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Abstract

We present an empirical analysis of optimization
techniques devised to speed up the so-called TBox
classification supported by description logic sys-
tems which have to deal with very large knowledge
bases (e.g. containing more than 100,000 concept
introduction axioms). These techniques are inte-
grated into the RACE architecture which imple-
ments a TBox and ABox reasoner for the descrip-
tion logic ALCNHR+ . The described techniques
consist of adaptions of previously known as well
as new optimization techniques for efficiently cop-
ing with these kinds of very large knowledge bases.
The empirical results presented in this paper are
based on experiences with an ontology for the Uni-
fied Medical Language System and demonstrate a
considerable runtime improvement. They also in-
dicate that appropriate description logic systems
based on sound and complete algorithms can be
particularly useful for very large knowledge bases.

1 Introduction

In application projects it is often necessary to deal with
knowledge bases containing a very large number of axioms.
Furthermore, many applications require only a special kind
of axioms, so-called concept introduction axioms. Usually
it has been argued that only systems based on incomplete
calculi can deal with knowledge bases containing more than
100,000 axioms of this kind. In this contribution we present
an empirical analysis of optimization techniques devised to
improve the performance of description logic systems applied
to this kind of knowledge bases. The analysis is based on the
RACE1 architecture [Haarslev and Möller, 2000a] which sup-
ports inference services for the description logic ALCNHR+

[Haarslev and Möller, 2000b].2

As example knowledge bases we consider reconstructions
of important parts of the UMLS (Unified Medical Language
System) [McCray and Nelson, 1995] by using description
logic representation techniques. The reconstruction is de-
scribed in [Hahn et al., 1999; Schulz and Hahn, 2000] and

1URL: http://kogs-www.informatik.uni-hamburg.de/˜race/
2A convenient pronunciation of ALCNHR+ is ALC-nature.

Syntax Semantics
Concepts

A AI ⊆ ∆I (A is a concept name)
¬C ∆I \ CI

C 	 D CI ∩ DI

C � D CI ∪ DI

∃R .C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R .C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI}‖ ≥ n}
∃≤m S {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI}‖ ≤ m}
Roles

R RI ⊆ ∆I × ∆I

‖ · ‖ denotes the cardinality of a set, S ∈ S , n,m ∈ N, n > 0.

TBox Axioms
Syntax Satisfied if

R ∈ T RI = (RI)+

R � S RI ⊆ SI

C � D CI ⊆ DI

ABox Assertions
Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

Figure 1: Syntax and Semantics of ALCNHR+ .

introduces a specific encoding scheme that uses several con-
cept introduction axioms which represent subset as well as
composition aspects of conceptual descriptions (words) men-
tioned in the UMLS metathesaurus.

The paper is structured as follows. We first introduce the
syntax and semantics of ALCNHR+ and characterize the
form of axioms occurring in the UMLS knowledge bases. Af-
terwards we describe the following five complementary op-
timization techniques: (1) topological sorting for achieving
a quasi definition order; (2) a method to cluster siblings in
huge taxonomies; (3) a technique for efficiently addressing
so-called domain and range restrictions; (4) exploitation of
implicit disjointness declarations; (5) subset/superset caching
for increasing runtime performance and reducing memory
requirements. The effectiveness of these techniques is as-
sessed using the empirical results obtained from processing
the UMLS knowledge bases.

We briefly introduce the description logic (DL)
ALCNHR+ [Haarslev and Möller, 2000b] (see the ta-
bles in Figure 1) using a standard Tarski-style semantics.
ALCNHR+ extends the basic description logic ALC by



role hierarchies, transitively closed roles (denoted by the set
T in Figure 1), and number restrictions. Note that the com-
bination of transitive roles and role hierarchies implies the
expressivity of so-called general inclusion axioms (GCIs).
The concept name � is used as an abbreviation for C � ¬C.

If R,S are role names, then R � S is called a role inclusion
axiom. A role hierarchy R is defined by a finite set of role
inclusion axioms. The concept language of ALCNHR+ syn-
tactically restricts the combinability of number restrictions
and transitive roles due to a known undecidability result in
case of an unrestricted syntax [Horrocks et al., 1999]. Only
simple roles may occur in number restrictions. Roles are
called simple (denotes by the set S in Figure 1) if they are
neither transitive nor have a transitive role as descendant.

If C and D are concept terms, then C � D (generalized con-
cept inclusion or GCI) is a terminological axiom. A finite set
TR of terminological axioms is called a terminology or TBox
w.r.t. to a given role hierarchy R.3 A terminological axiom of
the form A � C is called a concept introduction axiom and C
is called the primitive (concept) definition of A if A is a con-
cept name which occurs only once on the left hand side of the
axioms contained in a TBox T . A pair of GCIs of the form
{A � C, C � A} (abbreviated as A

.= C) is called a concept
definition axiom and C is called the (concept) definition of A
if A is a concept name which occurs only once on the left
hand side of all axioms contained in a TBox T .

An ABox A is a finite set of assertional axioms as defined
in Figure 1. The ABox consistency problem is to decide
whether a given ABox A is consistent w.r.t. a TBox T and
a role hierarchy R. An ABox A is consistent iff there exists
a model I that satisfies all axioms in T and all assertions in
A. Subsumption between concepts can be reduced to con-
cept satisfiability since C subsumes D iff the concept ¬C 	 D
is unsatisfiable. Satisfiability of concepts can be reduced to
ABox consistency as follows: A concept C is satisfiable iff
the ABox {a :C} is consistent.

The DL reconstruction of important parts of the UMLS in-
troduces a specific scheme where a set of concept introduc-
tion axioms is used to represent subset as well as composi-
tion aspects of conceptual descriptions (words) mentioned in
the UMLS metathesaurus. For instance, for the notion of a
‘heart’, the following concept introduction axioms for heart
structures (suffix ‘s’), heart parts (suffix ‘p’) and heart enti-
ties (no suffix) are declared (see [Schulz and Hahn, 2000] for
details):

ana heart � ana heart s 	 ana hollow viscus 	
umls body part organ or organ component

ana heart s � ana hollow viscus s 	
ana cardiovascular system p

ana heart p � ¬ana heart 	 ana heart s 	
∃≥1 anatomical part of ana heart

Note the implicit disjointness declared between
ana heart p and ana heart. The following role axiom
is generated as well.

anatomical part of ana heart �
anatomical part of ana hollow viscus

3The reference to R is omitted in the following if we use T .

It is beyond the scope of this paper to discuss the pros and
cons of specific modeling techniques used in the UMLS re-
construction. In the next section, optimization techniques for
efficiently dealing with these kinds of knowledge bases are
presented.

2 Optimization Techniques

Modern DL systems such as RACE offer at least two
standard inference services for concept names occurring in
TBoxes: classification and coherence checking. Classifica-
tion is the process of computing the most-specific subsump-
tion relationships between all concept names mentioned in
a TBox T . The result is often referred to as the taxonomy
of T and gives for each concept name two sets of concept
names listing its “parents” (direct subsumers) and “children”
(direct subsumees). Coherence checking determines all con-
cept names which are unsatisfiable.

Expressive DLs such as ALCNHR+ allow GCIs which
can considerably slow down consistency tests. A true GCI is
a GCI of the form C � D where C is not a name and C � D is
not part of a pair representing a concept definition axiom. A
standard technique (GCI absorption) [Horrocks and Tobies,
2000] which is also part of the RACE architecture performs
a TBox transformation which precedes classification and co-
herence checking. The axioms in a TBox are transformed in
a way that true GCIs can be absorbed into (primitive) concept
definitions which can be efficiently dealt with by a technique
called lazy unfolding (e.g. see [Baader et al., 1994]). Lazy
unfolding dynamically expands a concept name by its (prim-
itive) definition during an ABox consistency test. The true
GCIs remaining after the GCI absorption are referred to as
global axioms.

Our findings indicate that state-of-the-art techniques cur-
rently employed for fast classification of TBoxes have to be
extended in order to cope with very large knowledge bases of
the above-mentioned kind. In the following we describe these
extensions.

2.1 Topological Sorting for Quasi Definition Order

For TBox classification the RACE architecture employs the
techniques introduced in [Baader et al., 1994]. The parents
and children of a certain concept name are computed in so-
called ‘top search’ and ‘bottom search’ traversal phases, re-
spectively. These phases can be illustrated with the following
example. Assume a new concept name Ai has to be inserted
into an existing taxonomy. The top search phase traverses the
taxonomy from the top node (�) via the set of children and
checks whether Ai is subsumed by a concept node. Basically,
if Ai is subsumed by a node Aj, then the children of Aj are
traversed. The top search phase determines the set of parents
of Ai. When the top search phase for Ai has been finished, the
bottom search phase for Ai analogously traverses the taxon-
omy from the bottom node via the set of parents of a node.
The bottom search phase determines the set of children of Ai.

Using the marking and propagation techniques described
in [Baader et al., 1994] the search space for traversals can
usually be pruned considerably. It is always advantageous to



avoid as many traversals as possible since they require the use
of “expensive” subsumption tests. This is even more impor-
tant for very large TBoxes.

Let us assume, a TBox to be classified can be transformed
such that no global axioms remain but cyclic (primitive) con-
cept definitions may exist. According to [Baader et al., 1994]
we assume that a concept name A ‘directly uses’ a concept
name B if B occurs in the (primitive) definition of A. The
relation ‘uses’ is the transitive closure of ‘directly uses.’ If
A uses B then B comes before A in the so-called definition
order. For acyclic TBoxes (i.e. the uses relation is irreflexive)
containing concept introduction axioms only, the set of con-
cept names can be processed in definition order, i.e. a con-
cept name is not classified until all the concept names used
in its (primitive) definition are classified. In this case the set
of children of a concept name to be inserted consists only of
the bottom concept. Thus, if concept names are classified in
definition order, the bottom search phase can safely be omit-
ted for concept names which have only a primitive definition
[Baader et al., 1994].

In order to avoid the bottom search phase it is possible to
impose a syntactical restriction on TBoxes for less expressive
DLs, i.e. to accept only concept axioms in definition order,
i.e. the (primitive) definitions do not include forward refer-
ences to concept names not yet introduced. However, for an
expressive DL such as ALCNHR+ , which offers cyclic ax-
ioms and GCIs, in general, the bottom search phase cannot be
skipped.

The UMLS TBoxes contain many forward references oc-
curring in value (e.g. ∀R .C) and existential restrictions (e.g.
∃R .C). Thus, the definition order of concept names has to
be computed in a preprocessing step. As a refinement we
devised a slightly less strict notion of definition order which
works more efficiently. We assume a relation ‘directly refers
to’ similar to ‘directly uses’ but with references occurring in
the scope of quantifiers not considered. This simplification
reduces the overhead caused by computing the ‘directly refers
to’ relation. It is correct since subsumption between concept
names with primitive definitions cannot be caused via quan-
tifiers occurring in the concept definitions. Again ‘refers to’
is the transitive closure of ‘directly refers to’. The ‘refers
to’ relation induces a partial order relation on sets of con-
cept names. All concept names involved in a cycle become
members of one set while the remaining concept names form
singleton sets. A topological sorting algorithm is used to se-
rialize the partial order such that a total order between sets of
concept names is defined. This serialization is called a quasi
definition order.

During the classification of a TBox with RACE the sets
of concept names are processed in quasi definition order. For
each singleton set whose member has a primitive concept de-
finition, the bottom search can be skipped. Let A � C be a
concept introduction axiom and A is to be inserted into the
taxonomy. The ‘refers to’ relation and the quasi definition
order serialization ensure that either all concept names that
are potential subsumees of A are inserted after A has been
inserted into the subsumption lattice or the bottom search is
indeed performed. The quasi definition order is conservative
w.r.t. the potential subsumers (note that ALCNHR+ does not

support inverse roles). Moreover, in a basic subsumption test
the subsumption lattice under construction is never referred
to. Thus, strict definition order classification is not necessary.

Note that in [Baader et al., 1994] no experiments are dis-
cussed that involve the computation of a serialization given
a TBox with axioms not already in (strict) definition order.
Topological sorting is of order n+e where e is the number of
given ‘refers to’ relationships. Thus, we have approximately
O(n log n) steps while the bottom search procedure requires
O(n2) steps in the worst case.

2.2 Adaptive Clustering in TBoxes

Experiments with the UMLS TBoxes showed that the well-
known techniques described in [Baader et al., 1994] exhibit
considerable performance deficiencies in case of (rather flat)
taxonomies where some nodes have a large number of chil-
dren. Therefore, in the RACE architecture a special cluster-
ing technique is employed.

If the top search phase finds a node (e.g. A) with
more than θ children, the θ children are grouped into a
bucket (e.g. Anew ), i.e. a (virtual) concept definition ax-
iom Anew

.= A1 � . . . � Aθ is assumed and Anew is inserted
into the subsumption lattice with {A} being its parents and
{A1 . . .Aθ} being its children. Anew is also referred to as a
bucket concept. Note that bucket concepts (e.g. Anew ) are
considered as virtual in the sense that the external interface
of RACE hides the names of virtual concepts in a transparent
way.

Let us assume, a certain concept name B is to be inserted
and a node A with its children {A1, . . . ,Aθ} is encountered
during the top search phase. Instead of testing for each child
Ai (i ∈ {1..θ}) whether Ai subsumes B, our findings suggest
that it is more effective to initially test whether the associated
virtual concept definition of Anew does not subsume B us-
ing the pseudo model merging technique (e.g. see [Horrocks,
1997; Haarslev et al., 2001]) which provides a ‘cheap’ and
sound but incomplete non-subsumption test based on pseudo
models derived from concept satisfiability tests. Since in most
cases no subsumption relation can be found between any Ai

and B, one test possibly replaces θ “expensive” but wasted
subsumption tests. On the other hand, if a subsumption rela-
tion indeed exists, then clustering introduces some overhead.
However, since the UMLS TBoxes mostly contain concept
introduction axioms, the pseudo model of ¬Anew being used
for model merging is very simple because the pseudo model
basically consists only of a set of negated primitive concept
names (see [Haarslev et al., 2001] for further details about
pseudo model merging in RACE). The adaptive clustering is
designed in a way that it still works even if a quasi definition
order cannot be guaranteed (e.g. due to the presence of de-
fined concepts or GCIs). Therefore, a bucket becomes obso-
lete and has to be removed from a concept node if a member
of this bucket gets a different concept node as parent.

For best performance, the number of children to be
kept in a bucket should depend on the total number of
known children for a concept. However, this can hardly
be estimated. Therefore, the following adaptive strategy
is used. If more and more concept names are “inserted”



into the subsumption lattice, the number of buckets in-
creases as well. If a new bucket is to be created for a
certain node A and there are already σ buckets clustering
the children of A, then two buckets (those buckets with
the smallest number of children) of A are merged. For in-
stance, merging of the buckets Anew

.= A1 � . . . � An and
Bnew

.= B1 � . . . � Bm means that the bucket Anew is “re-
defined” as Anew

.= A1 � . . . � An � B1 � . . . � Bm and the
bucket Bnew is reused for the new bucket to be created (see
above).4 Whether hierarchical clustering techniques lead to
performance improvements is subject to further research.

The current evaluation of clustering with buckets uses a
setting with θ = 10 and σ = 15.

2.3 Dealing with Domain and Range Restrictions

Some UMLS TBoxes contain axioms declaring domain and
range restrictions for roles. For instance, the domain C of
a role R can be determined by the axiom ∃≥1 R � C and
the range D by the axiom � � ∀R .D. Domain restric-
tions increase the search space during a consistency test
since they have to be represented as disjunctions of the form
(¬∃≥1 R) � C.

It is possible to transform a domain restriction of
the form ∃≥1 R � C into an equivalent inclusion axiom
of the form ¬C � ∃≤0 R and to absorb the transformed
axiom if no inclusion axiom of the form C � . . . ex-
ists. However, the transformation is not applicable to
the UMLS TBoxes since they contain domain restrictions
(e.g. ∃≥1 anatomical part of ana heart � ana heart p) as
well as inclusion axioms (e.g. ana heart p � ¬ana heart	
ana heart s 	 ∃≥1 anatomical part of ana heart) violating
the above-mentioned precondition. Hence, in order to apply
the topological sorting optimization, it was necessary to in-
corporate domain restrictions into an ABox consistency test
because global axioms may not exist in order to apply the
topological sorting technique.

If GCIs representing domain restrictions for roles have
been absorbed, they are dealt with by RACE with a gener-
alized kind of lazy unfolding. Whenever a concept of the
form ∃R .D or ∃≥n R is checked for unfolding, it is replaced
by C 	 ∃R .D or C 	 ∃≥n R if a GCI of the form ∃≥1 S � C
has been absorbed (R a sub-role of S). This technique is
valid since ∃≥1 R � C can be represented as the global axiom
∃≤0 R � C and the unfolding scheme of RACE guarantees
that C is added if an R-successor will be created due to ∃R .D
or ∃≥n R. A role assertion (a, b) :R is unfolded to {(a, b) :R,
a :C}. If lazy unfolding is applied, domain restrictions have
to be considered w.r.t. the ‘directly refers to’ relationship in a
special way.

Note that, in principle, RACE also supports the absorp-
tion of GCIs of the form ¬A � C1 (but only if no concept
introduction axiom of the form A � C2 and no concept de-
finition definition axiom of the form A

.= C2 for A exists).
Some knowledge bases can only be handled effectively if the
absorption of axioms of the form ¬A � C1 is supported.

4Note that due to subsequent merging operations, n and m need
not be equal to θ.

In contrast to domain restrictions, range restrictions for
roles do not introduce new disjunctions. However, it is al-
ways advantageous to keep the number of global axioms to
be managed as small as possible. Therefore, GCIs express-
ing range restrictions for roles are absorbed and concepts of
the form ∃R .C or ∃≥n R are unfolded to ∃R .C 	 ∀S .D or
∃≥n R 	 ∀S .D if a GCI of the form � � ∀S .D (R a sub-role
of S) has been absorbed. A role assertion (a, b) :R is unfolded
to {(a, b) :R, b :D}.

2.4 Exploiting Disjointness Declarations

As has been discussed in [Baader et al., 1994], it is important
to derive told subsumers5 for each concept name for marking
and propagation processes. Besides told subsumers, RACE
exploits also the set of “told disjoints6”. In the ‘heart’ exam-
ple presented above, ana heart is computed as a told disjoint
concept of ana heart p by examining the related concept in-
troduction axioms. If it is known that a concept B is a sub-
sumer of a concept A then A cannot be a subsumee of the told
disjoints of B. This kind of information is recorded (and prop-
agated) with appropriate non-subsumer marks (see [Baader et
al., 1994] for details about marking and propagation opera-
tions) in order to prune the search space for traversals caus-
ing subsumption tests. Exploiting disjointness information
has not been investigated in [Baader et al., 1994].

2.5 Caching Policies

RACE supports different caching policies (see also [Haarslev
and Möller, 2000a] for caching in RACE). Two types of
caches are provided which can be used together or alterna-
tively. Both cache types are accessed via keys constructed
from a set of concepts. The first cache (called equal cache)
contains entries about the satisfiability status of concept con-
junctions already encountered. This cache only returns a hit
if the search key exactly matches (i.e. is equal to) the key of a
known entry. For instance, the key for a concept conjunction
C1 	 . . . 	 Cn is the (ordered) set {C1, . . . ,Cn} of concepts.

The second cache type consists of a pair of caches. The
subset cache contains only entries for satisfiable concept con-
junctions while the superset cache stores unsatisfiable con-
cept conjunctions. These caches support queries concerning
already encountered supersets and subsets of a given search
key (see also [Hoffmann and Köhler, 1999; Giunchiglia and
Tacchella, 2000]). For instance, if the subset (satisfiability)
cache already contains an entry for the key {C1,C2,C3} and
is queried with the key {C1,C3}, it returns a hit, i.e. the con-
junction C1 	 C3 is also satisfiable. Analogously, if the super-
set (unsatisfiability) cache already contains an entry for the
key {D2,D3,D5} and is queried with the key {D1, . . . ,D6},
it returns a hit, i.e. the conjunction D1 	 . . . 	 D6 is also un-
satisfiable. If the equal cache is enabled, it is the first refer-
ence, i.e. only if an equal cache lookup fails, the superset or
subset caches are consulted.

5For instance, A1, A2 are told subsumers of A for a concept in-
troduction axiom A � A1 � A2 if A1, A2 are concept names.

6For instance, A1, A2 are told disjoints of A for a concept intro-
duction axiom A � ¬A1 � ¬A2 if A1, A2 are concept names.



3 Empirical Results for UMLS Classifications

The performance of the RACE system is evaluated with dif-
ferent versions of the UMLS knowledge bases. UMLS-1 is a
preliminary version whose classification resulted in many un-
satisfiable concept names. UMLS-1 contains approximately
100,000 concept names and for almost all of them there exists
a concept introduction axiom of the form A � C where C not
equal to �. In addition, in UMLS-1 80,000 role names are
declared. Role names are arranged in a hierarchy.

UMLS-2 is a new version in which the reasons for the in-
consistencies have been removed. The version of UMLS-2
we used for our empirical tests uses approximately 160,000
concept names with associated primitive concept definitions
and 80,000 hierarchical roles.

Originally, the UMLS knowledge bases have been devel-
oped with an incomplete description logic system which does
not classify concepts with cyclic definitions (and, in turn, the
concepts which use these concepts). Due to the treatment of
cycles in the original approach [Schulz and Hahn, 2000], the
cycle-causing concepts are placed in so-called :implies
clauses, i.e. these concepts are not considered in concept sat-
isfiability and subsumption tests. For the same reason, the
UMLS reconstruction uses :implies for domain and range
restrictions of roles, i.e. domain and range restrictions are also
not considered in concept satisfiability and subsumption tests.

With RACE, none of these pragmatic distinctions are nec-
essary. However, in order to mimic the original behavior
and to test more than one TBox with RACE, for each of the
knowledge base versions, UMLS-1 and UMLS-2, three dif-
ferent subversions are generated (indicated with letters a, b
and c). Version ‘a’ uses axioms of the style presented above,
i.e. the :implies parts are omitted for TBox classification
(and coherence checking). In version ‘b’ the :implies part
of the original knowledge base is indeed considered for clas-
sification by RACE. Thus, additional axioms of the following
form are part of the TBox.
ana heart � ∃ has developmental fo . ana fetal heart 	

∃ surrounded by . ana pericardium

Version ‘c’ is the hardest version. Additional axioms
express domain and range restrictions for roles. For in-
stance, the following axioms are included in the TBox for
anatomical part of ana heart.
∃≥1 anatomical part of ana heart � ana heart p

� � ∀ anatomical part of ana heart . ana heart

Thus, for the performance evaluation we have tested 6 dif-
ferent knowledge bases. All measurements have been per-
formed on a Sun UltraSPARC 2 with 1.4 GByte main mem-
ory and Solaris 6. RACE is implemented in ANSI Common
Lisp and for the tests Franz Allegro Common Lisp 5.0.1 has
been used. The results are as follows.

If the generalized unfolding technique for domain and
range restrictions is disabled in RACE, even a small subset
(with a size of ∼5%) of the UMLS TBoxes with GCIs for
domain and range restrictions could not be classified within
several hours of runtime. Furthermore, the equal cache had
to be disabled for all UMLS TBoxes in order to reduce the
space requirements during TBox classification.
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Figure 2: Evaluation of the topological sorting and clustering
techniques for UMLS2a-c (see explanation in text).

Without clustering and topological sorting, UMLS-1a can
be classified in approximately 11 hours (1636 concept names
are recognized as unsatisfiable). With clustering and topolog-
ical sorting enabled, only 5.5 hours are necessary to compute
the same result for UMLS-1a. The second version, UMLS-
1b, requires 3.6 hours (with optimization) and 6.1 hours
(without optimization). The reason for the enhanced perfor-
mance with more constraints is that in this version already
47855 concept names are unsatisfiable. With domain and
range restrictions we found that even 60246 concept names
are unsatisfiable. The computation times with RACE are 3.4
hours (with optimization) and 8.7 hours (without optimiza-
tion). Up to 500 MBytes of memory are required to compute
the classification results. For UMLS-1, checking TBox co-
herence (see above) requires approximately 10 minutes.

The new second version, UMLS-2, contains an additional
part of the UMLS ontology and, therefore, is harder to deal
with. Furthermore, there are no unsatisfiable concept names,
i.e. classification is much harder because there are much more
nodes in the subsumption lattice. In UMLS-1, due to the large
number of unsatisfiable concepts, the subsumption lattice is
rather small because many concept names “disappear” as syn-
onyms of the bottom concept. For UMLS-2, checking TBox
coherence (see above) requires between 15 and 50 minutes
(2a: 16 min, 2b: 19 min, 2c: 51 min).

The results for classifying the UMLS-2 TBoxes are shown
in Figure 2. A comparison of setting 1 (all optimizations en-
abled) and setting 2 (clustering disabled) reveals that cluster-
ing is a very effective optimization technique for the UMLS-
2 TBoxes. The result for setting 3 (topological sorting dis-
abled) and UMLS-2a/b supports the fact that topological sort-
ing is also very effective. The runtime result for setting 3
and UMLS-2c is due to removed buckets (see Section 2.2).
This is very likely to happen if topological sorting is disabled
and apparently shows a dramatic overhead for UMLS-2c. If,
in setting 4, both clustering and topological sorting are dis-



abled, runtimes increase only to a limited extent. Moreover,
according to the evaluation results, UMLS-2b does not re-
quire more computational resources than UMLS-2a (see the
discussion about :implies from above). Only the incorpo-
ration of domain and range restrictions cause runtimes to in-
crease. For the UMLS-2 TBoxes up to 800 MBytes of mem-
ory are required. For other benchmark TBoxes (e.g. Galen
[Horrocks, 1997] with approx. 3000 concepts) our results in-
dicate an overhead of ∼5% in runtime. This is caused by the
presence of many defined concepts and a small average num-
ber of concept children in the taxonomy. In summary, the
results for the UMLS TBoxes clearly demonstrate that clus-
tering is only effective in conjunction with topological sorting
establishing a quasi-definition order.

4 Conclusion

In this paper enhanced optimization techniques which are es-
sential for an initiative towards sound and complete high per-
formance knowledge base classification are presented. Thus,
fast classification of very large terminologies which mostly
consist of concept introduction axioms now has become pos-
sible with description logic systems based on sound and com-
plete algorithms.

A final comment concerning the significance of the UMLS
knowledge bases used for the empirical evaluation is appro-
priate. Even though the UMLS knowledge bases do not make
use of defined concepts or arbitrary GCIs, a large number of
concept introduction axioms and a possibly large role hier-
archy can be called the standard case in many practical ap-
plications. Furthermore, some UMLS TBoxes (version ‘c’)
demand the absorption of GCIs expressing domain and range
restrictions for roles. Without this new technique even a very
small subset of these TBoxes cannot be classified within a
reasonable amount of time. If description logics are to be
successful in large-scale practical applications, being able to
deal with very large knowledge bases such as those based on
the UMLS is mandatory.

Even with the above-mentioned optimization techniques,
dealing with 160,000 concept names is by no means a trivial
task. Large knowledge bases reveal even slightly less than
optimal algorithms used for specific subproblems. Thus, ex-
periments with very large knowledge bases also provide feed-
back concerning lurking performance bottlenecks not becom-
ing apparent when dealing with smaller knowledge bases. To
the best of our knowledge, RACE is the only DL system
based on sound and complete algorithms that can deal with
this kind of very large knowledge bases.

We would like to thank Stefan Schulz for making the
UMLS reconstruction available.
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Expressive ABox reasoning with number restrictions, role
hierarchies, and transitively closed roles. In Cohn et al.
[2000], pages 273–284.

[Haarslev et al., 2001] V. Haarslev, R. Möller, and A.-Y.
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