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Abstract

We present a new tableaux calculus deciding
the ABox consistency problem for the expres-
sive description logic ALCNHR+ . Promi-
nent language features of ALCNHR+ are
number restrictions, role hierarchies, tran-
sitively closed roles, and generalized con-
cept inclusions. The ABox description logic
system RACE is based on the calculus for
ALCNHR+ .

1 Introduction

Experiences with concept languages indicate that at
least description logics (DLs) with negation and dis-
junction are required to solve practical modeling prob-
lems without resorting to ad hoc extensions. The re-
quirements derived from practical applications of DLs
ask for even more expressive languages. For instance,
in [14] the need for transitive roles is demonstrated
for representing part-whole relations, family relations
or partial orders in general. It is argued that the
trade-off between expressivity and complexity favors
the integration of transitively closed roles instead of
a transitive closure operator for roles. Other exam-
ples are given in [8], where the area of medical ter-
minology is discussed. Design studies for the Galen
project identified the need for modeling of transitive
part-whole, causal and compositional relations, and to
organize these relations into a hierarchy. Moreover,
generalized concept inclusions were also required as a
modeling tool, e.g. for expressing sufficient conditions
of concepts.

2 The Description Logic ALCNHR+

Motivated by the above-mentioned requirements we
introduce in this paper an ABox tableaux calculus for

the description logic ALCNHR+ . It augments the
basic logic ALC [15] with number restrictions, role
hierarchies, and transitively closed roles. Note that
these language features imply the presence of general-
ized concept inclusions and cyclic concepts. The use
of number restrictions in combination with transitive
roles and role hierarchies is syntactically restricted:
no number restrictions are possible for (i) transitive
roles and (ii) for any role which has a transitive sub-
role. Furthermore, we assume that the unique name
assumption holds for ABox individuals.

ALCNHR+ is an extension of ALCNH that itself can
be polynomially reduced toALCNR [1] and vice versa.
It is possible to rephrase every hierarchy of role names
with a set of role conjunctions and vice versa [1].
Thus, our work on ALCNHR+ extends the work on
ALCNR by additionally providing transitively closed
roles. ALCNHR+ also extends other related descrip-
tion logics such as ALCR+ [14] and ALCHfR+ [8]. Re-
cently, the work on these logics has been extended and
a tableaux calculus for deciding concept consistency
for the language ALCQHIR+ has been presented in
[11]. Another approach is presented in [2] where the
logic CIQ for reasoning with TBoxes and ABoxes is in-
troduced. In comparison to ALCNHR+ and the other
approaches mentioned above CIQ offers more opera-
tors (e.g. the transitive closure) but does not support
role hierarchies and allows number restrictions only for
primitive roles.

ABox reasoning truly extends the usefulness of de-
scription logics in practical applications. The increase
of expressiveness is also reflected in an increase of the
complexity of the tableaux rules (see Section 4.1 for
more details). An alternative might be the so-called
“precompletion approach” originally developed for the
language ALCQ [7] and recently adapted to ALCHR+

[16]. The idea behind the precompletion approach is
to transform given ABoxes in a way such that ABox
satisfiability is reduced to concept satisfiability. How-



ever, there currently exist no calculi for computing
the precompletion of ABoxes for languages such as
ALCNHR+ or even ALCQHIR+ .

2.1 The Concept Language

We present the syntax and semantics of the language
for specifying concept and role inclusions.

Definition 1 (Role Inclusions, Role Hierarchy)
Let P and T be disjoint sets of non-transitive and
transitive role names, respectively, and let R be
defined as R = P ∪ T . Let R and S be role names,
then R 
 S (role inclusion axiom) is a terminological
axiom. Given a set of role inclusion axioms, we define
a role hierarchy where 
∗ is the reflexive transitive
closure of 
 over R.

Additionally we define the set of ancestors and descen-
dants of a role.

Definition 2 (Role Descendants/Ancestors)
Given a role hierarchy the set R↑ := {S ∈ R |R 
∗ S}
defines the ancestors and R↓ := {S ∈ R | S 
∗ R}
the descendants of a role R. We also define the
set S := {R ∈ P |R↓ ∩ T = ∅} of simple roles that
are neither transitive nor have a transitive role as
descendant.

Definition 3 (Concept Terms) Let C be a set of
concept names which is disjoint from R. Any element
of C is a concept term. If C and D are concept terms,
R ∈ R is an arbitrary role, S ∈ S is a simple role, n > 1,
and m > 0, then the following expressions are also
concept terms:

• � (top concept),
• ⊥ (bottom concept),
• C � D (conjunction),
• C � D (disjunction),
• ¬C (negation),
• ∀R .C (concept value restriction),
• ∃R .C (concept exists restriction),
• ∃≤m S (at most number restriction),
• ∃≥n S (at least number restriction).

For an arbitrary role R, the term ∃≥1 R can be rewrit-
ten as ∃R .�, ∃≥0 R as �, and ∃≤0 R as ∀R .⊥. Thus,
we do not consider these terms as number restrictions
in our language.

The concept language is syntactically restricting the
combination of number restrictions and transitive
roles. Number restrictions are only allowed for simple

roles. This restriction is motivated by doubtful seman-
tics for an unrestricted combinability and a simplified
tableaux decision procedure. Moreover, this decision
is supported by a recent undecidability result for the
logic ALCHNIR+ in case of an unrestricted combin-
ability [11].

Definition 4 (Generalized Concept Inclusions)
If C and D are concept terms, then C 
 D (generalized
concept inclusion or GCI ) is a terminological axiom
as well.

A finite set of terminological axioms T is called a ter-
minology or TBox . GCIs can be used to represent
terminological cycles. There exist at least two ways to
deal with GCIs in a tableaux calculus. The ‘internal-
ization’ approach (e.g. see in [9]) makes use of the fact
that the expressiveness of GCIs is already implied by
the combination of role hierarchies and transitive roles.
However, with the presence of arbitrary ABoxes one
has also to consider unrelated individuals. Therefore,
we pursue a different and more direct approach that
extends an ABox tableaux calculus by new constructs
and rules directly dealing with GCIs (see Definition 7).

The next definition gives a set-theoretic semantics to
the language introduced above.

Definition 5 (Semantics) An interpretation I =
(∆I, ·I) consists of a set ∆I (the domain) and an in-
terpretation function ·I . The interpretation function
maps each concept name C to a subset CI of ∆I, each
role name R to a subset RI of ∆I ×∆I . Let the sym-
bols C, D be concept expressions, and R, S be role
names. Then the interpretation function can be ex-
tended to arbitrary concept and role terms as follows
(‖ · ‖ denotes the cardinality of a set):

(C � D)I := CI ∩ DI

(C � D)I := CI ∪ DI

(¬C)I := ∆I \ CI

(∃R .C)I := {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
(∀R .C)I := {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
(∃≥n R)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI}‖ ≥ n}
(∃≤n R)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI}‖ ≤ n}

An interpretation I is a model of a TBox T iff it satis-
fies (1) CI ⊆ DI for all terminological axioms (GCIs)
C 
 D in T and RI ⊆ SI for all terminological ax-
ioms R 
 S (role inclusions) in T , and (2) iff for every



R ∈ T : RI = (RI)+. A concept term C subsumes a
concept term D w.r.t. a TBox T (written D "T C), iff
DI ⊆ CI for all models I of T . A concept term C is
satisfiable w.r.t. a TBox T iff there exists a model I
of T such that CI #= ∅.

One of the basic reasoning services for a description
logic formalism is computing the subsumption rela-
tionship for atomic concepts. This inference is needed
in the TBox to build a hierarchy of concept names
w.r.t. specificity. Satisfiability and subsumption can
be mutually reduced to each other since C "T D iff
C � ¬D is not satisfiable w.r.t. T and C is unsatisfi-
able w.r.t. T iff C "T ⊥.

2.2 The Assertional Language

In the following, the language for representing knowl-
edge about individual worlds is introduced. An ABox
A is a finite set of assertional axioms which are defined
as follows:

Definition 6 (ABox Assertions)
Let O = OO ∪ON be a set of individual names, where
the set OO of “old” names is disjoint with the set ON

of “new” names. If C is a concept term, R a role name,
and a, b ∈ O are individual names, then the following
expressions are assertional axioms:

• a :C (concept assertion),
• (a, b) :R (role assertion).

The interpretation function ·I of the interpretation I
for the concept language can be extended to the as-
sertional language by additionally mapping every in-
dividual name from O to a single element of ∆I in a
way such that for a, b ∈ OO , aI #= bI if a #= b (unique
name assumption). This ensures that different indi-
viduals in OO are interpreted as different objects. The
unique name assumption does not hold for elements of
ON , i.e. for a, b ∈ ON , aI = bI may hold even if a #= b.
An interpretation satisfies an assertional axiom a :C iff
aI ∈ CI and (a, b) :R iff (aI , bI) ∈ RI.

An interpretation is a model of an ABox A w.r.t. a
TBox T iff it is a model of T and furthermore satis-
fies all assertional axioms in A. An ABox is consistent
w.r.t. a TBox T iff it has a model w.r.t. T . An individ-
ual b is called a direct successor of an individual a in an
ABox A iff A contains the assertional axiom (a, b) :R.
An individual b is called a successor of a if it is either
a direct successor of a or there exists in A a chain of
assertions (a, b1) :R1, (b1, b2) :R2, . . . , (bn, b) :Rn+1. In
case that Ri = Rj or Ri ∈ R↓ for all i, j ∈ 1..n+ 1 we call

b the (direct) R-successor of a. A (direct) predecessor
is defined analogously. An individual a is called an
instance of a concept term C in an interpretation I
iff aI ∈ CI. The direct types of an individual are the
most specific atomic concepts which the individual is
an instance of.

The ABox consistency problem is to decide whether a
given ABox A is consistent w.r.t. a TBox T . Satisfi-
ability of concept terms can be reduced to ABox con-
sistency as follows: A concept term C is satisfiable iff
the ABox {a :C} is consistent. Instance checking tests
whether an individual a is an instance of a concept
term C w.r.t. an ABox A and a TBox T , i.e. whether
A entails a :C w.r.t. T . This problem is reduced to
the problem of deciding if the ABox A∪ {a :¬C} is
inconsistent.

3 An ABox Example

Before we continue with the calculus for ALCNHR+ ,
we illustrate in the following the expressiveness of
ALCNHR+ with a TBox and ABox example about
family relationships. This example uses prominent fea-
tures of ALCNHR+ such as transitive roles, role hier-
archies, number restrictions and generalized concept
inclusions.

In the TBox family we assume a role has descendant
which is declared to be transitive, has gender which
is declared as a feature (e.g. this can be achieved
by adding the axiom � 
 ∃≤1 has gender), and a role
has sibling. The TBox family contains the following
role axioms.

has child 
 has descendant

has sister 
 has sibling

has brother 
 has sibling

The TBox family contains concept axioms specifying
the domain and/or range of the roles introduced above
(the domain A of a role R can be expressed by the
axiom ∃≥1 R 
 A and the range B by � 
 ∀R .B).

∃≥1 has descendant 
 human

� 
 ∀ has descendant . human

∃≥1 has child 
 parent

∃≥1 has sibling 
 sibling

� 
 ∀ has sibling . sibling

� 
 ∀ has sister . sister

� 
 ∀ has brother . brother

� 
 ∀ has gender . (female �male)
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Figure 1: Concept hierarchy of the TBox family augmented with the individuals from the ABox smith family .
Ovals represent atomic concepts, rectangles denote ABox individuals, solid lines show the direct subsumption
relationship, and dashed lines the instance membership of the individuals for their direct types.

The next axioms guarantee the disjointness between
the concepts female, male, and human.

female 
 ¬(human �male)

male 
 ¬(human � female)

human 
 ¬(female �male)

After these preliminaries we start with axioms express-
ing basic knowledge about family members. We use
C

.= D as an abbreviation for C 
 D and D 
 C.

human 
 ∃≥1 has gender

woman
.= human � ∀ has gender . female

man
.= human � ∀ has gender .male

parent
.= ∃≥1 has child

mother
.= woman � parent

father
.= man � parent

The next axioms describe some aspects of rela-
tives of a family. Note the inferred equivalences
between the concept pairs “mother with . . .” and
“mother having . . .” as shown in Figure 1.

mother having only female kids
.=

mother � ∀ has child . ∀ has gender . female

mother having only daughters
.=

mother � ∃≥1 has child � ∀ has child .woman

mother with kids
.= mother � ∃≥2 has child

grandpa
.= man � ∃ has child . parent

great grandpa
.= man � ∃ has child . (∃ has child . parent)

grandma
.= woman � ∃ has child . parent

great grandma
.=

woman � ∃ has child . (∃ has child . parent)

aunt
.= woman � ∃ has sibling . parent

uncle
.= man � ∃ has sibling . parent

sibling
.= sister � brother

sister
.= woman � ∃≥1 has sibling

brother
.= man � ∃≥1 has sibling

mother with siblings
.= mother � ∀ has child . sibling

There still exists no formal relationship between the
notions “having kids” and “having siblings.” This



is expressed by the next two axioms. The last ax-
iom defines a concept mother having only sisters which
has the other specific “mother . . .” concepts as parents
(see Figure 1).

∃≥2 has child 
 ∀ has child . sibling

∃ has child . sibling 
 ∃≥2 has child

mother having only sisters
.=

mother � ∀ has child . (sister � ∀ has sibling . sister)

Using the TBox family , the ABox smith family is spec-
ified. It consists of several assertions about the indi-
viduals alice, betty, charles, doris, and eve. The indi-
vidual alice is the mother of her two children betty and
charles.

alice : woman � ∃≤2 has child

(alice, betty) : has child

(alice, charles) : has child

The individual betty is the sibling of charles and the
mother of doris and eve, who are the only siblings of
each other. The individual charles is the only brother
of betty.

betty : woman � ∃≤2 has child � ∃≤1 has sibling

(betty, doris) : has child

(betty, eve) : has child

(betty, charles) : has sibling

charles : brother � ∃≤1 has sibling

(charles, betty) : has sibling

doris : ∃≤1 has sibling

eve : ∃≤1 has sibling

(doris, eve) : has sister

(eve, doris) : has sister

Figure 1 also shows the inferred direct types of the
individuals in ABox smith family . alice has as di-
rect types {mother with siblings, grandma}, betty has
{mother having only sisters, sister}, charles has {uncle},
and doris and eve have {sister}. These inferences
demonstrate the expressiveness of ALCNHR+ . The
ABox smith family contains only minimal knowledge
about the individuals and their relationships.

4 A Tableaux Calculus for ALCNHR+

In the following we devise a tableaux algorithm to de-
cide the consistency of ALCNHR+ ABoxes. The al-
gorithm is characterized by a set of tableaux or com-
pletion rules and by a particular completion strategy

ensuring a specific order for applying the completion
rules to assertional axioms of an ABox. The strategy
is essential to guarantee the completeness of the ABox
consistency algorithm. First, we have to introduce new
assertional axioms needed to define the augmentation
of an ABox.

Definition 7 (Additional ABox Assertions) Let
C be a concept term, the individual names a, b ∈ O,
and x #∈ O , then the following expressions are also
assertional axioms:

• ∀ x . x :C (universal concept assertion),1

• a # .= b (inequality assertion).

An interpretation I satisfies an assertional axiom
∀ x . x :C iff CI = ∆I and a # .= b iff aI #= bI .

Given the new ABox assertions we define for any con-
cept term its negation normal form that is needed to
introduce the notion of an augmented ABox.

Definition 8 (Negation Normal Form)
The same naming conventions as in Definition 3 are as-
sumed. The negation normal form is defined by apply-
ing the following transformations in such a way that
a negation sign may occur only in front of concept
names. This transformation is possible in linear time:

• ¬� ≡ ⊥,
• ¬⊥ ≡ �,
• ¬(C �D) ≡ ¬C � ¬D,
• ¬(C �D) ≡ ¬C � ¬D,
• ¬∀R .C ≡ ∃R .¬C,
• ¬∃R .C ≡ ∀R .¬C,
• ¬∃≤m S ≡ ∃≥m+1 S,
• ¬∃≥m S ≡ ∃≤m−1 S.

Definition 9 (Augmented ABox) For an initial
ABox A w.r.t a TBox T we define its augmented
ABox A′ by applying the following rules to A. For
every GCI C 
 D in T the assertion ∀ x . x : (¬C � D)
is added to A′. Every concept term occurring in A
is transformed into its negation normal form. Let
OO := {a1, . . . , an} be the set of old individual names
mentioned in A, then the set of inequality asser-
tions {ai # .= aj | ai, aj ∈ OO , i, j ∈ 1..n, i #= j} is added to
A. From this point on, if we refer to an initial ABox
A we always mean its augmented ABox.

The tableaux rules also require the notion of blocking
their applicability. This is based on so-called concept

1∀ x . x :C should be read as ∀ x . (x :C).



sets, an ordering for new individuals, and blocking in-
dividuals.

Definition 10 (Concept Set, A-blocked)
Given an ABox A and an individual a occur-
ring in A, we define the concept set of a as
σ(A, a) := {�} ∪ {C | a :C ∈ A}. We define two
individuals as A-equivalent , written a ≡A b, if their
concept sets are equal, i.e. σ(A, a) = σ(A, b). We
say that an individual b is A-blocked2 by a, written
a �A b, if σ(A, a) ⊇ σ(A, b).

Definition 11 (Individual Ordering) We define
an individual ordering ‘≺’ for new individuals (ele-
ments of ON ) occurring in an ABox A. If b ∈ ON is
introduced in A, then a ≺ b for all new individuals a
already present in A.

Definition 12 (Blocking Individual) Let A be an
ABox and a, b ∈ ON be individuals in A. We call a
the blocking individual of b if the following conditions
hold:

1. a �A b
2. a ≺ b
3. ¬∃ c in A : c ∈ ON , c ≺ a, c �A b.

4.1 Completion Rules

We are now ready to define the completion rules that
are intended to generate a so-called completion of an
ABox (see also below).

Definition 13 (Completion Rules)

R� The conjunction rule.
if 1. a :C � D ∈ A, and

2. {a :C, a :D} #⊆ A
then A′ = A ∪ {a :C, a :D}

R� The disjunction rule.
if 1. a :C � D ∈ A, and

2. {a :C, a :D}∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A∪ {a :D}

R∀C The role value restriction rule.
if 1. a :∀R .C ∈ A, and

2. ∃ b ∈ O , S ∈ R↓ : (a, b) :S ∈ A, and
3. b :C #∈ A

then A′ = A ∪ {b :C}
2We may omit the reference to A by speaking of blocked

if the context is obvious.

R∀+C The transitive role value restriction rule.
if 1. a :∀R .C ∈ A, and

2. ∃ b ∈ O ,T ∈ R↓,T ∈ T , S ∈ T↓ :
(a, b) :S ∈ A, and

3. b :∀T .C #∈ A
then A′ = A ∪ {b :∀T .C}

R∀x The universal concept restriction rule.
if 1. ∀ x . x :C ∈ A, and

2. ∃ a ∈ O : a mentioned in A, and
3. a :C #∈ A

then A′ = A ∪ {a :C}

R∃C The role exists restriction rule.
if 1. a :∃R .C ∈ A, and

2. a ∈ ON ⇒ (¬∃ c in A : c ∈ ON ,
c is a blocking individual for a), and

3. ¬∃ b ∈ O , S ∈ R↓ : {(a, b) :S, b :C} ⊆ A
then A′ = A ∪ {(a, b) :R, b :C} where b ∈ON is

not used in A

R∃≥n The number restriction exists rule.
if 1. a :∃≥n R ∈ A, and

2. a ∈ ON ⇒ (¬∃ c in A : c ∈ ON ,
c is a blocking individual for a), and

3. ¬∃ b1, . . . , bn ∈ O , S1, . . . , Sn ∈ R↓ :
{(a, bk) :Sk | k ∈ 1..n}∪
{bi # .= bj | i, j ∈ 1..n, i #= j} ⊆ A

then A′ = A ∪ {(a, bk) :R | k ∈ 1..n}∪
{bi #

.= bj | i, j ∈ 1..n, i #= j}
where b1, . . . , bn ∈ON are not used in A

R∃≤n The number restriction merge rule.
if 1. a :∃≤n R ∈ A, and

2. ∃ b1, . . . , bm ∈ O , S1, . . . , Sm ∈ R↓:
{(a, b1) :S1, . . . , (a, bm) :Sm} ⊆ A
with m > n, and

3. ∃ bi, bj ∈ {b1, . . . , bm} : i #= j, bi #
.= bj #∈ A

then A′ = A[bi/bj], i.e. replace every occurrence
of bi in A by bj

We call the rules R� and R∃≤n nondeterministic rules
since they can be applied in different ways to the same
ABox. The remaining rules are called deterministic
rules. Moreover, we call the rules R∃C and R∃≥n gen-
erating rules since they are the only rules that intro-
duce new individuals in an ABox.

The increase of expressiveness in ALCNHR+ gained
by supporting ABox reasoning is reflected in tableaux
rules that are more complex than in comparable ap-
proaches for concept consistency. The universal con-
cept restriction rule takes care of GCIs and usually
causes additional complexity by adding disjunctions
to an ABox. The generating rules have a more com-
plex premise since they may test only for a blocking



situation if they are applied to new individuals, i.e. a
blocking situation can never occur for old individuals.
The necessity of this additional precondition is illus-
trated by the following example. We define a concept
D where R is a transitive superrole of S.

D
.= C � ∃S .C � ∃≤1 S � ∀R . ∃S .C

A := {(i, j) : S, (j, k) : S, i : D, j : D, k : ¬C}

Then, we define an ABox A which is obviously unsat-
isfiable due to a clash for the individual k with C � ¬C.
However, if blocking were allowed for old individuals,
the role exists restriction rule would not create a S-
successor with qualification C for the individual j. As a
consequence, the number restriction merge rule would
never merge this successor with the individual k which
results in the unsatisfiability of A.

Proposition 14 (Invariance) Let A and A′ be
ABoxes. Then:
1. IfA′ is derived fromA by applying a deterministic

rule, then A is satisfiable iff A′ is satisfiable.

2. If A′ is derived from A by applying a nondeter-
ministic rule, then A is satisfiable if A′ is satisfi-
able. Conversely, if A is satisfiable and a nonde-
terministic rule is applicable to A, then it can be
applied in such a way that it yields a satisfiable
ABox A′.

Proof. 1. “⇐” Due to the structure of the determinis-
tic rules one can immediately verify that A is a subset
of A′. Therefore, A is satisfiable if A′ is satisfiable.

“⇒” In order to show that A′ is satisfiable after apply-
ing a deterministic rule to the satisfiable ABox A, we
examine each applicable rule separately. We assume
that I = (∆I, ·I) satisfies A.

If the conjunction rule is applied to a :C � D ∈ A, then
we get a new Abox A′ = A∪ {a :C, a :D}. Since I
satisfies a :C � D, I satisfies a :C and a :D and therefore
A′.

If the role value restriction rule is applied to
a :∀R .C ∈ A, then there must be a role assertion
(a, b) :S ∈ A with S ∈ R↓ such that A′ = A∪ {b :C}.
Since I satisfies A, it holds that (aI , bI) ∈ SI ⊆ RI.
Since I satisfies a :∀R .C, it holds that bI ∈ CI. Thus,
I satisfies b :C and therefore A′.

If the transitive role value restriction rule is ap-
plied to a :∀R .C ∈ A, there must be an assertion
(a, b) :S ∈ A with S ∈ T↓ ⊆ R↓, T ∈ T such that we
get A′ = A ∪ {b :∀T .C}. Since I satisfies A, we have
aI ∈ (∀R .C)I and (aI , bI) ∈ SI ⊆ TI ⊆ RI. Since

I satisfies a :∀T .C and T ∈ T ,T ∈ R↓, it holds that
bI ∈ (∀T .C)I unless there exists a successor c of
b such that (b, c) :S′ ∈ A, (bI , cI) ∈ S′I ⊆ TI and
cI #∈ CI. It follows from (aI , bI) ∈ TI , (bI , cI) ∈ TI ,
and T ∈ T that (aI , cI) ∈ TI ⊆ RI and aI #∈ (∀R .C)I

in contradiction to the assumption. Thus, I satisfies
b :∀T .C and therefore A′.

If the universal concept restriction rule is applied to
an individual a in A because of ∀ x . x :C ∈ A, then
A′ = A ∪ {a :C}. Since I satisfies A, it holds that
CI = ∆I. Thus, it holds that aI ∈ CI and I satisfies
A′.

If the role exists restriction rule is applied
to a :∃R .C ∈ A, then we get the ABox
A′ = A ∪ {(a, b) :R, b :C}. Since I satisfies A,
there exists a y ∈ ∆I such that (aI, y) ∈ RI and
y ∈ CI. We define the interpretation function ·I′

such
that bI

′
:= y and xI′

:= xI for x #= b. It is easy to
show that I ′ = (∆I , ·I′

) satisfies A′.

If the number restriction exists rule is
applied to a :∃≥n R ∈ A, then we get
A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi #

.= bj | i, j ∈ 1..n, i #= j}.
Since I satisfies A, there must exist n distinct in-
dividuals yi ∈ ∆I, i ∈ 1..n such that (aI , yi) ∈ RI.
We define the interpretation function ·I′

such that
bi

I′
:= yi and xI′

:= xI for x #∈ {b1, . . . , bn}. It is
easy to show that I ′ = (∆I, ·I′

) satisfies A′.

2. “⇐” Assume that A′ is satisfied by I ′ = (∆I, ·I′
).

We show that A is also satisfiable by examining the
nondeterministic rules.

If A′ is obtained from A by applying the disjunction
rule, then A is a subset of A′ and therefore satisfied
by I ′.

If A′ is obtained from A by applying the number re-
striction merge rule to a :∃≤n R ∈ A, then there ex-
ist bi, bj in A such that A′ = A[bi/bj]. We define the
interpretation function ·I such that bi

I := bj
I′

and
xI := xI

′
for every x #= bi. Obviously I = (∆I , ·I) sat-

isfies A.

“⇒” We suppose that I = (∆I, ·I) satisfies A and a
nondeterministic rule is applicable to an individual a
in A.

If the disjunction rule is applicable to a :C� D ∈ A and
A is satisfiable, it holds aI ∈ (C � D)I . It follows that
either aI ∈ CI or aI ∈ DI (or both). Hence, the dis-
junction rule can be applied in a way that I also sat-
isfies the ABox A′.

If the number restriction merge rule is applica-
ble to a :∃≤n R ∈ A and A is satisfiable, it holds



aI ∈ (∃≤n R)I and ‖{b | (a, b) ∈ RI}‖ ≤ n. However,
it also holds ‖{b | (aI, bI) ∈ RI}‖ > m with m ≥ n.3

Thus, we can conclude by the Pigeonhole Principle
(e.g. see [13, page 26]) that there exist at least two
R-successors bi, bj of a such that bi

I = bj
I . Since I

satisfies A, we have bi #
.= bj #∈ A and at least one of

the two individuals must be a new individual. Let
us assume that bi ∈ ON and bi = bj, then I obviously
satisfies A[bi/bj]. �

Given an initial ABox A, more than one rule might
be applicable to A. This is controlled by a completion
strategy in accordance to the ordering for new individ-
uals (see Definition 11).

Definition 15 (Completion Strategy) We define
a completion strategy that must observe the following
restrictions.

• Meta rules:

– Apply a rule to an individual b ∈ ON only if
no rule is applicable to an individual a ∈ OO .

– Apply a rule to an individual b ∈ ON only
if no rule is applicable to another individual
a ∈ ON such that a ≺ b.

• The completion rules are always applied in the
following order. A step is skipped in case the cor-
responding set of applicable rules is empty.

1. Apply all nongenerating rules (R�, R�, R∀C,
R∀+C, R∀x, R∃≤n) as long as possible.

2. Apply a generating rule (R∃C, R∃≥n) and
restart with step 1 as long as possible.

In the following we always assume that rules are ap-
plied in accordance to this strategy. It ensures that the
rules are applied to new individuals w.r.t. the ordering
‘≺’.

Definition 16 (Clash Triggers) We assume the
same naming conventions as used above. An ABox
A is called contradictory if one of the following clash
triggers is applicable. If none of the clash triggers is
applicable to A, then A is called clash-free.

• Primitive clash:
a :⊥ ∈ A or {a :C, a :¬C} ⊆ A, where C is a con-
cept name.

• Number restriction merging clash:
∃S1, . . . , Sm ∈ R↓ : {a :∃≤n R}∪
{(a, bi) :Si | i ∈ 1..m}∪
{bi #

.= bj | i, j ∈ 1..m, i #= j} ⊆ A with m > n
3Without loss of generality we only need to consider the

case that m = n+ 1.

A clash-free ABox A is called complete if no comple-
tion rule is applicable to A. A complete ABox A′

derived from an ABox A is also called a completion of
A. Any ABox containing a clash is obviously unsat-
isfiable. The purpose of the calculus is to generate a
completion for an initial ABox A that proves the sat-
isfiability of A or its unsatisfiability if no completion
can be found. In the following we have to show that a
model can be constructed for any complete ABox.

4.2 Decidability of the ABox Consistency
Problem

The following lemma proves that whenever a gener-
ating rule has been applied to an individual a, the
concept set σ(·, a) of a does not change in succeeding
ABoxes.

Lemma 17 (Stability) Let A be an ABox and
a ∈ ON be in A. Let a generating rule be applicable
to a according to the completion strategy. Let A′ be
any ABox derivable from A by any (possibly empty)
sequence of rule applications. Then:

1. No rule is applicable inA′ to an individual b ∈ ON

with b ≺ a
2. σ(A, a) = σ(A′, a), i.e. the concept set of a re-

mains unchanged in A′.
3. If b ∈ ON is in A with b ≺ a then b is an individ-

ual in A′, i.e. the individual b is not substituted
by another individual.

Proof. 1. By contradiction: Suppose A = A0 →∗
· · · →∗ An = A′, where ∗ is element of the completion
rules and a rule is applicable to an individual b with
b ≺ a in A′. Then there has to exist a minimal i with
i ∈ 1..n such that this rule is also applicable in Ai. If
a rule is applicable to a in A then no rule is applicable
to b in A due to our strategy. So no rule is applicable
to any individual c such that c ≺ a inA0, . . . ,Ai−1. It
follows that from Ai−1 to Ai a rule is applied to a or to
a d such that a ≺ d. Using an exhaustive case analysis
of all rules we can show that no new assertion of the
form b :C or (b, e) :R can be added to Ai−1. Therefore,
no rule is applicable to b in Ai. This is a contradiction
to our assumption.

2. By contradiction: Suppose σ(A, a) #= σ(A′, a). Let
b be the direct predecessor of a with b ≺ a. A rule
must have been applied to a and not to b because of
point 1. Due to our strategy only generating rules are
applicable to a that cannot add new elements to σ(·, a).
This is an obvious contradiction.

3. This follows from point 1 and the completion strat-
egy. �



The next lemma guarantees the uniqueness of a block-
ing individual for a blocked individual. This is a pre-
condition for defining a particular interpretation from
A.

Lemma 18 Let A′ be an ABox and a be a new indi-
vidual in A′. If a is blocked then

1. a has no direct successor and
2. a has exactly one blocking individual.

Proof. 1. By contradiction: Suppose that a is blocked
in A′ and (a, b) :R ∈ A′. There must exist an ancestor
ABox A where a generating rule has been applied to
a in A. It follows from the definition of the generating
rules that for every new individual c with c ≺ a in A
we had σ(A, c) #⊇ σ(A, a). Since A′ has been derived
from A we can use Lemma 17 and conclude that for
every new individual c with c ≺ a in A′ we also have
σ(A′, c) #⊇ σ(A′, a). Thus there cannot exist a blocking
individual c for a in A′. This is a contradiction to our
hypothesis.

2. This follows directly from condition 3 in Definition
12. �

Definition 19 Let A be an ABox. We define the
canonical interpretation IA = (∆IA , ·IA) as follows:

1. ∆IA := {a | a is an individual in A}
2. aIA := a iff a is mentioned in A
3. a ∈ AIA iff a :A ∈ A
4. (a, b) ∈ RIA iff

(a) (a, b) :S ∈ A for a role S ∈ R↓ or
(b) ∃ c1, . . . , cn−1 in A :

(a, c1) :S1, (c1, c2) :S2, . . . , (cn−1, b) :Sn ∈ A,
n > 1, Si ∈ R↓ for i ∈ 1..n and R ∈ T , or

(c) ∃ c in A, c ∈ ON , c is a blocking individual
for a, and (c, b) :S ∈ A, for a role S ∈ R↓, or

(d) ∃ c inA, c ∈ ON , c is a blocking individual for
a, and (c, b1) :S1 ∈ A, and ∃ b2, . . . , bn−1 in
A : (b1, b2) :S2, . . . , (bn−1, b) :Sn ∈ A, n > 1,
Si ∈ R↓ for i ∈ 1..n and R ∈ T .

Theorem 20 (Soundness) Let A be a complete
ABox, then A is satisfiable.

Proof. Let IA = (∆IA , ·IA) be the canonical interpre-
tation for the ABox A. In the following we prove that
IA satisfies every assertion in A.

For any (a, b) :R ∈ A or a # .= b ∈ A, IA satisfies them
by definition. Next we consider assertions of the form
a :C. We show by induction on the structure of C that
a ∈ CIA.

If C is a concept name, then a ∈ CIA by definition
of IA. If C = �, then obviously a ∈ �IA . The case
C = ⊥ cannot occur since A is clash-free.

If C = ¬D, then D is a concept name since all concepts
are in negation normal form (see Definition 9). A is
clash-free and cannot contain a :D. Thus, a #∈ DIA , i.e.
a ∈ ∆IA \ DIA . Hence a ∈ (¬D)IA .

If C = C1 � C2 then (since A is complete) a :C1 ∈ A
and a :C2 ∈ A. By induction hypothesis, a ∈ C1

IA and
a ∈ C2

IA . Hence a ∈ (C1 � C2)
IA .

If C = C1 � C2 then (since A is complete) either
a :C1 ∈ A or a :C2 ∈ A. By induction hypothesis,
a ∈ C1

IA or a ∈ C2
IA . Hence a ∈ (C1 � C2)

IA .

If C = ∀R .D, then we have to show that for all b with
(a, b) ∈ RIA it holds that b ∈ DIA . If (a, b) ∈ RIA,
then according to Definition 19 the following cases can
occur: (4a) b is a direct S-successor of a for a role
S ∈ R↓ with SIA ⊆ RIA ; then we have b :D ∈ A since A
is complete and by induction hypothesis b ∈ DIA . (4b)
b is a R-successor of a via a subrole chain of Si’s with
Si

IA ⊆ RIA ,R ∈ T ; then we have cn−1 :∀R .D ∈ A and
b :D ∈ A since A is complete and by induction hy-
pothesis we have b ∈ DIA . (4c) There has to exist
a blocking individual c such that c :∀R .D ∈ A and
(c, b) :S ∈ A for a role S ∈ R↓ and because A is com-
plete we have b :D ∈ A and again by induction hypoth-
esis it holds b ∈ DIA . (4d) This case combines the
cases (4b-c) because the individual b is reachable from
the blocking individual c via a chain of subroles of the
transitive role R. It can be proven analogously.

If C = ∃R .D, then we have to show that there exists
an individual b ∈ ∆IA with (a, b) ∈ RIA and b ∈ DIA .
Since ABox A is complete, we have either (a, b) :R ∈ A
and b :D ∈ A or a is blocked by an individual c and
(c, b) :R ∈ A. In the first case we have (a, b) ∈ RIA

and b ∈ DIA by induction hypothesis and the defini-
tion of IA. In the second case there exists the blocking
individual c with c :∃R .D ∈ A. By definition c can-
not be blocked and by hypothesis A is complete. So we
have an individual b with (c, b) :R ∈ A and b :D ∈ A.
By induction hypothesis we have b ∈ DIA and by the
definition of IA (case 4c) we have (a, b) ∈ RIA .

If C = ∃≥n R, we prove the hypothesis by contradic-
tion. We assume that a #∈ (∃≥n R)IA . Then there exist
at most m (0 ≤ m < n) distinct R-successors of a. Two
cases can occur: (1) the individual a is not blocked in
IA. Then we have less than n R-successors of a in A
and the R∃≥n-rule is applicable to a. This contradicts
the assumption that A is complete. (2) a is blocked
by an individual c but the same argument as in case
(1) holds and leads to the same contradiction.



For C = ∃≤n R we show the goal by contradiction.
Suppose that a #∈ (∃≤n R)IA . Then there exist at
least n + 1 distinct individuals b1, . . . , bn+1 such that
(a, bi) ∈ RIA , i ∈ 1..n + 1. According to Defini-
tion 19 the following two cases can occur. (1) We
have n + 1 (a, bi ) :Si ∈ A with Si ∈ R↓ and Si #∈ T ,
i ∈ 1..n+1. The R∃≤n rule cannot be applicable since
A is complete and the bi are distinct, i.e. bi # .= bj ∈ A,
i, j ∈ 1..n + 1, i #= j. This contradicts the assump-
tion that A is clash-free. (2) There exists a blocking
individual c with (c, bi) :Si ∈ A, Si ∈ R↓, and Si #∈ T ,
i ∈ 1..n+1. This leads to an analogous contradiction.

If ∀ x . x :D ∈ A, then –due to the completeness of A–
for each individual a inA we have a :D ∈ A and, by the
previous cases, a ∈ DIA . Thus, IA satisfies ∀ x . x :D.
Finally, since IA satisfies all assertions in A, IA satis-
fies A. �

Theorem 21 (Completeness) Let A be a satisfi-
able ABox, then there exists at least one completion
of A computed by applying the completion rules.

Proof. Obviously, an Abox containing a clash is un-
satisfiable. If every completion of A is unsatisfiable,
then it follows from Proposition 14 that ABox A is
unsatisfiable. �

Definition 22 For any augmentation of an initial
ABox A, we define the concept size nA as the num-
ber of concepts or subconcepts occurring in A.4 Note
that nA is bound by the length of the string ex-
pressing A. The size of an ABox A is defined as
nA × ‖T ‖+ ‖OO‖.

Lemma 23 Let A be an ABox and let A′ be a com-
pletion of A. In any set X consisting of individuals oc-
curring in A′ with a cardinality greater than 2nA there
exist at least two individuals a, b ∈ X whose concept
sets are equal (a ≡A′ b).

Proof. Each assertion a :Ci ∈ A′ may contain at most
nA different concepts Ci. So there cannot exist more
than 2nA different concept sets for the individuals in
A′. �

Lemma 24 LetA be an ABox and letA′ be a comple-
tion of A. Then there occur at most 2nA non-blocked
new individuals in A′.

Proof. Suppose we have 2nA + 1 non-blocked new
individuals in A′. From Lemma 23 we know that

4We have to increase nA by 1 if � does not occur in A.

there exist at least two individuals a, b in A′ such that
a ≡A′ b. By Definition 11 we have either a ≺ b or
b ≺ a. Assume without loss of generality that a ≺ b
holds and a ≡A′ b implies σ(A′, a) ⊇ σ(A′, b). Then
we have either a �A′ b or there exists an individual
c with c �A′ b and c ≺ a. Both cases contradict the
hypothesis. �

Theorem 25 (Termination) Let AT be the aug-
mented ABox w.r.t a TBox T and let n be the size
of AT . Every completion of AT is finite and its size is
O(24n).

Proof. Let A′ be a completion of AT . From Lemma
24 we know that A′ has at most 2n non-blocked new
individuals. Therefore, a total of at most m× 2n new
individuals may exists in A′, where m is the maximum
number of direct successors for any individual in A′.

Note that m is bound by the number of ∃R .C con-
cepts (≤ n) plus the total sum of numbers occurring
in ∃≥n R. Since numbers are expressed in binary, their
sum is bound by 2n. Hence, we have m ≤ 2n + n.
Since the number of individuals in the initial ABox is
also bound by n, the total number of individuals in A′

is at most m × (2n + n) ≤ (2n + n) × (2n + n), i.e.
O(22n).

The number of different assertions of the form a :C
or ∀ x . x :C in which each individual in A′ can be in-
volved, is bound by n and each assertion has a size
linear in n. Hence, the total size of these assertions is
bound n× n× 22n, i.e. O(23n).

The number of different assertions of the form (a, b) :R
or a # .= b is bound by (22n)2, i.e. O(24n). In conclusion,
we have a size of O(24n) for A′. �

Theorem 26 (Decidability) Let AT be an ABox
w.r.t. a TBox T . Checking whether AT is satisfiable
is a decidable problem.

Proof. This follows immediately from the Theorems
20, 21, and 25. �

5 Practical Reasoning with RACE

The tableaux calculus introduced in the previous sec-
tions is of theoretical interest for proving the decid-
ability of the ABox consistency problem. For practical
purposes such calculi are highly inefficient. Therefore,
the development of optimization techniques is a very
important research topic. In order to support practical
ABox reasoning with ALCNHR+ and to empirically
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evaluate optimization techniques for this tableaux cal-
culus, the DL system RACE5 has been developed [6].
RACE implements an ALCNHR+ reasoner for an-
swering queries concerning ABoxes and TBoxes. It is
a successor of HAM-ALC [3]. The RACE architec-
ture incorporates established and novel optimization
techniques for TBox and ABox reasoning [6, 5].

The combined effectiveness of these and other tech-
niques are demonstrated with knowledge bases (KBs)
derived from actual applications (Figure 2) and a set of
ABox benchmark problems (Figures 3, 4). The ‘Galen’
application KBs are described in [8]. Their employed
DLs range from ALE to ALCHfR+ . The KBs ‘ESPR’,
‘WISBER’, ‘CKB’, and ‘FSS’ (using ALCNH with
GCIs) are taken from previous DL benchmarks but
role hierarchies and domain and/or range restrictions
for primitive roles (using GCIs) are restored [4]. The

5
RACE is available from the URL http://kogs-

www.informatik.uni-hamburg.de/˜moeller/race.html
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‘Bike’ KBs (using ALCNH with GCIs) contain con-
figuration knowledge about various types of bicycles.
Their corresponding ABoxes describe example config-
urations of bikes. The KBs ‘BCS3’ and ‘BCS4’ (using
ALC with GCIs) are derived from a telecommunication
application. Their characteristics is the heavy use of
terminological cycles and GCIs.

A set of five ABoxes is iteratively realized using the
KBs ‘bike7-9’ (see Figure 3). The ABoxes describe
bike example configurations and exemplify typical
classification tasks. The TBoxes ‘bike7-9’ are almost
identical except that they vary in the degree of spec-
ifying disjointness between atomic concepts. Figure 4
reports on the runtimes for realizing synthetic ABoxes
with an increasing level of difficulty (1-21, see [6] for
further explanations).

6 Conclusion

We presented the first treatment for a tableaux calcu-
lus deciding the ABox consistency problem for the de-
scription logicALCNHR+ . A highly optimized variant
of this calculus is already implemented in the ABox de-
scription logic system RACE demonstrating the prac-
tical usefulness of ALCNHR+ . Although TBox rea-
soners for logics such as ALCQHIR+ are available,
the development of ALCNHR+ and its optimized im-
plementation in RACE is a novel approach. Practi-
cal reasoning is only possible with the design and im-
plementation of appropriate optimization techniques.
This is supported by recent empirical findings sug-
gesting that RACE dramatically outperforms other
known DL reasoners for logics at least as expressive
as ALCNHR+ . To the best of our knowledge there
currently exists no other ABox DL system with a per-
formance comparable to RACE.
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