
Optimizing Reasoning in Description Logics with
Qualified Number Restrictions

Volker Haarslev and Ralf Möller
University of Hamburg, Computer Science Department

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract

In this extended abstract an optimization technique, the so-called signa-
ture calculus, for reasoning with number restrictions in description logics
is investigated. The calculus is used to speed-up ABox (and TBox) rea-
soning in the description logic ALCQHR+ .

1 Introduction

The calculus presented in this paper addresses a major source of inefficiency
concerning the treatment of number restrictions in the original tableaux calculi
for expressive description logics such as ALCNHR+ [1] and SHIQ [4]. The
inefficiency is caused by large numbers occurring in at-least or at-most con-
cepts. Due to the interaction of role hierarchies and number restrictions, it is
not possible to deal with number restrictions in a simple way by considering
representative individuals instead of a number of individuals. This source of in-
efficiency is illustrated with the following TBox (let S1, S2, S3, R be role names).

S1 	 R, S2 	 R, S3 	 R

C 	 ∃≥10 S1 � ∃≥10 S2 � ∃≥10 S3 � (∀ S1 . A � B) �
(∀ S2 .¬A) � (∀ S3 .¬A � ¬B) � ∃≤20 R

In order to test the satisfiability of the concept C, currently implemented calculi
for expressive DLs with number restrictions (e.g. [1, 4]) create 10 Si-successors
for each role Si, i ∈ 1..3, i.e. we get 30 R-successors but only 20 R-successors are
allowed. The value restrictions ensure that only S2-successors and S3-successors
can be successfully merged. The concept C is still satisfiable if we multiply each
number by 10 or 100 etc. However, a merging process has to be applied to

1



an increasing number of individuals possibly causing a combinatorial explosion,
which is likely to occur in many concept satisfiability tests, even in the average
case.

The so-called signature calculus presented below uses a compact representation,
a signature, for large numbers of role successors caused by at-least concepts.
Informally speaking, the new calculus is based on the idea to generate only
“required” proxy role successors for roles (and their “conjunctions”) occurring
in number restrictions. This is achieved by introducing specific rules for deal-
ing with so-called signature assertions . Due to the complexity caused by the
combination of role hierarchies and number restrictions there is already a dra-
matic speed-up for number restrictions with values less than ten. In practical
description logic systems these optimizations are of utmost importance in or-
der to ensure that practical problems (e.g. configuration problems) can actually
be solved with verified techniques. In the following, we assume the reader is
familiar with the syntax and semantics of ALCNHR+ [1]. In addition to the
concept constructors in ALCNHR+ , the language ALCQHR+ provides qualified
number restrictions (see e.g. the logic SHIQ [4] for the syntax and semantics
of qualified number restrictions). In contrast to SHIQ, ALCQHR+ does not
support inverse roles. Furthermore, in contrast to SHIQ, in ALCQHR+ the
unique name assumption is enforced for ABox individuals, i.e. the set of indi-
viduals O is divided into the set of old individuals OO which can be mentioned
in an ABox, and into the set of new individuals ON which are generated only
by the set of rules for testing ABox consistency.

2 Signature Calculus for ALCQHR+

A calculus for deciding the ABox consistency problem for ALCQHR+ is intro-
duced in the following. First, a few definitions are required.

Definition 1 (Additional ABox Assertions) Let a, b ∈ O , RS ⊆ R (the set
of role names), and S be a simple role (see [1, 4]), then the following expressions
are also assertional axioms (n ≥ 0, m > 0):

a :∃′≥m S (at-least number restriction), (a, b) :〈n,RS 〉 (signature assertion).

An interpretation I satisfies an assertional axiom a :∃′≥m S iff aI ⊆ (∃≥m S)I and
an assertional axiom (a, b) :〈n,RS 〉 iff ∀x ∈ aI , y ∈ bI : (x , y) ∈

⋂
R∈RS RI and

‖bI‖ = n.

We assume that every concept term is in negation normal form before the com-
pletion rules introduced below are applied (see [1, 4]). If a signature assertion
(a, b) :〈n,RS 〉 is element of an ABox A, we say it represents n “identical” role
successors. The completion rules for signature assertions require a dedicated
operator ‘�̃’ for well-formed sets of role names.

2



Definition 2 (Sub- and Super-Roles, Role Set, Role Conjunction) R↓

(R↑) denotes the sub-roles (super-roles) of R including R. If R is a set of roles,
the union of the results of applying the operator to each member is denoted. A
well-formed role set contains either a single role name or the direct parents of
an anonymous (most specific) “role conjunction” whose canonical name is repre-
sented by this set. The set resulting from ‘�̃’ represents the “role conjunction”
of its operands. Let RS1 ,RS2 ⊆ R and RS = RS1 ∪ RS2 , then the role con-
junction is defined as RS1 �̃RS2 = {R ∈ RS | ¬∃ S ∈ RS : S ∈ (R↓ \ {R})}, i.e.
the “role conjunction” is the union of both role sets without implied super-roles.

For instance, consider the role hierarchy example introduced in the introduction.
The “role conjunction” {R} �̃ {S1, S2} yields {S1, S2}, i.e. R is not a member of
the new set because R is already implied by at least one member of the new set
(e.g. S1 	 R), while {S1} �̃ {S2, S3} yields {S1, S2, S3}.
Given a knowledge base (T ,A), the problem of checking the ABox consistency
of A w.r.t. T is transformed to the problem of checking the consistency of a
so-called augmented ABox w.r.t. an empty TBox.

Definition 3 (Augmented ABox) For an initial ABox A w.r.t a TBox T
we define its augmented ABox A′ by applying the following rules to A. For
every GCI C 	 D in T the assertion ∀ x . (x : (¬C � D)) is added to A′. Every
concept term occurring in A is transformed into its negation normal form. Every
assertion of the form (a, b) :R is replaced by (a, b) :〈1 , {R}〉 and every pair of
assertions of the form (a, b) :〈1 ,RS1 〉, (a, b) :〈1 ,RS2 〉, RS1 �= RS2 is replaced by
(a, b) :〈1 ,RS1 �̃RS2 〉 as long as possible. If ∃≥n R . C occurs in A then replace
this by (∃≥n R′ � ∀R′ . C) (with R′ ∈ R fresh in A and R′ 	 R added to the role
hierarchy) as long as possible. From this point on, if we refer to an initial ABox
A we always mean its augmented ABox.

The tableaux calculus also requires the notion of blocking the applicability of
tableaux rules. This is based on so-called concept sets, an ordering for individ-
uals, and on the notion of blocking individuals.

Definition 4 (Concept Sets, Individual Ordering, blocked) Given an
ABox A and an individual a occurring in A, the concept set of a is defined as
σ(A, a) := {�}∪ {C | a :C ∈ A}.
We define an individual ordering ‘≺’ for new individuals (elements of ON ) oc-
curring in an ABox A. If b ∈ ON is introduced in A, then a ≺ b for all new
individuals a already present in A.

Let A be an ABox and a, b ∈ O be individuals in A. We call a the blocking
individual of b if the following conditions hold: a, b ∈ ON , σ(A, a) ⊇ σ(A, b),
and a ≺ b. If there exists a blocking individual a for b, then b is said to be
blocked (by a).

3



Definition 5 (Potential R-successors) Given an ABox A, 	(a, R, C)A defines
the number of potential R-successors for an individual a mentioned inA whose R-
successors are known as instances of C.

	(a, R, C)A =
∑
α∈A

count(a, R, C, α)A

count(a, R, C, α)A =

{
n if α = (a, b) :〈n,RS 〉, R ∈ RS ↑, C ∈ σ(A, b),

0 otherwise.

As an abbreviation 	(a, R)A is used for 	(a, R,�)A.

Definition 6 (Lower and Upper Bound for R-successors)
Given an ABox A, min(a, R)A defines the minimal number of required and
max(a, R, C)A the maximal number of allowed R-successors for an individual a
mentioned inA (whose R-successors are known as instances of C).

min(a, R)A = max({0} ∪ {n | a :∃′≥n S ∈ A, S ∈ R↓}∪
{‖{b ∈ OO | (a, b) :〈1 ,RS 〉 ∈ A, R ∈ RS ↑}‖})

max(a, R, C)A = min({∞} ∪ {n | a :∃≤n S . C ∈ A, S ∈ R↑})

Due to the unique name assumption for old individuals, the number of old R-
successors has to be considered in the definition of min(a, R)A.

2.1 Completion Rules

We are now ready to define the completion rules that are intended to generate
a so-called completion (see below) of an initial ABox A. In the following, the
term ∼C is used for the negation normal form of ¬C.

Definition 7 (Completion Rules)

R� The conjunction rule.
if 1. a :C � D ∈ A, and

2. {a :C, a :D} �⊆ A
then A′ = A ∪ {a :C, a :D}
R� The disjunction rule (nondeterministic).
if 1. a :C � D ∈ A, and

2. {a :C, a :D} ∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A ∪ {a :D}
SigEmpty The signature cleanup rule (applied only after SigSplit and SigMerge).
if (a, b) :〈0 ,RS 〉 ∈ A
then A′ = A \ ({(a, b) :〈0 ,RS 〉} ∪ {b :C | b :C ∈ A})

4



R∀C The role value restriction rule.
if 1. a :∀R .C ∈ A, and

2. ∃ b ∈ O : (a, b) :〈n,RS 〉 ∈ A, R ∈ RS ↑, and
3. b :C /∈ A

then A′ = A ∪ {b :C}

R∀+C The transitive role value restriction rule.
if 1. a :∀R .C ∈ A, and

2. ∃ b ∈ O , T ∈ R↓ ∩ RS ↑ ∩ T : (a, b) :〈n,RS 〉 ∈ A, and
3. b :∀T .C /∈ A

then A′ = A ∪ {b :∀T .C}

R∀x The universal concept restriction rule.
if 1. ∀ x . (x :C) ∈ A, and

2. ∃ a ∈ O : a mentioned in A, and
3. a :C �∈ A

then A′ = A ∪ {a :C}

R∃≥n The number restriction exists rule (for signatures).
if 1. a :∃≥n S ∈ A, and

2. a is not blocked, and
3. �(a,S)A < n, and

then A′ = (A \ {a :∃≥n S}) ∪ {a :∃′≥n S, (a, b) :〈n, {S}〉}, b ∈ ON new in A.

SigSplit The signature split rule (nondeterministic).
if 1. a :∃≤m R .C ∈ A, and

2. �(a,R)A > m, and
3. MR = {α ∈ A |α = (a, b) :〈n,RS 〉, R ∈ RS ↑, {∼C,C} ∩ σ(A, b) = ∅}, and
4. MR �= ∅

then select (a, b) :〈n,RS 〉 ∈ MR and E ∈ {∼C,C} such that
if b ∈ OO

then (case a: choose ∼C or C for old individual)
A′ = A ∪ {b :E}

elsif ∃ c ∈ ON : c �= b, (a, c) :〈k ,RS 〉 ∈ A, σ(A, c) = σ(A, b) ∪ {E}
then (case b: change splitting)
A′ = (A \ {(a, c) :〈k ,RS 〉, (a, b) :〈n,RS 〉})∪

{(a, c) :〈k+1,RS 〉, (a, b) :〈n−1,RS 〉}
else (case c: split individual)
A′ = (A \ {(a, b) :〈n,RS 〉}) ∪ {c :D |D ∈ σ(A, b)}∪

{(a, c) :〈1 ,RS 〉, c :E, (a, b) :〈n−1,RS 〉}
with c ∈ ON new in A,

eliminate 0-signatures in A′.

5



SigMerge The signature merge rule (nondeterministic).
if 1. ∃ a, C mentioned in A, R ∈ P : �(a,R,C)A > max(a,R,C)A, and

2. MR = {α ∈ A |α = (a, b) :〈n,RS 〉, R ∈ RS ↑, C ∈ σ(A, b)}
then select {(a, b1) :〈n1 ,RS1 〉, (a, b2) :〈n2 ,RS2 〉} ⊆ MR such that

1. b1 �= b2, and
2. either b1, b2 ∈ ON or b1 ∈ ON , b2 ∈ OO

if b1, b2 ∈ ON

then
if ∃ i , j ∈ 1 ..2 : RSi

↑ ⊆ RSj
↑, i �= j

then (case a: decrement super-role signature)
A′ = (A \ {(a, bi) :〈ni ,RSi〉}) ∪ {(a, bi) :〈ni−1,RSi〉} ∪ {bj :D |D ∈ σ(A, bi)}
elsif ∃ c ∈ ON : (a, c) :〈n,RS1 �̃RS2 〉 ∈ MR

then (case b: increment common sub-role signature)
A′ = (A \ {(a, b1) :〈n1 ,RS1 〉, (a, b2) :〈n2 ,RS2 〉, (a, c) :〈n,RS1 �̃RS2 〉})∪

{(a, b1) :〈n1−1,RS1 〉, (a, b2) :〈n2−1,RS2 〉, (a, c) :〈n+1,RS1 �̃RS2 〉}∪
{c :D |D ∈ σ(A, b1) ∪ σ(A, b2)}

else (case c: create common sub-role signature)
A′ = (A \ {(a, b1) :〈n1 ,RS1 〉, (a, b2) :〈n2 ,RS2 〉})∪

{(a, b1) :〈n1−1,RS1 〉, (a, b2) :〈n2−1,RS2 〉, (a, c) :〈1 ,RS1 �̃RS2 〉}∪
{c :D |D ∈ σ(A, b1) ∪ σ(A, b2)}, c ∈ ON new in A

else (case d: merge with old individual b2)
A′ = (A \ {(a, b1) :〈n,RS1 〉, (a, b2) :〈1 ,RS2 〉})∪

{(a, b1) :〈n−1,RS1 〉, (a, b2) :〈1 ,RS1 �̃RS2 〉} ∪ {b2 :D |D ∈ σ(A, b1)},
eliminate 0-signatures in A′.

After applying the SigSplit or SigMerge rule there might be “empty” signatures
with a number restriction equal to 0. Empty signatures and the corresponding
concept assertions for their role successors are immediately removed by the clean-
up rule SigEmpty.

We call the rules SigSplit, and SigMerge (as well as the disjunction rule, see [1])
nondeterministic rules since they can be applied in different ways to the same set
of assertions. The remaining rules are called deterministic rules. Moreover, we
call the rules R∃C and R∃≥n generating rules since they are the only rules that
increase the total number of role successors of already existing individuals. If
the signature merge rule has been applied to an individual a and a non-transitive
role R in an ABox A, then it holds that 	(a, R)A′ = 	(a, R)A − 1.

Given an initial ABox A, more than one rule might be applicable to A. This is
controlled by a completion strategy in accordance with the ordering for new in-
dividuals (Definition 4). Basically, rules to younger individuals are only applied
after all rules are applied to older individuals. In addition, non-generating rules
are to be applied before generating rules. Due to space constraints we refer to
[1] for details.

The calculus also has to check whether so-called clash triggers are applicable.

6



Definition 8 (Clash Triggers) We assume the same naming conventions as
used above. Let A be an ABox and A′ be its augmented ABox. The ABoxes
A,A′ are called contradictory if one of the following clash triggers is applicable
to A′. If none of the clash triggers is applicable to A′, then A and A′ are called
clash-free.

• Primitive clash: ∃ {a :A, a :¬A} ⊆ A′, where A is a concept name.

• Number restriction clash:

– ∃ a mentioned in A′, R ∈ P : 	(a, R)A′ < min(a, R)A′ or

– ∃ {(a, b) :〈n,RS 〉, b :C} ⊆ A′ : R ∈ RS ↑, n > max(a, R, C)A′ .

As defined in [1], a clash-free ABox A′ is called complete if no completion rule
is applicable to A′. A complete ABox A′ derived from an ABox A is also
called a completion of A. Any ABox whose augmented ABox contains a clash is
obviously inconsistent. The purpose of the calculus is to generate a completion
for an initial ABox A in order to prove the consistency of A or the inconsistency
of A if no completion can be derived. For a given initial ABox A, the calculus
applies the completion rules from Definition 7. It stops if a clash occurs, it
answers “yes” if a completion can be derived, and “no” otherwise.

The rules SigSplit and especially SigMerge are quite complex and need an expla-
nation. The rule SigSplit splits from a signature a new one by adding an assertion
for its proxy individual or shifts between two “matching” signatures the number
or role successors by 1. SigSplit is applicable if the following conditions are met.
An assertion of the form a :∃≤m R . C is a member of A, the number of poten-
tial role successors for R is greater than m, and there exists a non-empty set
MR which contains all signature assertion of the form (a, b) :〈n,RS 〉 such that
R ∈ RS ↑ and neither ∼C nor C is contained in the concept set σ(A, b). Then,
the rule SigSplit non-deterministically selects a signature assertion (a, b) :〈n,RS 〉
from the set MR and a concept E from the set {∼C, C}. The following cases are
distinguished.

Case a: If b is an old individual, the rule simply adds the assertion b :E to A.

Case b: If there already exists a signature assertion (a, c) :〈k ,RS 〉 in A where
c is a new individual different from b and σ(A, c) = σ(A, b) ∪ {E}, the
number of role successors of the assertion with c is incremented and the
assertion with b is decremented.

Case c: Otherwise a new assertion with cardinality 1 is added to A and the
assertion with b is decremented. The SigSplit rule could create a single

7



signature assertion representing too many potential successors for a role
R. However, this leads to a contradictory ABox due to the clash triggers
defined in Definition 8.

The rule SigMerge is applicable to an individual a if a has more potential R-
successors than allowed by applicable at most restrictions and there exists a
set MR containing the signature assertions for the descendants of the role R.
Then, a pair of assertions is non-deterministically selected such that the following
conditions hold:

• The signature assertions use proxy names that are not equal to each other,
i.e. we have two distinct signature assertions.

• The proxy individuals are either both new individuals or one is a new
individual and the second one is an old individual. Due to the unique
name assumption, two signature assertions for old proxy individuals may
never be merged.

If these conditions are met for a selected pair of signature assertions, then the
SigMerge rule distinguishes four mutually exclusive cases (a-d). If both proxy
individuals are new ones, then the cases a-c are considered, otherwise the case
d is applicable.

Case a: If one role set is a subset or equal to the second role set, then the
counter of the (super)role signature (with the smaller set) is decremented
by 1 and the concept assertions for the proxy individual of the (super)role
signature are added to the proxy individual of the (sub)role signature.

Case b: If there already exists a role conjunction signature, then decrement the
counters of the signature pair, increment the counter of the role conjunc-
tion signature, and add the concept assertions of the proxy individuals of
the signature pair to the proxy individual of the role conjunction signature.

Case c: This case corresponds to case b but a new role conjunction signature
with counter value 1 is added.

Case d: The proxy individual b2 is an old individual and due to the unique
name assumption the counter of the signature assertion with the proxy
individual b1 is decremented and the concept assertions for b1 are added
to b2.

8



0.01

0.1

1

10

>100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number merging problem size (1-21; 4 problems in 2 variants: U=Unsatisfiable, S=Satisfiable)

secs

Lines without dots
indicate use of
signature calculus

Problem 1 (U)
Problem 1 (S)
Problem 2 (U)
Problem 2 (S)
Problem 3 (U)
Problem 3 (S)
Problem 4 (U)
Problem 4 (S)

Figure 1: Runtime results for benchmark problems. The lines with dots indicate
the runtimes with the standard calculus; the lines without dots demonstrate the
performance gain of the signature calculus.

3 Evaluation

In order to evaluate the effectiveness of an implemented version of this calculus,
a set of four dedicated benchmark problems has been generated. The increased
difficulty of the problems is caused by exponentially increasing the size of num-
bers used in at-least and at-most concepts which, in turn, cause an exponential
number of new concept and role assertions. Each of the four problems exists in
two variants (a ‘test concept’ is consistent vs. inconsistent). The problems use
role hierarchies and number restrictions. A problem basically employs concept
terms of the form ∃≤n R � ∃≥m1 R1 � ∃≥m2 R2 � ∃≥m3 R3 � ∀R2 . C � ∀R3 .¬C with
Ri 	 R, i ∈ 1..3. The (in)consistency of these terms has to be proven. A term is
made consistent by choosing values for n, mi such that max(m1, m2+m3) ≤ n or
inconsistent if max(m1, m2 +m3) > n. For details on the benchmark generation,
we refer to [2]. Figure 1 demonstrates the result of this benchmark with the DL
system RACER (note the use of a logarithmic scale). Qualitatively speaking,
the use of the signature calculus indicates a dramatic performance gain of several
orders of magnitude for this class of inference problems.

9



4 Conclusion

Our investigations indicate that the signature calculus is advantageous for sat-
isfiable concept terms with number restrictions such as those discussed above.
However, the signature calculus is no panacea for all kinds of inference prob-
lems involving number restrictions. The techniques described in this extended
abstract complement the algebraic optimization techniques investigated in [3].
Both techniques can be applied in different circumstances which can be auto-
matically detected.

5 Acknowledgments

The work presented in this extended abstract and in particular the work on
the proofs (see [2]) has been done in collaboration with Stephan Tobies, RWTH
Aachen. All deficiencies are due to our own faults, of course.

References

[1] V. Haarslev and R. Möller. Expressive ABox reasoning with number re-
strictions, role hierachies, and transitively closed roles. In A.G. Cohn,
F. Giunchiglia, and B. Selman, editors, Proceedings of the Seventh Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR’2000), Breckenridge, Colorado, USA, 2000, pages 273–284, April 2000.

[2] V. Haarslev and R. Möller. Optimizing reasoning with number restrictions.
Technical report, University of Hamburg, Computer Science Department,
August 2001.

[3] V. Haarslev, M. Timmann, and R. Möller. Combining tableaux and algebraic
methods for reasoning with qualified number restrictions. In this volume.

[4] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the
description logic SHIQ. In David MacAllester, editor, Proceedings of the
17th International Conference on Automated Deduction (CADE-17), Lecture
Notes in Computer Science, Germany, 2000. Springer Verlag.

10


