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Volker Haarslev, Ralf Möller and Michael Wessel
University of Hamburg, Computer Science Department,
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Abstract

The paper introduces the description logicALCNHR+(D)−. Promi-
nent language features beyond ALC are number restrictions, role hi-
erarchies, transitively closed roles, generalized concept inclusions and
concrete domains. As in other languages based on concrete domains
(e.g. ALC(D)) a so-called predicate exists restriction concept construc-
tor is provided. However, compared to ALC(D) only features and no
feature chains are allowed in this operator. This results in a limited
expressivity w.r.t. concrete domains but is required to ensure the de-
cidability of the language. We show that the results can be exploited
for building practical description logic systems for solving e.g. config-
uration problems.

1 Introduction

In the field of knowledge representation, description logics (DLs) have been
proven to be a sound basis for solving application problems. Detailed intro-
ductions to description logics can be found in [Woods and Schmolze, 1992]
and [Donini et al., 1996]. An application domain where DLs have been
successfully applied is configuration (see [Wright et al., 1993] for an early
publication). In the following we assume the reader is familiar with de-
scription logics (see also [Baader, 1999; Baader and Sattler, 2000] for recent
introductions). The main notions for domain modeling are concepts (unary
predicates) and roles (binary predicates). Furthermore, a set of axioms (also
called TBox) is used for modeling the terminology of an application. Knowl-
edge about specific individuals and their interrelationships is modeled with
a set of additional axioms (so-called ABox).

Experiences with description logics in applications indicate that negation,
existential and universal restrictions, transitive roles, role hierarchies, and
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number restrictions are required to solve practical modeling problems without
resorting to ad hoc extensions. The description logics ALCNR [Buchheit
et al., 1993] and ALCNHR+ [Haarslev and Möller, 2000a] formalize many
of the above-mentioned requirements. The DL knowledge representation
system RACE provides an optimized implementation for ABox reasoning in
ALCNHR+ [Haarslev et al., 1999; Haarslev and Möller, 2000a]. RACE can
be used for large-scale knowledge modeling [Haarslev and Möller, 2000b]. A
calculus for ABox reasoning for the logic SHIQ (i.e. ALCNHR+ augmented
with qualified number restrictions and inverse roles) has been introduced in
[Horrocks et al., 2000]. However, an implementation of the SHIQ ABox
reasoning algorithm is not yet available.

The requirements derived from practical applications of DLs ask for even
more expressive languages. It is well-known that reasoning about objects
from other domains (so-called concrete domains, e.g. for the reals) is very
important for practical applications as well [Baader and Hanschke, 1991a;
Baader and Hanschke, 1991b]. Thus, an extension of the ALCNHR+ knowl-
edge representation system RACE with concrete domain is investigated.

Unfortunately, adding concrete domains to expressive description logics might
lead to undecidable inference problems. For instance, in [Baader and Han-
schke, 1992] it is proven that the logic ALC(D) plus an operator for the tran-
sitive closure of roles is undecidable. ALCNHR+ offers transitive roles but
no operator for the transitive closure of roles (see [Sattler, 1996, p. 342] for a
detailed discussion about expressivity differences). In [Lutz, 1999] it is shown
that ALC(D) with generalized inclusion axioms (GCIs) is undecidable. Thus,
if termination and soundness are to be retained, there is no way extending an
ALCNHR+ DL system such as RACE with concrete domains as in ALC(D)
without losing completeness. Even if GCIs were discarded, ALCNHR+ with
concrete domains would be undecidable because ALCNHR+ offers role hi-
erarchies and transitive roles, which provide the same expressivity as GCIs.
With role hierarchies it is possible to (implicitly) declare a universal role,
which can be used in combination with a value restriction to achieve the
same effect as with GCIs.

Thus, ALCNHR+ can only be extended with concrete domain operators with
limited expressivity. In order to support practical modeling requirements
at least to some extent, we pursue a pragmatic approach by supporting a
limited kind of concept exists restriction which supports only features (and no
feature chains as in ALC(D), for details see below). The resulting language
is called ALCNHR+(D)−. By proving soundness and completeness (and
termination) of a tableaux calculus, the decidability of inference problems
w.r.t. the language ALCNHR+(D)− is proved. As shown in this report,
ALCNHR+(D)− can be used, for instance, as a basis for building practical
application systems for solving certain classes of configuration problems, see
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also [Buchheit et al., 1995; Schröder et al., 1996].

2 The Description Logic ALCNHR+(D)−

The description logic ALCNHR+(D)− augments the basic logic ALC [Schmidt-
Schauss and Smolka, 1991] with number restrictions, role hierarchies, tran-
sitively closed roles and concrete domains. The use of number restrictions
in combination with transitive roles and role hierarchies is syntactically re-
stricted: no number restrictions are possible for (i) transitive roles and (ii) for
any role which has a transitive subrole (see also [Horrocks et al., 1999]). In
addition to the operators known from ALCNHR+ a limited kind of predicate
exists restriction operator for concrete domains is supported. Furthermore,
we assume that the unique name assumption holds for the individuals ex-
plicitly mentioned in an ABox.

2.1 The Concept Language

For presenting the syntax and semantics of the language ALCNHR+(D)− a
few definitions are required.

Definition 1 (Features, Roles, Role Axioms, Role Hierarchy) Let F
and R be disjoint sets of feature names and role names, respectively. For
brevity, a role name is also called a role and a feature name is also called
a feature. Furthermore, let S ⊆ R be the set of simple roles . If R and S
are role names, then R � S is a role inclusion axiom. If R is a role name,
then transitive(R) is called a role transitivity axiom. Both kinds of axioms
are called role axioms. A set of role inclusion axioms is also called a role
hierarchy .

Additionally, we define the set of ancestors and descendants of a role as well
as the set of transitive roles w.r.t. a set of role axioms.

Definition 2 (Role Descendants/Ancestors) Let R be a set of role ax-
ioms and �R be defined as {(R, S) |R � S ∈ R} and let �∗

R be the reflex-
ive transitive closure of �R over R. Given a set of role axioms R the set
R↑

R := {S ∈ R | (R, S) ∈ �∗
R} defines the ancestors and R↓

R := {S ∈ R |
(S,R) ∈ �∗

R} the descendants of a role R w.r.t. a set of role axioms R. The
set of transitive roles TR of a set of role axioms R is defined as {R | transitive(R)
∈ R}.

Definition 3 (Role Box) A finite set of role axioms is called a role box R
if ∀R ∈ S : R↓

R ∩ T = ∅. A role box is also called RBox for brevity.
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In the following, the index R is omitted if the role box R is clear from the
context.

In accordance with [Baader and Hanschke, 1991a] we also define the notion
of a concrete domain.

Definition 4 (Concrete Domain) A concrete domain D is a pair (∆D,ΦD),
where ∆D is a set called the domain, and ΦD is a set of predicate names.
Each predicate name PD from ΦD is associated with an arity n and an n-ary
predicate PD. A concrete domain D is called admissible iff:

• The set of predicate names ΦD is closed under negation and ΦD contains
a name �D for ∆D,

• The satisfiability problem Pn1
1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm

m (xm1, . . . , xmnm)
is decidable (m is finite, Pni

i ∈ ΦD, ni is the arity of P, and xjk is a name
for an object from ∆D).

We assume that ⊥D is the negation of the predicate �D. Using the definitions
from above, the syntax of concept terms in ALCNHR+(D)− is defined as
follows.

Definition 5 (Concept Terms) Let C be a set of concept names which
is disjoint from R and F . Any element of C is a concept term. If C and
D are concept terms, R ∈ R is an arbitrary role, S ∈ S is a simple role,
n,m ∈ N, n > 1, and m > 0, P ∈ ΦD is a predicate of the concrete domain,
f, f1, . . . , fk ∈ F are features, then the following expressions are also concept
terms:

• C � D (conjunction)
• C � D (disjunction)
• ¬C (negation)
• ∀R .C (concept value restriction)
• ∃R .C (concept exists restriction)
• ∃≤m S (at most number restriction)
• ∃≥n S (at least number restriction).
• ∃ f1, . . . , fk .P (predicate exists restriction).
• ∀ f .⊥D (no concrete domain filler restriction).

A concept term may be put in parentheses. For brevity, concept terms are
also called concepts. � (⊥) is considered as an abbreviation for C � ¬C
(C � ¬C) for some C ∈ C . For an arbitrary role R, the term ∃≥1 R can be
rewritten as ∃R .�, ∃≥0 R as �, and ∃≤0 R as ∀R .⊥. Thus, we do not
consider these terms as number restrictions in our language.
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Definition 6 (Terminological Axiom, TBox) If C and D are concept
terms, then C � D is a terminological axiom. A terminological axiom is also
called generalized concept inclusion or GCI . A finite set of terminological
axioms T is called a terminology or TBox .

The next definition gives a model-theoretic semantics to the language intro-
duced above. Let D = (∆D,ΦD) be a concrete domain.

Definition 7 (Semantics) An interpretation ID = (∆I ,∆D, ·I) consists
of a set ∆I (the abstract domain), a set ∆D (the domain of the ‘concrete
domain’ D) and an interpretation function ·I . The interpretation function
·Imaps each concept name C to a subset CI of ∆I , each role name R from
R to a subset RI of ∆I × ∆I . Each feature f from F is mapped to a partial
function fI from ∆I to ∆D where fI(a) = x will be written as (a, x) ∈ fI . Each
predicate name P from ΦD with arity n is mapped to a subset PI of ∆n

D. Let
the symbols C, D be concept expressions, R, S be role names, f, f1, . . . , fn be
features and let P be a predicate name. Then, the interpretation function
is extended to arbitrary concept and role terms as follows (‖ · ‖ denotes the
cardinality of a set):

(C � D)I := CI ∩ DI

(C � D)I := CI ∪ DI

(¬C)I := ∆I \ CI

(∃R .C)I := {a ∈ ∆I | ∃ b : (a, b) ∈ RI , b ∈ CI}
(∀R .C)I := {a ∈ ∆I | ∀ b : (a, b) ∈ RI ⇒ b ∈ CI}
(∃≥n R)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI}‖ ≥ n}
(∃≤m R)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI}‖ ≤ m}

(∃ f1, . . . , fn .P)I := {a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D :

(a, x1) ∈ f1
I , . . . , (a, xn) ∈ fn

I ,

(x1, . . . , xn) ∈ PI}
(∀ f .⊥D)I := {a ∈ ∆I | ¬∃x1 ∈ ∆D : (a, x1) ∈ fI}

An interpretation ID is a model of a concept C iff CID &= ∅. An interpretation
ID satisfies a terminological axiom C � D iff CI ⊆ DI . ID is a model of a
TBox T iff it satisfies all terminological axioms C � D in T . An interpreta-
tion ID is a model of an RBox R iff RI ⊆ SI for all role inclusions R � S in
R and, in addition, ∀ transitive(R) ∈ R : RI = (RI)

+
.
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2.2 The Assertional Language

In the following, the language for representing knowledge about specific in-
dividuals is introduced.

Definition 8 (Assertional Axioms, ABox) Let O = OO ∪ ON be a set
of individual names (or individuals), where the set OO of “old” individuals
is disjoint with the set ON of “new” individuals. Old individuals are those
names that explicitly appear in an ABox given as input to an algorithm for
solving an inference problem (see below), i.e. the initially mentioned indi-
viduals must not be in ON . Elements of ON will be generated internally.
Furthermore, let OC be a set of names for concrete objects (OC ∩ O = ∅).
If C is a concept term, R ∈ R a role name, f ∈ F a feature, a, b ∈ OO are
individual names and x, x1, . . . , xn ∈ OC are names for concrete objects, then
the following expressions are assertional axioms or ABox assertions :

• a :C (concept assertion),
• (a, b) :R (role assertion),
• (a, x) : f (concrete domain feature assertion),
• (x1, . . . , xn) :P (concrete domain predicate assertion).

An ABox A is a finite set of assertional axioms.

We need a few additional terms: An individual b is called a direct successor
of an individual a in an ABox A iff A contains the assertional axiom (a, b) :R.
An individual b is called a successor of a if it is either a direct successor of a or
there exists in A a chain of assertions (a, b1) :R1, (b1, b2) :R2, . . . , (bn, b) :Rn+1.
In case that Ri = Rj or Ri ∈ R↓ for all i, j ∈ 1..n + 1 we call b the (direct) R-
successor of a. A (direct) predecessor is defined analogously. Note that
concrete domain objects are not considered as successors or predecessors in
the sense defined above.

The interpretation function ·I of the interpretation ID can be extended to the
assertional language. Every individual name from O to a single element ∆I in
such a way that for a, b ∈ OO , aI &= bI if a &= b (unique name assumption).
This ensures that different individuals in OO are interpreted as different
objects. The unique name assumption does not hold for elements of ON , i.e.
for a, b ∈ ON , aI = bI may hold even if a &= b. Concrete objects from OC are
mapped to elements of ∆D.

An interpretation satisfies an assertional axiom a :C iff aI ∈ CI , (a, b) :R iff
(aI , bI) ∈ RI , (a, x) : f iff (aI , xI) ∈ fI and (x1, . . . , xn) :P iff (x1

I , . . . , xn
I) ∈ PI .

An interpretation ID is a model of an ABox A iff it satisfies all assertional
axioms in A.

If an interpretation ID is a model of a TBox T , an RBox R or an ABox A,
then ID is also said to satisfy T , R or A, respectively.
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Definition 9 (Knowledge Base) A knowledge base is a triple (T ,R,A)
where T is a TBox, R is an RBox and A is an ABox. An interpretation ID
is a model of a knowledge base (T ,R,A) iff ID is a model of T , R and A.

Definition 10 (Inference Problems, Consistency) A concept is called
consistent (w.r.t. a TBox T and an RBox R) iff there exists a model of C
(that is also a model of T and R). An ABox A is consistent (w.r.t. a TBox
T and an RBox R) iff A has model ID (which is also a model of T and R).
A knowledge base is called consistent iff there exists a model. A concept,
ABox or knowledge base which is not consistent is called inconsistent.

3 Solving an Application Problem with ALCNHR+(D)−

According to [Buchheit et al., 1994; Buchheit et al., 1995] configuration prob-
lem solving processes can be formalized as synthesis inference tasks. Follow-
ing this approach, a solution of a configuration task is defined to be a logical
model of the given knowledge base consisting of both the conceptual domain
model (TBox, RBox) as well as the task specification (ABox).1 The TBox
and the RBox describe the configuration space.

Note that specific languages for describing the configuration space might be
used. For instance, Bhibs [Cunis, 1991] is a configuration frame language
which allows one to describe the properties of instances by specifying restric-
tions for the required values of named slots. The values can be either single
objects or sets of objects, and the restrictions can be specified extension-
ally by directly giving concrete values like numbers, symbols or instances of
concepts, or by intensionally describing sets and sequences of objects. The
following example of an expression of the Bhibs-language describes the con-
cept of a cylinder:

(is! (a Cylinder)
(a Motorpart

(part-of (a Motor))
(displacement [1ccm 1000ccm])
(has-parts

(:set #[(a Cylinderpart) 4 6] :=
#[(a Piston) 1 1]
#[(a Piston-Rod) 1 1]
#[(a Valve) 2 4]))))

A Cylinder is required to be a Motorpart, to be part of a Motor, to have a
displacement of 1 to 1000ccm, and to have a set of 4 to 6 parts (has parts)
which are all Cylinderparts and it consists of exactly 1 Piston, exactly 1

1[Buchheit et al., 1995] additionally considers relations defined with definite clauses.
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Piston Rod, and 2 to 4 Valves. This expression can be transformed to a
terminological inclusion axiom of a description logic providing concrete do-
mains. Let the concrete domain ' be defined as in [Baader and Hanschke,
1991b]: ' = (R,Φ�) where Φ� is a set of predicates which are based on
polynomial equations or inequations. The concrete domain ' is admissible
(see also [Baader and Hanschke, 1991b]).

The cylinder example is translated as follows (the term λVol c. (. . . ) is a unary
predicate of a numeric concrete domain for the dimension Volume with base
unit m3):

Using the language ALCNHR+(D)− this can be translated into description
logics. First of all, a role box R is defined to contain the following role inclu-
sion axioms.

has cylinder part � has part

has piston part � has part

has piston rod part � has part

has valve part � has part

Then, a TBox T is given as a set of terminological axioms. For instance, the
following range restrictions are declared.

� � ∀ has cylinder part .Cylinder

� � ∀ has piston part .Piston

� � ∀ has piston rod part .Piston Rod

� � ∀ has valve part .Valve

For Cylinderpart a so-called cover axiom is given. Moreover, additional ax-
ioms ensure the disjointness of more specific subconcepts of Cylinderpart.

Cylinderpart � Piston � Piston Rod � Valve

Piston � ¬Piston Rod � ¬Valve
Piston Rod � ¬Piston � ¬Valve

Valve � ¬Piston � ¬Piston Rod

Now another axiom relates a Cylinder to its parts. We assume that displacement
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is declared as a feature.

Cylinder � Motorpart �
∃=1 part of �
∃ displacement . λVol c . 0.001 ≤ c ≤ 1 �
∀ has parts .Cylinderpart �
∃≥4 has cylinder part �
∃≤6 has cylinder part �
∃=1 has piston part �
∃=1 has piston rod part �
∃≥2 has valve part �
∃≤4 has valve part

In our example, the ABox being used is very simple:

A = {a :Cylinder � ∃ displacement . λVol c . c ≥ 0.5}.
In order to solve the configuration problem, the knowledge base (T ,R,A)
is tested for consistency. If the knowledge base is consistent, there exists
a model. The model can be interpreted as a solution to the configuration
problem [Buchheit et al., 1994]. Note that (T ,R,A) is only a very simplified
example for a representation of a configuration problem. For instance, using
an ABox with additional assertions it is possible to explicitly specify some
required cylinder parts etc.

In order to actually compute a solution to a configuration problem, a sound
and complete calculus for the ALCNHR+(D)− knowledge base consistency
problem is required that terminates on any input. If the calculus returns
“consistent” then (parts of) the internal structures used in the proof can be
printed as a problem solution in a convenient form. We will return to this
point after the discussion of the tableaux calculus for ALCNHR+(D)−.

4 A Tableaux Calculus for ALCNHR+(D)−

In the following a calculus to decide the consistency of an ALCNHR+(D)−

knowledge base (T ,R,A) is devised. As a first step the original ABox A of
the knowledge base is transformed w.r.t. the TBox T . The idea is to derive
an ABox AT that is consistent w.r.t. an RBox R (and an empty TBox) iff
(T ,R,A) is consistent. The calculus introduced below is applied to AT and
the role box R.

In order to define the transformation steps for deriving AT , we have to intro-
duce a few technical terms. First, for any concept term we define its negation
normal form.
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Definition 11 (Negation Normal Form) A concept is in negation nor-
mal form iff negation signs may occur only in front of concept names.

Proposition 12 Every ALCNHR+(D)− concept term C can be transformed
into negation normal form nnf (C) by recursively applying the following trans-
formation rules to subconcepts from left to right. If no rule is applicable, the
resulting concept is in negation normal form and all models of C are also
models of nnf (C) and vice versa. The transformation is possible in linear
time.

• ¬(C � D) → ¬C � ¬D
• ¬(C � D) → ¬C � ¬D
• ¬∀R .C → ∃R .¬C
• ¬∃R .C → ∀R .¬C
• ¬∃≤m S → ∃≥m+1 S
• ¬∃≥m S → ∃≤m−1 S
• ¬∃ f1, . . . , fn .P → ∃ f1, . . . , fn .P � ∀ f1 .⊥D � . . . � ∀ fn .⊥D

where P is the negation of P.
• ¬∀ f .⊥D → ∃ f .�D

Definition 13 (Additional ABox Assertions) Let C be a concept term,
a, b ∈ O be individual names, and x &∈ O ∪OC , then the following expres-
sions are also assertional axioms:

• ∀ x . x :C (universal concept assertion),2

• a & .= b (inequality assertion).

An interpretation ID satisfies an assertional axiom ∀ x . x :C iff CI = ∆I and
a & .= b iff aI &= bI .

Definition 14 (Fork, Fork Elimination) If it holds that
{(a, x1) : f, (a, x2) : f} ⊆ A then there exists a fork in A. In case of a fork w.r.t.
x1, x2, the replacement of every occurrence of x2 in A by x1 is called fork
elimination.

We are now ready to define an augmented ABox as input to the tableaux
rules.

Definition 15 (Augmented ABox) For an initial ABox A we define its
augmented ABox AT w.r.t a TBox T by applying the following transforma-
tion rules to A. First of all, all forks in A are eliminated. Then, for every
GCI C � D in T the assertion ∀ x . x : (¬C � D) is added to A. Every con-
cept term occurring in A is transformed into its negation normal form. Let

2∀ x . x :C is to be read as ∀ x . (x :C).
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OA = {a1, . . . , an} be the set of individuals mentioned in A, then the set of
inequality assertions {ai & .= aj | ai, aj ∈ OA, i, j ∈ 1..n, i &= j} is added to A.

In order to check the consistency of an ALCNHR+(D)− knowledge base
(T ,R,A) the augmented ABox AT is computed. Then, the tableaux rules
are applied to the augmented ABox AT and a role box R. The rules are
applied in accordance with a completion strategy (see below).

Lemma 16 A knowledge base (T ,R,A) is consistent if and only if AT is
consistent w.r.t. the role box R (and an empty TBox).

Proof. “⇒” Since (T ,R,A) is consistent there exists a model ID = (∆I ,∆D, ·I)
such that ∀C � D ∈ T : CI ⊆ DI . This is equivalent to ∀ a ∈ ∆I : a ∈ CI =⇒
a ∈ DI . Hence, ∀ a ∈ ∆I : a ∈ (¬C)I ∨ a ∈ DI or ∀ a ∈ ∆I : a ∈ (¬C � D)I .
In other words: (¬C � D)I = ∆I . Thus, due to the semantics defined above
∀ x . x :¬C � D is also satisfied.

“⇐” This can be shown by applying the arguments in the other direction.

Since all forks are eliminated in AT and all terminological axioms in T are
appropriately represented in AT , a model for both AT and R is also a model
for A, T and R and vice versa. �
The tableaux rules require the notion of blocking their applicability. This is
based on so-called concept sets, an ordering for new individuals and concrete
objects, and the notion of a blocking individual.

Definition 17 (Concept Set, A-equivalent) Given an ABox A and an
individual a occurring in A, we define the concept set of a as σ(A, a) :=
{C | a :C ∈ A}. We define two individuals as A-equivalent , written a ≡A b, if
their concept sets are equal, i.e. σ(A, a) = σ(A, b).

Definition 18 (Ordering) We define an individual ordering ‘≺’ for new
individuals (elements of ON ) occurring in an ABox A. If b ∈ ON is introduced
in A, then a ≺ b for all new individuals a already present in A. A concrete
object ordering ‘≺C ’ for elements of OC occurring in an ABox A is defined
as follows. If y ∈ OC is introduced in A, then x≺C y for all concrete objects
x already present in A.

Definition 19 (Blocking Individual, blocked) Let A be an ABox and
a, b ∈ ON be individuals in A. We call a the blocking individual of b if the
following conditions hold:

1. σ(A, a) ⊇ σ(A, b)
2. a ≺ b
3. ¬∃ c in A : c ∈ ON , c ≺ a, σ(A, c) ⊇ σ(A, b).

If a is a blocking individual for b, then b is said to be blocked by a.
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4.1 Completion Rules

We are now ready to define the completion rules that are intended to generate
a so-called completion (see also below) of an ABox AT w.r.t. an RBox R.
From this point on, if we refer to an ABox A, we always consider ABoxes
derived from AT .

Definition 20 (Completion Rules)

R� The conjunction rule.
if 1. a :C � D ∈ A, and

2. {a :C, a :D} &⊆ A
then A′ = A∪ {a :C, a :D}
R� The disjunction rule (nondeterministic).
if 1. a :C � D ∈ A, and

2. {a :C, a :D} ∩ A = ∅
then A′ = A∪ {a :C} or A′ = A∪ {a :D}
R∀C The role value restriction rule.
if 1. a :∀R .C ∈ A, and

2. ∃ b ∈ O , S ∈ R↓ : (a, b) :S ∈ A, and
3. b :C &∈ A

then A′ = A∪ {b :C}
R∀+C The transitive role value restriction rule.
if 1. a :∀R .C ∈ A, and

2. ∃ b ∈ O ,T ∈ R↓,T ∈ T , S ∈ T↓ : (a, b) :S ∈ A, and
3. b :∀T .C &∈ A

then A′ = A∪ {b :∀T .C}
R∀x The universal concept restriction rule.
if 1. ∀ x . x :C ∈ A, and

2. ∃ a ∈ O : a mentioned in A, and
3. a :C &∈ A

then A′ = A∪ {a :C}
R∃C The role exists restriction rule (generating).
if 1. a :∃R .C ∈ A, and

2. a ∈ ON ⇒ (¬∃ c in A : c ∈ ON , c is a blocking individual for a), and
3. ¬∃ b ∈ O , S ∈ R↓ : {(a, b) :S, b :C} ⊆ A

then A′ = A∪ {(a, b) :R, b :C} where b ∈ON is not used in A
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R∃≥n The number restriction exists rule (generating).
if 1. a :∃≥n R ∈ A, and

2. a ∈ ON ⇒ (¬∃ c in A : c ∈ ON , c is a blocking individual for a), and
3. ¬∃ b1, . . . , bn ∈ O , S1, . . . , Sn ∈ R↓ :

{(a, bk) :Sk | k ∈ 1..n} ∪ {bi & .= bj | i, j ∈ 1..n, i &= j} ⊆ A
then A′ = A∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi & .= bj | i, j ∈ 1..n, i &= j}

where b1, . . . , bn ∈ON are not used in A
R∃≤n The number restriction merge rule (nondeterministic).
if 1. a :∃≤n R ∈ A, and

2. ∃ b1, . . . , bm ∈ O , S1, . . . , Sm ∈ R↓: {(a, b1) :S1, . . . , (a, bm) :Sm} ⊆ A
with m > n, and

3. ∃ bi, bj ∈ {b1, . . . , bm} : i &= j, bi & .= bj &∈ A
then A′ = A[bi/bj], i.e. replace every occurrence of bi in A by bj

R∃P The predicate exists rule (generating).
if 1. a :∃ f1, . . . , fn .P ∈ A, and

2. ¬∃x1, . . . , xn ∈ OC : {(a, x1) : f1, . . . (a, xn) : fn, (x1, . . . , xn) :P} ⊆ A
then A′ = A∪ {(a, x1) : f1, . . . (a, xn) : fn, (x1, . . . , xn) :P}

where x1, . . . , xn ∈OC are not used in A,
eliminate all forks {(a, x) : fi, (a, xi) : fi} ⊆ A
such that (a, x) : fi remains in A if x≺Cxi, i ∈ 1..n

We call the rules R� and R∃≤n nondeterministic rules since they can be
applied in different ways to the same ABox. The remaining rules are called
deterministic rules. Moreover, we call the rules R∃C, R∃≥n and R∃P gener-
ating rules since they are rules that can introduce new individuals.

Proposition 21 (Invariance) Let A and A′ be ABoxes and R be a role
box. Then:

1. If A′ is derived from A w.r.t. R by applying a deterministic rule, then
A is consistent w.r.t. R iff A′ is consistent w.r.t. R.

2. If A′ is derived from A w.r.t. R by applying a nondeterministic rule,
then A is consistent w.r.t. R if A′ is consistent w.r.t. R. Conversely,
if A is consistent w.r.t. R and a nondeterministic rule is applicable to
A, then it can be applied in such a way that it yields an ABox A′

consistent w.r.t. R.

Proof.

1. “⇐” Due to the structure of the deterministic rules one can immediately
verify that A is a subset of A′. Therefore, A is consistent w.r.t. R if A′ is
consistent w.r.t. R.
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“⇒” In order to show that A′ is consistent w.r.t. R after applying a de-
terministic rule to the consistent ABox A, we examine each applicable rule
separately. We assume that ID = (∆I ,∆D, ·I) satisfies A and R. Then, we
observe that it is an obvious consequence that RI ⊆ SI iff (R, S) ∈ �∗

R.

If the conjunction rule is applied to a :C � D ∈ A, then we get a new Abox
A′ = A ∪ {a :C, a :D}. Since ID satisfies a :C � D, ID satisfies a :C and a :D
and therefore A′.

If the role value restriction rule is applied to a :∀R .C ∈ A, then there must
be a role assertion (a, b) :S ∈ A with S ∈ R↓ such that A′ = A∪ {b :C}. Since
ID satisfies A and R, it holds that (aI , bI) ∈ SI , SI ⊆ RI . Since ID satisfies
a :∀R .C, it holds that bI ∈ CI . Thus, ID satisfies b :C and therefore A′.

If the transitive role value restriction rule is applied to a :∀R .C ∈ A, there
must be an assertion (a, b) :S ∈ A with S ∈ T↓ for some T ∈ T and T ∈ R↓

such that we get A′ = A∪ {b :∀T .C}. Since ID satisfies A and R, we
have aI ∈ (∀R .C)I and (aI , bI) ∈ SI , SI ⊆ TI ⊆ RI . Since aI ∈ (∀T .C)I ,
ID satisfies a :∀T .C and T ∈ T ,T ∈ R↓, it holds that bI ∈ (∀T .C)I unless
there exists a successor c of b such that (b, c) :S′ ∈ A, (bI , cI) ∈ S′I ⊆ TI

and cI &∈ CI . It follows from (aI , bI) ∈ TI , (bI , cI) ∈ TI , and T ∈ T that
(aI , cI) ∈ TI ,TI ⊆ RI and aI &∈ (∀R .C)I in contradiction to the assumption.
Thus, ID satisfies b :∀T .C and therefore A′.

If the universal concept restriction rule is applied to an individual a in A
because of ∀ x . x :C ∈ A, then A′ = A ∪ {a :C}. Since ID satisfies A and R,
it holds that CI = ∆I . Thus, it holds that aI ∈ CI and ID satisfies A′.

If the role exists restriction rule is applied to a :∃R .C ∈ A, then we get the
ABox A′ = A∪ {(a, b) :R, b :C}. Since ID satisfies A and R, there exists
a y ∈ ∆I such that (aI , y) ∈ RI and y ∈ CI . We define the interpretation
function ·I′

such that bI
′
:= y and x I′

:= x I for x &= b. It is easy to show
that I ′

D = (∆I ,∆D, ·I
′
) satisfies A′.

If the number restriction exists rule is applied to a :∃≥n R ∈ A, then we get
A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi & .= bj | i, j ∈ 1..n, i &= j}. Since ID satisfies
A and R, there must exist n distinct individuals yi ∈ ∆I , i ∈ 1..n such that
(aI , yi) ∈ RI . We define the interpretation function ·I′

such that bi
I′

:= yi

and x I′
:= x I for x &∈ {b1, . . . , bn}. It is easy to show that I ′

D = (∆I ,∆D, ·I
′
)

satisfies A′.

If the predicate exists rule is applied to a :∃ f1, . . . , fn .P ∈ A, then we get the
ABox A′ = A ∪ {(x1, . . . , xn) :P, (a, x1) : f1, . . . , (a, xn) : fn}. After fork elimi-
nation, some xi may be replaced by zi with zi≺Cxi. Since ID satisfies A
and R, there exist y1, . . . , yn ∈ ∆D such that ∀i ∈ {1, . . . , n} : (aI , yi) ∈ fi

I

and (y1 , . . . , yn) ∈ PI . We define the interpretation function ·I′
such that

xi
I′

:= yi for all xi not replaced by zi and (y1 , . . . , yn) ∈ PI′
. The fork elimi-

nation strategy used in the R∃P rule guarantees that concrete objects intro-
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duced in previous steps are not eliminated. Thus, it is ensured that the inter-
pretation of xi is not changed in I ′

D. It is easy to see that I ′
D = (∆I ,∆D, ·I

′
)

satisfies A′.

2. “⇐” Assume that A′ is satisfied by I ′
D = (∆I ,∆D, ·I

′
). By examining the

nondeterministic rules we show that A is also consistent w.r.t. R.

If A′ is obtained from A by applying the disjunction rule, then A is a subset
of A′ and therefore satisfied by I ′

D and R.

If A′ is obtained from A by applying the number restriction merge rule to
a :∃≤n R ∈ A, then there exist bi, bj in A such that A′ = A[bi/bj]. We define

the interpretation function ·I such that bi
I := bj

I′
and xI := xI

′
for every

x &= bi. Obviously, ID = (∆I ,∆D, ·I) satisfies A and R.

“⇒” We suppose that ID = (∆I ,∆D, ·I) satisfies A and R and a nondeter-
ministic rule is applicable to an individual a in A.

If the disjunction rule is applicable to a :C � D ∈ A and A is consistent w.r.t.
R, it holds aI ∈ (C � D)I . It follows that either aI ∈ CI or aI ∈ DI (or both).
Hence, the disjunction rule can be applied in a way that ID also satisfies the
ABox A′.

If the number restriction merge rule is applicable to a :∃≤n R ∈ A and A
is consistent w.r.t. R, it holds aI ∈ (∃≤n R)I and ‖{b | (a, b) ∈ RI}‖ ≤ n.
However, it also holds ‖{b | (aI, bI) ∈ RI}‖ > m with m ≥ n. Without loss
of generality we only need to consider the case that m = n + 1. Thus, we
can conclude by the Pigeonhole Principle that there exist at least two R-
successors bi, bj of a such that bi

I = bj
I . Since ID satisfies A and R, at least

one of the two individuals must be a new individual. Let us assume bi ∈ ON ,
then ID obviously satisfies A[bi/bj] and R. �
Given an ABox A, more than one rule might be applicable to A. This is
controlled by a completion strategy in accordance to the ordering for new
individuals (see Definition 18).

Definition 22 (Completion Strategy) We define a completion strategy
that must observe the following restrictions.

• Meta rules:

– Apply a rule to an individual b ∈ ON only if no rule is applicable
to an individual a ∈ OO .

– Apply a rule to an individual b ∈ ON only if no rule is applicable
to another individual a ∈ ON such that a ≺ b.

• The completion rules are always applied in the following order. A step
is skipped in case the corresponding set of applicable rules is empty.
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1. Apply all nongenerating rules (R�, R�, R∀C, R∀+C, R∀x, R∃≤n)
as long as possible.

2. Apply a generating rule (R∃C, R∃≥n, R∃P) and restart with step
1 as long as possible.

In the following we always assume that rules are applied in accordance to this
strategy. It ensures that the rules are applied to new individuals w.r.t. the
ordering ‘≺’ which guarantees a breadth-first order. The application of rules
stops immediately and backtracks to (possibly) remaining choice points, if a
so-called clash is discovered.

Definition 23 (Clash,Clash Triggers, Completion) We assume the same
naming conventions as used above. An ABox A contains a clash if one of
the following clash triggers is applicable. If none of the clash triggers is
applicable to A, then A is called clash-free.

• Primitive clash: {a :C, a :¬C} ⊆ A

• Number restriction merging clash:
∃S1, . . . , Sm ∈ R↓ : {a :∃≤n R} ∪ {(a, bi) :Si | i ∈ 1..m}∪
{bi & .= bj | i, j ∈ 1..m, i &= j} ⊆ A with m > n

• No concrete domain feature clash: {(a, x) : f, a :∀ f .⊥D} ⊆ A.

• Concrete domain predicate clash: (x(1)
1 , . . . , x(1)

n ) :P1 ∈ A, . . . ,

(x
(k)
1 , . . . , x

(k)
nk ) :Pk ∈ A and the conjunction

∧k
i=1 Pi(x

(i)
1 , . . . , x

(i)
ni ) is not

satisfiable in D. Note that this can be decided since D is required to
be admissible.

A clash-free ABox A is called complete if no completion rule is applicable to
A. A complete ABox A′ derived from an ABox A is also called a completion
of A.

Any ABox containing a clash is obviously unsatisfiable (w.r.t. an RBox R).
The purpose of the calculus is to generate a completion for an initial ABox
AT that proves the consistency of AT (w.r.t. an RBox R) or its inconsistency
if no completion can be found.

4.2 Decidability of the ALCNHR+(D)− ABox Consistency Problem

The following lemma proves that whenever a generating rule has been applied
to an individual a ∈ ON , the concept set σ(·, a) of a does not change for
succeeding ABoxes. Note that the original ABox does not contain elements
from ON (see Definition 8).
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Lemma 24 (Stability) Let A be an ABox and a ∈ ON be in A. Let a
generating rule be applicable to a according to the completion strategy. Let
A′ be any ABox derivable from A by any (possibly empty) sequence of rule
applications. Then:

1. No rule is applicable in A′ to an individual b ∈ ON with b ≺ a

2. σ(A, a) = σ(A′, a), i.e. the concept set of a remains unchanged in A′.

3. If b ∈ ON is in A with b ≺ a then b is an individual in A′, i.e. the
individual b is not substituted by another individual.

Proof. Since in the original input ABox no elements of ON are mentioned,
a rule must have been applied if b ≺ a holds. 1. By contradiction: Suppose
A = A0 →∗ · · · →∗ An = A′, where ∗ is element of the completion rules and
a rule is applicable to an individual b with b ≺ a in A′. Then there has to
exist a minimal i with i ∈ 1..n such that this rule is also applicable in Ai.
If a rule is applicable to a in A then no rule is applicable to b in A due to
our strategy. So no rule is applicable to any individual c such that c ≺ a in
A0, . . . ,Ai−1. It follows that from Ai−1 to Ai a rule is applied to a or to
a d such that a ≺ d. Using an exhaustive case analysis of all rules we can
show that no new assertion of the form b :C or (b, e) :R can be added to Ai−1.
Therefore, no rule is applicable to b in Ai. This is a contradiction to our
assumption.

2. By contradiction: Suppose σ(A, a) &= σ(A′, a). Let b be the direct pre-
decessor of a with b ≺ a. A rule must have been applied to a and not to b
because of point 1. Due to our strategy only generating rules are applicable to
a that cannot add new elements to σ(·, a). This is an obvious contradiction.

3. This follows from point 1 and the completion strategy. �
The next lemma guarantees the uniqueness of a blocking individual for a
blocked individual. This is a precondition for defining a particular interpre-
tation from A.

Lemma 25 Let A′ be an ABox and a be a new individual in A′. If a is
blocked then

1. a has no direct successor (individual from O) and
2. a has exactly one blocking individual.

Proof. 1. By contradiction: Suppose that a is blocked in A′ and (a, b) :R ∈ A′.
There must exist an ancestor ABox A where a generating rule has been ap-
plied to a in A. It follows from the definition of the generating rules that for
every new individual c with c ≺ a in A we had σ(A, c) &⊇ σ(A, a). Since A′
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has been derived from A we can use Lemma 24 and conclude that for every
new individual c with c ≺ a in A′ we also have σ(A′, c) &⊇ σ(A′, a). Thus
there cannot exist a blocking individual c for a in A′. This is a contradiction
to our hypothesis.

2. This follows directly from condition 3 in Definition 19. �

Definition 26 Let A be a complete ABox that has been derived by the
calculus from an augmented ABox AT w.r.t. the role box R. Since A is
clash-free, there exists a variable assignment α that satisfies (the conjunc-
tion of) all occurring assertions (x1, . . . , xn) :P ∈ A. We define the canonical
interpretation IC = (∆IC ,∆D, ·IC) w.r.t. A and R as follows:

1. ∆IC := {a | a is an individual in A}

2. aIC := a iff a is mentioned in A

3. xIC := α(x) iff x is mentioned in A

4. a ∈ AIC iff a :A ∈ A

5. (a, α(x)) ∈ fIC iff (a, x) : f ∈ A

6. (a, b) ∈ RIC iff ∃ c0, . . . , cn, d0, . . . , dn−1 mentioned in A :3,

(a) n ≥ 1, c0 = a, cn = b, and

(b) (a, c1) :S1, (d1, c2) :S2, . . . (dn−2, cn−1) :Sn−1, (dn−1, b) :Sn ∈ A, and

(c) ∀i ∈ 0..n− 1 :
di = ci or
di is a blocking individual for ci, and (di, ci+1) :Si+1 ∈ A, and

(d) if n > 1
∀ i ∈ 1..n : ∃R′ ∈ T , R′ ∈ R↓, Si ∈ R′↓

else
S1 ∈ R↓.

The construction of the canonical interpretation for the case 6 is illustrated
with two examples in Figure 1. The following cases can be seen as special
cases of case 6 introduced above (n = 1, c0 = a, c1 = b):

• c0 = d0 : (a, b) ∈ RIC iff (c0, c1) :S1 ∈ A for a role S1 ∈ R↓.

• c0 &= d0: (a, b) ∈ RIC iff d0 is a blocking individual for c0, and
(d0, c1) :S1 ∈ A, for a role S1 ∈ R↓.

3Note that the variables c0, . . . , cn, d0, . . . , dn−1 not necessarily denote different indi-
vidual names.
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R

R'

S1 S2 S3 S4 S5

R

R'

S1 S2 S4 S5

a c1 c2 c3 c4 b

a c1 = d1 c2 c3 = d3 c4 = d4 b

S3d2

Figure 1: Construction of the canonical interpretation (two examples for
case 6). In the lower example we assume that the individual d2 is a blocking
individual for c2 (see text).

Due to Lemma 25, the canonical interpretation is well-defined because there
exists a unique blocking individual for each individual that is blocked.

Theorem 27 (Soundness) Let A be a complete ABox that has been de-
rived by the calculus from an augmented ABox AT w.r.t. the role box R,
then AT has a model which also satisfies all role axioms in R.

Proof. Let IC = (∆IC ,∆D, ·IC) be the canonical interpretation for the ABox
A constructed w.r.t. the TBox T . A is clash-free.

Features are interpreted in the correct way: There can be no forks in A
because (i) there are no forks in the augmented ABox AT and (ii) forks are
immediately eliminated after an application of the R∃P rule. This rule is
the only rule that introduces new assertions of the form (a, x) : f ∈ A. Note
that forks cannot be introduced by the R∃≤n rule due to the completion
strategy. Thus, IC maps features to (partial) functions because the variable
assignment α is a function.

All role inclusions in the RBox R are satisfied: For every S � R in R it
holds that SIC ⊆ RIC This can be shown as follows. If (aIC , bIC) ∈ SIC ,
case 6 of Definition 26 must be applicable. Hence, there exists a chain of
subroles possibly with gaps and blocking individuals (see Definition 26, case
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6). Thus, the corresponding construction for IC adding (aIC , bIC) to SIC is
also applicable to R since S ∈ R↓ (see 6d). Therefore, there is also tuple
(aIC , bIC) ∈ RIC .

All transitivity axioms in the RBox R are satisfied, i.e. transitive roles are
interpreted in the correct way: ∀ transitive(R) ∈ R : RIC = (RIC)

+
. If there

exist (aIC , bIC) ∈ RIC and (bIC , cIC) ∈ RIC then case 6 in Definition 26 must
have been applied for each tuple. But then, a chain of roles from a to c exists
as well (possibly with gaps and blocking individuals) such that (aIC , cIC) is
added to RIC as well.

In the following we prove that IC satisfies every assertion in A.

For any a & .= b ∈ A or (a, b) :R ∈ A, IC satisfies them by definition.

For any (a, x) : f ∈ A, IC satisfies them by definition.

For any (x1, . . . , xn) :P ∈ A, IC satisfies them by definition. Since A is clash-
free there exists a variable assignment such that the conjunction of all predi-
cate assertions is satisfied. The variable assignment can be computed because
the concrete domain is required to be admissible.

Next we consider assertions of the form a :C. We show by induction on the
structure of C that aIC ∈ CIC .

If C is a concept name, then aIC ∈ CIC by definition of IC.

If C = ¬D, then D is a concept name since all concepts are in negation normal
form (see Definition 15). A is clash-free and cannot contain a :D. Thus,
a &∈ DIC , i.e. aIC ∈ ∆IC \ DIC . Hence aIC ∈ (¬D)IC .

If C = C1 � C2 then (since A is complete) a :C1 ∈ A and a :C2 ∈ A. By in-
duction hypothesis, aIC ∈ C1

IC and aIC ∈ C2
IC . Hence aIC ∈ (C1 � C2)

IC .

If C = C1 � C2 then (since A is complete) either a :C1 ∈ A or a :C2 ∈ A. By
induction hypothesis, aIC ∈ C1

IC or aIC ∈ C2
IC . Hence aIC ∈ (C1 � C2)

IC .

If C = ∀R .D, then we have to show that for all bIC with (aIC , bIC) ∈ RIC it
holds that bIC ∈ DIC . If (aIC , bIC) ∈ RIC , then according to Definition 26, b
is a successor of a via a chain of roles Si ∈ R↓ or there exists correspond-
ing blocking individuals as domain element of Si ∈ R↓, i.e. the chain might
contain “gaps” with associated blocking individuals (see Figure 1). Since
(aIC , bIC) ∈ RIC and Si

IC ⊆ RIC there exists tuples (ci
IC , ci+1

IC) ∈ Si
IC . Due

to Definition 26 it holds that ∀i ∈ 1..n : ∃R′ ∈ T , R′ ∈ R↓, Si ∈ R′↓. Therefore
ck :∀R′ .D ∈ A, (k ∈ 1..n− 1) because A is complete. For the same reason
b :D ∈ A. By induction hypothesis it holds that bIC ∈ DIC . As mentioned
before, the chain of roles can have one or more “gaps” (see Figure 1). How-
ever, due to Definition 26 in case of a “gap” there exists a blocking individual
such that a similar argument as in case 6 can be applied, i.e. in case of a gap
between ci and ci+1 with blocking individual di for ci, the blocking condition
ensures that the concept set of the blocking individual is a superset of the con-
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cept set of the blocked individual. Since it is assumed that (di, ci+1) :Si+1 ∈ A
and A is complete it holds that ci+1 :∀R′ .D ∈ A. Applying the same agu-
ment inductively, we can conclude that cn−1 :∀R′ .D ∈ A and again, we have
bIC ∈ DIC by induction hypothesis.

If C = ∃R .D, then we have to show that there exists an individual bIC ∈ ∆IC
with (aIC , bIC) ∈ RIC and aIC ∈ DIC . Since ABox A is complete, we have ei-
ther (a, b) :S ∈ A with S ∈ R↓ and b :D ∈ A or a is blocked by an individual
c and (c, b) :S ∈ A (again S ∈ R↓). In the first case we have (aIC , bIC) ∈ RIC

by the definition of IC (case 6, n = 1, ci = di) and bIC ∈ DIC by induction
hypothesis. In the second case there exists the blocking individual c with
c :∃ S .D ∈ A and S ∈ R↓. By definition c cannot be blocked and by hypoth-
esis A is complete. For a blocked individual there exists no direct successor.
Hence, two individuals cannot block each other. This is due to the fact that
for an individual b being a blocking individual for c the ordering b ≺ c must
hold. However, no generating rule is applicable to a blocked individual and,
therefore b ≺ c does not hold. So we have an individual b with (c, b) :S ∈ A
and b :D ∈ A. By induction hypothesis we have bIC ∈ DIC and by the de-
finition of IC (case 6, n = 1, ci &= di, di is a blocking individual for ci and
a = ci, c = di) we have (aIC , bIC) ∈ RIC .

If C = ∃≥n R, we prove the hypothesis by contradiction. We assume that
aIC &∈ (∃≥n R)IC . Then there exist at most m (0 ≤ m < n) distinct S-
successors of a with S ∈ R↓. Two cases can occur: (1) the individual a is
not blocked in IC . Then we have less than n S-successors of a in A and
the R∃≥n-rule is applicable to a. This contradicts the assumption that A is
complete. (2) a is blocked by an individual c but the same argument as in
case (1) holds and leads to the same contradiction.

For C = ∃≤n R we show the goal by contradiction. Suppose that a &∈ (∃≤n R)IC .
Then there exist at least n+1 distinct individuals b1

IC , . . . , bn+1
IC such that

(aIC , bi
IC) ∈ RIC , i ∈ 1..n + 1. The following two cases can occur. (1) The

individual a is not blocked: We have n + 1 (a, bi) :Si ∈ A with Si ∈ R↓ and
Si &∈ T , i ∈ 1..n + 1. The R∃≤n rule cannot be applicable since A is com-
plete and the bi are distinct, i.e. bi & .= bj ∈ A, i, j ∈ 1..n + 1, i &= j. This
contradicts the assumption that A is clash-free. (2) There exists a blocking
individual c for a with (c, bi) :Si ∈ A, Si ∈ R↓, and Si &∈ T , i ∈ 1..n+ 1. This
leads to an analogous contradiction. Due to the construction of the canoni-
cal interpretation in case of a blocking condition and a non-transitive role R
(R is required to be a simple role, see the syntactic restrictions for number
restrictions), there is no (aIC , bk

IC) ∈ RIC if there is no (cIC , bk
IC) ∈ RIC .

If C = ∃ f1, . . . , fn .P we show that there exist concrete objects y1, . . . , yn ∈
∆D such that (aIC , y1 ) ∈ f1

IC , . . . , (aIC , yn) ∈ fn
IC and (y1, . . . , yn) ∈PIC . The

R∃P rule generates assertions (a, x1) : f1, . . . , (a, xn) : fn, (x1, . . . , xn) :P. Since
A is clash-free there is no concrete domain clash. Hence there exists a variable
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assignment α that maps x1, . . . , xn to elements of ∆D. The conjunction of
concrete domain predicates is satisfiable and (x1

IC , . . . , xn
IC) ∈ PIC . By defi-

nition of IC it holds that (aIC , x1
IC) ∈ f1

IC , . . . , (aIC , xn
IC) ∈ fn

IC . Thus, there
exist y1, . . . , yn such that the above-mentioned requirements are fulfilled and
therefore aIC ∈ (∃ f1, . . . , fn .P)IC

If C = ∀ f .⊥D then we show by contradiction that aIC ∈ (∀ f .⊥D)IC . Because
A is clash-free, there cannot be an assertion (a, x) : f ∈ A for some x in Oc and
an f ∈ F . Thus, it does not hold that there exists (aIC , y) ∈ fIC and hence
aIC ∈ (∀ f .⊥D)IC .

If ∀ x . x :D ∈ A, then –due to the completeness of A– for each individual a in
A we have a :D ∈ A and, by the previous cases, aIC ∈ DIC . Thus, IC satisfies
∀ x . x :D. Finally, since IC satisfies all assertions in A, IC satisfies A.

�

Theorem 28 (Completeness) Let AT be an augmented ABox and R be
a role box, then there exists at least one completion A′ being computed by
applying the completion rules w.r.t. the role box R.

Proof. By contraposition: Obviously, an Abox containing a clash is inconsis-
tent. If every completion of A is inconsistent, then it follows from Proposition
21 that the ABox A is inconsistent w.r.t. the role box R. �

Definition 29 Let A be a completion of an augmented ABox. Then, ||nA :=
{C|∃ (a :D) ∈ A : C ∈ subs(D), or ∃(∀ x . x :D) ∈ A : C ∈ subs(D)}|| is called the
maximum number of concepts in A. The function subs applied to a concept
D returns the set of all concepts appearing as substrings in D (incl. D).

Note that nA is bounded by the length of the string of the augmented ABox
A. In the following we assume that || · || returns the cardinality of a set plus
1.

Lemma 30 Let A be a completion of an augmented ABox AT . Further-
more, let TR be the finite set of transitive roles mentioned in a role box
R. In any set X consisting of individuals occurring in A with a cardinality
greater than 2||TR||×nA there exist at least two individuals a, b ∈ X whose
concept sets are equal (a ≡A′ b).

Proof. The only rule that generates assertions with concepts not already
mentioned in A is the R∀+C rule. New concepts of the form ∀T .C may be
generated. The number of these concepts is bounded by ||TR|| × nA because
there are only ||TR|| transitive roles mentioned in the role box R and only
nA different concepts in A. There cannot exist more than 2||TR||×nA different
concept sets for the individuals in A′. If we have 2||TR||×nA individuals with
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different concept sets, then there can be no additional individual with a new
concept set. �

Lemma 31 Let AT be an augmented ABox and let A′ be a completion of AT
w.r.t. R. Furthermore, let TR be the finite set of transitive roles mentioned
in the role box R. Then, there occur at most 2||TR||×nA non-blocked new
individuals in A′.

Proof. Suppose we have 2||TR||×nA + 1 non-blocked new individuals in A′.
From Lemma 30 we know that there exist at least two individuals a, b in
A′ such that a ≡A′ b. By Definition 18 we have either a ≺ b or b ≺ a.
Assume without loss of generality that a ≺ b holds and a ≡A′ b implies
σ(A′, a) ⊇ σ(A′, b). Then we have either a �A′ b or there exists an individual
c with c �A′ b and c ≺ a. Both cases contradict the hypothesis. �

Theorem 32 (Termination) Let AT be an augmented ABox. Every com-
pletion of AT w.r.t. a role box R is finite and its size is O(24n) where
n = ||TR|| × n0.

Proof. Let A′ be a completion of AT . From Lemma 31 we know that A′ has
at most 2||T ||×nA′ ≤ 2n non-blocked new individuals. Therefore, a total of
at most m× 2n new individuals may exists in A′, where m is the maximum
number of direct successors for any individual in A′.

Note that m is bounded by the number of ∃R .C concepts (≤ n) plus the
total sum of numbers occurring in ∃≥n R. Since numbers are expressed in
binary, their sum is bounded by 2n0(≤ 2n). Hence, we have m ≤ 2n + n.
Since the number of individuals in the initial ABox is also bounded by n, the
total number of individuals in A′ is at most m×(2n+n) ≤ (2n+n)×(2n +n),
i.e. O(22n).

The number of different assertions of the form a :C or ∀ x . x :C in which each
individual in A′ can be involved, is bounded by n and each assertion has a
size linear in n. Hence, the total size of these assertions is bounded n×n×22n,
i.e. O(23n).

The number of different assertions of the form (a, b) :R or a & .= b is bounded
by (22n)2, i.e. O(24n).

The number of different assertions of the form (a, x) : f is bounded by O(22n)
due to fork elimination.

The number of different assertions of the form (x1, . . . , xn) :P is bounded
by n + (n × 22n), i.e. O(23n). The initial set of concrete domain predicate
assertions is bounded by n. In addition, for each individual there may be n
concept assertions yielding additional predicate assertions.

In conclusion, we have a size of O(24n) for A′. �
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Theorem 33 (Decidability) Checking whether a knowledge base (T ,R,A)
is consistent is a decidable problem.

Proof. Given a knowledge base (T ,R,A), an augmented ABox AT can
be constructed in linear time. Thus, the claim follows immediately from
Lemma 16 and Theorems 27, 28, and 32. �

5 Applying ALCNHR+(D)−: Configuration Revisited

In the previous section the decidability of the ABox consistency problem
for ALCNHR+(D)− has been shown. Thus, in principle all configuration
problems formalized as knowledge bases in the language ALCNHR+(D)− as
indicated in Section 3 can be solved. If the input knowlege base is consis-
tent, the configuration will be represented by a model represented by the
canonical interpretation derived from a completion that is computed by the
algorithm discussed above. However, due to the fact that the algorithm is
nondeterministic, some problems might remain.

5.1 Unintended Blocking

In the context of configuration, blocking might lead to an undesirable model.
Let us consider the ABox {a :A � C}, the TBox {C � ∃R .A � C} and an
empty role box. One possible completion that might be derived by a concrete
implementation of the knowledge base consistency algorithm is the following:

{∀ x . x : (¬C � ∃R .A � C),
a : (A � C), a : (¬C � ∃R .A � C), a :C, a :∃R .A � C,
(a, b) :R, b : (A � C), b : (¬C � ∃R .A � C), b :C, b :∃R .A � C,
(b, c) :R, c : (A � C), c : (¬C � ∃R .A � C), c :C, c :∃R .A � C}

This is a completion with c being blocked. Hence, the canonical interpre-
tation contains a loop w.r.t. to the role R. Whether this is acceptable or
not might depend on the application context of the configuration solution.
However, it should be noted that in this specific case there also exists a com-
pletion without a blocked individual. The configuration example presented
in Section 3 is solved without blocking.

5.2 Limited Expressivity

For configuring a motor, a set of cylinders all of which have equal piston
displacements might be required. However, with ALCNHR+(D)− concrete
domains predicates can only be established for a single individual, i.e. a single
cylinder, rather than between different cylinders. A whole set of cylinders
being part of a motor can only be constrained using an ABox and respective
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concrete domain assertions. Thus, only a fixed set of individuals can be
considered during the configuration process. If it is not clear in beforehand
whether a 4-, 6- or 8-cylinder engine will be required, a more expressive
description logic is needed.

5.3 Analysis of an Extension of ALCNHR+(D)−

A possibility for extending the expressivity of ALCNHR+(D)− might be
to employ the predicate exists restriction of ALC(D) which offers feature
chains [Baader and Hanschke, 1991a]. We call the language ALCNHR+(D).
Unfortunately, it holds that ALCNHR+ augmented with a predicate exists
restriction supporting feature chains as in ALC(D) is undecidable. In [Lutz,
1999] it is shown that ALC(D) with generalized inclusion axioms (GCIs) is
undecidable. ALCNHR+ offers role hierarchies and transitive roles which
provide the same expressivity as GCIs.

An undecidability proof may lead to insights about how to come up with new
operators or syntactic restrictions of existing operators in order to develop a
representation language that can cope with specific application requirements
not covered by less expressive (decidable) languages. Since the GCI-based
undecidability proof with Turing machines presented in [Lutz, 1999] is rather
involved, we give a more direct proof based on transitive roles and role hier-
archies and demonstrate that even if TBoxes are discarded, ALCNHR+ with
concrete domains is undecidable in general.

The syntax and semantics of ALCNHR+(D) is a slightly modified variant of
ALCNHR+(D)−.

In Definition 1 for ALCNHR+(D)− the set of simple roles S is introduced.
In ALCNHR+(D) a specific subset A ⊆ S of simple roles called attributes is
distinguished.

If a1a2 · · · an−1 are attributes and fn is a feature, then a composition of at-
tributes and features (written a1a2 · · · an−1fn) is called a chain (with length
n). A single feature (i.e. a chain of length 1) is also called a chain. If P ∈ ΦD
is a predicate of the concrete domain D and u1, . . . , uk are chains, then the
following expression is a concept term: ∃ u1, . . . , uk .P (predicate exists re-
striction). In addition to ALCNHR+(D)−, attributes can be used instead of
roles in value and exists restrictions.

Each attribute a from A is mapped to a partial function aI from ∆I to ∆I . If
u = a1 · · · an−1fn is a chain, then uI denotes the composition a1 ◦ . . .◦ an−1 ◦ fn
of partial functions a1

I , . . . ,an−1
Ifn

I . The interpretation function is modified
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as follows:

(∃ u1, . . . , un .P)I := {a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D :

(a, x1) ∈ u1
I , . . . , (a, xn) ∈ un

I ,

(x1, . . . , xn) ∈ PI}

Proposition 34 (Undecidability of ALCNHR+(D)) The concept consis-
tency problem for ALCNHR+(D) is not decidable.

The proposition can be proven by a reduction from the Post Correspondence
Problem (PCP). The general idea of the proof is a slight variation of the
undecidability proofs for the description logics ALC(D) with a transitivity
operator [Baader and Hanschke, 1992] and ALCRP(D) [Lutz, 1998; Lutz
and Möller, 1997].

Proof. A Post Correspondence Problem S is defined as follows. Given a
nonempty finite set S = {(li, ri) | i = 1, . . .m}, where li and ri are words over
an alphabet Σ, a solution of S is a sequence of indices i1, . . . , ik with k ≥ 1
such that the concatenations wl = li1 . . . lik and wr = ri1 . . . lik denote the
same word. The PCP is known to be undecidable if Σ contains at least two
symbols.

For the reduction, the elements of Σ are viewed as digits from {1, . . . ,B-1}
at base B, where B := |Σ| + 1. w denotes the nonnegative integer at base
10 which the (nonempty) word w represents at base B (see also [Baader and
Hanschke, 1992]). If vw is the concatenation of two words v, w ∈ Σ∗, then
vw = v∗B|w|+w, where |w| is the length of the word w. The function w 1→ w
is a 1–1-mapping from Σ∗ into the set of nonnegative integers. Let wl, wr

be features and f1, . . . , fm be attributes. Furthermore, let R be a transitive
superrole of the attributes fi (i ∈ 1, . . . , m). Then, for a given instance S of
the PCP we define a concept C(S):

C(S)
.
= ∃wl.null-p � ∃wr.null-p

�m
i=1(∃wl, fiwl.constr-p

i
l � ∃wr, fiwr.constr-p

i
r)�

∀R. �m
i=1 (∃wl, fiwl.constr-p

i
l � ∃wr, fiwr.constr-p

i
r)�

∀R.∃wl, wr.notequal-p

The predicates used are defined as follows:

null-p(a) := a = 0

constr-pi
l(a, b) := b = li + a ∗B|li|

constr-pi
r(a, b) := b = ri + a ∗B|ri|

notequal-p(a, b) := a &= b
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a2,m
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f1 f2 fm

f1 fm

lm rm

lml1 rmr1

Figure 2: Search space of the Post Correspondence Problem encoded as a
model of a concept C(S).

The undecidability of ALCNHR+(D) is proven by showing that C(S) is
consistent iff the PCP S has no solution. Therefore, if the consistency of
C(S) could be decided, the algorithm could also be used to decide if a PCP
S has a solution.

We first show that S has no solution if C(S) is consistent. This can be
easily seen by considering the definition of C(S). If C(S) is consistent there
must exist an interpretation I with C(S)I &= ∅. Figure 2 demonstrates
that the interpretation encodes the (infinite) search space for a solution of
S. However, since C(S) is assumed to be consistent, ∀R.∃wl, wr.notequal-p
holds. Therefore, none of the paths in the search space leads to a solution.

Now we prove that C(S) is consistent if S has no solution. This direction is
proven by defining an interpretation with C(S)I &= ∅ for a PCP S for which it
is known that no solution exists.

∆I = {aij | i ≥ 0, 1 ≤ j < mi};

∀i ≥ 0, 0 ≤ j < mi :

f1
I(aij) = ai+1 j∗m, . . . , fm

I(aij) = ai+1 j∗m+m−1,

wl
I(aij) = φl(i, j), wr

I(aij) = φr(i, j)

where φl and φr are two recursively defined concatenation functions (concat
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concatenates words and 23 denotes the floor function):

φl(0, 0) = ε

φr(0, 0) = ε

φl(i, j) = concat(φl(i− 1, 2j/m3), lj+1−(m∗�j/m�))

φr(i, j) = concat(φr(i− 1, 2j/m3), rj+1−(m∗�j/m�)).

�
As we have discussed before, the undecidability proof for ALCNHR+(D) pre-
sented here follows the approach for showing the undecidability of ALC(D)-
trans presented in [Baader and Hanschke, 1992]. Furthermore, the idea to
construct a concept C(S) in such a way that it is satisfiable iff the PCP S has
no solution has been taken from [Lutz and Möller, 1997; Lutz, 1998; Haarslev
et al., 1998]. The basic idea of the undecidability proofs is to construct a
transitive role in order to propagate a concept constraint to all individuals in
the tree which encodes the search space of a PCP. In the undecidability proof
for ALCNHR+(D) presented here, a similar effect is achieved by exploiting
role hierarchies and transitive roles.4

Analyzing the model of the PCP it becomes clear that the undecidability is
caused by the possibility to establish predicates for conrete domain objects
that are referred to via features with different individuals on the left-hand
side of the corresponding ABox assertions. The finite model property is lost
in ALCNHR+(D). However, as long as a finite model is actually found by a
calculus, this is no problem. So there might be some hope that “conditions”
under which non-termination is “likely to occur” can be established. If these
conditions are encountered, then the answer to the inference problem could
be “unknown”.

Rather than considering the quite complex PCP concept in detail, we discuss
a simpler ALCNHR+(D) concept intended for describing lists of numbers.5

As in the previous subsection, there are predicates established for concrete
objects that are referred to by different individuals.

Let us assume, car is a feature cdr is an attribute and Rest is a transitive
superrole of cdr. We also use the name cadr for the chain cdr car. Let P,
Q1 and Q2 be elements of Φ� (see above) such that P(x, y) := y − x = 1,
Q1(x) := x > 7 and Q2(x) := x = 100.

Example 1: ∃ car, cadr .P � ∀Rest . (∃ car, cadr .P)

4Decidability problems with concrete domains and cyclic axioms are also discussed in
[Buchheit et al., 1995].

5In a configuration context, for instance, a list of cylinders might be described.
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cdr cdr

car car car

i j k

x y zP(x,y) P(y,z) P(z,...)

...

...

cdr

Figure 3: List of numbers greater than 7 decreasing by 1.

i j k

x y zP(x,y) P(y,z) P(z,...)

...

...

Q1(x)
Q2(x)

Q1(y) Q1(z)

cdr cdr

car car car

cdr

Figure 4: List of numbers greater than 7 decreasing by 1 starting at 100.

Figure 3 sketches a model for this concept (i, j and k are individuals and x, y, z
are concrete objects). Since P is based on a total strict ordering, the model
for the concept in Example 1 must be infinite.

Example 2: ∃ car .Q1 � ∃ car .Q2
� ∃ car, cadr .P � ∀Rest . (∃ car .Q1 � ∃ car, cadr .P)

Figure 4 shows an interpretation which is to be continued to the right in
the expected way. Since x is equal to 100 it can easily be seen that this
interpretation cannot be a model because it must be extended to the right
until some ‘successor’ (filler of the role Rest) will be less than 7.

Example 3: ∀ cdr .⊥� (∃ car, cadr .P � ∀Rest . (∀ cdr .⊥ � ∃ car, cadr .P))

A model for this concept has the structure of the interpretation shown in
Figure 3 but can be finite because there is no role filler for cdr required.
Even the interpretation consisting only of one individual without fillers for
cdr and car is a model. This interpretation represents an empty list.

From an application-oriented point of view, it is often not necessary to de-
scribe infinite lists. The concept in Example 3 captures that lists can be
of arbitrary but finite length.6 Since there exists a finite model it might be

6It should be emphasized that, obviously, the concept of Example 3 is by no means
equisatisfiable compared to the concept of Example 2.
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possible to devise a calculus to compute a configuration based on an ini-
tial input ABox (cf. Figure 4). However, since the language is undecidable
in general, a sound and complete (and terminating) calculus for deciding
knowledge base consistency inevitably must return ‘unknown’ in some situa-
tions. We conjecture that it might be possible to detect these situations (i.e.
guarantee termination) while perserving that both ‘yes’ and ‘no’ answers can
be trusted. In the case of “linear” structures as discussed with the examples
above it might be possible to integrate additional proof techniques involving
the induction principle. In Example 1 and Example 2, “unknown” might be
returned. Details of a calculus still have to be worked out.

6 Conclusion

We presented a tableaux calculus deciding the knowledge base consistency
problem for the description logic ALCNHR+(D)−. Applications of the logic
in the context of configuration problems have been sketched. The Cylinder
example demonstrates that some requirements of a model-based configura-
tion system are fulfilled by ALCNHR+(D)−. The calculus presented in this
paper can be used to solve “simple” configuration problems in which the
configuration space can be described by an ALCNHR+(D)− knowledge base
(see [Cunis et al., 1991; Buchheit et al., 1995; Günter, 1995] for additional
representation structures for solving configuration problems).

A highly optimized variant of the calculus for the sublogic ALCNHR+ is
already implemented in the ABox description logic system RACE [Haarslev
et al., 1999].7 RACE will be extended with support for reasoning with con-
crete domains in the near future. The adaption of important optimization
techniques such as dependency-directed backtracking and model merging to
concrete domains is discussed in [Turhan and Haarslev, 2000; Turhan, 2000]
(see also [Haarslev and Möller, 2000c] for extended model merging algo-
rithms).
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