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Abstract. Computing least common subsumers in description logics is
an important reasoning service useful for a number of applications. As
shown in the literature, it can, for instance, be used for similarity-based
information retrieval where information retrieval is performed on the ba-
sis of the similarities of user-specified examples. In this article, we first
show that, for crisp DLs, in certain cases the set of retrieved information
items can be too large. Then we propose a probabilistic least common
subsumer operation based on a probabilistic extension of the descrip-
tion logic language ALN . We show that by this operator the amount of
retrieved data can be reduced avoiding information flood.

1 Introduction
Knowledge representation languages based on description logics (DLs) have
proven to be a useful means for representing the terminological knowledge of an
application domain in a structured and formally well understood way. In DLs,
knowledge bases are formed out of concepts representing sets of individuals. Us-
ing the concept constructors provided by the DL language, complex concepts
are built out of atomic concepts and atomic roles. Roles represent binary re-
lations between individuals. For example, in the context of a TV information
system, the set of all football broadcasts can be described with a concept term
using the atomic concepts teamsports-broadcast and football and the atomic role
has-sports-tool: teamsports-broadcastu ∀ has-sports-tool.football.

A central feature of knowledge representation systems based on DLs is a
set of reasoning services with the possibility to deduce implicit knowledge from
explicitly represented knowledge. For instance, the subsumption relation between
two concepts can be determined. Intuitively speaking, a concept C subsumes a
concept D if the set of individuals represented by C is a superset of the set
of individuals represented by D, i.e., if C is more general than D. Furthermore,
retrieval describes the problem of determining all individuals which are instances
of a given concept.

As another reasoning service, the least common subsumer (LCS) operation,
applied to concepts C1, . . . , Cm, computes the most specific concept which sub-
sumes C1, . . . , Cm. The LCS operation is an important and non-trivial reasoning
service useful for a number of applications. In [2], an LCS operator is considered
for the DL ALN including feature chains in order to approximate a disjunction
operation which is not explicitly included in ALN . In addition, the operator is
used as a subtask for the “bottom-up” construction of knowledge bases based
on the DLs ALN with cyclic concept definitions [1]. See also [3] for a similar
application concerning the constructive induction of a P-Classic KB from data.



In our applications, the LCS operation is used as a subtask for similarity-
based information retrieval [5]. The goal is to provide a user of an information
system with an example-based query mechanism. The data of an information sys-
tem are modeled as DL individuals. For instance, a specific TV broadcast about
football could be modeled as an instance of the concept for football broadcasts
introduced above. The “commonalities” of the selected examples of interest to
the user are formalized by a DL concept of which (i) the user-selected examples
are instances and (ii) which is the most specific concept (w.r.t. subsumption)
with property (i). A concept fulfilling properties (i) and (ii) will then be used as
a retrieval filter. The task of similarity-based information retrieval can be split
into three subtasks: First, the most specific concepts of a finite set of individuals
are computed yielding a finite set of concepts. Then, the LCS of these concepts
is computed. Finally, by determining its instances the LCS concept is used as a
retrieval concept. For the purpose of similarity-based information retrieval, the
first task is fulfilled by the well-known realization inference service. The third
subtask, determining the instances of the LCS concept, is accomplished by the
instance retrieval inference service of the knowledge representation system.

In certain cases, computing the LCS of concepts yields a very general concept.
As a consequence, a large set of information items are retrieved resulting in an
information flood if all items are displayed at once. Thus, at least a ranking is
needed or we have to define a new operator for computing the commonalities
between concepts. In this paper, we pursue the second approach and define an
LCS operator that takes additional domain knowledge into account.

The main contribution of this paper is the proposal of a probabilistic LCS
operation for a probabilistic extension of the DL ALN which has been intro-
duced in [4] for the knowledge representation system P-Classic. The proba-
bilistic LCS operator makes use of P-Classic’s ability to model the degree of
overlap between concepts. With the probabilistic LCS operator we investigate
an example-based retrieval approach in which well known information retrieval
techniques are integrated with formally well investigated inference services of
DLs.

2 Preliminaries
In this section, we introduce syntax and semantics of the underlying knowledge
representation language ALN and give formal definitions of relevant terms.

Definition 1 (Syntax). Let C be a set of atomic concepts and R a set of atomic
roles disjoint from C. ALN concepts are recursively defined as follows:

– The symbols > and ⊥ are ALN concepts (top concept, bottom concept).
– A and ¬A are ALN concepts for each A ∈ C (atomic concept, negated atomic

concept).
– Let C and D be ALN concepts, R ∈ R an atomic role, and n ∈ IN ∪ {0}.

Then C u D (concept conjunction), ∀ R.C (universal role quantification),
(≥ n R) (≥-restriction), and (≤ n R) (≤-restriction) are also concepts.

We set (= nR) as an abbreviation for (≥ nR)u (≤ nR). The semantics of
concepts is given in terms of an interpretation.



Definition 2 (Interpretation, Model, Consistency). An interpretation I =
(∆I , ·I) of an ALN concept consists of a non-empty set ∆I (the domain of I)
and an interpretation function ·I . The interpretation function maps every atomic
concept A to a subset AI ⊆ ∆I and every role R to a subset RI ⊆ ∆I × ∆I.
The interpretation function is recursively extended to complex ALN concepts as
follows. Assume that AI , CI , DI , and RI are already given and n ∈ IN ∪ {0}.
Then

– >I := ∆I , ⊥I := ∅, (¬A)I := ∆I \AI , (C uD)I := CI ∩DI ,
– ∀R.CI := {d ∈ ∆I |∀d′ : (d, d′) ∈ RI ⇒ d′ ∈ CI},
– (≥ n R)I := {d ∈ ∆I |]{d′|(d, d′) ∈ RI} ≥ n}, and
– (≤ n R)I := {d ∈ ∆I |]{d′|(d, d′) ∈ RI} ≤ n}.

An interpretation I is a model of an ALN concept C iff CI 6= ∅. C is called
consistent iff C has a model.

Note that both constructors > and ⊥ are expressible by (≥ 0R) and Au¬A,
respectively.

Definition 3 (Subsumption, Equivalence, Instance). A concept C is sub-
sumed by a concept D (C v D) iff CI ⊆ DI for all interpretations I. Two
concepts C and D are equivalent iff CI = DI holds for all interpretations I.
The interpretation function ·I is extended to individuals by mapping them to
elements of ∆I such that aI 6= bI if a 6= b. An individual d ∈ ∆I is an instance
of a concept C iff dI ∈ CI holds for all interpretations I.

Definition 4 (Depth). The depth of a concept is recursively defined as follows:

– If C = A, C = ¬A, C = (≥ n R), or (≤ n R), then depth(C) := 0.
– If C = ∀R.C ′, then depth(C) := 1 + depth(C′).

Note that, in contrast to usual definitions of the concept depth, we define
the depth of number restrictions as 0.

Definition 5 (Canonical form). Let C1, . . . , Cm be concepts and {R1, . . . , RM}
the set of all roles occuring in C1, . . . , Cm. Then Ci is in canonical form iff

Ci = αi1 u · · · u αini u βiR1 u · · · u βiRji
where ji ∈ {0, . . . ,M}, αik is an atomic concept or negated atomic concept with
no atomic concept appearing more than once and βiRj = (≥ liRj Rj) u (≤
miRj Rj) u ∀Rj .C

′

iRj
with C

′

iRj
also being in canonical form.

It is easy to see that any concept can be transformed into an equivalent
concept in canonical form in linear time.

Definition 6 (LCS). Let C1, . . . , Cm be concepts. Then we define the set of
least common subsumers (LCSs) of C1, . . . , Cm as

lcs(C1, . . . , Cm) := {E|C1 v E ∧ · · · ∧ Cm v E ∧
∀E′ : C1 v E′ ∧ · · · ∧ Cm v E′ ⇒ E v E′}.



In [2], it is shown that, for the DL ALN , all elements of lcs(C1, . . . , Cm)
are equivalent. Therefore, we will consider lcs(C1, . . . , Cm) as a single concept
instead of a set of concepts.

The following example shows that the concept computed by the LCS is some-
times too general and, thus, might not always be a useful retrieval concept. Let
sports-broadcast (SB), team-sports-broadcast (TSB), individual-sports-broadcast
(ISB), basketball (B), football (FB), and tennis-racket (TR) be atomic concepts,
has-sports-tool an atomic role, and
basketball-broadcast (BB) := team-sports-broadcastu (= 1 has-sports-tool) u

∀ has-sports-tool.basketball,

football-broadcast (FB) := team-sports-broadcastu (= 1 has-sports-tool) u
∀ has-sports-tool.football, and

tennis-broadcast (TB) := individual-sports-broadcastu (= 1 has-sports-tool) u
∀ has-sports-tool.tennis-racket

be concepts. Subsequently, we will use the concept abbreviations given in brack-
ets. Let us consider a user interested in TV broadcasts similar to FB and BB.
Then, computing the LCS of FB and BB would result in a useful retrieval concept:
TSBu(= 1has-sports-tool)u∀has-sports-tool.ST. However, let us consider a user
whose interests are expressed by FB and TB. The LCS computation then yields
the retrieval conceptA := SBu(= 1has-sports-tool)u∀has-sports-tool.ST denoting
the set of all sports broadcasts with a sports tool. Since A is a very general con-
cept, using A as a retrieval concept would result in a large amount of TV broad-
casts, which might not be acceptable on the part of the user. A more suitable
result would be to allow for B := TSBu(= 1has-sports-tool)u∀has-sports-tool.ST
and C := ISBu(= 1has-sports-tool)u∀has-sports-tool.ST as alternative retrieval
concepts. This is plausible because in Davis Cup matches, for instance, teams
of tennis players compete against each other. Hence, in our intuition, there is
a non-empty overlap between the concepts TSB and ISB which cannot be ad-
equately quantified in ALN . In order to model the degree of overlap between
concepts by probabilities, the knowledge representation system P-Classic was
introduced in [4]. The DL underlying P-Classic is a probabilistic extension of
ALN augmented by functional roles (attributes).

One of the goals of P-Classic is to compute probabilistic subsumption re-
lationships of the form P (D|C) denoting the probability of an individual to be
an instance of D given that it is an instance of C. In case C ≡ >, we write
P (D). In order to fully describe a concept, its atomic concept components and
the properties of number restrictions and universal role quantifications need to
be described. Therefore, a set P of probabilistic classes (p-classes) is introduced
describing a probability distribution over the properties of individuals condi-
tioned on the knowledge that the individuals occur on the right-hand side of a
role. Each p-class is represented by a Bayesian network and one of the p-classes
P ∗ ∈ P is the root p-class. The root p-class describes the distribution over all
individuals and all other p-classes describe the distribution over role successors
assuming independence between distinct individuals. The Bayesian networks are
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Fig. 1. P-Classic KB about sports broadcasts.

modeled as DAGs whose nodes represent atomic concepts, number restrictions
[Number(R)], and the p-class from which role successors are drawn [PC(R)]. In
addition to P-Classic, we introduce extra nodes for negations of atomic con-
cepts. Dependencies are used to model conditional probabilities and are modeled
by edges in the network. For instance, for an individual, we can state the prob-
ability of this individual to be an instance of ISB under the condition that it is
an instance of SB. The range of the variables of a node representing an atomic
or negated atomic concept can be either true or false and for Number(R) it is a
subset of IN. In order to guarantee termination of the inference algorithm for com-
puting P (D|C), this subset must be finite. Thus, the number of role successors
for a role is bounded. The function bound(R) indicates the maximum number of
role successors for R. The range of a PC(R) node is the set of p-classes P indi-
cating the p-classes the R-successors are drawn from. The reason for introducing
special nodes for negations of atomic concepts is that this extension enables us to
evaluate expressions of the form P (Au¬A) as 0 which will be a necessary prop-
erty subsequently. In order to demonstrate the advantages of the probabilistic
LCS operator, we will now create a P-Classic KB with overlapping concepts.
Figure 1 shows a knowledge base about sports broadcasts enriched by probabil-
ity information. For instance, it is stated that a broadcast is considered to be
about team-sports (TSB) with probability 0.3 given that it is a broadcast about
sports (SB) but no individual-sports (-ISB). Two p-classes are represented. The
concept sports-broadcasts is the root p-class and the role successors for the role
has-sports-tool are drawn from the p-class sports-tools. For each concept C, the
probability PP∗(C) with which an individual is an instance of C can then be com-
puted by a standard inference algorithm for Bayesian networks. For example, the
probability of PP∗(TSBu (= 1 has-sports-tool)u∀has-sports-tool.B) is computed



by setting the nodes for TSB and B to true, Number(has-sports-tool) = 1, and
PC(has-sports-tool) = STs. By Bayesian network propagation we yield a value
of 0.015. With the formalism for computing expressions of the form P (D|C) it
is possible to express the degree of overlap between C and D by a probability.

Based on the probabilistic description logic summarized in this section, it
is possible to define a probabilistic LCS operator which takes into account the
degree of overlap between concepts.

3 A Probabilistic Extension of the LCS Operator

Intuitively, given concepts C1, . . . , Cm, the key idea is to allow those concepts
for candidates of a probabilistic least common subsumer (PLCS) of C1, . . . , Cm
which have a non-empty overlap with C1, . . . , Cm. In order to keep the set of
candidates finite, we consider only concepts whose depth is not larger than
max{depth(Ci)|i ∈ {1, . . . ,m}}. From the viewpoint of information retrieval
this is no severe restriction, since in practical applications deeply nested con-
cepts usually do not have any relevant individuals as instances (e.g., the concept
FB u ∀has-sports-tool.∀has-sports-tool.F in our example).

Definition 7. Let C1, . . . , Cm be ALN concepts and P ∗ the root p-class of a P-

Classic KB. Then we define the set of PLCS concept candidates of C1, . . . , Cm
as

Can(C1, . . . , Cm) := {E|PP∗(E u C1) > 0 ∧ · · · ∧ PP∗(E u Cm) > 0 ∧
depth(E) ≤ max{depth(Ci)|i = 1, . . . ,m}}.

Definition 7 induces the following observation.

Proposition 1. Let C1, . . . , Cm be ALN concepts. Then, in the worst case, the
cardinality of Can(C1, . . . , Cm) is exponential in m.

Proof. Given a P-Classic KB in which C1, . . . , Cm are all atomic concepts
with ∀i, j ∈ {1, . . . ,m} : P (Ci u Cj) > 0, we can bound ]Can(C1, . . . , Cm) by
the exponential function 2m. ut

In the next step, we want to measure the effectiveness of using a certain PLCS
candidate for retrieval. It will be helpful to be able to express the probability
of an individual to be an instance of a concept disjunction. Since this language
operator is not contained in ALN , we use the following definition which is es-
sentially taken from [6].

Definition 8. Let C1, . . . , Cm be ALN concepts. Then we define

P (C1 t · · · tCm) := (−1)2
∑

k=1,...,m

P (Ck) + (−1)3
∑
k1<k2

P (Ck1 u Ck2) +

(−1)4
∑

k1<k2<k3

P (Ck1 u Ck2 u Ck3) + . . .

+(−1)m+1P (C1 u · · · u Cm).



It should be noted that by Definition 8 we do not extend the syntax of the
underlying DL.

Proposition 2. Let C1, . . . , Cm be concepts. Then computing P (C1 t · · · tCm)
is exponential in m.

The proof is obvious and is omitted here.
In many retrieval environments, it is customary to introduce two real num-

bers: recall and precision. Both values indicate the quality of a concept E to
function as an appropriate PLCS. By these measures the qualities of potential
PLCSs can be compared to one another. The comparison will be formalized by
the notion of dominance between triples (E, rE,C1,...,Cm ,
pE,C1,...,Cm) and (E′, rE′,C1,...,Cm , pE′,C1,...,Cm).

Definition 9 (Recall). Let E and C1, . . . , Cm be ALN concepts. Then we de-
fine E’s recall of C1, . . . , Cm as

rE,C1,...,Cm := P (C1 t · · · t Cm|E) =
P (E u (C1 t · · · t Cm))

P (E)
.

According to this definition, the larger the recall measure of a concept E, the
more specific it is w.r.t. probabilistic subsumption of C1, . . . , Cm. For a concept
E, a perfect recall is yielded iff rE,C1,...,Cm = 1. For example, if E is a PLCS
candidate and A an atomic concept such that A v E, then rE,A,¬A = 1. Unlike
in the definition of the (crisp) LCS, a concept expression does not necessarily
need to subsume C1, . . . , Cm (completely) in order to be a PLCS candidate. This
motivates the introduction of the precision measure.

Definition 10 (Precision). Let E and C1, . . . , Cm be ALN concepts. Then we
define E’s precision of C1, . . . , Cm as

pE,C1,...,Cm := P (E|C1 t · · · t Cm) =
P (E u (C1 t · · · t Cm))

P (C1 t · · · t Cm)
.

The precision measures the probability with which a randomly chosen in-
dividual, which is an instance of any of the Ci, i ∈ {1, . . . ,m}, is also an in-
stance of the PLCS candidate E. As a consequence of Definition 10, if E =
lcs(C1, . . . , Cm), we have qE,C1,...,Cm = 1.

Figure 2 illustrates the meaning of both measures given four concepts rep-
resented as areas in the 2D space. The recall of E1, rE1,C,D, corresponds to the
ratio of the size of the hatched area and the size of E1. E1’s precision, pE1,C,D,
is the ratio of the size of E1 and the size of the union of E1, C, and D. Given
the appropriate values for E2 we see that rE2,C,D is smaller than rE1,C,D but
pE2,C,D is larger than pE1,C,D.

Proposition 3. Let E and C1, . . . , Cm be ALN concepts. Then, computing
rE,C1,...,Cm and pE,C1,...,Cm takes time exponential in the length of E,C1, . . . , Cm.

Proof. Since P (E u (C1 t · · · tCm)) = P (E)− (P (E tC1 t · · · tCm)−P (C1 t
· · · t Cm)), the claim follows from Proposition 2. ut
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Fig. 2. Scenario of four concepts illustrating the meaning of “recall” and
“precision”.

With the above considerations, we will define the set of PLCSs of con-
cepts C1, . . . , Cm as a set of triples where the first component is a concept
E ∈ Can(C1, . . . , Cm) and the other components are E’s recall and precision.
In a concrete application, a user should be able to specify minimum values for
at least one of the measures that he is willing to accept. For example, he could
specify a recall of 0.8 preventing him from obtaining too general PLCS concepts
and, thus, restricting the amount of retrieved data.

With the notion of dominance between candidates we can define the set of
probabilistic least common subsumers.

Definition 11 (Dominance). Let E,E′ and C1, . . . , Cm be ALN concepts.
Then (E, rE,C1,...,Cm , pE,C1,...,Cm) dominates (E′, rE′,C1,...,Cm , pE′,C1,...,Cm) iff
rE,C1,...,Cm > rE′,C1,...,Cm ∧ pE,C1,...,Cm > pE′,C1,...,Cm .

Definition 12 (Set of Probabilistic Least Common Subsumers). Let
C1, . . . , Cm be ALN concepts. Then we define the set of probabilistic least com-
mon subsumers of C1, . . . , Cm as

p-lcs(C1, . . . , Cm) := {(E, rE,C1,...,Cm , pE,C1,...,Cm) ∈ Can(C1, . . . , Cm)× IR× IR|
¬∃(E′, rE′,C1,...,Cm , pE′,C1,...,Cm) :
(E′, rE′,C1,...,Cm , pE′,C1,...,Cm) dominates
(E, rE,C1,...,Cm , pE,C1,...,Cm)}.

p-lcs(C1, . . . , Cm) is called minimal iff ∀(E, rE,C1,...,Cm , pE,C1,...,Cm), (E′,
rE′,C1,...,Cm , pE′,C1,...,Cm) ∈ p-lcs(C1, . . . , Cm) : E 6≡ E′.

In Definition 12 we formalize the ideas of Fig. 2 conditioned on the general
case of m concepts. When defining p-lcs(C1, . . . , Cm) we consider only concepts
with a non-empty overlap with each of the C1, . . . , Cm. We only accept triples
with the best quality measures and, therefore, accept only dominating triples in
p-lcs(C1, . . . , Cm). From this definition we can derive the following statement.

Proposition 4. The set p-lcs(C1, . . . , Cm) has the following properties:

(i) p-lcs(C1, . . . , Cm) is finite.
(ii) Minimality: (E, rE,C1,...,Cm , pE,C1,...,Cm) ∈ p-lcs(C1, . . . , Cm) =⇒
∀i ∈ {1, . . . ,m} : P (E u Ci) > 0 ∧ ¬∃(E′, rE′,C1,...,Cm , pE′,C1,...,Cm) :
rE′,C1,...,Cm > rE,C1,...,Cm∧pE′,C1,...,Cm > pE′,C1,...,Cm∧depth(E′) ≤ depth(E).



Proof. (i) is obvious since the maximum depth of the concepts in p-lcs(C1, . . . , Cm)
is limited by the maximum depth of the C1, . . . , Cm and the number of concept
components of C1, . . . , Cm is finite ensuring the number of PLCS candidates to be
finite. Hence, p-lcs(C1, . . . , Cm) is finite as well. For (E, rE,C1,...,Cm , pE,C1,...,Cm) ∈
p-lcs(C1, . . . , Cm), the fact that P (EuCi) > 0, for all i ∈ {1, . . . ,m}, follows im-
mediately by the definition ofCan(C1, . . . , Cm). ¬∃(E′, rE′,C1,...,Cm , pE′,C1,...,Cm) :
rE′,C1,...,Cm > rE,C1,...,Cm ∧ pE′,C1,...,Cm > pE,C1,...,Cm ∧ depth(E′) ≤ depth(E)
also follows since p-lcs(C1, . . . , Cm) contains only dominating triples
(E, rE,C1,...,Cm , pE,C1,...,Cm) with depth(E) ≤ max{depth(Ci)|i ∈ {1, . . . ,m}}.

ut
The minimal set p-lcs(C1, . . . , Cm) can be computed in three steps: First, we
must find the set of concepts which have a non-empty overlap with each of the
C1, . . . , Cm. Proposition 4 (i) states a necessary criterion for a corresponding
algorithm to terminate since the set of concepts E which have a non-empty
overlap with each of the Ci is finite. Then, for each concept E in this set, we
have to compute the parameters rE,C1,...,Cm and pE,C1,...,Cm and then build the
set of dominant triples p-lcs(C1, . . . , Cm). Proposition 4 (ii) guarantees that
there is no relevant retrieval concept with better recall and precision than the
corresponding measures of the triples in p-lcs(C1, . . . , Cm). Finally, we must
determine the minimal set p-lcs(C1, . . . , Cm). This can be done by successively
eliminating a triple (E, rE,C1,...,Cm , pE,C1,...,Cm) from p-lcs(C1, . . . , Cm) as long
as the following condition holds:

∀(E, rE,C1,...,Cm , pE,C1,...,Cm) ∈ p-lcs(C1, . . . , Cm) :
¬∃(E′, rE′,C1,...,Cm , pE′,C1,...,Cm) ∈ p-lcs(C1, . . . , Cm) with E ≡ E′.

The necessary equivalence test can be performed by structural comparisons since
the involved concepts are in normal form. In general, a minimal p-lcs(C1, . . . , Cm)
is not unique since there is no rule stating which triple to eliminate in case two
triples with equivalent concepts are present. However, in our similarity-based
information retrieval application this is no problem because the sets of instances
of equivalent concepts are equal.

Algorithm 1 computes the set of PLCS candidates given concepts C1, . . . , Cm
and the KB as a Bayesian network BN . In the first step, all atomic concepts
and negated atomic concepts in the Bayesian network are collected in the set
X1 if there is a non-empty overlap with each of the C1, . . . , Cm. Computing
the concept candidates for our example, compute-concept-candidate(FB,TB), we
get X1 = {SB,TSB,ISB}. Secondly, we build the set of all conjunctions of con-
cepts of X1 which have a non-empty overlapping with each of the C1, . . . , Cm
including the ones consisting of only one conjunct. In our case, we yield X2 =
{SB,TSB,ISB, SBuTSB, SBu ISB, ISBuTSB, SBuTSBu ISB}. In the next part
of the algorithm, we collect all number restrictions having a non-empty overlap
with each of the C1, . . . , Cm in the set X3. Since the maximum number of role
successors is bounded, we can guarantee finiteness of X3. Let X be an abbrevia-
tion for (= 1has-sports-tool) and Y an abbreviation for (≥ 0has-sports-tool)u(≤
1 has-sports-tool). Then, in our example, we have X3 = {X,Y }. Subsequently,



Algorithm 1 compute-concept-candidates(C1, . . . , Cm, BN)
X1 := ∅,X2 := ∅,X3 := ∅, X4 := ∅, X5 := ∅,X6 := ∅, X7 := ∅
for all nodes in BN representing an atomic or negated atomic concept A do

add A to X1 if ∀i ∈ {1, . . . ,m} : PPCLi(A u Ci) > 0
end for
for all K ∈ 2X1 do

add E := uD∈KD to X2 if ∀i ∈ {1, . . . ,m} : PPCLi(E u Ci) > 0
end for
for i ∈ {1, . . . ,M} and subexpressions of the form (≥ i R)u (≤ j R) in C1, . . . , Cm
do

add (≥ k R) u (≤ l R) to X3 if 0 ≤ k ≤ j ∧ bound(R) ≥ l ≥ i ∧ k ≤ l
end for
for i ∈ {1, . . . ,M} and subexpressions of the form ∀Ri.C

′
1, . . . ,∀Ri.C

′
m in C1, . . . , Cm

do
add the concepts resulting from the invocation
compute-concept-candidates(C

′
1 , . . . , C

′
m, BN) to X4

end for
X5 := {Cu∀Ri.D|i ∈ {1, . . . ,M} and C ∈ X3 and D ∈ X4 and C refers to role Ri}
for all K ∈ 2X5 do

add E := uD∈KD to X6 if ∀i ∈ {1, . . . ,m} : PPCLi(E u Ci) > 0
end for
X7 := X2∪X6∪{CuD|C ∈ X2∧D ∈ X6∧∀i ∈ {1, . . . ,m} : PPCLi (CuDuCi) > 0}
return X7

for all roles Ri and all ∀-quantifications occurring in C1, . . . , Cm and involving
Ri, we add those concepts to X4 which have a non-empty overlap with each
of the Ri quantifiers (C

′

1, . . . , C
′

m in the algorithm). In our example, we com-
pute X4 := {ST}. Now, in X5 we collect all conjunctions of number restrictions
from X3 involving role R and ∀R.D where D is a concept overlapping with R’s
quantifiers C

′

1, . . . , C
′

m. Let X ′ be an abbreviation for X u ∀ has-sports-tool.ST
and Y ′ an abbreviation for Y u ∀ has-sports-tool.ST. Then, in our example, we
have X5 = {X ′, Y ′}. In X6, we collect the conjunctions of elements of X5 over
all occurring roles if a conjunction has a non-empty overlap with each of the
C1, . . . , Cm. Since, in our example, we have only one role, we get X6 = X5.
Finally, we combine the results in X2 (conjunctions of atomic and negated
atomic concepts) and the ones in X6 (conjunctions of number restrictions and
∀-quantifications) into X7 which is returned by the algorithm. In our example,
X7 consists of 21 concepts from which we will only list the ones which are unique
w.r.t. to equivalence: {E1, . . . , E12} = {SB,TSB, ISB,TSBu ISB, SBuX ′,TSBu
X ′, ISB u X ′,TSB u ISB u X ′, SB u Y ′,TSB u Y ′, ISB u Y ′,TSB u ISB u Y ′} as
desired.

Theorem 1. For concepts C1, . . . , Cm and a Bayesian network BN represent-
ing a P-Classic KB, algorithm compute-concept-candidates returns the set
Can(C1, . . . , Cm).



Proof. We give only a sketch of the proof. Algorithm compute-concept-candidates
terminates because the maximum number of iterations is bounded by the max-
imum depth of C1, . . . , Cm. It is sound since every output concept has a non-
empty overlap with C1, . . . , Cm. It is also complete because the algorithm recur-
sively checks all possible concepts resulting from the concept-forming operators
of Definition 1 for a non-empty overlap with C1, . . . , Cm. ut

The set of concept candidates computed by Algorithm 1 can easily be trans-
formed into a set in which all pairs of concepts are not equivalent. Therefore,
later no additional algorithm for transforming p-lcs(C1, . . . , Cm) into a minimal
p-lcs(C1, . . . , Cm) will be necessary. Now recall and precision must be deter-
mined for each candidate by means of the formulae given in Definitions 9 and
10. This can be done straightforwardly by algorithms taking concepts E and
C1, . . . , Cm as input parameters and returning rE,C1,...,Cm and pE,C1,...,Cm , re-
spectively. The set p-lcs(C1, . . . , Cm) contains only those triples whose quality
measures dominate those of other triples.

Algorithm 2 compute-minimal-plcs((E1, r1, p1), . . . , (En, rn, pn))
p-lcs(C1, . . . , Cm) := sort(((E1, r1, p1), . . . , (En, rn, pn)), pi)
for i = 1 to n do

eliminate all (E′, r′, p′) from p-lcs(C1, . . . , Cm) with r′ < ri and p′ < pi
end for.

Algorithm 2 computes the largest subset of dominant triples of {(E1, rE1,C1,...,Cm ,
pE1,C1,...,Cm), . . . , (En, rEn,C1,...,Cm , pEn,C1,...,Cm)}. In the example, we get
p-lcs(FB,TB) = {(SB uX ′, 0.22, 1), (SB u Y ′, 0.22, 1), (TSBuX ′, 0.24, 0.354),
(TSBuY ′, 0.24, 0.354), (ISBuX ′, 0.26, 0.345), (ISBuY ′, 0.26, 0.345)}. As a result
we get six possible retrieval concepts. SBuX ′ is the (crisp) LCS of FB and TB.
Naturally, this concept has a precision of 1.0 since, according to Definition 6,
lcs(FB,TB) is a concept which (completely) subsumes FB and TB. Alternatively,
the result suggests the use of TSB uX ′ or ISB uX ′ as retrieval concepts. Both
concepts have a better recall measure, and using them for retrieval results in a
smaller set of information items. On the other hand, TSB u X ′ and ISB u X ′
have a worse precision measure than SBuX ′. Hence, the probability of meeting
an individual which does not incorporate the commonalities represented by the
concepts FB and TB is higher. The three concepts involving Y ′ have the same
quality measures than the ones involving X ′. The reason is that from our P-

Classic KB it follows that P (Number(has-sports-tool) = 0) = 1.0, i.e, we do
not need to consider them.

Theorem 2. Let C1, . . . , Cm be ALN concepts. Then, in the worst case, com-
puting p-lcs(C1, . . . , Cm) takes time exponential in m.

Proof. This result follows from Proposition 1 since computing the set of PLCS
candidates of C1, . . . , Cm is a subtask of computing p-lcs(C1, . . . , Cm). ut

Propositions 2, 1, and 3 show the sources of complexity for the presented
inference task. Due to the subterms P (C1t· · ·tCm) and P (Eu(C1t· · ·tCm))



occuring in Definitions 9 and 10, the computation of the precision and the recall
measure take time exponential in the number of m. Also the computation of
the set of PLCS candidates takes time exponential in the number of concepts. In
practice, however, the exponential behavior of the computation comes into effect
only for knowledge bases with many overlapping concepts. Thus, when building
a KB, the number of concept overlaps should be kept small.

4 Conclusion

In this article, we contributed to the problem of similarity-based information
retrieval on the basis of the DL ALN . It is shown that in certain cases the
computation of commonalities with the (crisp) LCS operation yields too general
retrieval concepts which can result in an information flood in a retrieval context.
In order to circumvent this problem, we introduced a probabilistic LCS for a
probabilistic extension of the DL ALN . It is proved that the retrieval concepts
provided by this operation are in some sense optimal and can be used as an
alternative to retrieval concepts computed by a crisp LCS operation. By demon-
strating the performances of the PLCS operator with an example we showed that
meaningful retrieval results can be achieved with this operator. In the retrieval
approach we integrated known information retrieval techniques with formally
investigated inference services of DLs. Further research can be done on extend-
ing the expressivity of the underlying DL—especially integrating a disjunction
operator. It is not clear if the disjunction CtD of two concepts C and D should
also belong to the set of PLCS candidates since it is questionable if it sufficiently
represents the commonalities of C and D. Another problem is that the number
of PLCS candidates will dramatically increase in the presence of an or-operator.
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