
Proceedings of the 2001 Workshop on
Applications of Description Logics

Editors: Günther Görz, Volker Haarslev,
Carsten Lutz, and Ralf Möller

Vienna, Austria
September 18, 2001

Abstract

Recently, a growing interest in description logics and their applica-
tions can be observed. This is mainly due to the development of very
expressive description logics and optimized description logic systems
which support terminological and/or assertional reasoning for these
logics. This workshop intended to gather researchers as well as practi-
tioners who are interested in description logics and their applications.
The primary focus of this workshop was on applications of description
logics. Ian Horrocks, University of Manchester, gives a tutorial-style
talk about latest developments in description logic research.

These proceedings can also be found at http://www.CEUR-WS.org.





Technical papers

1. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo
Reasoning on UML Class Diagrams using Description Logic
Based Systems

2. Sebastian Brandt and Anni-Yasmin Turhan
Using Non-standard Inferences in Description Logics –
what does it buy me?

3. Kerstin Bücher, Yves Forkl, Günther Görz, Martin Klarner,
Bernd Ludwig
Discourse and Application Modeling for Dialogue Systems

4. François de Bertrand de Beuvron, Martina Kullmann, François Rous-
selot
An Optimized Tableau Structure for Explicit Representation
of Disjunction

5. Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello,
Giacomo Piscitelli
A Knowledge Based System for Person-to-Person E-Commerce

6. Malte Gabsdil, Alexander Koller, Kristina Striegnitz
Building a Text Adventure on Description Logic

7. Javier González-Castillo, David Trastour, Claudio Bartolini
Description Logics for Matchmaking of Services

8. Stephan Grill
Modeling X.509 Certificate Policies Using Description Logics

9. Bo Hu, Ernesto Compatangelo, Ines Arana
A hybrid approach to extend DL-based reasoning with con-
crete domains

10. Michael Knorr, Bernd Ludwig, Günther Görz
Some Requirements for Practical Modeling in Dialogue Sys-
tems

11. Stefan Schlobach
Interpolation based Assertion Mining

12. Heiner Stuckenschmidt and Jérôme Euzenat
Ontology Language Integration: A Constructive Approach





Reasoning on UML Class Diagrams using

Description Logic Based Systems

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Universit�a di Roma \La Sapienza"

Via Salaria 113, 00198 Roma, Italy

lastname @dis.uniroma1.it

Abstract

In this paper we study how automated reasoning systems based on

Description Logics (DLs) can be used for reasoning about UML class di-

agrams. The ability of reasoning automatically on UML class diagrams

makes it possible to provide computer aided support during the appli-

cation design phase in order to automatically detect relevant properties,

such as inconsistencies and redundancies. We show that UML class dia-

grams can be formalized as knowledge bases expressed in the DL DLR.

DLR knowledge bases can be translated into knowledge bases expressed

in the variants of ALCQI accepted by state-of-the-art DL-based systems.

Hence, in principle, the reasoning capabilities of such systems can be used

to reason on UML class diagrams. However, we report some experiments

indicating that state-of-the-art systems have still diÆculty in dealing with

the resulting knowledge bases.

1 Introduction

The Uni�ed Modeling Language (UML) is the de facto standard formalism for

object-oriented modeling [1, 11]. There is a vast consensus on the need for a

precise semantics for UML [9, 14], in particular for UML class diagrams. Indeed,

several kinds of formalizations of UML class diagrams have been proposed in the

literature [8, 9, 10, 7]. Many of them have been proved very useful with respect to

the task of establishing a common understanding of the formal meaning of UML

constructs. However, to the best of our knowledge, none of them has the explicit

goal of building a solid basis for allowing automated reasoning techniques, based

on algorithms that are sound and complete wrt the semantics, to be applicable

to UML class diagrams.

1



We are interested in exploiting the research on Description Logics (DLs),

which are decidable logics tailored towards class based knowledge representation,

to carry out various forms of reasoning on UML class diagrams, so as to provide

support during the speci�cation phase of software development. Recently the

research on DLs has resulted in a number of automated reasoning systems [15,

16, 17, 12, 13], that have been successfully tested in various application domains

(see e.g., [19, 20, 18]). Such systems are candidates to form the core reasoning

engine for advanced UML CASE tools.

In this paper, we illustrate a formalization of UML class diagrams in terms

of DLs [2]. In particular, we show how UML class diagrams can be captured

by knowledge bases expressed in the DL DLR [4, 3]. This logic is particularly

well tailored towards the high expressiveness of UML information structuring

mechanisms, and allows one to easily model important additional properties,

such as disjointness of classes, or partitions of classes into subclasses, that are

typically speci�ed by means of constraints in UML class diagrams. DLR asser-

tions can be translated into ALCQI assertions. Since variants of the latter are

accepted by state-of-the-art DL-based reasoning systems, in principle, we can

exploit such systems to reason about UML class diagrams. However, in spite

of the fact that such systems have shown to perform nicely in several context,

we report in this paper some experiments indicating that they still have serious

eÆciency problems when dealing with UML class diagrams.

The rest of the paper is organized as follows. In Section 2 we give a brief

overview of the Description Logic DLR. In Section 3 we show how UML class

diagrams can be formalized in DLR. In Section 4 we discuss the use of DL-

based reasoning systems, namely FaCT [17] and Racer [13], for reasoning

about UML class diagrams, and show some results of our experimentation with

such systems. Section 5 concludes the paper. In the appendix, we show the

UML class diagrams used in the reported experiments.

2 The Description Logic DLR

The basic elements of DLR [4, 3] are concepts and n-ary relations. We assume

to deal with a �nite set of atomic relations and atomic concepts, denoted by P

and A, respectively. Arbitrary relations (of given arity between 2 and nmax),

denoted by R, and arbitrary concepts, denoted by C, are built according to the

following syntax:

R ::= >n j P j (i=n :C) j :R j R1 u R2

C ::= >1 j A j :C j C1 u C2 j (� k [i]R)

where i denotes a component of a relation, i.e., an integer between 1 and nmax, n

denotes the arity of a relation, i.e., an integer between 2 and nmax, and k denotes

2



>I

n
� (�I)n

P I � >I

n

(i=n :C)I = ft 2 >I
n
j t[i] 2 CIg

(:R)I = >I

n
nRI

(R1 u R2)
I = RI

1
\ RI

2

>I

1
= �I

AI � �I

(:C)I = �I n CI

(C1 u C2)
I = CI

1
\ CI

2

(� k [i]R)I = fa 2 �I j ]ft 2 RI

1
j t[i] = ag � kg

Figure 1: Semantic rules for DLR (P , R, R1, and R2 have arity n)

a non-negative integer. We consider only concepts and relations that are well-

typed, which means that (i) only relations of the same arity n are combined to

form expressions of type R1 u R2 (which inherit the arity n), and (ii) i � n

whenever i denotes a component of a relation of arity n.

We also make use of the following abbreviations: C1 tC2 for :(:C1 u:C2),

C1)C2 for :C1 t C2, (� k [i]R) for :(� k�1 [i]R), 9[i]R for (� 1 [i]R), 8[i]R

for :9[i]:R. Moreover, we abbreviate (i=n :C) with (i :C), when n is clear from

the context.

A DLR knowledge base (KB) is constituted by a �nite set of inclusion as-

sertions, where each assertion has one of the forms:

R1 v R2 C1 v C2

with R1 and R2 of the same arity.1

The semantics of DLR is speci�ed through the notion of interpretation. An

interpretation I = (�I
; �I) of a DLR KB K is constituted by an interpretation

domain �I and an interpretation function �I that assigns to each concept C a

subset CI of �I and to each relation R of arity n a subset RI of (�I)n, such

that the conditions in Figure 1 are satis�ed (in the �gure, t[i] denotes the i-th

component of tuple t). We observe that >1 denotes the interpretation domain,

while >n, for n > 1, does not denote the n-Cartesian product of the domain,

but only a subset of it that covers all relations of arity n. It follows, from this

property, that the \:" constructor on relations is used to express di�erence of

relations, rather than complement.

To specify the semantics of a KB we �rst de�ne when an interpretation sat-

is�es an assertion as follows: An interpretation I satis�es an inclusion assertion

R1 v R2 (resp. C1 v C2) if R
I

1
� R

I

2
(resp. CI

1
� C

I

2
). An interpretation that

satis�es all assertions in a KB K is called a model of K.

Several reasoning services are applicable to DLR KBs. The most important

ones are KB satis�ability and logical implication. A KB K is satis�able if there

1DLR knowledge bases may also include identi�cation-constraints that allow one to force
instances of concepts or relations to be uniquely identi�ed through suitable mechanisms (see [4]
for details). Interestingly, however, such additional constraints play no role in checking knowl-
edge base satis�ability or logical implication of inclusion assertions. For this reason in this
paper we do not consider them.

3



m`: :mu n`: :nuC1 C2

A

Figure 2: Aggregation in UML

exists a model of K. An inclusion assertion � is logically implied by K if all

models of K satisfy �. One can easily verify that logical implication and KB

(un)satis�ability are mutually reducible.

One of the distinguishing features of DLR is that it is equipped with rea-

soning algorithms that are sound and complete wrt to the semantics. Such

algorithms allow one to decide all the above reasoning tasks in deterministic

exponential time [4, 3].

3 Representing UML class diagrams

We concentrate on UML class diagrams for the conceptual perspective. Hence,

we do not deal with those features that are relevant for the implementation

perspective, such as public, protected, and private quali�ers for methods and

attributes.

Classes A class in an UML class diagram denotes a set of objects with common

features, hence it can be represented by a DLR concept. This follows naturally

from the fact that both UML classes and DLR concepts denote sets of objects.

Attributes and operations of classes can be easily represented by means of DLR-

relations [2].

Relationships between classes come in two forms in UML: aggregations, de-

noting part-whole relationships, and associations, denoting general relationships

between two or more classes.

Aggregations An aggregation in UML, graphically rendered as in Figure 2, is

a binary relation between the instances of two classes, denoting a generic form

of part-whole relationship, i.e., a relationship that speci�es that each instance

of a class is made up of a set of instances of another class. An aggregation A,

saying that instances of the class C1 have components that are instances of the

class C2, is formalized in DLR by means of a binary relation A together with

the following assertion:

A v (1 :C1) u (2 :C2):

Note that the distinction between the contained class and the containing class

is not lost. Indeed, we simply use the following convention: the �rst argument

of the relation is the containing class. The multiplicity of an aggregation can be

4



r2

C2

Cn

: : :

A

rnC1 r1

Figure 3: Association in UML

A

n`: :nu

r2r1

C1 C2

m`: :mu

Figure 4: Binary association in UML

easily expressed in DLR. For example, the multiplicities shown in Figure 2 are

formalized by means of the assertions:

C1 v (� n` [1]A) u (� nu [1]A)

C2 v (� m` [2]A) u (� mu [2]A)

Associations An association in UML, graphically rendered as in Figure 3, is

a relation between the instances of two or more classes. An association often

has a related association class that describes properties of the association such

as attributes, operations, etc.

Since associations have often a related association class, we formalize asso-

ciations in DLR by reifying each association A into a DLR concept A with

suitable properties. We represent an association among n classes C1; : : : ; Cn, as

shown in Figure 3, by introducing a concept A and n binary relations r1; : : : ; rn,

one for each component of the association A. Each binary relation ri has Ci

as its �rst component and A as its second component. Then we introduce the

following assertion:

A v 9[1]r1 u (� 1 [1]r1) u 8[1](r1 ) (2 :C1)) u
...

9[1]rn u (� 1 [1]rn) u 8[1](rn ) (2 :Cn))

where 9[1]ri, with i 2 f1; : : : ; ng, speci�es that the concept A must have all

components r1; : : : ; rn of the association A, (� 1 [1]ri) speci�es that each such

component is single-valued, and 8[1](ri ) (2 :Ci)) speci�es the class each com-

ponent has to belong to.2

2In addition, we would need an identi�cation constraint saying that the relations r1; : : : ; rn

5



CnC2 : : :
C1

C

Figure 5: A class hierarchy in UML

For a binary UML association, we can easily represent multiplicities by im-

posing suitable number restrictions on the DLR relations modeling the compo-

nents of the association. The multiplicities shown in Figure 4 are captured as

follows:

C1 v (� n` [1](r1 u (2 :A))) u (� nu [1](r1 u (2 :A)))

C2 v (� m` [1](r2 u (2 :A))) u (� mu [1](r2 u (2 :A)))

Generalization In UML one can use generalization between a parent class

and a child class to specify that each instance of the child class is also an instance

of the parent class. Hence, the instances of the child class inherit the properties

of the parent class, but typically they satisfy additional properties that do not

hold for the parent class.

Generalization is naturally supported in DLR. If an UML class C2 general-

izes a class C1, we can express this by the DLR assertion:

C1 v C2

Inheritance between DLR concepts works exactly as inheritance between UML

classes. This is an obvious consequence of the semantics of inclusion assertions,

which is based on subsetting. Indeed, inDLR, given an assertion C1 v C2, every

tuple in a relation having C2 as i-th argument type may have as i-th component

an instance of C1, which is in fact also an instance of C2. As a consequence,

in the formalization, each attribute or operation of C2, and each aggregation

and association involving C2 is correctly inherited by C1. Observe that the for-

malization in DLR also captures directly inheritance among association classes,

which are treated exactly as all other classes, and multiple inheritance between

classes (including association classes).

In UML, one can group several generalizations, as shown e.g.., in Figure 5,

and impose covering or mutual disjointness between classes, if needed. This is

captured in DLR by a set of inclusion assertions, one between each child class

form an identi�er of the concept A. However, as mentioned, such a constraint has no impact
on reasoning on logical implication or satis�ability of the resulting knowledge base, so we omit
it here.

6



and the parent class:

Ci v C for each i 2 f1; : : : ; ng

Then if the superclass C is a covering of the subclasses C1; : : : ; Cn, we include

the additional assertion

C v C1 t � � � t Cn

For each pair of subclasses Ci and Cj that are mutually disjoint, we include the

assertions

Ci v :Cj

Constraints In UML it is possible to add information to a class diagram by

using constraints. In general, constraints are used to express in an informal

way information which cannot be expressed by other constructs of UML class

diagrams. One can exploit the expressive power of DLR to formalize several

types of constraints that allow one to better represent the application semantics

and that are typically not dealt with in a formal way. This allows one to take

such constraints fully into account when reasoning on the class diagram.

4 Experiments

We have formalized as DLR knowledge bases several UML class diagrams. Then

we have used state-of-the-art DL-based systems to reason with them, by trans-

lating the DLR knowledge bases into ALCQI knowledge bases (or more pre-

cisely knowledge bases expressed in the variants of ALCQI accepted by the

systems used). In particular, we have used the two systems FaCT 3 (the exe-

cutable SHIQ reasoner (shiq-app.exe) contained in the Corba-FaCT distribu-

tion v.2.15, excluding the corba interface) and Racer
4 (v.1-5-10). We have

run the experiments on a Pentium III biprocessor, 866 Mhz, 512MB of RAM

and OS Windows 2000 Professional.

Below we report the results obtained with four rather simple UML class

diagrams, shown in the appendix: Restaurant, Library, Soccer, and Hospital,

modeling, respectively, a restaurant, a library, a soccer championship and the

acceptance procedure in a hospital. The reasoning service we focused on is satis-

�ability of the class diagram. Observe that all diagrams are obviously satis�able.

The obtained results are shown in Table 1, where:

� complete refers to the original UML class diagrams;

3Available at http://www.cs.man.ac.uk/�horrocks/FaCT.
4Available at http://kogs-www.informatik.uni-hamburg.de/�race.

7



Restaurant Hospital Soccer Library

FaCT Racer FaCT Racer FaCT Racer FaCT Racer

no mult. constr. yes yes yes yes yes yes yes yes

no minimal mult. constr. yes no yes yes yes yes yes yes

no maximal mult. constr. yes no yes no yes no yes yes

complete no no yes no no no yes no

Table 1: Successful classi�cation of the considered UML class diagrams

� no multiplicity const. refers to the class diagrams weakened by removing all

multiplicity constraints, i.e., making all multiplicities of the form 0::�;

� no minimal multiplicity const. refers to the class diagrams weakened by

removing minimal multiplicity constraints, thus getting multiplicities of

the form 0::� or 0::1;

� no maximal multiplicity const. refers to the class diagrams weakened by

removing maximal multiplicity constraints, thus getting multiplicities of

the form 0::� or 1::�.

In the table, \yes" indicates that the reasoner could classify the knowledge base

corresponding to the UML class diagram, and \no" that the reasoner couldn't

classify it because it ran out of resources.

When the reasoners are able to classify a knowledge base (yes in the table),

they both take less than 1 minute to perform the classi�cation. When FaCT

cannot classify a knowledge base (no in the table), this is because it goes in

stack overow (in about 1 minute on the experiments reported). Observe that

the only limit to the stack size is the one imposed by the OS, and FaCT goes

in stack overow whenever the OS can't provide more memory. FaCT memory

requests increase quite regularly, until all the available memory is exhausted.

As for Racer, when it cannot classify a knowledge base (no in the table, this is

because it starts paging, so that all the resources are used to perform memory

swaps and the CPU usage decreases greatly. After 1 hour of paging we stopped

the reasoner. The only exception to this behaviour is in classifying the knowledge

base corresponding to Hospital with no maximal multiplicity constraints, where

Racer goes in stack overow, even setting the stack size to the maximum.

FaCT can classify all knowledge bases corresponding to the class diagrams

having no minimal multiplicity constraints and those having no maximal mul-

tiplicity constraints, but it can't classify some of those corresponding to the

complete class diagrams: namely Soccer and Restaurant, which are characterized

by having cycles of associations/aggregations all involving minimal multiplicity

constraints in both directions. 5

5Curiously, we noticed that FaCT is able to classify the knowledge base corresponding

8



Racer can classify none of the knowledge bases corresponding to the com-

plete UML class diagrams. Instead, it can classify the knowledge bases corre-

sponding to the weakened class diagrams with no multiplicity constraints, and

those corresponding to the class diagrams with no minimal multiplicity con-

straints, with the exception of Restaurant. The weakened class diagrams with

no maximal multiplicity constrains are too complex for the current version of

Racer, with the exception of Library, where only few minimal multiplicity con-

straints appear.

From an analysis of the UML class diagrams and the corresponding knowl-

edge bases, it appears that what makes reasoning diÆcult for the current systems

is the combination of: (1) terminological cycles involving existentials (which in

UML class diagrams are generated by minimal multiplicity constraints); (2) in-

verse roles (which are intrinsic in the possibility of navigating UML aggregations

and associations components in both directions); (3) functional restrictions com-

bined with existential restrictions (which are present in the complete class dia-

grams); (4) the overall size of the UML class diagrams.

More information about the conducted experiments, including the DLR

knowledge bases corresponding to the UML class diagrams considered here, and

the knowledge bases expressed in the languages accepted by FaCT and Racer,

are available at http://www.dis.uniroma1.it/�berardi/uml2dl.

5 Conclusions

We have seen that UML class diagrams can be formalized as DL knowledge

bases, and this potentially allows for exploiting DL-based reasoning systems to

perform various kinds of reasoning on them. However, the experimentation with

state-of-the-art DL reasoners, shows that the current reasoners may have serious

eÆciency problems in dealing with the resulting knowledge bases. Observe that

all results obtained apply also to Entity-Relationship diagrams (with cardinality

constraints) [6, 5], which are tightly related to UML class diagrams.

Hence, we encourage further research on practical DL reasoners. Reasoning

with UML class diagrams (with multiplicity constraints) can be a challenging

testbed for them.

Acknowledgments We would like to thank the developers of FaCT and

Racer, and in particular Ian Horrocks, Sergio Tessaris, Volker Haarslev, and

to Restaurant, if we reverse the direction of two aggregations (related and is comprised),
which in this case amounts to reversing the order of the two arguments of the DLR relation
corresponding to two aggregations. This appears quite strange, considering thatDLR relations
are rei�ed in ALCQI and the treatment of the two components in the translation of the
relations is completely symmetrical.

9



Ralf M�oller, for their kind and very helpful assistance during the experimentation

with their systems.

References

[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language User

Guide. Addison Wesley Publ. Co., Reading, Massachussetts, 1998.

[2] A. Cal��, D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning on UML class

diagrams in description logics. In Proc. of IJCAR Workshop on Precise Modelling

and Deduction for Object-oriented Software Development (PMD 2001), 2001.

[3] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query

containment under constraints. In Proc. of PODS'98, pages 149{158, 1998.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini. Identi�cation constraints and

functional dependencies in description logics. In Proc. of IJCAI 2001, 2001. To

appear.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Use of the

reconciliation tool at Telecom Italia. Technical Report DWQ-UNIROMA-007,

DWQ Consortium, Oct. 1999.

[6] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation

formalisms. J. of Arti�cial Intelligence Research, 11:199{240, 1999.

[7] T. Clark and A. S. Evans. Foundations of the Uni�ed Modeling Language. In

D. Duke and A. Evans, editors, Proc. of the 2nd Northern Formal Methods Work-

shop. Springer-Verlag, 1997.

[8] A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a formal model-

ing notation. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Proc. of the

OOPSLA'97 Workshop on Object-oriented Behavioral Semantics, pages 75{81.

Technische Universit�at M�unchen, TUM-I9737, 1997.

[9] A. Evans, R. France, K. Lano, and B. Rumpe. Meta-modelling semantics of

UML. In H. Kilov, editor, Behavioural Speci�cations for Businesses and Systems,

chapter 2. Kluwer Academic Publisher, 1999.

[10] A. S. Evans. Reasoning with UML class diagrams. In Second IEEE Workshop on

Industrial Strength Formal Speci�cation Techniques (WIFT'98). IEEE Computer

Society Press, 1998.

[11] M. Fowler and K. Scott. UML Distilled { Applying the Standard Object Modeling

Laguage. Addison Wesley Publ. Co., Reading, Massachussetts, 1997.

[12] V. Haarslev and R. M�oller. High performance reasoning with very large knowledge

bases: A practical case study. In Proc. of IJCAI 2001, 2001.

10



[13] V. Haarslev and R. M�oller. RACER system description. In Proc. of IJCAR 2001,

2001.

[14] D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that

stu�. Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot,

Israel, 2000.

[15] I. Horrocks. Using an expressive description logic: FaCT or �ction? In Proc. of

KR'98, pages 636{647, 1998.

[16] I. Horrocks and P. F. Patel-Schneider. Optimizing description logic subsumption.

J. of Log. and Comp., 9(3):267{293, 1999.

[17] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive descrip-

tion logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of

LPAR'99, number 1705 in LNAI, pages 161{180. Springer-Verlag, 1999.

[18] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold.

In Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from

Heterogeneous, Distributed Enviroments, pages 85{91, 1995.

[19] D. McGuinness and J. Wright. Conceptual modelling for con�guration: A de-

scription logic-based approach. Arti�cial Intelligence for Engineering Design,

Analysis, and Manufacturing Journal, 12:333{344, 1998.

[20] U. Sattler. Terminological Knowledge Representation Systems in a Process Engi-

neering Application. PhD thesis, LuFG Theoretical Computer Science, RWTH-

Aachen, 1998.

A Appendix

client banquet celebration

restaurant

person firm

menu dish

characteristic
restaurant  speciality

order

place in

offer_m

offer_s

served in

clior baor

1..*

1..1 1..1

1..*

baser

1..1

rein

1..*

bain

1..* 1..*

reof meof 1..* 1..*

0..*

charof

1..*

speof

1..1

meser

1..1

is
comprised

related

Figure 6: UML class diagram: Restaurant

11



diagnosis

trauma

therapy

operation

institute

family address

born in

livespers hosp

r_d

r_t

r_the

r_op

in

unit

rr

perfam

perborn
0..*

perliv
0..*

1..1

towfam

towborn
1..1 1..1

towliv
perper

1..1

hosper
1..1

therthe

1..*

oprop

1..*

hosrop
1..*

0..* hosrthe hosrd      0..*

hosrt      0..*

1..* diard

1..* trart

1..*

unirr

hosrr
1..*

1..*

instin

hosin
1..*

0..* townperson

hospitalization

1..*

participation

refereeing

league

place

day

host

postponed
game

game in
neutral field

player

visitor

referee

belonging

dayplace gaplace

gavis

teamvis

gahost
1..*

daypar

reref
1..1

plapar

leapar

1..1 1..* 1..*
garef

1..1
teamhost

1..1

1..1

1..*

game

team

Figure 7: UML class diagrams: Hospital and Soccer

catalogued
book

supply

sent

order

invoice

author

position

consultation

with relation
to

written by

external
user

internal
user

borrow

vision

proposed by

user

bookpropintuprop

bookvis

0..1
intuvis

intubor

copos

uscon cabocons

 0..* cabopos

caboby   0..*

cabobor

auby

subkeycabokey

subrel1

subrel2

booksent       0..*

booksup      0..*

bookor
0..*

supsent
supsup

supor
0..1

supinv
1..1

belonging

caboinv

0..*0..1
0..1

0..1

1..*

1..*

1..1

0..1

0..1

1..1

0..*

0..*

subcategory
containing

book supplier

0..*

0..* 0..*

0..*

0..*container bibliographic
category

0..*

keyword

0..*
subject

0..*

0..*

0..*

Figure 8: UML class diagram: Library

12



Using Non-standard Inferences in Description

Logics|what does it buy me? �

Sebastian Brandt and Anni-Yasmin Turhan,

Theoretical Computer Science,
RWTH Aachen, Germany

Email: fsbrandt, turhang@cs.rwth-aachen.de

Abstract

In knowledge representation systems based on Description Logics,

standard inference services such as consistency, subsumption, and in-

stance are well-investigated. In contrast, non-standard inferences like

most speci�c concept, least common subsumer, uni�cation, and matching

are missing in most systems|or exist only as ad-hoc implementations.

We give an example of how these inferences can be applied successfully

in the domain of process engineering. The bene�t gained in our example,

however, occurs in to many domains where knowledge bases are managed

by persons with little expertise in knowledge engineering.

1 Process Engineering

As an application domain for knowledge representation systems based on De-

scription Logics (DL-systems) in general, and certain non-standard inferences

in particular, we give a brief introduction to the basic notions of the �eld of

process engineering. In this context, a process is de�ned as a sequence of physi-

cal, chemical, biological, and informational operations intentionally executed to

change substances in respect to their nature, properties, and composition.

Process engineering is concerned with methods, tools, and their management

for the design and control of a process.1 Here, models are used to represent, an-

alyze, and optimize processes and get a deeper understanding of their nature. In

general, a model is an abstraction of some object under consideration character-

ized by a lower level of complexity while retaining some of the original properties

of interest.

�This work has been supported by the DFG, Project BA 1122/4-1.
1Plant engineering in turn deals with the actual (chemical) plant performing the process

and its construction, which is abstracted from in process engineering.

1



In process engineering, exact equation-based mathematical models are partic-

ularly desirable because of their high predictive capabilities in numerical analysis

and simulation. Unfortunately, even for simple chemical processes, such models

are too complex for ad-hoc construction by hand. Nevertheless, adequate mod-

els can be obtained step by step, starting with other representation formalisms,

e.g., so-called block-oriented models. In such models, a process is represented

by an undirected graph with blocks as vertices and connections as edges. Each

block stands for a standardized sub-unit of the entire process with certain in-

terfaces and each connection for a ow of material, energy, or information. The

type of a connection linking two interfaces of blocks is determined by the in-

terface speci�cations. Typically, block-oriented modeling environments have a

block repository in which building blocks are stored.

During the life-cycle of a chemical process, several models on di�erent levels

of detail are involved. In an early design stage, for instance, rather crude models

allow to consider alternative designs in minimal time. Once one of them proved

promising, more accurate models are used for further examination. With such

a cascade of models, however, it is not clear how to bene�t from one modeling

stage when going into further detail on the next.

In answer to this, several requirements have been identi�ed for block-oriented

models and appropriate modelling environments in process engineering [15]:

� Variable granularity : The model should allow composite building blocks,

i.e., blocks again comprising blocks and connections. These can be decom-

posed during the design phase until the desired level of detail is reached.

� Generic building blocks: A block in the repository should not be fully

speci�ed but rather represent a class of some subunit. During the design

procedure, particular instances are obtained by specifying the relevant

variables, equations, and values abstracted from in the classes.

� Structured storage: To avoid unnecessary extensions of the block repository

and to facilitate browsing and searching, the existing blocks should be

arranged in an \is-specialization-of" hierarchy.

� Automatic classi�cation: If the specialization order would be derivable

automatically, the system could additionally maintain consistency of new

building blocks during the design procedure and locate the correct posi-

tions for their storage in the repository.

� Re-use of submodels: It should be possible to store (abstractions of) sub-

units in existing models in the repository for later re-use.

� Maintenance support : As the block repository typically will be developed

over a long period of time by many people, detecting redundancies and

integrating additional repositories should be possible.

2



The challenge to meet these requirements has inspired a cooperation be-

tween the Institute for Process Systems Engineering at RWTH Aachen, where

a prototype modelling environment is being developed, and our research group,

where DL-systems are studied. It has already been shown that DL-systems can

successfully be employed for most of the above tasks [15]. Testing the devel-

oped prototype environment has provided additional insights. When designing

models by means of block-oriented modelling environments, process engineers

showed two characteristic strategies for the design of new (generic) blocks:

� Bottom-up design: From several existing process models, the process engi-

neer selects a certain collection of subunits deployed for a similar purpose.

She then introduces a new generic block as an abstraction of these units.

� Design by modi�cation: Before assembling a new generic block from scratch,

the knowledge engineer tries to locate a structurally similar one in the

repository. She then modi�es the existing block to suit the new require-

ments.

In this work, we will show how these design strategies can be supported

by non-standard inferences o�ered by DL-systems. In the following section,

we will introduce Description Logics formally and discuss their bene�t for the

requirements mentioned above. Sections 3 and 4 describe the particular non-

standard inference services used to support the two design techniques.

2 Description Logics and Process Modelling

Description Logics (DL) form a category of knowledge representation (KR) for-

malisms used to represent terminological knowledge in a structured and well-

de�ned way. A DL-system consists of a knowledge base together with certain

inference services. The knowledge base comprises two components, the TBox

and the ABox. Intuitively, the TBox de�nes the vocabulary by which a concrete

world (in this application a process model) is described in the ABox. Both are

de�ned by means of concepts, whose syntax and semantics is introduced next.

Concepts are inductively de�ned using a set of concept constructors, starting

from a set NC of concept names and a set NR of role names. The constructs

available in the DLs considered here are listed in Table 1. In EL, the top-concept
(>), conjunction (CuD), and existential restriction (9r:C) are allowed. ALE ad-

ditionally provides the bottom-concept (?) and primitive negation (:A). ALN
extends ALE with number restrictions (� n r) and (� n r), but does not provide

existential restrictions. A concept de�ned over the DL L (L 2 fEL;ALE;ALNg)
is referred to as L-concept.

The semantics of concepts is de�ned in terms of an interpretation I =

(�I ; �I). The domain �I is a non-empty set, and the interpretation function �I

3



Syntax Semantics EL ALE ALN

> �I x x x

C uD CI \DI x x x

8r:C fx 2 �I j 8y : (x; y) 2 rI ! y 2 CIg x x

9r:C fx 2 �I j 9y : (x; y) 2 rI ! y 2 CIg x x

? ; x x

:A, A 2 NC �I nAI x x

(� n r), n 2 N fx 2 �I j #fy j (x; y) 2 rIg � ng x

(� n r), n 2 N fx 2 �I j #fy j (x; y) 2 rIg � ng x

Table 1: Syntax and semantics of concepts.

maps every concept name A 2 NC to a set AI � �I and each role name r 2 NR

to a binary relation rI � �I��I . The second column of Table 1 shows how �I

is extended to complex concepts.

De�nition 1 (TBox) A TBox T is a �nite set of concept de�nitions of the

form A
:
= C, where A 2 NC and C is a concept. Every concept name A may

occur only once on a left-hand side in T . If it does, then A is called de�ned,

otherwise primitive. In DLs providing primitive negation only primitive concepts

may be negated on the right-hand side of concept de�nitions. An interpretation

I is a model for T i� AI = CI
for every A

:
= C 2 T .

To illustrate the introduced notions of concept, concept de�nition and TBox,

consider an example TBox.

Example 2 The ALE-TBox Tex contains the following concept de�nitions in-

spired by the process engineering domain:

Liquid
:
= :Solid u :Gas;

Container
:
= Volume u (8 contains: Substance);

FluidTank
:
= Container u (8 hasConnection:Port)u

(9 contains: Liquid) ;
Pipeline

:
= Volume u Tube

(8 hasConnection: (Port u (9 hasPart:Valve))) u
(8 contains: Substance) u (9 contains::Solid)

In the TBox Tex the concept Liquid is de�ned as something that is no Gas and no

Solid. A Container is de�ned as a Volume containing only Substances. Based on

these two de�ned concepts, a FluidTank is de�ned as a Container which contains

a Liquid and is only connected to Ports. Finally, a Pipeline is de�ned as a Volume

and a Tube and is only connected to Ports which in turn must have a Valve as

a part. Furthermore, a Pipeline must contain something, which is no Solid and

all it contains are Substances.

4



To represent knowledge about an actual instance of the application domain,

individuals and their interrelations are described in an ABox. Thus, in addition

to NC and NR, we introduce a �nite set NI of individual names. Formally, an

ABox can now be de�ned as follows:

De�nition 3 (ABox) An ABox A is a �nite set of concept assertions of the

form a : C and role assertions of the form (b; c) : r, where a; b; c 2 NI, C is an

arbitrary concept, and r 2 NR a role name. An interpretation I is a model

for A , i� aI 2 CI
and (bI; cI) 2 rI for every a : C and every (b; c) : r in A .

For every interpretation I, every a 2 NI is mapped to some aI 2 �I
, such that

a 6= b implies aI 6= bI (unique name assumption).

In our process engineering application, each of the individual blocks is rep-

resented by an individual in an ABox. The generic blocks from the repository

are represented by concepts de�ned in a TBox. Thus, TBox and ABox form

a knowledge base for all blocks constructed in the modelling environment as

illustrated in Figure 1.

To derive implicit knowledge from the explicit one given in the knowledge

base, there are three so-called standard inferences, namely consistency, subsump-

tion, and instance, as de�ned below.

De�nition 4 (Standard inferences) A concept C is consistent i� there ex-

ists an interpretation I such that CI 6= ;. A concept C is subsumed by a

concept D (written C v D) i� CI � DI
holds for all interpretations I. The

concepts C and D are equivalent (written C � D) i� they subsume each other.

An individual name a 2 NI is an instance of C w.r.t. an ABox A and its TBox

T (written a 2A ;T C) i� aI 2 CI
for every model I of A and T .

These inferences are essential for almost all DL-systems. Especially, comput-

ing the so-called subsumption hierarchy of concepts yields the \is-specialization-

of"-hierarchy mentioned in Section 1. Algorithms deciding subsumption form

the basis for structured storage and the algorithms for computing the \instance-

of"-relation realize the automatic classi�cation of objects. Not all of the tasks

mentioned in Section 1 can be accomplished by means of standard inferences,

e.g., they do not facilitate the previously mentioned design strategies utilized by

process engineers. This is where the non-standard inferences come into play.

3 Supporting the Bottom-up Approach

The bottom-up generation of a new block (i.e., concept) from a set of process

models (i.e., ABox individuals) selected by the domain expert is realized by non-

standard inferences in two steps. Firstly, the most speci�c concept is computed

for each of the selected ABox individuals, such that the individual is an instance

5



Process model

Block repository

represent

structure

TBox

ABox

abstract abstract

Figure 1: Modelling environment and knowledge base

of the obtained concept which is most speci�c w.r.t. subsumption. Next, a

single concept is computed from all the obtained concepts, which subsumes

all the obtained concepts and is also the most speci�c concept to do so. The

resulting concept is then o�ered to the process engineer for inspection and further

processing and, if suitable, added to the generic block repository. The �rst step

is realized by the non-standard inference most speci�c concept (msc) which is

de�ned in the following way:

De�nition 5 (msc) Let A be an L-ABox, a an individual in A and C a concept

in L, then C is the most speci�c concept (msc) of a w.r.t. A (mscA (a)) i�

a 2A C , and for all L-concepts C 0
, a 2A C 0

implies CvC 0
.

Computing the msc of an individual yields an abstraction from a concrete

individual and from its interrelationships expressed in the ABox by generalizing

it into a concept.

Example 6 As an example inspired from the application domain, we want to

describe a distillation device which takes sea-water as an input and separates it

into water and salt. Such a device could be represented by an EL -ABox Aex with

the following assertions:

device : MarineDistiller;

(device; seawater) : hasInput;

(device;water) : hasOutput;

(device; salt) : hasOutput;

seawater : solution u Liquid;

(seawater;water) : contains;

(seawater; salt) : contains;

water : Solvent u Liquid;

salt : Solute u Solid

Note that the individuals water and salt occur as role-successors for both of

the individuals device and seawater. The msc(device) w.r.t. the underlying ABox

Aex is now given by:

6



mscAex
(device) = MarineDistiller u

9 hasInput: (Solution u Liquid u

9 contains: (Solvent u Liquid) u

9 contains: (Solute u Solid)) u

9 hasOutput: (Solvent u Liquid) u

9 hasOutput: (Solute u Solid)

In the obtained concept the concept names from the ABox Aex are preserved in

the msc concept and the interrelations are expressed by existential restrictions.

The co-references in Aex to each of water and to salt can not be captured in the

concept, instead the concepts from Aex corresponding to these individuals are

duplicated.

Unfortunately, the msc need not always exist due to cyclic relationships

between ABox individuals such as f(a; b) : r; (b; a) : rg � A . An individual

from a cyclic ABox may be instance of all concepts from an in�nite sequence

of concepts C1 , C2 , . . . where each concept Ci encodes one more traversal of

the cycle expressed in the ABox than Ci�1 and is thereby more speci�c than all

its predecessors in the in�nite sequence of concepts. Since the individual is an

instance of all Ci s, the most-speci�c concept would be u1i=1 Ci , which cannot

be expressed in every DL with existential restrictions. For further details, refer

to [2].

However, for DLs providing existential restrictions the msc for cyclic ABoxes

can be approximated by the so-called k-approximation. The k-approximation is

a msc whose nesting depth of quanti�ers is bounded by k (k 2 N). See [12] for
details. Once in our process engineering application the k-approximation or, if

possible, the msc of each selected individual block is attained, the subsuming

concept|the least common subsumer|of them is computed. It is de�ned as

follows:

De�nition 7 (lcs) Let T be an L-concept and C1 , . . . , Cn concepts in L
from T , then C is the least common subsumer (lcs) of C1 , . . . , Cn w.r.t.

T (lcsT (C1 ; : : : ; Cn )) i� Ci vT C for all 1 � i � n, and for all L-concepts
C 0

, Ci vT C 0
for all 1 � i � n implies C v C 0

.

Thus, both the msc and the lcs generalize the input yielding the most speci�c

concept w.r.t. the underlying TBox; only that the msc refers to a single ABox

individual while the lcs refers to several concepts based on conccepts de�ned in

a TBox.

Example 8 Let us consider the lcs of the concepts FluidTank and Pipeline as

de�ned in the TBox Tex from Example 2. First, both concepts have to be un-

folded w.r.t. Tex, i.e., all names of de�ned conepts are replaced recursively by the

right-hand sides of their concept de�nitions. Next, the lcs concept of both input

concepts is computed. In this case we obtain:

7



lcsTex (FluidTank;Pipeline) =
Volume u (8 hasConnection:Port) u
(8 contains: Substance) u (9 contains: (Substance u : Solid)):

The lcs concept reects that both input concepts are a Volume, because Volume

lies in the intersection of the concept names on top-level of both input concepts.

For the concept occurring in value restrictions, the lcs algorithm is applied recur-

sively for each role. The existential restrictions in the lcs concept are obtained

by conjoining the concepts in the existential restriction and those in their cor-

responding value restriction for each of the input concepts and then recursively

applying the lcs algorithm to the obtained conjunctions.

For the DLs introduced in Section 2, the lcs always exists. The lcs (as

well as the msc, if it exists) is uniquely determined up to equivalence. In our

research group, algorithms for the lcs have been developed for several DLs, see

[10, 5, 2, 11].

Equipped with the non-standard inferences msc and the lcs, the demand from

our application domain to construct knowledge bases in a bottom-up fashion can

be met. The knowledge engineer selects some fully speci�ed blocks that should

form the new generic block for the repository. Then the blocks are automatically

translated into individuals in an ABox, representing the parts and properties of

each of the blocks. Next, the DL-system computes the msc of each of them and

then generalizes them into a single concept by computing the lcs. The resulting

concept is then translated back into the representation used in the modelling

environment and o�ered as a new block to the process engineer, see Figure 1.

Note that the domain expert is not involved in the \DL-part" of this process,

therefore our method is suitable for users with little KR expertise.

In our application, the lcs inference does not only support the bottom-up

approach for augmenting the repository. It may in addition be employed to

obtain a well-structured storage in the repository which in turn is necessary

for easily retrieving generic blocks for a possible re-use. So, if a generic block

in the repository has many specializations, say B1; : : : ; Bn for a large number

n, and the process engineer searches for a building block to re-use, inspecting

all of the Bis to �nd a candidate may not be practical. New generic blocks

subsuming some of the Bis and thereby providing an intermediate level in the

specialization hierarchy facilitates browsing it. Such intermediate blocks can

be derived by computing the least common subsumers of some of the Bis and

adding them to the repository.

The lcs w.r.t. TBoxes has been implemented for the DL ALE. As seen in

Example 8, all input concepts have to be unfolded completely against the un-

derlying TBox before computing the actual lcs concept. It is well-known that

unfolding a concept can cause an exponential blow-up of the concept size [14].

8



Therefore, the concepts to be handled and|even worse|returned by the lcs al-

gorithm can become very large. This does not only slow down the computation

of the lcs, but also yields unreadable concepts. First empirical evaluations of our

lcs-implementation applied to TBoxes from the process engineering domain have

shown that the returned concepts �ll several pages of output and are therefore

too big to be readable and comprehensible for a human reader, see [7, 16].

Thus, for assessment by domain experts, the resulting concepts have to be

represented more compactly. To this end, our research group investigates meth-

ods for �nding a minimal rewriting of a concept w.r.t. the underlying TBox

[6]. In a minimal rewriting, parts of the concept are replaced by names de-

�ned in the TBox. The e�ect of such a rewriting is somewhat inverse to un-

folding, e.g., in Example 8 the lcs can be represented in a more compact way

by using the de�nition in Tex and replacing the sub-term of the lcs concept

"Volume u (8 contains: Substance)" by "Container".

For DLs with existential restrictions, the computations of a minimal rewriting

involves a high degree of non-determinism. Therefore, we have to resort to

heuristics yielding small but not always minimal rewritings. In the case of the

TBox used in our process engineering application, for instance, employing such

heuristics to concepts of size 800 yields concepts of size 10. Refer to [7, 16] for

details.

Moreover, rewritings can be used to \translate" concepts from one DL L1

into concepts from another, less expressive DL L2 by computing the best ap-

proximation of the concept. This service is especially desirable if more inference

services are available in L2.

4 Supporting the Modi�cation Approach

Another useful non-standard inference is matching, which was �rst proposed

in the DL-system CLASSIC [13, 9]. In order to de�ne matching, we need to

introduce concept patterns.

Let L be any of the DLs introduced in Section 2 together with the sets NC ,

NR, and NI . Additionally, let NX be a �nite set of concept variables disjoint to

NC [NR [NI . L-concept patterns are L-concepts for which in addition concept

variables can be used in the place of concept names|except for the fact that the

primitive negation (:) may not occur in front of variables. A substitution � is a

mapping from NX into the set of L-concepts. It is extended to concept patterns

P by replacing every occurrence of X 2 NX in P by �(X). Thus, �(P ) again

is an L-concept. With these preliminaries we can de�ne matching problems as

follows:

De�nition 9 (matching problems) An L-matching problem is of the form

C �? P , where C is an L-concept and P an L-concept pattern. A substitution

9



� is a matcher for C �? P i� C � �(P ), i.e., � replaces the variables in P by

concepts in such a way that equivalence holds.

As a trivial example, consider the matching problem A u 8r:B �? X u 8r:Y .
An appropriate matcher would be, for instance, fX 7! A u 8r:B; Y 7! Bg.

Intuitively, if a concept can be matched against a pattern P , then their syntax

trees share the \upper part", i.e., where P is fully speci�ed, while deviations may

occur at leaves labelled with variables. Hence, the set of all concepts that can be

matched against P contains in�nitely many concepts structurally similar to P to

some extent. In this sense, matching P against several concepts and returning

those which can be matched, can be seen as a search with the fully speci�ed

part of P as search criterion.

Let us return to the process engineer designing a new generic block in a block-

oriented modelling environment as described in Section 1. For the strategy of

design by modi�cation, the crucial step is to �nd a generic block in the repository

structurally similar to what the knowledge engineer intends to design. As an

example, assume a modelling task for a uid tank equipped with a cooling system

and an equivalent backup cooling system, each with a thermostat controller. A

convenient starting point for the design could be a block comprising a uid tank

combined with an arbitrary device controlled by some control units and a similar

backup device.

Example 10 With a matching algorithm at hand, relevant generic blocks could

be found by matching the following concept pattern against every concept in the

KB.

9hasPart:(FluidTank u 9hasPart:(:BackupDevice uX u 9hasPart:Controller)

u 9hasPart:(BackupDevice uX u 9hasPart:Controller))

The pattern speci�es blocks consisting of at least one uid tank equipped with at

least two equivalent components one of which is a backup device and one not.

Both components must have a controller.

The query could thus also return blocks with two or more tanks or, for

instance, with duplicate heating systems or stirring devices. Nevertheless, by

additionally retrieving a block representing a single cooling device and another

for a single thermostat control unit, the engineer is well prepared to complete

the design task eÆciently. Naturally, usability issues suggest to hide the formal

construction of patterns by user-friendly query front-ends.

Note that in all admissible concepts, both occurrences of X must be replaced

by the same concept. This structural constraint cannot be expressed by simple

\wildcards" familiar from ordinary search engines.

10



Formal means exist for further re�nement of such pattern-driven searches.

For the DL ALN , so-called side conditions have been proposed to restrict the

concepts a variable may be replaced with [1]. In the above example, we may

want to restrict the query to duplicate devices with, say, temperature-related

functionality. To this end, we could use a side condition of the form

X v? ThermalDevice;

thus including only those devices represented by the concept ThermalDevice.

Apart from supporting the technique of design by modi�cation, matching can

also help to provide maintenance support for the block repository, as described in

Section 1 [8]. Matching algorithms for deciding and solving matching problems

have been proposed in the DLsALE andALN [3, 4]. InALE , the decision problem
is NP-complete, whereas the computation problem is EXPTIME-complete. In

ALN , the decision and computation problem are polynomial.

5 Conclusion and Future Work

We have presented an application where non-standard inference services can

signi�cantly enhance the usability of DL-systems. Here these services were pro-

posed to assist process engineers in their practical techniques of designing process

models. These techniques, however, are not speci�c to this very domain but ap-

ply to any scenario where knowledge bases are managed by domain experts with

little expertise in knowledge representation.

With the DLs presented here, not all properties of the described models can

be represented suÆciently. The demand for more expressive DLs, however, also

necessitates to adapt the existing inference services to new language constructors

such as quali�ed number restrictions, transitive roles, and role hierarchies.

Approaches to capture the relevant extensions by appropriate algorithms

for non-standard inferences are currently studied by our research group. Addi-

tional language constructors can further increase the computational complexity

of such algorithms. Nevertheless, experience has shown that a high worst-case

complexity often can be tolerated as long as a moderate average-case complexity

is observed in practical applications.

A promising alternative might be to realize non-standard inferences for ex-

pressive description logics by approximating the input concepts in a less expres-

sive DL, where the desired inferences can be realized more eÆciently.

References

[1] F. Baader, S. Brandt, and R. K�usters. Matching under side conditions in descrip-

tion logics In B. Nebel, editor, Proc. of IJCAI-01, 2001.

11



[2] F. Baader and R. K�usters. Computing the least common subsumer and the most

speci�c concept in the presence of cyclic ALN -concept descriptions. In O. Herzog

and A. G�unter, editors, KI-98, volume 1504 of Lecture Notes in Computer Science,

pages 129{140, Bremen, Germany, 1998. Springer-Verlag.

[3] F. Baader and R. K�usters. Matching in description logics with existential restric-

tions. In Proc. of KR2000, pp. 261{272, Morgan Kaufmann Publishers, 2000.

[4] F. Baader, R. K�usters, A. Borgida, and D. McGuinness. Matching in description

logics. Journal of Logic and Computation, 9(3):411{447, 1999.

[5] F. Baader, R. K�usters, and R. Molitor. Computing least common subsumer in

description logics with existential restrictions. In T. Dean, editor, Proc. of the 16th

Int. Joint Conf. on Arti�cial Intelligence (IJCAI-99), pages 96{101, Stockholm,

Sweden, 1999. Morgan Kaufmann, Los Altos.

[6] F. Baader, R. K�usters, and R. Molitor. Rewriting concepts using terminologies.

In A.G. Cohn, F. Giunchiglia, and B. Selman, editors, Proc. of the 7th Int. Conf.

on the Principles of Knowledge Representation and Reasoning (KR-00), pages

297{308, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

[7] F. Baader and R. Molitor. Building and structuring description logic knowledge

bases using least common subsumers and concept analysis. In B. Ganter and

G. Mineau, editors, ICCS-00, volume 1867 of Lecture Notes in Arti�cial Intelli-

gence, pages 290{303. SV, 2000.

[8] F. Baader and P. Narendran. Uni�cation of Concept Terms in Description Logics.

In Proceedings of ECAI-98, pp. 331{335, John Wiley & Sons Ltd., 1998.

[9] A. Borgida and D. L. McGuinness. Asking Queries about Frames. In Proceedings

of KR'96, pp. 340{349, Morgan Kaufmann Publishers, 1996.

[10] William W. Cohen, Alex Borgida, and Haym Hirsh. Computing least common

subsumers in description logics. In William Swartout, editor, Proc. of the 10th

Nat. Conf. on Arti�cial Intelligence (AAAI-92), pages 754{760, San Jose, CA,

1992. AAAI Press/The MIT Press.

[11] R. K�usters and A. Borgida. What`s in an attribute? Consequences for the least

common subsumer. JAIR, 14:167{203, 2001.

[12] R. K�usters and R. Molitor. Approximating most specifc concepts in description

logics with existential restrictions. In Proc. of the 24th German Annual Conf. on

Arti�cial Intelligence (KI'01), 2001. to appear.

[13] D.L. McGuinness. Explaining Reasoning in Description Logics. PhD thesis,

Department of Computer Science, Rutgers University, October, 1996.

[14] Bernhard Nebel. Terminological reasoning is inherently intractable. Arti�cial

Intelligence Journal, 43:235{249, 1990.

[15] U. Sattler. Terminological knowledge representation systems in a process engi-

neering application. PhD thesis, LuFG Theoretical Computer Science, RWTH-

Aachen, 1998

[16] A.-Y. Turhan and R. Molitor. Using lazy unfolding for the computation of least

common subsumers. In DL-2001, 2001.

12



Discourse and Application Modeling for

Dialogue Systems

Kerstin B�ucher, Yves Forkl, G�unther G�orz, Martin Klarner,

and Bernd Ludwig

Computer Science Institute and FORWISS, Erlangen, Germany

eMail: goerz@informatik.uni-erlangen.de

Abstract

Spoken { and even written { language dialogue systems become of

increasing importance for various information gathering and device con-

trolling tasks. With an example taken form the EMBASSI joint project,

after a brief discussion of the linguistic processing part, we describe how

description logics are used in modeling the application domain as well as

the linguistic domain. Linking lexical semantics with application speci�c

concepts is a nontrivial problem, in particular in cases where there is no

direct correspondence. So, the paper ends presenting our approach to

solve this linking problem.

1 Generic Dialogue Management in EMBASSI

1.1 Application Background: The EMBASSI project

To a large extent, our research and development work in the �eld of dialogue

systems is done within the German joint project EMBASSI1 which aims to

provide easy access for everybody to complex technical systems (A/V home

theatre, car devices and public terminals), encouraging multi-modal user input,

e.g. speech, gestures, and pointing. Besides a speech parser, our contribution

consists of, �rst, a dialogue manager, second, a formal ontology and third, a

generation component to communicate system utterances to the user.

In our approach to dialogue management, which features declarative mod-

eling of the system's evolving information state rather than following a simple

FSA-based procedural strategy, a �ne-grained and well-structured ontological

1\Elektronische Multimediale Bedien- und Service-Assistenz", sponsored by the German

Fed. Ministry of Research

1



hierarchy of semantic concepts is extremely important to enable logical infer-

ences on these concepts. We formalize them using Description Logics (DL)2

since they suit our needs quite well.

The novel architecture of the EMBASSI project brings up two problems to

be mastered in the domain model (based on the formal ontology): First, the

processing of user input is separated from the execution of system operations

by introducing an interface between the dialogue manager and the applications

which are controlled by so-called \assistant modules". These operations have to

be derived from the user's utterances by constructing and representing their se-

mantics and linking them to application concepts. To accomplish this, messages

have to be exchanged between the dialogue manager and the assistants. We

chose A-Box statements in DL (embedded in KQML statements) as a formalism

for these messages. Second, there is a great variety of application components

by di�erent manufacturers. The EMBASSI ontology functions as a standardized

system-wide terminology encompassing the whole world of functions and objects

referred to by all applications and assistants controlling several audio/video de-

vices in the home environment. Each of their functions and objects must be

both uniquely named and given a precise semantic de�nition as a concept.

1.2 System Architecture and Knowledge Representation

EMBASSI is implemented as a distributed system with several autonomous mod-

ules communicating among each other in order to exchange information about

the current state of the interfaced applications. Modules make their internal

state partially available to the dialogue system as far as it is necessary in order

to continue a dialogue. The current state of the application is represented by

an A-Box containing assertions about instances which refer to objects of the

application.

For example, AvEvents3 may be retrieved from a data base and assertions

about them are eventually added to the A-Box if they become relevant for the

dialogue.

In addition, the A-Box also contains instances for all actions which have been

executed up to now by some module of the (multi agent) system. All actions

which are primitive with respect to the application domain model are executed

procedurally.

If a module executes an action, a transition from one state to another is

achieved as adding the e�ects of the action changes the content of the A-Box

and the facts which can be inferred.

For this purpose, application modules exchange information with the dia-

logue system via KQML messages containing assertions about application ob-

2For an introduction to DL see e.g. [Don96]
3instances of the concept which describes all kinds of audio and video transmissions.

2



jects and actions. In particular, messages about actions to be executed and the

computed e�ects are communicated between the modules. In order to update

its knowledge about the application state, the dialogue system adds the content

of incoming messages to the appropriate A-Box.

In complete analogy to the description of the current application state, the

current state of the dialogue is represented as an A-Box whose assertions are

about instances from the discourse and linguistic domain. In this case, objects

are so called discourse referents representing instances of linguistic concepts as

introduced in utterances. Again, instances can assert facts about actions as well

as objects. Primitive actions in this domain are performatives like I want, I ask,

I state, I command. They are executed by the dialogue system and modify the

state a dialogue is currently in. From this point of view, the dialogue system

behaves like an application module using a di�erent A-Box to represent the

current state of a�airs.

The task of the system as a whole is to compute whether utterances from

the user are satis�able in the given state of the application. When passed to

the dialogue system by the parser, an utterance only a�ects the A-Box for the

discourse domain as its semantic representation is added there. So, what is

the relationship between the two A-Boxes? The idea is that assertions in the

discourse A-Box have to be satis�able with respect to the application A-Box

(i.e. if the state of the application allows the satis�ability directly or after a

sequence of appropriate actions in the application domain). For example, the

utterance Record the thriller this evening!" requires that the application A-Box

contains an instance of AvEvent satisfying the imposed constraints and that the

preconditions for Record are satis�able.

In the case of a unique satisfaction of the utterance, an application assistant

executes the corresponding action and reports the status of the execution back

to the dialogue manager (DM). If the action has been executed successfully,

the result is communicated. In the case of an error, the user should be in-

formed about the possible cause. Otherwise, the result consists of a number of

di�erent alternatives which are presented to the user. The content of the

system responses is represented in terms of A-Box statements.

2 Organisation of the Domain Model

The formal ontology structuring the domain model is organised in three domain

areas, reecting a fundamental partitioning of the dialogue manager's \world":

First, the Linguistic Domain, comprising the speech parser's linguistic knowl-

edge, especially from lexical semantics. Second, the Discourse Domain, which

contains internal concepts (independent of a speci�c input mode, but support-

ing poly-modal processing) of the dialogue manager. They reect its actions

3



and the kinds of objects processed in the context of interacting with the user

and the core system. This domain, although of crucial importance for dialogue

management, will not be described here because of lacking space. Third and

most important, the Application Domain: This is the area where knowledge

about the functionality of all applications, assistants and devices is held. It

equals the \domain model" in the classical sense, i.e. a semantic description of

the functions and objects pertaining to the domain of application. In contrast

to the preceding two areas, the terminology de�ned here is shared among the

dialogue manager and the assistants and applications (the core system), for they

need this language to exchange commands and requests.

2.1 Modeling the Application Domain

The modeling of the application domain demands a joint e�ort of the ontology

creators on the one side and the application and assistant developers on the other

side, for only the latter have precise knowledge of the funcionality they o�er

in their component. Any component's function and its parameter types must

be integrated correctly in the ontology. Concepts for actions are distinguished

from those for objects { in analogy to the distinction between objects and their

methods in object-oriented programming languages.

The application situation is represented in terms of A-Box assertions; so, the

scenario is an extension of the domain model.

In order for the dialogue manager to reason with errors, any error statement

must con�ne to notions that have precise semantics and are part of the ontology.

Thus, the application and assistant developers must give a semantic de�nition

for any error type that their component may signal to the dialogue manager.

As an example, we consider a HAVi4-programmable VCR. Commands avail-

able in the HAVi class VCR may be uttered in natural language to use the VCR.

HAVi ist de�ned in terms of a Java class hierarchy for object and function types

which are translated automatically into a hierarchy of DL concepts. Mandatory

derivation of all classes had to start from a set of prede�ned ontology base classes

representing the Generic Base Model which comprises the top-level concepts for

a broad range of application domains.

Currently we translate OO-subclass relations into DL-subconcept relations.

Field members of classes are translated into forall constraints in DL, as shown

below. The signature of OO-methods is represented by embedding each method

as a subconcept of a concept of a generic base model to be chosen manually.

Parameters of of methods are represented in the DL translation as forall con-

straints. As we use CICLOP as inference tool, we translate enumeration types

and constants into primitive concepts. As a consequence, we do not need high

4HAVi stands for Home Audio Video Interoperability and represents a common, openly-

licensable speci�cation for networking digital home entertainment products.

4



expressivity for the DL language. We are currently investigating the limits of

this approach. For feature-value formalisms it seems to be suÆcient.

As an example for the derivation of a fragment of the DL domain model

consider the following class which is part of the of the HAVi VCR class:

class VCRObjf
int id;

play();

record();

variableForward(forwardSpeedLevel speed);

g

with enum forwardSpeedLevel = ffastForward5, ...g .

From the viewpoint of DL, the de�nition of VCRObj introduces a subconcept

of object (class) and three subconcepts of action (methods):

VCRObj := object \ 8has-id.int
VCRObj-play := action

VCRObj-record := action

VCRObj-variableForward := action \ 8has-speed:forwardSpeedLevel

For VCRObj-variableForward, this means that it is an action, and its only

parameter has-speed has to be a forwardSpeedLevel. This is essentially the

semantics of the method de�nition above, but VCRObj-variableForward is per-

mitted only for objects of class VCRObj. We can account for this by re�ning our

de�nition of in the following way:

VCRObj-variableForward := action \ 8has-subject:VCRObj
\ 8has-speed:forwardSpeedLevel

Using these concept de�nitions, we are now able to infer the speci�c oper-

ation from user utterances like \schnell vorspulen!", the meaning of which is

represented in the A-Box by a domain-instantiated DRS. So, there is a VCRObj

l1 in our scenario asserting VCRObj(l1).

The invocation of the method l1.variableForward(fastForward5) is as-

serted by

action(�) ^ has-subject(�; l1) ^ has-speed(�; variableForward5)

from which VCRObj-variableForward(�) is derivable.

At this point, we have to re�ne the domain model again. Up to now, it di�er-

entiates between several concepts for objects (e.g. VCRObj, forwardSpeedLevel),

but action is the only primitive concept for actions. Therefore, all verbs in the

lexicon would have the same meaning, namely action. Consequently, whatever

5



verbs were used, always e.g. VCRObj-play would be inferred. To cope with this

diÆculty, action has to be re�ned by introducing primitive subconcepts of it

that are distinct from each other in order to separate di�erent verb meanings.

E.g. we introduce play � action, record � action and wind � action. These

(distinct) subconcepts of action would allow us create the following entries:

abspielen play

aufnehmen record aufzeichnen record

spulen wind

These lexical entries suÆce to distinguish which methods are meant by a certain

verb, if we re�ne the de�nitions for the methods of the class VCRObj:

VCRObj-play := play \ 8has-subject:VCRObj
VCRObj-record := record \ 8has-subject:VCRObj
VCRObj-variableForward := wind \ 8has-subject:VCRObj

\ 8has-direction:direction
\ 8has-speed:forwardSpeedLevel

Generalizing the example above, we have outlined how formal DL domain

model parts may be derived from underlying class de�nitions for objects and

methods used in the implementation of the application assistant.

The division of the domain model in a generic upper part of primitive con-

cepts not speci�c for the application and a lower part of application relevant

concepts allows to reuse the generic part ([Ram97]). So, the knowledge represen-

tation task for the design of a speci�c dialogue system is considerably simpli�ed.

Under quantitative aspects, our DL model for the A/V home theatre domain

currently contains 88 primitive and 24 complex concepts, whereas the car en-

tertainment domain has 12 primitive and 47 complex concepts. Both domains

taken together will soon dispose of about 500 complex concepts, due to the inte-

gration of increased application functionality and much more detailed linguistic

modeling.

2.2 Modeling the Linguistic Domain

Our ultimate aim in interpreting an user utterance is to construct one or more

hypotheses of its meaning in terms of the concept de�nitions from the domain

model. In order to achieve this, we have to devise a method for mapping natural

language utterances onto terms describing method invocations.

We use a lexicon for the vocabulary V speci�c to the domain in which each

word w refers to one or more lexical concepts which serve several purposes.

First of all, synonymous words will receive the same lexical concept. Second, it

is possible to account for polysemous words by having multiple entries, each with

6



a di�erent associated lexical concept. Third, the linguistic modeling of relations

expressed in utterances can dispense of application-speci�c characteristics. Last

but not least: In the domain model, these lexical concepts form a hierarchy of

their own which is de�ned independently of the hierarchy structuring the domain

model in the narrower sense, i.e. that of the application domain. This helps avoid

those very common problems arising from the mingling of cognitive-lexical and

factual relations.

In order to model the lexical semantics in a way that is maximally indepen-

dent from any particular application, we employ a hierarchy of semantic types

which is implemented as a DL terminology. Types are represented as disjoint

atomic concepts and assigned to elements in the lexicon. For example, we have

the following assignment of surface word forms (lower case) to atomic lexical

concepts (upper case):

sehen SEHEN, anschauen ANSCHAUEN, gucken GUCKEN,

aufnehmen AUFNEHMEN, aufzeichnen AUFZEICHNEN

Krimi SPARTE

To capture the inter-chunk semantics of an utterance, i.e. the meaning of

the combination of chunks, we introduce complex concepts obtained from inter-

preting case frames which describe the syntactic and semantic relations between

chunks as concept de�nitions. The idea is as follows: Given an excerpt of the

case frame for \aufnehmen" (with the thematic role patiens and the accusative

case marker)

aufnehmen patiens SENDER | SENDUNG | SPARTE | TITEL

acc

we allow four di�erent concepts that my �ll the thematic role patiens of the

lexical concept of AUFNEHMEN representing the semantic type of aufnehmen. This

informal concept de�nition is captured precisely in terms of the following ALC
expression:

C
:
= AUFNEHMEN ^ 8patiens:(Sender _ Sendung _ Sparte _ Titel)

Such a concept de�nition can be used to determine whether two chunks can

be combined consistently with the available lexical semantics:

[den Krimi] [aufnehmen]

Analyzing the syntactic features (accusative) of the two chunks given, one

�nds that [den Krimi] may potentially serve as patiens for [aufnehmen]. This

fact is validated by computing that the concept resulting from the combination

of the two chunks is consistent with the above de�nition:

AUFNEHMEN ^ 8patiens:Sparte � C

7



2.3 Linking Lexical Semantics with Domain Pragmatics

For linking lexical semantics with an application speci�c domain model we have

to master the following tasks: First , relating application concepts with lexical

concepts. For linking notions of the application with semantic types, we �rst

have to cope with the usage of synonyms in natural language for a uniquely

determined application concept. And second , relating roles with thematic roles,

which means reasoning about individuals, i.e. in the A-Box.

To continue the example of [den krimi] [aufnehmen], we have a look at

the DRS constructed by the parser that makes use of the case frame shown

above: 2
666666664

a k krimi

AUFNEHMEN(a)

patiens(a; k)

SPARTE(k)

wert(k; krimi)

SPARTENWERT(krimi)

3
777777775

As discussed above, the task to be carried out now is to link lexical semantics

and the application domain model in order to construct a representation for the

application speci�c meaning of this DRS (A-Box).

We have already mentioned that via 8lexconcept:AUFNEHMEN and

8lexconcept:SPARTE we �nd the application speci�c meaning of both lexical

concepts by inferring their descendants in a given T-Box. The issue still to be

addressed is how the roles are mapped onto the corresponding ones in the appli-

cation domain. If SENDUNG was the only patiens for AUFNEHMEN, one possibility

would be to apply a rule like following one in the A-Box as (variables x, y, u, v

are all-quanti�ed):

patiens(x; y) ^ lexconcept(u; x) ^ SENDUNG(y) ^ lexconcept(v; y) !

has-avevent(x; y)

But the example shows that this is not suÆcient, as

patiens(x; y) ^ lexconcept(u; x) ^ SPARTE(y) ^ lexconcept(v; y) !

has-avevent(x; y)

would wrongly imply y to be an AvEvent instead of a Genre. Therefore, before

letting such a rule �re one has to determine two things:

� What are concepts in the range of has-avevent, if we assume Record to

be in its domain? As we �nd AvEvent, but not Genre, the case frame is

admissible only, if Genre is a part of the de�nition for AvEvent. To state

this more precisely:

8



� Is it possible { by using the transitivity of roles { to construct a role that

has AvEvent in its domain and Genre in its range? Given our de�nition

of AvEvent we �nd that R := has-bibdata Æ has-genre is the desired

solution.

Now we are allowed to introduce new individuals of the concepts \on the

path from AvEvent to Genre". In the example, there is only one such concept,

namely BibData. As a consequence, we get the following DRS that corresponds

a DRS in the application domain model:

2
6666666666666666664

r e b krimi

Record(r)

has-avevent(r; e)

AvEvent(e)

has-bibdata(e; b)

BibData(b)

has-genre(b; g)

Genre(g)

value(g; krimi)

GenreValue(krimi)

3
7777777777777777775

2.4 Conclusion

This papers presents an DL based approach on domain modelling for natural

language dialogue systems. It devises a automatic approach to the translation

of feature-value formalisms into DL. Most domains for automatic information

services can be modelled in a very simple DL language. Therefore, the approach

serves for automatic and eÆcient con�guration of dialogue systems. We showed

that another important point is the separation between application domain and

dialogue domain which is obtained at the cost of manually linking lexical seman-

tics with an application domain model. In this way it is much easier to reuse

linguistic resources like lexicons and grammars for the purpose of con�guration.

Additionally, we can increase the robustness and naturalness of dialogue systems

in comparison with other approaches basing on keyword spotting and �nite state

automata.

References

[Abn91] S. Abney, Parsing By Chunks. In: R. Berwick, S. Abney, C. Tenny

(Eds.), Principle-based Parsing . Kluwer, 1991

[KaR93] H. Kamp, U. Reyle, From Discourse to Logic. Dordrecht: Kluwer, 1993

9



[CIC99] LIIA-ENSAIS, CICLOP version 1.b3 User Manual . Strasbourg, 1999.

http://massenet.u-strasbg.fr/LIIA/ciclop/ciclop.htm

[Don96] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, Reasoning in De-

scription Logics. In: G. Brewka (editor), Foundations of Knowledge

Representation. CSLI-Publications, 1996, 191{236

[Abn95] S. Abney, Chunks and Dependencies: Bringing Processing Evidence to

Bear on Syntax . In: Computational Linguistics and the Foundations of

Linguistic Theory . CSLI-Publications, 1995

[Kus96] S. Kuschert, Higher Order Dynamics: Relating Operational and Deno-

tational Semantics for �-DRT . CLAUS-Report 84, Saarbr�ucken, 1996

[Lit99] D. Litman, M. Walker, M. Kearns, Acquiring Knowledge of System Per-

formance for Spoken Dialogue. In: Proceedings of the IJCAI 99 Work-

shop on Knowledge and Reasoning in Practical Dialogue Systems. Stock-

holm, Sweden, 1999, 73{80

[Ram97] A. Ramsay, Does It Make Any Sense? Update Semantics as Epistemic

Reasoning . In: Proceedings of ACL 97 . Morgan Kaufman Publishers,

1997

[Sut98] S. Sutton et al., Universal speech tools: The CSLU toolkit . In: Proceed-

ings of the 5th International Conference on Spoken Language Processing

(ICSLP'98). Volume 7, Sydney, Australia, 1998, 3221{24

[Tra94] D. Traum, A Computational Theory of Grounding in Natural Language

Conversation. Ph.D. Thesis, Computer Science Dept., University of

Rochester, 1994

10



An Optimized Tableau Structure for Explicit

Representation of Disjunction

François de Bertrand de Beuvron, Martina Kullmann
and François Rousselot

Laboratoire d’Informatique et d’Intelligence Artificielle,
ENSAIS, FRANCE

beuvron@liia.u-strasbg.fr

Abstract

Recent DL reasoners (Ciclop [1], DLP [8],iFact [5], RACER [2]) have
proven their practical efficiency for concept expression satisfiability check-
ing (TBox Reasonning) within expressive DLs. Typically, such reasoners
explore one branch of disjunction (alternatives introduced by OR con-
struct) at a time, backtracking when necessary. We present in this paper
a new tableau structure that efficiently keep track of proof states for more
than one alternative. We claim that such structure called Alt-Tableau is
well suited for reasoning within ABoxes and so-called Concrete Domains
[7]. We also present a decision procedure for the satisfiability of ALC-
concept within Alt-Tableau .

1 Informal Presentation and Motivations

The idea presented in this paper is orthogonal to expressivity, and can be ap-
plied to any logic that allow for general disjunction. However, if allowing cyclic
TBoxes and/or high expressivity as SHIQ [5] we cannot rely on the finite tree
model property, and tableau algorithm for these logics have to include some
kind of so-called blocking mechanism. Intuitively, blocking technics try to find
if an already existing individual can be used instead of creating a new individ-
ual while processing individual-introducing construction such as ∃R.C. We think
that we can take advantage of the structure, designed for disjunction represen-
tation, presented in this paper to deal also with this problem by designing a
rule like choose an existing individual from a set of candidate blockers, and try
to associate it with the individual to be created. If none such association leads
to satisfiability, create a new individual. The choice within candidates can be

1



x:(AvB)^(Cv¬B)

x:(AvB)

x: (Cv¬B)

x:(AvB)^(Cv¬B)

x:(AvB)

x: (Cv¬B)

x:Ax:A x:Bx:B

x:Cx:C x:Cx:Cx: ¬Bx: ¬B x: ¬Bx: ¬B

x:Ax:A x:Bx:B x:Cx:C

{o1:b1}{o1:b1} {o1:b2}{o1:b2} {o2:b1}{o2:b1} {o2:b2}{o2:b2}

x:(AvB)^(Cv¬B)

x:(AvB)

x: (Cv¬B)

{}
x:(AvB)^(Cv¬B)

x:(AvB)

x: (Cv¬B)

x:(AvB)^(Cv¬B)

x:(AvB)

x: (Cv¬B)

{}{}

x: ¬B

X:B

x: ¬B

X:B

{o1:b2 , o2:b2}{o1:b2 , o2:b2}

x: ¬Bx: ¬B

Figure 1: OR-tree and Alt-DAG for ALC-concept (A tB) u (C t ¬B)

seen as a specific disjunction. Unfortunately, the formalization of this idea is
still under study, and we will therefore restrict ourself to ALCwith acyclic TBox
(where satisfiablility can be reduced to ALC-concept satisfiability by unfolding)
in this paper.

Now consider the simple ALC-concept (A t B) u (C t ¬B). Three distinct
tableaux can be obtained depending of the branches of ORs we choose. The
fourth possibility lead to a clash. These tableaux can be represented by two
OR-Trees (the first beeing given in figure 1 depending of the OR we choose
to expand first. Note that this OR-Tree structure is effectively used in many
reasoners although implicitely : only one branch of the OR-Tree is expanded at a
given time, some backtracking being applied if the current branch lead to a clash.
Nevertheless, it is easy to see that this is not optimal : in the first tree, two nodes
correspond to the same expression C. Suppose that C is now some complex sub-
expression, it will be expanded twice. Note that the x : C constraint cannot be
straightforwardly expanded once and used for both branches since this expansion
may interact with the constraints x : A and/or x : B. To avoid such redundancy
in the structure proposed here, we create a single node (called BranchNode) for
each branch of all disjunctions at a given level. If and only if there is some kind
of interaction between branches introduced by distinct ORs, we create a new
node (called MergeNode) representing the situation where both branches have
been chosen. The resulting structure presented in figure 1, is no more a tree but
an Acyclic Directed Graph we call Alt-DAG . This representation has two main
advantages:

• each constraint is represented only once and will be expanded only once
eventually producing new MergeNodes if it interact with other constraints
in distinct alternatives.

2



• more than one alternative can be efficiently stored in the structure. Fur-
thermore, it can be efficiently used in subsequent proofs allowing enhanced
caching strategies. Also, this structure is well suited for designing parallel
solvers.

We claim therefore that Alt-DAG representation is particularly well suited for
the following tasks (see [6] for a detailed presentation):

• using heuristics to guide the proof : Some expansion rules are computa-
tionally more expansive than others. It may be effective to define heuris-
tics to guide the proof. This is possible only if more than one alternative
can be represented within the tableau, effectively allowing to switch from
an alternative to another while keeping track of the proof state in each
alternative. Although, please note that such improvement can only be
obtained if more than one alternative is satisfiable. In particular, if the
expression we are checking is inconsistent, all the alternatives have to be
checked, and the computational overhead of the structure presented here
may be an handicap in such situation. However, the advantages of the
single expansion of constraints, and of potential for parallelization, still
hold.

• ABox consistency checking :

– many disjunction in distinct individuals are expected to be unrelated :
suppose a library database with persons and books. As usual, persons
can be men or women, and books may be real books or articles.
Wether a person is man or woman do not interfere with it’s hiring
of books or articles. In this case, allowing for some kind of local
disjunction representation, while ensuring that interactions will be
correctly taken into account when needed should prove very effective.

– without specific caching strategy, checking ABox consistency will be-
come more and more computationally intensive as the number of indi-
viduals increase. DL systems incorporating ABoxes generally provide
some caching strategy to deal with this problem. However, without
explicit representation of disjunction, these caches are often limited
to some deterministic subset of individual’s descriptions.

– inconsistency is uncommon and often correspond to user’s miscon-
ception.

• reasoning with concrete domains : the use of heuristics and the single ex-
pansion of constraints may become more important if one want to deal
with so-called concrete domains : various concrete domains (numeric con-
straints, time constraint, string constraint...) will have various complexity,

3



both theoretically and practically. Choosing a proof that minimize the calls
to the most demanding concrete reasoners may greatly reduce the overall
proof time.

2 ALC tableau algorithm

ALC-concept are defined as usual from a set CN of concept names and a set
RN of role names. We denote by sub(C) the set of subconcept in C and by
‖C‖ the size of an ALC-concept C (see fig. 2).

syntax semantics subconcepts size

A ∈ CN AI ⊆ ∆I {A} 1
> ∆I {>} 1
¬D ∆I −DI {¬D} ∪ sub(D) ‖D‖+ 1
D u E DI ∩ EI {DuE}∪ sub(D)∪ sub(E) ‖D‖+ ‖E‖
D t E DI ∪ EI {DtE}∪ sub(D)∪ sub(E) ‖D‖+ ‖E‖
∃R.D {d ∈ ∆I : RI(d)∩DI 6= ∅} {∃R.D} ∪ sub(D) ‖D‖+ 1
∀R.D {d ∈ ∆I : RI(d) ⊆ DI} {∀R.D} ∪ sub(D) ‖D‖+ 1

Figure 2: ALC-concept

In the rest of this presentation, we will assume that ALC-concept are finite
and are in Negation Normal Form (NNF) in which negation apply only to con-
cept names. The transformation of a ALC-concept to a equivalent ALC-concept
in NNF is quite straightforward, and will be skipped in this paper.

2.1 Alt-Tableau

As foreseen in fig. 1, wee need to identify each expansion of disjunction. We will
call OrIds these idendificators, and denote by O the set of OrIds. An alternative
is a partial function from O to {0, 1} identifying the branches of the disjunctions
that have been expanded. We denote by A ⊂ 2O×{0,1} the set of alternatives. An
alternative a is said to be complete iff domain(a) = O. Two alternatives a1 and
a2 are compatibles noted a1¯a2 iff ∀o ∈ domain(a1)∩domain(a2), a1(o) = a2(o).
Note that if two alternatives a1 and a2 are compatibles, then the relation a1∪a2

is also a partial function from O to {0,1} and so an alternative.
A pre-Alt-Tableau for an ALC-concept C0 is a quintuple [S,O, C,LP , E ]

where S is the set of individuals, O is the set of OrIds, C ⊆ A is the set
of clashed alternatives, LP ⊆ A × S × sub(C0) keep track of the constraints
associated with individuals, and E ⊆ A×S×S×RN keep track of the relations
between individuals. An Alt-Tableau is a sextuple [S,O, C,LP , E , a∗], where
[S,O, C,LP , E ] is a pre-Alt-Tableau and a∗ ∈ A is a complete alternative. A

4



pre-Alt-Tableau must verify properties A1-A7 of figure 3. An Alt-Tableau must
also verify property A8.

Id name property definition

A1 C0 in model ∃[∅, s, C0] ∈ LP
A¬ ¬ coherence if [a1, s, D] ∈ L and [a2, s,¬D] ∈ L and a1 ¯ a2

then a1 ∪ a2 ∈ C
Au u coherence if [a1, s, D u E] ∈ L and a1 /∈ C

then ∃a2, a3 ∈ A with a2 ⊆ a1 and a3 ⊆ a1

such that [a2, s, D] ∈ L and [a3, s, E] ∈ L
At t coherence if [a1, s, D t E] ∈ L and a1 /∈ C

then ∀a2 ∈ A with a2 complete and a1 ⊆ a2

∃a3 ⊆ a2 such that [a3, s, D] ∈ L or [a3, s, E] ∈ L
A∀ ∀ coherence if [a1, s1, ∀R.D] ∈ L and [a2, s1, s2, R] ∈ D and a1 ¯ a2 and

a1 /∈ C and a2 /∈ C
then ∃a3 ∈ A with a3 ⊆ a1 ∪ a2 such that [a3, s2, D] ∈ L

A∃ ∃ coherence if [a1, s1, ∃R.D] ∈ L and a1 /∈ C
then ∃a2, a3 ∈ A with a2 ⊆ a1 and a3 ⊆ a1

such that [a2, s2, D] ∈ L and [a3, s1, s2, R] ∈ E
A7 clashes ∀a1, a2 ∈ A, a1 ∈ C ∧ a1 ⊆ a2 ⇒ a2 ∈ C
A8 satisfiable a∗ /∈ C

Figure 3: Alt-Tableau properties

Id name property definition

B1 C0 in model ∃s ∈ S such that C ∈ Lb(s)

B¬ ¬ coherence if D ∈ Lb(s) then ¬D /∈ Lb(s)

Bu u coherence if D u E ∈ Lb(s) then D ∈ Lb(s) and E ∈ Lb(s)

Bt u coherence if D t E ∈ Lb(s) then D ∈ Lb(s) or E ∈ Lb(s)

B∀ ∀ coherence if ∀R.D ∈ Lb(s1) and [s1, s2] ∈ Eb then D ∈ Lb(s2)

B∃ ∃ coherence if ∃R.D ∈ Lb(s1) then ∃s2 ∈ S such that D ∈ Lb(s2) and
[s1, s2] ∈ Eb

Figure 4: Basic-Tableau properties

Lemma 2.1 An ALC-concept C0 is satisfiable iff there exists an Alt-Tableau
for C0

A tableau structure was introduced in [3] for ALCR+ . Such a tableau called
here Basic-Tableau to avoid confusion with Alt-Tableau is a triple [Sb,Lb, Eb]
where Sb is the set of individuals, Lb : Sb → 2sub(C0) keep track of the constraints

5



associated with individuals, and Eb : RN → 2Sb×Sb keep track of the relations
between individuals. A Basic-Tableau must verify the properties given in figure
4. It is proven in [3] that an ALCR+-concept C0 is satisfiable iff there is a
Basic-Tableau for C0. For proving lemma 2.1, we can prove that an Alt-Tableau
exists for C0 iff a Basic-Tableau exists for C0.

Given an Alt-Tableau T = [S,O, C,L, E , a∗], we create a Basic-Tableau Tb =
[Sb,Lb, Eb] with Sb = S, Lb(s) = {D ∈ sub(C0) such that ∃[a, s, C] ∈ L for some
a ⊆ a∗} and Eb(R) = {[s1, s2] ∈ S × S such that ∃[a, s1, s2, R] ∈ E for some
a ⊆ a∗}. Assuming that T verifies properties A1-A8 (fig 3) of Alt-Tableau , we
prove below that Tb verifies properties B1-B∃ (fig 4) of Basic-Tableau :

B1: obvious from A1

B¬: D ∈ Lb(s)⇒ ∃a1 ⊆ a∗ such that [a1, s,D] ∈ L
¬D ∈ Lb(s)⇒ ∃a2 ⊆ a∗ such that [a2, s,¬D] ∈ L
since a1 ∪ a2 ⊆ a∗ then (A¬) a1 ∪ a2 ∈ C so (A7) a∗ ∈ C
impossible by (A8). Hence D ∈ Lb(s)⇒ ¬D /∈ Lb(s)

Bu: if D u E ∈ Lb(s) then (Lb def.) ∃a1 ⊆ a∗ such that [a1, s,D u E] ∈ L and
(A7,A8) a1 /∈ C
so (Au) ∃a2 ⊆ a1 ⊆ a∗ and a3 ⊆ a1 ⊆ a∗ such that [a2, s,D] ∈ L and
[a3, s, E] ∈ L. Hence (Lb def.) D ∈ Lb(s) and E ∈ Lb(s)

Bt: if D t E ∈ Lb(s) then (Lb def.) ∃a1 ⊆ a∗ such that [a1, s,D t E] ∈ L and
(A7,A8) a1 /∈ C
so (At + a∗ complete) ∃a3 ⊆ a∗ such that [a3, s,D] ∈ L or [a3, s, E] ∈ L.
Hence (Lb def.) D ∈ Lb(s) or E ∈ Lb(s)

B∀,B∃: same kind of proof as Bu

For the converse, we construct an Alt-Tableau from a Basic-Tableau with S =
Sb, O = ∅, C = ∅, L = {[∅, s,D] ∈ A × S × sub(C0); D ∈ Lb(s)}, E =
{[∅, s1, s2, R] ∈ A × S × S × RN ; [s1, s2] ∈ Eb(R)}, and a∗ = ∅. This tableau
verifies properties A1-A8 (fig 3) :

A1: obvious from (B1) and ∅ ⊆ a∗

A¬: obvious from (B¬) : the condition is never met

Au,A∀,A∃: obvious from (Bu,B∀,B∃) : simply rewrite with ai = ∅

At: if [a1, s,D t E] ∈ L then a1 = ∅ and D t E ∈ Lb(s) so (D ∈ Lb(s) and
[∅, s,D] ∈ L) or (E ∈ Lb(s) and [∅, s, E] ∈ L). since ∀a, ∅ ⊆ a At is
trivially verified.

A8,A7: trivial since C = ∅

6



2.2 Alt-Tableau Algorithm

The tableau algorithm presented below work on ProofContext . A ProofContext
is a sextuple [S,O, C,LP , E ,P ] where S, O, C, LP , and E are the same as for a
pre-Alt-Tableau but without properties A1-A7, and P ⊆ A × S × sub(C0) will
contains the set of already expanded Or constraint (see rule Rt). To check the
satisfiability of an ALC-concept C0, we apply the expansion rules of figure 5 to
the initial ProofContext defined by : S = {s0}, O = ∅, C = ∅, L = {[∅, s0, C0]}
(meaning individual s0 must satisfy C0 for the root alternative, and so for all
alternatives), E = ∅, P = ∅.

A ProofContext is complete when none of the rules is applicable. Then, the
algorithm return ”C is satisfiable” if ∅ ∈ C, and ”C is unsatisfiable” otherwise.

Lemma 2.2 (termination) for every ALC-concept C0, the Alt-Tableau algo-
rithm terminate

This is ensured by the following properties of the Alt-Tableau algorithm :

T1 each constraint in L can trigger at most one rule expansion for rules Ru,
Rt, and R∃. Each pair of constraints in L × E can trigger at most one
rule expansion for rule R∀. This is ensured by conditions (2) on each rule.

T2 each rule expansion add at least one new element in L, E , or C.

T3 S is given a tree structure by E , since for all s ∈ S, s 6= s0 there is an unique
sp ∈ S such that [a, sp, s, R] ∈ E (see R∃)

We denote by Sn the subset of S of depth n within the tree induced by E .
Sn is recursively defined by : S0 = {s0}, S

i+1 = {s ∈ S;∃[a, sp, s, R] ∈ E
with sp ∈ Si}. By analogy, we also define Li = {[a, s, C] ∈ L; s ∈ Si}, E i =
{[a, s1, s2, R] ∈ E ; s1 ∈ Si}, Ai = {a ∈ A;∃[a, s, C] ∈ Li}, Oi = {o ∈ O;∃a ∈
Ai such that [o, 0] ∈ a or [o, 1] ∈ a}.

T4 expansion of constraints [a1, s1, C1] by rules Ru, Rt, R∀, and R∃ can only
produce new constraints [a2, s2, C2] with ‖C1‖ ≤ ‖C2‖ − 1.

T5 Constraints in Li can only be introduced by constraints in Li by rules Ru
and Rt, constraints in Li−1 by rule R∃, and constraints in Li−1 and E i−1

by rule R∀. Constraints in E i can only be introduced by constraints in
Li−1 by rule R∃.

T6 from (T4,T5), it is easy to see that

max
[a1,s1,C]∈Li+1

‖C‖ ≤ max
[a2,s2,C]∈Li

‖C‖ and max
[a1,s1,C]∈L0

‖C‖ ≤ ‖C0‖

Since only ALC-concept of size at least two (∃R.C) can produce new in-
dividuals, the depth of the tree is at most ‖C0‖ − 1.

7



Id name rule definition
R¬ clash

creation
1- if [a1, s,D] ∈ L and [a2, s,¬D] ∈ L and a1 ¯ a2

2- if a1 ∪ a2 /∈ C
then C ½ C ∪ {a1 ∪ a2}

Ru u-
Rule

1- if [a1, s,D u E] ∈ L and a1 /∈ C
2- if not ∃a2, a3 ∈ A with a2 ⊆ a1 and a3 ⊆ a1 such that
[a2, s,D] ∈ L and [a3, s, E] ∈ L
then L½ L ∪ {[a1, s,D], [a1, s, E]}

Rt t-
Rule

1- if [a1, s,D t E] ∈ L and a1 /∈ C
2a- if not (
[a1, s,D t E] ∈ P
or ∃a2 ∈ A with a2 ⊆ a1 such that [a2, s,D] ∈ L
or ∃a2 ∈ A with a2 ⊆ a1 such that [a3, s, E] ∈ L
) then
P ½ P ∪ {[a1, s,D t E]}
create a new OrId on, O½ O ∪ {on}
L½ L ∪ {[a1 ∪ {[on, 0]}, s,D]} ∪ {[a1 ∪ {[on, 0]}, s, E]}

R∀ ∀-
Rule

1- if [a1, s1, u] ∈ LP with C/u = ∀R.D and [a2, s1, s2, R] ∈ E
and a1 ¯ a2

2- if not ∃a3 ∈ A with a3 ⊆ a1 ∪ a2 such that [a3, s2, D] ∈ L
then LP ½ LP ∪ {[a1 ∪ a2, s2, u⊕ [1]]}

R∃ ∃-
Rule

1- if [a1, s1, u] ∈ LP with C/u = ∃R.D
2- if not ∃a2, a3 ∈ A with a2 ⊆ a1 and a3 ⊆ a1 such that
[a2, s1, s2, R] ∈ E and [a3, s2, D] ∈ L
then create a new individual ns, S ½ S ∪ {ns},
LP ½ LP ∪ {[a1, ns, u⊕ [1]]}, E ½ E ∪ {[a1, s1, ns, R]}

R6 clash
propa-
gation
CP1

1- if ∃a1, a2 ∈ C such that
∃a3 ∈ A,∃o ∈ O such that
a1 = a3 ∪ {[o, 0]} and a2 = a3 ∪ {[o, 1]}
2- if a3 /∈ C
then C ½ C ∪ {a3}

R7 CP2 1- if ∃a1 ∈ C such that ∃a2 ∈ A such that a1 ⊆ a2

2- if a2 /∈ C
then C ½ C ∪ {a2}

Figure 5: Expansion Rules for Alt-Tableau

8



T7 We denote by nbrI(c) the maximum number of individuals that can be
created in Si+1 by a constraint c = [a, s, C] ∈ Li. By recurrence on C we
can prove that nbrI([a, s, C]) ≤ ‖C‖ :

A ∈ CN → nbrI(c) = 0

D u E → nbrI(c) = nbrI([a, s,D]) + nbrI([a, s, E])

(note that ‖D‖+ ‖E‖ < ‖C‖)

D t E → nbrI(c) = nbrI([a, s,D]) + nbrI([a, s, E])

∀R.D → nbrI(c) = 0 since R∀ only create new constraints in Li+1

∃R.D → nbrI(c) ≤ 1 since constraints on D are in Li+1

Defining nbrO(c) as the maximum number of OrIds that can be cre-
ated by a constraint c, one can also prove by a similar argument that
nbrO([a, s, C]) ≤ ‖C‖.

T8 From (T5), constraints created in Li+1 from Li have the form [a, s,D] ∈
Ai × Si+1 × sub(C0). There is at most |Ai|.|Si+1|.‖C0‖ such constraints.
From (T7) the expansion of each such constraints can create at most ‖C0‖
new individuals in Si+1 and also at most ‖C0‖ new OrIds in Oi+1. Hence,
|Si+2| ≤ |Ai|.|Si+1|.‖C0‖

2 and |Oi+1| ≤ |Oi|+ |Ai|.|Si+1|.‖C0‖
2. From the

initialization, and (T7) it is easy to see that |S0| = 1, |O0| ≤ ‖C0‖, and
|S1| ≤ ‖C0‖. Since the depth of the tree is finite (by T6), the sets O and
S are finite, hence the sets A, C, L, E and P .

The maximum number of elements in a ProofContext is finite (T8). Each rule
application adds at least one element in the ProofContext (T2). Hence the
algorithm terminate.

Lemma 2.3 when the algorithm terminates, the ProofContext is a pre-Alt-
Tableau

This is quite obvious since properties A¬,Au,A∀,A∃ can be proven from the
corresponding expansion rules. Property A1 is ensured by the initialisation of
the ProofContext . Finally, property A7 is straightforwardly deduced from R¬.
Property At is deduced from rule Ru as follow :

At: if [a1, s,D t E] ∈ L and a1 /∈ C then either

• [a1, s,D t E] ∈ P , so the rule has been expanded, and ∃o ∈ O
such that [a1 ∪ {[o, 0]}, s,D] ∈ L and [a1 ∪ {[o, 1]}, s,D] ∈ L. Then
for a complete a2 such that a1 ⊆ a2, either a1 ∪ {[o, 0]} ⊆ a2 or
a1 ∪ {[o, 1]} ⊆ a2

• [a1, s,D t E] /∈ P , then from rule Rt (∃a2 ∈ A with a2 ⊆ a1 and
[a2, s,D] ∈ L) or (∃a2 ∈ A with a2 ⊆ a1 and [a2, s, E] ∈ L). For all
complete a3 ∈ A, a1 ⊆ a3⇒ a2 ⊆ a3.

9



Lemma 2.4 In a complete ProofContext , if ∅ /∈ C then there is a complete
alternative a∗ such that a∗ /∈ C

from rule R6, it is easy to prove that if ∀a1 ∈ A with card(a1) = n, a1 ∈ C then
∀a2 ∈ A with card(a2) = n−1, a2 ∈ C: given a with card(a) = n−1 < card(O),
suppose o ∈ O such that [o, 0] /∈ a and [o, 1] /∈ a then
∃a1, a2 ∈ A with card(a1) = card(a2) = n such that a1 = a ∪ {[o, 0]} and
a1 = a ∪ {[o, 1]}. Since a1, a2 ∈ C by hypothesis, a ∈ C by rule R6. So (by
recurrence on n), if all complete alternatives are in C, the empty alternative is
also in C.

Lemma 2.5 (Soundness) When the algorithm terminate, if ∅ /∈ C then the
ProofContext is an Alt-Tableau .

Direct consequence of lemma 2.3 and 2.4

Lemma 2.6 (Completeness) If the ALC-concept C0 has an Basic-Tableau Tb,
the ProofContext P constructed by the algorithm is an Alt-Tableau .

By lemma 2.3 P is in fact a pre-Alt-Tableau . In order to find a not clashing
complete alternative a∗ in P , we can map the individuals in P to individuals
in T in such a way (following the method given in [4]) that the constraints on
individuals in P are a subset of the constraints on the mapped individuals in T .
We construct an alternative a+ and a function π : S → Sb such that :

(∗)

{

∀[a1, s, C] ∈ L with a1 ¯ a+ : D ∈ Lb(π(s))
∀[a1, s1, s2, R] ∈ E with a1 ¯ a+ : [π(s1), π(s2)] ∈ Eb

∣

∣

∣

∣

The (*) property can be preserved when applying expansion rules :

R∀ if [a1, s,D u E] ∈ L and a1 ¯ a+, then D u E ∈ Lb(π(s)) then (Bu) D ∈
Lb(π(s)) and E ∈ Lb(π(s)). Applying rule Ru produce [a1, s,D] and
[a2, s, E], so property (*) is not violated.

Rt if [a1, s,D t E] ∈ L and a1 ¯ a+, then D t E ∈ Lb(π(s)) then (Bt) D ∈
Lb(π(s))(1) or E ∈ Lb(π(s))(2). Suppose Ru is applied, producing [a1 ∪
{[on, 0]}, s,D] and [a1 ∪ {[on, 1]}, s, E].
Suppose (1) hold, then by setting a+ ← a+ ∪ {[on, 0]} property (*) is
preserved since a1 ∪ {[on, 1]} is not compatible with a+, hence only D
is required in Lb(π(s)). Note also that all constraints with alternative
a compatible with the old value of a+ are still compatible with the new
value since on is a fresh OrId. Also, all constraints with alternative a not
compatible with the old value of a+ are obviously not compatible with the
new value. So modifying a+ in the way above do not affect property (*)
for previously expanded constraints.
Suppose (2) old, setting a+ ← a+ ∪ {[on, 1]} preserves property (*) by a
similar argument.

10



R∃ if [a1, s,∃R.D] ∈ L and a1 ¯ a+, then ∃R.D ∈ Lb(π(s)) then (B∃) ∃y ∈ Sb

such that [π(s), y] ∈ Eb and D ∈ Lb(y).
Applying R∃ generates a new variable t ∈ S and the constraints [a1, t, D] ∈
L and [a1, s, t, R] ∈ E . Setting π ← π ∪ [t, y] yields a function satisfying
property (*)

R∀ if [a1, s,∀R.D] ∈ L and a1 ¯ a+, then ∀R.D ∈ Lb(π(s)). If [a2, s, t, R] ∈ E
and a2 ¯ a+, then π(s), π(t)] ∈ Eb. Hence, by rule (B∀), D ∈ Lb(π(t)).
Hence applying R∀, producing [a1 ∪ a2, t, D], do not violate property (*).

Initialy, we set a+ = ∅, and π = {[s0, x0]} for some x0 ∈ Sb with C0 ∈ Lb(x0)
(x0 exists since Tb is a Basic-Tableau ). Property (*) is verified.

When the algorithm terminate, suppose a+ ∈ C then, since an alternative
can only produce clashes (by rule R¬, R6, R7) in compatible alternatives :

a+ ∈ C ⇒ ∃a1, a2 such that a1 ¯ a2 and a1 ¯ a+ and a2 ¯ a+ and

[a1, s, A] ∈ L and [a2, s,¬A] ∈ L

⇒ (since a1 ¯ a+ and a2 ¯ a+)A ∈ Lb(π(s)) and ¬A ∈ Lb(π(s))

This is impossible since Tb is a Basic-Tableau . So a+ /∈ C. By R6,R7 (see lemma
2.4) ∃a∗ such that a∗ is complete and a+ ⊆ a∗ and a∗ /∈ C

Theorem 2.1 The algorithm on Alt-Tableau presented in this paper is a deci-
sion procedure for the satisfiability of ALC-concept

This theorem is a direct consequence of lemma 2.1, 2.2, 2.5, and 2.6.

3 Conclusion

We have presented a new tableau structure and proved its applicability to DL by
providing a sound and complete algorithm for ALC-concept satisfiability check-
ing relying on such structure. Obviously, many extensions are still to be defined
to demonstrate the claims that it will be well suited for proof optimization, in
particular with ABoxes and Concrete Domains. Nevertheless, this Alt-Tableau
algorithm has been implemented in the CICLOP reasoner, and preliminary tests
with toy examples are promising. An in-depth study with both constructed and
real TBoxes and ABoxes have still to be carried out.

References

[1] F. de Beuvron, M. Kullmann, D. Rudloff, M. Schlick, and F. Rousselot.
The description logic reasoner ciclop (version 2.0). In Proceedings of the 7th
Workshop on Automated Reasoning, London, Great Britain, 2000.

11



[2] Volker Haarslev and Ralf Mller. Description of the racer system and its
applications. In Proceedubgs International Workshop on Description Logics
(DL-2001), Stanford, USA, 2001.

[3] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

[4] I. Horrocks and U. Sattler. A description logic with transitive and converse
roles and role hierarchies. In Proceedings of the International Workshop on
Description Logics, Povo - Trento, Italy, 1998. IRST.

[5] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
expressive description logics. In Harald Ganzinger, David McAllester, and
Andrei Voronkov, editors, Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR’99), number 1705
in Lecture Notes in Artificial Intelligence, pages 161–180. Springer-Verlag,
September 1999.

[6] Martina Kullmann. Description Logic Models for Supporting Decision Mak-
ing. PhD thesis, Université Louis Pasteur, France, 2001.

[7] C. Lutz. Nexptime-complete description logics with concrete domains. In
Proceedings of the International Joint Conference on Automated Reasoning,
LNAI, Siena, Italy, 2001. Springer Verlag.

[8] P. F. Patel-Schneider. Dlp system description. In E. Franconi, G. De Gi-
acomo, R. M. MacGregor, W. Nutt, C. A. Welty, and F. Sebastiani, edi-
tors, Collected Papers from the International Description Logics Workshop
(DL’98), pages 87–89, 1998.

12



� �������	� 
���� ����� ���

���������������� ����������

������� �� 	
���
�� ����
��
� �������� ������ ���������

���
��� ���
������
������������ �� ���������
��
� �� ���������
�

������
��
� �� ����
��� �� ����� ��� �  �!�" �#�$ $���%

�&����' ����
���
��������������������
�����(����)����

$EVWUDFW

6KRUW�WHUP SHHU�WR�SHHU �RU SHUVRQ�WR�SHUVRQ� H�FRPPHUFH FDOOV IRU DQ

LQIUDVWUXFWXUH WUHDWLQJ LQ D XQLIRUP ZD\ VXSSO\ DQG GHPDQG� ZKLFK VKRXOG

EDVH WKH PDWFKLQJV RQ D FRPPRQ RQWRORJ\ IRU GHVFULELQJ ERWK VXSSO\ DQG

GHPDQG�

.QRZOHGJH UHSUHVHQWDWLRQ _ LQ SDUWLFXODU GHVFULSWLRQ ORJLFV _ FDQ

GHDO ZLWK WKLV XQLIRUP WUHDWPHQW RI NQRZOHGJH IURP YHQGRUV DQG FXV�

WRPHUV� E\ PRGHOOLQJ ERWK DV JHQHULF FRQFHSWV WR EH PDWFKHG�

:H SURSRVH D ORJLFDO DSSURDFK WR VXSSO\�GHPDQG PDWFKLQJ LQ SHUVRQ�

WR�SHUVRQ H�FRPPHUFH� ZKLFK LV GHSOR\HG LQ D SURWRW\SH V\VWHP LPSOH�

PHQWHG IRU D SDUWLFXODU FDVH VWXG\ EXW HDVLO\ JHQHUDOL]DEOH DQG LV EDVHG

RQ &ODVVLF� D ZHOO NQRZQ NQRZOHGJH UHSUHVHQWDWLRQ V\VWHP� /LPLWV DQG

DGYDQWDJHV DUH DQDO\]HG DQG GLVFXVVHG�

� �������	�
��

(OHFWURQLF FRPPHUFH GLmHUV IURP WUDGLWLRQDO FRPPHUFH SULPDULO\ LQ WKH

ZD\ WKDW LQIRUPDWLRQ LV H[FKDQJHG DQG SURFHVVHG� 3HUVRQDO FRQWDFWV�

RU DW PRVW FRQWDFWV PHGLDWHG WKURXJK WKH SKRQH RU SRVWDO V\VWHP� DUH

RU VKRXOG EH� VXEVWLWXWHG E\ LQIRUPDWLRQ H[FKDQJHG EHWZHHQ FRPSXWHUV

oRZLQJ DORQJ GLJLWDO QHWZRUNV� (�FRPPHUFH FDQ DQ\ZD\ PHDQ VHYHUDO

WKLQJV�

,Q WKLV SDSHU ZH IRFXV RQ ZKDW LV NQRZQ DV &RQVXPHU�WR�FRQVXPHU

H�FRPPHUFH� 7KLV FDWHJRU\� ZKLFK ZH DUH PRUH OLNHO\ WR FDOO SHUVRQ�

RULHQWHG RU 3HUVRQ�WR�3HUVRQ �3�3� LQ DFFRUGDQFH ZLWK WKH SURSRVDO LQ

>�@� LV HPHUJLQJ VORZO\� DV LW LV QRW EDFNHG XS E\ WKH LQWHUHVWV RI ODUJH

!



FRPSDQLHV� EXW ZH EHOLHYH LW KDV JUHDW SRWHQWLDOV IRU ZLGHVSUHDG GLmX�

VLRQ� :H EDVLFDOO\ FRQVLGHU WKH 3�3 VFHQDULR DQ HOHFWURQLF PDUNHWSODFH�
�RU EHWWHU DQ DJRUuD � ZKHUH SHHU FRQVXPHUV PD\ SURSRVH WKHLU JRRGV DQG

SURGXFWV DQG G\QDPLFDOO\ GHDO ZLWK FRXQWHURmHUV RU IXUWKHU VSHFLnFDWLRQV�

2XU UHVHDUFK WULHV WR nW DQ H[LVWLQJ JDS LQ SUHVHQW GHSOR\PHQW RI 3�3

H�FRPPHUFH� E\ H[WHQGLQJ WKH WHFKQRORJ\ RI VHDUFK DQG RI GHVFULSWLRQV RI

VHDUFKHG LWHPV� LQ RUGHU WR HDVH DQG LPSURYH WKH IUHH SOD\ RI GHPDQG DQG

VXSSO\�

0RVW RI FXUUHQW FRQVXPHU RU SHUVRQ RULHQWHG H�FRPPHUFH VWULYHV WR

UHSURGXFH� ZLWK OLPLWHG VXFFHVV� WKH XVXDO FRPPHUFLDO LQWHUDFWLRQ WDNLQJ

SODFH LQ SK\VLFDO VWRUHV� 2Q RQH KDQG� FRQVXPHUV DUH UHDFKHG E\ EOLQG

DGYHUWLVLQJ RQ VWRUH SURGXFWV� DQG EUDQG QDPHV _ ZKLFK DUH EXLOW RXW

RI PDVVLYH HFRQRPLF LQYHVWPHQWV _ nOO FXVWRPHUV
 ODFN RI LQIRUPDWLRQ�

2Q WKH RWKHU KDQG� �YLUWXDO� VWRUHV DUH YLVLWHG E\ WKRVH FRQVXPHUV ZKR

DUH LQWHUHVWHG LQ EX\LQJ D SURGXFW WKH\ WKLQN LV DYDLODEOH DW WKDW VWRUH�

3RUWDOV UHSURGXFH VSHFLDOL]HG FDWDORJXHV DQG FRQVXPHU PDJD]LQHV�

:H EHOLHYH WKDW WKLV VLWXDWLRQ LV QRW WKH QHFHVVDU\ SLFWXUH RI H�FRPPHUFH�

LW GHSHQGV RQ WKH DYDLODEOH WHFKQRORJ\ IRU SXEOLVKLQJ DQG VHDUFKLQJ RQ WKH

ZHE�

3XEOLVKLQJ RQ WKH :HE LV LQ IDFW D IRUP RI EOLQG DGYHUWLVLQJ RI SURG�

XFWV� $OWKRXJK QRW DV LQWUXVLYH DV VSDPPLQJ� WKH SXEOLVKHU KDV QR SUHFLVH

LGHD RI ZKR LV JRLQJ WR DFFHVV WKH SXEOLVKHG LQIRUPDWLRQ� 3URGXFHUV UHO\

RQ NH\ZRUGV� DQG RQ LQGH[LQJ RQ SURPLQHQW VHDUFK HQJLQHV� WR EH IRXQG

E\ SRWHQWLDO FXVWRPHUV� .H\ZRUGV DUH DmHFWHG E\ WKH ZLGH�H[SHULHQFHG

SUREOHPV RI ERWK V\QRQ\PV� DQG SRO\VHPLF ZRUGV� &DWHJRUL]DWLRQ E\

SURPLQHQW LQGH[ VLWHV PD\ KHOS VRPH SURGXFHUV WR EH HmHFWLYHO\ IRXQG E\

SRWHQWLDO FXVWRPHUV� KRZHYHU� RQ WKH FXVWRPHU VLGH� UHO\LQJ RQ LQGH[HV

PD\ UHVXOW LQ D ORVV RI XVHIXO LQIRUPDWLRQ DERXW VPDOO�VL]H SURGXFHUV� RU

VKRUW�WLPH VXSSOLHUV� 7KLV LV SDUWLFXODUO\ UHOHYDQW IRU DJULFXOWXUDO SURG�

XFWV� VXSSOLHV WHQG WR KDYH D VHDVRQDO WLPH ZLQGRZ� DQG GLmHUHQW SURGXF�

HUV PD\ DOWHUQDWH RQ WKH PDUNHW� HDFK RQH ZLWKRXW WKH VXpFLHQW HFRQRPLF

VWUHQJWK WR SXW XS D ORQJ�WHUP� YLVLEOH DQG UHOLDEOH VLWH�

2Q WKH FXVWRPHU VLGH� WKHUH LV QR ZD\ WR UHDFK D SURGXFW EXW E\ DF�

WLYH VHDUFK XVLQJ WKH DYDLODEOH WHFKQRORJ\� ZKLFK SHQDOL]HV 3�3 LQ IDYRU

RI %�&� 7KH XVH RI PDLQ SRUWDOV DQG LQGH[HV WR VSHHG XS VHDUFK WHQGV WR

IDYRU ORQJ�WHUP UHQRZHG EUDQGV� LQ FRPSDULVRQ ZLWK VKRUW�WHUP VXSSOLHV

E\ VPDOO SURGXFHUV� 7KLV PD\ UHVXOW LQ D ORVV RI FRPSHWLWLYH RmHUV� ZKLFK

FRXOG KDYH EHHQ HFRQRPLFDOO\ PRUH FRQYHQLHQW MXVW EHFDXVH RI HLWKHU JHR�

JUDSKLFDO SUR[LPLW\� RU VPDOOHU DGYHUWLVLQJ RYHUKHDG RQ WKH RYHUDOO SULFH�

2QH PD\ EH WHPSWHG WR VROYH WKH SUREOHP RI 3�3 E\ UHVRUWLQJ WR SUHVHQWO\

DYDLODEOH 'DWDEDVH WHFKQRORJ\� $ VLWH VSHFLDOL]HG LQ SDUWLFXODU SURGXFWV

�$JRUuD� $Q DVVHPEO\� KHQFH� WKH SODFH RI DVVHPEO\� HVSHFLDOO\ WKH PDUNHW SODFH� LQ DQ

DQFLHQW *UHHN FLW\�

�



������ !' *+���&���� ��
+���
���� �, �+� ������%�� �%�����

PD\ KHOS VXSSOLHUV WR G\QDPLFDOO\ LQVHUW DQG GHOHWH RmHUV IRU GHnQLWH

WLPH VORWV� 7KH VLWH FRXOG KHOS DOVR FXVWRPHUV WR LVVXH TXHULHV UHJDUGLQJ

SDUWLFXODU SURGXFWV� SUREDEO\ ZLWK WKH KHOS RI VRPH LQWHUIDFH WR IRUPXODWH

TXHULHV WKDW FDQ EH DFWXDOO\ DQVZHUHG _ XVLQJ WKH ULJKW YRFDEXODU\� WKH

ULJKW OHYHO RI DEVWUDFWLRQ� 7R FODULI\ ZLWK DQ H[DPSOH� DQ LQWHUIDFH PD\

KHOS D XVHU ZRQGHULQJ� �&DQ , DVN DERXW CPHUORW JUDSHV
� RU VKRXOG , XVH

CUHG JUDSHV
� RU MXVW CJUDSHV
� DQG VFUXWLQL]H UHWULHYHG DQVZHUV DIWHU"�� ,Q

D QXWVKHOO� WKH LQWHUIDFH IRU TXHULHV VKRXOG FODULI\ WR WKH XVHU WKH 'DWDEDVH

2QWRORJ\ �QDPHV DQG UHODWLRQV LQ WKH 'DWDEDVH VFKHPD��

+RZHYHU� VXFK D GDWDEDVH WHFKQRORJ\ VROXWLRQ FDSWXUHV RQO\ KDOI RI WKH

PDWFKLQJ RI VXSSO\ DQG GHPDQG LQ 3�3 H�FRPPHUFH� ,Q IDFW� LW FDSWXUHV

WKH UHTXHVW RI D FXVWRPHU DV D TXHU\� WR EH DQVZHUHG LQ D ZHE�EDVHG

GDWDEDVH RI RmHUV E\ VXSSOLHUV� %XW RQ WKH RWKHU KDQG� DOVR WKH RmHU RI D

VXSSOLHU FDQ EH WUHDWHG DV D TXHU\ IRU LQWHUHVWHG FXVWRPHUV LQ D GDWDEDVH

RI FXVWRPHU UHTXHVWV� RU HYHQ SHUVRQDO SURnOHV� 7KH FKRLFH RI ZKLFK LV WKH

GDWD� DQG ZKLFK LV WKH TXHU\� GHSHQGV KHUH MXVW RQ D SRLQW RI YLHZ� DQG

PD\EH� RQ ZKR LV PRUH LQWHUHVWHG LQ DFWLYHO\ nQGLQJ WKH DQVZHU _ DQG

WKDW LV QRW QHFHVVDULO\ WKH FXVWRPHU�

6XPPDUL]LQJ� ZH EHOLHYH WKDW LQ VPDOO�VL]H� VKRUW�WHUP 3�3 FRPPHUFH

WKHUH LV WKH QHHG RI DQ LQIUDVWUXFWXUH WUHDWLQJ LQ D XQLIRUP ZD\ VXSSOLHUV

DQG GHPDQGHUV� ZKLFK VKRXOG EDVH WKH PDWFKLQJV RQ D FRPPRQ RQWRORJ\

IRU GHVFULELQJ ERWK VXSSOLHV DQG GHPDQGV�

.QRZOHGJH UHSUHVHQWDWLRQ _ LQ SDUWLFXODU GHVFULSWLRQ ORJLFV _ FDQ

GHDO ZLWK WKLV XQLIRUP WUHDWPHQW RI NQRZOHGJH IURP VXSSOLHUV DQG FXV�

WRPHUV� E\ PRGHOOLQJ ERWK DV JHQHULF FRQFHSWV WR EH PDWFKHG� 7KH PDWFK�

LQJ FRXOG EH DFFRPSOLVKHG E\ D FODVVLnFDWLRQ RQ WKH KLHUDUFK\ RI FRQFHSWV�

WKDW IRUPV WKH FRPPRQ RQWRORJ\� %RWK VXSSOLHU RmHUV DQG FXVWRPHU UH�

TXHVWV FRXOG EH FODVVLnHG� OHDGLQJ WR H[DFW PDWFK ZKHQ WKH\ GHVFULEH

WKH VDPH FRQFHSW� DQG WR SDUWLDO PDWFK �VWLOO PHDQLQJIXO� ZKHQ RQH LV

D VXEFRQFHSW RI WKH RWKHU RU FRQFHSWV DUH FRPSDWLEOH� )RU LQVWDQFH� DQ

RmHU RI CUHG JUDSHV
 SDUWLDOO\ PDWFKHV D UHTXHVW IRU CPHUORW JUDSHV
� 7KH

-



SDUWLDO PDWFK FDQ WKHQ EH IXUWKHU LQYHVWLJDWHG� VWLOO ZLWK WKH KHOS RI WKH

LQIUDVWUXFWXUH�

,Q IDFW� WKH ORJLFDO DSSURDFK _ ZKLFK 'HVFULSWLRQ /RJLFV DUH EDVHG

XSRQ _ DOORZV IRU DQ RSHQ�ZRUOG DVVXPSWLRQ� ,QFRPSOHWH LQIRUPDWLRQ

LV DOORZHG �DQG FDQ EH nOOHG DIWHU D VHOHFWLRQ RI SRVVLEOH PDWFKHV�� DQG

DEVHQFH RI LQIRUPDWLRQ FDQ EH GLVWLQJXLVKHG IURP QHJDWLYH LQIRUPDWLRQ�

DOORZLQJ WR GLVFDUG RmHUV�UHTXHVWV ZLWKRXW WKH QHFHVVDU\ SURSHUWLHV� DQG

WR DVN IRU PLVVLQJ LQIRUPDWLRQ LQ WKH SRWHQWLDO PDWFKHV�

+HUH ZH SURSRVH DQ DSSURDFK WR 3�3 H�FRPPHUFH EDVHG RQ 'HVFULSWLRQ

/RJLFV DQG GHVFULEH LWV LPSOHPHQWDWLRQ LQ D SURWRW\SH V\VWHP IRU D YLUWXDO

EURNHULQJ DJHQF\ IRU DSDUWPHQWV UHQWDO� /LPLWV DQG SRVVLELOLWLHV DUH DOVR

DGGUHVVHG�

� � ��
	� ������	� �� ���	�
�� 
� ���

��	�����	�

:H QRZ DSSO\ WKH IUDPHZRUN RI 'HVFULSWLRQ /RJLFV WR VXSSO\�GHPDQG

PDWFKLQJ LQ 3�3 H�FRPPHUFH PDUNHWSODFHV� :H VXSSRVH IRU VLPSOLFLW\ D

EDVLF 3�3 H�FRPPHUFH VHWWLQJ� LQ ZKLFK HYHU\ WUDQVDFWLRQ LQYROYHV MXVW

RQH VXSSOLHU DQG RQH FXVWRPHU�

:H IRUPDOL]H ERWK VXSSOLHV DQG GHPDQGV DV FRQFHSW QDPHV �RI WZR

GLVWLQFW DOSKDEHWV�� ZKLFK VKDUH FRQFHSWV DQG UROHV RI D FRPPRQ SURGXFW

RQWRORJ\� +HQFH� ZH DVVXPH WKH H[LVWHQFH RI WZR GLVMRLQW DOSKDEHWV RI

VXSSO\ QDPHV &  I& � � � � � & J� DQG GHPDQG QDPHV '  I' � � � � �' J�� Q � P

0RUHRYHU� ZH DVVXPH WKDW WKH GRPDLQ RI LQWHUHVW LV PRGHOHG ZLWK FRQFHSWV

DQG UROHV DV LQ D JHQHULF 'HVFULSWLRQ /RJLF�

(�J�� SURSRVLQJ WKH VXSSO\ RI DQ DSDUWPHQW LQ %URRNO\Q +HLJKWV� 1<�

FRXOG EH GHVFULEHG E\

�
&  DSDUWPHQW X �ORFDWLRQ�%URRNO\Q�+HLJKWV X �w � URRPV��

ZKLOH WZR GHPDQGV LQ WKH VDPH GRPDLQ FRXOG EH GHVFULEHG E\

�

'  DSDUWPHQW X �RSWLRQV�%DFN�<DUG�*DUGHQ�

�

'  DSDUWPHQW X �� � URRPV��

7KH LQWHUSUHWDWLRQ RI VXSSO\ DQG GHPDQG FRQFHSWV LV RQ D VLQJOH� FRP�
PRQ GRPDLQ RI SRVVLEOH WUDQVDFWLRQV� WKH VHW RI WUDQVDFWLRQV FRPSDWLEOH
ZLWK WKHP� :KHQ D WUDQVDFWLRQ LQYROYHV D VLQJOH WUDGHG JRRG _ VXFK DV
DSDUWPHQWV _ VXSSOLHV DQG GHPDQGV FDQ EH LQWHUSUHWHG GLUHFWO\ DV VHWV RI
JRRGV WKDW FDQ EH H[FKDQJHG� +RZHYHU� ZH SUHIHU WR LQWHUSUHW FRQFHSWV DV
WUDQVDFWLRQV VLQFH WKHUH DUH H[FKDQJHV LQYROYLQJ FRQWLQXRXV JRRGV� VXFK
DV IUXLWV� RLO� HWF�

'HnQLWLRQ � $Q RmHU & DQG D UHTXHVW ' DUH >LQ@FRPSDWLEOH Lm WKH FRQ�

FHSW & X' LV >XQ@VDWLVnDEOH�

.



������ �' *+� ,��� ���
�/�� �+� )���
 ,������� ������% ��0������ �� ���
��)� ��
��������� ��
+ �� ���
� ���)�� �, ����� ��� �� ��� ����+�� ,�������1
��
����
���������% ��� ,������� ��� ��2 ���� �, �+� �%���� 3��2����� 
�� )� ����
���
,��� �+� �
�����)�� 2����2� 4�2 
��
���� 
�� )� �������� �� �+� ��5�/���� ��
�5���� �+� ���
������� �, �+� ���������� #,��� �+� ��������� �+� 3��2����� )���
�� ��������
���% �������� *+� ��2 
��
���� ������ �� �+� ���� �, ,������� �� �+�
�
�����)�� 2����2 ��� ��� ������)�� ,�� ,���+�� ����
+�� �� �����������

)RU WKH DERYH H[DPSOHV� ' LV FRPSDWLEOH ZLWK & � DQG IXUWKHU LQ�� �

TXLULHV FRXOG EH LVVXHG WR ERWK SDUWV WR VHH LI WKH WUDQVDFWLRQ FDQ EH

FRQFOXGHG� ,QVWHDG� & LV LQFRPSDWLEOH ZLWK ' � VR WKLV PDWFKLQJ FDQ EH� �

GLVFDUGHG LQ D nUVW nOWHULQJ SKDVH�

7KHUH DUH FDVHV� KRZHYHU� LQ ZKLFK ZH FDQ HVWDEOLVK IURP NQRZQ GDWD

WKDW WKH WUDQVDFWLRQ LV DOUHDG\ SRVVLEOH� H�J�� D GHPDQG RI H[RWLF IUXLWV LV

IXOnOOHG E\ D VXSSO\ RI EDQDQDV� 2EYLRXVO\� WR HVWDEOLVK WKLV FRQFOXVLRQ

WKH V\VWHP PXVW KDYH NQRZOHGJH �WKURXJK DQ LQFOXVLRQ DVVHUWLRQ� WKDW

EDQDQDV DUH H[RWLF IUXLWV�

'HnQLWLRQ � $ GHPDQG ' LV IXOnOOHG E\ D VXSSO\ & LQ D 7%R[ 7 LI &

LV VXEVXPHG E\ ' LQ 7 �

8QPDWFKHG GHPDQGV DQG VXSSOLHV FDQ EH ?VWRUHG� DV QHZ FRQFHSWV� DQG

FODVVLnHG DFFRUGLQJO\ LQ WKH 7%R[� $V VRRQ DV D PDWFKLQJ VXSSO\�GHPDQG

HQWHUV WKH V\VWHP� WKH ROG UHTXHVW FDQ EH UHH[DPLQHG� ,Q WKLV VHQVH� WKH

DSSURDFK EDVHG RQ 'HVFULSWLRQ /RJLFV LV EDODQFHG EHWZHHQ VXSSO\ DQG

GHPDQG� DQG PXFK GLmHUHQW IURP XVXDO %�& SRUWDOV ZKHUH D FXVWRPHU

"



������ -' *+� ��5� �, �� �&���� ��������
���% ���� �� �+� �2��� �, �� ����������
*+� ������� ������ �� � 6�7 2+��� �+� �2��� �� ��3�� �� ���2�� �)��� �+�
������
� �, ,������� ��� ��
����� �� �+� �������� ���
��������

KDV WR PDNH DFWLYH HmRUWV WR nQG WKH JRRGV V�KH ORRNV IRU� DQG LI VKH GRHV

QRW nQG WKHP QRZ� V�KH KDV WR UH�HQWHU GDWD QH[W ZHHN�

� � 	��� ������ ����
�� ���������� ��

��������

��� �	����
�

'LmHUHQWO\ IURP PRVW RWKHU FRXQWULHV� ,WDOLDQ XQLYHUVLWLHV GR QRW KDYH

GRUPLWRULHV IRU WKHLU VWXGHQWV� ZKLFK DUH RQO\ SURYLGHG WR D PLQLPXP

SHUFHQWDJH RI WKHP� $OVR� RIWHQ IDFXOWLHV DUH VSUHDG LQ GLmHUHQW SDUWV RI

WRZQV DQG QRW FRQFHQWUDWHG LQ FDPSXVHV�

7KLV VLWXDWLRQ OHDGV WR D oRXULVKLQJ DFWLYLW\ RI SULYDWHO\ RZQHG DSDUW�

PHQWV UHQWDO� )XUWKHUPRUH ODUJHVW SDUW RI VWXGHQWV GR QRW UHQW DQ HQWLUH

DSDUWPHQW RU KRXVH� LQVWHDG WKH\ DUH PRUH OLNHO\ WR DVN IRU D URRP DQG

RIWHQ IRU MXVW D EHG ZLWKLQ D URRP�

6XSSO\ DQG GHPDQG DUH H[WUHPHO\ G\QDPLF DQG FXUUHQWO\ WKHUH DUH

QR EURNHULQJ DJHQFLHV� DW OHDVW LQ PRVW LWDOLDQ WRZQV� 7KHUHIRUH� DOWKRXJK

WKHUH LV D QRWHZRUWK\ DJJUHJDWH WXUQRYHU� W\SLFDOO\ VXSSO\ PHHWV GHPDQG

LQ QDLYH ZD\V� H�J�� DGYHUWLVHPHQWV SLQSRLQWHG RQ VKRZ�FDVHV� ZRUG SDVVHG

URXQG� HWF�

7KLV EXVLQHVV VFHQDULR FDQ KHQFH EH FRQVLGHUHG DQ LGHDO FDQGLGDWH

IRU D ZHE�EDVHG V\VWHP GHVLJQHG IRU SHUVRQ�WR�SHUVRQ VPDOO EXVLQHVV H�

8



FRPPHUFH ZKRVH REMHFWLYH LV EHFRPLQJ D YLUWXDO EURNHULQJ DJHQF\ HQ�

GRZHG RI LQQRYDWLYH VHUYLFHV DEOH WR HDVH XVH DQG LQWHUDFWLRQ� DQG FORVHU

WR XVHU QHHGV WKDQ PRVW RI EXVLQHVV�WR�FRQVXPHU H�PDOOV DUH�

0DLQ VHUYLFHV ZH FRQVLGHUHG REMHFWLYH RI RXU FDVH VWXG\ DUH�

�� 6XSSRUW WR WKH XVHU LQ WKH GDWD LQVHUWLRQ DQG TXHU\ VXEPLVVLRQ�

7KH XVHU LV LQFUHPHQWDOO\ JXLGHG LQ WKH GHnQLWLRQ RI D TXHU\ RU DQ

RmHU� :H UHPDUN KHUH WKDW WKRXJK ZH GLVWLQJXLVK IRU VLPSOLFLW\ WKH

VXSSOLHU DQG WKH GHPDQGHU WKH\ DUH WUHDWHG LQ D XQLIRUP ZD\ E\ WKH

V\VWHP�

�� $XWRPDWLF FRQVWUXFWLRQ DQG YHULnFDWLRQ RI VDWLVnDELOLW\ RI WKH TXHU\�

�� 'HGXFWLRQ RI QHZ NQRZOHGJH RQ WKH EDVLV RI DYDLODEOH GDWD� $V DQ

H[DPSOH� WKH V\VWHP DXWRPDWLFDOO\ GHWHFWV DSDUWPHQWV DYDLODEOH LQ

D FRQYHQLHQW DUHD RQFH WKH IDFXOW\ KDV EHHQ HQWHUHG�

�� $ELOLW\ WR SURYLGH FRQFHSWXDOO\ DSSUR[LPDWH DQVZHUV LQ WKH SUHVHQFH

RI XQVDWLVnDEOH TXHULHV� 1RWLFH WKDW WKLV WKH ZD\ D KXPDQ FOHUN

EHKDYHV� ZKHQ D UHTXHVW FDQ QRW EH VDWLVnHG KH�VKH ZLOO SURSRVH

WKH FORVHVW DOWHUQDWLYHV WR WKH FOLHQW� ZLOO QRW DQVZHU �QR PDWFK��

�� $ELOLW\ WR PDQDJH LQFRPSOHWH TXHULHV DQG SRVVLELOLW\ WR DVN IRU XQ�

IRUHVHHQ �KHQFH QRW LPPHGLDWHO\ DYDLODEOH� VHUYLFHV DQG IHDWXUHV WR

WKH VXSSOLHU�

�� 6WRUDJH RI VDWLVnDEOH TXHULHV�GHPDQGV WKDW ZHUH VWLOO XQPDWFKHG�

ZLWK DXWRPDWLF UHH[DPLQDWLRQ ZKHQ QHZ VXSSOLHV DUH SURYLGHG� DQG

QRWLnFDWLRQ RQ VXFFHVIXO PDWFK EHWZHHQ VXSSO\ DQG GHPDQG� 7KH

VDPH VHUYLFH LV DYDLODEOH IRU XQPDWFKHG VXSSOLHV�

7KH UHPDLQLQJ RI WKLV VHFWLRQ GHVFULEHV PDLQ IHDWXUHV RI WKH LPSOH�

PHQWHG V\VWHP� ,W LV DQ\ZD\ QRWHZRUWK\ WKDW� WKRXJK WKH V\VWHP KDV

EHHQ DFWXDOO\ GHVLJQHG DV D YLUWXDO EURNHULQJ DFHQJ\ IRU DSDUWPHQWV UHQWDO�

VLPLODU LVVXHV H[LVW LQ VHYHUDO RWKHU EXVLQHVV VFHQDULRV� $ QLFH SURSHUW\ RI

RXU DSSURDFK LV LQ IDFW WKDW UHYHUWLQJ WR RWKHU VFHQDULRV LV TXLWH VLPSOH�

SURYLGHG WKDW EDVLF FRQFHSWV DQG D VLPSOH RQWRORJ\ DUH DYDLODEOH� 7KH

V\VWHP ZLOO H[WHQG LWV NQRZOHGJH DV PRUH LQIRUPDWLRQ EHFRPHV DYDLODEOH

ZLWKRXW KDYLQJ WR PRGLI\ WKH VWUXFWXUH RI WKH V\VWHP�

��� ��� �
���� ������
�� ����	�

7KH SURSRVHG SURWRW\SH V\VWHP LV EDVHG RQ D 1HR&ODVVLF HQJLQH LQWHU�

IDFHG WR WKH ZHE YLD -DYD VHUYOHW WHFKQRORJ\� &ODVVLF LV D PHPEHU RI WKH

./�21( IDPLO\ RI NQRZOHGJH UHSUHVHQWDWLRQ ODQJXDJHV >�@� 1HR&ODVVLF�

D &ODVVLF LPSOHPHQWDWLRQ� LV EDVLFDOO\ D NQRZOHGJH VHUYHU WR EXLOG� PDQ�

DJH� LQIHU DERXW� DQG TXHU\ D FODVVLnFDWLRQ KLHUDUFK\� 1HR&ODVVLF LV D

IUDPH�EDVHG NQRZOHGJH UHSUHVHQWDWLRQ V\VWHP WKDW GLmHUHQWLDWHV EHWZHHQ

 



������ .' *+� ,��� ���
�/�� � ��2 ,������ ��0������ )% �� ���������� ��������
��� ������)�� �� �+� ��������� ���
�������� *+� �2��� 
�� ���2�� �+� 0�������
)% 
��
3��� �� �+� �����)����� ��� /�� �+� ��5�/��� ,�� �+� ���+����
����� ���&

����� 2��+ +�� ����2����

WHUPLQRORJLFDO DQG DVVHUWLRQDO DVSHFWV RI NQRZOHGJH UHSUHVHQWDWLRQ� DQG

ZKLFK IRFXVHV RQ WKH NH\ LQIHUHQFHV RI VXEVXPSWLRQ DQG FODVVLnFDWLRQ�

W\SLFDO RI GHVFULSWLRQ ORJLFV�

)LJXUH � VKRZV WKH WKUHH�WLHU DUFKLWHFWXUH RI RXU SURWRW\SH V\VWHP�

7KH ZHE VHUYHU SDVVHV UHTXHVWV WR D -DYD VHUYOHW WKDW FRPPXQLFDWHV ZLWK

WKH 1HR&ODVVLF HQJLQH UXQQLQJ DV D GDHPRQ LQ WKH EDFNJURXQG� 7KH PDLQ

XVHU LQWHUIDFH IRU ERWK VXSSO\ DQG GHPDQG VXEPLVVLRQ LV D -DYD DSSOHW�

&ODVVLF RXWSXW LV SDUVHG LQ ;0/� WKH V\VWHP LV DOVR LQWHUIDFHG WR D PDLOHU

DQG WR D 606 �6PDOO 0HVVDJH 6\VWHP� VHUYHU IRU DXWRPDWLF QHZV QRWLn�

FDWLRQ�

6XEPLVVLRQ RI D QHZ TXHU\ RU RmHU LV FDUULHG RXW LQFUHPHQWDOO\� 7KH

XVHU FDQ LQWURGXFH EDVLF HOHPHQWV� VXFK DV SULFH� W\SH RI WKH DSDUWPHQW�

QXPEHU RI URRPV� HWF� $ GLVWLQJXLVKLQJ DVSHFW LV WKH SRVVLELOLW\ WR DVN

IRU QHZ VHUYLFHV RU IHDWXUHV QRW IRUHVHHQ DW WKH GHVLJQ VWDJH� 7KH V\VWHP

H[WHQGV LWV NQRZOHGJH DQG QHZ FRQFHSWV DUH DGGHG WR WKH NQRZOHGJH EDVH�

)LJXUH � VKRZV WKH IRUP WKDW LQFOXGHV D WH[W DUHD IRU VSHFLnFDWLRQ RI QHZ

FRQFHSWV� 7KH VFUROODEOH ZLQGRZ LQ WKH XSSHU SDUW RI WKH nJXUH VKRZV

RWKHU FRQFHSWV DGGHG DQG FRQVHTXHQWO\ SDUW RI WKH V\VWHP NQRZOHGJH� 7KH

V\VWHP LQFOXGHV D VPDOO WKHVDXUXV DQG D SUHGLFWLYH WH[W LQSXW PHFKDQLVP

WR DYRLG UHSHDWHG LQVHUWLRQ RI VLPLODU FRQFHSWV�

2XU EDVLF VHUYLFH LV WKH PDWFKLQJ RI FRPSDWLEOH GHVFULSWLRQV� $ TXHU\

9



WKDW PDWFKHV D GHVFULSWLRQ ZLOO DOVR VXEVXPH DOO RWKHU GHVFULSWLRQV WKDW

LQ WKH V\VWHP KLHUDUFK\ DUH FODVVLnHG EHORZ WKH nUVW PDWFKHG GHVFULSWLRQ�

6XSSO\LQJ D QHZ DSDUWPHQW LV DOVR D GHVFULSWLRQ PDWFKLQJ� 7KH SRVLWLRQ

RI WKH QHZ VXSSO\ LQ WKH V\VWHP KLHUDUFK\ LV GHWHUPLQHG FRQVLGHULQJ DOO WKH

GHVFULSWLRQV WKDW WKH QHZ GHVFULSWLRQ LV VXEVXPHG E\� 2QFH WKH SRVLWLRQ

KDV EHHQ IRXQG� D UHFODVVLnFDWLRQ WDNHV SODFH WR GHWHUPLQH WKH GHVFULSWLRQV

WKDW VDWLVI\ LW� ZKLFK DUH WKHQ WLHG LQ WKH V\VWHP KLHUDUFK\�

(DFK UHTXHVW� D VXSSO\ RU D GHPDQG� LV JLYHQ D XQLTXH FRGH IRU LQIRU�

PDWLRQ WUDFNLQJ� $ VXSSO\ LV DOZD\V DQ DSDUWPHQW� ZKLFK FDQ EH UHQWHG DV

D ZKROH RU URRP E\ URRP RU DOVR RQ D �EHG� EDVLV� $ GHPDQG FDQ EH DQ\

RI WKH DERYH� 7HVW IXQFWLRQV DOORZ VHYHUDO GHGXFWLRQ VHUYLFHV LQFOXGLQJ�

UHDFKDEOH IDFXOWLHV JLYHQ WKH DGGUHVV RI DQ DSDUWPHQW DQG YLFH YHUVD� FRP�

SXWDWLRQ RI SULFHV SHU URRP RU SHU �EHG� JLYHQ WKH FRVW RI DQ DSDUWPHQW�

FRPSXWDWLRQ RI VSDUH URRPV RU VSDUH EHGV� ,W LV QRWHZRUWK\ WKDW ZKHQ

D QHZ FRQFHSW LV LQWURGXFHG E\ D XVHU ORRNLQJ IRU D QHZ VHUYLFH�IHDWXUH�

WKH V\VWHP DXWRPDWLFDOO\ FRQWDFWV RZQHUV RI DSDUWPHQWV WKDW IXOnOO DOO

RWKHU XVHU UHTXLUHPHQWV EXW WKH QHZ RQH WKURXJK DQ H�PDLO RU D 606� VHH

)LJXUH � IRU DQ H[DPSOH�

7KH PHVVDJH SRLQWV WKH RZQHU WR D ZHE SDJH ZKHUH WKH TXHVWLRQ RQ

WKH QHZO\ UHTXHVWHG IHDWXUH LV SRVHG� DV LW LV VKRZQ LQ )LJXUH �� ,I KH�VKH

FRQnUPV WKH DYDLODELOLW\ RI WKH UHTXHVWHG VHUYLFH�IHDWXUH WKH V\VWHP VWRUHV

WKH QHZ LQIRUPDWLRQ DQG FRQVHTXHQWO\ LQIRUPV� ZLWK WKH VDPH SURFHGXUH

�DQ H�PDLO RU D 606�� WKH GHPDQGHU DERXW WKH IXOnOOPHQW RI KLV�KHU UH�

TXHVW�

7KH V\VWHP DOVR FRUUHFWO\ KDQGOHV UHTXHVWV WKDW FDQQRW EH IXOnOOHG

IRU ODFN RI DSDUWPHQWV RmHUV VDWLVI\LQJ DOO QHHGV H[SUHVVHG� 7KH V\VWHP

DQVZHUV GHFODULQJ WKH UHDVRQ ZK\ WKH TXHU\ FRXOG QRW EH FRPSOHWHO\ VDW�

LVnHG� VR WKDW WKH XVHU PD\ HYHQWXDOO\ UHOHDVH WKH FRQVWUDLQW� WKDW LV�

WXUQLQJ WR WKH KLHUDUFKLFDO VWUXFWXUH RI WKH NQRZOHGJH EDVH� UDLVH WRZDUGV

D OHVV VSHFLnHG GHVFULSWLRQ�

,W DOVR SURSRVHV WKRVH DSDUWPHQWV ZKRVH GHVFULSWLRQ� WKRXJK QRW SHU�

IHFWO\ PDWFKHG E\ WKH UHTXHVW DUH FORVHU WR LW� :H UHPDUN WKDW WKLV LV WKH

ZD\ ZH EHOLHYH D KXPDQ FOHUN ZRXOG EHKDYH� KH�VKH ZRXOG SURSRVH VRPH�

WKLQJ WKDW� WKRXJK QRW H[DFWO\ LQ DJUHHPHQW ZLWK WKH FXVWRPHU UHTXHVW LV

FORVH HQRXJK WR EH RI LQWHUHVW� $V DQ H[DPSOH )LJXUH � VKRZV WKH V\VWHP

DQVZHU� ZLWK WKH QHJDWLYH DQVZHU �DQG WKH UHDVRQ IRU LW� DQG DOWHUQDWLYH

VROXWLRQV�

,I D XVHU UHIXVHV DOWHUQDWLYHV KLV�KHU UHTXHVW LV QRW ORVW� 7KH V\VWHP

VWRUHV LW� RQ LQVHUWLRQ RI QHZ VXSSOLHV PDWFKLQJ WKH TXHU\ WKH V\VWHP

DXWRPDWLFDOO\ LQIRUPV WKH XVHU WKDW D QHZ RmHU LV DYDLODEOH VDWLVI\LQJ

KLV�KHU UHTXHVWV�

:



������ "' �������� �� � 0���% ��� 
��������% ���
+��� $� �+� ����� ���� �+�
�%���� �������� ��,�������� �)��� �+� ��0��������� ��� ,��/����� $� ������ ���
�+�� ��� ��0�������� ;)��
��� 
�� �������; <���� ���
+= 
���� ��� )� ,��/����
)% ��% ������)�� �����%� $� ���� �������� �� �+� ��2�� ���� ���������� �+�� ,��/��
��� ��+�� ��0��������� �, �+� 0���%�

 !��	��
�� ��� �
�	���
��

:H KDYH SURSRVHG WKH DSSOLFDWLRQ RI WKH 'HVFULSWLRQ /RJLFV IUDPHZRUN

WR VXSSO\�GHPDQG PDWFKLQJ LQ D 3�3 VFHQDULR� PRGHOOLQJ ERWK DV JHQHULF

FRQFHSWV WR EH PDWFKHG� :H KDYH DOVR SUHVHQWHG DV D UHDOLVWLF FDVH VWXG\

D SURWRW\SH RI V\VWHP WKDW LPSOHPHQWV D YLUWXDO EURNHULQJ DJHQF\ IRU

DSDUWPHQWV UHQWDO� 7KH V\VWHP LV IXOO\ IXQFWLRQDO DQG LV FXUUHQWO\ LQ

DOSKD WHVW VWDJH�

2XU FRQFOXVLRQ LV WKDW 'HVFULSWLRQ /RJLFV FDQ EH DOPRVW DQ LGHDO FDQ�

GLGDWH IRU VFHQDULRV ZKHUH SHHU HQWLWLHV LQWHUDFW IRU VXSSO\�GHPDQG PDWFK�

LQJ� SURYLGLQJ D OHYHO RI LQWHUDFWLRQ ZLWK XVHU�LQIRUPDWLRQ QHHGV ZKLFK LV

QRW DYDLODEOH ZLWK FXUUHQW GDWDEDVH WHFKQRORJ\� :H HQG WKH SDSHU GLV�

FXVVLQJ VRPH SURV DQG FRQV RI RXU FKRLFHV�

:H KDG VHYHUDO UHDVRQV WKDW OHG XV WR FKRRVH &ODVVLF LQVWHDG RI RWKHU

LPSOHPHQWDWLRQV RI 'HVFULSWLRQ /RJLFV� )LUVW� VLQFH ZH DUH ZRUNLQJ RQ D

\HDUV�ORQJ SURMHFW� ZH QHHG WR UHO\ RQ D VWDEOH V\VWHP� 6HFRQG� ZH QHHG

V\VWHP IXQFWLRQV OLNH ?OLVW DOO UROHV DWWDFKHG WR WKLV FRQFHSW�� RU ?OLVW WKH

GHULYHG VXEVXPHUV RI WKLV FRQFHSW��

0RUHRYHU� ZH QHHG D ODQJXDJH HVFDSH IRU UHTXLUHPHQWV WKDW DUH QRW

H[SUHVVLEOH LQ WKH 'HVFULSWLRQ /RJLF� $OWKRXJK ZHDN DV D UHDVRQHU� RQH RI

WKH VWURQJKROGV RI &ODVVLF LV H[DFWO\ WKH SRVVLELOLW\ WR XVH FRPSXWHG nOOHUV

DQG WHVW IXQFWLRQV LQ WKH KRVW ODQJXDJH�

!�



7KLUG UHDVRQ� EXW QRW OHVV LPSRUWDQW� WKHUH LV D ODUJH GRFXPHQWDWLRQ RQ

&ODVVLF� ZKLFK LV QRW MXVW WKH V\VWHP PDQXDO� EXW DOVR WXWRULDO�OLNH SDSHUV

>�@ WKDW DOORZ QHZFRPHUV WR JUDVS YHU\ UDSLGO\ WKH V\VWHP FDSDELOLWLHV�

DQG KRZ WR H[SORLW WKHP�

1HYHUWKHOHVV� ZH H[SHULHQFHG DOVR VRPH SUREOHPV LQ XVLQJ &ODVVLF� VXFK

DV WKH IDFW WKDW FRPSXWHG nOOHUV UHTXLUHG DOPRVW FRQWLQXRXV UHFRPSLODWLRQ

RI WKH FRGH� $OVR� &ODVVLF DSSHDUV WR KDYH VRPH VWUDQJH EHKDYLRU LQ WKH

UHPRYDO RI ?WROG� LQIRUPDWLRQ� ZKLFK UHTXLUHV D FDUHIXO KDQGOLQJ� )XU�

WKHUPRUH� ODFN RI WKH GLVMXQFWLRQ RSHUDWRU �25�� DQG TXDOLnHG H[LVWHQWLDO

TXDQWLnFDWLRQ �?DQ DSDUWPHQW ZLWK D VLQJOH URRP�� UHTXLUHG VRPH ZRUN

WR VLPXODWH WKHLU EHKDYLRU� :H DOVR QHHGHG VPDOO FRPSXWLQJ FDSDELOLWLHV

WR H[SUHVV WKLQJV DV ?DQ DSDUWPHQW ZLWK nYH URRPV� WKUHH RI ZKLFK DUH

UHQWHG� LV DQ DSDUWPHQW ZLWK WZR IUHH URRPV��

7R FLUFXPYHQW WKLV SUREOHP LQ &ODVVLF� ZH KDG WR FRGH LQ FRQFHSW

QDPHV DOO FRPELQDWLRQV RI DYDLODEOH DQG UHQWHG URRPV� DQG XVH UXOHV� WKLV

DSSHDUV D VRPHZKDW FXPEHUVRPH FRPSLODWLRQ RI VXEWUDFWLRQ�

)LQDOO\� ZH ZRXOG KDYH nQG XVHIXO VRPH HSLVWHPLF FDSDELOLWLHV WR H[�

SUHVV WKDW� H�J�� WR HQWHU D QHZ DSDUWPHQW LQ WKH V\VWHP� LWV ORFDWLRQ PXVW

EH HQWHUHG WRR� RU WKDW WKH RZQHU DOUHDG\ WROG WKDW VPRNHUV DUH DOORZHG�

�	���"���������

:H ZLVK WR DFNQRZOHGJH KHOS RI RXU IRUPHU VWXGHQWV 3� %DFFR DQG 0�

5DQLHUL� DQG RI 3�)� 3DWHO�6FKQHLGHU ZKR FODULnHG YDULRXV SRLQWV RI 1HR�

&ODVVLF LPSOHPHQWDWLRQ�

7KLV ZRUN KDV EHHQ VXSSRUWHG E\ SURMHFW 08567�&/867(5�� VXE�

FOXVWHU �0RQLWRUDJJLR DPELHQWH H WHUULWRULR�� ZRUNSDFNDJH� �6LVWHPD LQ�

IRUPDWLYR SHU LO FROORFDPHQWR GHL SURGRWWL RUWRIUXWWLFROL SXJOLHVL� DQG E\

(8�323 SURMHFW �1HJRWLDWLRQ $JHQWV IRU WKH (OHFWURQLF 0DUNWSODFH��

#�$����	��

>�@ $OH[DQGHU %RUJLGD� 'HVFULSWLRQ ORJLFV LQ GDWD PDQDJHPHQW� ,(((

7UDQVDFWLRQV RQ .QRZOHGJH DQG 'DWD (QJLQHHULQJ� ��������^����

�����

>�@ 5� -� %UDFKPDQ HW DO� /LYLQJ ZLWK &/$66,&� :KHQ DQG KRZ WR XVH D

./�21(�OLNH ODQJXDJH� ,Q -RKQ 6RZD� HGLWRU� 3ULQFLSOHV RI 6HPDQWLF

1HWZRUNV� ([SORUDWLRQV LQ WKH UHSUHVHQWDWLRQ RI NQRZOHGJH� SDJHV ���^

���� 0RUJDQ .DXIPDQQ� �����

>�@ 'LHJR &DOYDQHVH� *LXVHSSH 'H *LDFRPR� DQG 0DXUL]LR /HQ]HULQL� 2Q

WKH GHFLGDELOLW\ RI TXHU\ FRQWDLQPHQW XQGHU FRQVWUDLQWV� ,Q 3URFHHG�

LQJV RI WKH 6HYHQWHHQWK $&0 6,*$&7 6,*02' 6,*$57 6\PSRVLXP

RQ 3ULQFLSOHV RI 'DWDEDVH 6\VWHPV �32'6
���� SDJHV ���^���� �����

!!



>�@ 3� 'HYDPEX� 6�*� 6WXEEOHELQH� DQG 0� 8VFKROG� 7KH QH[W UHYROXWLRQ�
)UHH� )XOO� 2SHQ 3HUVRQ���3HUVRQ �3�3� (�FRPPHUFH� ,Q 3URF� RI '/

���� :RUNVKRS� �����

>�@ )UDQFHVFR 0� 'RQLQL� 0DXUL]LR /HQ]HULQL� 'DQLHOH 1DUGL� DQG $QGUHD
6FKDHUI� 5HDVRQLQJ LQ GHVFULSWLRQ ORJLFV� ,Q *HUKDUG %UHZND� HGLWRU�
3ULQFLSOHV RI .QRZOHGJH 5HSUHVHQWDWLRQ� 6WXGLHV LQ /RJLF� /DQJXDJH
DQG ,QIRUPDWLRQ� SDJHV ���^���� &6/, 3XEOLFDWLRQV� �����

>�@ 0DQIUHG 6FKPLGW�6FKDX{ DQG *HUW 6PROND� $WWULEXWLYH FRQFHSW GH�
VFULSWLRQV ZLWK FRPSOHPHQWV� $UWLnFLDO ,QWHOOLJHQFH� �������^��� �����

>�@ :LOOLDP $� :RRGV DQG -DPHV *� 6FKPRO]H� 7KH ./�21( IDPLO\� ,Q

)� :� /HKPDQQ� HGLWRU� 6HPDQWLF 1HWZRUNV LQ $UWLnFLDO ,QWHOOLJHQFH�

SDJHV ���^���� 3HUJDPRQ 3UHVV� ����� 3XEOLVKHG DV D VSHFLDO LVVXH

RI &RPSXWHUV 	 0DWKHPDWLFV ZLWK $SSOLFDWLRQV� 9ROXPH ��� 1XPEHU

�^��

!�



Building a Text Adventure on Description Logic

Malte Gabsdil, Alexander Koller, Kristina Striegnitz

Dept. of Computational Linguistics

Saarland University, Saarbr�ucken, Germany

{gabsdil|koller|kris}@coli.uni-sb.de

Abstract

We describe an engine for a computer game which employs techniques

from computational linguistics and theorem proving based on description

logic. We show how we represent a world model as a DL knowledge base

and then illustrate how we use it in the computational linguistics modules

with the examples of analyzing and generating referring expressions.

1 Introduction

In this paper, we describe an engine for text adventures which employs tech-

niques from computational linguistics and theorem proving based on description

logic. The system is being developed at Saarland University as a student project.

Its purpose is twofold: Players should be able to interact more naturally with the

game, and we envisage a use as a testbed for computational linguistics modules.

Text adventures are a classical form of computer games which were most

popular in the eighties. The player interacts with the game world (e.g. the rooms

and objects in a space station) by typing natural-language commands and the

computer provides feedback in the form of natural-language descriptions of the

world and of the results of the player's actions. Typically, the user has to solve

puzzles to win the game; an example interaction is shown in Fig. 1.

Text adventures have since gone somewhat out of fashion. One reason for

this was the advent of more powerful graphics hardware, but another is that

even the most advanced games of the eighties, which accepted input that went

well beyond simple two-word sentences, su�ered from some irritating limitations.

Maybe most striking is what we call the identi�cation problem: Sometimes the

game does not allow the user to refer to an object with the exact same words

that the game itself used for it (Fig. 2, taken from [3]). This is unsurprising,

since the output of the game is hard-coded and elaborate, whereas the input has

to be analyzed by a very simple parser.

1



Observation Lounge

This is where the station staff and visitors come to relax. There

are a lot of tables and chairs here, a large observation window,

and a plush carpet. In the corner you can see an AstroCola dispenser.

A tube leads up to the station's main corridor.

>put my galakmid coin into the dispenser

Click.

The dispenser display now reads "Credit = 1.00".

>push diet astrocola button

You hear a rumbling noise in the dispenser, but nothing appears in the

tray.

>kick dispenser

A can drops into the tray. Amazing! The oldest trick in the book, and

it actually worked.

Figure 1: An example interaction with a text adventure, taken from [7].

Cupboard

When you aren't lying on the bed, you usually stay in here, snug and

safe with your friends atop the warm pile of clothes. Your warm

winter jacket is here, which may be just as well, it's a little chilly.

>take the warm winter jacket

You can't see any such thing.

>take the winter jacket

You can't see any such thing.

>look at the jacket

A smart green jacket with big pockets, teddy bear sized.

>take the smart green jacket

You can't see any such thing.

>take the jacket with big pockets

I only understood you as far as wanting to take the green jacket.

>take the green jacket

Taken.

Figure 2: The identi�cation problem.

2



Parsing

Resolution

Actions

Realization

Determination
Content

A-Box: World Model A-Box: User Knowledge

T-Box

Figure 3: Architecture

Our system attempts to overcome this and other limitations by employing

state-of-the-art techniques from computational linguistics, such as a real parser

for English and a component for the automatic generation of the system's an-

swers. Underlying the system is a world model based on description logic, which

is used by almost every component of the NLP system. In our implementation

we use the RACER system [5] because it provides support for A-Box reasoning,

which is essential for us.

The paper is organized as follows: We will �rst sketch the general architecture

of the system and its components (Section 2) and describe the DL world model

(Section 3). Then we will briey illustrate how we make use of DL inferences

in the NLP modules by �rst showing how to analyze the meaning of referring

expressions (Section 4), and then how to generate such referring expressions

(Section 5). Section 6 concludes the paper and presents some ideas for future

work.

2 Architecture

The general architecture of the game engine is shown in Fig. 3. The user's input

is �rst parsed { that is, its syntactic structure is determined, using an eÆcient

parser for dependency grammar [2]. Next, referring expressions (such as the

toolbox) in the input are resolved to objects in the world. The result is a ground

term that indicates the action the user wants to take.

This term is used to retrieve action descriptions from a database; the entry

for \open" is shown in Fig. 4. Action descriptions are STRIPS-like operators

de�ning preconditions and e�ects of the action. In addition, they specify in the

`uk' slot how the user knowledge has to be updated when the action is performed.

3



open(pat:X)

pre: closed(X), unlocked(X)

e�ects: add: open(X)

delete: closed(X)

uk: add: open(X), describe(X)

delete: closed(X)

Figure 4: The operator for the \open" action.

The term that was produced by the resolution component is matched with the

head of the operator, binding the variables in the action description.

If the preconditions are satis�ed, the world model is updated according to the

`e�ects' slot, and the instantiated contents of the `uk' slot are passed on to the

content determination component, which computes what information has to be

verbalized by the generation module. This verbalization process is then carried

out by a realization component based on Lexicalized Tree Adjoining Grammar

[6, 10], which produces English text.

3 The World Model

The world model of the game engine is encoded as a DL knowledge base. The T-

Box speci�es the concepts and roles which are available in the world and de�nes

complex concepts used e.g. by the resolution module (see below). The A-Boxes

state which concepts and roles hold of the individuals in the world.

In the system, we use two di�erent A-Boxes. One stores the current state

of the world; it is used to determine whether the preconditions of an action are

satis�ed in the world, and, if this is the case, is updated with the action's e�ects.

The function of the other A-Box is to keep track of the player's knowledge. It

is used in the language-processing modules { for instance, referring expressions

must be evaluated with respect to the user's knowledge {, and is updated by the

content determination when it has determined what new information should be

verbalized. The two A-Boxes share the same T-Box, but will typically be di�er-

ent. For instance, the world A-Box will usually contain more individuals than

the user A-Box because the player will not have explored the world completely

and will therefore not have seen all the individuals. On the other hand, it can

be useful to deliberately hide e�ects of an action from the user, e.g. if pushing

a button has an e�ect in a room that the player cannot see.

A fragment of the A-Box describing the state of the world is shown in Fig. 5.

The T-Box speci�es that the world is partitioned into three parts: rooms, ob-

jects, and players. The individual `myself' is the only instance that we ever de�ne

of the concept `player'. Individuals are connected to their locations (i.e. rooms,

4



room(scooter-bridge) toolbox(t1)

hammer(h1) player(myself)

saw(s1) silver(t1)

closed(t1) unlocked(t1)

has-location(t1, scooter-bridge) has-location(h1, t1)

has-location(myself, scooter-bridge) has-location(s1, t1)

. . .

Figure 5: A fragment of the world A-Box.

container objects, or players) via the `has-location' role; the A-Box also speci�es

what kind of object an individual is (e.g. `toolbox') and what properties it has

(`closed', `silver'). The T-Box then contains axioms such as `toolbox v object',

`silver v colour', etc., which establish a taxonomy among concepts.

These de�nitions allow us to add axioms to the T-Box which de�ne more

complex concepts. One is the concept `here', which contains the room in which

the player currently is { that is, every individual which can be reached over a

has-location role from a player object.

here
:
= 9has-location�1:player

Another useful concept is `accessible', which contains all individuals which the

player can manipulate.

accessible
:
= 8has-location:here t 8has-location:(accessible u open)

All objects in the same room as the player are accessible; if such an object

is an open container, its contents are also accessible. As the player itself is by

de�nition `open', this includes the player's inventory.

Finally, we should mention that inside the action processing module, we

create multiple temporary A-Boxes to allow for a more benevolent handling of

ambiguity. Imagine the player types an ambiguous sentence, such as \put the

apple in the box on the table". We will explain below how the resolution module

can sometimes �lter out some readings of such an ambiguity, but in this case,

let's assume that it cannot decide whether the user meant putting \the apple"

into \the box on the table", or \the apple in the box" onto \the table". It will

hand both alternatives down to the action processing component.

Here we pursue all possible meanings of the sentence in parallel. For each

reading, we create a copy of the current world A-Box, and then attempt to

perform the action on the copy. This can be nontrivial because it may be

possible to express sequences of actions with a single sentence, and these have

to be performed one after another. If it turns out that we can only successfully

perform the actions in one of the readings (e.g. because the player does not

5



hold the apple in the box), we can commit to this reading without the user ever

noticing that we had trouble understanding what he meant. Otherwise, we have

to report an error.

4 Resolution of Referring Expressions

Referring expressions, such as the toolbox, it, or a hammer, link linguistic forms

to objects in the world (the referents of the referring expressions). The player in

our application will typically use de�nite descriptions (the toolbox) or pronouns

(it) to refer to the objects on which he wants to perform an action. It is therefore

essential to resolve these expressions to the actual individuals in the player-

knowledge A-Box. As an example reconsider the A-Box in Fig. 5: We �rst have

to resolve the toolbox to the RACER individual t1 before any action on this

object can be carried out.

Resolving De�nite Descriptions De�nite descriptions of the form the tool-

box, the green apple, or the hammer in the toolbox refer to an object that matches

their restriction (toolbox, green apple, etc.). In a �rst approximation, we also take

them to refer uniquely : That is, there must be exactly one object in the world

that matches the restriction [9]. For the toolbox, this restriction is simply the

concept `toolbox'. We furthermore assume that the player will only try to re-

fer to `accessible' objects. This avoids confusion with other objects that would

match the same description but are not in the same room as the player, i.e. ob-

jects that are not locationally salient. Thus we can retrieve a list of all potential

referents for the toolbox by evoking the RACER query

(concept-instances toolbox u accessible)

Assuming that t1 is actually already present in the player A-Box, this re-

turns the list (t1). As it contains exactly one element, the reference succeeds;

otherwise we would have rejected the command with an error message. Note

that we always interpret reference with respect to the player's knowledge: The

presence of toolboxes unknown to the player does not lead to an ambiguous

reference.

More complicated de�nites are simply translated into more complex con-

cepts. Our general strategy here is to push as much of the work into the DL

inference problems and let RACER's optimizations work for us. For example,

the hammer in the toolbox translates to the query

(concept-instances hammer u accessible u 9has-location:toolbox)

The fact that de�nite references may fail (i.e. no referent in the world model

can be found that matches the restriction) can be very helpful when we are faced

6



with more than one possible syntactic derivation for an input. For example, the

sentence Unlock the toolbox with the key is ambiguous: The key could either

be an instrument used in the unlocking, or it could modify the toolbox, as in

the toolbox with the red handle. In this example, we will not be able to �nd a

referent for the constituent the toolbox with the key in the second parse, and will

therefore only pass on the (resolved) �rst reading to the actions module.

Resolving Pronouns Unlike de�nite descriptions, pronouns do not provide

much information about the object they refer to. However, the linguistic restric-

tions on which objects can be referred to by pronouns are much stricter.

We make use of a discourse model inspired by Strube's S-list [12] to determine

the objects pronouns might refer to (their antecedents). The idea behind the S-

list is to keep an ordered record of salient objects that have been introduced

during a discourse and which are therefore most likely to be antecedents for

pronouns. We associate every element in the S-list with agreement features

(gender and number), its information status and text position (both needed to

determine list-order; see [12]), as well as the RACER individual it refers to in

the player A-Box. Resolving a pronoun then comes down to a lookup in the

S-list: We simply take the �rst element that matches the pronoun's agreement

restrictions.

The discourse model is updated incrementally and can be accessed by both

the resolution and the generation module (see below). We can therefore resolve

inter-sentential pronouns like Take the apple and eat it as well as simple cases

of cross-speaker anaphora [4] as in the following short dialogue:

game: There is an apple on the table.

player: Take it.

5 Generation of Referring Expressions

The purpose of the generation module is to describe the environment the player

is in and how his actions a�ect the game world. As is common practice in

natural language generation systems, it consists of the two submodules content

determination and realization (see e.g. [13]). Content determination assembles

the information that has to be communicated to the player, and then passes it

on to the realization module to cast it into a text.

The information that should be communicated to the user is essentially the

value of the `uk' slot of the instantiated action schema, with two notable dif-

ferences. First, individuals can of course not be called by their internal names

(such as t1), so we must again generate a referring expression that names them.

Second, special atoms like `describe(t1)' are taken as requests to generate a

description of t1.

7



ds: l1, l2

new: l1:open(t1), l2:contains(t1,[h1,s1]), hammer(h1), saw(s1)

old instances: t1

Figure 6: Output of Content Determination (Example: Open the toolbox)

Fig. 6 shows an example output of the content determination module for the

action open the toolbox, as speci�ed in Fig. 4. It tells the realization component

to generate two sentences, called internally `l1' and `l2': one expresses the fact

that the toolbox t1 is open now, and the other one introduces the objects that

are contained in the toolbox. Depending on contextual factors, a possible output

could be The toolbox is now open. It contains a hammer and a saw.

Referring to Objects Reference to old individuals, i.e. individuals the player

already knows about, is mainly taken care of by the realization module (see

below) as there is interaction with the surface form that is chosen for the referring

expression.

In case the action schema asserts a fact about an individual r the player

has not encountered before, this object will be introduced to the player by a

mini-description stating the most obvious properties of the object { e.g., its

(most speci�c) type, such as `toolbox', and its colour. We can �nd out whether

the individual is new to the player by checking whether it is an instance of the

universal concept > in the player A-Box.

Suppose we want to generate a mini-description for the toolbox t1 in Fig. 5.

The query

(individual-direct-types t1)

will return the list (toolbox silver). Using concept subsumption checks,

we can �nd out that `toolbox' is the type of t1, and `silver' is its colour; so both

concepts go into the mini-description. (Subsumption checks are inexpensive

because we can completely classify the T-Box when we start the system.) The

realization component can use this information later to generate the expression

like a silver toolbox.

Describing Objects There are two main situations in which object descrip-

tions have to be produced. First, the player may ask explicitly for a description,

for instance by saying look at the toolbox. In this case, a full detailed description

of the object is required. Therefore, all (most speci�c) concepts of which the ob-

ject is an individual as well as all role assertions in which the concept takes part

are retrieved from the world model. Mini-descriptions (as above) are provided

for the objects introduced through role assertions.

The second type of object description is intended for situations in which

an action has changed the world in such a way that new information becomes

8



S: hl1i

NP#: ht1i VP

V

is

Adj

open

semantics: open(t1)

NP: ht1i

Det

the

N #: ht1i

N: ht1i

toolbox

semantics: toolbox(t1)

Figure 7: Realizing `open(t1)'

accessible to the player. An example is the `open' action, which makes the

objects in the opened container visible. In this case, only new information, i.e.

facts about the object that can be retrieved from the world model but don't

follow from the user knowledge, should be contained in the description. At the

moment, we derive this information from the speci�c action types. In the case

of an `open' action, not all role assertions are retrieved, but only those `has-

location' relations which point to objects included in the container. We aim to

arrive at a more general solution eventually.

Realization The realization component produces a text to communicate the

information assembled by the content determination to the player. In order for

the text to be smooth and for the player to be able to correctly resolve references

to objects, it is important that appropriate expressions are used for referring.

For example, we want to refer to objects the player knows about with de�nite

descriptions (the toolbox) and to new objects with inde�nites (a toolbox). For

new objects, we simply verbalize the concepts in the mini-description.

The correct verbalization of old objects is handled inside the main realization

algorithm, which is based on [10]. In this framework realization comes down to

assembling a sentence from the partial parse trees of a lexicalized tree-adjoining

grammar [6]. Fig. 7 shows how The toolbox is open is built from fragments of

syntax trees. The lexicon entries are associated not only with semantic infor-

mation { which connects e.g. the word toolbox with the concept `toolbox' {, but

also with pragmatic information. This allows us to specify in the lexicon entry

for the that de�nite descriptions must refer uniquely with respect to the player's

knowledge. The resulting sentence (or little text) has to convey the information

that content determination selected, it has to be syntactically viable (there must

not be any holes in the result) and pragmatically appropriate.

To realize a reference to an old individual, we �rst compute the individual-

9



direct-types of the individual again; then we successively add the members

of this list to the de�nite until the reference is unique, which we can check

by computing the number of concept-instances as in Section 4. We follow

standard practice in generation systems [1] by adding these concepts according

to a prede�ned order of salience; �rst the type, then the colour, etc.

6 Conclusion and Outlook

In this paper, we have sketched the components of a text adventure engine

which employs techniques from computational linguistics to make a more nat-

ural interaction with the game possible. The state of the world and the player

knowledge are represented as description logic knowledge bases, and almost all

language-processing modules utilize (A-Box and T-Box) inferences over these

knowledge bases. We have looked more closely at the components for resolving

and generating referring expressions, which solve the identi�cation problem.

We are currently implementing the system; we hope to �nish a prototype

by September. The implementation is being done in the concurrent constraint

programming language Oz [8], which allows us to reuse existing modules for

parsing and realization [2, 11]. We communicate with the standalone version of

RACER via sockets.

The system has much room for improvement, and indeed is designed in a

modular fashion that will allow to replace speci�c components by more sophis-

ticated ones. One line of future work could be to improve the part that re-

solves referring expressions; likewise, their generation is currently a very active

research �eld in computational semantics, and new ideas could easily be incor-

porated into the system. One straightforward improvement of the realization

component would be to add lexical entries that contain larger chunks of text,

which could make the output more interesting to read.

Beyond these local changes, one can imagine many additions to the system's

functionality. For instance, one could add speech recognition and generation

components. In addition, it would be interesting to allow multiple instances of

`player' and make the game multi-user, or to model the world more realistically

e.g. by replacing the room concept by coordinates in the world. But we believe

that even the �rst version as it stands o�ers an interesting setup for exploring

the use of description logic in computational linguistics.

Acknowledgments. We are grateful �rst of all to our students, without whose

enthusiasm in implementing the system the game would have remained an idea.

We are indebted to Ralph Debusmann for his contributions to the parsing com-

ponent and the syntax-semantics interface. Carlos Areces introduced us to the

new world of eÆcient DL provers, and Volker Haarslev and Ralf M�oller were won-

derfully responsive in providing technical support for RACER. Special thanks go

10



to Gerd Fliedner, in a discussion with whom the idea for employing techniques

of computational linguistics in a text adventure engine came up �rst.

References

[1] Robert Dale and Ehud Reiter. Computational interpretations of the gricean

maxims in the generation of referring expressions. Cognitive Science,

18:233{263, 1995.

[2] Denys Duchier and Ralph Debusmann. Topological dependency trees: A

constraint-based account of linear precedence. In Proceedings of the 39th

ACL, Toulouse, France, 2001.

[3] David Dyte. A Bear's Night Out. Text adventure. Available at http:

//www.covehurst.net/ddyte/abno/, 1997.

[4] Nissim Francez and Jonathan Berg. A Multi-Agent Extension of DRT.

In H. Bunt, R. Muskens, and G. Rentier, editors, Proceeding of the 1st

International Workshop on Computational Semantics, pages 81{90, 1994.

[5] Volker Haarslev and Ralf M�oller. RACER System Description. In Proceed-

ings of IJCAR-01, Siena, 2001.

[6] Aravind Joshi and Yves Schabes. Tree-Adjoining Grammars. In G. Rozen-

berg and A. Salomaa, editors, Handbook of Formal Languages, chapter 2,

pages 69{123. Springer-Verlag, Berlin, 1997.

[7] David Ledgard. Space Station. Text adventure, modelled after a sam-

ple transcript of Infocom's Planetfall game. Available at http://members.

tripod.com/~infoscripts/planetfa.htm, 1999.

[8] Mozart Consortium. The Mozart Programming System web pages. http:

//www.mozart-oz.org/, 1999.

[9] Bertrand Russell. On Denoting. Mind, 14:479{493, 1905.

[10] Matthew Stone and Christine Doran. Sentence planning as description using

tree adjoining grammar. In Proceedings of ACL, pages 198{205, 1997.

[11] Kristina Striegnitz. Model Checking for Contextual Reasoning in NLG. In

P. Blackburn and M. Kohlhase, editors, Proceedings of ICOS-3, Siena, 2001.

[12] Michael Strube. Never Look Back: An Alternative to Centering. In

COLING-ACL, pages 1251{1257, 1998.

[13] H.S. Thompson. Strategy and Tactics in language production. In Papers

from the 13th Regional Meeting of the Chicago Linguistic Society. 1977.

11



���������
	����	���� ������	������������ ����! #" �%$&	'��� ���)(*���,+-	.�/���10

2436587:9<;>=@?BA8C1D3FE:9<CHGJI&3FKJLM7NEOEN?�PRQS36587OTVU�;M3FKJLM?BW8;MXY3FA�TZI[E\3]W�T�7N?_^�3];`LM?BEO7NA�7
a#bcGed13]fgKhPi^j;k7NKJLM?BElP�m-n

ojpq3F7NEsrit`365�u4?BA!v#w8xgEOf�yzw8xgEly{w8x�yz|<?Fp}PBTg36587OT Lk;M3FKJLM?BW8;~v#w8x�y{|h?Bp}P
|hE\3]W�T�7N? f�3];`LM?BEO7NA�7Yv#w8x�yz|<?Bp

�%�]���'�e�h�`�
�[�J�Y�����c�J�����������&�`�_�������`�Y�Y�`�M�[�`�������l���`���4�N ��¡�¢�¢�.���l�#�z�k���.���`�l�Y���¡���.£¤ �H�¢�.¥��Y�Y���M�¦���Y����§¨�z�¨©�ªJ©«�4�N ��¡�c���.���l���`¥����¡�¢�J�Y�¬�¡�>�z�/���'8�J��§��®�l�¡���h¯¬�l°���M���.���`�l�Y�¬�¡���i�±�`�/���.�Y²~���l�1�h�Y�'²~���Y�¬�¡�³£!´\���Y�h�����l�¡�k���l°~�.µ,�¢�J�Y�¶���¢�J�~���H�j���.�Y²~���l����Y��·�¥��¬�Y�����z���>�`�h§�¸��l°H�¬¹h¯¬�����.�Y�`§��J�Y�&�`�¦���¯�¯
�`�1�¢�J�Y���h���H���`¯¬�`�`�¶�¬�Y���¢�.£ ¤ �H�º ���¢�`�M�Y���j»��.¹¼�z���¬�Y���J�Y�¬²`�j�J�¢»¾½¡ )���®�¡�`�����z�H�����¡�����M�Y¥��¿�`��§@�`���H�.�¶�J�Y���H��Y¥����Y�J¹h¯¬�c�����¶���H�¡¯¬�`�¡�������`��§#���M�¡¯��������l�e²`�.�¢¹��`�Y�-�Y���j�¢�.�Y�`§��J�Y���`��§#�Y�H�À�`¯Á��`�`���¬�Y�h�¢�����`�Y�6���l�Y��£_´\�Â�Y�������h�J���.�����§H���Y�l���¬¹����¡¥��%�l°~���.���¬�����l�&���Â¹h¥���¯�§H����H�¨�>�¢�J�Y�����c�J�������¨���Y�`���`�OÃM���`£�»��[�����M�¡���[���¨¹h�`�����¡¥H�¢���Y�`���`�OÃM���[�¡�¼�Äi���Y�l���¬�h�Y�¬�¡�ÆÅ,�`�¡���ÈÇÉÄiÅBÊÀ�����`���¡�H�.��µ®�`���.���J�Y���H�Â�¡�_�Y�.�Y²��z�l�#§H�����l���¬���Y�¬�¡�h�����ÄgË���ÅBÌ¦Íi´\Å
£Î»����Y�.���`�Y���¡���¡¥����z�k²`�����Y���¡�J�Y�¬�¡���`��Ä�Ëi�[ÅFÌ¦Í�´NÅ¼���À�l°��������Y����.�Y²~���l�%§H���Y�l���¬�h�Y�¬�¡���/�`��§-�¡�>�¡¥����l°~�6�.�¶�¬�����l�¢�¡�-�l°~�z���Y���H��Ä�Å��Y���`���¡���.���.µ4����h�J�Y�Y�z�.¥�¯��J���`�Y�����Y�����H�¢Ï�Ë� ��RÏ_�`��§ÀÐ~Ë�  ¤ £

Ñ Ò
Ó*Ô8ÕgÖ¨×@Ø@Ù/Ô�ÚeÖ[Ó
Û/Ü�Ý¨Þ�ß6àsá~â[ÞMàlã{á~ä�å¶ã±æ�Ý*áMç�è8éYêiá~â�â[ÝeësìíÝ[àlëlÞMä�ålÞ�ì'àlã{á~ä�åjî�ë¶ã±ä�ï�åjâ&ÞMä�ð�Þ�æ6ñMÞ�äHàlÞ�ï~Ýíå�àlá
î�ß�å¶ã±ä�ÝeåsåsÝeå¨ã±äòæ�ÝíÞ�ó±ã{ä�ïÂô¦ãzàlÜ_àsÜ�Ýíã{ë*õÎÞ�ë�àlä�Ýeësåeö1ìeß�å¶àsá~â[Ýeësåeö1ÞMä�æqåsß�õ6õ�ó±ã{Ýíësåe÷}Û/Ü�Ý@ã±ähé
ìíë¶ÝJÞ�å¶ÝíæcÝeø�ìíã{Ýíä�ì'ð¢Þ�ä�æ�çùÝeô!Ýíë
Ýeësësá�ëså4ã±ä�ìeá~â�õ�ß6à.Þkàlã±á�ä�åBâ[Þ�ú�Ý�õ,á~åså¶ã±î�ó{Ý8Ü�ã{ï~Ü�Ýíë]àlÜ�ë¶á~ß�ï~Ü<é
õ�ß6àgÞMä�æjçùß�ë¶àsÜ�Ýíë�ë¶ÝJÞ�ì.ÜFö�Þ�ä�æjàlÜ6ÝíësÝ'çùá~ësÝ/á�õ]ÝeäÀß�õjàlÜ�Ý/õ,á~å¶åsã±î6ã±ó±ãzà�ð¢á�ç³ã±äHàsÝíëlÞMìeàlã{ä�ï®ô¦ãzàlÜ�Þ
ç:Þ�ë�ï~ë¶ÝJÞMàsÝíë�ä�ß�âjî,Ýíë�á�ç]õ,á�àlÝeä�àsãÉÞ�ó<ìíá~ß6ä�àsÝíë¶õÎÞ�ë¶àsåí÷gûiß<à�ô¦ãzàlÜjàsÜ�Ý¦Ýíä�ó±Þ�ësï~Ýeæ�õ]á~å¶åsã{î�ã±ó{ã{àlã{Ýíå
ìíá~â�ÝíågàlÜ6Ý�õ6ësá~î�ó{Ýíâüá�ç]ÜÎÞJñhã±ä�ïcàlácåsÝeó±Ýíì'à!àsÜ�Ý¦î]Ýeå¶àiÞ�â�á~ä�ï¢àlÜ�Ý¦âjß�ózàlãzàlß�æ�Ý/áMç4ÞJñMÞ�ã±ó±Þ�î�ó±Ý
ìíá~ß6ä�àsÝíë¶õÎÞ�ë¶àsåí÷!ý<ß�ì.Ü>åsÝeó±Ýeìeàlã{á~ä�âjß�å�à¦ÜÎÞ�õ�õ,Ýíä¨îÎÞMåsÝíæ¨á~ä�ñMÞ�ë¶ã±á~ß�å�Þ�åsõ,Ýíì'àlå/á�ç
àlÜ6Ý�î�ß�åsã�é
ä�Ýíå¶å¦á�þFÝeëså�àsÜÎÞMà/õ�ë¶á`ñ<ã{æ�Ýíë¶å/â&ÞMú�Ý¢ÞJñMÞ�ã±ó±Þ�î�ó±Ý1Þ�ä�æ�ë¶Ýíÿ�ß�Ýeå¶àlá�ëså�åsÝíÝeú&çùá~ëe÷��#ÞMàsì.Ü�â&ÞMúhã{ä�ï
ã±å�àlÜ�Ý�õ6ësáhìíÝíå¶å/á�ç
õ�ë¶ß�ä�ã±ä6ï%àlÜ�Ý®åsõÎÞ�ìeÝ�á�çRõ,á~åså¶ã±î�ó{Ý1â[ÞMàlì.Ü6Ýíå¦Þ�â�á~ä�ï�ìíá~â�õÎÞMàsã±î�ó{Ý�áMþFÝeëså
Þ�ä�æ>ësÝeÿhß6Ýíå¶àsåí÷
�������
	����������������������	������! "�#	��$���%��&	��'$�(���)*	��+�,�-���.$/	��-$
0

1



Û/Ü�Ýíë¶Ý/Þ�ë¶Ý!à�ô!á�ç:Þ�ìeàsá~ëså
àlÜÎÞkà8õ�ó±Þ`ðcã{ä%â[Þ�ú�ã±ä�ï1â&ÞMàsì.Ü�â[Þ�ú�ã±ä�ï�ã±ä%û*2�ûÈè�é�êiá�â[â�Ýíë¶ìíÝ
Þ@æ�ã{ø�ìeß�ó{à�õ�ë¶á~î�ó{Ýíâ>÷43�äÆá~ä6Ý�ÜÎÞ�ä�æBö!åsÝeë¶ñhã±ìeÝ>õ6ësá`ñhã±åsã{á~ä�ã±äHàlÝeëlÞ�ì'àlã{á~ä�åÀÝeñ�á~ó{ñ�Ý>àsá î]Ý
Ýeñ�Ýíë�â[á�ësÝ¢ìíá~â�õ�ó{Ý�5]÷iÛ/Ü�ã{å1ë¶Ýíÿ�ß�ã{ësÝíå¦àlÜ�ÞMà¦àlÜ�ÝcóÉÞ�ä6ï~ßÎÞ�ï~Ý�çùá~ë¦å¶Ýíë¶ñhã{ìíÝcæ�Ýíå¶ìíësã{õ6àlã{á~ä�å¦çùá~ë
â[ÞMàlì.Ü�â[Þ�ú�ã±ä6ï[î,Ý�Ý65<õ�ësÝeåsåsãzñ~Ý�Ýíä6á~ß�ï~Ü#àsá&æ�ÝíÞ�ó
ô¦ã{àlÜ>àlÜ�ã{å®ìeá~â[õ6ó±Ý�5<ãzà�ð~÷!3�ä-àlÜ6Ý%á�àsÜ�Ýíë
ÜÎÞ�ä6æ�àlÜ�Ý&åsÜ�ÝeÝíëÀä�ß�âjî,ÝíëjáMç¦õ]á�àsÝíäHàlã±Þ�ó�åsá~ó{ß6àlã{á~ä�å%Ü6ÝJÞJñhã±ó{ð¼ìeá~ä�å¶àsëlÞ�ã{ä�å%àsÜ�Ý*Ýeø�ìeã±Ýíä6ìeð
àlÜ�ÞMàjã{åjÞ�ì.Ü�ã{ÝeñMÞ�î�ó{Ý�÷SÛ/Ü6ã±åíö�ß6ä�ã{àsÝíæ�ô¦ãzàlÜ�Þ#ë¶Ýíÿ�ß�ã±ë¶Ýíâ�ÝíäHàjçùá~ë%Þ�ìíìeß�ëlÞMìeðÈã{äÈësÝeõ]á�ë¶àlã{ä�ï
â[ÞMàlì.Ü�ã{ä�ïSá�þ]Ýíë¶å�Þ�ä�æ¾ë¶Ýíÿ�ß�Ýíå�àlåeöiâ[Þ�ú�Ýeå�àsÜ�Ý*õ�ë¶á~î�ó{Ýíâ î�Þ�ësÝeó{ð¼àlëlÞMìeà.ÞMî�ó±Ý&ô¦ãzàlÜÈàsëlÞ�æ�ã�é
àlã{á~äÎÞ�ó,àlÝeì.Ü�ä�ã±ÿ�ß�Ýeåí÷

ûiÝíìíÞ�ß�å¶ÝSý<Ýeâ&ÞMä�àsã±ì87ÂÝíî�àlÝeì.Ü�ä�á~ó{á~ï~ã{ÝíåÀõ�ë¶á~â[ã{åsÝ&àsá@àlëlÞMä�å¶çùá~ë¶â àsÜ�Ý¨ã±ä6çùá~ë¶â&Þkàlã±á�ä
á~ä�àlÜ�Ý/ô!Ýíî&çùë¶á~â Ü�ß�â[Þ�ä<é\ësÝJÞMæÎÞ�î�ó{Ý�àlácâ&Þ�ì.Ü6ã±ä�Ý�é�ß�ä�æ6Ýíëså�à.Þ�ä6æÎÞ�î�ó{Ý:9 1�;=< öHôiÝ�àlÜ�ã{ä�ú%àsÜÎÞMà
àlÜ6Ý�Þ�õ�õ�ó{ã±ìíÞMàlã{á~ä&á�ç
àsÜ�Ýíå¶Ý¢àsÝíì.Ü�ä6á~ó±á~ï�ã±Ýíåiâ&ÞJð[î]Ý�ñMÞ�ó{ßÎÞ�î�ó{Ý1àláÀá�ß�ë/Þ�ã{â-÷�>�ä>õ�Þ�ë¶àsã±ìíß6óÉÞ�ëeö
ô!Ý�ÜÎÞJñ~Ý¨å¶àsß�æ�ã±Ýeæ4?A@B�DCFEG3,>-C Þ�å%ô!Ý¨î]Ýeó±ã±Ý'ñ~Ý&àsÜÎÞMà�ÞSå¶ß�î�å¶Ýeà�á�ç�ã{à%ìíá~ß�ó{æ¾î]Ý&ß�åsÝeæ
àlá-æ�Ýíå¶ìíë¶ã±î,Ý&åsÝeë¶ñhã±ìeÝ*õÎÞ�ësÞ�â�ÝeàlÝeësåe÷-û!ÝíìJÞMß�åsÝH?I@,�DCFEG3B>-Còã±åcÜ�ÝJÞJñhã±ózð¼ã±äKJÎß6Ýíä�ìeÝíæ¾îHð
?�Ýíå¶ìíë¶ã±õ6àsã±á~äLC4á~ï~ã±ìeåíö�ã{à�åsÝíÝeâ[å%äÎÞMàlß6ëlÞ�ógàlá-ß�åsÝ�ÞD?,CòësÝJÞMåsá~ä�ÝeëjÞ�åcàlÜ�Ý&Ü�ÝJÞ�ë�àjá�çiàlÜ�Ý
Ýíä6ï~ã±ä�Ý�àsÜÎÞMà¦ìíÞ�ó±ìeß�óÉÞMàsÝíå�àsÜ�Ý¢â&ÞMàsì.Ü�Ýíåe÷

Û/Ü�Ý>ësÝíâ[Þ�ã{ä�æ�Ýíë�á�ç1àlÜ�ã{å�õÎÞ�õ,Ýíë�ã±å�å¶àsësß�ì'àlß�ë¶ÝíæqÞMå�çùá~ó{ó±á`ô¦åí÷_ý<Ýeìeàlã{á~äM2 æ�Ýeåsìeësã±î,Ýíå
â[ÞMàlì.Ü�â[Þ�ú�ã±ä6ïjã±ä¨æ�Ý'à.Þ�ã{óN÷N>�ä>åsÝeìeàsã±á~äPOjôiÝcÞ�ä�Þ�ó{ðRQíÝ¢Ü�á`ôS?,C¼ìeá~ß�ó±æ¨î,Ý¢ÞÀåsá~ó{ß6àlã{á~ä*çùá~ë
â[ÞMàlì.Ü�â[Þ�ú�ã±ä6ïÀÞ�ä�æ*ô!Ý¢æ�Ýíå¶ìíësã{î]ÝcÞjâ[ÞMàlì.Ü6ã±ä�ï�Þ�ó{ï~á~ë¶ã{àlÜ6âüîÎÞ�åsÝeæ-á�ä*àlÜ�Ý�å¶ß�î�åsß6â[õ6àsã±á~ä
àlë¶ÝíÝ ï~ãzñ~Ýíä îHð ÞT?,CZësÝíÞ�åsá~ä6Ýíëí÷U>�ä åsÝíì'àlã{á~ä ; ô!ÝÂæ�Ýeåsìeësã±î,Ý¼á~ß�ë¨Ý�5<õ,Ýíësã{Ýíä�ìeÝ¼ô¦ãzàlÜ
æ�ãzþFÝeësÝíäHàV?,C>ësÝJÞMåsá~ä�Ýeëså!Þ�ä�æ�ó±ã{å¶à�å¶á~â�Ý�ë¶Ýíÿ�ß�ã{ësÝíâ�ÝíäHàsågô!Ý/ôiá�ß�ó±æ�ó±ã{ú�Ýiàsá�å¶ÝíÝ/çùá~ë8çùß6àsß�ësÝ
?,C ësÝJÞMåsá~ä�Ýeësåe÷�ý<Ýeìeàsã±á~äDW%à.Þ�ó{úhå¦ÞMî]á~ß<à/çùß6àlß�ë¶Ý�ôiá~ë¶ú¨Þ�ä�æ�ô!Ý�ìeá~ä�ìíó{ß�æ�Ý¢ã±ä¨å¶Ýíìeàsã±á~äYX6÷

Z [ \�Ô8Ù^]`_ \:acb�Õ
7«ã{àsÜ#àlÜ6Ýjõ�ësá�ó±ã{çùÝeëlÞMàsã±á~ä¨á�ç�á�þ]Ýíë¶å�ìíá�â[Ýeå®àlÜ�Ý%õ�ësá~î6ó±Ýíâ á�ç�dÎä6æ�ã±ä�ï*Þ�ä�æ@åsÝeó±Ýeìeàlã{ä�ï*õ,áMé
àlÝeäHàlãÉÞMó1ìeá~ß�äHàlÝeësõÎÞ�ë�àlå*çùá~ë[åsÝeë¶ñhã±ìeÝ@õ�ësá`ñhã±å¶ã±á~ä�ekìíá~ä�å¶ß�â�õ6àlã{á~äB÷VÛ/Ü6Ý@åsá~ó{Ý#õ�ë¶ÝíåsÝeä�ìíÝ á�ç
â[Þ�äHðÂõ,á�àsÝíäHàlã±Þ�ó!î6ß6ð~Ýeëså�Þ�ä�æÈå¶Ýíó{ó±Ýíë¶åjá~ä�àsÜ�Ý&ô!Ýíî�ã±å�ä�á�à�Þ-åsß6ø�ìíã{ÝíäHà�ìíá�ä�æ�ã{àsã±á~ä¼çùá~ë
àlÜ6Ýíâ æ�á~ã{ä�ï1î6ß�åsã{ä�Ýíå¶å�àlá~ï�ÝeàlÜ6Ýíëí÷�Û/Ü�ësá�ß�ï~Ü%àsÜ�Ýiâ�Ýíæ�ã±ÞMàlã{á~äcá�ç�àlÜ6Ýiâ[ÞMàlì.Ü�â[Þ�úMÝíëíökô¦Ü�ã±ì.Ü
â[ÞMàlì.Ü�Ýeå1å¶Ýíë�ñ<ã{ìíÝ�á�þFÝeëså¦ô¦ã{àsÜ-å¶Ýíë¶ñhã{ìíÝ%ë¶Ýíÿ�ß�Ýeå¶àlåeöFõ,á�àlÝeäHàlãÉÞMó4ìíá~ß�äHàsÝíësõ�Þ�ë¶àså1ô¦ã±ó{óBî,Ý%Þ�î6ó±Ý
àláfdÎä6æ-ÝíÞ�ì.Ü-áMàlÜ�Ýeëí÷

gih
j kAlnmporq-s�lutvlnwKs�m�q�x!ypq�z|{~}���{B�|�B���Vl
ý<Ýeë¶ñhã±ìeÝ1æ�Ýeåsìeësã±õ<àlã±á�ä[ã{å!Þ¢ñ~Ýeë¶ð�î�ësá~Þ�æ[àsÝíësâüå¶ß�îR�¶Ýeìeàiàsá%æ�ãzþFÝeësÝeä�à!ã±äHàsÝíësõ6ësÝeàlÞMàlã{á~ä�åe÷��Îá~ë
Ý�56Þ�â�õ�ó{Ý�ö�7 ý"?,C���7�ÝeîÂý<Ýíë�ñ<ã{ìíÝf?�Ýeåsìeësã±õ<àlã±á�ä`C
Þ�ä�ï~ßÎÞMï~Ý���9�� < æ�Ýíå¶ìíë¶ã±õ6àsã±á~ä�å�çùá<ìeß�å�á~ä
àlÜ6Ý�î]ÝeÜÎÞJñ<ã{á~ëlÞMó�Þ�å¶õ]Ýeìeàlå�á�ç®ÞSåsÝeë¶ñhã±ìeÝ�÷4�!?,?B>8��1ä�ãzñ~ÝeësålÞMó*?�Ýíå¶ìíësã{õ�ã{àsã±á~äFö�?�ã±å¶ìíá`ñ~Ýeë¶ð
Þ�ä�æ_ã±äHàlÝeï~ëlÞMàsã±á~ä á�ç¢û!ß�åsã{ä�Ýíå¶å*çùá~ë�àsÜ�ÝD7ÂÝíî��Y9+W < æ�Ýeåsìeësã±õ<àlã±á�ä�å*Þ�ë¶Ý#îÎÞMåsÝíæqá�ä_àlÜ�ë¶ÝíÝ
æ�ãzþFÝeësÝíäHà�à�ðhõ]Ýeå®á�ç�ã±ä6çùá~ë¶â&Þkàlã±á�ä&��ìíá~äHàlÞ�ìeàsã±ä�ï[æ�ÝeàlÞ�ã±ó{åi�&ô¦Ü�ãzàlÝcõÎÞ�ï~ÝeåI�,ö³ìíó±Þ�åså¶ã�dÎìíÞMàlã{á~ä
ô¦ã{àsÜ¨ësÝíå¶õ]Ýeìeà¦àlá�ÞÀìíÝeë¶àlÞ�ã±ä�à.Þ�56á�ä�á~â%ð��[ð�Ýíó±ó{á`ôVõÎÞMï~Ýíå^�,öÎÞMä�æ>àsÝíì.Ü�ä6ã±ìJÞMó4ã±ä6çùá~ë¶â&Þkàlã±á�ä
�&ï~ësÝeÝíä>õÎÞ�ï~Ýeåí÷

Û/Ü�Ý�õ�ß6ësõ,á~åsÝ�áMçÎá~ß�ëRôiá~ë¶ú�ã{å�àsá®Ýíâ%î�ëlÞ�ìeÝ/Þ�ä�æ%Ý�5hàlÝeä�æ�7�Ýeî�ý<Ýíë�ñhã±ìíÝeå8æ�Ýeåsìíë¶ã±õ6àsã±á~ä6åíö
2



à.Þ�ú�ã{ä�ï�Þ�â�á~ë¶Ý�ï~Ýíä�ÝeëlÞ�ó
ÞMõ�õ�ësá~Þ�ì.Ü>ô¦Ü6ã±ó±Ý®õ�ësá`ñhã±æ�ã{ä�ïÀàlÜ�Ý¢Ý656õ6ësÝíå¶åsãzñ~Ýíä6Ýíåså�Þ�ä�æHJÎÝ�5<ã±î6ã±ózé
ã{à�ð@àsÜÎÞMà%ô!Ý*ë¶Ýíÿ�ß�ã±ë¶Ý�÷D3�ß�ë%ÞMõ�õ�ësá~Þ�ì.Ü¾ã±åcîÎÞ�å¶ÝíæÈá~ä�Ý�5<õ�ësÝeåså¶ã±ä�ï@å¶Ýíë¶ñhã{ìíÝ*æ�Ýeåsìeësã±õ<àlã±á�ä�å
àlÜ�ë¶á~ß�ï~Ü%Þ®åsÝ'à8á�ç�ìíá~â�õ�ó±Ý65cõÎÞ�ësÞ�â[Ý'àlÝeësåí÷�Û/Ü�Ýíå¶Ý�õÎÞ�ësÞ�â�ÝeàlÝeëså�Þ�ësÝ!ß�åsÝeæ%àlá®Ý�5<õ�ësÝeåså�Þ�ñ�Þ¡é
ësã{Ýeà�ð�á�ç
Þ�å¶õ]Ýeìeàså�á�çBàsÜ�Ý®å¶Ýíë¶ñhã{ìíÝ�ÞMä�æ&àlÜ6Ý®ÝíäHàsã{àlã{Ýíå!ã±äHñ~á~ózñ~ÝeæB÷V3�ß�ë�çùësÞ�â�Ýeô!á~ësú�âjß�å�à�î,Ý
JÎÝ�5<ã{î�ó±Ý�Ýíä�á~ß6ï~ÜSàlá�ÞMìíìíá�â[â�á<æ�ÞMàlÝcæ�Ýíå¶ìíë¶ã±õ6àsã±á~ä�å1ô¦ã{àlÜ-ñ�ÞMësã±á�ß�å®ó{Ýeñ~Ýeó±å1á�ç�ìíá~â�õ�ó±Ý65<ã{à�ð~ö
çùësá~â àlÜ�Ý¢å¶ã±â�õ�ó±Ý�åsÞ�ó±Ý�áMç�ÞÀï~áhá<æ*àsá&ÞÀìíá�â[õ�ó{Ý�5*î�ß�åsã{ä�Ýíå¶å1ã{äHàlÝíësÞ�ìeàsã±á~äF÷

�&������ �8�"�'�������" L�"¡£¢�¤
¥�ësÝeñhã{á~ß�å�ã±äHñ~Ýeå¶àlã{ïHÞMàsã±á~ä�å�9 1�¦�< á~ä>àlÜ�Ý�Þ�õ�õ6ó±ã±ìíÞMàlã{á~ä�á�ç�§!?,��e¨§!?,��ý©9 1�; ö£X < àsá&å¶Ýíë¶ñhã{ìíÝ
æ�Ýíå¶ìíë¶ã±õ6àsã±á~ä[ã±ä�àlÜ�Ý1ìíá~äHàlÝ65hà/á�ç4â[ÞMàlì.Ü6â&Þ�ú�ã{ä�ï�ó{ÝJÞ�æ�ß�å�àlá%Ü6Ý1çùá~ó{ó±á`ô¦ã±ä�ï¢ë¶Ýíÿ�ß�ã±ë¶Ýíâ�ÝíäHàlå��

ªM« ��¬£�®n�¯¬����¯�±°�²B³N�µ´n��¶N�·��¢6¸T¹�¡�®º�µ´�»����R¤�¤���¼£�R¡F�R¤�¤=� Û/Ü6ÝÀÞ�æ6ñ�Ýíë¶àsã±å¶Ýíë�âjß�å�à
ÜÎÞJñ~Ý�àsá�à.Þ�ó]çùësÝíÝeæ�á~â àlá�ìíá~â�õ,á~åsÝ�àsÜ�Ý�åsÝeë¶ñhã±ìeÝcæ6Ýíåsìeësã{õ6àlã{á~äB÷�?�ã{þ]Ýíë¶ÝíäHà�Þ�æ6ñ�Ýíë�àlã±åYé
Ýíë¶å�ô¦ã{ó±óhô�Þ�äHà�àlácæ�Ýíå¶ìíë¶ã±î,Ý�àsÜ�Ýíã{ë�åsÝíë�ñhã±ìíÝeå!ô¦ãzàlÜ�æ�ã{þ]Ýíë¶ÝíäHà�æ�Ýíï�ësÝíÝeåiá�ç]ìíá�â[õ�ó{Ý�5<ã{à�ð
Þ�ä�æ ìíá�â[õ�ó{ÝeàsÝíä�ÝeåsåíöiÞ�ä�æÆá~ß�ë�óÉÞ�ä6ï~ßÎÞ�ï~Ý&âjß�å¶à[î,Ý-ÞMæÎÞ�õ6àlÞ�î�ó±Ý*àsá¼àsÜ�Ýíå¶Ý-ä6ÝíÝíæ6åí÷
@®ä�Þ�æ<ñ~Ýíë�àlã{åsÝíâ�ÝíäHà�â[Þ`ð%î]Ý/ñ�Ýíë¶ðjæ�Ýíå¶ìíësã{õ6àlãzñ~Ý¦ã±ä�å¶á~â[Ý/õ,á~ã{ä�àsåíöHî�ß<àgó±ÝJÞJñ�Ý�áMàlÜ�Ýeëså
ó±Ýeåså¢åsõ,Ýíìeã�dÎÝeæ�ÞMä�æÂá�õ]Ýeä¼çùá~ë�ä6Ýíï~á�àsãÉÞMàsã±á~äSÞ>õ,á~å¶àsÝíë¶ã±á~ë¶ãN÷jÛ/Ü�ÝeësÝ'çùá~ësÝMö�Þ�î6ã±ó±ãzà�ð¨àlá
Ý�5<õ�ë¶Ýíå¶å®åsÝeâ[ã�é�å�àlësß6ìeàlß6ësÝíæ¨æÎÞkà.Þ�ã±å/ësÝeÿ�ß�ã±ë¶ÝíæB÷

ª¾½ �F»F»�°���¢¿²#°��ÁÀr¸�»��R¤¿¹�¡F® ½ �n¶�¤��� L»F¢���°£¡V� 7�Ý�æ�á¼ä�á�àÀôiÞ�äHà�àlá ësÝeå¶àsësã±ì'àâ[ÞMàlì.Ü�ã{ä�ï�àlá>î]Ý�îÎÞ�å¶ÝíæÂá~ä�å¶ã±â�õ�ó±ÝÀå�àlësã{ä�ï>ìíá~â�õÎÞ�ë¶ã±åsá�äB÷�@üà�ðhõ,Ý&å¶ðhå�àlÝíâ ô¦ãzàlÜ
åsß6î�åsß�â�õ6àsã±á~ä¾ë¶ÝíóÉÞkàlã±á�ä�åsÜ�ã{õ�å%ã{å%ë¶Ýíÿ�ß�ã±ë¶ÝíæBögå¶á@â[á~ë¶Ý*ìíá�â[õ�ó{Ý�5Ââ[ÞMàlì.Ü�ÝeåÀìJÞ�ä�î,Ý
õ�ë¶á¡ñhã{æ�Ýíæ>îÎÞ�å¶Ýíæ>ã±ä�àlÜ�ÝeåsÝcësÝeóÉÞMàsã±á~ä�å¶Ü�ã±õ6åí÷

ª¾½ �F»F»�°���¢8²#°��HÂÃ¹K¢�¹K¢6¸�»��R¤=� @�à¶àlësã{î�ß6àsÝíå®å¶ß�ì.Ü@Þ�å�ÿ�ßÎÞ�äHàlãzàlã{Ýíåíö,õ�ë¶ã±ìíÝeåíö³á~ë�æÎÞMàsÝíåô¦ã±ó{ó®î,Ý õÎÞ�ë¶à¨áMç�àsÜ�Ý åsÝíë�ñhã±ìíÝ¼æ�Ýeåsìíë¶ã±õ6àsã±á~ä6åí÷üÛ/Ü�Ý¼î]Ýeå¶à¨ôiÞ`ðqàsá�Ý�5<õ�ësÝeåså#Þ�ä�æ
ìíá�â[õÎÞMësÝ%àsÜ�ã±å�ã{ä6çùá~ësâ[ÞMàsã±á~ä-ã±å�îHðSâ�ÝJÞ�ä6åcáMç!æ�ÞMà.ÞMà�ðhõ,Ýíåe÷f@®åcÞ*å¶àlÞ�ë¶àsã±ä�ï¨õ,á~ã±äHàJö
ô!Ý¢ô¦ã{ó±óBæ6ÝJÞ�óBô¦ãzàlÜ¨æÎÞMàlÞMà�ðhõ]Ýeå�å¶ß�ì.ÜSÞMåAÄ"Å¯Æ"Ç<ö£È"Æ=ÉKÅ�önÊ�ÉRÄ�Ë�ÌKÍ�Ý'àlìM÷

ªTÎ ´�»F���R¤�¤��8�"¤�¢�����Ï=¢���°£¡�¤�¹p¡�®vÐ�°£¡�¤�¢���¹p��¡F¤=� 7«Ü�ÝeàsÜ�Ýíë�ã{à¦ã{å�Þ�ä-áMþFÝeë�á�ë1Þ�ësÝ�é
ÿ�ß�Ýíå�àJöRã{à�ã{å�á�ç àlÝeä¼àsÜ�Ý�ìJÞ�å¶ÝÀàlÜÎÞMà�ô¦Ü�ÞMàcã±å�Ý�5<õ�ë¶Ýíå¶åsÝíæ¾ã{å�ä�á�àcÞ�åsã{ä�ï~ó{Ýjã±ä�å�à.Þ�ä6ìíÝ
á�çRÞjå¶Ýíë¶ñhã{ìíÝ�î�ß6à�ëlÞMàsÜ�Ýíë/Þ�ìíá~ä�ìeÝíõ6àsßÎÞ�óBæ6Ý�dÎä�ãzàlã{á~ä*á�ç4àsÜ�Ý¢Þ�ìíìeÝíõ6àlÞ�î�ó{Ý�ã±ä�å�à.Þ�ä6ìíÝíåe÷
@ZäÎÞMàlß6ëlÞ�óBôiÞJð-áMç8æ�Ýeåsìíë¶ã±î�ã{ä�ï[àsÜ�ã±å¦ã{å1îHð¨Ý�5<õ�ë¶Ýíå¶åsã±ä6ï*ìíá~ä6å¶àlësÞ�ã±äHàså1á`ñ~Ýeë1àsÜ�Ý�õ�Þké
ëlÞMâ[Ý'àlÝíë¶å/á�çRàlÜ�Ý¢åsÝeë¶ñhã±ìeÝ�÷

ª¾½ �" L¹�¡�¢��ÏD·��µ¼��R·i°�²BÑÒ¬����¯�R ¿�R¡�¢µ� >�ä#á~ësæ�Ýeë�àsá&ìeá~â[õ�Þ�ësÝ¢æ�Ýeåsìíë¶ã±õ6àsã±á~ä6åíö³àlÜ�Ý'ðä�ÝeÝíæ¨àlá�åsÜÎÞ�ë¶Ý�àlÜ�Ý¢ålÞMâ[Ý�å¶Ýíâ[Þ�äHàlã±ìeåí÷
ª ÑÒ»F»���°�»�����¹K¢���¤�¸n¡�¢�¹K´U²#°��Ó¢�n��ÔÕ�¯¶|� Û/Ü�Ý-â&Þkàlì.Ü�â[Þ�ú�Ýeë&âjß6å¶à*î,Ý#ìeá~âÀé
õÎÞMàsã±î�ó{ÝÀô¦ã{àlÜL7�Ýeî�àlÝeì.Ü�ä�á~ó{á~ï~ã±Ýeå%ÞMä�æ�àlÜ6Ý&ã±ä<çùá~ësâ[ÞMàlã{á~ä âjß�å�àjî,Ý&ã±ä�Þ>çùá~ë¶â&Þkà
Þ�õ�õ6ësá~õ�ë¶ãÉÞMàsÝ®çùá~ë�àsÜ�ÝÖ7ÂÝíîF÷

O



�&������ Â8ÑÃ×uØSÑÒ»F»���°�¹�Ï�
?I@,�DCFEG3B>-CÈã±å�á~ä�Ý%áMç8àlÜ�Ý�â[á�å¶à1õ�ësá~â�ã±å¶ã±ä�ïÀàsÝíì.Ü�ä�á�ó±á~ï�ð>á�ç�àlÜ�Ýjý<Ýíâ[Þ�äHàlã{ìÖ7ÂÝíî@ÞMì'é
àlãzñhã{à�ð~÷�Û/Ü�ã±å�á~äHàlá�ó±á~ï�ðjâ&Þ�ë¶ú~é�ß�õ�óÉÞ�ä6ï~ßÎÞ�ï~Ý/çùá~ëgô!Ýíî*ë¶Ýíåsá�ß�ësìeÝíå�æ�Ý'ñ~Ýeó±á~õ,Ýíæ*îHð�?I@B§A¥�@
õ�ë¶á¡ñhã{æ�Ýíå¦Þjë¶ã±ì.Ü�Ýeë/åsÝeà¦áMç�â�áhæ�Ýíó{ã±ä�ï�õ�ësã{â[ãzàlã{ñ�ÝíågàlÜÎÞMä>áMàlÜ�Ýeë/á~äHàlá~ó{á~ï�ð�óÉÞ�ä6ï~ßÎÞ�ï~Ýeå�åsß6ì.Ü
Þ�å^§!?,��e¨§!?,��ý,÷µ>�ä�ã{àlå�óÉÞMå¶à�å¶õ]ÝeìíãÙdÎìJÞMàsã±á~ä`9 1 � < ãzà�ÜÎÞMåiî,ÝíÝíä�Ý65hàlÝíä6æ�Ýíæ¨ô¦ã{àsÜ*Þ�ë¶î�ã{àsëlÞ�ë�ð
æÎÞMàlÞMà�ðhõ]Ýeå/çùësá~âUÚG�DC¾ýhì.Ü�Ýíâ[ÞD9 ;=< ÷

Û�á[çùß�ó�dÎó{ó
á~ß�ë®ë¶Ýíÿ�ß�ã{ësÝíâ�ÝíäHàsåíöFô!Ý�Þ�ësÝ�õ�ësá�õ]á~å¶ã±ä�ï[àlá*ë¶Ýíõ�ë¶ÝíåsÝeäHà�àlÜ�Ýjìeá~ä�ìeÝíõ6àså�ã±ä@Þ
åsÝeë¶ñhã±ìeÝ�æ�Ýíå¶ìíë¶ã±õ6àsã±á~ä�Þ�åc?I@,�YC�EG3B>-C«ìíóÉÞMåsåsÝeåí÷ÈÛ/Ü6Ý�åsÝíë�ñhã±ìíÝ¨æ�Ýeåsìeësã±õ<àlã±á�ä¾ã±åjæ�Ý�dÎä�Ýeæ
Þ�å�àsÜ�Ý�î]áhá~ó±ÝíÞ�äSìeá~âjî�ã{äÎÞMàlã{á~ä@á�ç!Þ�åsÝ'à�áMçië¶Ýíå¶àsësã{ìeàlã{á~ä�å�á`ñ~Ýeë¢æÎÞMà.Þkà�ð<õ,Ý�Þ�ä�æ¼Þ�î�å�àlësÞ�ìeà
õ�ë¶á~õ]Ýeë¶àsã±Ýíåe÷8Û/Ü�ÝeåsÝ�ë¶Ýíå¶àsësã{ìeàlã{á~ä�å�Þ�ë¶Ý®Ý�5<õ�ë¶Ýíå¶åsÝíæ¨Ýeã{àlÜ6ÝíëgàlÜ�ë¶á~ß�ï~Ü8?A@B�DCFEÖ3B>-CSë¶Ýíå¶àsësã{ì'é
àlã{á~ä�å¢á~ëGÚG�DC«ýhì.Ü�Ýíâ[Þ#ësÝeå¶àsësã±ì'àlã{á~ä�åí÷8>\à%ã{åcô!á~ë¶àsÜ�ä�áMàlã±ä6ï>àsÜÎÞMà�åsÝíë�ñhã±ìíÝ[æ�Ýíå¶ìíë¶ã±õ6àsã±á~ä
á~äHàlá�ó±á~ï~ã{Ýíå%Þ�ä�æ�æ�á~â[Þ�ã±ähé�åsõ,Ýíìeã�dÎì[á~äHàlá~ó{á~ï~ã{ÝíåjÞMó±åsá@Ü�Þ`ñ�Ý>Þ�ä�ã±â�õ]á~ë�à.Þ�äHà�ësá~ó{Ý&àlá õ�ó±ÞJð
ã±ä�á~ë¶æ�ÝíëÀàsá�Þ�ì.Ü6ã±Ýeñ�Ý>àsÜ�Ý¨åsÝeâ&Þ�äHàsã±ì¨ó±Ý'ñ~Ýíó¦á�ç®Þ�ï~ë¶ÝíÝeâ[Ýeä�à�î,Ýeà�ô!ÝíÝeä_àlÜ�Ý¨ñMÞ�ësã{á~ß�åÀõÎÞMë�é
àlã{Ýíåe÷8Û/Ü�Ý�Ý65�ÞMâ[õ�ó{Ý1å¶Ýíë�ñ<ã{ìíÝ�æ6Ýíåsìeësã{õ6àlã{á~ä*á~äHàlá�ó±á~ï�ðÀô!Ý�ÜÎÞJñ�Ý�æ�Ýeñ�Ýíó{á~õ]Ýeæ�ß�åsÝeå�àlÜ�Ý1ìíó±Þ�åså
Ê�Ä�Û�Ü^Ý-Þ¯ÅßÄ¯Ü£ËµÛ=Å=àpÅKÊ¯Û�Ä�Ë�áRÉ£Ëßâ�Ì@àlá�æ�Ýeä�á�àlÝ¢àlÜ6Ýcë¶á<áMà/á�ç�Þ�å¶Ýíë¶ñhã{ìíÝ¢æ�Ýíå¶ìíë¶ã±õ6àsã±á~äB÷

��ã{ï~ß�ësÝ 1 �gè�56Þ�â�õ�ó{Ý=��?�Ýíå¶ìíë¶ã±õ6àsã±á~ä�á�ç�Þ�åsÝíë�ñhã±ìíÝ
C4Ýeà�ß�å�ìíá~ä6åsã±æ6Ýíë�Þ�ä�Ý�56Þ�â�õ�ó±Ý�áMç�Þ@ìíá~â�õ,á~åsãzàlÝ*å¶Ýíë¶ñhã{ìíÝ>á�ç®åsÞ�ó±Ý¨ÞMä�æÆæ6Ýíó±ãzñ~Ýeë¶ð¾á�ç

ìíá�â[õ�ß<àlÝíë¶åí÷u�Îá~ë�àlÜ�ÝSå¶á~ó±Ý-õ�ß�ë¶õ]á~å¶Ý@á�ç�àlÜ6ã±å&Ý656Þ�â[õ6ó±Ý�ö/ô!Ý@ÜÎÞJñ~Ý@æ�Ý�dÎä�Ýeæ ÞÂåsÝíë�ñhã±ìíÝ
æ�Ýeåsìíë¶ã±õ6àsã±á~ä%á~äHàlá~ó{á~ï�ð�Þ�ä�æjå¶á~â�Ý�Ýíó{Ýíìeàsësá~ä6ã±ìiÝeÿ�ß�ã±õ�â�ÝíäHà�ë¶Ýíó±ÞMàlÝeæÀá~äHàlá~ó{á~ï~ã±Ýeåí÷�7ÂÝ�ô�Þ�äHà
àlá�Ýeâ[õ6ÜÎÞ�åsã{å�á~ä�Ü�á`ôã?I@,�YC�EG3B>-C-ã{å�ß�åsÝeæ�àsá¢æ�Ýíå¶ìíësã{î]Ý/å¶Ýíë�ñ<ã{ìíÝeå!ë¶Ýíÿ�ß�Ýíå�àlå!Þ�ä�æ�á�þ]Ýíë¶åí÷
��ã{ï~ß�ësÝ 1 ësÝíõ6ësÝíå¶ÝíäHàlå¦àlÜ6Ý�åsÝíë�ñhã±ìíÝ¢á�çRåsÞ�ó±Ý�áMç 1 W%ãzàlÝeâ[åe÷8Û/Ü�Ýíå¶Ý�ãzàlÝeâ[å!âjß�å¶à¦î,Ý�á�çRà�ðhõ]Ý

;



Å"ÇµÅµäVÝåÛµâ�æRá¯çRÉKÅµÄ*Þ�ä�æ*âjß6å¶à�åsÞMàlã{å¶ç ðÀàsÜ�Ý1çùá~ó{ó±á`ô¦ã±ä6ïcìeá~ä�å�àlëlÞMã±äHàlå���ÜÎÞ�å�Þkàió{ÝJÞ�å�à*2ßW¨X��#û
á�ç�§A@B� â[Ýeâ[á�ë¶ð£è�ÜÎÞ�å¨ÞÂõ�ësã{ä�àsÝíë��_ÞMä�ð_â&ÞMú�ÝP�£è�Ü�Þ�å¨Þé?*ê,? ß�ä�ãzàJö¦â[áhæ�Ýeórë!¥
?IêB?I7ÂësãzàlÝeëiOßìßì 1 ã/è<Þ�ä�æ�ÜÎÞMå/Þ�êi?}ß�ä�ã{àíöpë!¥8éYêi?,íßíßìßìMìíãFá�ëiër¥�éYêi?,íßXßìßì�å¶ãN÷8Û/Ü6ÝíësÝ�ã{å
Þ�ä�Þ�æ�æ6ã{àlã{á~äÎÞ�óHë¶Ýíå�àlësã{ìeàsã±á~äjá�äjàlÜ�ã{å�åsÝeë¶ñhã±ìeÝ/á�ç,ålÞ�ó{Ýiå�à.ÞMàsã±ä�ï®àsÜÎÞMà8àsÜ�Ý�õ�ë¶ã±ìeÝ�âjß�å�à8î,Ý�ó±Ýeåså
àlÜÎÞMä4Oßì6ö+ìßìßì6÷-Û/Ü�Ý�åsÝeë¶ñhã±ìeÝ*á�ç�æ�Ýíó{ã{ñ�Ýíë¶ð¼ÜÎÞMå%àlÜ�Ý[çùá~ó±ó{á¡ô¦ã{ä�ï>ìíá~ä�å�àlësÞ�ã±äHàlå���àsÜ�Ý*ï~áháhæ�å
âjß�å�à¨î]Ý Þ�æ6æ�ësÝeåsåsÝeæ àsáÓî~ûiësã{å¶àlá�óïî¾Þ�äHð_æÎÞJðqî]Ý'à�ôiÝeÝíä 1 W¡é-ì=Xké�2=ì=ì 1 Þ�ä6æS2=ì¡é-ìßXké-2=ìßì 1
ã±ä�ìeó±ß�æ6ÝíæB÷

>�äÈá~ësæ6Ýíë�àsáSìíá�ä�å¶àsësß�ì'àjàlÜ�ã{å�æ6Ýíåsìeësã{õ6àlã{á~ä�ô!Ý*â&ÞMú�Ý&ß6åsÝ&áMç¦æ�ã{þ]Ýíë¶ÝíäHàjìeóÉÞ�å¶åsÝíåjÞ�ä�æ
õ�ësá�õ]Ýeë¶àlã{Ýíåe÷�ý<á~â�Ý�á�çRàlÜ�Ýeâ�ÜÎÞJñ~Ý¢î,ÝíÝeä-õ�ë¶Ýeñhã±á�ß�åsózð&æ�Ý�dÎä�Ýeæ#ã±ä�å¶á~â�Ý�æ�á~â[Þ�ã±ä&åsõ,ÝíìíãÙdÎì
á~äHàlá~ó{á~ï~ã{Ýíå�ô¦ë¶ã{à¶àlÝíä�îHðÈàsÜ�ã±ë¶æ¾õÎÞ�ë¶àsã±Ýeå�écî]á�5<ÝíåfdÎó{ó±Ýeæ�ô¦ã{àsÜ æ6ã{þ]ÝíësÝeäHà�ìíá~ó{á~ëså�élö�ô¦Ü�ã±ó{Ý
á�àlÜ6Ýíëså�åsß6ì.Ü«Þ�åfæKð"Þ¯ÅßÄ¯Ü£ËµÛ=Å=àpÅKÊ¯Û�Ä�Ë�áRÉ£Ëßâ�ÌFöIæpð"Þ¯Æ"ÇßÅRÞ¯ÅßÄµÜ£Ë¯Û=Å�öiæpðµàKÅ"Ç"Ë�ÜKÅßÄ¯ð"ÞRÅßÄµÜ£ËµÛßÅ
Þ�ä�æfæpðµàKÅKÊRË�Ä"ÅßÈµñRÄ�â¨Èßç£Û�É¨Þ�ësÝ�æ�Ý�dÎä�Ýíæ&Ü�Ýíë¶Ý1ã{ä[àlÝeësâ�ågá�ç4ësÝeå¶àsësã±ì'àlã{á~ä�ågá`ñ~Ýíë!õ�ësá�õ]Ýeë¶àlã{Ýíåe÷
@®ó{ó�î]á�5<Ýíåjã{ä¼àsÜ�Ý�d�ï~ß�ësÝ�äÎÞ�â�ÝíæLÈ"Æ¨æ£Ç�Ý/òKÅpÊ�ÉRÄ�ËµÛ�É£Ëßâ�Ì ësÝeõ�ësÝeåsÝíäHàjàsÜ�Ýíå¶Ý&ë¶Ýíå¶àsësã{ìeàlã{á~ä�åe÷
?�Ýíõ,Ýíä�æ6ã±ä�ï�á~äqàlÜ6Ý¼å¶ó±á�àså�ã±ä�å¶ã±æ�ÝSàsÜ�Ýíå¶Ý î]á�5<Ýíåeö�ôiÝ ìJÞMä æ�ã{å¶àsã±ä�ï~ã{åsÜqæ�ãzþFÝeësÝeä�à�à�ðhõ,Ýíå
á�ç!ësÝíå�àlë¶ã±ìeàsã±á~ä6åcå¶ß�ì.ÜÈÞMå.�¢Ý�5<ã±å�àlÝeä�àsãÉÞ�ó�ë¶Ýíå�àlësã{ìeàsã±á~ä�åeö4ñ�ÞMó±ß�ÝÀë¶Ýíå¶àsësã{ìeàlã{á~ä�å�á~ë¢ìíÞ�ësæ�ã{äÎÞ�ó{ã{à�ð
ësÝeå¶àlë¶ã±ì'àlã±á�ä�åí÷

g*h#g óéz|{Bs�lFx!yãzVôDõö�NyKs�÷
?�ã{þ]Ýíë¶ÝíäHàjÞMõ�õ�ësá~Þ�ì.Ü�Ýíå�àlá#â[ÞMàsì.Ü�ã±ä�ï>ìJÞMäÈî]Ý�à.Þ�úMÝíäB÷-èN5<ã±å¶àsã±ä�ï-åsá~ó{ß6àlã{á~ä�åcó±ã{ú�Ý��r?,?B>
á~ë�ÝíîKÚ,�DCNø`�¢è�ó±Ýeìeàlë¶á~ä�ã{ì#ûiß6åsã±ä6ÝíåsåÒÚ,�DCù��â[Þ�äÎÞMï~Ý>àsáÈï~ãzñ~ÝSÞMìíìíß6ëlÞMàsÝ#ësÝeåsß�ózàlå&ÞMà
àlÜ�ÝÀÝ65<õ]Ýeä�åsÝ�á�ç�Ý�5<õ�ë¶Ýíå¶åsã{ñ�Ýíä�ÝeåsåjîHð#ÜÎÞJñ<ã{ä�ï¨Þ*ësã{ï~ã±æ-çùá~ësâ[ÞMà®çùá�ë�æ�Ýíå¶ìíë¶ã±õ6àsã±á~ä�å�Þ�ä�æ îHð
ësÝeå¶àlë¶ã±ì'àlã±ä6ï[àlÜ6Ýjÿ�ß�Ýíë�ðSâ�Ýíì.ÜÎÞ�ä6ã±åsâ>÷�ûiÞ�åsÝeæ@á~äSësÝíÞ�ózé\ó±ãzçùÝ�Ý�56Þ�â�õ�ó±Ýeå�ó±ã{ú�Ý¢ð~Ýíó{ó±á`ô õÎÞ�ï�Ýíå
æ�ã±ë¶Ýíì'àlá~ë¶ã±Ýíåeö�Þ�æ6ñ~Ýeë¶àsã±åsÝeâ[ÝeäHà[ä6Ýeô¦åsõ�Þ�õ]Ýeëså�á~ëÀî�ß�ó{ó±Ý'àlã±ä�î]áHÞMësæ�åeö�ô!Ý�ôiá~ß6ó±æ�ëlÞMàsÜ�Ýíë�î,Ý
Þ�î�ó{Ý%àlá�ìeá~â[õ�Þ�ësÝjæ6Ýíåsìeësã{õ6àlã{á~ä�å�ô¦ã{àsÜ@æ�ã{þ]Ýíë¶ÝíäHà¢ó±Ý'ñ~Ýeó±å�á�ç�åsõ,Ýíìeã�dÎìeã{à�ðSÞ�ä�æ@ìíá�â[õ�ó{Ý�5<ã{à�ð
àlÜÎÞMäqß�åsÝ Þ�ä«ÞMõ�õ�ësá~Þ�ì.Ü«îÎÞ�åsÝeæ«á~äqÝ�56Þ�ì'à¨â&ÞMàsì.Ü�ã±ä6ï�÷u�Îá~ë&ã{ä�å¶àlÞ�ä�ìíÝSÞ4úRû�ü'û�ýåþ=ÿ¢æ�Ý�é
åsìeësã±õ<àlã±á�ä-çùá~ë¦àlÜ�Ý�ålÞ�ó{Ý�áMçV¥!êiåeö]ô¦ãzàlÜ�á~ß<à�Þ�äHð-ësÝeå¶àlë¶ã±ì'àlã±á�ä�åíö,åsÜ�á�ß�ó±æ-â&ÞMàsì.Ü#àlÜ6ÝjÞ�î,á`ñ~Ý
Ý�56Þ�â�õ�ó±ÝM÷Ã�-á�ësÝ�����û���� �	�Àæ�Ýeåsìíë¶ã±õ6àsã±á~ä6å�å¶Ü�á~ß�ó{æÈÞ�ó{åsá¨î]Ý�â[ÞMàlì.Ü�ÝeæB÷Ã��ã{äÎÞ�ó{ó{ð~ö4æ6Ýíåsìeësã{õ<é
àlã{á~ä�å�àlÜ�ÞMàcÞ�ësÝ�ä�Ýeã{àsÜ�Ýíë¢â�á~ësÝÀå¶õ]Ýeìíã�d�ì�á�ëcâ�á~ë¶ÝÀï~Ýíä�ÝeëlÞ�ó�î6ß6à¢àlÜÎÞMà¢æ6Ýíåsìeësã{î]Ý�åsÝeë¶ñhã±ìeÝíå
àlÜÎÞkà/ôiá~ß6ó±æ>î]Ý¢ìíá�â[õÎÞkàlã±î6ó±Ý1ô¦ãzàlÜ¨á~ß�ë¦Ý65�ÞMâ[õ�ó{Ý�åsÜ�á�ß�ó±æ>Þ�ó{åsá�â&Þkàlì.ÜB÷

ÂÃ��
N¡F��¢���°£¡v�� ��û�ý������ û��Rû�����ý�����������ü����Gþ���û�ÿ ��������ü��������-û�ü �!����ÿ�ÿïû����"����ü#�$�rý�û����ý������"����ü��
�%�=û�ý,ü£þ'&8û��(�£ý)����û�ý��"�/û��*�$�Öþ+��û�ý������ û-,

ÂÃ��
N¡F��¢���°£¡ã�.� ��û�ý������ û/�Rû�����ý������"����ü�0213����þ4&�þ'����5��6��ýÖþ7��û�ý������ û2�Rû�����ý�����������ü�0(8
� �(�95�û�ý�û(���Öü:�4����ü ��ý
þ;�'����������ü=<�û��">^û û�ü©þ=ÿ�ÿ?�$�(�95�ûÖý�û����ý�����������ü��(��ü@0218þ=ü��70(8A,

>�ä¢àsÜ�Ý�çùá~ó±ó{á`ô¦ã±ä�ï!åsÝíì'àlã{á~äBö`ôiÝgó{á<á~ú1ÞMà4Ü6á¡ôé?,C�ë¶ÝJÞ�å¶á~ä�Ýeëså
ìJÞ�äcÜ�Ýeó±õ�ß�å�dÎä�æ¢â[ÞMàlì.Ü6Ýíå
Þ�â�á~ä�ïc?I@,�DCFEG3B>-C�îÎÞ�å¶Ýíæ>åsÝíë�ñhã±ìíÝcæ�Ýeåsìíë¶ã±õ6àsã±á~ä6åí÷

B$C %��+$��V��DK�"E=�
�-�GF¨�
	 $������¨�'$�(�	6$n����	�H��+�å�&���.$��
�"E�������å��$��I�-������%��-$IH�%����+���å���n� ������$�(��KJ���$/���/���-$å0

W



L M b�N8Ù�ÕgÚ6O#Ô�ÚíÖ�Ó P¾Ö7Q�ÚJÙRN
?�Ýíå¶ìíë¶ã±õ6àsã±á~ä`C4á~ï�ã±ìíå¢ÞMësÝ�Þ&ç:Þ�â�ã±ózð-áMç!ú�ä�á`ô¦ó{Ýíæ�ï~Ý�ë¶Ýíõ�ë¶ÝíåsÝeäHà.ÞMàsã±á~ä@çùá~ë¶â&Þ�ó{ã±å¶â[åe÷cÛ/Ü6Ýeð
Þ�ë¶Ý#îÎÞ�å¶Ýíæqá~äÆàlÜ�Ý-ä�á�àlã{á~ä_áMç¢ìíá~ä�ìeÝíõ6àså¨Þ�ä�æòë¶á~ó±Ýeåíö¦Þ�ä6æqÞ�ësÝ-â&ÞMã±ä�ózð¾ì.ÜÎÞ�ësÞ�ìeàsÝíësã{åsÝeæ
îHð>ìíá~ä�å�àlë¶ß�ìeàsá~ëså®àsÜÎÞMà�Þ�ó±ó{á¡ôVìíá~â�õ�ó{Ý�5>ìíá�ä�ìíÝeõ6àlå¢Þ�ä6æSësá~ó{Ýíå¦àlá[î]Ý�î�ß�ã±ózà1çùë¶á~â�ÞMàsá~â[ã{ì
á~ä�Ýeåf9 1ß1�< ÷¦Û/Ü�Ýjâ[Þ�ã±ä>î,Ýíä�Ý�d�à®çùë¶á~â àlÜ�ÝeåsÝjú�ä�á`ô¦ó{Ýíæ�ï~Ý�óÉÞ�ä6ï~ßÎÞ�ï~Ýeå1ã{å�àsÜÎÞMà1åsá~ß6ä�æ@Þ�ä�æ
ìíá�â[õ�ó{ÝeàsÝ¦Þ�ó±ï~á�ësã{àsÜ�â�å�çùá~ë�àlÜ�Ý�åsß6î�åsß�â�õ6àsã±á~ä[Þ�ä�æ[ålÞMàsã±å
dÎÞ�î�ã±ó{ã{à�ð�õ�ësá�î�ó±Ýeâ[ågá�ç àsÝíä�Ý�5<ã±å�àJ÷
@Á?,C�ësÝJÞMåsá~ä�Ýeë4åsá~ózñ~Ýeå
àsÜ�Ý�õ�ë¶á~î�ó±Ýeâ[åFá�çhÝíÿ�ß�ã{ñMÞ�ó{Ýíä�ìeÝ�ökålÞMàsã±å�d³Þ�î�ã{ó±ã{à�ð�ÞMä�æ¢åsß�î�å¶ß�â�õ6àlã{á~äB÷

S*h
j tv} ��{UT tWVX }ZY.[]\µ}
ûiÝeìJÞ�ß�å¶ÝÃ?I@,�DCFEG3B>-C«Ü�Þ�å%î,ÝíÝeäÈã±äKJ�ß�Ýíä�ìeÝíæ¾îHð¿?,Cgö
ãzàjÞ�õ6õ]ÝíÞ�ëså�äÎÞMàlß6ëlÞ�ó�àláSÞ�õ�õ�ózð
?,C@àlÝíì.Ü6ä�ã±ÿ�ß�Ýeå1àlá�ìeóÉÞ�å¶åsåsãzç ð�á~ß�ë/å¶Ýíë�ñ<ã{ìíÝcæ�Ýíå¶ìíë¶ã±õ6àsã±á~ä�åe÷

@®å%ô!Ý&ô¦ã{ó±ógåsÝeÝ�ã±äÂàsÜ�Ý&çùá~ó{ó±á`ô¦ã±ä6ï-å¶Ýíìeàsã±á~äFö8ä�á~ä�Ý&á�ç/àlÜ�ÝÒ?,C_ñ�ÞMësãÉÞMä�àså�çùá~ëcô¦Ü�ã±ì.Ü
àlÜ6ÝíësÝ1Ý�5<ã±å�àlå/ÞMä�ã±â�õ�ó±Ýeâ[Ýeä�àlÞMàlã{á~ä�á�ç
Þ%ë¶ÝJÞ�å¶á~ä�Ýeë�õ]á�åsåsÝeåså¶Ýíå¦Ýíä�á�ß�ï~Ü�Ý�5<õ�ë¶Ýíå¶åsã{ñ�Ýíä�Ýeåså¦àlá
æ�ÝíÞ�óiô¦ã{àsÜÈàlÜ�Ý*ô¦Ü6á~ó±Ý�å¶Ýeà�á�ç�ìíá~ä6å¶àlë¶ß�ìeàsá~ësåÀàsÜÎÞMàÀçùá~ë¶â àsÜ�ÝP?A@B�DCFEÖ3B>-C«óÉÞ�ä6ï~ßÎÞ�ï~ÝM÷
>\ç8ô!Ý�ôiÞ�äHà®àsá*Þ�æ�á�õ6à�Þ�?,CÈåsá~ó{ß6àlã{á~ä¨çùá~ë¦ã±â�õ�ó±Ýeâ[Ýeä�àsã±ä�ïÀàsÜ�Ý�â[ÞMàsì.Ü�â&ÞMú�Ýíëeö,ô!Ý%â%ß�å¶à
ësÝeå¶àsësã±ì'à/àlÜ�Ý¢æ�Ýeåsìeësã±õ<àlã±á�ä�å/àlá�ÞÀåsß�î�å¶Ýeà1á�çN?A@B�DCFEÖ3B>-C�÷

@�à%àsÜ�Ý*â�á~â[ÝeäHàJö�àsÜ�Ý*â�á~å¶àjÞ�æ6ñMÞ�ä�ìeÝíæ�ÞJñMÞ�ã±ó±Þ�î�ó{Ý�ë¶ÝJÞ�å¶á~ä�ÝeësåÀÞ�ë¶Ý[çùá~ëcàlÜ�Ý3^`_*a�b
?,C�÷`Û/Ü�ã±åN?,C*åsß�õ6õ]á~ë�àlå�â[á~å�à�áMç6àlÜ6Ýi?I@,�DCFEG3B>-C¨ó±Þ�ä�ï~ß�Þ�ï~Ý�ökî�ß6à�ã{àså�â[Þ�ã{ä�æ�ësÞJô¦îÎÞ�ì.ú
ã±å8àsÜÎÞMà�ã{àgìíÞ�ä�ä�áMàiæ�ÝíÞ�ó�ô¦ã{àsÜ[ã{ä�æ�ãzñ<ã{æ�ßÎÞ�ó{å8á~ëgæÎÞMàlÞMà�ðhõ]Ýeå!ã{äÀàlÜ�Ý�æ�Ý�d�ä�ã{àsã±á~ä�á�çFìíá~ä�ìeÝíõ6àsåí÷
�Îësá~â á~ß�ë/ó{ã±å¶à�á�ç�ë¶Ýíÿ�ß�ã{ësÝíâ�ÝíäHàså�àsÜ�ã±å/ã{å�àláhá�ë¶Ýíå�àlësã{ìeàsã{ñ~ÝM÷

^`_dc�bf��?G�]ã{åBâ[á�ësÝ�Ý�5<õ�ë¶Ýíå¶åsã{ñ�Ý�àsÜÎÞ�äU^e_*a�bÆÞ�å4ã{à
ÞMæ�æ�å4ã±ä6æ�ã{ñhã±æ6ßÎÞ�ó±åFÞ�ä�æ�æÎÞkà.ÞMà�ðhõ,Ýíå
åsß6õ�õ]á�ë¶à,�¼Ýeñ�ÝíäÈàlÜ6á~ß�ï~ÜÈãzàcæ�á<Ýeå%ä�áMàÀÞ�ó{ó±á`ô çùá~ëcã±äHñ�Ýíëså¶Ý*ësá�ó±Ý-fe÷@g�á�à�ÜÎÞJñ<ã{ä�ï#àsÜ�Ý&ã{ä<é
ñ~Ýeëså¶ÝÀësá~ó{Ý�õ�ë¶á~õ,Ýíë¶à�ð-æ�áhÝíå1ä�á�à�ìíÞ�ß�åsÝ%ß�å�Þ�äHð>â&Þ��¶á~ë®ìeá~ä�ìíÝeësäSô¦Ü�ã{ó±Ýcã±ä�æ6ã{ñhã±æ�ß�Þ�ó±å�Þ�ä�æ
ìíá�ä�ìíë¶ÝeàlÝ�æ�ÞMà.ÞMà�ðhõ,Ýíå/ÞMësÝ�ÿ�ß�ãzàlÝ�ÝeåsåsÝeäHàlãÉÞMóFàláÀá~ß6ë�Þ�õ�õ6ó±ã±ìíÞMàlã{á~äB÷�@Vìíá�â[õ�ó{ÝeàsÝ�Þ�ó±ï�á~ësãzàlÜ�â
çùá~ë8å¶á~ó{ñhã{ä�ï�àlÜ�Ý/å¶ß�î�å¶ß�â[õ<àlã±á�ä[ÞMä�æ�ålÞMàsã±å
dÎÞ�î�ã±ó{ã{à�ð¢õ�ë¶á~î�ó{Ýíâ çùá�ëh^`_dc�b��?G��Ý�5<ã{å¶àlå!9 1 2 < ö
î�ß6à/ô!Ýcæ�á�ä�á�à�ú�ä�á`ô}á�ç�Þ�äHð�ã±â�õ�ó±Ýeâ[ÝeäHà.ÞMàsã±á~ä&Þ`ñMÞ�ã{óÉÞ�î6ó±Ý�÷

S*h g tv} ô6z|mWX �Nyps£÷,õö�KiAq
{B�
>�ä�àsÜ�ã±åjå¶Ýíì'àlã±á�ä�ôiÝ¨ÞMësÝ*æ�Ýeåsìeësã±î6ã±ä�ï#àsÜ�Ý&çùß�ä6ìeàlã{á~äÎÞ�ó{ã{àsã±Ýíå¢á�ç�Þ-â&ÞMàsì.Ü�â[Þ�ú�ã±ä�ï-åsÝíë�ñhã±ìíÝ
Þ�ä�æ>Þ�?,C¼î�Þ�åsÝeæ#â[ÞMàlì.Ü�ã{ä�ï�Þ�ó{ï~á~ësãzàlÜ�â ä�ÝeÝíæ�Ýeæ-àlá�õ�ë¶á`ñ<ã{æ�Ý�àlÜ�Ýeâ-÷
j&������ ×u¹"¢�Ï¨F ¿¹lk��¯�Ò² �F¡FÏ=¢��°£¡n¹�·��¢����R¤
3�ß�ë/â[ÞMàlì.Ü�â[Þ�ú�ã±ä6ïÀåsÝíë�ñhã±ìíÝcõ�ë¶á¡ñhã{æ�Ýíå/àlÜ6ësÝíÝ¢îÎÞMåsã±ì�çùß�ä6ìeàlã{á~äÎÞ�ó{ã{àsã±ÝíåB9 1�¦�< �
ÑÃ®�¼��¯��¢��¤��¡F¬ ã±å%àsÜ�Ý¨Þ�ìeàjá�ç®õ6ß�î�ó±ã{åsÜ�ã{ä�ï@ÞSå¶Ýíë¶ñhã{ìíÝ¨æ�Ýíå¶ìíë¶ã±õ6àsã±á~äBö�á�ëÀÞ�æ6ñ�Ýíë¶àsã±å¶Ýíâ�ÝíäHàJö

àsá ÞÈâ&ÞMàsì.Ü�â[Þ�ú�ã±ä�ïÈå¶Ýíë�ñ<ã{ìíÝM÷ ûiÝ'çùá~ësÝ@ÞMä ÞMæ6ñ~Ýeë¶àlã{åsÝeâ[Ýeä�à¨ã{å*ã±ä6ìíó±ß6æ�Ýíæqã{äòàlÜ�Ý
mon �
	���������qp�r���$/(7H=�6$�(c������������$��A����)*	6���������V���������.����%�	����eE���%������������#���*�����+�å�����es�����r���$��(H=�

���GtI�-%��+$F	6���'u����&(���p�(��GvI���.$��#	��-$/	�H��+�xwGy�z�{ 0

X



ú�ä�á`ô¦ó±Ýeæ�ï~Ý#î�Þ�åsÝ-á�ç�àlÜ6Ý#â[ÞMàlì.Ü�â[Þ�úMÝíëíö!àlÜ�Ý-ålÞMàsã±å
dÎÞ�î�ã±ó{ã{à�ð�á�ç¢Þ�ó{ó/ã{àlå�ìíá�ä�ìíÝeõ6àlå
âjß�å�à*ì.Ü�Ýeì.ú�Ýeæ î,ÝíìíÞ�ß�åsÝSàsÜ�ÝSë¶ÝJÞ�ó{ãïQJÞkàlã±á�ä áMçcÞ�ä�á~äòåsÞMàlã{å
d³ÞMî�ó±Ý-åsÝíë�ñhã±ìíÝ#ã±å&ä6á�à
õ,á~åså¶ã±î�ó{Ý�÷�7«Ü6Ýíä*ÞMìíìíÝeõ6àlÝeæBö<Þ�ä&ÞMæ6ñ~Ýeë¶àlã{åsÝeâ[Ýeä�à!î,Ýíìíá�â[ÝeåiÞ�åsÝ'àiáMçFä�Ý'ôqìíá�ä�ìíÝeõ6àlå
ô¦ã{àsÜ�ã±ä¼àlÜ�Ý&åsß�î�å¶ß�â�õ6àlã{á~äÈàlë¶ÝíÝ�÷`3�ä6Ý*á�ç/àlÜ6ÝíåsÝ�ìeá~ä�ìeÝíõ6àsåíö�àlÜ�Ý&á~ä�Ý*ß�ä6æ�Ýíë%àsÜ�Ý
��û�ý������ û�0�û�����ý������"����ü-î�ëlÞMä�ì.ÜBöÎësÝeõ�ësÝeåsÝeä�àså1àsÜ�Ý�ô¦Ü�á~ó±ÝcÞ�æ<ñ~Ýíë�àlã{åsÝíâ�ÝíäHàí÷

| �n�R��¸n�¡n¬ ã±å�åsã±â�ã±ó±Þ�ë%àsáÈÞ�æ6ñ�Ýíë�àlã±å¶ã±ä�ïÂÝ�5<ìíÝeõ6à�àlÜ�ÞMà[àsÜ�Ý#æ6Ýíåsìeësã{õ6àlã{á~ä_å¶ß�î�â�ã{àsàsÝíæ àlá
àlÜ6Ý[â[ÞMàlì.Ü6â&Þ�úMÝíë¢ã±å¢ä�áMà�õ,Ýíë¶åsã{å¶àlÝeäHàJ÷*Û/Ü�Ý[Þ�ó{ï~á~ësãzàlÜ�â ã±ä àlÜ6Ý[ä�Ý65hà%å¶Ýíìeàsã±á~ä¼ó±Ý'à
ß�å¦ìJÞMó±ìíß6óÉÞMàsÝ®àlÜ�Ý¢â[ÞMàlì.Ü6Ýíå¦ô¦ã{àlÜ>Þc?,CÂë¶ÝJÞ�å¶á~ä�Ýeëí÷

} ��°�~�¤��¡F¬ ÞMó±ó±á`ô¦å�õÎÞMë¶àlã{Ýíå¢àláHdÎä�æÂá~ß6à%Þ�î]á�ß6àcõ�ß�î�ó{ã±åsÜ6ÝíæÈÞMæ6ñ~Ýeë¶àlã{åsÝeâ[Ýeä�àsåí÷¨ûië¶á`ô¦å�é
ã±ä6ï¼õ�Þ�ë¶àsã±Ýíå�ìíÞ�äÆâ[Þ�úMÝ>ß6åsÝ>á�ç®àsÜ�ã±å�ã±ä<çùá~ësâ[ÞMàlã{á~ä�àsá¼àsß�ä�Ý�àlÜ�Ý-Þ�æ6ñ�Ýíë�àlã±å¶Ýíâ�ÝíäHà
á~ëcÿ�ß�Ýíë¶ã±Ýíå¢àlÜ�ÞMà�àsÜ�Ýeð¼å¶ß�î�â�ã{à�ã±ä àlß�ë¶äBö�å¶áSÞ�å¢àlá-â&Þ�5<ã{â[ã�QíÝjàlÜ6Ý[ó{ã±ú�Ýeó±ã{Ü�á<áhæ@á�ç
â[ÞMàlì.Ü�ã{ä�ï�÷�û!ësá`ô¦åsã{ä�ïÀã±å�î�Þ�åsÝeæ>á�ä�äÎÞJñ<ã{ïHÞMàsã±ä�ï%àsÜ�Ý�åsß6î�åsß�â�õ6àsã±á~ä*àsësÝíÝ�àsÜ�ësá�ß�ï~Ü
àlÜ6Ýcî6ëlÞ�ä�ì.Ü6Ýíå�õ�ësá`ñhã±æ�Ýeæ-îHð¨á~ß6ë/åsÝíë�ñhã±ìíÝcæ�Ýeåsìíë¶ã±õ6àsã±á~ä¨á~äHàsá~ó±á~ïMð~÷

j&�ï�&��� × ¹K¢�Ï¨F ¿¹lk��¡n¬ÁÑÃ·¬�°�����¢�� 

��ã{ï~ß�ësÝÖ2R��ý<Ýíë�ñ<ã{ìíÝcæ�Ýíå¶ìíë¶ã±õ6àsã±á~ä¨î�ësÞ�ä�ì.Ü>á�ç�àsÜ�Ý¢åsß�î6åsß�â�õ6àlã{á~ä¨àlësÝeÝ

ÂÃ��
N¡F��¢���°£¡�j�� 5�û(&�þ'����5�û��K�6��ýU��û�ý������ û2�Rû�����ý������"����ü��±þ=ý�û-�

¦



ª û��-�A����þ=ÿïû�ü �x����ü:� û����9�(���7�l�

ª ����<-������ü:� û��������$���l�

ª ������û�ý�������ü:� û����9���$���#�95Kþ'�iþ=ý�ûU���l<����A&8û���<-�+�95�û���û�ý������ û�0�û�����ý�����������ü�����ü:� û������

ª ����<-������ü:� û������+�$�:þ=ü �Z�'��ý û����!���q��û�ý�������ü:� û����x�$�(��>h5 ����û/��ü � û�ý)��û����"����ü�>K����5������
�.þ'�����9�|þ;<.ÿïû-,

Û/Ü�ÝjÞMó±ï~á~ë¶ã{àsÜ�â ã{å®ÞÀàlësÞ�ä�å¶óÉÞMàsã±á~ä¨ã±äY?,C�àlÝeësâ�å¦á�ç8àlÜ6Ý�ã{æ�ÝJÞ�å�Ý�5<õ,á~åsÝeæSã±ä¨àlÜ6Ý�õ�ë¶Ý'é
ñhã±á~ß6å/åsÝíì'àlã{á~äB÷

Û�á#ß�ä�æ�Ýeëså¶àlÞ�ä�æÈàsÜ�Ý*Þ�ó{ï~á~ë¶ã{àlÜ6â ã±äÂâ[á�ësÝ�æ�ÝeàlÞ�ã±óOöRô!Ý*Þ�ë¶Ý*Þ�õ6õ�ó{ðhã±ä6ï-ãzà�àsá-àlÜ6Ý&Ý�5�é
Þ�â�õ�ó±Ý®æ�Ýíõ�ã{ìeàsÝíæ>ã±äP��ã±ï�ß�ësÝÖ2<÷�Û/Ü6ã±å*dÎï~ß�ë¶Ý¢åsÜ�á`ô¦å¦àlÜ�Ý���û�ý������ û�0�û�����ý������"����ü-î�ëlÞMä�ì.Ü#á�ç
àlÜ6Ý�åsß�î�å¶ß�â�õ6àlã{á~ä�àlësÝeÝ�ã±ä�àlÜ6Ý�â&ÞMàsì.Ü�â[Þ�ú�Ýeë¦ÞMà�àlÜ6Ýcâ�á~â�ÝíäHà/á�ç
àsÜ�Ý¢ÿhß6Ýíë¶ð�÷eg1ã±ä6Ý¢Þ�æ<é
ñ~Ýeë¶àsã±åsÝeâ[ÝeäHàlå/á�ç
åsÞ�ó±Ý�ÞMä�æ*æ�Ýeó±ã{ñ�Ýíë�ð*á�ç
ìeá~â[õ6ß6àlÝeëså/Þ�ä6æ*à�ôiá�á�ç
åsÞ�ó±Ý1á�ç�êi?)ß�ä�ã{àså�ÜÎÞJñ~Ý
î,ÝíÝíä�õ�ß6î�ó±ã{åsÜ�ÝeæB÷L7ÂÝ¨Þ�ësÝ�ìeá~ä�å¶ã±æ�Ýeësã±ä6ï Þ õ�Þ�ë¶à�ð�ã±äHàlÝeësÝíå�àlÝeæÆã{äédÎä�æ�ã{ä�ï ÞSìíá~â�õ�ß6àsÝíë
ô¦Ü�ã{ì.Ü¼Ü�Þ�å¢Þ>êi? ß6ä�ã{à�êi?,íßX=ìßìHý<ãO÷�ë�Ýíë�ÿ�ß�Ýeë¶ð@ã{å�æ�Ýíä�áMàlÝíæÂÞ�åcý6è�§&êGW*ã{äSàlÜ�Ý�dÎï�ß�ësÝ
��d�ó±ó±Ýeæ�ä�áhæ�Ý���÷

7�Ý%ÝeñMÞ�ó±ß�ÞMàlÝ�åsÝíÿ�ß�ÝeäHàlãÉÞMó±ó{ð>àlÜ6Ý%çùá~ß�ë1õ�ësá~õ,á~å¶ã{àlã{á~ä�å�á�çgàlÜ�ÝjÞ�ó±ï~á�ësã{àsÜ�â>÷!>�ä@á~ß6ë®Ý�5�é
Þ�â�õ�ó±ÝMö]àsÜ�Ýíë¶Ý�ã{å�ä�á¨Ýíÿ�ß�ãzñ�ÞMó±ÝíäHà�ìeá~ä�ìeÝíõ6à¢àlá-ý6è�§&êGWh÷�ý6è�§&ê ; Þ�ä�æÂý6è�§&ê 1 Þ�ësÝÀå¶ß�î<é
ìíá�ä�ìíÝeõ6àlåÀá�ç¦ý6è�§�ê,WSÞ�ä�æ�Þ�å�åsß�ì.Ü Þ�ë¶Ý*â[Þ�ësúMÝíæ¾Þ�å%â&ÞMàsì.Ü�Ýíåe÷SÛ/Ü�Ý*àsÜ�ã±ë¶æÈå¶àsÝíõ¾ã±åcàlá
ó±áhá~ú&çùá�ë1å¶ß�õ]Ýeë�é\ìíá~ä�ìeÝíõ6àså�á�ç�ý6è�§&êGW��¨ß�õ#àsá&àlÜ6Ý+��û�ý������ û�0�û�����ý������"����ü@ä6á<æ�ÝM÷rë�Ýíä�ìeÝ�ö
ý6è�§&ê,í¨ã±åcâ&ÞMësú�Ýeæ�ÞMå%Þ¨â&Þkàlì.ÜB÷Ã��ã±äÎÞ�ó{ó{ð�öFàlÜ�Ý�óÉÞMå¶àcå¶àsÝíõ�áMçiàlÜ6Ý&Þ�ó{ï~á~ë¶ã{àlÜ6â ï~ãzñ~Ýíåcß�å
àlÜ6Ý�ä�á<æ6Ýíå1ý6è�§&ê,X�Þ�ä�æ-ý6è�§&ê ¦ ÷�7«Ü�ã{ó±Ý®àsÜ�Ýíå¶Ý¢ä�á<æ6Ýíå�Þ�ësÝ�ä6Ýíã{àsÜ�Ýíë/å¶ß�õ,Ýíë¦á~ë/åsß6î-ìeá~ä<é
ìíÝeõ6àlåeö�àlÜ6ÝeðÂÞ�ësÝ[ìíá~â�õÎÞMàsã±î�ó{Ýjàlá>àlÜ�Ý*ý6è�§�ê,W-ÿ�ß�Ýíë�ðA�kö�ã±ä àlÜÎÞkà%àlÜ6Ý[ë¶Ýíå¶àsësã{ìeàlã{á~ä�åcá`ñ~Ýíë
àlÜ6Ýcõ6ësá~õ,Ýíë�àlã±Ýeå�àlÜÎÞkà�Þ�õ�õ,ÝJÞ�ë¦ã±ä�àsÜ�Ýíâ¿ÞMä�æSý<èV§&ê,W�Þ�ë¶Ý�ä�á�à�ã±ä6ìíá~ä�å¶ã±å�àlÝíäHàí÷

Û/Ü�Ý�õ�ë¶á~î�ó{Ýíâüá�ç
õ�ë¶Ýíå¶ÝíäHàlã{ä�ïÀësÝeåsß�ózàlåiî�Þ�ì.ú�àsá%àlÜ6Ý®ß�å¶Ýíë�ã{ä*Þ�ôiÞJð[àsÜÎÞMà�â[Þ�úMÝ®åsÝeä�åsÝ
àlá®Ü�ÝíëI�ùãN÷ Ý�÷�Þ�äHð%á~ë¶æ�Ýíë¶ã±ä�ï�î�Þ�åsÝeæÀá~äÀõ�ësÝ'çùÝíë¶Ýíä�ìeÝíå �8ã{å�î,Ýeð~á�ä�æÀàlÜ�Ý/å¶ìíá~õ,Ý�á�ç,á~ß�ë�ìíß�ë¶ësÝeä�à
ô!á~ësú³÷

� � Õ�\%Ù¦Ô8ÚJÙI\�����O#O@Õ�Ö�\%Ù^]
>�ä�àlÜ�ã{å4åsÝeìeàlã{á~ä¢ôiÝgësÝeõ]á�ë¶à
á~ä¢á~ß�ë
Ý656õ,Ýíë¶ã±Ýeä�ìíÝgá~ä¢Ý�5<ã{å¶àlã{ä�ïA?,C[ë¶ÝJÞ�å¶á~ä�Ýíë¶åíöMã±ä�õÎÞ�ë�àlã{ìíß�ó±Þ�ë
Þ�å¶åsÝíå¶åsã{ä�ïP§A@�ê�è�§ Þ�ä6æ©�"@�êiÛ�÷'7ÂÝ�Þ�ó±å¶á*ó±ã{å¶à�Þ&åsÝ'à¢á�ç�ësÝíÿ�ß�ã{ësÝeâ[Ýeä�àså�çùá~ë®çùß6àsß�ësÝ�?,C
ësÝíÞ�åsá�ä�Ýíë¦åsß6ã{à.ÞMî�ó±Ý®çùá�ë�á�ß�ë¦Þ�õ�õ�ó{ã±ìíÞMàlã{á~äB÷
� h
j ���rx:lnm�q-l�{Bs�lnw��ãq#y�÷~l��rq�w¯y�q�{B� t�} � lF��w"z^{Blnm�w
�n����� �n¹£Ð�À �Ò�¯¹�¤�°�¡n�¯�
Û/Ü�ÝV�³ÞHêiÛM9 1 O < å¶ðhå¶àsÝíâ}ã{å4ÞI?,C[ìíó±Þ�åså¶ã�dÎÝeë4î]Ýeã±ä�ï/æ6Ýeñ~Ýeó±á~õ,ÝíæcîHð,>YÞ�äÖë1á�ësësáhì.ú�å4çùësá~â àlÜ�Ý
?�Ýíõ�Þ�ë¶àsâ[Ýeä�à�á�çiêiá~â[õ6ß6àlÝeë¢ý<ìíã{Ýíä�ìeÝ�ÞMà�àlÜ6Ýc�1ä�ãzñ~Ýíë¶åsãzà�ðSá�ç^�#Þ�ä6ì.Ü�Ýíå�àlÝíëe÷f>\à¢ã±ä�ìeó±ß�æ6Ýíå

�o� �����,$/(���%qp�( C���n� ¢¡ ���N	A��%qH�£��-�����-�oE�$���D C���n� ¢¤x¥ r�(����#(Ö���N	I)*	 $#�#( ¥'¦ �+$N���N���6$hp���������	��
�/�
��%���$IH=�
�
	6%�������$F�����.$��#	������ $#��$�(�� C���n� ¨§`© %��
�"v�0

�



à�ôiácësÝíÞ�åsá�ä�Ýíë¶å�çùá~ë�Û¦û!á�5<Ýeåíöhá~ä�Ý¦á�ç,àlÜ�Ýeâ çùá~ë8àlÜ6Ý	^`_*a�b ó±á~ï�ã±ì�÷RÛ/Ü�ÝeësÝeçùá�ësÝ�ö�ãzàgìJÞ�ä�ä6á�à
æ�ÝJÞMó�ô¦ã{àsÜ¼ã{ä�æ�ãzñ<ã{æ�ßÎÞ�ó{å®á~ë�ìeá~ä�ìeësÝeàsÝ�æÎÞMà.Þkà�ð<õ,Ý�æ�á~â[Þ�ã±ä6åíö4Þ�ä6æÂÞ*æ6Ýíåsìeësã{õ6àlã{á~ä åsß�ì.Ü�Þ�å
àlÜ�Ý¢á~ä6Ýcã{äP��ã±ï~ß6ësÝ 1 ìJÞMä-ä�áMà1î,Ý�õ�ë¶á<ìeÝíåså¶Ýíæ#ô¦ãzàlÜ¨ã{àí÷

Û�á�ìíá~õ,Ýgô¦ã{àlÜ�àsÜ�Ý!ó{ã±â�ã{àlÞMàlã{á~ä1áMç�^e_*a�bÀö¡ôiÝgàlë¶ã±Ýíæ¢àlá¦â�á<æ6ÝíóHä�á~â�ã±ä�Þ�ó±åeö`æÎÞMà.Þkà�ð<õ,Ýíåeö
Þ�ä�æ[æÎÞMà.Þkà�ð<õ,Ý1ñMÞ�ó{ß�Ýíå!Þ�å!ÞMàlá�â[ã{ì/ìíá~ä�ìeÝíõ6àså�î�ß6à�àlÜ6ã±å�ìJÞ�ä*ó{ÝJÞ�æ�àlá�ã±ä�ìeá~ësë¶Ýíì'àiã{ä6çùÝíë¶Ýíä�ìeÝíå
9 1 2 < ö6ä�á�à¦àlá�â�ÝíäHàlã{á~ä�àlÜ�Ý¢ä�ÝeÝíæ¨àlá�â[áhæ�ÝeóBá~ä�ÝcÞMàsá~â[ã{ì�ìíá�ä�ìíÝeõ6à1çùá�ë/ÝJÞ�ì.Ü>ã±äHàlÝeï~Ýíëe÷

?A@B�DCFEÖ3B>-C�ß�å¶Ýíå�ä�Þ�â[ÝeåsõÎÞMìíÝíå8Þ�ä�æjã{â[õ,á~ë¶à
å�à.ÞMàsÝíâ�ÝíäHàlåRàlá1õ�ësá`ñhã±æ�Ý!Ý�5hàlÝeä�åsã{î�ã±ó{ã{à�ð
Þ�ä�æÀàlá¢æ�ÝíÞ�ó�ô¦ã{àsÜÀàlÜ�Ý¦æ�ã{å¶àlë¶ã±î�ß<àlÝíæÀä�ÞMàlß�ë¶Ý¦á�ç]àsÜ�Ý*7�ÝeîB÷8Û/Ü�Ý¦å¶ß�õ�õ,á~ë¶à�ã±äjàsÜ�Ý¦ësÝíÞ�åsá~ä6Ýíë
çùá~ë�âjß�ózàlã{õ�ó±Ý!ã±äHàlÝeësìíá�ä�ä�Ýíì'àlÝeæ&Û¦ûiá�5<Ýíågôiá�ß�ó±æ�åsá~ózñ~Ý�àsÜ�ã±ågõ�ë¶á~î�ó±Ýeâ Þ�å8ô!Ý¦ôiá~ß6ó±æ�â[áhæ�Ýeó
ÝJÞ�ì.Üc?I@,�YC�EG3B>-C¨á~äHàlá~ó{á~ï�ð¢ã±äjÞ®æ�ã{þ]Ýíë¶ÝíäHà�Û¦ûiá�5]÷�ûiÝeìJÞ�ß6åsÝI�³ÞHêiÛ�æ�áhÝíå8ä�áMà8åsß6õ�õ]á�ë¶à
âjß�ózàlã±õ6ó±Ý®Û¦û!á�5<Ýeå�ô!Ý%ÞMësÝ¢ß�åsã{ä�ïÀçùß�ó±ózð&ÿ�ßÎÞMó±ã�d�Ýíæ¨äÎÞ�â�Ýíå¦ã±ä¨Þ�åsã{ä�ï~ó{Ý�Û¦ûiá�5]÷

�-á~ësÝeá`ñ~Ýíëeö4àlÜ�ÝÀú�ä�á`ô¦ó±Ýeæ�ï~Ý�îÎÞ�å¶ÝÀá�çgàlÜ�ÝÀâ[ÞMàsì.Ü�â&ÞMú�Ýíë�ô¦ã{ó±óRì.ÜÎÞ�ä�ï�ÝÀá¡ñ�Ýíë�àlã{â[Ý�îHð
Þ�æ�æ�ãzàlã{á~ä�á�ç¦ä6Ýeô�Þ�æ6ñ~Ýeë¶àsã±åsÝeâ[ÝeäHàlå�Þ�å%ô!Ýíó{ó/Þ�åjæ6Ýíó±Ý'àlã{á~ä�á~ë%â[áhæ�ã�d�ìJÞMàsã±á~ä¼á�ç¦Ý�5<ã{å¶àlã{ä�ï
á~ä�Ýeåí÷V�³ÞHêiÛ«æ�ÝJÞ�ó{åiô¦ã{àsÜ*àlÜ�Ý�Þ�æ�æ�ãzàlã±á�ä*á�ç
ä�Ý'ô)ìíó±Þ�åså¶Ýíå/á`ñ~Ýeë�àlã{â[ÝMö<Ý'ñ~Ýíä-ÞMç àsÝíë�ìeóÉÞ�å¶åsã�d<é
ìJÞMàsã±á~ä¨ÜÎÞMå1î,ÝíÝeä#æ�á~ä6Ý�ö³î�ß6à1æ�áhÝíåsä:ª à1õ�ësá`ñhã±æ6Ý�Þ�â�Ýíì.ÜÎÞ�ä6ã±åsâ çùá�ë�ë¶Ýíâ�á`ñ<ã{ä�ï�ìíó±Þ�åså¶Ýíå®ã{ä
àlÜ�Ý¢ìeóÉÞ�å¶åsã�d�ìJÞMàsã±á~äB÷�Û/Ü�ã±å¦ã±å¦ÞÀë¶Ýíÿ�ß�ã±ë¶Ýíâ�ÝíäHà¦çùá~ë/á~ß�ë¦ÞMõ�õ�ó±ã{ìJÞMàsã±á~äF÷

3�ä6Ý@á�ç¢àlÜ�Ý@â[Þ�ã±ä_î]Ýeä�Ý�d�àså�á�ç¢àlÜ�ã{å*å¶ðhå�àlÝíâ ã{å*ã{àså¨ê*3,§1û|@�ã±äHàlÝeë¶ç:Þ�ìeÝÓ9�O < àlÜ�ÞMà
â&ÞMú�Ýíå�àsÜ�Ý�ësÝJÞMåsá~ä�ÝeëcÞ`ñMÞ�ã{óÉÞ�î6ó±Ý�Þ�åcÞ¨å¶Ýíë�ñ<ã{ìíÝÀçùá~ë�á�àsÜ�Ýíë¢ÞMõ�õ�ó±ã{ìJÞMàsã±á~ä6å®àlá¨ß�å¶Ý�÷f>\à�Þ�ó±å¶á
õ�ësá`ñhã±æ6ÝíårÚ,�DC å�ðhä�àlÞ�5Sçùá�ë1àlÜ6Ýjæ�Ý�d�ä�ã{àsã±á~äSáMçgá~äHàlá~ó{á~ï~ã±Ýeåí÷1Û�á*ó{áHÞ�æ-á~ß�ë�æ�Ýeåsìeësã±õ<àlã±á�ä�å
ã±ä&àsÜ�Ý�ë¶ÝJÞ�å¶á~ä�Ýíëeö�ôiÝ�Þ�ësÝ®àsëlÞ�ä6åsóÉÞkàlã±ä6ï�?I@,�DCFEG3B>-C¼æ�Ýeåsìeësã±õ<àlã±á�ä�åiàlájàsÜ�Ý,�³ÞHêiÛ ÚG�YC
å¶ðhäHà.Þ�5]÷

�n������� �ÒÑÃÐ Î �~�Ò�¯¹�¤�°�¡n�¯�
§A@�ê�è�§v9�í6ö 1 ì < ã±å
àlÜ6Ý^dÎëså�à�ësÝíÞ�åsá�ä�Ýíë�çùá�ë�Û¦ûiá�5ÀÞ�ä�æ�@®ûiá�5%çùá~ë
àlÜ6Ý«^`_*a�bòó±á~ï~ã{ì�÷n>\à8ã{å
æ�Ýeñ�Ýíó{á~õ]Ýeæ#Þkà�àsÜ�Ý�êiá~â�õ�ß6àlÝeë�ý<ìíã{Ýíä�ìeÝ:?�ÝeõÎÞ�ë�àlâ�ÝíäHà¦á�çRàlÜ�ÝÖ�1ä6ã{ñ~Ýeëså¶ã{à�ð�á�ç�ë®Þ�â%î�ß�ësï6÷

C
ã{ú�ÝL�³ÞHêiÛ�ö¦ã{à>á~ä�ózðqõ�ësá`ñhã±æ6Ýíå#õ�Þ�ë¶à>á�ç�àlÜ�ÝÂÝ�5<õ�ësÝeåså¶ã{ñ~Ýeä�Ýíå¶åSàlÜÎÞkà-ô!Ý�ä�ÝeÝíæ çùá~ë
á~ß�ë>Þ�õ�õ6ó±ã±ìíÞMàlã{á~äB÷ö>\à-ã±å>Þ�î�ó{Ý àsáÆæ6ÝJÞ�ó�ô¦ã{àsÜ â%ß�ó{àsã±õ�ó{ÝSÛ¦ûiá�5<Ýíåíö¢î�ß<à-àsÜ�Ýeð Þ�ë¶ÝÂä6á�à
ã±äHàlÝeësìeá~ä�ä�ÝeìeàlÝeæB÷�>\à�æ�áhÝíåRä�á�à�ó±ÝeàRß�å�æ�Ý�d�ä�Ý�Þ�ìíá~ä�ìeÝíõ6à�ã±ä�Þ1Û¦ûiá�5�ã±ä¢àlÝeësâ�å�áMç�ìíá�ä�ìíÝeõ6àlå
á~ë/ësá�ó±Ýíå�çùë¶á~â á�àsÜ�Ýíë/Û/î,á�5<Ýíåí÷

§A@�ê�è�§Væ�áhÝíåiä�á�à/õ�ë¶á`ñ<ã{æ�Ý�å¶ß�õ�õ,á~ë¶à/çùá~ëiÞjæ6ðhäÎÞ�â�ã±ì1úhä6á¡ô¦ó{Ýíæ�ï�Ý�îÎÞ�åsÝ�Þ�å/ã{àiã±åiä6á�à
õ]á�åsåsã{î�ó±Ý�àsá�Þ�æ�æ>á~ë/ësÝeâ[á`ñ~Ý¢ìeá~ä�ìíÝeõ6àlå�á~ä�ìeÝcàsÜ�Ý¢ìíó±Þ�åså¶ã�dÎìíÞMàlã{á~ä�ÜÎÞ�å¦î,ÝíÝíä>æ�á~ä6Ý�÷

@®ä�á�àsÜ�Ýíë�ã±äHàsÝíësÝeå¶àsã±ä�ïcçùÝJÞMàsß�ësÝ�á�ç�§I@�ê�è�§ ã{ågã{àlå�Þ�î6ã±ó±ãzà�ð%àsá%ësÝíÞ�åsá�ä*Þ�î,á~ß6àV@�û!á�5<Ýeåí÷
7«ã{àsÜ#á~ß�ë1Þ�õ�õ6ësáHÞ�ì.Ü-àlá*â[ÞMàlì.Ü6â&Þ�ú�ã{ä�ï�àsÜ�ã±å�ìJÞMõÎÞ�î�ã{ó±ã{à�ð*ã±å�ä�á�à1å¶àlë¶ã±ì'àló{ð¨ä6ÝíìíÝeåsåsÞ�ë¶ð�ö
Þ�å
ôiÝ¨á~ä6ó{ðÈä6ÝíÝíæ�àlá ë¶ÝJÞ�å¶á~ä Þ�î]á�ß6à�ìíá~ä6ìíÝíõ<àlåíö�çùá~ëjô¦Ü�ã{ì.ÜÆÛ¦ûiá�5<Ýíå�õ�ë¶á¡ñhã{æ�Ý*àlÜ�Ý¨ä�ÝeìíÝeå�é
ålÞ�ë�ð�Þ�î�å�àlësÞ�ìeàsã±á~äB÷�ë1á`ôiÝ'ñ~Ýeëíö<àsÜ�Ý�Þ�î�ã{ó±ã{à�ðcàlá¢ë¶ÝJÞ�å¶á~ä&ÞMî]á~ß<à|@®ûiá�5<Ýíå�â&ÞJðÀõ�ë¶á`ñ~Ý�ß�åsÝ'çùß�ó
ô¦Ü�Ýíä-Ý�5hàlÝeä�æ�ã{ä�ï&á~ß6ë¦çùësÞ�â�Ýeô!á~ësú&àsá[ìeá`ñ~Ýíë1õ�ÜÎÞ�å¶Ýíå1á�ç�è�é�êiá�â[â�Ýíë¶ìíÝ�àlësÞ�ä�åsÞ�ìeàsã±á~ä>î]Ý�é
ð~á~ä6æ â[ÞMàlì.Ü6â&Þ�ú�ã{ä�ï�÷ �Îá~ë&Ý�56Þ�â�õ�ó±ÝMö�Þ�ä Þ�ï~ë¶ÝíÝeâ[Ýeä�à¨å�àlë¶ß�ì.úqî]Ý'à�ôiÝeÝíä à�ôiá õÎÞ�ë�àlã±Ýeå
çùá~ó±ó{á`ô¦ã±ä�ï[â&ÞMàsì.Ü�â[Þ�ú�ã±ä�ï�ÞMä�æ Þ�ß6àsá~â&ÞkàlÝíæ@ä6Ýíï~á�àsãÉÞMàsã±á~äÁ9+2 < öBä�ÝeÝíæ�å�çùß�ó{ó�ã{ä�å¶àlÞ�äHàlãÉÞkàlã±á�ä
á�ç�àsÜ�ÝcõÎÞ�ëlÞMâ[Ý'àlÝíë¶å�àsÜÎÞMà�á~ë¶ã±ï~ã{äÎÞ�ó±ózð[Þ�õ�õ,ÝJÞ�ë¶Ýíæ#ã{ä>àsÜ�ÝcåsÝíë�ñhã±ìíÝ�æ�Ýíå¶ìíë¶ã±õ6àsã±á~ä�åe÷¦ý<ß�õ6õ]á~ë�à
çùá~ën@�ûiá�5<Ýíå�ôiá~ß6ó±æ%ÝeäÎÞ�î�ó{Ýgìíá~â�õ�ó±ã±Þ�ä�ìeÝ�ì.Ü6Ýíì.úcá�ç�àlÜ6ÝiÞ�ï�ësÝíÝeâ[ÝeäHà�ô¦ãzàlÜ�àsÜ�Ý�ä�Ýíï~áMàlãÉÞkàlã±á�ä
õ�ësá�õ]á~åsÞ�ó±å¦ÞMä�æ>ô¦ãzàlÜ�àlÜ6Ýcá�ësã±ï�ã±äÎÞ�ó,åsÝeë¶ñhã±ìeÝ�æ6Ýíåsìeësã{õ6àlã{á~ä�å/ã±ä�àsß�ësäB÷

í



§A@�ê�è�§)õ�ë¶á`ñ<ã{æ�Ýíå1Þ+¬~ÞJñ�Þf@r¥�>�Þ�ä�æ>Þ�ó±ó{á`ô¦å¦Þ�ìíìeÝíåså¦àláÀàsÜ�Ý¢ësÝJÞMåsá~ä�Ýeë1ë¶Ýíâ�á�àlÝeó{ð�÷
� h g � l®!�,q-m�lFõUlF{^yKw ô�zVm � tv} m�ln��wKz|{Blnm ô6z|mºõö�Nyps£÷,õö�Ki!q�{B�
�Îësá~â á~ß6ë&Ý�5<õ,Ýíë¶ã±Ýíä6ìíÝ�ö�ôiÝ@Ü�Þ`ñ�Ý@ïHÞMàsÜ�Ýíë¶ÝíæòàlÜ6Ý#çùá~ó±ó{á`ô¦ã±ä�ïÂësÝíÿ�ß�ã{ësÝeâ[Ýeä�àså&çùá~ë�Þ¿?,C
ësÝíÞ�åsá�ä�Ýíë/àlÜ�ÞMà/ôiá�ß�ó±æ>ålÞMàsã±å�ç ð*á~ß�ë¦ä�ÝeÝíæ�å��

ª ^e_dc�b+¯ Â@° ã±å�àsÜ�Ý¢â[ã{ä�ã±â%ß�â Ý65<õ�ësÝeåsåsãzñ~Ýeä�Ýíå¶å�ësÝeÿhß6ã±ësÝeæ&è
ª ÂÒ¸n¡n¹� é�Ïp� @®æ<ñ~Ýíë�àlã{åsÝíâ�ÝíäHàså�ô¦ã{ó±óBî,ÝcÞ�æ�æ�ÝeæBöÎësÝeâ[á`ñ~ÝeæSÞ�ä6æ-â�á<æ6ã�dÎÝeæ¨Þ�ä�æ¨àlÜ�Ýìeá~ä�ìeÝíõ6àså1ô¦ã{àsÜ�ã±ä*àsÜ�Ý¢ú�ä�á`ô¦ó±Ýíæ6ï~Ý�î�Þ�åsÝ�ô¦ã±ó{óFä�ÝeÝíæ>àlá�î]Ý¢ë¶Ý'é�ìeóÉÞ�å¶åsãÙdÎÝíæB÷
ª ÑÒ¶��·���¢6¸ ¢�°Õ®F�¯¹�·7~���¢�U ©��·�¢���»N·�� �¡�¢��¯��Ïß°£¡�¡n�RÏ=¢��R® À�¶�°R´��R¤=� 7�Ý-ô�Þ�äHà
àsáÂß6åsÝ>æ�ã{þ]Ýíë¶ÝíäHà&á�ä�àsá~ó±á�ï~ã±Ýeåíö�Þ�ä�æ æ�Ý�d�ä�Ý-ìeá~ä�ìeÝíõ6àså&îÎÞ�å¶ÝíæÆá~äÆáMàlÜ�Ýeë�Ý65hàlÝíë¶äÎÞ�ó
ìeá~ä�ìeÝíõ6àså�Þ�ä�æ¨ë¶á~ó±Ýeåí÷

ª ½ Ïß¹�·�¹p¶���·��¢6¸�� Û/Ü�Ý�ë¶ÝJÞ�å¶á~ä�Ýíëiä�ÝíÝeæ�å�àlájî,Ý�ÞMî�ó±Ý�àlájìeá~õ]Ý�ô¦ã{àsÜ*óÉÞ�ë¶ï~Ý�ÞMâ[á~ß6ä�àsåiá�çã{ä6çùá~ë¶â&ÞMàsã±á~ä&ã±ä>Þ�ä¨Ýeø�ìíã{ÝíäHà¦ô�ÞJð�÷
ª�± �R��¤��¤�¢��R¡FÏ=¸�� ýhàlá~ësÞ�ï~Ý�á�ç6àsÜ�Ý�ÞMæ6ñ~Ýeë¶àlã{åsÝeâ[Ýeä�àså8ã±å
ä�ÝeÝíæ�ÝeæB÷�Û/Ü�Ý!ësÝJÞMåsá~ä�Ýeë�ä�ÝeÝíæ�åàsá�î,Ý�ã±äHàlÝeï~ëlÞkàlÝíæ�ô¦ã{àlÜ%åsá~â�Ýiçùá~ë¶âZáMç³õ]Ýeësåsã{å¶àsÝíäHà�å¶àsá~ësÝiã±äjÞ®ôiÞJð�àsÜÎÞMà�â&Þ�ã{äHà.Þ�ã{ä�å
æ�ÞMà.Þ�ìíá~ä6åsã±å�àlÝeä�ìeð�÷

ª ½ �n»�»�°���¢ ²#°��¾Â8ÑÃ×uØ	²�³*´.Ø ¤�¸n¡£¢�¹K´ ôiá~ß6ó±æ«ÞJñ~á~ã{æ«ß�ä�ä�ÝeìíÝíå¶ålÞ�ë�ð«àlëlÞMä�åsó±Þké
àsã±á~ä6åí÷

µ ¶>Ø#Ô�Ø@Õ�b¸· Ö�Õ�a
3�ß�ë!à�ô!ájõ�ë¶á�àláMà�ð<õ,Ý�ã{â[õ�ó{Ýíâ�ÝíäHà.Þkàlã±á�ä�å�á�çRÞ%â[ÞMàlì.Ü6â&Þ�úMÝíëiÞ�ësÝ�ç:Þ�ã±ë¶ó{ðÀå¶ã±â�ã±óÉÞMë�ã±ä[àsÝíë¶â[å
á�ç
çùß�ä�ì'àlã{á~äÎÞ�ó{ã{àlã{Ýíå!Þ�ä�æ>Þ�ë¶Ý�î]á�àsÜ¨ã±ä�ìeá~â[õ6ó±ÝeàsÝ�÷8ÛRá�ï~ájçùß�ë�àlÜ�Ýeë/ã±äHàlájàsÜ�Ý¢æ�Ýeñ�Ýíó±á�õ�â[ÝeäHàJö
ô!Ý/Þ�ësÝ!óÉÞ�ì.ú�ã{ä�ï�ÞB?,C�ësÝíÞ�åsá�ä�Ýíë�ô¦ãzàlÜ%àsÜ�Ýiõ6ësá~õ,Ýíë�àlã±Ýeå8â�ÝíäHàlã{á~ä�ÝíæjÞ�î]á`ñ�Ý�÷8Û/Ü�Ýiâ&Þ�ã{ä%ë¶Ý'é
ÿ�ß�ã±ë¶Ýíâ�ÝíäHà�ô!á~ß�ó{æ%î,ÝiàlÜ6Ýiåsß6õ�õ]á�ë¶à�çùá�ë�àlÜ6Ýiësã{ï~ÜHà�ó{Ýeñ�Ýíó6áMçÎÝ�5<õ�ë¶Ýíåså¶ã{ñ�Ýíä�Ýeåså.�K^e_dc�bf��?G��÷

3�ä-àlÜ6Ý%åsÝeë¶ñhã±ìeÝjæ�Ýeåsìíë¶ã±õ6àsã±á~ä-åsã{æ�Ý�ö³ôiÝ%ësÝJÞMó±ãïQeÝ�àlÜÎÞMà�àlÜ6Ý%â�á<æ�Ýeó4ôiÝÀÞMësÝcõ�ësá~õ,á~å¶ã±ä�ï
ësÝeå¶àsësã±ì'àlå%àsÜ�Ý*æ�Ýeåsìeësã±õ<àlã±á�äÈá�ç/àlÜ6Ý�åsÝíë�ñhã±ìíÝ[àlá Þ#å¶Ýeà�á�ç¦õÎÞMëlÞ�â�ÝeàsÝíësåe÷ 7«Ü�ã±ó{Ý[àsÜ�ã±å%Þ�õ<é
õ�ë¶áHÞ�ì.Ü d�àså®ôiÝeó±óRô¦ã{àlÜ#åsã±â�õ�ó{Ý%åsÝeë¶ñhã±ìeÝíå�ó{ã±ú�Ý�ìJÞMàlÞ�ó±á�ïMé�îÎÞMåsÝíæ-åsá~ó{ß6àlã{á~ä�å�çùá~ë1àsÜ�ÝÀålÞ�ó{Ý%á�ç
ï~áhá<æ6åíö�ôiÝ�ë¶Ýíìeá~ï~ä�ã�QíÝ1àsÜ�Ý®ä6ÝíÝíæ*çùá�ë�Þ�î,ÝíÜ�Þ`ñhã{á~ß�ëlÞMó]æ�Ýeåsìeësã±õ<àlã±á�ä&çùá~ë�ìíá~â�õ�ó±Ý65[åsÝíë�ñhã±ìíÝeåí÷
7«Ü�ã{ó±Ý1Þ�ó±ó³àlÜ�Ý�Ý656Þ�â[õ6ó±Ýíå!á�ç
àlÜ�ã{åiõÎÞMõ]Ýeë�á~ä�ózð&Ý656õ,á~å¶Ýíæ¨î�ß6ð�Ýíë�é\åsÝeó±ó±Ýeë�ësÝeóÉÞMàsã±á~ä6åsÜ�ã{õ�åíö�ôiÝ
ä�ÝeÝíæ àlá¨ÝíäHñhã±åsÞ�ï~Ý�Þ*ôiá~ë¶ó±æ@ô¦Ü�ÝeësÝ�õÎÞ�ë¶àsã±Ýeå�ô�Þ�äHà¢àlá¨ã{ä�àsÝíësÞ�ìeà�àsÜ�á~ß�ï~Ü ìeá~â[õ6ó±Ý�5Sî�ß�å¶ãzé
ä�Ýeåså�õ�ësáhìíÝeåsåsÝeåí÷ÆÛ/Ü�Ý-â[ÞMàsì.Ü�â&ÞMúhã{ä�ï@á�ç1õ]áMàlÝíäHàsãÉÞ�ó�ìeá~ß�äHàlÝeësõÎÞMë¶àlå�ô!á~ß�ó±æ�àlÜ6Ýíä ä�ÝíÝeæ
àláÀìeá~ä�å¶ã±æ�Ýeë/ä�á�à¦á~ä�ózð[àsÜ�Ý�åsÝeë¶ñhã±ìeÝ¢õÎÞ�ëlÞMâ[Ý'àlÝíë¶åíö�î6ß6à�Þ�ó±å¶ájàlÜ�Ý�ìeá~â�õÎÞMàlã{î�ã±ó{ã{à�ðÀî,Ýeà�ô!ÝíÝeä
àlÜ6Ý�ñMÞ�ë¶ã±á~ß�å¢ë¶á~ó±Ýeå%Þ�ä6æ�î,ÝíÜÎÞJñhã±á~ß6ësåí÷Ã7ÂÝ�ôiÞ�äHà%àsá#ã{ä�ìíó{ß�æ�Ý�àlÜ�ã{åcô!á~ësú@ô¦ãzàlÜÂÞ�ä�á�àsÜ�Ýíë
Þ�ì'àlã{ñhãzà�ð&ô!Ý�ÞMësÝ¢ìJÞ�ë¶ësã{ä�ïÀá~ß6à�á~ä¨ìíáhá~õ,ÝíësÞMàlãzñ~Ý�î�ß�å¶ã±ä�Ýeåså�õ�ësáhìíÝeåså¶Ýíåf9 1 W < ÷

§�ÝeìíÝeä�àsó{ð�àlÜ6ÝB?I@,�DC@ìíá�â[âjß6ä�ã{à�ð�ÜÎÞMå�Þ�ä�ä6á~ß�ä�ìeÝíæ¨Þ�ä�æ&ësÝíó{ÝJÞ�å¶Ý�ÞGdÎëså�à�ñ~Ýeësåsã{á~ä*á�ç
?I@,�DCFé�ý,öRàsÜ�Ý�7ÂÝíî ý<Ýeë¶ñhã±ìeÝÃ�#ÞMësú~é�ß�õ4C
Þ�ä6ï~ßÎÞ�ï~Ý 9 ¦�< ÷D?A@B�DCFé�ý¼ã{åjÞY7ÂÝíî�åsÝíë�ñhã±ìíÝ

1 ì



á~äHàlá~ó{á~ï�ðcô¦Ü�ã±ì.ÜÀô¦ã{ó±ó<Þ�ó±ó{á¡ô�å¶á�ç à�ôiÞ�ësÝ�Þ�ï~ÝeäHàlå8àlá¢æ�ã{åsìeá¡ñ�Ýíëeöhã{äHñ~á~úMÝ�ö�ìíá~â�õ,á~åsÝ/ÞMä�æ�â[á~ähé
ã{àsá~ë�àsÜ�ÝÀÝ�5<Ýeìíß6àsã±á~ä@á�ç�7ÂÝíî¼ý<Ýeë¶ñhã±ìeÝíåe÷�ÛRá*ñMÞ�ó±ã{æÎÞMàlÝcá~ß�ë1ã±æ�ÝíÞ�å®ô!ÝÀÜÎÞJñ~ÝÀæ�Ý'ñ~Ýeó±á~õ,Ýíæ¼Þ
õ�ësã{â[ãzàlãzñ~Ýiå¶Ýíë�ñ<ã{ìíÝ�æ�Ýíå¶ìíë¶ã±õ6àsã±á~ä�á~äHàlá�ó±á~ï�ð�÷�3�ß�ë8ô!á~ësúÀìeá~ß�ó{æ�á�ä�ó{ð%î]Ýeä�Ý�d�àgçùë¶á~â ß�å¶ã±ä�ïcÞ
çùß�ó±ó�é#JÎÝeæ�ï~Ýeæ-å¶Ýíë¶ñhã{ìíÝ%æ6Ýíåsìeësã{õ6àlã{á~ä-á�ä�àsá~ó±á�ï�ð~÷^7ÂÝ¢ô¦ã±ó±óBàsë¶ð�àsá&ó±Ý'ñ~ÝeëlÞ�ï~Ý¢çùësá�â ?A@B�DCFé�ý
Þ�å¦âjß�ì.Ü-Þ�å/ôiÝ¢ìíÞ�äB÷

7�Ý�Þ�ë¶Ý¦àsëlÞ�ì.ú�ã{ä�ï�ô¦ÜÎÞMàgàlÜ�Ý1ý<Ýeâ&ÞMä�àsã±ì*7ÂÝíî�ìíá~â�âjß�ä�ãzà�ðjã{å�õ�ësáhæ�ß�ìeã±ä�ï¢ã±äÀàsÝíësâ�å�á�ç
àláhá~ó±å�î�ß6à®â[á�ësÝcåsõ,ÝíìíãÙdÎìJÞMó±ó{ð¨õ,Ýíë¶åsã{å¶àlÝeäHà�å¶àsá~ësÝeå®çùá~ëB§A?,�_ÞMä�æ`?I@,�DC�÷£>�ä@õÎÞ�ë¶àsã±ìeß�óÉÞ�ë
ôiÝ`dÎä6æ«àsÜ�Ý@ôiá�ësúòá~äº§x¹,C 9 1�< ñ~Ýíë�ðqõ�ë¶á~â[ã{åsã{ä�ï�÷u7�Ý@ä�ÝeÝíæ«àlá�ÝíäHñhã±åsÞ�ï~Ý@Ü�á`ô àlá
ã±äHàlÝeï~ëlÞkàlÝG?,CÂë¶ÝJÞ�å¶á~ä�Ýeëså¦ô¦ã{àlÜ>ÞÀõ,Ýíëså¶ã±å�àlÝíäHà1å¶àsá~ësÝM÷

º » Ö�Ó@Ù¼�íØ#N8ÚíÖ�Ó#N

3�ß�ëgÝ�5<õ]Ýeësã{Ýíä�ìeÝ®ã±ä�õ�ë¶á�àlá�à�ðhõ�ã{ä�ï�Þ�?,C>îÎÞ�åsÝeæ*â[ÞMàlì.Ü�â[Þ�ú�ã±ä6ïcå¶Ýíë�ñ<ã{ìíÝ�â&ÞMæ�Ý¦ß�å!ë¶ÝJÞ�ó{ãïQeÝ
àlÜÎÞkà8àlÜ�ÝeësÝ¦ã±å8Þ¢ï~Þ�õÀî]Ý'à�ôiÝeÝíä�ô¦ÜÎÞMàgå¶àlÞ�ä�æÎÞMësæÀàlÝeì.Ü�ä�á~ó{á~ï~ã±Ýeå8çùá~ë�è�é�êiá�â[â�Ýíë¶ìíÝ/õ�ë¶á¡ñhã{æ�Ý
àláhæÎÞJð¢Þ�ä�æ¢ô¦ÜÎÞMà�ìíá�ß�ó±æcî]Ý�Þ�ì.Ü6ã±Ýeñ�ÝíæcàlÜ�ë¶á~ß�ï~Ü¢àlÜ�Ý�ß�å¶Ý!á�çÎý<Ýíâ[Þ�äHàlã{ì�7�Ýeî�àsÝíì.Ü�ä�á�ó±á~ï~ã{Ýíåe÷
7�Ý¦î,Ýíó{ã±Ýeñ�Ý�àlÜÎÞkàgã±äjàlÜ6Ý�ä6ÝJÞ�ë�çùß6àsß�ësÝ¦Þ�ß<àlá~â[ÞMàlÝeæ�â&ÞMàsì.Ü�â[Þ�ú�ã±ä�ï¢Þ�ä6æ�ä6Ýíï~á�àsãÉÞMàsã±á~ä�ô¦ã±ó±ó
Þ�ì.Ü�ã{Ýeñ~Ý&ësÝíå¶ß�ó{àsåjÞMàjÞ-ó{Ýeñ~Ýeóiá�ç�ìíá~â�õ�ó±Ý65<ã{à�ð ç:Þ�ëcî]Ý'ð~á~ä�æÈô¦Ü�ÞMàjã{å%õ,á~åså¶ã±î�ó{Ý�àsá<æÎÞJð�÷Y>�ä
õÎÞ�ë�àlã±ìeß�óÉÞMëiàlÜ�Ý�ß6åsÝ�?A@B�DCFEÖ3B>-CÂÞ�ä�æ>á�ç
àlÜ�Ý¢Ýeñ�á~ó±ß<àlã±á�ä>áMç�?,C ësÝíÞ�åsá~ä6Ýíëså�ó±ã{ú�ÝG�³ÞHêiÛ
á~ëI§I@�ê�èV§Vô¦ã{ó±óBõ6óÉÞJð�ÞÀõ�ë¶ã±â[Þ�ë¶ð&ësá~ó{Ý�ã±ä¨â[Þ�ú�ã±ä�ïjàsÜÎÞMà�ÜÎÞ�õ�õ,ÝíäF÷

½ bU¾ßb�Õ�b�Ó@ÙIb�N
9 1�< ê%÷�@®ó{Ý�56Þ�ú�ã/èÎÝ'à�Þ�óO÷¢¿?À�ÁÃÂ�ÄKÅ�Æ�ÇeÈxÉR¿¢ÊËÉ¼Ì�Ç¨Å:Í'ÎÐÏ�ÁqÑeÒdÓÕÔ Ó%Ö;Î�Ô�Ö�×:Ø�ÙÐÍ'Ú+ÎÛÆ

Ô�ØAÍ'Ü2É¼Ì�ÇÌ2Á�Ü�Ý�ÞoÎàß¨Ï�Î�ØqÔ=áxÓÕÜ�Á�Ü�âKãKÞ�ØAÝ-ÁäÁ-å�ÎæÔ�Ö;Ü*ØqçUÏ�À�Á�ÅèÁ-ÝäØqÔ�ådÂ�Ô�Ï�Á�ÞoÔèÓ'Æ
Ï�Î�ØqÔ ÓÕÙ«é�ØqÞ�ê�ÜoÀ�Ø�ßëØ�Ô�Ï�À�ÁUÅèÁ�Ú4ÓÕÔ�Ï"Î9Ý+éìÁqí<÷,ý<Ýeâ�7ÂÝíî�ª�2=ìßì 1 ÷£�#ÞJðP2=ìßì 1 ÷

9+2 < ê®÷
ûiÞ�ë¶àsá~ó±ã{ä�ã8Þ�ä6æ¾ê®÷n¥�ësÝeã±å¶à/îïÇ Þ�ÓÕÚ�Á�ðKØqÞ�ê�ç�ØqÞ(î�ÍlÏ�ØqÚ4Ó�Ï$Áäå#ñ�Á)Ö�ØAÏ�Î�Ó'Æ
Ï�Î�ØqÔF÷�2=ìßì 1 ÷�ër¥MCRÞMî�å¦Û�Ýeì.Ü�ä�ã±ìíÞ�óF§�Ýeõ]á�ë¶àJ÷

9�O < ý,÷4ûiÝíì.Ü6Ü�á�çùÝíëeö�>.÷�ë1á�ësësáhì.ú�å¢Þ�ä�æÂý]÷BÛRÝíå¶ålÞ�ë¶ã±åe÷!ÄxÈxÉ¼á«îòÎæÔ�Ï$Á�Þoç�Ó�Ý-Á�ç�ØqÞ(Ó
Ì�óôÄhÙ�ÓÕÜoÜ�Îæõ�Á�Þe÷��#Þ�ë¶ì.Ü 1 íßí=í6÷

9 ;¨< ¥R÷�ê%÷Rûiã±ë¶á~äBön@%÷��#Þ�ó{Ü�á�àsëlÞ6÷:ö�Ò@óÅèÝ÷À�Á)ÚZÓ�ã¨ÓÕÞ-ÏRø�Ñ2Ì(Ó�ÏÐÓ�Ïúùûß¨Á�Üí÷�7ºOHê
§¦Ýíìeá~â�â[Ýeä�æÎÞMàsã±á~äHìµ2c�#ÞJðP2¨ìßì 1 ÷

9+W < Û�÷�û!á~ß�î,Ý.Q=èhÝeà�ÞMóN÷®ü?Ì�ÌUÂ¢Ì(Ó�ÏÐÓ(Å:Ï"Þ-ÍAÝqÏoÍ'Þ�Á«ÉUÁ�ç�Á)Þ�Á�Ô�Ý-Á�×	ýûþ ÿ~÷�ý<Ýeõ6àlÝeâjî,Ýíë
2¨ìßìßì6÷

9�X < ?j÷�ûië¶ã±ì.ú�ó±Ý'ð Þ�ä�æ §¢÷�ê%÷ � ß�ÜÎÞ<÷3ÉUÁ�Ü�ØAÍ'Þ�Ý-Á Ì2Á)Ü�Ý�ÞoÎàß¨Ï�Î�ØqÔ Ç Þ�ÓÕÚ�Á�ðKØqÞ�ê
� É¼Ì�Ç���Å Ý÷À�Á�Ú4Ó Å'ß¨Á-Ý)Î�õ�Ý�Ó�Ï"Î9ØqÔ ý'þúÿ~÷�7ºOHê¿ê�ÞMä�æ�ã±æ�ÞMàlÝY§�Ýeìíá~â�â�Ýíä�æÎÞ¡é
àsã±á~äP2 ¦ �-Þ�ësì.Ü 2=ìßìßì6÷

1ß1



9 ¦�< �Â÷8û!ß�ëså�àlÝíã{äÈÝeàjÞ�óN÷?Ì î�Ò@ó®Æ�Å:Ñ?ÅèÁ�Ú4ÓÕÔ�Ï"Î9Ý+ÒdÓÕÞoê�Í6ßôç�ØqÞ�éìÁqídÅèÁ�Þ���Î�Ý-Á)Üí÷
¥�Þ�ë�à�á�ç�àsÜ�ÝÖ?A@B�DCFé�ýH?�ëlÞMç à*§�Ýeó±ÝJÞMåsÝ��/�#ÞJðP2¨ìßì 1 ��÷

9 � < è/÷~êiÜ�ë¶ã±å�àlÝíä6åsÝíäFö¯�i÷Mêiß�ësî,ÝíësÞ6ö � ÷=�>ÝíësÝeæ�ã{àsÜÀÞ�ä�æÀý]÷�7�ÝeÝíëlÞJôiÞ�ëlÞMäÎÞ6÷:é�Á%í
ÅèÁ�Þ���Î�Ý-Á)ÜÃÌ2Á)Ü�Ý)Þ�ÎàßhÏ"Î�Ø�Ô�ó?ÓÕÔ�ÖAÓ�ÍÕÖ�Á � é=Å�Ì�ó��2ýûþúý�÷�¬~Þ�ä�ßÎÞ�ë�ðP2=ìßì 1 ÷

9 í < êj÷Fë®Þ�Þ�ëså¶ó±ÝeñSÞ�ä�æL§c÷	��
��������� É î/Ä��!É ü?Ü�Á)Þ�� Ü��(Í'Î�å�Á�ÓÕÔ�ådÉ�Á)ç�Á�Þ�Á)Ô�Ý-Á
ÒdÓÕÔ�Í;ÓÕÙ ×:Á)Þ�Ü�Î9ØqÔ=ýûþ���þ���÷p@®õ�ë¶ã±ón2¨ìßì 1 ÷

9 1 ì < êj÷�ë®Þ~ÞMësåsó{ÝeñÂÞ�ä�æ¿§c÷�� 
�!�"���#� ÉRî/Ä��!ÉïÅ;ù�Ü6Ï$Á)Ú Ì2Á)Ü�Ý)Þ�ÎàßhÏ"Î�Ø�ÔB÷4Û�áSÞ�õ<é
õ]ÝíÞ�ë�ã±ä&�|>�ä�àsÝíë¶äÎÞMàlã{á~äÎÞ�ó?¬�á�ã±äHà®êiá~ä6çùÝíë¶Ýíä�ìeÝjá~äY@®ß6àsá~â&ÞkàlÝíæY§¦ÝJÞ�å¶á~ä�ã±ä6ï�ö
>÷¬Hê^@B§(ª�2¨ìßì 1 ö�¬�ß�ä6Ý 1 �ké�2=O<ö�2=ìßì 1 öÎý<ã{ÝíäÎÞ6ö�>\àlÞ�ó{ð�÷

9 1=1.< >.÷^ë�á~ësë¶á<ì.ú�åeö!�c÷Áý<ÞMàsàsó±Ýíë[Þ�ä�æòý]÷�Û�á~î6ã±Ýíåe÷«ãKÞ)Ó�ÝqÏ�Î�Ý�Ó%ÙRÞ�Á�ÓÕÜ�ØqÔlÎæÔ�Ö ç�ØqÞ�Á%$�Æ
ß:Þ�Á)Ü�ÜoÎ&�qÁ�ålÁ�Ü�Ý�Þ�Î�ß¨Ï"Î9ØqÔ�Ù�Ø�Ö;Î9Ý�Üe÷+>�äPë�÷ � Þ�äpQeã±ä�ï~Ýeëíö�?j÷��-ì�@®ó±ó{Ýíå�àlÝíëeö,Þ�ä�æP@%÷
êgá~ësá�ä�ú�á`ñ,ö�Ýíæ6ã{àlá�ësåíö!¥�ësáhìíÝeÝíæ�ã{ä�ï~å¨á�ç�Cn¥�@B§(ª+íßí6ö¦ñ~á~óO÷ 1�¦ ìµW�áMç:C®gA@r>.ö
õÎÞ�ï~Ýeå 1 X 1 � 1 �=ì6÷Îý<õ6ësã±ä6ï~Ýíëeö 1 íßíßí<÷

9 1 2 < >.÷Në�á~ësë¶á<ì.ú�åe÷xÈ	Ô�Ï$ØqÙ9Ø�ÖÕù ÉUÁ�ÓÕÜ�ØqÔlÎ�Ô�Ödç�ØqÞ3Ï"À�Á7ÅèÁ�Ú4ÓÕÔ�Ï"Î9Ýdé�Á%íh÷¨g1Ý'à�ôiá�ësú
>�ä6çùÝíë¶Ýíä�ìeÝf2=ì=ì 1 ÷

9 1 O < >.÷�ë1á~ë¶ësáhì.ú�åí÷dÇ�ÓlÄR¿ É�Á)ç�Á�Þ�Á�Ô�ÝäÁ(ÒdÓ%Ô�ÍûÓÕÙx×:Á�ÞoÜ�Î�Ø�Ô ýûþ'�~÷p@1ß�ï~ß�å�à 1 íßíß�6÷
9 1.;=< 3j÷'C
Þ�å¶åsã±ó±Þ&Þ�ä6æ`§c÷Fýhô¦ã{ì.ú,÷:É�Á)Ü�ØAÍÕÞ�Ý-Á(Ì2Á�Ü�Ý)Þ�Î�ß¨Ï"Î9ØqÔdÇ Þ�Ó%ÚìÁ6ð!ØqÞoê � ÉRÌ�Ç	�

Ò�ØAålÁ�Ù?ÓÕÔ�å�ÅûùlÔ�Ï�Ó#$�ÜÐß¨Á-Ý)Î�õ�Ý�Ó�Ï"Î9ØqÔB÷"7ºO~ê�§¦Ýíìíá�â[â�Ýíä�æ�ÞMàlã{á~äH2ß2f�ÎÝíî�ë¶ß<é
Þ�ë¶ð 1 íßíßí6÷

9 1 W < � ÷i¥gã{ìíã{ä�Ýíó{ó±ã�Þ�ä�æ¾C�÷I�-á�úhë¶ß�åsÜ6ã±äB÷xÌRù�ÔèÓ%Ú3Î9Ý�ÅèÁ)Þ���Î�ÝäÁ�î¼ÖûÖ;Þ�Á)ÖAÓ�Ï"Î�Ø�Ô�Î�Ô
�KÙ�Á-Ý�Ï"Þ�ØqÔlÎ�ÝÃÒ@ÓÕÞ�ê�ÁqÏ�ß�Ù�Ó�ÝäÁ�Üí÷'2=ìßì 1 ÷pë!¥ãC
Þ�î�å¦Û�Ýeì.Ü�ä�ã{ìJÞ�óF§¦Ýíõ,á~ë¶àí÷

9 1 X < ��÷�ý6ÞMàsàsó±Ýeëí÷eî Ý-ØqÔ�Ý-Á$ßhÏ�Ù�ÓÕÔ�Ö Í;Ó%Ö�Á�Á%$:Ï$Á)Ô�ålÁ-å ðKÎ�Ï"À å�Î)(®Á)Þ�Á�Ô�Ï�ê�ÎæÔ�å�Ü�Øqç
Ï"Þ)ÓÕÔlÜ�Î�Ï"Î*�qÁxÞ�ØqÙ�Á)Üí÷R>�äP2=ì6÷"?�Ýíß6àsåsì.Ü�Ý/¬~ÞMÜ�ësÝeå¶à.ÞMï~ß�ä�ï,+-
./�10 >.öpC®gA@r> 1ß1 O ¦ ÷

9 1�¦�< ?j÷�ÛRëlÞ�å�àlá~ß6ëíö!ê®÷�û�Þ�ë�àlá~ó{ã±ä�ã�Þ�ä6æ�¬6÷ � á�äpQJÞ�ó{Ý.QM÷hî Ü�Á�Ú4ÓÕÔ�Ï"Î�Ý#éìÁqí#î«ß�Æ
ß:Þ�Ø%Ó�Ý÷À�Ï$ØÃÅèÁ)Þ���Î�ÝäÁ`Ì2Á�Ü�Ý)Þ�Î�ß¨Ï"Î9ØqÔ�ç�ØqÞ¨ÒdÓ�Ï$Ý÷À�ÚZÓÕê�ÎæÔ�Ö�Øqç�ÅèÁ�Þ���Î�Ý-Á)Üí÷�ýhÝíâ[Þ�ä<é
àlã{ìB7�ÝeîY7Âá~ësú�åsÜ6á~õSý�ð<â�õ,á~åsã{ß�â 2=ì=ì 1 ÷�ÛRá&ÞMõ�õ]ÝíÞ�ëí÷

9 1 � < �i÷BñMÞ�ä±ë®Þ�ë¶â[Ýeó±ÝeäBön¥�÷+�i÷n¥�ÞkàlÝíó�é�ý<ì.Ü6ä�Ýíã{æ�ÝíëcÞ�ä�æ±>.÷në1á�ësësáhì.ú�å/É�Á)ç�Á�Þ�Á)Ô�Ý-Á
ålÁ�Ü�Ý�ÞoÎàß¨Ï�Î�ØqÔ4Øqç®Ï�À�Á`Ì î�Ò@ó32/È	Â$ó � ÒdÓÕÞ�Ý÷À+øAÿûÿ;ý4�`ØqÔ�Ï$ØqÙ9Ø�ÖÕù�ÚZÓ%Þ�ê�Í6ßZÙ�Ó%Ô Æ
ÖèÍ;Ó%Ö�Á`÷£�#Þ�ë¶ì.Ü 2¨ìßì 1 ÷

1 2



 1 

Modeling X.509 Certificate Policies 
Using Description Logics 

Stephan Grill 
Institute for Applied Information Processing and Communications 

Graz University of Technology, Austria 
Email: stephan.grill@plusultra.at 

Abstract 
Public Key Infrastructures are gaining importance in today's IT 
environment for managing certificates and keys.  It is recognized, that the 
quality and trustworthiness of certificates depend to a large extend on the 
practices and procedures a certification authority applies when issuing 
certificates.  These procedures are documented in certificate policies, 
which are generally text-based documents and therefore cannot be 
processed by machines.  This paper describes a framework based on 
description logics that addresses this situation.  Subsumption will be used 
to compare policies.  Based on a case study of modeling real policies 
some features of this framework will be described.  Learnings and an 
outlook of future work conclude this paper. 

1  Introduction 

Public Key Infrastructures (PKI) are emerging as an important cornerstone of today's 
communications systems. They are envisioned to enable a wealth of services ranging 
from electronic id cards, digital signature, authorization schemes, etc. and are already 
increasingly used in web-applications, e-mail, e-payment. 

Processes and protocols to manage and use private keys and certificates are well 
understood and corresponding standards [1] are currently in the process of being 
defined. 

The basic concept of a PKI is that participants use key pairs consisting of a private 
and a public key.  The private key never leaves the trusted environment of the user 
and might for example be used for signing a document, whereas the public key is 
published for others to verify the signature created with the corresponding private 
key.  To associate a person with a public key a trusted third party issues certificates, 
which express this association. 



 2 

A trusted third party (also called certification authority CA) can issue certificates 
according to different policies.  Policies define practices followed by the CA in 
authenticating the subject, the users obligations in protecting the private key, the 
legal obligations of a CA, etc.  Different policies represent different security levels.  
For example, a policy might state that certificates are issued for public keys whose 
corresponding private keys are generated and stored on a smart card and a certificate 
requestor has to be authenticated in person using an id card, whereas a different 
policy might state that the private key is stored on a PC and only the existence of the 
e-mail address of the requestor has been verified.  Obviously, information contained 
in a certificate issued according to the first policy is much more reliable and the 
certificate is therefore more secure than a certificate issued according to the latter 
policy.  Consequently, the trustworthiness of signatures depends on the security level 
of the associated certificate and users verifying signatures have to make sure they are 
aware of the associated policies. 

However, these policies are currently represented in textual form and therefore 
hardly ever inspected!  This paper describes how description logics can be applied to 
represent certificate policies in a structured manner and to make them comparable. 

2  Requirements for the Representation of a Policy 

To define requirements for a policy representation, cases for using these models will 
be discussed first: 

− Users should be enabled to retrieve specific parts of a certificate policy (e.g. they 
want to check where the associated private key of a certificate is generated and 
stored) 

− Users might want to specify properties a certificate policy must match in order 
to be accepted (e.g. they want to specify that only certificates are accepted, if 
the associated private key is generated and stored on a smart-card). 

− These comparisons might be based on equality comparisons but also other 
comparison operators must be supported which might be applicable for the 
quality of certificates (a policy might indicate that associated certificates are 
more trustworthy than certificates issues according to another policy). 

 
From these possible use cases a set of requirements can be derived: 

− Current text-based policies describe complex objects and complex practices.  A 
formal model must support this complexity.  The representation has to support 
<attribute, value> pairs, which might be organized in a hierarchical structure, 
and where value by itself might be a complex object. 

− The representation must allow to define a metric and/or classification scheme to 
support not just equality comparisons, but also additional relational operators. 



 3 

− The representation must be declarative (opposed to a procedural representation) 
in order to support operations on this representation. 

3  Proposed Solution 

A two-phased approach was chosen to address this problem.  In the first phase a 
possible semantic representation is investigated, and in the second phase the 
syntactical representation of the defined semantics is defined. 

Description logic was chosen for the semantic model because it provides an 
expressive data model and the required operators [3]. 

Currently an investigation is ongoing to identify a suitable syntactic representation.  
Likely candidates are the Resource Description Framework RDF [5] of the W3C or 
DAML+OIL [9]. 

 
Certificate policies are modeled in process consisting of  three-steps: 

1. definition of the semantics of the taxonomy 
2. definition of a reference ontology 
3. definition of individual policies 

3.1  Definition of the Semantics of the Taxonomy 

The objective of using a classification based knowledge representation mechanism is 
to automatically induce an order relationship in the concept space.  For modeling 
policies, the taxonomy is used to represent information related to security aspects: 

 
if concept C1 subsumes concept C2 then C1 is less secure than C2 – i.e. 
concepts higher up in the concept taxonomy will be considered less secure 
than concepts further down in the hierarchy 

 
This decision is basically an arbitrary, but a meaningful one.  Concepts higher in the 
taxonomy are less detailed specified as concepts further down.  From a security point 
of view concepts with a more detailed specification are preferred to concepts with a 
less detailed specification.  This is the case because the more information is given 
about a concept the less ambiguity is possible. 

Other definitions are possible as well; however it is not allowed to mix taxonomies, 
which represent different semantics, within a specification of a single policy. 

3.2  Definition of a Reference Ontology 

The objective of defining a reference ontology is to 
− define a common and re-usable terminology, 



 4 

− create definitions that make individual policies comparable 
− optionally define a primitive taxonomy explicitly 

It defines concepts and individuals, which can be refined and combined by subsequent 
policy descriptions using specialization and the definition of new concepts 
respectively.  These concepts and individuals define a core terminology, which ought 
to be accepted as a common framework.  It will be possible that several of such 
reference frameworks will be developed and these frameworks can be combined. 

3.3  Definition of an Individual Policy 

Finally concepts will be defined to create certificate policies.  These concepts use the 
reference ontology and therefore are based on the order relationship created through 
the definition of the taxonomy of the reference ontology. 

4  Case Study 

To verify the applicability of this approach a reference ontology using the framework 
defined in RFC 2527 [2] and two actual policies have been modeled using the DL-
system NEOCLASSIC [4].  The chosen policies are 

− Certificate Policies for the Government of Canada (GoC) Public Key 
Infrastructure [6] 

− Swedish SEIS Certificate Policy [7] 
The GoC PKI Policies actually define policies representing different assurance levels: 
rudimentary (1), basic (2), medium (3), high (4).  In the following examples policies 
for signature certificates will be identified with the prefixes GocSign[1234]. 

The reason for choosing these policies was, that all are based on the framework 
suggested in RFC 2527 - and therefore provide a possibility to make them 
comparable. 
 
The following examples will show this approach more specifically. 

4.1  Key Sizes 

The first example is rather simple; it is using the predefined properties of the build-in 
concept Integer. 

The core terminology based on RFC 2527 requires describing the minimal length 
of the used keys: 

( createConcept Rfc2527AsymmetricKeySizes 
    ( all keyLength Integer ) ) 



 5 

Concept Rfc2527AsymmetricKeySizes has one role named keyLength, which 
is of type Integer (a built-in NEOCLASSIC concept). 

The Government of Canada PKI policy defines the following restrictions on the 
above concept: 

( createConcept GocSign1AsymmetricKeySizes 
    ( and Rfc2527AsymmetricKeySizes 
          ( all keyLength ( minimum  512 ) ) ) ) 

Concept GocSign1AsymmetricKeySizes is a sub-class of Rfc2527Asym-
metricKeySizes with the additional restrictions that all values of the attribute 
keyLength must be greater-equal 512.  Similar restrictions apply for the remaining 
assurance levels: 

( createConcept GocSign2AsymmetricKeySizes 
    ( and Rfc2527AsymmetricKeySizes 
          ( all keyLength ( minimum 1024 ) ) ) ) 

( createConcept GocSign3AsymmetricKeySizes 
    ( and Rfc2527AsymmetricKeySizes 
          ( all keyLength ( minimum 1024 ) ) ) ) 

( createConcept GocSign4AsymmetricKeySizes 
    ( and Rfc2527AsymmetricKeySizes 
          ( all keyLength ( minimum 2048 ) ) ) ) 

The SEIS policy is denoted as: 

( createConcept SeisAsymmetricKeySizes 
    ( and Rfc2527AsymmetricKeySizes 
          ( all keyLength ( minimum  1024 ) ) ) ) 

Using the built-in properties of NEOCLASSIC's type Integer an ordering scheme is 
predefined:  Rfc2527AsymmetricKeySizes defines a class of instances with the 
attribute keyLength, which may take all integers as value; 
GocSign1AsymmetricKeySizes restricts the values to greater equal 512; 
GocSign[23]AsymmetricKeySizes restricts the values to greater equal 1024; 
GocSign4AsymmetricKeySizes restricts the values to greater equal 2048. 
Because of the properties of Integer the application of the subsumption reasoning 
service results in the following ordering: 

− Rfc2527AsymmetricKeySizes subsumes 
GocSign1AsymmetricKeySizes 

− which in turn subsumes GocSign[23]AsymmetricKeySizes 
− which in turn subsumes GocSign4AsymmetricKeySizes 

 
Given the defined semantics of the taxonomy end users can conclude that certificates 
issued under security policy GocSign4AsymmetricKeySizes can be relied on 
most. 
NEOCLASSIC also automatically determines that 



 6 

− GocSign[23]AsymmetricKeySizes is equivalent to SeisAsymmetric- 
KeySizes 

If the only requirement would be to compare numeric values the general subsumption 
mechanism would not be necessary - PICS [8] does something similar.  However, not 
all properties described in a policy can be represented by numeric values, which can 
be seen in the next examples. 

4.2  Key Pair Generation 

In order to support comparison operations it is necessary to define an order 
relationship amongst newly defined concepts. 

Example: a key pair generated in hardware might be more trustworthy than a key 
pair generated in software. 

( createConcept Rfc2527Sw     Rfc2527ModuleTypes ) 
( createConcept Rfc2527HwOrSw Rfc2527Sw ) 
( createConcept Rfc2527Hw     Rfc2527HwOrSw ) 

Above statements define that 

− Rfc2527Hw, Rfc2527HwOrSw, Rfc2527Sw are sub-classes of 
Rfc2527ModuleTypes 

− Rfc2527Sw subsumes Rfc2527HwOrSw 
− Rfc2527HwOrSw subsumes Rfc2527Hw. 

This taxonomy is now associated with a security related semantic: module types 
whose concept descriptions subsume others are less trustworthy than the module 
types associated with the subsumed concepts. 

Using this taxonomy Rfc2527KeyGeneration is defined with two attributes: 
caKeyGen and eeKeyGen (generation of keys for CA operations and generation of 
keys for end user operations respectively).  Both of which require values that belong 
to the concept Rfc2527ModuleTypes. 

( createConcept Rfc2527KeyGeneration 
    ( and ( all caKeyGen Rfc2527ModuleTypes ) 
          ( all eeKeyGen Rfc2527ModuleTypes ) ) ) 

The Government of Canada policy can be specified as: 

( createConcept GocSign2KeyGeneration 
    ( and Rfc2527KeyGeneration 
          ( all caKeyGen Rfc2527HwOrSw ) 
          ( all eeKeyGen Rfc2527HwOrSw ) ) ) 

( createConcept GocSign3KeyGeneration 
    ( and Rfc2527KeyGeneration 
          ( all caKeyGen Rfc2527Hw     ) 
          ( all eeKeyGen Rfc2527HwOrSw ) ) ) 



 7 

( createConcept GocSign4KeyGeneration 
    ( and Rfc2527KeyGeneration 
          ( all caKeyGen Rfc2527Hw     ) 
          ( all eeKeyGen Rfc2527Hw     ) ) ) 

NEOCLASSIC will determine that GocSign2KeyGeneration subsumes 
GocSign3KeyGeneration, which subsumes GocSign4KeyGeneration.  This 
can then in turn be interpreted in such a way that certificates associated with policy 
GocSign4 are more secure than certificates associated with policy GocSign2. 

The SEIS policy can be described as: 

( createConcept SeisKeyGeneration 
    ( and Rfc2527KeyGeneration 
          ( all caKeyGen Rfc2527HwOrSw ) 
          ( all eeKeyGen Rfc2527HwOrSw ) ) ) 

NEOCLASSIC will recognize SeisKeyGeneration as being equivalent to 
GocSign2KeyGeneration. 

5  Summary 

This paper shows how description logics can be used to represent certificate policy 
information.  It has been discussed how subsumption can be used in order to compare 
the quality and trustworthiness of certificates. 

Performing the case study of modeling different policy the following observations 
have been made: 

− The definition of a core terminology in form of an ontology is necessary.  
RFC 2527 actually provides some kind of framework that can be followed to 
specify such a reference terminology. 

− It also became apparent that policies that follow RFC 2527 are difficult to 
compare because this framework leaves too much room for interpretation and 
expressing different aspects. 

− This shows that users who want to compare the quality of certificates actually do 
face a major problem, as existing policies are difficult to compare. 

 
Planned future work comprises the investigation on the use of more expressive DL-
systems and how a DL-based language can best be syntactically represented. 

While performing this work it also became apparent that different domains are 
using varying semantic data models to represent authorizations, capabilities, rights, 
etc.  These different representations in turn require domain-specific processing 
algorithms.  It seems promising to study how a DL-based system can be used as a 
unifying scheme for a generic policy specification. 



 8 

6  References 

1. Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key 
Infrastructure: Certificate and CRL Profile, IETF RFC 2459, 1999. 

2. Chokhani, S., Ford, W.: Internet X.509 Public Key Infrastructure: Certificate 
Policy and Certification Practices Framework, IETF RFC 2527 (1999) 

3. Donini, F. M., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in Description 
Logics, CLSI Publications, Principles of Knowledge Representation and 
Reasoning, (1994) 193-238 

4. Borgida, A., Patel-Schneider, P. F.: A Semantics and Complete Algorithm for 
Subsumption in the CLASSIC Description Logic, Journal of Artificial Intelligence 
Research 1, (1994) 277-308 

5. Lassila, O., Swick, R.: Resource Description Framework (RDF): Model and 
Syntax Specification, W3C Recommendation, (1999) 

6. Treasury Board of Canada, Secretariat: Digital Signature and Confidentiality 
Certificate Policies for the Government of Canada Public Key Infrastructure“, 
Version 3.02 (1999) 

7. Secured Electronic Information in Society: SEIS Certificate Policy SeisS10-1: 1.0, 
High assurance general ID-certificate with private key protected in an electronic 
ID-card, Version 1.0 (1998) 

8. Krauskopf, T., Miller, J., Resnick, P., Treese, W.: PICS Label Distribution Label 
Syntax and Communication Protocols, W3C Recommendation (1996) 

9. Harmelen, F. van, Patel-Schneider, P., Horrocks, I., “Reference description of the 
DAML+OIL (March 2001) ontology markup language”, 
http://www.daml.org/2001/03/reference.html, March 2001 



A hybrid approach to extend DL-based

reasoning with concrete domains

Bo Hu1 Ernesto Compatangelo2 Ines Arana1

1 School of Computer and Mathematical Sciences,

The Robert Gordon University, Aberdeen, UK

2 Department of Computing Science, University of Aberdeen, UK

29th August 2001

Abstract

We propose a new hybrid approach which extends the expressive power

of DL languages by incorporating concrete domains. Without modifying

the DL inference algorithms, our approach uses the results of other non-

DL inferential engines to reason about terminological knowledge. Con-

straints involving concrete domains are reasoned and replaced with equiv-

alent concept restrictions exclusively based on the expressive power of the

DL languages selected as the DL-based inferential engines. Meanwhile, We

outline a system architecture that can support such an approach, which

involves a homogeneous knowledge representation and hybrid reasoning.

1 Extending existing DL-based system

Description Logics (DLs) are a well-known family of knowledge representation
and reasoning formalisms [6]. They are featured by the ability of building up
complex knowledge from basic notion of concepts (unary predicates) and roles
(binary relations). Various DL-based systems are also available to provide infer-
ences on such complex knowledge. Ever since they were introduced two decades
ago, DLs have always been characterised by a reasonable trade-o� between ex-
pressive power and computational complexity. However, this trade-o� has not
prevented the development of inferential engines based on expressive concept
languages, such as SHIQ [10].

So far, the major e�ort in extending the expressive power of DL systems
has been put in the enhancement or optimisation of the inference algorithms.
Various extensions have been proposed or implemented in the last decade. For
instance, concrete domains have been introduced into DLs which are normally

1



used to capture abstract domains [2]. A very expressive language which provides
reasoning services on individuals and limited concrete knowledge (concrete data
types) has also been introduced [5]. Despite their diversity, virtually all of the
above approaches, which are based on the ALC language [13], extend the original
ALC tableau inference algorithm in di�erent ways [3].

Modifying the inference algorithm normally results in a well-performed new
system with new or improved underlying inference capabilities. However, such
approach is not very good at handling situations where knowledge engineers want
to use the existing DL systems without touching anything �inside�, enhancing
them with proper extensions in a task-speci�c way. These situations provide
reasonable motivations for the introduction of our approach.

In this paper, we neither introduce a revised DL-based modelling language
nor a new inference algorithm, but a formal scheme which can be applied to
existing DL systems. In another word, we focus on a top-up system which can
be easily implemented and tailored to a particular application. Meanwhile, we
intend to use such a system as the workbench to explore the role of hybrid
approach in extending the expressive power of DLs.

Since we intend to keep our approach as portable and generic as possible, we
deliberately do not use certain features provided by some DL systems. For in-
stance, the CLASSIC Terminological Knowledge Representation and Reasoning
System (TKRRS) [4] allows users to query the domain of a particular role while
other TKRRS, such as FaCT [9] do not implement such mechanisms. Therefore,
we have decided to avoid using them.

2 Representing concrete domains

The abstract characters of DLs make it di�cult to naturally model the knowl-
edge on concrete domains such as arithmetic ones while in certain applications,
modelling on the concrete characters such as age, size, weight, etc is necessary.

Including concrete domains into DLs is always a very interesting issue. Previ-
ous e�orts such as ALC (D) [2] and ALCRP (D) [8] allow concrete properties to
be referred through functional role chains. For instance, if we want to constrain
that the service time of an apprentice is no more than 5 years, we can de-
�ned �apprentice� as Apprentice

:
= Humanu9employeru 5year(len-of-serv), where

len-of-sev is the functional role. The predicate 5year is de�ned using functions
written in the host programming languages. One way to implement it can be:
5year(x) = x � 5. The approach of ALC (D) provides DLs a perfect means to
describe the constraints on concrete domains, however, with high computational
complexity [11]. Such situation inspired us to contrive a systems with limited
increment on the complexity while obtain the similar expressive power, i.e. in
our case, the expressive power of the concrete properties.

2



In this paper, we focus on concrete domains which are formally de�ned as
followings:

A concrete domain D is a pair D =(�D, �D), where

1. �D is a set called domain,

2. �D is a set of predicates;

3. Each predicate P 2 �D is associated with an arity n and an n-ary predicate
PD � �n

D
.

For the sack of simplicity, we will restrict the predicates to those arithmetic
and comparison ones and the domain �D to a �nite one. Nevertheless, we are
quite aware that Boolean operators can be introduced easily to form more com-
plex expressions (e.g. meta-constraints). Furthermore, other concrete domains
will be considered in successive research.

In this section, we will give the syntax and semantics of our conceptual
modelling language. Since we are not restricted to a particular DL, here and in
the following, we take ALC for the demonstration purpose. Nevertheless, such
approach can be applied to virtually any DL systems.

Constructor Syntax Semantics (Interpretation)

Top (Universe) > �I

Bottom (Nothing) ? ;

Atomic Concept A AI � �I

Atomic Role R RI � �I ��I

Conjunction C u D CI \ DI

Disjunction C t D CI [ DI

Negation : C �I n DI

Universal quanti�cation 8R .C f c 2 �I j 8 d 2 �I : h c; d i 2 RI ! d 2 CI g

Existential quanti�cation 9R .C f c 2 �
I j 9 d 2 �

I
: h c; d i 2 RI ^ d 2 CI g

Table 1: ALC syntax and semantics

Let R be a role, H the constrained element, P the de�ned predicate name. In
addition to the syntax of ALC [13] (Table 1),

1. 8R:H in a concept, where H acts as the bridge between the abstract and the
concrete domains;

2. P(H1, .. , Hn) speci�es the constraint on H1, .. , Hn; and CE(H1, .. , Hn)
is the constraint expression which collects all the constraints on H1, .. ,
Hn or a subset of them;

3



Hi (i�n) which are referred to as Hybrid Concepts are de�ned by giving
each of them a unique name and mapping it to a subset of �D.

In order to associate abstract and concrete domains, we introduce an as-
signment function � : �I ! �D, i.e. �(HI) � �D which maps every Hybrid
Concept to a subset of �D. Thus, the semantics is given as

Let �I be the interpretation function, �(�) the assignment, and �I a non-
empty domain which is disjoint from �D. In addition to the semantics of ALC
[13] (Table 1),

1. (8R:H)I = fx 2 �I j 8y:hx; yi 2 RI ! y 2 HIg;

2. P(H1, : : : , Hn) is satis�ed i�

8s1 2 �(HI

1
); :::; 8sn 2 �(HI

n
):P (s1 ::: sn);

3. CE(H1, : : : , Hn) is satis�ed i�

8s1 2 �(HI

1
); :::; 8sn 2 �(HI

n
):

(8P 2 CE(H1; : : : ;Hn):P (s1 ::: sn)):

By introducing the assignment function between abstract and concrete do-
mains, we are able to embed concrete knowledge into so-called �Hybrid Con-
cepts�. Such embedding has non-trivial consequences, as referring to concrete
knowledge in concept de�nitions is no longer required. More speci�cally, those
inference algorithms which are designed to tackle with concrete domains become
unnecessary, in that �wrapper concepts� (please refer to Section 3) which are the
�incarnations� of Hybrid Concepts in DLs are introduced as atomic concepts and
treated exactly the same way as normal concepts. In stead of reasoning with
Hybrid Concepts, system replaces each of them with the wrapper concept. Mean-
while, the responsibility of reasoning with the concrete knowledge represented
by Hybrid Concepts is delivered to the reasoning systems other than DL ones.
For instance, in the above example the apprentice's length-of-service can be
modelled as Hybrid Concepts represented using universal quanti�cation in the
hybrid concept de�nitions.

Thus, we have apprentices de�ned as

Apprentice
:
= Human u 9employer u 8len-of-serv:YearApp;

where YearApp is Hybrid Concept. Moreover, we can specify slightly intricate

facts by putting constraints on YearApp. For instance, a specialist is de�ned as

specialist
:
= Human u 9employer u 8len-of-serv:YearSpl:

4



Note that: at current stage, we do not restrict the Hybrid Concepts to be succes-
sors of functional roles (features), but we require that the role value restriction
(8) is used instead of the role existence restriction (9). Ignoring the latter is
motivated by pragmatic considerations. To simulate partial constrained role
values, array-type variables may be required. However, partial orders among
arrays are not straightforward.

The speci�cations and restrictions on the Hybrid Concepts are given sepa-
rately as the conjunction of non-DL expressions:

YearApp � 5 ^ YearSpl � YearApp + 10:

In such an approach, more complex constraints than min and max can be spec-
i�ed. However, such constraints have to be global restrictions which hold uni-
versally. In another word, the constraints have to hold on a concept as a group
rather than considering each of its instance individually. For instance, as long as
one restricts the diameter of a certain type of cylinder, its cross-sectional area is
constrained. Also, if we restrict the age of pupils and the average age di�erence
between them and their parents, we constrain the age of the latter to a certain
range. Of course, such di�erence can exist in a much more complex way than
�20 years older�. Specifying the universal constraints separately, we are granted
the freedom to add, delete, change and satisfy them in a batch job.

Apparently, if we want to avoid the complex interaction between DL and non-
DL expressions, no available DL system can properly handle such expressions.
However, we can hide the actual inferences on the concrete domains from DL
systems. More speci�cally, we allow conceptual hierarchies to be simulated by
partial orders which are more general than subsumption relationships between
concepts. In our case, with the help of formal numeric systems, we can create
hierarchies of Hybrid Concepts (more detailed examples can be found in the
next section). As a result, DL system is informed of such hierarchies through
the subsumption relationship between the wrapper concepts. It then classi�es
the concepts (such as Apprentice, Specialist) which are built using the wrapper
concepts.

Here and in the following, we will use Constraint Programming Languages
(CPLs, also referred to as Constraint Solvers, CSs for short, in certain cases) for
illustration purposes. Nevertheless, we notice that the actual applications are
not restricted to such reasoning engines.

3 Tackling with the �wrapper concepts�

For the sake of simplicity and integrity, we use hybrid concept de�nitions to cap-
ture both abstract and concrete knowledge. However, as pointed in the previous

5



section, the latter has to be wrapped in order to be properly manipulated. Con-
cepts which contains wrapped concrete knowledge are referred to as normalised
concepts. They are de�ned in a broader sense as followings:

A normalised heterogeneous concept de�nition (normalised concept,
for short) is the result of a normalisation process that for every oc-
currence of Hybrid Concepts an atomic concept will be introduced
with which the former will be replaced. Such atomic concepts are
referred to as �wrapper concepts�.

Hybrid concept de�nitions contained in a Hybrid Knowledge Base (HKB) are
�rst analysed and processed by a parser which normalises the de�nitions and
generates three sets of statements. These three sets are de�ned as followings:

� a set of DL-oriented statements which do not exceed the expressive power
of the external DL system (warnings will be generated otherwise),

� a set of non-DL statements which express all the concrete knowledge,

� a set of Hybrid Concepts which connect DL and non-DL statements.

The hybrid characteristic of our approach is evident in the �polymorphism� of
Hybrid Concepts. More speci�cally, Hybrid Concepts are represented by wrapper
concepts in DL inferential engines while act as legal objects in non-DL reasoning
systems, (e.g. constrained variables in CPLs).

For instance, let us suppose that in certain state X married persons are
required to be 22-year-old or older. We de�ne concept Married as those �legally
married people�, Golden-Couples as �people who have already celebrated their
golden (50th) anniversary�, and Senior-Citizen as �people who are 70 and older�.
Together with other necessary concepts, we have

Married
:
=Human u (9has-spouse:Human) u (8age:AgeMar)

Golden-Couples
:
=Human u (9has-spouse:Human) u (8married-year:Year50)

u (8age:AgeGol)

Senior-Citizen
:
=Human u (8age:AgeSen)

(1)

Meanwhile, the restrictions on all the Hybrid Concepts are given as

AgeMar � 22

Year50 = 50

AgeSen � 70

(2)

6



Because the actual constraint exists between two sets of values, rather than
write an inequality, we use the relation between sets instead:

AgeGol � Year50 � AgeMar (3)

Now, by normalising the knowledge base we split the above de�nitions and
restrictions into three parts. First, we replace all the Hybrid Concepts with
�wrapper concepts� and adding new atomic concepts, AgeMar, AgeGol, AgeSen,
and Year50 into the DL part. Second, all �ages� acting as constrained vari-
ables are stored in the non-DL part together with their default domain [0..100]1

and the constraints de�ned in (2). Assuming that domain() is the assignment
function, we can specify for each Hybrid Concepts:

non-DL part:

domain(AgeMar) = [0::100]

domain(AgeGol) = [0::100]

domain(AgeSen) = [0::100]

: : :

(4)

Hybrid Concepts are also stored separately in the so-called �Link Pool�, (see
Figure 2 for the �Link Pool�).

The above statements are translated into the underlying modelling languages
of the external inferential engines. Such translations are carried out so as to
keep our approach portable and implementation-independent. Subsequently,
translated statements are loaded into external DL and CPL inferential engines.
According to the results provided by these di�erent engines, a reasoning co-
ordinator (see Figure 3) creates hierarchical structures of Hybrid Concepts, which
are then introduced into DL de�nitions through the �wrapper concepts�.

In our example, after loading the non-DL part (2)+(3)+(4) into an exter-
nal constraint solver, we obtain the reduced domains (e.g. domain(AgeGol) =
[72::100]). Using the results from both DL and non-DL inferential engines, we
create a new partial order among �ages� e.g. domain(AgeGol) � domain(AgeSen).
Therefore, the corresponding subsumption relationships can be speci�ed between
wrapper concepts (e.g. AgeGol v AgeSen). Sending such information back to
join the original DL de�nitions contained in the DL part in (1), we can con-
clude that, among other conclusions, in the state X, people who have already
celebrated their 50th anniversary are all senior citizens, i.e.

Golden-Couples v Senior-Citizen:

1We assume that human can not live out 100.

7



Thinking globally, such conclusion is evident in the sense that although people
get married and celebrate their Golden Anniversary (if there is one) in di�erent
ages, the ages of golden couples will always fall into the given range.

Link-Pool domain(Age-Sen)

DL non-DL
Age-Gol:[72..100]
Age-Sen:[70..100]
...

...

domain(Age-Gol)

MarriedSenior
-Citizen

Human

⊆

Golden-Couples

Age-Sen

Age-Gol

Figure 1: Reasoning with of �ages�

An obvious result of the above reasoning process is that, by satisfying the
constraints, we explicitly express some knowledge which otherwise, remains im-
plicit. In our case, by satisfying the constraints, our system can answer the query
that �Is Golden-Couples a Senior-Citizen�. Although the above �ages� example is
a relatively simple one, more complex hybrid knowledge can be represented and
processed using the same approach.

4 System Architecture

Since the heterogeneous knowledge used in our approach is evenly split into two
separate �homogeneous� components, we use a hybrid architecture to provide
the overall inference services. In our system (see Figure 2), the external DL
inferential engine and the non-DL one (e.g. a constraint solver in our case) are
used in a �peer to peer� way, i.e. neither of them acts as a client or a server with
regard to the other one.

However, several points need to be remarked. First, to ensure the portability
of our system, we introduce a decoupling between the DL and non-DL repre-
sentations on one side and the actual inferential engines on the other. More
speci�cally, the transformation process from a hybrid description to the one ac-
cepted by the selected DL or non-DL system is divided in two stages. During
a �rst stage, the hybrid language is split into its two homogeneous DL and
non-DL components. During a second stage, the two resulting components is
actually expressed in an implementation-independent �intermediate� language.

8



HKB

ext-DL

ext-CS

parser Results

non-DL
part

DL
part

Users

Front-end

Resoning
co-ordinatorlink pool

Figure 2: Hybrid architecture

Each of the two intermediate descriptions are subsequently transformed into
the ones accepted by the adopted inferential engines. In this way, we decou-
ple our system from the reasoners, thus allowing their modular replacement if
necessary. Second, a link pool is created to store related data about each newly
created �wrapper concept�, such as name, position, and so on. This informa-
tion can be used when �wrapper concepts� must be reclassi�ed according to
the results provided by the external inferential engines. Third, various systems
can be used as external inferential engines. In this paper, we only analyse the
situation where CPLs are selected to reason with numeric restrictions (such as
AgeGol � Year50 � AgeMar in our example) for the demonstration purposes.

to ext-CS

Results

to ext-DL

Reasoning
Co-ordinator

Link Pool

non-DL
(CS)
part

DL
part

translator1
+ dictionary

translator2
+ dictionary

Figure 3: Reasoning Co-ordinator

9



5 Conclusions

We give an overview of a novel approach to extend the expressive power of
existing DLs. This approach is based on a hybrid reasoning process. Thus, we
also propose an architecture to support it.

The advantages of a hybrid system are system portability, extensibility, and
robustness. Although similar approaches have been already proposed in the past
(e.g. TexLog [1]), our approach bene�ts from the heterogeneous characteristics
of Hybrid Concepts, which have a consistent semantics on both DL and non-DL
(e.g. CPLs) sides. Such a bridging facility also di�erentiates our approach from
other apparently similar ones.

At current stage, we haven't examined the complexity issue thoroughly. Nev-
ertheless, there is great potential to optimized our system by tailoring the DL
and CPLs inferential engines to particular applications. Such character is en-
hanced by selecting the external inferential engine with the right expressive
power. In practice, the overall performance of our system can be considered
separately. On the one hand, since we do not introduce any new constructors�
only new concepts, we expect that the complexity of the DL inference will be in
the same class as the original system. Moreover, we avoid the complex interac-
tion between abstract and concrete domains by introducing the latter through
�wrapper concepts�. On the other hand, the Finite Constraint Satisfaction Prob-
lems (FCSPs) are NP-complete as a general class [12]. Pragmatic results shows
that the performance varies from system to system [7]. However, selecting the
suitable CPLs is not the concern of this paper.

Because of the adopted hybrid approach, the overall performance of our
system could be in�uenced by the various translation and interfacing processes.
This might be particularly evident if several di�erent protocols must be used to
link each of them to the other as well as to the controller. This drawback may
not be a serious problem in all those cases which are not time-critical and in
which reasoning with heterogeneous knowledge is necessary. However, further
analysis on this issue is necessary.

References

[1] Andreas Abecker and Holger Wache. A layer architecture for the integration
of rules, inheritance, and constraints. In ICLP Workshop: Integration of
Declarative Paradigms, pages 12�22, 1994.

[2] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In J. Mylopoulos and R. Reiter, editors, Proceedings of
the Twelfth International Joint Conference on Arti�cial Intelligence IJCAI-
91, pages 452�457. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1991.

10



[3] F. Baader and U. Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 2001. To appear.

[4] Ronald J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, and
A. Borgida. �Reducing� CLASSIC to practice: Knowledge representation
theory meets reality. Arti�cial Intelligence 114, pages 203�237, 1999.

[5] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and
I. Horrocks. Enabling knowledge representation on the web by extend-
ing RDF schema. In Proceedings of the tenth World Wide Web conference
WWWW'10, 2001. To appear.

[6] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in description logics. In Gerhard Brewka, editor, Foun-
dation of Knowledge Representation, pages 191�236. CSLI-Publications,
1996.

[7] A. Fernández and P. M. Hill. A comparative study of eight constraint
programming languages over the Boolean and �nite domains. Journal of
Constraints, 5:275�301, 2000.

[8] Volker Haarslev, Carsten Lutz, and Ralf Möller. A description logic with
concrete domains and role-forming predicates. Journal of Logic and Com-
putation, 9(3), 1999.

[9] I. Horrocks. FaCT and iFaCT. In Proc. of the Int. Workshop on Description
Logics (DL'99), pages 133�135, 1999.

[10] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive
Description Logics. In Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR'99), number 1705
in Lecture Notes in Arti�cial Intelligence, pages 161�180. Springer-Verlag,
1999.

[11] C. Lutz. NExpTime-complete description logics with concrete domains. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of
the International Joint Conference on Automated Reasoning, number 2083
in Lecture Notes in Arti�cal Intelligence, pages 45�60, Siena, Italy, 2001.
Springer Verlag.

[12] Alan K. Mackworth and Eugene C. Freuder. The complexity of constraint
satisfaction revisited. Arti�cial Intelligence, 59(1�2):57�62, 1993.

[13] M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with
complements. Arti�cial Intelligence, 48(1):1�26, 1991.

11



POSITION PAPER

Some Requirements for Practical Modeling in

Dialogue Systems

Michael Knorr, Bernd Ludwig, G�unther G�orz

Computer Science Institute and FORWISS, Erlangen, Germany

Email: goerz@informatik.uni-erlangen.de

Abstract

The goal of this paper is to stimulate a discussion between description

logic system developers and users of description logic systems with an

emphasis on applications in the �eld of dialogue systems. It consists of two

parts: The �rst part is a report on experiences in temporal representation

and calendrical reasoning with description logics from which we derive

requirements on decription logics as a useful modelling tool.

The second part which is more speculative in nature complements

these considerations with further modelling tasks and corresponding ex-

pressive means modelling languages should meet to deal with them in a

satisfactory way.

1 Experiences from using Description Logic for

Time Representation

1.1 Introduction

Our research group has been involved in the development of speech dialogue

systems for many years. These include EVAR [8], a system for train informa-

tion, and EMBASSI1 an application for interacting with home entertainment

systems. A common feature of these and many other domains is that the ex-

change of temporal information is an essential part of the dialogue, be it the

departure time of a train or the start time of a TV programme. Therefore we

decided to investigate the syntax and semantics of German temporal expressions

independently of a speci�c domain.

1See the contribution by B�ucher et al. in this volume

1



Nearly all working speech dialogue systems, including the aforementioned

EVAR, model dialogues with some kind of �nite state machine. An evaluation

of dialogues from the EVAR system showed, that such systems lack the exibility

to deal with \meta-dialogues", like corrections or changes in the dialogue goal.

As a consequence we decided that the understanding of utterances should rely

on well-de�ned inference procedures to reason about the meaning of utterances

and the dynamic evolution of the dialogue structure. In order to obtain the

semantics of natural language utterances one should rely on a domain model,

de�ning the actions and objects salient to the application. We decided to use

Description Logics (DL) for the construction of the domain model[18].

This leads to the need to represent the semantics of temporal expressions

in Description Logics. When we started this work in 1999 we investigated the

suitability of four DL-systems, namely CICLOP [17], CLASSIC [19], FaCT [13],

and RACE [10] for the representation of temporal information. At this time

only CLASSIC ful�lled our requirements. In the following sections we describe

the representation of temporal information in our application and discuss what

requirements for DL systems arise from it. Implementors of DL-systems might

use them to consider what features their systems need to be useful for this

domain. Users wishing to employ DL-systems for tasks similar to ours, might

consider how far similar requirements apply to their own applications.

1.2 Representing Temporal Information

In this section we give a short description of our semantic model for temporal

expressions. The words in our lexicon correspond to concepts in the T-Box of

the DL system. When an utterance is parsed an individual is created in the

A-Box of the DL system for every word encountered in the expression. The

application of a grammar rule leads to either

� the creation of a new individiual, representing the whole phrase, with the

individuals representing its parts used as role �llers.

� the selection of a speci�c individual and its connection to the other indi-

viduals in the expression by roles.

� or the mergence of the individuals representing the parts of the expression.

In many cases this triggers (forward-chaining) rules to move information or

perform calculations whose results are added to the appropriate individuals.

The top concepts of our concept hierarchy are TimePoint, TimeInterval,

Duration and TimeUnit. Most temporal expressions describe a point in time.

They are represented by merging individuals of Clocktime (de�ning minute and

hour), PartOfDay, Date (de�ning day, month and year) and ISO-Date (de�ning

2



day of week and week). These concepts are therefore subsumed by TimePoint.

Duration represents the length of an interval and the distance between two time

points; intervals are represented by TimeInterval. The individuals representing

time units, such as minute, hour, day, are of concept TimeUnit. Details of the

representation can be found in [14].

1.3 Examples of Temporal Expressions

We now show in detail how the representation for a temporal expression is con-

structed. As example we take: am siebzehnten dritten zweitausend um dreiviertel

vier nachmittags (on the 17 March 2000 at quarter to four in the afternoon).

This expressions consists of three chunks, that could appear in any order. The

semantics of the chunks can also be constructed and merged in arbitrary order.

The construction of the semantic representation starts when the word siebzehn-

ten is parsed. An individual of concept Date is constructed and the attribute

has-day is �lled with 17. In the next steps the attributes has-month and

has-year are set to 3 and 2000. Now a test function (cf. [5]) checks that 17

March 2000 is indeed a valid date in the Gregorian Calendar. Additionally a

rule is triggered and calculates the day of week and the ISO week number. If

later a day of week would be added which is di�erent from the calculated one,

the system would detect that the expression is inconsistent.

The individual now contains the following information:

(AND TimePoint (FILLS has-year 2000)

(FILLS has-month 3)

(FILLS has-week 11)

(FILLS has-dow 5)

(FILLS has-day 17))

The representation of the clocktime phrase starts with the construction of the

individuals for dreiviertel and vier . Dreiviertel is represented as SpecialMinutesFrom

with has-timedistance 15 Minutes and has-direction -1. Vier is mapped

onto TraditionalClocktime with has-traditional-hour 4 and has-minute

0. A rule then derives that has-hour is (ONE-OF 4 16). To represent the

combination of dreiviertel and vier , the individual for the latter is �lled in the

has-basetime-attribute of the former. This triggers more information process-

ing rules. The resulting representation is:

(AND SpecialMinutesFrom (ALL has-hour (ONE-OF 3 15))

(FILLS has-traditional-hour 3)

(FILLS has-minute 45)

(FILLS has-timedistance 15)

(FILLS has-direction -1)

3



(FILLS has-basetime OtherIndividual)

(SAME-AS (has-basevalue)

(has-basetime has-traditional-hour)))

With OtherIndividual:

(AND TwentyfourClocktime TraditionalClocktime (ALL has-hour (ONE-OF 4 16))

(FILLS has-traditional-hour 4)

(FILLS has-minute 0))

The adverb nachmittags (in the afternoon) leads to the creation of an indi-

vidual of concept Afternoon. This places the constraint (ALL has-hour (MIN

12)(MAX 18)) on the has-hour-role.

When the individual chunks are processed the individuals representing them

are merged. The system can now infer that the hour is 15. The individual

representing the complete expression is (only an extract is displayed):

(AND SpecialMinutesFrom (FILLS has-year 2000)

(FILLS has-month 3)

(FILLS has-week 11)

(FILLS has-day 17)

(FILLS has-dow 5)

(FILLS has-hour 15)

(FILLS has-minute 45)

(FILLS has-traditional-hour 3)

(FILLS has-basetime OtherIndividual))

This is still a fairly simple expression in terms of processing. Some very

complex expressions look rather peaceful on the surface, consider drei Tage vor

Christi Himmelfahrt (three days before Ascension Day). First we need to know

the date of Ascension Day in a given year, than we need an algorithm that

subtracts three days from it, taking care of month boundaries. To get the date

of the holiday we either have to access an external calendar or add 39 days to

the date of Easter. There are a number of algorithms to calculate the date of

Easter, but they are all mathematically complex. We solved the problem by

using an external library for calendrical calculations[7].

1.4 Requirements for a Description Logic for Time Rep-

resentation

From our experience there are three main requirements for a DL-system to be

used for time representation. First it needs to be able to deal with numbers. All

information neccessary to represent time can be given using natural numbers.

4



For some expressions it would be useful to be able to use fractions (think of

quarter to for example). In CLASSIC it is possible, to integrate objects of the

host language, in this case LISP, in the Description Logic. Such host concepts

can for example be strings or numbers. We used a number of host concepts

based on LISP numbers.

Second we do not only want to represent natural numbers but also restrict

their range and use them in simple calculations. Individuals of the concept

hour, for instance, can be values between 0 and 24. It does not matter, from the

applicational point of view, if the range check is applied on roles or concepts.

An example for a simple calculation occurs, when we encounter dreiviertel vier .

Here we have to set the role has-hour to 3, decrementing 4 by 1.

Third we either need external function calls or we have to be able to do more

complex calculations within the DL-system. This starts with rather simple ex-

amples like testing if a date is valid and ends with very complex calculations for

example to �nd the date of Easter in a given year. As mentioned above, test

concepts as they have been introduced in CLASSIC, provide an appropriate ex-

tensible interface for reasoning with individuals. Intensional reasoning however

requires an extension of subsumption for test concepts.

In order to perform reasoning with time intervals, there are two possibilities

in principle, for both of which we are not aware of an operational implementa-

tion: Temporal Description Logics like T L � ALCF (cf. e.g. [3]) or a temporal

concrete domain based on Allen's interval algebra [2] as proposed e.g. by Kull-

mann [15].

A description logic allowing the use of concrete domains isALC(D)[4]. A well

known problem of this logic is that it can become undecidable when transitive

roles and role hierarchies are allowed (cf. e.g. [12]). However none of these are

necessary in our application. According to [11] the RACER-system will soon

o�er ALCQHIR+(D)
�. A constraint of this logic is, that it does not allow to

use feature chains. We have not investigated yet if we can dispense with them

in all cases; probably not for simulating feature uni�cation (sse below).

With respect to the use of concrete domains, an analogous situation exists

with spatial reasoning, for which there is also a need in a variety of applications.

Considerable research work has been done in this �eld, cf. [9], to quote at least

one prominent example. We had the opportunity to try out an experimental

implementation done by the Hamburg group, based on CLASSIC. In a project

in the �eld of historical cartography, modelling the Behaim Globe of 1492, we

implemented an extension to CLASSIC, based on test concepts, for topological

and directional reasoning [6]. However, a spatial reasoning service in a more

expressive DL system like RACE is an important desideratum.

5



2 Modelling Tasks and Further Requirements

for Expressive Means of Modelling Languages

2.1 Access and Debugging

A Description Logic system that is used in real applications should also ful�ll

two further requirements. First, the knowledge assembled in the A-Box of the

DL system should be easily accessible from the outside. We might, for example,

wish to use the temporal information we collected in the system in a database

query. For this we need to access the role-�llers of the individual containing

the information. In CLASSIC this can be accomplished easily with the function

(cl-fillers @i{Individualname} 'Rolename).

Second, a system should contain functions that allow easy debugging of the

knowledge base. In a complex knowledge base it is not always easy to see where

errors in the inference process arise. It is therefore useful to have functions that

print traces of the inference process and to be able to access the full informa-

tion collected for an A-Box individual at intermediate states of its assembly. In

CLASSIC this is facilated by the function (cl-ind-expr @i{Individualname}).

2.2 Simulating Feature Structure Uni�cation

In parsing with uni�cation grammars constraints are expressed as path equa-

tions. Instead of representing feature structures in a separate formalism, they

can as well be expressed in DL. As a small experiment using CLASSIC showed,

the uni�cation of feature structures can then be achieved by means of the same-

as construct. The experiment however was too small for a comparison of per-

formance times.

In the context of a complex computational linguistics application2, of course

one might debate whether the use of a uniform representation formalism ranging

over several processing levels is preferable as opposed to level-speci�c streamlined

representation formalisms. In the latter case, processing might be more eÆcient,

but at the cost of translating the resulting representations between levels. In

our particular case, on the semantic, application and discourse pragmatic levels,

DL is used anyway. So, it makes sense to consider whether the genuine feature

structure representation on the syntactic level could be replaced by a DL rep-

resentation, in particular, because syntactic analysis and semantic construction

with linguistic chunks are closely interlocked in an incremental fashion.

2cf. our contribution on a dialogue system application in this volume

6



2.3 A-Box Reasoning

Resolution of ambiguities, in particular on the semantic and pragmatic levels

as well as the completion of partial information { e.g. by means of clari�cation

subdialogues { is a central task in dialogue systems. The linguistic analysis

module of the dialogue system constructs semantic representations in the form

of Discourse Representation structures (DRSs) which are then being re�ned to

application speci�c DRSs using a formal domain ontology. These instantiated

DRSs are the A-Box items on which various reasoning steps must be applied to

solve the mentioned resolution and completion tasks. This means that beyond

the standard DL reasoning services application domain speci�c rules are to be

applied. Whereas some cases may be covered by forward-chaining rules as e.g.

provided by CLASSIC, the general case is to complete subgoals generated by

general dialogue goals. In other words, we need additional expressive means

for dialogue (step) planning. From an abstract point of view, a language like

Reiter's GOLOG language, which has been implemented on top of PROLOG,

would provide suÆcient means for this purpose. This in turn would lead to the

requirement of an A-Box reasoning facility on the basis of Horn rules (cf. CARIN

[16]).

As a framework for processing partial information, we found out that FIL [1]

meets all our requirements. We started with the implementation of a prover for

a Horn clause subset of FIL in Prolog technology, which has later been replaced

by a tableau-based reasoner, operating as a separate module. Whether such a

service can be integrated as a kind of augmented A-Box reasoner with a DL

system is an open question we pose to the DL community.

References

[1] N. Abdallah, The Logic of Partial Information. New York: Springer, 1995

[2] J.F. Allen, Maintaining Knowledge about Temporal Reference. CACM Vol.

26 Nr. 11, 832{843, 1983

[3] A. Artale, E. Franconi, Temporal Description Logics, 1998. To appear in:

Handbook of Time and Temporal Reasoning in Arti�cial Intelligence.

[4] F. Baader, P. Hanschke, A Scheme for Integrating Concrete Domains into

Concept Languages. Proceedings of the 12th International Joint Conference

on Arti�cial Intelligence, IJCAI-91, 452{457, Sydney, 1991.

[5] A. Borgida, C.L. Isbell, D.L. McGuinness, Reasoning with Black Boxes:

Handling Test Concepts in CLASSIC . Proceedings of the Description Log-

ics Workshop, 1996

7



[6] D.M. Deang, Geometrical and Logical Modelling of Cartographic Objects.

Master Thesis in Computational Engineering, Computer Science Institute,

University of Erlangen-Nuremberg, 2000

[7] N. Dershowitz, E.M. Reingold, Calendrical Calculations. Cambridge Uni-

versity Press, 1997

[8] F. Gallwitz et al., The Erlangen Spoken Dialogue System EVAR: A State-of-

the-Art Information Retrieval System. In: Proceedings of 1998 International

Symposium on Spoken Dialogue - ISSD'98 . Sydney, 1998, 19{26

[9] V. Haarslev, R. M�oller, Spatioterminological Resoning: Subsumption Based

on Geometrical Inferences. Proceedings of the Description Logics Work-

shop, 1997, 74{78

[10] V. Haarslev, R. M�oller, RACE User's Guide and Reference Manual Version

1.1 . Memo-HH-M-289/99, Computer Science Dept., University of Ham-

burg, 1999

[11] V. Haarslev, R. M�oller, Description of the RACER System and its Appli-

cations. To appear in: Proceedings International Workshop on Description

Logics (DL-2001), Stanford, 2001.

[12] V. Haarslev, R. M�oller, M. Wessel, The Description Logic ALCNHR+ Ex-

tended with Concrete Domains: A Practically Motivated Approach. Inter-

national Joint Conference on Automated Reasoning, IJCAR'2001, Siena.

Berlin: Springer, 2001

[13] I. Horrocks, FaCT Reference Manual Version 1.6 . Computer Science Dept.,

University of Manchester, 1998

[14] M. Knorr, Sprachliche und logische Zeitrepr�asentation f�ur Dialogsysteme.

Studienarbeit, Universit�at Erlangen-N�urnberg, 2000

[15] M. Kullmann, Applying Description Logics to Decision Support . Ph.D. the-

sis, LIIA-ENAIS, Strasbourg, 2001

[16] A.Y. Levy, M.-C. Rousset, Combining Horn rules and description logics in

CARIN . Arti�cial Intelligence Journal, Vol. 104, 1998, 165{209

[17] LIIA-ENSAIS, Usermanual for CICLOP Version 1.3b. Strasbourg, 1999

[18] B. Ludwig, G. G�orz, H. Niemann, An Inference-Based Approach to the

Interpretation of Discourse. First Workshop on Inference in Computational

Semantics (ICoS-1), Amsterdam. Jl. of Language and Computation, Vol. 1,

No. 2 (2000), 241{258

8



[19] L.A. Resnick et al., CLASSIC Description and Reference Manual for the

COMMON LISP Implementation: Version 2.3 . AI Principles Research De-

partment, AT&T Bell Laboratories, 1995

9



Interpolation based Assertion Mining

Stefan Schlobach�

Department of Computer Science, King's College London, Strand

London WC2R 2LS, UK

Email: schlobac@dcs.kcl.ac.uk

Abstract

In this paper we describe a new method for learning terminological

knowledge from assertions in description logic based knowledge bases. We

present assertion mining as the search for generalised decision concepts

(GDC) which can be used to conceptually de�ne classes of ABox individ-

uals. We show that GDCs can be constructed from ABox interpolants

and present tableau based algorithms.

In the recent past learning and knowledge discovery using description logics

(DL) have attracted much research. Least common subsumer (lcs){learning has

been the most popular approach [3, 1]. lcs{learner construct minimal descrip-

tions for the common properties of a set of positively classi�ed objects in the

ABox which do not instantiate any negative example. Unfortunately it is not al-

ways possible to construct such a minimal description, it can easily be seen that

the most speci�c concept does not exist in DLs with existential quanti�cation

and many authors discuss approximations of the knowledge about individuals

in knowledge base of di�erent expressivity [8].

In this paper we present assertion mining for ALC knowledge bases as an

alternative learning method which shifts the focus from learning of common

properties of a set of positive examples towards the construction of discerning

concepts which separate positive from negative examples.An advantage of such

an approach is that these discerning concepts exist for ALC even if the most

speci�c concept does not. As in lcs{learning we consider a supervised learning

scenario: the ABox of a DL knowledge base contains a number of objects which

are classi�ed into positive and negative examples. For each of these classes

(which we call decisions) we try to �nd terminological de�nitions which can be

used to classify new data using instance checking. A concept which preserves the

�This research has been supported by EPSRC grant GR/L91818.

1



classi�cation properties of a decision will be called generalised decision concept

(GDC).

GDCs can be constructed from ABox interpolants for the positive and neg-

ative examples. An ABox interpolant is a concept which discerns two elements

a and b in a knowledge base �, i.e. a concept for which a is an instance of, and

for the negation of which b is. We de�ne tableau based algorithms to calculate

ABox interpolants for positive and negative examples. It can be shown that if

such concepts exist in ALC, they can e�ectively be calculated even if the most

speci�c concepts do not exist.

Consider the following scenario: A hybrid knowledge base �Arr contains infor-

mation about patients su�ering from cardiac arrhythmia. A patient record might

include general assertions about gender, age or habits and family information,

e.g. pat1: Male u :Smoker u :Old u 9hasrelative.Arrhythmia, but also

technical details about ECG measures such as (pat1,pw):has pwave; pw::OK;

pat2:8has pwave.OK, and additional knowledge describing the patients' condi-

tions as diagnosed by some medical experts: pat1:Tachycardic; pat2:Healthy.

Assertion mining is the search for terminological axioms which formally de�ne

a medical condition and possible diagnostic criteria for these conditions.

We assume familiarity with description logic representation and reasoning

and will only briey introduce ALC. For concepts, which are interpreted as

subsets of a universe U , we will usually use the letters C and D, furthermore

R for roles, which are interpreted as binary relations over U . The constructors

conjunction C uD, disjunction C tD, negation :C and existential (9R:C) and
universal (8R:C) quanti�cation have the usual set theoretic interpretation. An

ABox A is a �nite collection of role ((a; b) : R) or concept (a : C) assertions,

where a and b denote individual objects of U . A TBox T is a set of axioms

C _=D or C _vD. A knowledge base � is now de�ned as the pair (T ;A). The

reasoning services which we use in this paper are subsumption � j= C v D

and instance checking a 2� C which semantically correspond to the subset

and element relation. In ALC, both subsumption and instance checking can

be reduced to ABox inconsistency � j= A = ?. Example 1 describes an ALC
knowledge base �arr with some standard reasoning.

1 Assertion Mining

We will briey de�ne the main terminology for assertion mining, but refer to

a detailed discussion in [12]. We assume that the ABox of a knowledge base1

consists of a signi�cant amount of possibly noisy information about individuals, a

description of the knowledge about the concrete elements in the world. Assertion

mining is the search for useful information in this data which is going to be

represented as terminological knowledge.

1To simplify the presentation we assume from now on that T is empty or unfoldable.

2



Example 1 A knowledge base �arr for arrhythmia diseases

For the knowledge base �arr = (Tarr;Aarr) there are some simple but non-trivial

examples of the reasoning processes:
Aarr = f pat1: Male u :Smoker u 8hasrelative.Tachycardic,

(pat1,pat1):hasrelative, pat1:8has pwave.OK

(pat2,pw):has pwave, pw::OK, pat2:Arrhythmia g

Tarr = f Tachycardic _v Arrhythmia u :LowHeartRate,

Hypertrophic _= Arrhythmia u 9has pwave.:OK g

1. ABox consistency: �arr j= A 6= ? but �arr j= A[fpat1::Arrhythmiag=?.

2. Subs.: �arr j= 8hasrelative.Tachycardicv 8hasrelative.LowHeartRate.

3. Instance checking: pat1 2�arrArrhythmia

For this purpose we consider a supervised learning approach on data which

is classi�ed into decision classes. Here classi�cation corresponds to instance

checking with respect to a set D = fD1; : : : ; Dng of concepts (which we call

decisions). Each object o in an ABox A which is an instance of at least one (but

possibly more) decisions o 2� Di in A is called classi�able. Let class(A) denote
the set of all classi�able objects in A. In �arr the ABox objects pat1 and pat2

are classi�able w.r.t. Darr =fTachycardic, Hypertrophicg, pw is not.

ABox mining is now the search for a formal de�nition for each of the decisions

in D which might eventually be added to the TBox after being evaluated and

assessed. In the process of the generalisation of a decision Di, we will call the

instances of Di in A the positive examples and all instances of the remaining

decisions negative examples.

Learning Criteria: Generalised Decision Concepts Whether a learned

concept LD can be used as a formal de�nition of a decision D depends on the

knowledge which is represented in the ABox A, the TBox T and on some addi-

tional learning criteria. The primary criterion we identi�ed in [12] is exclusive-

ness. A concept LD is exclusive w.r.t. a decisionD if for all objects a in class(A):
a 62� D) a 2� :LD. Exclusiveness implies \correctness" of classi�cation w.r.t.

the original decision, i.e. 8a 2� LD ) a 2� D, a condition traditionally known

as covering. Furthermore, exclusiveness garanties coveredness even for the case

that more information about elements in the ABox become available. Given the

Open World Assumption which usually underlies description logic based knowl-

edge representation, this seems to be a crucial requirement. Based on Rough Set

theory [10] we also show in [12] that exclusiveness provides a theoretical notion

of safe data which ensures good properties w.r.t. noisy data.

A learned concept LD should also be supported by the fact that there is

at least one example in the ABox, which is an instance of LD and we de�ne a

witness for LD as an individual a 2 D in class(A) such that a 2� LD.

3



De�nition 1.1 A generalised decision concept (GDC) for a decision D with

respect to a knowledge base � = (T ;A) and a set of decisions D is a concept,

which is exclusive w.r.t. D and D and for which a witness exists in A.

Given the de�nition of exclusiveness, the set of all GDCs for a decision Di is:

G(Di) = fC 2 DL j 9o 2 A : o 2� C and

8a 2 A : a 62� Di ) 8k 6=iDk 2 D (a 2� Dk ) a 2� :C):

There are several GDCs for the decision Tachycardic w.r.t. �arr among

them 8has pwave.OK and 8has pwave.OK t :Arrhythmia.

Since there is still a possibly in�nite number of GDCs we need to identify

an inductive bias to be able to formally de�ne the necessary restriction of the

hypothesis space.

Inductive Bias: Common Vocabulary and Polarity. There are di�erent

aspects related to the choice of the inductive bias underlying our approach and

we will discuss them briey.

Object abstraction. We use the fact that DLs have language features

(quanti�cation) to reason about objects in an abstract way, generalising from

particular examples to more general facts (e.g. existence of a role successor).

Common language with Discerning polarity. We take the designer

of the knowledge base and the witnesses they provided seriously, and relate the

learned concepts to the vocabulary of each example. The GDCs should consist

of the vocabulary which is both used in the examples and the counterexamples

and which is used in the same way (i.e. with the same polarity) as it was in the

examples. Consider the GDCs for Tachycardic as given above. The second

one contains the negated atomic concept Arrhythmia. But there is no reason

to assume that people without arrhythmia are likely to have a Tachycardic

condition. Since we know on the other hand that all of pat1's p waves are o.k

as opposed to pat2's it seems to be a legitimate inductive leap to assume that

8has pwave.OK is a good GDC for the decision Tachycardic. This bias is

usually not discussed in the learning literature, because it automatically applies

to most learning methods or is enforced using algorithms for missing attribute

values.

Maximality. In addition to these syntactical restrictions we have to dis-

cuss the semantical choice of GDCs according to the subsumption ordering. In

assertion mining the search space for possible learned concepts is de�ned by

comparison of examples with counterexamples which is then restricted through

the syntactical bias as described above. Since the learned concepts are de�ned

explicitely as to exclude the counterexamples it seems appropriate to choose the

maximal such concepts. This is a more or less arbitrary choice2 which is related

2The choice is arbitrary because you can either minimise the description of the positive or of

the negative examples. The �rst choice corresponds to the least common subsumer approach,

4



to ongoing research to deconstruct GDCs into sub-GDCs as an evaluation pro-

cedure. Such subconcepts of the GDCs will simplify the constructed GDCs and

can be used to �ne-tune the required level of generalisation.

It has to be mentioned that the algorithms presented in this paper do not

calculate maximal GDCs w.r.t. the subsumption hierarchy. For technical reasons

related to the de�nition of the common language of two examples we calculate

big but not maximal concepts. For a more detailed discussion we refer to [12].

In the remaining sections we will introduce interpolation for hybrid knowl-

edge representation systems and show how to use algorithms for interpolation

to calculate such big GDCs with common vocabulary.

2 Interpolation Methods for Assertion Mining

Having de�ned learning targets and an inductive bias to restrict the hypothesis

space it remains to provide e�ective algorithms to �nd some of these GDCs. We

sketch the mining process from input (a knowledge base and a set of decisions)

to the �nal output of new terminological axioms in the following section. This

process is based on ABox interpolation. Vaguely speaking, interpolants are

intermediate formulas semantically linking two other formulas using common

vocabulary. We extend this notion to incorporate implicit knowledge about

objects and polarity. The idea for the de�nition of the common language is

based on the traditional notion of Lyndon interpolation for �rst order logic [9].

The language occ(C) is a set of concept names occurring in C, labelled with

the quanti�er depth. A concept name A has positive (negative) polarity if it is

embedded in an even (odd) number of negations. The quanti�er depth describes

the sequence of roles the concept is quanti�ed over. ~occ(C) is a dual notion in

the sense that ~occ(C) = occ(:C). Formally:

occ(C)s = f(A;+)sg, ~occ(C)s = f(A;�)sg if C = A and A is an atom.

occ(C)s = ~occ(D)s, ~occ(C)s = occ(D)s if C = :D
occ(C)s = occ(C1)

s [ occ(C2)
s if C = C1 u C2 or C = C1 t C2

~occ(C)s = ~occ(C1)
s [ ~occ(C2)

s if C = C1 u C2 or C = C1 t C2

occ(C)s = occ(D)sR if C = 9R:D or C = 8R:D
~occ(C)s = ~occ(D)sR if C = 9R:D or C = 8R:D

Based on this language we de�ne concept interpolation, the basis for ABox

interpolation. From now on we will use the letters I and L for (Lyndon) inter-

polants. Concept interpolation holds for two concepts C and D where C v D if

there is a concept I such that C v I and I v D and occ(I) � occ(C) \ occ(D).

ABox interpolants connect the implicit positive knowledge about an objects a

with the negative information about an object b, thus highlighting the di�erences

the second to assertion mining.

5



between them. A concept I is an ABox interpolant for a and b i� a 2� I and

b 2� :I and where occ(I) � occ
A(a) \ ~occA(b). The language for an instance a

is the smallest set occA(a) such that occ(C) � occ
A(a) for all conceptual axioms

(a : C) 2 A, occA(b)R � occ
A(a) for all (a; b) : R 2 A and occ(C) � occ

A(a) if

(b; a) : R 2 A and b : 8R:C 2 A. ~occA(a) is de�ned similarily.

Partial ABox interpolation plays an intermediate role between concept and

ABox interpolation and relates knowledge about an object with a concept. A

concept L is a partial interpolant for an object o, an ABox A and a concept C

where o 2� C if and only if: C v L & o 2A :L and occ(L) � ~occA(o) \ occ(C):

Partial interpolation for an ABox A can be reduced to concept interpolation

by construction of a preprocessing complete ABox A0 for A [6]. Furthermore

ABox interpolation can be reduced to partial interpolation by propagation of

some properties of objects into the ABox.

2.1 Assertion Mining and Interpolation

It is easy to see that the set of ABox interpolants for a classi�ed object a 2� D

(the examples for D in A) with all other classi�ed individuals b 62� D (the

counterexamples) coincides with the set of generalised decision concepts.

Theorem 2.1 If there are any classi�ed individuals for a decision D and a

knowledge base �, G(D) is the set of all ABox interpolants for the classi�ed

objects a 2� D with respect to the set of all classi�ed instances b 62� D.

Every generalised decision concept C for a decision D is an ABox interpolant

for an a 2� D and all b 62 D because there is a witness and because b 2� :C for

all b 62� D. But every ABox interpolant I for a and all b obviously instantiates

every b into :I and since a 2� I is a witness, I is a generalised decision concept.

This theorem is the theoretical foundation for Assertion Mining using inter-

polation methods. The idea to use interpolants for assertion mining is simple:

the input is an ABox A and a set of decisions D and an empty or unfoldable

TBox. Preprocessing of the ABox might consist of unfolding, restriction to fewer

elements, retrieval of the instances of each decision, etc. For each decision D in

D a generalised decision concept for each decision (if de�ned) is calculated as

the disjunction over the GDCs for each possible witness. The GDCs for each

witness are just the conjunctions over the ABox interpolants of the witness with

all the negative examples. The evaluation of the GDCs could comprise statistical

analysis, decomposition into minimal subconcepts or involve human expertise.

Algorithm 2.1 summarizes the assertion mining procedure in pseudo code

where ABox LI(A; a; b) is a method to calculate an ABox interpolant for two

elements a and b with respect to an ABox A. Such a procedure for ALC will be

presented in the following section based on tableau calculi.

6



Algorithm 2.1 disc aboxmine(A;D) Discernibility based Assertion Mining

Input: An ABox A and a set of decisions D.

Output: A TBox T =
S
D2DfD _=GDg, where all GD are \almost" maximal GDCs.

A� := preprocess(A);

T := ?;

for all D 2 D

for all a 2 class(A�)

if a 2 D

for all b 2 class(A�)

if not b 2 D

if ABox LI(A�
; a; b) is de�ned

LI
a := LI

au ABox LI(A�
; a; b);

GDC := GDC t LI
a;

evaluate(GDC);

T := T [ fD _=GDCg;

return T ;

2.2 Tableau Methods for Interpolation.

The algorithms to calculate interpolants using logical tableaux presented here

follow the lines of [7]. Interpolants for ALC concept subsumption can be con-

structed from a fully expanded closed tableau collecting contradicting literals

on each branch using construction rules corresponding to traditional tableaux.

For ABox interpolants the more complex interaction between role and concept

assertions has to be taken into account. The solution is to preprocess the ABox

(according to [6]) and propagate the result of all possible inference steps into a

concept. This concept can then be used in an intermediate interpolation step

to represent the complete knowledge about one of the objects. Application of

the same preprocessing steps then allow a further reduction of the interpolation

problem to concept interpolation.

The algorithms described in this paper are based on tableau proof calculi. A

tableau is a set of branches, where each branch is a set of formulas. A formula is a

term of the form (a : C) or (a; b) : R where a and b are individual variables, C an

ALC concept and R a role name. A branch is closed if it contains two formulas

a : C and a : :C. The notions of open branch and closed and open tableau are

de�ned as usual. We will identify a branch B with the set of formulas � on the

branch and write � 2 B. To simplify the presentation of our rules, we assume

that all formulas are in negation normal form, i.e. negation is always pushed

down to the atomic level [13]. The algorithms to calculate ABox interpolant

are based on concept interpolation. Since concept interpolation is similar to

interpolation in modal logic K and because of the close connection between

ALC and K [11] we omit further details and assume that there is a procedure

7



concept LI(C1; C2) which calculates a concept interpolant for C1 and C2. Please

consult [12, 7] for further details.

(u): if (a : C1 uC2) 2 B, but not both (a : C1) 2 B and (a : C2) 2 B

then B
0 := B [ f(a : C1); (a : C2)g.

(t): if (a : C1 tC2) 2 B, but neither (a : C1) 2 B nor (a : C2) 2 B.

then B
0 := B [ fa : C1g and B

00 := B [ fa : C2g.

(8): if (a : 8R:C) 2 B and ((a; b) : R) 2 B but not (b : C) 2 B.

then B
0 := B [ fb : Cg:

Figure 1: Preprocessing Rules

Algorithms for ABox interpolation. To calculate ABox interpolants we

adapt the reduction introduced by Hollunder in [6]. In order to reduce ABox

interpolation to concept interpolation and partial ABox interpolation, we have

to preprocess the ABox using the rules in Fig. 1 until no more rule can be

applied. In this case the ABox is called preprocessing complete (ppc). Each

application of a rule triggers a construction rule for ABox Interpolants de�ned

in Algorithm 2.2, where the concepts Ba and Bc de�ned in De�nition 2.2 and

inconsistent(C) is the standard procedure for concept consistency.

Algorithm 2.2 ABox LI(B; a; b): ABox Lyndon Interpolation

Input: A branch B and two individuals a and b.

Output: ABox Lyndon interpolant for a and b.

apply(rule,B);

if rule = (u); (8)

fB0g := get new branches;

return ABox LI(B0
; a; b);

if rule = (t)

individual := get individual;

fB0
; B

00g := get new branches;

if individual = b return ABox LI(B0
; a; b) u ABox LI(B00

; a; b);

else return ABox LI(B0
; a; b) t ABox LI(B00

; a; b);

if rule = unde�ned;

if inconsistent(Bb) return >;

if there is an individual name c 6= b such that inconsistent(Bc) return ?;

else return propagate LI(B; a; b);

Hollunder shows that for any consistent ABox A there is a consistent ppc

ABox A0 derivable from A. We identify A0 with the set of all branches B build

from A. An ABox A is consistent if there is an open branch B in the ppc ABox

A0. For each of these open branches we now construct interpolants as de�ned in

Algorithm 2.3. For this purpose we explicitely collect the information about an

object a on a branch B into a concept Ba as de�ned below.

8



De�nition 2.2 The set CB
a

of concepts related to an individual a 2 B in a

branch B is de�ned as follows: C 2 CB
a

i�

� a : C 2 B, where C is a literal, i.e. a concept name or its negation,

� C = 9R:D and a : 9R:D 2 B if there is no R successor of a in B or

� C = 8R:D and a : 8R:D 2 B.

For an individual a 2 B and a branch B we de�ne a concept Ba =
d
C2CBa

C.

The concept Ba now contains all the conceptual information about an object

a inB and an interpolant for two objects a and b on a branch B is simply the con-

cept interpolant for Ba and :Bb. But there might still be interpolants relating

a role assertion (a; c) : R 2 B with a universal quanti�ed statement b : 8R:C.3

But this interpolant is just the R{quanti�ed negated partial interpolant for C

and c and to construct \almost" maximal interpolants, all possible partial inter-

polants of this kind are added disjunctively. To make sure that all interactions

between role successors are detected, we have to propagate simultaniously.

Algorithm 2.3 propagate LI(B; a; b): Propagation for ppc ABoxes

Input: A ppc consistent branch B and two individuals a and b.

Output: ABox Lyndon Interpolant for a and b with respect to B.

for all assertions ((b; d1) : R) 2 B to ((b; dn) : R) 2 B

for the set of all formulas fa : 8R:C1; : : : ; a : 8R:Cmg � B

which are universally quantifying over role R for a

if partial LI(B;C1 u : : : u Cm; fd1; : : : ; dng) exists

LI := LI t 8R:partial LI(B;C1 u : : : u Cm; fd1; : : : ; dng);

for all assertions ((a; c1) : R) 2 B to ((a; cn) : R 2 B

for the set of all formulas fb : 8R:C1; : : : ; b : 8R:Cmg � B

which are universally quantifying over role R for b

if partial LI(B;C1 u : : : u Cm; fc; : : : ; cng) exists

LI := LI t 9R::partial LI(B;C1 u : : : u Cm; fc1; : : : ; cng);

if concept LI(Ba;:Bb) exists

LI := LI t concept LI(Ba;:Bb);

return LI;

For partial interpolation for a set A of object a1 to an and a concept C

we again have to preprocess the branch and to expand the concept C until all

possible interactions are made explicit. Algorithm 2.4 describe the preprocessing

steps, Algorithm 2.5 the expansion of the concept into sets of concepts.

Note that the expansion of the concepts C 2 S can recursively trigger partial

interpolation. If all rules are exhaustively applied the partial interpolant is

3If e.g. c : :C 2 B, 9R::C is an ABox interpolant for a and b w.r.t. B.

9



Algorithm 2.4 partial LI(B;C;A): Disjunctive Partial Interpolation

Input: A consistent Branch B, a concept C and individuals A = fa1; : : : ; ang

Output: Disjunctive Partial LI L: C v L and there is an ai 2B :L for 1 � i � n

and occ(L) � ~occB(ai) \ occ(C)

apply(rule,B);

if rule = (t)

fB0
; B

00g := get new branches;

return partial LI(B0
; C; fa1; : : : ; ang) u partial LI(B00

; C; fa1; : : : ; ang);

if rule = (u); (8)

fB0g := get new branches;

return partial LI(B0
; C; fa1; : : : ; ang);

if rule = unde�ned;

return exp concepts(B; fCg; fa1; : : : ; ang);

just the concept interpolant for the conjunction over the concepts in S and the

disjunction of the negations of the Ba as de�ned in De�nition 2.2 for all a 2 A.

Algorithm 2.5 exp concepts(B; S;A): Partial Interpolation

Input: A ppc branch B, a set of concepts S and individuals A = fa1; : : : ; ang.

Output: Disjunctive partial LI: uC2SC v L and there is an ai 2B :L,

occ(L) � ~occB(ai) \ occ(C).

if there is a concept C1 uC2 such that S = S
0 [ fC1 uC2g

return exp concepts(B;S0 [ fC1g [ fC2g; A);

else if there is a concept C1 t C2 such that S = S
0 [ fC1 t C2g

return exp concepts(B;S0 [ fC1g; A) t exp concepts(B;S0 [ fC2g; A);

else if for all assertions (ai; bi) : R 2 B where ai 2 A

for all universally quanti�ed concepts 8R:C1; : : : ;8R:Cn 2 S over R

return exp concepts(B;S;A) t8R: partial LI(B;C1 u : : : u Cn;

S
i
fbig)

else return concept LI(uC2SC;:Ba1
u : : : u :Ban

);

In [12] soundness and completeness of the algorithms is shown in the sense

that whenever there is one, ABox LI(A; a; b) returns with an ABox interpolant

for a and b w.r.t A.

Let us consider the simple ABox A = f(a; a) : R; a : C; b : 8R:8R::Cg which
is preprocessing complete. To calculate an ABox interpolant for a and b we call

propagate LI(A; a; b) which returns 9R::partial LI(A; 8R::C; fag). A is still

ppc and exp concepts(A; f8R::Cg; fag) returns 8R:partial LI(A;:C; fag),
which is simply 8R:concept LI(:C;:C). But this is 8R::C and the ABox

interpolant for a and b is therefore just 9R::8R::C, which is 9R:9R:C.

10



2.3 Assertion Mining and Most Speci�c Concepts

Our algorithms avoid the construction of a representation for the ABox objects

and therefore of the most speci�c concepts4. This is possible due to exclusive-

ness, because all counterexamples are required to be instances of the negation of

all GDCs. This condition is much stronger than the one used for lcs{learning,

where counterexamples are only required not to be instances of the learned con-

cepts. ABox interpolation captures this notion of instance checking because it

corresponds to a search for possible contradictions between properties of posi-

tive and negative examples.5 But in ALC the set of possible contradictions in

an ABox is �nite even if ABox cycles exist. Note however, that the algorithms

described above do not terminate for description logics with number restrictions

or features because this would allow for dual contradicting in�nite chains. In

this case non-maximal approximations of GDCs have to be constructed and the

method will not be complete.

2.4 Practical Experience

Wellington' Kat implements interpolation based assertion mining as an ex-

tension of the hybrid knowledge representation systemWellington, which was

developped at King's College London [4]. First tests have been performed on

a knowledge base �arr for cardiac arrhythmia [5], which contains various infor-

mation including ECG data (based on 279 attribute values) about 452 patients,

which are classi�ed into 16 classes of cardiac arrhythmias. �arr has been cre-

ated by translation from a database available at [2] and has maximal relational

depth of three. First results indicate that assertion mining without evaluation

procedures over-generalises, i.e. too many previously unknown examples are in-

stances of too many GDCs. Another crucial problem is related to eÆciency and

complexity. Although the learning procedure itself is reasonably fast, the GDCs

which are constructed are too complex for eÆcient subsequent instance checking

of new objects. Both these issues are related and we are currently implementing

evaluation procedures to simplify GDCs which include symbolic (e.g. logical

decomposition) as well as statistical methods.

3 Conclusion

We have presented algorithms for assertion mining based on interpolation which

calculate generalised decision concepts even if the most speci�c concept for some

objects in the ABox do not exist. They allow for the construction of new termi-

4The most speci�c concept msc(a) for an ABox instance a is a minimal concept in the set

of concepts which instantiate a, i.e. a 2� C implies � j= msc(a) v C for all C 2ALC.
5In an ALC ABox A, an ABox individual a is an instance of a concept C if and only if

A [ fa : :Cg is inconsistent.

11



nological knowledge from classi�ed ABox instances. We are currently extending

the DL based Wellington representation and reasoning system with a Kat,

a knowledge acquisition tool based on the presented methods.

References

[1] F. Baader and R. K�usters. Least common subsumer computation w.r.t. cyclic

ALN -terminologies. In Proceedings of the 1998 International Workshop on De-

scription Logics (DL'98), 1998.

[2] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[3] W. Cohen and H. Hirsh. Learning the classic description logic: Theoretical and

experimental results. In KR-94, pages 121{133, Bonn, Germany, 1994.

[4] U. Endriss. Reasoning in description logic with wellington 1.0. In Proceedings

of the Automated Reasoning Workshop 2000, London, UK, 2000.

[5] H.A. G�uvenir, B. Acar, G. Demir�oz, and A. Cekin. A supervised machine learning

algorithm for arrhythmia analysis. In Computers in Cardiology, volume 24, pages

433{436, 1997.

[6] B. Hollunder. Consistency checking reduced to satis�ability of concepts in termi-

nological systems. Annals of Mathematics and Arti�cial Intelligence, 18:95{131,

1996.

[7] M. Kracht. Tools and Techniques in Modal Logic. North Holland, 1999.

[8] R. K�usters and R. Molitor. Computing most speci�c concepts in description logics

with existential restrictions. LTCS-Report 00-05, LuFG Theoretical Computer

Science, RWTH Aachen, Germany, 2000.

[9] R.C Lyndon. An interpolation theorem in the predicate calculus. Paci�c Journal

of Mathematics, 9:155{164, 1959.

[10] Z. Pawlak. Rough sets. International Journal of Computer and Information

Sciences, 11(5):341{356, 1982.

[11] Klaus Schild. A correspondence theory for terminological logics: preliminary

report. In Proceedings of IJCAI-91, 12th International Joint Conference on Ar-

ti�cial Intelligence, pages 466{471, Sidney, AU, 1991.

[12] S. Schlobach. Interpolation methods for assertion mining in hybrid knowledge

bases. Technical report, King's College London, 2001.

[13] M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-

plements. Arti�cial Intelligence, 48:1{26, 1991.

12



Ontology Language Integration:
A Constructive Approach

Heiner Stuckenschmidt1 and Jérôme Euzenat2

1Center for Computing Technologies,University of Bremen
email: heiner@tzi.de

2INRIA Rhônes-Alpes, Grenoble
email: Jerome.Euzenat@inrialpes.fr

Aug 24th 2001

Abstract

The problem of integrating different ontology languages has become of spe-
cial interest recently, especially in the context of semantic web applications. In
the paper, we present an approach that is based on the configuration of a joint
language all other languages can be translated into. We use description logics as
a basis for constructing this common language taking advantage of the modular
character and the availability of profound theoretical results in this area. We
give the central definitions and exemplify the approach using example ontolo-
gies available on the Web.

1 Motivation

It has been widely recognized that information systems benefit from the use of
formal ontologies. These ontologies are used to conceptualize and structure infor-
mation as well as to provide intelligent search facilities and integration methods for
remote information. While ontologies per se already support conceptualization and
structuring, applications like intelligent search and information integration make it
possible to reason about the knowledge specified in the ontologies. This requirement,
in turn requires the ontology to be implemented in a machine processable language.
Thus, the question of using ontologies in information systems is also a question of
the language used to encode the ontologies.

1



The World Wide Web is the largest information system ever. Its size and
heterogeneity makes ontology based search and integration even more impor-
tant than in other information systems. In this context the “semantic web”
[Berners-Lee et al., 2001] is mentioned. It is supported by the annotation of web
pages, containing informal knowledge as we know it now, with formal knowledge.
These documents can reference each other and depend on background knowledge.
Taking advantage of the semantic web requires to be able to gather, compare, trans-
form and compose the annotations. For several reasons (legacy knowledge, ease of
use, heterogeneity of devices and adaptability, timelessness), it is not likely that this
formal knowledge will be encoded in the very same language. The interoperability of
formal knowledge languages must then be studied in order to interpret the knowledge
acquired through the semantic web.

2 Language Construction

In the words of Tim Berners-Lee, the semantic web requires a set of languages of in-
creasing expressiveness and anyone can pick up the right language for each particular
semantic web application. This is what has been developed by the description logic
community over the years. Our approach focuses on ontology languages that rely on
these logics. The rationale for this choice is the following:

• The expressiveness and complexity of these languages has
been studied thoroughly and well-founded results are available
[Donini et al., 1991],[Donini et al., 1994]

• It has been shown that description logics provide a unifying framework for
many class-based representation formalisms [Calvanese et al., 1999].

• Description logic-based languages have become of interest in connection with
the semantic web. the languages OIL [Fensel et al., 2000] and the DAML lan-
guage [McGuinness et al., 2001] are good examples.

A modular family of languages is a set of languages made from a set of oper-
ations (constituting an algebraic base) that can be combined. Since the languages
have a similar kind of semantic characterization, it is easier to transform a represen-
tation from one language to another and one can take advantage of efficient provers
or expressive languages.

2



2.1 Customized Languages

Relying on description logics we already get a notion of a special language from
the combination of operators. Theoretical results from the field of description logics
provide us with the knowledge about decidable combinations of modeling primitives
and their complexity with respect to subsumption reasoning. Consequently, every
decidable combination of operators is a potential pattern that can be used to build the
ontology for a certain application. In the course of the engineering process we have
to handle different language patterns:

Reasoner Languagesthe languages that available reasoners are able to handle.

Legacy Languagesthe language a useful, already existing ontology is encoded in.

Acquisition Languages are languages needed to encode acquired knowledge.

The Goal Language describes a language that can act as an interlingua for the on-
tologies to be integrated. It represents a trade-offs between expressivity con-
straints of the legacy and acquisition languages and the complexity constraints
of the reasoner languages.

In order to find the goal language, we have to find an optimal trade-off between
the other languages involved. For this purpose we invent the notion of coverage for
languages. A languageL′ is said to cover a languageL, if there is a transformation
from L to L′ that preserves consequence. In particular, this is the case if all modeling
primitives fromL are also contained inL′ or can be simulated by a combination of
modeling primitives fromL′. We denote the fact thatL′ coversL asL ≺ L′. Using
the notion of coverage we can now define the customization task.

Definition: Customization Task. A customization task is defined by a triple
〈R,U ,A〉 whereR is a set of reasoner languages,U a set of legacy languages and
A a set of acquisition languages. The languageG is a solution of the customization
task if it is a language that is covered by a reasoner language and covers all reuse and
acquisition languages, or formally:

(1) ∃R ∈ R(G ≺ R) ∧ ∀P ∈ U ∪ A(P ≺ G)

This definition provides us with an idea of the result of the customization process.
However there are still many technical and methodological problems. We have to
investigate the nature of the covering predicate and develop an algorithm for deciding
whether one pattern covers the other. We introduce different notions of coverage of
increasing strength that is based on transformations in the next section.

3



2.2 A Transformation-Based Approach

The notion of transformability is a central one in our approach because it allows to
define the coverage relation. The simplest transformation is the transformation from
a logic to another which adds new constructors. The transformation is then trivial,
but yet useful, because the initial representation is valid in the new language.

In the following we useL andL′ to refer to languages. Languages are sets of
expressionsδ. Representationsr are sets of expressions which are normally subsets
of a language.rL ⊆ L. Transformations are mappingsτ : L → L′ from expressions
in one language to expressions in a different language.

Definition: Syntactic Coverage This trivial form of transformation provides us
with a first notion of coverage that reflects the situation, where a language is the
subset of the other:

(2) L�L′ ⇔def (L ⊆ L′)

For this case, one can define a special case of the coverage relation asL�L′

which means that one language is completely included in the other in a lexical sense.

If L 6 �L′, the transformation is more difficult. The initial representationr can be
restricted to what is (syntactically) expressible inL′. However, this operation (which
is correct) is incomplete because it can happen that a consequence of a representation
expressible inL′ is not a consequence of the expression of that representation in
L′. The preceding proposal is restricted in the sense that it only allows in the target
language, expressions expressible in the source language, while there are equivalent
non-syntactically comparable languages. This is the case of the description logic
languagesALC andALUE which are known to be equivalent while being defined by
different operators. For that purpose, one can defineL�L′ if and only if the models
are preserved.

Definition: Semantic Coverage Transformations that simulate some operators of
the transformed language using combinations of operators of the goal language imply
a notion of coverage that is based on the semantics of languages. LetI be the a
Tarskian style interpretation defining the model-theoretic semantics of expressions,
then we get

(3) L�L′ ⇔def ∀I : I |=L δ ⇒ I |=L′ τ(δ)

4



Another possibility is to definẽ� as the existence of an homomorphism between
the models of the original and the translated language. This property guarantees that
inconsistency of an expression in the target language implies inconsistency of the
expression in the source language.

Definition: Model-Theoretic Coverage Transformations that preserves inconsis-
tency which is an important property with respect to automated reasoning by guaran-
teeing that for every model in L there also is a model in L’ define a special case of
semantic coverage we refer to as model-theoretic coverage:

(4) L�̃L′ ⇔def ∀I∃I ′ : I |=L δ ⇒ I ′ |=L′ τ(δ)

Summarizing, the syntactic and semantic structure of a language family provides
us with different criteria for coverage all based on the notion of transformability.
These notions of coverage do not only give us the possibility to identify and prove
coverage, it also specifies a mechanisms for transforming the covered into the cover-
ing language. Therefore we not only show that a suitable language can be generated,
but also how the generation is being performed. In the next section we present an
implementation of this approach.

3 Transformation-based Ontology Integration

The notion of semantic interoperability is a very broad one since it covers almost
all application of the semantic web. Therefore we can only give evidence for the
usefulness of the ’family of languages’ approach by example.

3.1 An Example Problem

We chose a scenario where two existing ontologies should be integrated to establish a
semantic model of an application domain. The library of the DAML (DARPA Agent
Markup Language) contains an ontology describing a technical support application
(http://www.daml.org/ontologies/69). It is encoded in the DAML-ONT language.

<Class ID="ProductInfo">
<subClassOf

resource="#IncommingTechSupIncident"/>
<comment>

Technical Product Information
</comment>

5



</Class>

<Property ID="operatingSystem">
<domain resource="#ProductInfo"/>
<comment>Product’s Operating System</comment>
<default resource="MSWindows98"/>

</Property>

<Class ID="OperatingSystem">
<oneOf parseType="daml:collection">

<OperatingSystem ID="MSWindows2000"/>
<OperatingSystem ID="MSWindowsNT"/>
<OperatingSystem ID="MSWindows98"/>
<OperatingSystem ID="MSWindows95"/>

</oneOf>
<comment>

Available Operating Systems
</comment>

</Class>

<Property ID="productVersion">
<domain resource="#ProductInfo"/>
<comment>Product’s Version</comment>
<default resource="#PersonalEdition"/>

</Property>

<Class ID="ProductVersion">
<oneOf parseType="daml:collection">

<ProductVersion ID="EnterpiseEdition"/>
<ProductVersion ID="DeveloperEdition"/>
<ProductVersion ID="ProfessionalEdition"/>
<ProductVersion ID="SmallBusinessEdition"/>
<ProductVersion ID="PersonalEdition"/>

</oneOf>
<comment>Available Product Versions</comment>

</Class>

Since the DAML language borrows from description logics
[McGuinness et al., 2001, Horrocks, 2000] these constructs can easily be mapped on
operators available in the description logic markup languageDLML . Operators used in
this specific ontology are: atomic names, primitive classes, primitive roles, domain
restrictions for assigning properties to classes and the one-of operator for defining
classes by enumeration.

We assume that the technical support should be extended to include hardware as

6



well. For this purpose definitions of existing hardware products have to be integrated
into the ontology. As an example product we use the printer ontology that can be
found at http://www.ontoknowledge.org/oil/case-studies/. This ontology in turn is
encoded in the OIL language.

<oil:DefinedClass rdf:ID="HPLaserJet1100Series">
<rdfs:subClassOf>

<oil:And>
<oil:hasOperand>

<rdfs:Class
rdf:about="#HPLaserJetPrinter"/>

</oil:hasOperand>
<oil:hasOperand>

<rdfs:Class
rdf:about="#PrinterForPersonalUse"/>

</oil:hasOperand>
</oil:And>

</rdfs:subClassOf>
<oil:hasPropertyRestriction>

<oil:HasValue>
<oil:onProperty

rdf:resource="#PrintingSpeed"/>
<oil:toClass>

<rdfs:Class
rdf:about="#&quot;8 ppm&quot;"/>

</oil:toClass>
</oil:HasValue>

</oil:hasPropertyRestriction>
<oil:hasPropertyRestriction>

<oil:HasValue>
<oil:onProperty

rdf:resource="#PrintingResolution"/>
<oil:toClass>

<rdfs:Class
rdf:about="#&quot;600 dpi&quot;"/>

</oil:toClass>
</oil:HasValue>

</oil:hasPropertyRestriction>
</oil:DefinedClass>

The semantics of the OIL language is completely specified in terms of description
logics. Consequently, we can directly map OIL constructs. Operators used in the
model are the following: atomic names primitive concepts, primitive roles, existential

7



restrictions on slot values as well as conjunction for multiple inheritance and multiple
slot constraints.

3.2 Integrating the Specifications

Using the family of languages approach, we can integrate the two specifications in a
three step process. First, we have to analyze the language patterns (i.e. combinations
of operators) at hand then we customize a joint language. Finally, we define and im-
plement transformations between the language patterns and the customized language.

Step 1: Identify Language Patterns The languages used in the specifications
from our example, i.e. DAML and OIL are legacy language in the sense of the
language customization task. As these languages are very expressive, however for
our purpose we only have to care about the part of the languages that are really used
in the specifications (see last section).

The second kind of language patterns involved are defined by the aim of
providing reasoning support for the integrated specifications. A potential reasoner
is the FaCT system that supports two different languages,SHF and SHIQ
[Horrocks et al., 1999]. Figure 1 illustrates the expressiveness of these languages.

Figure 1: Expressiveness of languages supported by the FaCT reasoner

Step 2: Customize Integration Language The patterns identified in step 1 act as
an input for the language customization step. We denote the language pattern used
for the technical support ontology asLDAML, the one used for the printer ontology
as LOIL. In the example case, we can simply merge the two language patterns
into a language that consists of all operators found in both models. The resulting
integration language denoted asLG = LDAML∨LOIL simply consists of the union of

8



the operators present in the two ontologies described above.

We now have to test the suitability of the pattern. For the suitability we have
to check, whether the language covers the legacy languages, i.e. whetherLG ≺
LDAML ∧ LG ≺ LOIL holds. In this case this is obvious, becauseLG extends both
languages (LOIL�LG andLDAML�LG). Additionally we have to make sure that
LG is covered by at least one reasoner language (denoted asLSHF andLSHIQ). We
can show thatLSHIQ coversLG: Concept and role definitions as well as conjunc-
tion and existential restriction are already directly contained inALC while we have
to modelone-of anddomain using other operators of the languages supported.
This can be done in the very same way as it is done from OIL to the FaCT reasoner
[Horrocks, 2000]:

one-of can be simulated usingor , not andcdef , because the transformation from
(one− of C1 C2) to (or C1 C2) ∧ (cdef C1(not C2))) preserves inconsis-
tency checking by guaranteeing that for every model for the original expression
there is a model in the transformed one. We obtain consequence preservation
for this transformation.

domain can be simulated usingall andinv , because

R ≤ (domain C) ⇒ > ≤ (all (inv R) C)

Another way is to use general concept implications or the form:

(some R >) ≤ C

We omit the proofs due to the limited space.

Performing the first transformation we have to use theSHIQ reasoner, because
inverse roles are needed to simulate domain constraints. If we do the second
transformation, we can even rely on theSHF reasoner which supports a smaller
language and therefore is able to provide faster reasoning service.

To summarize, we can use the languageLG created by the transformations as a
language for the integrated model, because there is a reasoner language (i.e.LSHIQ)
that syntactically coversLG.

Step 3: Implement Languages and Transformations This can be refined in three
sub-steps:

1. Translating from DAML and OIL toLDAML andLOIL;

2. Providing the transformation fromLDAML andLOIL to LG;

9



3. Translating fromLSHIQ which syntactically coversLG to SHIQ.

The implementation has been carried out by transforming representations within
the DLML (Description Logic Markup Language [Euzenat, 2001]) framework. It
encodes many description logics in XML in a coherent way (same operators have
the same name) but does not offer CGI. Transformations are written in the XSLT
language for transforming XML documents.

The second one is more related to description logics. It first involves merging
both ontologies. This is easily achieved with a straightforward transformation, thanks
to the unified vocabulary provided byDLML [Euzenat, 2001](i.e. whatever the logic,
the syntax is the same). The resulting logic (LDAML∨LOIL) being syntactically
stronger thanLDAML andLOIL preserves the content of the ontologies as well as the
consequence relation.

Then, the resulting merged ontology, which cannot be directly translated into
SHIQ is converted by applying successive transformations (again written inXSLT).
The first one eliminates thedomain constructor and the second one eliminates
the one-of constructor in exactly the way put forth above. Because the first
transformation preserves the models and the second one preserves unsatisfiability,
then, the whole chain of transformation preserve consequence.

4 Discussion

We introduced an approach for ontology language integration that is based on the
construction of a joint language and the use of semantics-preserving transformations.
We outlined the idea of the approach and gave evidence for its suitability using a
real-life example.

The approach presented still has several shortcomings implying needs for further
research. First of all the nature of different kinds of transformation needs further
investigation. We envision a formal framework for proving special properties of
transformation in order to guarantee formal properties of the constructed language.
When thinking of a web of trust, it is also beneficial to annotation complete proofs to
transformed language as a guarantee that no information has been lost.

Another very important related problem which is completely out of the scope
of this paper is the problem of translating not only between different representation
languages, but also between different terminologies. An approach able to perform
translations between different ontologies on the language and the terminology level
would be a big step forward.

10



References

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web.Scientific Amercan, 284(5):35–43.

[Calvanese et al., 1999] Calvanese, D., Lenzerini, M., and Nardi, D. (1999). Unify-
ing class-based representation formalisms.Journal of Artificial Intelligence Re-
search, 11:1999–240.

[Donini et al., 1991] Donini, F., Lenzerini, M., Nardi, D., and Nutt, W. (1991). The
complexity of concept languages. In Sandewall, J. A., Fikes, R., and E., editors,
2nd International Conference on Knowledge Representation and Reasoning, KR-
91. Morgan Kaufmann.

[Donini et al., 1994] Donini, F., Lenzerini, M., Nardi, D., and Schaerf, A. (1994).
Deduction in concept languages: from subsumption to instance checking.Journal
of logic and computation, 4(4):423–452.

[Euzenat, 2001] Euzenat, J. (2001). Preserving modularity in xml encoding of de-
scription logics. In McGuinness, D., Patel-Schneider, P., Goble, C., and Mller, R.,
editors,Proc. 14th workshop on description logics (DL), Stanford (CA US), pages
20–29.

[Fensel et al., 2000] Fensel, D., Horrocks, I., Harmelen, F. V., Decker, S., Erdmann,
M., and Klein, M. (2000). Oil in a nutshell. In12th International Conference on
Knowledge Engineering and Knowledge Management EKAW 2000, Juan-les-Pins,
France.

[Horrocks, 2000] Horrocks, I. (2000). A denotational semantics for Standard OIL
and Instance OIL. http://www.ontoknowledge.org/oil/downl/semantics.pdf.

[Horrocks et al., 1999] Horrocks, I., Sattler, U., and Tobies, S. (1999). Practical rea-
soning for expressive description logics. InProc. of LPAR’99, pages 161–180.
Springer-Verlag.

[McGuinness et al., 2001] McGuinness, D., Fikes, R., Connolly, D., and Stein, L.
(2001). Daml-ont: An ontology language for the semantic web.IEEE Intelligent
Systems. Submitted to Special Issue on Semantic Web Technologies.

11


