
Optimizing TBox and ABox Reasoning
with Pseudo Models

Volker Haarslev and Ralf Möller

University of Hamburg, Computer Science Department

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

http://kogs-www.informatik.uni-hamburg.de/~<name>/

Abstract

This paper investigates optimization techniques and data structures ex-
ploiting the use of so-called pseudo models . These techniques are ap-
plied to speed-up TBox and ABox reasoning for the description logic
ALCNHR+. The advances are demonstrated by an empirical analysis us-
ing the description logic system RACE that implements TBox and ABox
reasoning for ALCNHR+.

1 Introduction

We introduce and analyze optimization techniques for reasoning in expressive
description logics exploiting so-called pseudo models. The new techniques be-
ing investigated are called deep model merging and individual model merging.
The presented algorithms are empirically evaluated using TBoxes and ABoxes
derived from actual applications.

We briefly introduce the DL ALCNHR+ [2]. We assume a set of concept names
C , a set of role names R, and a set of individual names O . The mutually disjoint
subsets F , P , T of R denote features, non-transitive, and transitive roles, respec-
tively (R = F ∪ P ∪ T). ALCNHR+ is introduced in Figure 1 using a standard
Tarski-style semantics. This a slightly extended definition of ALCNHR+ com-
pared to the one given in [2] since we additionally support the declaration of
“native” features (elements of F). This allows additional optimizations, e.g. an
efficient treatment of features by the model merging technique (see below). The
concept name � (⊥) is used as an abbreviation for C 	 ¬C (C � ¬C).

If R, S ∈ R are role names, then R
 S is called a role inclusion axiom. A
role hierarchy R is a finite set of role inclusion axioms. Then, we define
∗

as the reflexive transitive closure of
 over such a role hierarchy R. Given

Syntax Semantics
Concepts
A AI ⊆ ∆I

¬C ∆I \ CI

C � D CI ∩ DI

C 	 D CI ∪ DI

∃R . C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R . C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI}‖ ≥ n}
∃≤n S {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI}‖ ≤ n}
Roles
R RI ⊆ ∆I × ∆I

n ∈ N, n ≥ 0, ‖ · ‖ denotes set cardinality, and S ∈ S .

Axioms
Syntax Satisfied if
R ∈ T RI = (RI)+

F ∈ F ∆I ⊆ (∃≤1 F)I

R
 S RI ⊆ SI

C
 D CI ⊆ DI

Assertions
Syntax Satisfied if
a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

Figure 1: Syntax and Semantics of ALCNHR+.

∗, the set of roles R↓ = {S ∈ R | S
∗ R} defines the descendants of a role R.
R↑ = {S ∈ R |R
∗ S} is the set of ancestors of a role R. We also define the set
S := {R ∈ P |R↓ ∩ T = ∅} of simple roles that are neither transitive nor have
a transitive role as descendant. Every descendant G of a feature F must be a
feature as well (G ∈ F).
A syntactic restriction holds for the combinability of number restrictions and
transitive roles in ALCNHR+ . Number restrictions are only allowed for simple
roles. This restriction is motivated by a known undecidability result in case of
an unrestricted combinability [7].

If C and D are concept terms, then C
 D (generalized concept inclusion or GCI)
is a terminological axiom as well. A finite set of terminological axioms TR is
called a terminology or TBox w.r.t. to a given role hierarchy R.1

An ABox A is a finite set of assertional axioms as defined in Figure 1. For an
initial ABox A the set OO is defined as OO = {a | a mentioned in A}. Every in-
dividual name from O is mapped to a single element of ∆I in a way such that for
a, b ∈ OO , aI �= bI if a �= b (unique name assumption). The ABox consistency
problem is to decide whether a given ABox A is consistent w.r.t. a TBox T .
Satisfiability of concept terms can be reduced to ABox consistency as follows: A
concept term C is satisfiable iff the ABox {a :C} is consistent. Instance checking
tests whether an individual a is an instance of a concept term C w.r.t. an ABox
A and a TBox T , i.e. whether A entails a :C w.r.t. T . This problem is reduced
to the problem of deciding if the ABox A∪ {a :¬C} is inconsistent. Computing
the direct types of individuals (i.e. the set of the most specific concepts from C
of which an individual is an instance) is called realization.

1The reference to R is omitted in the following if we use T .

An ABox A is said to contain a clash if one of the following clash triggers is
applicable. Otherwise A is called clash-free.

• Primitive clash : a :⊥ ∈ A or {a :A, a :¬A} ⊆ A, where A is a concept name.
• Number restriction clash : ∃ S1, . . . , Sm ∈ R↓ : {a :∃≤n R}∪
{(a, bi) :Si | i ∈ 1..m} ∪ {bi � .= bj | i, j ∈ 1..m, i �= j} ⊆ A with m > n.

A clash-free ABox A is called complete if no completion rule (omitted due to
lack of space, see [2]) is applicable to A. A complete ABox A′ derived from an
ABox A is also called a completion of A.
Based on these notions we introduce and evaluate in the next sections the new
optimization techniques. The evaluation clearly demonstrates a speed gain using
deep model merging for classification of concepts and a dramatic gain for the
realization of ABoxes if individual model merging is applied.

2 Exploiting Deep Models for TBox Reasoning

Given a set of concepts representing a conjunction whose consistency is to be
checked, the model merging strategy tries to avoid a consistency test which relies
on the “expensive” tableaux technique. This idea was first introduced in [4]
for the logic ALCHfR+. A model merging test is designed to be a “cheap” test
operating on cached “concept models.” It is a sound but incomplete consistency
tester for a set of concepts. The achievement of minimal computational overhead
and the avoidance of any nondeterminism are important characteristics of such a
test. If the test returns false, a sound and complete tableaux calculus is applied.
In order to be more precise, we use the term pseudo model instead of “concept
model.” A model is understood in the sense of an interpretation and a pseudo
model as a data structure containing recorded information.

In the following we present and analyze a technique called deep model merging
that generalizes the original model merging approach [4] in two ways. (1) We
extend the model merging technique to the logic ALCNHR+ . (2) We introduce
deep pseudo models which are recursively traversed and checked for possible
clashes. To the best of our knowledge this is the first formal treatment showing
the soundness of model merging.

A pseudo model for a concept term C is defined as follows. Let A ∈ C be a
concept name, R ∈ R a role name, F ∈ F a feature name. The consistency of
A ={a :C} is tested. If A is inconsistent, the pseudo model2 of C is defined as
⊥. If A is consistent, then there exists a set of completions C. A completion
A′ ∈ C is selected and a pmodel M for a concept C is defined as the tuple
〈M A,M ¬A,M ∃,M ∀〉 of concept sets using the following definitions.

2For brevity a pseudo model is called a pmodel .

M A = {A | a :A ∈ A′}, M ¬A = {A | a :¬A ∈ A′}
M ∃ = {∃R . C | a :∃R . C ∈ A′} ∪ {∃≥n R | a :∃≥n R ∈ A′}
M ∀ = {∀R . C | a :∀R . C ∈ A′} ∪ {∃≤n R | a :∃≤n R ∈ A′} ∪ {∃F . C | a :∃F . C ∈ A′}

Note that the setM ∃ contains all exists- and at-least concepts whileM ∀ contains
all at-most- and all-concepts as well as all exists-concepts for features. This
guarantees the correct treatment of features.

The procedure mergable shown in Procedure 1 implements the flat and deep
model merging test. In case of deep merging it has to test for a blocking situa-
tion, i.e. whether the actual pmodel setMS is a member of the set VM of visited
pmodel sets. The initial call of mergable has the empty set as value for VM .
The third parameter D? controls whether the deep or flat mode (see below) of
mergable will be used.

We assume a procedure get pmodel that retrieves for a concept C its cached
pmodel. In case the pmodel does not yet exist, it is computed.

Procedure 1 mergable(MS ,VM ,D?)

1: if MS = ∅ ∨MS ∈ VM then
2: return true
3: else if ⊥ ∈ MS ∨ ¬atoms mergable(MS) then
4: return false
5: else
6: for all M ∈ MS do
7: for all C ∈ M ∃ do
8: if critical at most(C,M ,MS) then
9: return false

10: else
11: MS ′ ← collect pmodels(C,MS)
12: if (¬D? ∧MS ′ �= ∅) ∨ ¬mergable(MS ′,VM ∪ {MS},D?) then
13: return false
14: return true

The procedure atoms mergable tests for a possible primitive clash between
pairs of pmodels. It is applied to a set of pmodels MS and returns false if there
exist {M1, M2} ⊆ MS with (M A

1 ∩M ¬A
2) �= ∅ or (M ¬A

1 ∩M A
2) �= ∅. Otherwise it

returns true.

The procedure critical at most tests for a potential number restriction clash
in a set of pmodels and tries to avoid true answers which are too conservative.
It is applied to a concept C of the form ∃ S . D or ∃≥n S, a pmodel M (the

current model) and a set of pmodels MS = {M1 , . . . ,Mk} and returns true if
there exists a pmodel M ′ ∈ (MS \M) and a role R ∈ S↑ with ∃≤m R ∈ M ′∀ such
that

∑
E∈N numRS (E) > m , N = ∪i∈1 ..k M

∃
i , RS = S↑ ∩ R↓. In all other cases

critical at most returns false. The procedure numRS (E) returns 1 for concepts
of the form E = ∃R′ . D and n for E = ∃≥n R′, provided R′ ∈ RS .
The procedure collect pmodels is applied to a concept C of the form ∃ S . D or
∃≥n S and a set of pseudo models MS . It computes the pmodels of the set Q of
“qualifications.” We define Q ′ = {D} if C = ∃ S . D and Q ′ = ∅ otherwise.

Q = Q ′ ∪ {E | ∃M ∈ MS , R ∈ S↑ : (∀R . E ∈ M ∀ ∨ ∃R . E ∈ M ∀)}∪
{∀T . E | ∃M ∈ MS , R ∈ S↑, T ∈ T ∩ S↑ ∩ R↓ : ∀R . E ∈ M ∀}

The procedure collect pmodels returns the set {get pmodel(C) |C ∈ Q}. Ob-
serve that ∃R . E ∈ M ∀ implies that R is a feature.

In the following we prove the soundness of the procedure mergable. Note that
mergable depends on the clash triggers of the particular tableaux calculus chosen
since it has to detect potential clashes in a set of pmodels. The structure and
composition of the completion rules might vary as long as the clash triggers do
not change and the calculus remains sound and complete.

Proposition 1 (Soundness of mergable) Let D? have either the value true
or false, CS = {C1, . . . , Cn}, MCi = get pmodel(Ci), and PM = {MCi | i ∈ 1..n}.
If the procedure call mergable(PM , ∅,D?) returns true, the concept C1 � . . . � Cn

is consistent.

Proof. This is proven by contradiction and induction. Let us assume that the
call mergable(PM , ∅,D?) returns true but the ABox A = {a : (C1 � . . . � Cn)}
is inconsistent, i.e. there exists no completion of A. Every concept Ci must
be satisfiable, otherwise we would have ⊥ ∈ PM and mergable would return
false due to line 3 in Procedure 1. Let us assume a finite set C containing all
contradictory ABoxes encountered during the consistency test of A. Without
loss of generality we can select an arbitrary A′ ∈ C and make a case analysis of
its possible clash culprits.

1. We have a primitive clash for the “root” individual a, i.e. {a :D, a :¬D} ⊆ A′.
Thus, a :D and a :¬D have not been propagated to a via role assertions and
there have to exist Ci, Cj ∈ CS , i �= j such that a :D (a :¬D) is derived from
a :Ci (a :Cj) due to the satisfiability of the concepts Ci, i ∈ 1..n. It holds for
the associated pmodels MCi ,MCj ∈ PM that D ∈ M A

Ci
∩M ¬A

Cj
. However,

due to our assumption the call of mergable(PM , ∅,D?) returned true. This
is a contradiction since mergable called atoms mergable with PM (line 3
in Procedure 1) which returned false since D ∈ M A

Ci
∩M ¬A

Cj
.

2. A number restriction clash in A′ is detected for a, i.e. a :∃≤m R ∈ A′ and
there exist l > m distinct R-successors of a.3 These successors can only

3Due to our syntax restriction all elements of R↓ are not transitive.

be derived from assertions of the form a :∃ Sj . Ej or a :∃≥nj Sj with Sj ∈ R↓,
j ∈ 1..k1. The concepts Ci ∈ CS , i ∈ 1..n are satisfiable and there has to ex-
ist a subset CS ′ = {Ci1 , . . . , Cik2

} ⊆ CS such that ∃≤m R ∈ ∪Ci∈CS ′M ∀
Ci
and

∑
E′∈N numRS (E

′) ≥ l , N = ∪Ci∈CS ′M ∃
Ci

, RS = (∪j∈1..k1 Sj
↑) ∩ R↓. However,

due to our assumption the call of mergable(PM , ∅,D?) returned true. This
is a contradiction since there exists an i′ ∈ 1..k2 and a concept E′ ∈ M ∃

Ci′

such that mergable called critical at most(E′,MCi′ ,PM) (lines 6-8 in Pro-
cedure 1) which returned true since

∑
E′∈N numRS (E′) ≥ l > m .

3. Let the individual an be a successor of a0 via a chain of role assertions
(a0, a1) :R1, . . . , (an−1, an) :Rn, n > 0 and we now assume that a clash for an

is discovered.

(a) In case of a primitive clash we have {an :D, an :¬D} ⊆ A′. These clash
culprits are derived from assertions for an−1 of the form an−1 :∃≥m Rn

or an−1 :∃Rn . E1, and an−1 :∀ S . E2 and/or an−1 :∀ S′ . E3 with S, S′ ∈ Rn
↑.

Due to the clash there exists a pair Ei, Ej with D ∈ M A
Ei

∩M ¬A
Ej

for
some i, j ∈ 1..3, i �= j. Each role assertion in the chain between a0 and
an−1 can only be derived from an assertion of the form ak−1 :∃Rk . Ek or
ak−1 :∃≥mk

Rk with k ∈ 1..n− 1. The call graph of mergable(PM , ∅,D?)
contains a chain of calls resembling the chain of role assertions. By
induction on the call graph we know that the node resembling an−1 of
this call graph chain contains the call mergable(PM ′,VM ′, true) such
that {MEi ,MEj} ⊆ PM ′ and atoms mergable has been called with a
set MS ′ and {MEi ,MEj } ⊆ MS ′. The call of atoms mergable has re-
turned false since D ∈ M A

Ei
∩M ¬A

Ej
. This contradicts our assumption

that mergable(PM , ∅,D?) returned true.
(b) In case of a number restriction clash we can argue in an analogous

way. Again, we have a chain of role assertions where a number restric-
tion clash is detected for the last individual of the chain. It exists
a corresponding call graph chain where by induction the last call
of mergable called critical at most with a set of pmodels for which
critical at most returned true. This contradicts the assumption that
mergable(PM , ∅,D?) returned true.

It is easy to see that this proof also holds in the case the value of D? is false
since the “flat mode” is more conservative than the “deep” one, i.e. it will
always return false instead of possibly true if the set of collected pmodels M ′ is
not empty (line 12 in Procedure 1) �
The advantage of the deep vs. the flat mode of the model merging technique
is demonstrated by empirical tests using a set of “quasi-standard” application
TBoxes/Aboxes [6, 5, 1]. Figure 2a-b shows the runtimes for computing the sub-
sumption lattice of these KBs. Each KB is iteratively classified using 3 different

20

30

40

50

60

70

80

90

100

Galen2 Galen1 Galen

Setting 1
Setting 2
Setting 3

0

10

20

30

40

50

60

Bike1 Bike2 Bike3 Bike4 Bike5 Bike6 Bike7 Bike8 Bike9

Setting 1
Setting 2
Setting 3

5

10

20

30
40
50

75
100

200

500

1000

5000

>10000

A71 A72 A73 A74 A75 A81 A82 A83 A84 A85 A91 A92 A93 A94 A95

Three runs clustered in a group for each application ABox
(left-right order in clusters corresponds to top-bottom order in legend)

Setting 1
Setting 2
Setting 3

(a) Galen TBoxes (b) Bike TBoxes (c) Bike ABoxes

Figure 2: Evaluation of model merging techniques (3 runs for each TBox/ABox,
left-right order corresponds to top-bottom order in the legend).

parameter settings. The first setting has all optimization techniques enabled, in
the second one the subtableaux caching technique [5, 1] is disabled. The third
setting has both subtableaux caching and the deep mode of model merging dis-
abled but the flat mode of model merging is still enabled. The 3 different settings
are justified by the order in which these optimization techniques are applied if
a “subtableaux” is tested for consistency in RACE. First, subtableaux caching
is applied. If no cache entry exists, (deep) model merging is tried. If it returns
false the standard tableaux test is invoked. Thus, tableaux caching might reduce
the number of encountered model merging tests and the advantage of the deep
against the flat mode of model merging can only be accurately evaluated if one
compares the runtimes between the second and third setting. The comparison
between these settings indicates a speed-up in runtimes of a factor 1.5 − 2 for
almost all TBoxes/ABoxes if the deep mode is enabled. The comparison be-
tween the first and second setting clearly demonstrates that the deep mode can
sometimes compensate the disabled subtableaux caching technique. However,
the BCS TBox introduced in [1] can be classified within less than 10 seconds of
runtime if subtableaux caching is enabled but cannot be classified within 10,000
seconds of runtime if subtableaux caching is disabled and the flat or deep mode
of model merging is enabled.

3 Exploiting Flat Models for ABox Reasoning

An ABox is realized through a sequence of instance checking tests. The realiza-
tion of an individual a occurring in an ABox A w.r.t to a TBox T computes
the direct types of a (w.r.t. A and T). For instance, in order to compute the
direct types of a for a given subsumption lattice of the concepts D1, . . . , Dn, a
sequence of ABox consistency tests for ADi

= A ∪ {a :¬Di} might be required.
However, individuals are usually members of only a small number of concepts

and the ABoxes ADi
are proven as consistent in most cases. The basic idea is to

design a cheap but sound model merging test for the focused individual a and
the concept terms ¬Di without explicitly considering role assertions and con-
cept assertions for the other individuals mentioned in A since these interactions
are reflected in the “individual pseudo model” of a. This is the motivation for
devising the novel individual model merging technique.

A pseudo model for an individual a mentioned in a consistent ABox A w.r.t.
a TBox T is defined as follows. Since A is consistent, there exists a set of
completions C of A. Let A′ ∈ C. An individual pseudo model M for an individual
a in A is defined as the tuple 〈M A,M ¬A,M ∃,M ∀〉 w.r.t. A′ and A using the
following definitions.

M A = {A | a :A ∈ A′}, M ¬A = {A | a :¬A ∈ A′}
M ∃ = {∃R . C | a :∃R . C ∈ A′} ∪ {∃≥n R | a :∃≥n R ∈ A′} ∪ {∃≥1 R | (a, b) :R ∈ A}
M ∀ = {∀R . C | a :∀R . C ∈ A′} ∪ {∃≤n R | a :∃≤n R ∈ A′} ∪ {∃F . C | a :∃F . C ∈ A′}

The procedure get ind pmodel called with an individual a mentioned in a
consistent ABox A (w.r.t. a TBox T) either appropriately creates a pmodel for
a or retrieves the cached pmodel of a.

Proposition 2 (Soundness of individual model merging) Let a be an in-
dividual mentioned in a consistent ABox A w.r.t. a TBox T , ¬C be a sat-
isfiable concept, Ma (M¬C) denote the pmodel returned by get ind pmodel(a)
(get pmodel(¬C)), and the set PM be defined as {Ma,M¬C}. If the procedure
call mergable(PM , ∅, false) returns true, the ABox A ∪ {a :¬C} is consistent,
i.e. a is not an instance of C.

Proof. This is proven by contradiction. Let us assume that the procedure call
mergable({Ma ,M¬C}, ∅, false) returns true but the ABox A′ = A ∪ {a :¬C} is
inconsistent, i.e. there exists no completion of A′. Let us assume a finite set C
containing all contradictory ABoxes encountered during the consistency test of
A′. Without loss of generality we can select an arbitrary A′′ ∈ C and make a
case analysis of its possible clash culprits.

1. A clash is detected for an individual b in A′′ that is distinct to a. Since
A is consistent the individual b must be a successor of a via a chain of
role assertions (a, b1) :R1, . . . , (bn, b) :Rn+1, n ≥ 0 and one of the clash cul-
prits must be derived from the newly added assertion a :¬C and propa-
gated to b via the role assertion chain originating from a with (a, b1) :R1.
Since ¬C is satisfiable and A is consistent we have an “interaction” via
the role or feature R1. This implies for the associated pmodels Ma ,M¬C

that (M ∃
a ∩M ∀

¬C) ∪ (M ∀
a ∩M ∃

¬C) �= ∅. This contradicts the assumption

that mergable({Ma,M¬C}, ∅, false) returned true since mergable eventu-
ally called collect pmodels for Ma ,M¬C which returned a non-empty set
(line 11 in Procedure 1).

2. In case of a primitive clash for a we have {a :D, a :¬D} ⊆ A′′. Since a :¬C is
a concept assertion we know that a :D and a :¬D cannot be propagated to
a via role assertions. Thus, either a :D or a :¬Dmust be derived from a :¬C
and we have D ∈ (M A

a ∩M ¬A
¬C)∪ (M ¬A

a ∩M A
¬C). This contradicts the as-

sumption that mergable({Ma,M¬C}, ∅, false) returned true since mergable
called atoms mergable({Ma,M¬C}) which returned false (line 3 in Proce-
dure 1) since D ∈ (M A

a ∩M ¬A
¬C)∪ (M ¬A

a ∩M A
¬C).

3. A number restriction clash in A′′ is detected for a, i.e. a :∃≤m R ∈ A′′ and
there exist l > m distinct R-successors of a in A′′. This implies that the set
N = M ∃

a ∪M ∃
¬C contains concepts of the form ∃ Sj . Ej or ∃≥nj Sj,

4 Sj ∈ R↓,
j ∈ 1..k, such that

∑
E′∈N numRS (E′) ≥ l , RS = (∪j∈1..k Sj) ∩ R↓. This con-

tradicts the assumption that mergable({Ma,M¬C}, ∅, false) returned true
since mergable called critical at most (lines 6-8 in Procedure 1) which re-
turned true since

∑
E′∈N numRS (E′) ≥ l > m . �

The performance gain by the individual model merging technique is empirically
evaluated using a set of five ABoxes containing between 15 and 25 individuals.
Each of these ABoxes is realized w.r.t. to the application KBs Bike7-9 derived
from a bike configuration task. The KBs especially vary on the degree of ex-
plicit disjointness declarations between atomic concepts. Figure 2c shows the
runtimes for the realization of the ABoxes 1-5. Each ABox is realized with three
different parameter settings. The first setting has all optimization techniques
enabled, in the second setting an optimization technique is disabled that con-
siders disjointness between concepts5, and additionally the third setting has the
individual model merging technique disabled. The comparison between setting
two and three reveals a speed gain of at least one order of magnitude if the
individual model merging technique is used. Note the use of a logarithmic scale.

4 Conclusion and Future Work

In this paper we have analyzed optimization techniques for TBox and ABox rea-
soning in the expressive description logic ALCNHR+. These techniques exploit
the traversal of flat and/or deep pseudo models extracted from ABox consistency
tests. A moderate speed gain using deep models for classification of concepts
and a dramatic gain for realization of ABoxes is empirically demonstrated.

4Any role assertion of the form (a, b) :R ∈ A implies that ∃≥1 R ∈ M ∃
a .

5This technique interacts with individual model merging since it prunes the search space
for realization and thus decreases the number of instance checking tests that can be solved by
individual model merging. The technique dealing with disjoint concepts is discussed in [3].

The advantage of the deep vs. the flat model merging mode is apparent. If the
flat model merging test is (recursively) applied during tableaux expansion and
repeatedly returns false because of interacting all- and some-concepts, this test
might be too conservative. This is illustrated with a small example (C, D ∈ C ,
R, S ∈ R). For instance, the deep model merging test starts with the pmod-
els 〈∅, ∅, {∃R . ∃ S . C}, ∅〉 and 〈∅, ∅, ∅, {∀R . ∀ S . D}〉. Due to the interaction on
the role R, the test is recursively applied to the pmodels 〈∅, ∅, {∃ S . C}, ∅〉 and
〈∅, ∅, ∅, {∀ S . D}〉. Eventually, the deep model merging test succeeds with the
pmodels 〈{C}, ∅, ∅, ∅〉 and 〈{D}, ∅, ∅, ∅〉 and returns true. This is in contrast
to the flat mode where in this example no tableaux tests are avoided and the
runtime for the model merging tests is wasted.

It is easy to see that an enhanced version of the individual model merging tech-
nique can be developed, which additionally exploits the use of deep models. This
is immediately possible if only ABoxes containing no joins for role assertions are
encountered. In case an ABox A contains a join (e.g. {(a, c) :R, (b, c) :R} ⊆ A),
one has to consider a graph-like instead of a tree-like traversal of pseudo models
reflecting the dependencies caused by joins.

References

[1] V. Haarslev and R. Möller. An empirical evaluation of optimization strategies
for ABox reasoning in expressive description logics. In P. Lambrix et al., editor,
Proceedings of the International Workshop on Description Logics (DL’99), July
30 - August 1, 1999, Linköping, Sweden, pages 115–119, June 1999.

[2] V. Haarslev and R. Möller. Expressive ABox reasoning with number restrictions,
role hierarchies, and transitively closed roles. In A.G. Cohn, F. Giunchiglia, and
B. Selman, editors, Proceedings of Seventh International Conference on Principles
of Knowledge Representation and Reasoning (KR’2000), Breckenridge, Colorado,
USA, April 11-15, 2000, pages 273–284, April 2000.

[3] V. Haarslev and R. Möller. High performance reasoning with very large knowledge
bases, August 2000. In this volume.

[4] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

[5] I. Horrocks and P. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267–293, June 1999.

[6] I. Horrocks and P.F. Patel-Schneider. DL systems comparison. In Proceedings of
DL’98, International Workshop on Description Logics, pages 55–57, Trento(Italy),
1998.

[7] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for ex-
pressive description logics. In Harald Ganzinger, David McAllester, and An-
drei Voronkov, editors, Proceedings of the 6th International Conference on Logic
for Programming and Automated Reasoning (LPAR’99), number 1705 in Lecture
Notes in Artificial Intelligence, pages 161–180. Springer-Verlag, September 1999.

