
Applying an ALC ABox Consistency Tester

to Modal Logic SAT Problems

Volker Haarslev and Ralf Möller

University of Hamburg, Computer Science Department
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany
{haarslev,moeller}@informatik.uni-hamburg.de

http://kogs-www.informatik.uni-hamburg.de/~{haarslev,moeller}

Abstract. In this paper we present the results of applying HAM-ALC,
a description logic system for ALCNR, to modal logic SAT problems.

1 Introduction

Research on description logics and modal logics tackles related problems from
different viewpoints. One of the recent advances in the development of “fast”
description logic systems was the FaCT architecture [4] which focuses on TBox
reasoning. Besides optimizations for computing the subsumption hierarchy (e.g.
taxonomic encoding and other techniques), the FaCT system is based on op-
timized algorithms with appropriate data structures for speeding up the basic
concept consistency test (dependency-directed backtracking, semantic branching
[2] and caching of models). FaCT supports the logic ALC plus transitive roles,
features and role hierarchies. In addition, generalized concept inclusions (GCIs,
[1]) as well as cyclic terminologies are handled by preprocessing techniques and
specific blocking strategies being used in the concept satisfiability algorithm [4].
Among other improvements for concept satisfiability checking, the importance
of extensive model caching for concept terms and appropriate data structures for
models is demonstrated by the evaluation results of the DLP system, a reimple-
mentation of the algorithms used in the FaCT architecture [5]. One of the main
results of the research on FaCT and DLP is that a well-designed combination of
different techniques and strategies is necessary in order to dramatically increase
system performance in the average case. However, neither FaCT nor DLP deals
with ABoxes.

In the following we discuss the optimized description logic system HAM-

ALC, which has been developed to extend the facilities offered by FaCT. In
addition, HAM-ALC supports ABox reasoning for the languageALCNR which
is presented in [1] (ALC with number restrictions, role conjunction or role hi-
erarchies as well as GCIs but without transitive roles). Besides optimizations
for TBoxes, it provides optimized implementations for the well-known inference
problems ABox consistency checking, instance checking, realization, instance re-
trieval [1].



2

In the following we briefly sketch how known optimization techniques for
concept consistency checking can be exploited for building efficient ABox consis-
tency checking architectures. Afterwards, we demonstrate that this architecture
can also be used for effectively solving average-case modal logic SAT problems.
These first tests indicate that the implementation overhead inherent in a system
for expressive description logics supporting ABoxes can be reduced to a mini-
mum compared to a concept consistency checking architecture provided by, for
instance, DLP.

2 Basic Architecture of HAM-ALC

Similar to the techniques used in FaCT a preprocessing phase transforms con-
cept expressions into negation normal form, removes duplicates, performs obvi-
ous simplifications, detects obvious clashes, flattens nested and/or expressions,
normalizes the order of disjuncts and conjuncts, and provides a unique identifica-
tion for all concepts which are structurally equal. For each concept, its negated
counterpart is precomputed in order to support a fast access to negations of
concepts (required for clash detection, see below).

ABox constraints consist of individual assertions (i : C) as well as role as-
sertions (〈i1, i2〉 : R). The ABox consistency checker has to deal with (possibly
cyclic) graph structures at least in a finite part of the ABox. Thus, HAM-ALC

has to explicitly represent role assertions as well as individuals. For an individual
assertion HAM-ALC represents its name and non-negated preprocessed concept
expression with a separated negation sign and a set of dependency ABox con-
straints documenting the origin of this assertion. The dependency constraints
are required for dependency-directed backtracking (see below). In order to fa-
cilitate extensibility HAM-ALC does not use special “encoding tricks” for rep-
resenting concepts but uses record structures to store relevant information. It
normalizes or-, all-, and number restriction concepts of constraints into their
equivalent negated form (e.g. (C1 tC2)→ ¬(¬C1 u¬C2), (∀ R C)→ ¬(∃ R ¬C),
and (∃≤n R)→ ¬(∃≥n+1 R)) while representing the negation sign of the concept
as part of the constraint itself. This architectural decision helps to speed up the
usual clash checks that test whether two constraints i : C1 and i : C2 exist such
that C1 u C2 is equal to ⊥).

Constraints are considered as deterministic if their concept term is either
atomic, an and-concept, or an or-concept with exactly one open disjunct (with
an unknown truth value). The optimized algorithm treats the consistency test
of ABox constraints generated by some- and at-least constraints as isolated sub-
problems if value and at-most restrictions are carefully handled (see the calculus
presented in [1]).

2.1 Optimization Techniques

Or-constraints are a major source of complexity in tableaux expansion. Two ma-
jor optimization strategies are embedded into the architecture of HAM-ALC



3

that deal with this complexity. The first technique is called semantic branch-
ing, the second one is dependency-directed backtracking. A third strategy tries
to avoid the recomputation of identical or similar subtableau by using a so-called
“model caching and merging technique” that possibly replaces the tableau satis-
fiablity test by operating on cached models for concepts. We briefly review these
techniques and explain their integration into HAM-ALC.

Semantic Branching In contrast to syntactic branching, where redundant
search spaces may be repeatedly explored, semantic branching uses a splitting
rule which divides the original problem into two smaller disjoint subproblems
(see [2] for a discussion). Semantic branching is usually supported by various
techniques intended to speed up the search.

A lookahead algorithm or constraint propagator is applied to reduce the order
of magnitude of the open search space. Thus, after every tableau expansion step
HAM-ALC propagates the truth value of the newly added constraint into all
open disjuncts of all or-constraints with an unknown truth value. As a result
of this step, or-constraints might be recognized as satisfied (i.e. one disjunct is
satisfied), deterministic (i.e. exactly one disjunct remains open), or might even
clash (all disjuncts are unsatisfied).

Various heuristics are used to select the next or-constraint and one of its
disjuncts for processing. HAM-ALC employs a dynamic selection scheme. The
oldest-first nesting strategy is used for selecting one or-constraint with at least
two open disjuncts. The selection of a disjunct from this or-constraint is achieved
by counting the negated and non-negated occurrences for each open disjunct
in all other open or-constraints. These numbers are used as input for a prior-
ity function that selects the disjunct. The priority function is adopted from
FaCT and achieves the following goals. It prefers disjuncts that occur fre-
quently in unexpanded binary constraints and balanced or-constraints (i.e. con-
taining a similar number of negated and non-negated occurrences of the same
disjunct) but discriminates between unbalanced or-constraints. In order to per-
form individual-specific counting very quickly, HAM-ALC precomputes data
structures for cross-referencing open or-constraints that contain this concept in
negated and/or non-negated form. Once a disjunct is selected, the priority func-
tion is also used to determine which branch of the search tree is tried first by
the splitting rule.

Dependency-directed Backtracking Naive backtracking algorithms often
explore regions of the search space rediscovering the same contradictions repeat-
edly. An integral part of the HAM-ALC architecture is a dependency man-
agement system. It records the dependencies of every constraint, i.e. whenever
a constraint is created, its precondition constraints are saved as a dependency
set. This set is employed by the dependency-directed backtracking technique of
HAM-ALC in order to reduce the search space.

Whenever a clash occurs, the union of the dependency sets of the clash cul-
prits (referred to as clash dependency set) is recorded and backtracking is started.



4

When a semantic branching point is encountered during backtracking, HAM-

ALC checks whether this or-constraint is responsible for a clash culprit (i.e. is
a member of the clash dependency set). If the or-constraint is not found, this
branching point can be safely bypassed. In case the or-constraint is found, either
the remaining semantic alternative is tried or this disjunct is considered as un-
satisfiable in the current subtree. The backtracking continues but removes the
current or-constraint from the clash dependency set and adds the saved clash
dependency set of the first clashed alternative. This technique was first realized
in the FaCT [4] system and is extended in the HAM-ALC architecture for
dealing with different individuals.

Model-based Satisfiability Tests The third major strategy tries to avoid
the recomputation of identical or similar subtableaux (caused by a some- or
an at-least constraint and the corresponding all- and at-most constraints) by
using operations on cached “models” for concepts. The test whether a concept
C subsumes a concept D is preceded or may be even replaced by a merging test
for the models of ¬C and D. This technique was first developed for the FaCT

system forALC. HAM-ALC extends this technique forALCNR and refines it in
several ways: (1) In contrast to FaCT it deals with deep models and introduces
and exploits deterministic models. (2) Every satisfiability test of a subtableau is
preceded by a model merging test working with either deep or flat models. (3)
The concept subsumption test is devised as a two-level procedure first trying a
novel structural subsumption test (see below) that is optionally followed by a
regular tableaux satisfiability test.

A model of a concept is computed by applying the standard satisfiability
test. In case of a failure this incoherent concept is associated with the ⊥-model.
Otherwise HAM-ALC constructs and caches a model from the final tableau.
A model consists of a concept set containing every (negated) atomic, some-,
at-least, all-, and at-most concept occurring in the final constraint set of the
tableau. And- and or-concepts may be safely ignored due to their decomposition
by the tableaux rules. A model is marked as deterministic if the constraint set
contains no or-constraint and no at-most constraint that caused fork elimination.

The standard flat model merging test (due to FaCT) for a set of models
M = {M1, . . . ,Mn} works as follows. The concept sets of every pair 〈Mi,Mj〉
(with Mi,Mj ∈ M and i 6= j, 1 ≤ i, j ≤ n) are mutually checked for a potential
clash. If either a pair 〈Ci, Cj〉 (with Ci ∈ Mi, Cj ∈ Mj) of clashing atomic
concepts or of potentially interacting some- and all-concepts via a common role
R is found, the test returns unmergable. Otherwise it returns mergable. The flat
model merging test is sound but not complete. Thus, it precedes every concept
subsumption and subtableau satisfiability test and replaces it if the answer is
mergable. HAM-ALC extends this technique forALCNR in two ways. Its model
merging test correctly deals with number restriction concepts and keeps track
of deterministic models and becomes sound and complete if only deterministic
models are involved. It realizes a deep model merging test that recursively checks
the models of potentially interacting some- and all-concepts. HAM-ALC tries
to maximize the use of deterministic models for concept subsumption tests.



5

Table 1. TANCS’99 selected reference problems of the modal pspace division.

Problem Clauses Variables Depth Runtime (10ms)

bounded CNF 8 4 2 0
16 4 2 2
32 4 2 6

bounded CNF modK 8 4 2 2
16 4 2 5
32 4 2 14

unbounded QBF 8 2 3 27
16 2 3 33
32 2 3 53

unbounded QBF modK 8 2 3 24
16 2 3 36
32 2 3 61

3 Implementation Language and Special Features

HAM-ALC is implemented in Common Lisp and has been tested with Macin-
tosh Common Lisp, Allegro Common Lisp (SunOS, Windows, Linux). HAM-

ALC provides a Web-based interface [3].

4 First Results on a Performance Analysis

For TANCS-99 we have tested HAM-ALC on the modal PSPACE division ref-
erence problems (see Table 1). The runtimes (in 10ms) are computed based on
the files provided by TANCS-99. For each parameter setting (see Table 1) the
computation results of the 16 problem instances are averaged (geometric mean).
We have run the system on a Sun Ultra Sparc 2 (300 MHz) with Allegro CL 5.0.

References

1. M. Buchheit, F.M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research, 1:109–
138, 1993.

2. J.W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, Computer and Information Science, 1995.

3. V. Haarslev, R. Möller, and A.-Y. Turhan. Implementing an ALCRP(D) ABox
reasoner: Progress report. In E. Franconi et al., editor, Proceedings of the Inter-
national Workshop on Description Logics (DL’98), June 6-8, 1998, Trento, Italy,
pages 82–86, June 1998.

4. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

5. I. Horrocks and P.F. Patel-Schneider. FaCT and DLP: Automated reasoning with
analytic tableaux and related methods. In Proceedings International Conference
Tableaux’98, pages 27–30, 1998.


