
Description of the RACER System
and its Applications

Volker Haarslev and Ralf Möller
University of Hamburg, Computer Science Department

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract

RACER implements a TBox and ABox reasoner for the logic SHIQ.
RACER was the first full-fledged ABox description logic system for a very
expressive logic and is based on optimized sound and complete algorithms.

1 Introduction

The description logic (DL) SHIQ [26] extends the logic ALCN HR+ [14] by ad-
ditionally providing qualified number restrictions and inverse roles. ALCN HR+

was the logic supported by RACE (Reasoner for ABoxes and Concept Ex-
pressions), the precursor of RACER (Renamed ABox and Concept Expres-
sion Reasoner). Using the ALCN HR+ naming scheme, SHIQ could be called
ALCQHIR+ (pronunciation: ALC-choir).

ALCQHIR+ is briefly introduced as follows. We assume a set of concept names
C , a set of role names R, and a set of individual names O . The mutually disjoint
subsets P and T of R denote non-transitive and transitive roles, respectively
(R = P ∪ T). ALCQHIR+ is introduced in Figure 1 using a standard Tarski-
style semantics. The term
 (⊥) is used as an abbreviation for C � ¬C (C � ¬C).

If R, S ∈ R are role names, then R � S is called a role inclusion axiom. A role
hierarchy R is a finite set of role inclusion axioms. Then, we define �∗ as the
reflexive transitive closure of � over such a role hierarchy R. Given �∗, the set
of roles R↓ = {S ∈ R | S �∗ R} defines the sub-roles of a role R. We also define
the set S := {R ∈ P | R↓ ∩ T = ∅} of simple roles that are neither transitive nor
have a transitive role as sub-role.

Number restrictions are only allowed for simple roles. This restriction is moti-
vated by a known undecidability result in case of an unrestricted syntax [25]. In
concepts, instead of role names R (or S), inverse roles R−1 (or S−1) may be used.

1

Syntax Semantics
Concepts
A AI ⊆ ∆I

¬C ∆I \ CI

C � D CI ∩ DI

C � D CI ∪ DI

∃ R . C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀ R . C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S . C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≥ n}
∃≤n S . C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≤ n}
Roles
R RI ⊆ ∆I × ∆I

A is a concept name and ‖ · ‖ denotes the cardinality of a
set. Furthermore, we assume that R ∈ R and S ∈ S .

Axioms
Syntax Satisfied if

R ∈ T RI = (RI)
+

R � S RI ⊆ SI

C � D CI ⊆ DI

Assertions
Syntax Satisfied if
a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

Figure 1: Syntax and Semantics of ALCQHIR+ .

If C and D are concepts, then C � D is a terminological axiom (generalized
concept inclusion or GCI). A finite set of terminological axioms TR is called a
terminology or TBox w.r.t. to a given role hierarchy R.1 An ABox A is a finite
set of assertional axioms as defined in Figure 1.

An interpretation I is a model of a concept C (or satisfies a concept C) iff

CI "= ∅ and for all R ∈ R it holds that iff (x , y) ∈ RI then (y , x) ∈ (R−1)
I
. An

interpretation I is a model of a TBox T iff it satisfies all axioms in T . See
Figure 1 for the satisfiability conditions. An interpretation I is a model of an
ABox A w.r.t. a TBox T iff it is a model of T and satisfies all assertions in
A. Different individuals are mapped to different domain objects (unique name
assumption).

2 Inference Services

In the following we define several inference services offered by RACER.

A concept is called consistent (w.r.t. a TBox T) iff there exists a model of C
(that is also a model of T and R). An ABox A is consistent (w.r.t. a TBox

1The reference to R is omitted in the following if we use T .

2

T) iff A has model I (which is also a model of T). A knowledge base (T ,A) is
called consistent iff there exists a model for A which is also a model for T . A
concept, ABox, or knowledge base that is not consistent is called inconsistent .

A concept D subsumes a concept C (w.r.t. a TBox T) iff CI ⊆ DI for all in-
terpretations I (that are models of T). If D subsumes C, then C is said to be
subsumed by D.

Besides these basic problems, some additional inference services are provided by
description logic systems. A basic reasoning service is to compute the subsump-
tion relationship between concept names (i.e. elements from C). This inference
is needed to build a hierarchy of concept names w.r.t. specificity. The problem
of computing the most-specific concept names mentioned in T that subsume a
certain concept is known as computing the parents of a concept. The children
are the most-general concept names mentioned in T that are subsumed by a
certain concept. We use the name concept ancestors (concept descendants) for
the transitive closure of the parents (children) relation. The computation of
the parents and children of every concept name is also called classification of
the TBox. Another important inference service for practical knowledge repre-
sentation is to check whether a certain concept name occcurring in a TBox is
inconsistent. Usually, inconsistent concept names are the consequence of model-
ing errors. Checking the consistency of all concept names mentioned in a TBox
without computing the parents and children is called a TBox coherence check .

An individual i is an instance of a concept C (w.r.t. a TBox T and an ABox
A) iff iI ∈ CI for all models I (of T and A). For description logics that support
full negation for concepts, the instance problem can be reduced to the prob-
lem of deciding if the ABox A ∪ {i :¬C} is inconsistent (w.r.t. T). This test is
also called instance checking . The most-specific concept names mentioned in a
TBox T that an individual is an instance of are called the direct types of the
individual w.r.t. a knowledge base (T , A). The direct type inference problem
can be reduced to subsequent instance problems (see e.g. [3] for details). The
retrieval inference problem is to find all individuals mentioned in an ABox that
are instances of a certain concept C. The set of fillers of a role R for an individ-
ual i w.r.t. a knowledge base (T , A) is defined as {x | (T , A) |= (i, x) :R} where
(T , A) |= ax means that all models of T and A also satisfy ax. The set of
roles between two individuals i and j w.r.t. a knowledge base (T , A) is defined
as {R | (T , A) |= (i, j) :R}.

As in other systems, there are some auxiliary queries supported: retrieval of the
concept names or individuals mentioned in a knowledge base, retrieval of the
set of roles, retrieval of the role parents and children (defined analogously to the
concept parents and children, see above), retrieval of the set of individuals in
the domain and in the range of a role, etc. As a distinguishing feature to other
systems, which is important for many applications, we would like to emphasize

3

that RACER supports multiple TBoxes and ABoxes. Assertions can be added
to ABoxes after queries have been answered. In addition, RACER also provides
support for retraction of assertions in particular ABoxes. The inference services
supported by RACER for TBoxes and ABoxes are described in detail in [17].

3 The RACER Architecture

The ABox consistency algorithm implemented in the RACER system is based
on the tableaux calculus of its precursor RACE [14]. For dealing with qualified
number restrictions and inverse roles, the techniques introduced in the tableaux
calculus for SHIQ [26] are employed.

However, optimized search techniques are required in order to guarantee good
average-case performance. The RACER architecture incorporates the follow-
ing standard optimization techniques: dependency-directed backtracking [32]
and DPLL-style semantic branching (see [10] for an overview of the literature).
Among a set of new optimization techniques, the integration of these techniques
into DL reasoners for concept consistency has been described in [21]. The im-
plementation of these techniques in the ABox reasoner RACER differs from the
implementation of other DL systems, which provide only concept consistency
(and TBox) reasoning. The latter systems have to consider only so-called “la-
bels” (sets of concepts) whereas an ABox prover such as RACER has to explicitly
deal with individuals (nominals). ABox optimizations are also explained in [13].

The techniques for TBox reasoning described in [3] (marking and propagation as
well as lazy unfolding) are also supported by RACER. As indicated in [12], the
architecture of RACER is inspired by recent results on optimization techniques
for TBox reasoning [23], namely transformations of axioms (GCIs) [27], model
caching [13] and model merging [21] (including so-called deep model merging
and model merging for ABoxes [18]). RACER also provides additional support
for very large TBoxes (see [15]). In addition, optimization techniques for deal-
ing with qualified number restrictions [11, 20] are integrated into the RACER
architecture. Another distinguishing feature of RACER is the adaptive use of
optimization techniques by analyzing the input (knowledge base and queries).
The advantage is that only one version of the RACER system is required for
building applications. Although, e.g., for inverse roles the caching facility is
automatically disabled, there is no performance penalty if the input does not
contain inverse roles.

RACER is implemented in Common Lisp and is available for research pur-
poses as a server program which can be installed under Linux and Windows
(http://kogs-www.informatik.uni-hamburg.de/˜race). Specific licenses are not
required. Client programs can easily connect to a RACER DL server via a fast
TCP/IP interface based on sockets. A client interface for Java is available.

4

Figure 2: A UML diagram drawn with ArgoUML an verified with RACER.

4 Applications

The Java interface has been developed in order to support a TBox learning
application (see [1]). An application of RACER for ontology engineering is
described in [15]. RACER has also been used for UML verification [16] (see
Figure 2). Ontologies can be built using powerful graphical tools (such as Ar-
goUML, http://argouml.tigris.org/) and saved as XML files in the XMI for-
mat. A compiler for translating model specifications in the XMI language
into TBoxes has been developed for RACER. The semantics for UML speci-
fications is ambiguous. We use an intuitive but “tentative” semantics. For the
UML model presented in Figure 2, the following TBox is automatically gener-
ated.

Ship � ∃≤1 what Location where . Port

ContainerShip � Ship

Port � ∃≥1 what Location where−1 . Ship �
∃≤3 what Location where−1 . Ship �
∃≥4 what Location where−1 . ContainerShip �
∃≤8 what Location where−1 . ContainerShip

5

A coherence check for the TBox obtained from the UML diagram in Figure 2
reveals the inconsistency of the concept port.

The theory behind another application of RACER in the domain of telecom-
munication systems is explained in [2]. An application of RACER for solving
modal logic satisfiability problems is described in [13].

5 Concrete Domains

In addition to the language constructs mentioned above, reasoning about objects
from other domains (so-called concrete domains, e.g. for the reals) is very im-
portant for practical applications as well. In [4] the description logic ALC(D) is
investigated and it is shown that, provided a decision procedure for the concrete
domain D exists, the logic ALC(D) is decidable.

Unfortunately, adding concrete domains (as proposed in the original approach)
to expressive description logics might lead to undecidable inference problems.
For instance, in [5] it is proven that the logic ALC(D) plus an operator for the
transitive closure of roles can be undecidable if expressive concrete domains are
considered. In [30] it is shown that ALC(D) with generalized inclusion axioms
(GCIs) can be undecidable.

ALCQHIR+ offers transitive roles but no operator for the transitive closure of
roles. Even if GCIs were not allowed in ALCQHIR+ , ALCQHIR+ with con-
crete domains would be undecidable (in general) because ALCQHIR+ offers
role hierarchies. Role hierarchies and transitive roles provide for the same ex-
pressivity as GCIs. With role hierarchies and transitive roles it is possible to
(implicitly) declare a universal role, which can be used in combination with a
value restriction to achieve the same effect as with GCIs. Decidability results
can only be obtained for “trivial” concrete domains, which are hardly useful in
practical applications. Thus, if termination and soundness of, for instance, a
concept consistency algorithm are to be retained, there is no way extending an
ALCQHIR+ DL system such as RACE with concrete domains as in ALC(D)
without losing completeness.

Thus, the logic supported by RACER can only be extended with concrete do-
main operators with limited expressivity. In order to support practical modeling
requirements at least to some extent, we pursue a pragmatic approach by sup-
porting only features (and no feature chains as in ALC(D), for details see [4]).
The integration of concrete domains (e.g. linear inequalities between real num-
bers and constraints on the role fillers of a single individual) has been formally
investigated for the expressive description logic ALCN HR+ in [19]. We conjec-
ture that the same techniques can also be applied for ALCQHIR+ . The RACER
system supports concrete domains with release 1.6.

6

Although, in principle, concrete domains can be easily integrated since feature
chains are not allowed, initial tests indicate that for real applications, incremen-
tal constraint satisfaction algorithms have to be explored for dealing with large
search spaces. A Common Lisp implementation of the incremental constraint
satisfaction techniques investigated in [28] has been developed. Optimization
techniques described in [33] (model-merging with concrete domains) are cur-
rently integrated into the RACER system.

6 Summary and Outlook

In this paper we have described the RACER systems and its applications. The
citations provide a survey of the state of the art in DL system implementation.

The UML verification with RACER is reminiscent of the utilization of the FaCT
system [22] for the ICOM entity relationship modeling tool [9]. The application
of description logics to formalize conceptual data modeling approaches (UML,
XML, ER, etc.) has been investigated in [7] (see also subsequent publications of
the authors). With the availability of the RACER system, practical experiments
even with ABoxes are possible.2 Future work might also consider reasoning
about the dynamic behavior of UML objects using description logics.

As has been mentioned before, RACER will soon be extended with reasoning
support for concrete domains (linear inequations over the reals). Other im-
provements that will be supplied with new versions of RACER are more clever
blocking strategies in the presence of inverse roles (see [24]). Joint work with
Ian Horrocks indicates that even for inverse roles caching strategies might be de-
veloped such that performance enhancements for knowledge bases with inverse
roles can be achieved in the future.

References

[1] J. Alvarez. Tbox acquisition and information theory. In Baader and Sattler
[6], pages 11–20.

[2] C. Areces, W. Bouma, and M. de Rijke. Description logics and feature
interaction. In Lambrix et al. [29], pages 33–36.

[3] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An em-
pirical analysis of optimization techniques for terminological representation
systems. Applied Intelligence, 2(4):109–138, 1994.

2Since, currently, RACER supports the unique name assumption for ABox reasoning, in
some modeling approaches (e.g., for query containment) an extra level of non-determinism
(e.g. the generation of multiple ABoxes) might be required.

7

[4] F. Baader and P. Hanschke. A scheme for integrating concrete domains
into concept languages. In Twelfth International Conference on Artificial
Intelligence, Darling Harbour, Sydney, Australia, Aug. 24-30, 1991, pages
452–457, August 1991.

[5] F. Baader and P. Hanschke. Extensions of concept languages for a mechan-
ical engineering application. In Ohlbach and H.J., editors, Proceedings,
GWAI-92: Advances in Artificial Intelligence, 16th German Conference on
Artificial Intelligence, pages 132–143. Springer-Verlag, September 1992.

[6] F. Baader and U. Sattler, editors. Proceedings of the International Work-
shop on Description Logics (DL’2000), Aachen, Germany, August 2000.

[7] D. Calvanese, M. Lenzerini, and D. Nardi. Logics for Databases and Infor-
mation Systems, chapter Description Logics for Conceptual Data Modeling,
pages 229–263. Kluwer Academic Publishers, 1998.

[8] A.G. Cohn, F. Giunchiglia, and B. Selman, editors. International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’2000),
April 2000.

[9] E. Franconi and G. Ng. The i.com tool for intelligent conceptual mod-
elling. In 7th Intl. Workshop on Knowledge Representation meets Databases
(KRDB’00), Berlin, Germany, 2000.

[10] J.W. Freeman. Improvements to propositional satisfiability search algo-
rithms. PhD thesis, University of Pennsylvania, Computer and Information
Science, 1995.

[11] V. Haarslev and R. Möller. Optimizing reasoning in description logics with
qualified number restrictions. In this volume.

[12] V. Haarslev and R. Möller. An empirical evaluation of optimization strate-
gies for ABox reasoning in expressive description logics. In Lambrix et al.
[29], pages 115–119.

[13] V. Haarslev and R. Möller. Consistency testing: The RACE experience.
In R. Dyckhoff, editor, Proceedings, Automated Reasoning with Analytic
Tableaux and Related Methods, number 1847 in Lecture Notes in Artificial
Intelligence, pages 57–61. Springer-Verlag, April 2000.

[14] V. Haarslev and R. Möller. Expressive ABox reasoning with number re-
strictions, role hierarchies, and transitively closed roles. In Cohn et al. [8],
pages 273–284.

8

[15] V. Haarslev and R. Möller. High performance reasoning with very large
knowledge bases: A practical case study. In B. Nebel H. Levesque, edi-
tor, International Joint Conference on Artificial Intelligence (IJCAI’2001),
August 4th - 10th, 2001, Seattle, Washington, USA. Morgan-Kaufmann,
August 2001.

[16] V. Haarslev and R. Möller. RACER – ein Beschreibungslogiksystem für
Wissensmanagement-Anwendungen. In Professionelles Wissensmanage-
ment: Erfahrungen und Visionen. Shaker-Verlag, March 2001.

[17] V. Haarslev and R. Möller. RACER user’s guide and reference manual
version 1.5. Technical report, University of Hamburg, Computer Science
Department, 2001.

[18] V. Haarslev, R. Möller, and A.-Y. Turhan. Exploiting pseudo models for
TBox and ABox reasoning in expressive description logics. In Massacci [31].

[19] V. Haarslev, R. Möller, and M. Wessel. The description logic ALCN HR+

extended with concrete domains. In Massacci [31].

[20] V. Haarslev, M. Timmann, and R. Möller. Combining tableaux and al-
gebraic methods for reasoning with qualified number restrictions. In this
volume.

[21] I. Horrocks. Optimising Tableaux Decision Procedures for Description Log-
ics. PhD thesis, University of Manchester, 1997.

[22] I. Horrocks. Benchmark analysis with fact. In Proc. of the 4th Int. Conf. on
Analytic Tableaux and Related Methods (TABLEAUX 2000), number 1847
in Lecture Notes In Artificial Intelligence, pages 62–66. Springer-Verlag,
2000.

[23] I. Horrocks and P. Patel-Schneider. Optimising description logic subsump-
tion. Journal of Logic and Computation, 9(3):267–293, June 1999.

[24] I. Horrocks, U. Sattler, and S. Tobies. A PSpace-algorithm for deciding
ALCN IR+-satisfiability. LTCS-Report 98-08, LuFg Theoretical Computer
Science, RWTH Aachen, Germany, 1998.

[25] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expres-
sive description logics. In Harald Ganzinger, David McAllester, and An-
drei Voronkov, editors, Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR’99), number 1705
in Lecture Notes in Artificial Intelligence, pages 161–180. Springer-Verlag,
September 1999.

9

[26] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the
description logic SHIQ. In David MacAllester, editor, Proceedings of the
17th International Conference on Automated Deduction (CADE-17), num-
ber 1831 in Lecture Notes in Computer Science, Germany, 2000. Springer-
Verlag.

[27] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice.
In Cohn et al. [8], pages 285–296.

[28] J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP($) lan-
guage and system. ACM Transactions on Programming Languages and
Systems, 14(3):339–395, July 1992.

[29] P. Lambrix et al., editor. Proceedings of the International Workshop on
Description Logics (DL’99), July 30 - August 1, 1999, Linköping, Sweden,
June 1999.

[30] C. Lutz. The complexity of reasoning with concrete domains (revised ver-
sion). LTCS-Report 99-01, LuFG Theoretical Computer Science, RWTH
Aachen, 1999.

[31] F. Massacci, editor. International Joint Conference on Automated Rea-
soning (IJCAR’2001), June 18-23, 2001, Siena, Italy., Lecture Notes in
Artificial Intelligence. Springer-Verlag, June 2001.

[32] R.M. Stallman and G.J. Sussman. Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis. Ar-
tificial Intelligence, 9(2):135–196, 1977.

[33] A.-Y. Turhan and V. Haarslev. Adapting optimization techniques to de-
scription logics with concrete domains. In Baader and Sattler [6], pages
247–256.

10

