with the semantics of
spatial relations must find these implicit subsumption
relationships in order to correctly and completely clas-
sify the terminological knowledge base.

In most DL systems, a set of rules can be defined to
assert additional constraints for ABox instances when
certain conditions (represented by a concept term)
are met. For instance, in Hamburg and Schleswig-
Holstein, the mountain height is less than 1000 (me-
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ters). This relationship is asserted by a rule (operator
→) that fires for every individual that is classified as
a member of the concept northern german region. The
second rule adds additional constraints to instances of
district of hh.

northern german region →
(∀ mountain height max1000)

district of hh →
(∀ zip code min20000) ∧
(∀ area descriptor min1000)

Automatic classification is also important for asser-
tional knowledge defined in the ABox. The following
statements define partial information about individu-
als in our example domain.

hamburg : federal state hh

öjendorf : district of hh

〈öjendorf,p3〉 : has area

vierlande : (∀ has area g insidep4
) ∧

(© touching (∀ has area equalp3
)) ∧

(© spatially related federal state sh))

The individual hamburg is declared to be an in-
stance of federal state hh. The individual öjendorf is
a district of hh. The filler of the has area role for
öjendorf is p3. The ABox reasoner computes that
the federal state hamburg and the district öjendorf
are each subsumed by northern german region, i.e. the
mountain heights in the associated areas are less than
1000 meters (see the rules defined above). This kind
of derived information can be used to guide the map
interpretation process by applying conceptual back-
ground knowledge. If the number 7434 in Figure
1 were asserted as a filler for the mountain height
of öjendorf, the ABox would derive an inconsistency
which indicates that another hypothesis has to be
tried.

In the last assertion, another individual (named
vierlande) which touches the polygon of öjendorf is de-
fined. Since vierlande is by definition subsumed by
(∀ has area g insidep4

), it cannot be a district of hh but
must be inside of district of sh. However, it touches
the Öjendorf polygon (p3) and therefore, it must be
automatically classified as a sh border district.

The examples illustrate the importance of com-
plete inference algorithms for TBox, ABox and SBox
classification. For instance, if the implicit sub-
sumption relationship between hh border district and
hh border district to sh were not detected, we could
declare an instance of hh border district to sh and
claim that a valid zip code in this area might be 7434
which is certainly inconsistent (cf. the rule definition

for district of hh). Another hypothesis is that 7434
might be an area descriptor. This hypothesis is con-
sistent with the terminological background knowledge
defined in our TBox example and might be used as an
intermediate result for further interpretation steps.

5 Related Work

The idea of incorporating conceptual knowledge (es-
pecially knowledge that can be modeled with a decid-
able description logic) into spatial reasoning and im-
age interpretation problems has been proposed in [10].
Rather than Reiter and Mackworth (see the descrip-
tion of MAPSEE in [17]), who use first order predi-
cate logic, we use a description logic as a basis for our
image interpretation problems. In order to be able to
validate the image interpretation knowledge itself (i.e.
the TBox), we cannot include a domain closure axiom,
i.e. we cannot enumerate all objects in every image to
be interpreted. In other words: Neither can the prob-
lem be reduced to model checking nor to satisfiability
checking in propositional logic. Lange and Schröder
[12] also discuss the problem of image interpretation
in a formal, logical framework. The incorporation of
concrete domain predicates for image interpretation
problems is presented by Schröder and Neumann [19].

Many other approaches for modeling spatial objects
and their relations have been published. The ontolog-
ical assumptions for the approach presented in this
paper are based on a Newtonian conception of space
(see [4]). In contrast to the Leibnizian conception
(assuming space to be strictly dependent on the re-
lations holding between physical objects), the carte-
sian structure of our concrete domain approach allows
spatial relations to be defined by topological relations
between areas defined by polygons (with an external
or absolute reference system). The Leibnizian concep-
tion has been adopted in many approaches inspired
by natural language interpretation problems. Due to
space limitations, we cannot discuss the large amount
of work on logical models of space in this area.

Grigni et al. [8] study the computational problems
in developing an inference system for checking the sat-
isfiability of (conjunctive) combinations of spatial re-
lations. This work is important for us for checking the
consistency of combinations of concept terms contain-
ing predicates based on spatial relations. Grigni et al.
point out that in topological inferences the aspects of
relational consistency and planarity interact in rather
complex ways. They showed that besides the rela-
tional consistency problem a planarity problem has
to be solved when areas are assumed to be disjoint.
With this additional restriction, in many cases the
complexity of the satisfiability problem becomes NP-
hard. Lemon [13] showed that in some “spatial” logics
based on convex regions one can construct consistent
sentences that have no models in the intended geo-
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metrical interpretation, i.e. the logics are incomplete
with respect to the intended geometrical interpreta-
tion (e.g. this has been proven for RCC introduced in
[16]).

6 Conclusion and Ongoing Work

In this paper, we have demonstrated that topological
relations directly influence the kind of conceptual or
terminological knowledge that can (and must) be de-
rived by a formal inference engine. On the other hand,
assertions about concepts restrict the set of possible
spatial relations between different individuals.

We have seen that the use of incomplete reason-
ing services in practical applications is problematic.
For instance, in our application domain the reasoning
service might be used to test whether the hypothesis
“7434 is the zip code of Öjendorf” is consistent. In the
example above we have seen that the correct answer
depends on complete TBox classification algorithms.
In this case, an incomplete reasoner that does not
detect the implicit subsumption relationships in the
TBox (see the discussion above) must answer “may
be”. However, if we pose the negated query “Is 7434
definitely not the zip code of Öjendorf” the answer
must also be “may be” because an inconsistency can-
not be derived due to incompleteness. The question
is whether “may be” answers can be used for solving
problems in a geographical information system, espe-
cially when “may be” happens to be interpreted as
“no.” Similar problems are likely to occur in incom-
plete approaches (see e.g. [18] for an image interpre-
tation approach that uses an undecidable description
logic).

One idea of the approach presented in this paper is
to reduce the complexity of the reasoning algorithms
by also considering quantitative spatial data which are
available in many practical applications. If concrete
polygons are given, no relational consistency check-
ing (see above) is required but standard algorithms
from computational geometry can be used. In our
map interpretation scenario, the incorporation of a
space box with a Newtonian view (i.e. with quantita-
tive data) helps to avoid problems of so-called “spa-
tial” logics. We have discussed some arguments that
dealing only with qualitative relations like the ones
used by Egenhofer neglects some aspect of space ([8],
[13]) when, for instance, the qualitative calculus im-
plies additional properties of geometric objects such
as convexity or disjointness of regions.

The SBox extension proposed in this paper is no
general geometrical theorem prover. The advantage
of our approach which is based also on quantitative
information about spatial regions is that the satisfia-
bility test for finite conjunctions of predicates can be
reduced to well-known algorithms in computational
geometry (basically polygon intersection). Qualita-

tive relations that are grounded in quantitative data
provide a bridge to conceptual knowledge and allow
more extensive reasoning services to be exploited for
solving practical problems.

The treatment of predicate concept terms such as
(∀ has area g insidepi

) and (∀ has area equalpi
) is sup-

ported by the work of Hanschke on concrete domain
extensions. A prototype implementation using the
CLASSIC [5] description logic (and its extension in-
terface) demonstrates that the concept constructor ©
can be integrated into CLASSIC. However, it demon-
strates also the disadvantages of this concept term
because it cannot be freely combined with other lan-
guage constructs. Therefore, we are currently inves-
tigating the formal properties of the role operator
∃(r1)(r2).P which can be more flexibly used.

As Borgo et al. emphasize [4], for spatial reason-
ing we have to consider mereological aspects as well
(e.g. part-whole relations). There are many propos-
als for integrating part-whole relations into descrip-
tion logics and we are investigating ways to combine
these approaches with the spatial domain. The ex-
amples presented in this paper show that interesting
application problems can be solved with an extended
description logic supporting reasoning services about
qualitative relations.
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