
Implementing an ALCRP(D) ABox Reasoner – Progress Report –

Volker Haarslev and Ralf Möller and Anni-Yasmin Turhan
University of Hamburg, Computer Science Department,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
http://kogs-www.informatik.uni-hamburg.de/~<name>/

Abstract: This paper presents a progress report on the im-
plementation of an ALCRP(D) ABox reasoner and a knowl-
edge representation framework. We present an ALC ABox
reasoner which has been constructed for providing a basis for
an optimized ALCRP(D) implementation. We compare the
implementation with the concept consistency reasoner FaCT

which sets the standard in current DL implementations.

Keywords: Implementation of description logic reasoners,

ABox consistency checking.

1 Introduction

Extending the work on ALC(D) [1], we have developed a
new description logic called ALCRP(D) [4, 8, 9] in order
to provide a foundation for spatioterminological reason-
ing with description logics. The goal was to develop a
description logic that provides modeling constructs that
can be used to represent topological relations as roles.
In a specific domain model, ALCRP(D) can be used to
define roles (e.g. for representing topological relations)
based on properties between concrete objects which, in
turn, are associated to individuals via specific features.
Thus, ALCRP(D) provides role terms that refer to pred-
icates over a concrete domain (RP stands for roles de-
fined as predicates). With these constructs ALCRP(D)
extends the expressive power of ALC(D) (for a compar-
ison, see [8]). However, in order to ensure termination
of the satisfiability algorithm, we impose restrictions on
the syntactic form of the set of terminological axioms [4].
Although modeling is harder, the restrictions on termi-
nologies ensure decidability of the language.

This paper presents a progress report on the imple-
mentation of an ALCRP(D) ABox reasoner. As a first
step, we describe an ALC ABox reasoner which has
been constructed for providing a basis for an optimized
ALCRP(D) implementation. Since ALC is a proper sub-
language of ALCRP(D), a fast reasoner for ALC is re-
quired as a sound basis for an ALCRP(D) implemen-
tation. Our work is inspired by Ian Horrocks’ work on
a TBox reasoner (called FaCT, see [7]). Although, in
principle, consistency checking for ALC ABoxes can be
reduced to TBox consistency checking [6], for practical
purposes we decided to develop a true ABox consistency
checker in the first place. Note that the tableau calculus
for ALCRP(D) is already given for ABoxes (see [8]).

We compare our current ABox implementation (called
HAM-ALC) with the concept consistency reasoner
FaCT which sets the standard in current DL implemen-
tations.1 In addition, the paper briefly presents two

1The fact that both HAM-ALC and FaCT are imple-

parts of a knowledge representation framework which
have been developed based on HAM-ALC: (i) an im-
plementation of the algorithms for embedding defaults
into terminological formalisms presented in [2] and (ii) a
Web interface for defining TBoxes (and ABoxes) with an
infix syntax (ASCII counterpart of the “German Syntax”
for LATEX, see below).

2 The Implementation

The architecture of HAM-ALC explicitly represents the
rules for a standard tableau calculus as procedures which
operate on lists of concept constraints. In this section we
give a sketch of the implementation details. Due to lack
of space, we assume that the reader is familiar with ALC
tableau calculi.

2.1 Preprocessing
The preprocessing phase transforms concept expressions
into negation normal form, removes duplicates, performs
obvious simplifications, detects clashes, flattens nested
and/or expressions, normalizes the order of disjuncts
and conjuncts, and ensures that all concepts, which are
(structurally) equal, are also eq (pointer equality). For
each concept, its negated counterpart is precomputed
and accessible via a hashtable, so the computation of
negations of concepts (required for clash detection, see
below) is fast.

2.2 Data Structures
ABox constraints are implemented as structures
(records) that hold an individual (a number), a non-
negated concept, a flag negated-p that indicates
whether the non-negated concept is to be interpreted as
negated, and a set of dependency constraints (required
for dependency-directed backtracking, see below). In or-
der to ensure extensibility to ALCRP(D) we decided
not to use special encoding tricks for representing con-
cepts. Thus, concepts are represented using structures
as well. We internally convert the concepts of or- and
all-constraints into their equivalent negated form (e.g.
(C1 t C2) → ¬(¬C1 u ¬C2) and (∀ R C) → ¬(∃ R ¬C))
but represent the negation sign of the concept with the
negated-p flag.

In contrast to FaCT and traditional SAT implementa-
tions, where a satisfiable truth assignment is represented
as a vector over all known literals or constraints (as
a part of the so-called constraint system), HAM-ALC

mented in Common Lisp greatly facilitated the testing and
comparison.



uses a different scheme. We collect non-contradictory
constraints in various lists and represent the truth value
of a constraint by the negated value of its negated-p
flag. As a consequence of this decision, there is no need
to save and restore constraint systems during backtrack-
ing due to the pointer representation of lists in Lisp.

2.3 Clash Detection

As usual, the first step of the tableau algorithm is to
detect whether adding a new element (i.e. assigning a
truth value) to the set of expanded constraints (that
already have an assigned truth value) will result in a
clash. Since concepts can be compared with eq and con-
straints contain only non-negated concepts as well as the
negated-p flag, this operation does not require to tra-
verse concept structures. However, clash detection is
currently more expensive —compared with traditional
SAT implementations— because the new constraint has
to be checked against the set of all expanded constraints.

2.4 Tableau Control Strategy

In contrast to the theoretical formulation of tableau cal-
culi, the order of processing and applying tableau ex-
pansion rules to constraints makes a big difference in
the efficiency of a tableau algorithm. HAM-ALC cur-
rently supports two principal control strategies. With
the “true ALC” setting HAM-ALC processes the con-
straints in the following order: (1) deterministic con-
straints, (2) or-constraints, (3) some-constraints. Deter-
ministic constraints are those constraints whose concept
term is either atomic, an and-concept, or an or-concept
with exactly one open disjunct (i.e. it has an unknown
truth value).

This processing order and the fact that the tree model
property holds forALC allows a well-known optimization
for ALC, where consistency of concept constraints for
individuals generated by some-constraints can be treated
as isolated subproblems if value restrictions are carefully
treated. This implies the expansion of some-constraints
with a separated empty constraint system. The “true
ALC” setting was also used for benchmarking HAM-

ALC for the DL comparison (see [5]).
The second setting is designed for ALCRP(D) and

always works with one global constraint system because,
for ALCRP(D), the tree-model property does not hold
[4]. The ABox consistency checker has to deal with graph
structures at least in a finite part of the ABox. Thus,
we also have to explicitly represent relation constraints.

As already noted, the constraint system used in HAM-

ALC is represented as a collection of lists. We use
five different lists: (1) unexpanded deterministic con-
straints, (2) unexpanded or-constraints, (3) unexpanded
some-constraints, (4) expanded concept constraints, (5)
expanded relation constraints. The elements from the
“unexpanded lists” are always processed in accordance
with the priority scheme explained above.

2.5 Optimization Techniques
Or-constraints are a major source of complexity in
tableau expansion. Due to the experiences of the FaCT

system, two major optimization strategies (adapted from
the SAT domain) are absolutely necessary to achieve ac-
ceptable performance even for small problems (see [3],
[7]). The first technique is called semantic branching ,
the second one is dependency-directed backtracking.

Semantic Branching
In contrast to syntactic branching, where redundant
search spaces may be repeatedly explored, semantic
branching uses a splitting rule which replaces the orig-
inal problem by two smaller subproblems (see also [3]).
Semantic branching is usually supported by various tech-
niques intending to speed-up the search.

A lookahead algorithm or constraint propagator tries
to reduce the order of magnitude of the open search
space. Thus, after every expansion step HAM-ALC

propagates the truth value of the newly added constraint
into all open disjuncts of all unexpanded or-constraints.
As a result of this step, or-constraints might be become
satisfied (i.e. one disjunct is satisfied), deterministic (i.e.
exactly one disjunct remains open), or might even clash
(all disjuncts are unsatisfied).

Various heuristics are used to select the next unex-
panded or-constraint and disjunct. HAM-ALC em-
ploys a dynamic selection scheme. The oldest-first strat-
egy is used for selecting one or-constraint with at least
two open disjuncts. In accordance with FaCT we also
count the negated and unnegated occurrences for each
open disjunct from the selected constraint in all other
unexpanded or-constraints. These numbers are used
as input for a priority function that selects the dis-
junct. The priority function is adopted from FaCT

and achieves the following goals. It prefers disjuncts
that occur frequently in unexpanded binary constraints
and balanced or-constraints (i.e. containing a similar
number of negated and unnegated occurrences of the
same disjunct) but discriminates between unbalanced
or-constraints. In order to perform the counting very
quickly, HAM-ALC precomputes for every constraint
two lists cross-referencing or-constraints that contain the
constraint’s concept in negated or unnegated form. Once
a disjunct is selected, the priority function is also used
to determine whether the constraint is tried in negated
or unnegated form at first. In case of a failure, the other
alternative is explored.

Dependency-directed Backtracking
Naive backtracking algorithms often explore regions of
the search space rediscovering the same contradictions
repeatedly. Dependency-directed backtracking records
the dependencies of expanded constraints and in case of
a clash backtracks to (or-)constraints that are respon-
sible for at least one of the clash-causing constraints in
the subtree (see [3]). Experiments with FaCT, HAM-



0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40

%
 ti

m
es

 (
s)

, (
F

aC
T

 1
.4

, H
A

M
-A

LC
 1

-1
t-

m
)

L/N (100 iter, timeout=60 (s), var = 3)

50% (HAM-ALC)
100% (HAM-ALC)

50% (FaCT)
100% (FaCT)

Figure 1: Comparison of runtime for N = 3.

ALC, and other DL systems demonstrated that dis-
abling dependency-directed backtracking (“backjump-
ing”) does not make much sense and, therefore, the de-
pendency management system is wired into the HAM-

ALC architecture and its data structures. When a con-
straint is expanded, its dependencies are recorded, i.e. its
precondition constraints are pushed onto the list of de-
pendencies. In our implementation, every or-constraint
on the dependencies of a precondition constraint is also
pushed onto the list of dependencies of the resulting con-
straint (dependency propagation).

When a clash occurs, the dependencies of the clash
culprits (i.e. possibly the or-constraints that generated
these constraints) are stored on a list of catching clash
dependencies and backtracking is started. The idea is
due to FaCT [7]. Whenever a semantic branching point
is encountered during backtracking, HAM-ALC checks
whether this or-constraint is responsible for a clash cul-
prit. If the or-constraint is not found in the list of
catching clash dependencies, we can safely bypass this
branching point. In case the or-constraint is found ei-
ther the remaining semantic alternative is tried or this
disjunct is considered as unsatisfiable in the current sub-
tree. The backtracking continues but removes the cur-
rent or-constraint from the list of clash dependencies and
adds the saved clash dependencies of the previously un-
satisfiable alternative.

3 Evaluation of HAM-ALC

The evaluation examples presented in this paper are
guided by the examples from [7]. The FaCT system
is used with standard settings as provided by Horrocks.
Thus, concept normalization, backjumping and semantic
branching are enabled.

We conducted three experiments2 using concept terms

2The tests were performed on an Ultra Sparc 2 with Alle-
gro Common Lisp 4.3.1 and both systems compiled with full
optimization.

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35 40

%
 ti

m
es

 (
s)

, (
F

aC
T

 1
.4

, H
A

M
-A

LC
 1

-1
t-

m
)

L/N (100 iter, timeout=60 (s), var = 4)

50% (HAM-ALC)
100% (HAM-ALC)

50% (FaCT)
100% (FaCT)

Figure 2: Comparison of runtime for N = 4.

randomly generated by the “Hustadt and Schmidt” gen-
erator (for details see [7]). The generator is controlled
by the following set parameters (fixed values are printed
in parentheses):
• Number of different primitive concepts: N
• Number of different roles: M(= 1)
• Size of K-disjunctive expressions: K(= 3)
• Maximum nesting of value restrictions: D(= 1)
• Probability of a disjunct being a literal: P (= 0)
• Number of K-disjunctive expressions in the top-

level conjunction: L
Each experiment used a fixed value for N (N = 3, 4, 5)

and increased the value of L from N to N ∗40 with N as
increment. The results of the first experiment (N = 3,
100 tests for each value of L) are displayed in Figure 1.
The graphics present the percentile runtime3 of FaCT

and HAM-ALC, respectively. FaCT behaves slightly
better than HAM-ALC but the difference between them
remains almost constant.

The second experiment4 (N = 4, 100 tests for each
value of L) demonstrates a different behavior (see Figure
2). HAM-ALC outperforms FaCT almost from the be-
ginning but FaCT still succeeds for values of L/N > 25.
This is probably due to the clash-detection technique of
HAM-ALC that currently requires searches in lists of
increasing sizes with an increasing L. We also measured
the storage requirements (percentile memory) of both
systems (see Figure 3). In the transition phase FaCT

requires almost one order of magnitude more memory
than HAM-ALC.

The last experiment (N = 5, 10 tests for each value
of L, 1000 seconds as timeout limit) demonstrates the
beginning combinatorial explosion for both FaCT and
HAM-ALC (see Figure 4). However, HAM-ALC solves

3The 100th percentile is the time taken to solve the hard-
est problem of the test set. The 50th percentile represents
the time taken by the problem in the test set such that 50
percent of the other problems took a shorter runtime [7].

4Also called PS12 in [7].



10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40

%
 m

em
or

y 
(K

B
),

 (
F

aC
T

 1
.4

, H
A

M
-A

LC
 1

-1
t-

m
)

L/N (100 iter, timeout=60 (s), var = 4)

50% (HAM-ALC)
100% (HAM-ALC)

50% (FaCT)
100% (FaCT)

Figure 3: Comparison of space for N = 4.

even the hardest problems within 600 seconds.
To the best of our knowledge, not very much work has

been published on evaluating ABox consistency checkers.
So, this is currently an open problem.

4 Towards a Modeling Framework

An ABox consistency checker provides the basic algo-
rithm for other reasoning services. For instance, default
rules can be integrated into a knowledge representation
framework.

4.1 Defaults
We implemented a Reiter-style default rule system ac-
cording to the theory and algorithms for computing ex-
tensions presented in [2]. Default rules are applied to
ABox individuals. With this system, for instance, the
famous Nixon example can be declared as follows. Pre-
conditions and conclusions are ALC concepts, justifica-
tions are lists of ALC concepts.
(define-default-rule nixon-as-a-republican

:precondition nixon :justifications () :conclusion republican)

(define-default-rule nixon-as-a-quaker
:precondition nixon :justifications () :conclusion quaker)

Two contradictory defaults are added.
(define-default-rule quakers-as-doves

:precondition quaker :justifications ((not hawk))
:conclusion dove)

(define-default-rule republicans-as-hawks
:precondition republican :justifications ((not dove))
:conclusion hawk)

The example is completed with the following defaults.
(define-default-rule doves-are-politically-motivated

:precondition dove :justifications ()
:conclusion politically-motivated)

(define-default-rule hawks-are-politically-motivated
:precondition hawk :justifications ()
:conclusion politically-motivated)

The default substrate computes the extension of an
ABox and a set of default rules (a) in terms of sets of
applicable “non-contradictory” closed default rules and

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

%
 ti

m
es

 (
s)

, (
F

aC
T

 1
.4

, H
A

M
-A

LC
 1

-1
t-

m
)

L/N (10 iter, timeout=1000 (s), var = 5)

50% (HAM-ALC)
100% (HAM-ALC)

50% (FaCT)
100% (FaCT)

Figure 4: Comparison of runtime for N = 5.

(b) in terms of sets of ABoxes (“possible worlds”) re-
sulting from applying each set of non-contradictory de-
fault rules. For instance, if we start with an ABox ((i
nixon)) and the set of defaults presented above, the
system computes the following extensions:
Extension 1:
Defaults: nixon-as-a-quaker(i), nixon-as-a-republican(i),

republicans-as-hawks(i), hawks-are-politically-motivated(i)
ABox: ((i quaker) (i republican) (i hawk) (i politically-motivated))

Extension 2:
Defaults: nixon-as-a-quaker(i), nixon-as-a-republican(i),

quakers-as-doves(i), doves-are-politically-motivated(i)
ABox: ((i quaker) (i republican) (i dove) (i politically-motivated))

Thus, as expected, the Nixon individual i will be po-
litically motivated for credulous as well as for skeptical
reasoners.

The short example should demonstrate the available
facilities which go beyond those offered by standard rule
systems available in description logic implementations.
The dependency tracking mechanism of the HAM-ALC

ABox reasoner is an important part of the implementa-
tion.

4.2 Web Interface
Especially for teaching purposes, a simple interface is
required for specifying TBoxes and ABoxes etc. Thus,
we extended our HAM-ALC environment with a Web
interface (see Figure 5) supporting password access and
persistency of (multiple) TBoxes (and ABoxes) as well as
queries. Knowledge bases can be sent back to users via
email. We also developed a parser for an infix syntax for
DLs (and PDLs, see Figure 5) supporting error messages
(with line numbers).

5 Summary and Outlook

With the current HAM-ALC implementation a good
testbed for studying optimization techniques has been
developed. The ABox consistency prover architecture of
HAM-ALC should support the extensions required for
ALCRP(D). As a summary we emphasize the following
points:



Figure 5: WWW interface supporting an infix syntax for ALC (the screenshot actually shows a version that is based
on a PDL prover written in C).

• We implemented a consistency checker for ALC
ABoxes in Common Lisp using semantic branching
and dependency-directed backtracking for optimiz-
ing runtime performance.

• The default substrate (see above) will be extended
by facilities for declaring preferences.

• The Web interface currently supports TBox declara-
tions and subsumption queries but will be extended
in order to deal with ABoxes and defaults.

• We are investigating implementation techniques and
optimization strategies for dealing with concrete do-
mains, i.e. for languages such as ALCRP(D) (and
ALC(D), cf. also the work on the KRIS system).

Acknowledgments

The theoretical work on the ALCRP(D) tableau calculus
has been done in collaboration with Carsten Lutz. We also
acknowledge Ian Horrocks’ work on the FaCT system that
proved to be a very valuable system as verifier and for study-
ing description logic prover implementations.

References

[1] F. Baader and P. Hanschke. A scheme for integrating
concrete domains into concept languages. In Twelfth In-
ternational Conference on Artificial Intelligence, Darling
Harbour, Sydney, Australia, Aug. 24-30, 1991, pages 452–
457, August 1991.

[2] F. Baader and B. Hollunder. Embedding defaults into
terminological knowledge representation formalisms. In
B. Nebel, Ch. Rich, and W. Swartout, editors, Third In-

ternational Conference on Principles of Knowledge Rep-
resentation, pages 306–317, October 1992.

[3] J.W. Freeman. Improvements to propositional satisfiabil-
ity search algorithms. PhD thesis, University of Pennsyl-
vania, Computer and Information Science, 1995.

[4] V. Haarslev, C. Lutz, and R. Möller. Foundations of
spatioterminological reasoning with description logics. In
T. Cohn, L. Schubert, and S. Shapiro, editors, Pro-
ceedings of Sixth International Conference on Principles
of Knowledge Representation and Reasoning (KR’98),
Trento, Italy, June 2-5, 1998, June 1998. In press.

[5] V. Haarslev, R. Möller, and A.-Y. Turhan. HAM-ALC.
In E. Franconi et al., editors, Proceedings of the Inter-
national Workshop on Description Logics (DL’98), June
6-8, 1998, Trento, Italy, June 1998. Benchmark results
for DL’98 comparison, in press.

[6] B. Hollunder. Algorithmic Foundations of Terminological
Knowledge Representation Systems. PhD thesis, Univer-
sity of Saarbrücken, Department of Computer Science,
1994.

[7] I. Horrocks. Optimising Tableaux Decision Procedures for
Description Logics. PhD thesis, University of Manchester,
1997.

[8] C. Lutz, V. Haarslev, and R. Möller. A concept lan-
guage with role-forming predicate restrictions. Technical
Report FBI-HH-M-276/97, University of Hamburg, Com-
puter Science Department, 1997.

[9] R. Möller, V. Haarslev, and C. Lutz. Spatiotermino-
logical reasoning based on geometric inferences: The
ALCRP(D) approach. Technical Report FBI-HH-M-
277/97, University of Hamburg, Computer Science De-
partment, 1997.


