
RACER User’s Guide and Reference Manual

Version 1.6.1

Volker Haarslev∗ and Ralf Möller∗∗

∗University of Hamburg
Computer Science Department
Vogt-Kölln-Str. 30
22527 Hamburg, Germany
haarslev@informatik.uni-hamburg.de

∗∗Univ. of Appl. Sciences in Wedel
Computer Science Department
Feldstrasse 143
22880 Wedel, Germany
rmoeller@fh-wedel.de

November 20, 2001

Contents

1 Introduction 1

2 Obtaining and Running RACER 1

2.1 System Installation . 1

2.2 Sample Session . 1

2.3 Naming Conventions . 5

3 RACER Knowledge Bases 6

3.1 Concept Language . 6

3.2 Concept Axioms and Terminology . 8

3.3 Role Declarations . 9

3.4 Concrete Domains . 10

3.5 Concrete Domain Attributes . 12

3.6 ABox Assertions . 13

3.7 Inference Modes . 13

3.8 Retraction and Incremental Additions . 14

4 Knowledge Base Management Functions 15

racer-read-file . 15

4.1 TBox Management . 15

in-tbox . 15

init-tbox . 16

i

http://kogs-www.informatik.uni-hamburg.de/~race/
http://kogs-www.informatik.uni-hamburg.de/~haarslev/
http://www.fh-wedel.de/~mo/home.html
mailto:haarslev@informatik.uni-hamburg.de
mailto:rmoeller@fh-wedel.de

signature . 16

ensure-tbox-signature . 17

current-tbox . 17

save-tbox . 18

forget-tbox . 18

delete-tbox . 19

delete-all-tboxes . 19

create-tbox-clone . 20

clone-tbox . 20

find-tbox . 21

tbox-name . 21

xml-read-tbox-file . 21

rdfs-read-tbox-file . 22

4.2 ABox Management . 22

in-abox . 22

init-abox . 23

ensure-abox-signature . 23

in-knowledge-base . 23

current-abox . 23

save-abox . 24

forget-abox . 24

delete-abox . 25

delete-all-aboxes . 25

create-abox-clone . 25

clone-abox . 26

find-abox . 26

abox-name . 27

tbox . 27

5 Knowledge Base Declarations 27

5.1 Built-in Concepts . 27

top, top . 27

bottom, bottom . 28

5.2 Concept Axioms . 28

implies . 28

equivalent . 29

disjoint . 29

define-primitive-concept . 29

ii

define-concept . 30

define-disjoint-primitive-concept . 30

add-concept-axiom . 31

add-disjointness-axiom . 31

5.3 Role Declarations . 31

define-primitive-role . 32

define-primitive-attribute . 33

add-role-axioms . 34

5.4 Concrete Domain Attribute Declaration . 34

define-concrete-domain-attribute . 35

5.5 Assertions . 35

instance . 35

add-concept-assertion . 35

forget-concept-assertion . 36

related . 36

add-role-assertion . 37

forget-role-assertion . 37

define-distinct-individual . 38

state . 38

forget . 38

5.6 Concrete Domain Assertions . 38

add-constraint-assertion . 39

constraints . 39

add-attribute-assertion . 39

constrained . 40

6 Reasoning Modes 40

auto-classify . 40

auto-realize . 40

7 Evaluation Functions and Queries 40

7.1 Queries for Concept Terms . 40

concept-satisfiable? . 41

concept-satisfiable-p . 41

concept-subsumes? . 41

concept-subsumes-p . 42

concept-equivalent? . 42

concept-equivalent-p . 43

iii

concept-disjoint? . 43

concept-disjoint-p . 43

concept-p . 44

concept? . 44

concept-is-primitive-p . 44

concept-is-primitive? . 44

alc-concept-coherent . 45

7.2 Role Queries . 45

role-subsumes? . 45

role-subsumes-p . 45

role-p . 46

role? . 46

transitive-p . 46

transitive? . 46

feature-p . 47

feature? . 47

cd-attribute-p . 47

cd-attribute? . 47

symmetric-p . 48

symmetric? . 48

reflexive-p . 48

reflexive? . 48

atomic-role-inverse . 49

role-inverse . 49

7.3 TBox Evaluation Functions . 49

classify-tbox . 49

check-tbox-coherence . 50

tbox-classified-p . 50

tbox-classified? . 50

tbox-coherent-p . 51

tbox-coherent? . 51

7.4 ABox Evaluation Functions . 51

realize-abox . 51

abox-realized-p . 52

abox-realized? . 52

7.5 ABox Queries . 52

abox-consistent-p . 52

iv

abox-consistent? . 52

check-abox-coherence . 53

individual-instance? . 53

individual-instance-p . 53

individuals-related? . 54

individuals-related-p . 54

individual-equal? . 54

individual-not-equal? . 55

individual-p . 55

individual? . 55

cd-object-p . 55

cd-object? . 56

8 Retrieval 56

8.1 TBox Retrieval . 56

taxonomy . 56

concept-synonyms . 57

atomic-concept-synonyms . 57

concept-descendants . 57

atomic-concept-descendants . 58

concept-ancestors . 58

atomic-concept-ancestors . 58

concept-children . 59

atomic-concept-children . 59

concept-parents . 59

atomic-concept-parents . 59

role-descendants . 60

atomic-role-descendants . 60

role-ancestors . 60

atomic-role-ancestors . 61

role-children . 61

atomic-role-children . 61

role-parents . 62

atomic-role-parents . 62

loop-over-tboxes . 62

all-tboxes . 62

all-atomic-concepts . 63

all-roles . 63

v

all-features . 63

all-transitive-roles . 63

describe-tbox . 64

describe-concept . 64

describe-role . 64

8.2 ABox Retrieval . 64

individual-direct-types . 65

most-specific-instantiators . 65

individual-types . 65

instantiators . 65

concept-instances . 66

retrieve-concept-instances . 66

individual-fillers . 66

retrieve-individual-fillers . 67

retrieve-related-individuals . 67

related-individuals . 67

retrieve-individual-filled-roles . 68

retrieve-direct-predecessors . 68

loop-over-aboxes . 68

all-aboxes . 69

all-individuals . 69

all-concept-assertions-for-individual 69

all-role-assertions-for-individual-in-domain 69

all-role-assertions-for-individual-in-range 70

all-concept-assertions . 70

all-role-assertions . 70

describe-abox . 71

describe-individual . 71

A KRSS Sample Knowledge Base 71

A.1 KRSS Sample TBox . 72

A.2 KRSS Sample ABox . 73

B Integrated Sample Knowledge Base 73

vi

1 Introduction

The RACER1 system is a knowledge representation system that implements a highly opti-
mized tableaux calculus for a very expressive description logic. It offers reasoning services
for multiple TBoxes and for multiple ABoxes as well. The system implements the descrip-
tion logic ALCQHIR+ also known as SHIQ (see [Horrocks et al. 2000]). This is the basic
logic ALC augmented with qualifying number restrictions, role hierarchies, inverse roles,
and transitive roles.

RACER supports the specification of general terminological axioms. A TBox may contain
general concept inclusions (GCIs), which state the subsumption relation between two con-
cept terms. Multiple definitions or even cyclic definitions of concepts can be handled by
RACER.

RACER supports most of the functions specified in the Knowledge Representation System
Specification (KRSS), for details see [Patel-Schneider and Swartout 93].

RACER is implemented in ANSI Common Lisp and has been developed at the University
of Hamburg.

2 Obtaining and Running RACER

The RACER system can be obtained from the following web site:
http://kogs-www.informatik.uni-hamburg.de/~race/

2.1 System Installation

For the Macintosh execute the self-extracting archive <filename>.sea.

For UNIX and Windows systems decompress the archive file after downloading. For UNIX
use the command: gzip -dc <filename>.tar.gz | tar -xf -
Under Windows unzip the file: <filename>.zip

This creates the files and directories of the distribution. Then follow the instructions in
the file readme.txt found in the directory <filename>. It is important that you load the
file load-racer.lisp from the Lisp Listener. Do not evaluate or compile this file. This file
declares logical pathnames which are used in the example TBoxes.

2.2 Sample Session

All the files used in this example are in the directory "racer:examples;". The queries are
in the file "family-queries.lisp".

;;;===
;;; the following forms are assumed to be contained in a
;;; file "racer:examples;family-tbox.lisp".

;;; initialize the TBox "family"
(in-tbox family)

1RACER stands for Reasoner for ABoxes and Concept Expressions Renamed

1

http://kogs-www.informatik.uni-hamburg.de/~race/

;;; supply the signature for this TBox
(signature
:atomic-concepts (person human female male woman man parent mother

father grandmother aunt uncle sister brother)
:roles ((has-child :parent has-descendant)

(has-descendant :transitive t)
(has-sibling)
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t)))

;;; domain & range restrictions for roles
(implies *top* (all has-child person))
(implies (some has-child *top*) parent)
(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

;;; the concepts
(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))
(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

Figure 1: Role hierarchy for the family TBox.
r denotes the internally defined universal role.
! denotes features
∗ denotes transitive roles

The RACER Session:

2

Figure 2: Concept hierarchy for the family TBox.

;;; load the TBox
CL-USER(1): (load "racer:examples;family-tbox.lisp")
;;; Loading racer:examples;family-tbox.lisp
T
;;; some TBox queries
;;; are all uncles brothers?
CL-USER(2): (concept-subsumes? brother uncle)
T
;;; get all super-concepts of the concept mother
;;; (This kind of query yields a list of so-called name sets
;;; which are lists of equivalent atomic concepts.)
CL-USER(3): (concept-ancestors mother)
((PARENT) (WOMAN) (PERSON) (*TOP* TOP) (HUMAN))
;;; get all sub-concepts of the concept man
CL-USER(4): (concept-descendants man)
((UNCLE) (*BOTTOM* BOTTOM) (BROTHER) (FATHER))
;;; get all transitive roles in the TBox family
CL-USER(5): (all-transitive-roles)
(HAS-DESCENDANT)

;;;===
;;; the following forms are assumed to be contained in a
;;; file "racer:examples;family-abox.lisp".

;;; initialize the ABox smith-family and use the TBox family
(in-abox smith-family family)

;;; supply the signature for this ABox
(signature :individuals (alice betty charles doris eve))

;;; Alice is the mother of Betty and Charles

3

(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

;;; Betty is mother of Doris and Eve
(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

;;; Charles is the brother of Betty (and only Betty)
(instance charles brother)
(related charles betty has-sibling)
;;; closing the role has-sibling for Charles
(instance charles (at-most 1 has-sibling))

;;; Doris has the sister Eve
(related doris eve has-sister)

;;; Eve has the sister Doris
(related eve doris has-sister)

alice:mother

betty:mother

doris

eve

charles :(and brother (at-most 1 has-sibling))

has-sister

has-
child

has-
child

has-
sibling

has-
child

has-
child

Figure 3: Depiction of the ABox smith-family.
(with the explicitly given information being shown)

The RACER Session:

;;; now load the ABox
CL-USER(6): (load "racer:examples;family-abox.lisp")
;;; Loading racer:examples;family-abox.lisp
T

4

;;; some ABox queries
;;; Is Doris a woman?
CL-USER(7): (individual-instance? doris woman)
T
;;; Of which concepts is Eve an instance?
CL-USER(8): (individual-types eve)
((SISTER) (WOMAN) (PERSON) (HUMAN) (*TOP* TOP))
;;; get all direct types of eve
CL-USER(9): (individual-direct-types eve)
(SISTER)
;;; get all descendants of Alice
CL-USER(10): (individual-fillers alice has-descendant)
(DORIS EVE CHARLES BETTY)
;;; get all instances of the concept sister
CL-USER(11): (concept-instances sister)
(DORIS BETTY EVE)

In the Appendix different versions of this knowledge base can be found. In Appendix A,
on page 71, you find a version in KRSS syntax and in Appendix B, on page 73, a version
where the TBox and ABox are integrated.

2.3 Naming Conventions

Throughout this document we use the following abbreviations, possibly subscripted.

C Concept term
CN Concept name
IN Individual name
IN Object name
R Role term

RN Role name
AN Attribute name

ABN ABox name
TBN TBox name

name Name of any sort
S List of Assertions

GNL List of group names
LCN List of concept names
abox ABox object
tbox TBox object

n A natural number
real A real number

integer An integer number

All names are Lisp symbols, the concepts are symbols or lists. Please note that for macros
in contrast to functions the arguments should not be quoted.

The API is designed to the following conventions. For most of the services offered by
RACER, macro interfaces and function interfaces are provided. For macro forms, the TBox
or ABox arguments are optional. If no TBox or ABox is specified, the *current-tbox* or
current-abox is taken, respectively. However, for the functional counterpart of a macro
the TBox or ABox argument is not optional. For functions which do not have macro coun-
terparts the TBox or ABox argument may or may not be optional. Furthermore, if an
argument tbox or abox is specified in this documentation, a name (a symbol) can be used
as well.

5

C −→ CN |
top |
bottom |
(not C) |
(and C1 . . . Cn) |
(or C1 . . . Cn) |
(some R C) |
(all R C) |
(at-least n R) |
(at-most n R) |
(exactly n R) |
(at-least n R C) |
(at-most n R C) |
(exactly n R C) |
CDC

R −→ RN |
(inv RN)

Figure 4: RACER concept and role terms (for concrete domain concepts (CDC) see Fig-
ure 3).

3 RACER Knowledge Bases

In description logic systems a knowledge base is consisting of a TBox and an ABox. The
conceptual knowledge is represented in the TBox and the knowledge about the instances of a
domain is represented in the ABox. For more information about the description logic SHIQ
supported by RACER see [Horrocks et al. 2000]. Note that RACER assumes the unique
name assumption for ABox individuals (see also [Haarslev and Möller 2000] where the logic
supported by RACER’s precursor RACE is described). The unique name assumption does
not hold for the description logic SHIQ as introduced in [Horrocks et al. 2000].

3.1 Concept Language

The content of RACER TBoxes includes the conceptual modeling of concepts and roles as
well. The modelling is based on the signature, which consists of two disjoint sets: the set of
concept names C, also called the atomic concepts, and the set R containing the role names2.

Starting from the set C complex concept terms can be build using several operators. An
overview over all concept- and role-building operators is given in Figure 4.

2The signature does not have to be specified explicitly in RACER knowledge bases - the system can
compute it from the all the used names in the knowledge base - but specifying a signature may help avoiding
errors caused by typos!

6

Boolean terms build concepts by using the boolean operators.

DL notation RACER syntax
Negation ¬ C (not C)
Conjunction C1 � . . . � Cn (and C1 . . . Cn)
Disjunction C1 � . . . � Cn (or C1 . . . Cn)

Qualified restrictions state that role fillers have to be of a certain concept. Value restric-
tions assure that the type of all role fillers is of the specified concept, while exist restrictions
require that there be a filler of that role which is an instance of the specified concept.

DL notation RACER syntax
Exists restriction ∃ R.C (some R C)
Value restriction ∀ R.C (all R C)

Number restrictions can specify a lower bound, an upper bound or an exact number for
the amount of role fillers each instance of this concept has for a certain role. Only roles that
are not transitive and do not have any transitive subroles are allowed in number restrictions
(see also the comments in [Horrocks-et-al. 99a, Horrocks-et-al. 99b]).

DL notation RACER syntax
At-most restriction ≤ n R (at-most n R)
At-least restriction ≥ n R (at-least n R)
Exactly restriction = n R (exactly n R)
Qualified at-most restriction ≤ n R.C (at-most n R C)
Qualified at-least restriction ≥ n R.C (at-least n R C)
Qualified exactly restriction = n R.C (exactly n R C)

Actually, the exactly restriction (exactly n R) is an abbreviation for the concept term
(and (at-least n R) (at-most n R)) and (exactly n R C) is an abbreviation for
the concept term (and (at-least n R C) (at-most n R C))

There are two concepts implicitly declared in every TBox: the concept “top” (�) denotes the
top-most concept in the hierarchy and the concept “bottom” (⊥) denotes the inconsistent
concept, which is a subconcept to all other concepts. Note that � (⊥) can also be expressed
as C � ¬C (C � ¬C). In RACER � is denoted as *top* and ⊥ is denoted as *bottom*3.

3For KRSS compatibility reasons RACER also supports the synonym concepts top and bottom.

7

CDC −→ (a AN) |
(an AN) |
(no AN) |
(min AN integer) |
(max AN integer) |
(> aexpr aexpr) |
(>= aexpr aexpr) |
(< aexpr aexpr) |
(<= aexpr aexpr) |
(= aexpr aexpr)

aexpr −→ AN |
real |
(+ aexpr1 aexpr1 ∗) |
aexpr1

aexpr1 −→ real |
AN |
(* real AN)

Figure 5: RACER concrete domain concepts and attribute expressions.

Concrete domain concepts state concrete predicate restrictions for attribute fillers (see
Figure 3). RACER currently supports two unary predicates for integer attributes (min,
max), five nary predicates for real attributes (>, >=, <, <=, =), a unary existential predicate
with two syntactical variants (a or an), and a special predicate restriction disallowing a
concrete domain filler (no). The restrictions for attributes of type real have to be in the
form of linear inequations where the attribute names play the role of variables. The use of
these concepts is illustrated in Section 3.4.

DL notation RACER syntax
Concrete filler exists restriction ∃A.�D (a A) or (an A)
No concrete filler restriction ∀A.⊥D (no A)
Integer predicate exists restriction ∃A.minz (min A z)

with z ∈ Z ∃A.max z (max A z)
Real predicate exists restriction ∃A1, . . . , An.P (P aexpr aexpr)

with P ∈ {>, >=, <, <=,=}

An all restriction of the form ∀A1, . . . , An.P is currently not directly supported. However,
it can be expressed as disjunction: ∀A1.⊥D � · · · � ∀An.⊥D � ∃A1, . . . , An.P .

3.2 Concept Axioms and Terminology

RACER supports several kinds of concept axioms.

General concept inclusions (GCIs) state the subsumption relation between two concept
terms.

8

DL notation: C1 � C2

RACER syntax: (implies C1 C2)

Concept equations state the equivalence between two concept terms.
DL notation: C1

.= C2

RACER syntax: (equivalent C1 C2)

Concept disjointness axioms state the disjointness between several concepts. Disjoint
concepts do not have instances in common.
DL notation: C1 � · · · � Cn

.= ⊥
RACER syntax: (disjoint C1 . . . Cn)

Actually, a concept equation C1
.= C2 can be expressed by the two GCIs: C1 � C2 and

C2 � C1. The disjointness of the concepts C1 . . . Cn can also be expressed by GCIs.

There are also separate forms for concept axioms with just concept names on their left-hand
sides. These concept axioms implement special kinds of GCIs and concept equations. But
concept names are only a special kind of concept terms, so these forms are just syntactic
sugar. They are added to the RACER system for historical reasons and for compatibility
with KRSS. These concept axioms are:

Primitive concept axioms state the subsumption relation between a concept name and
a concept term.
DL notation: (CN � C)
RACER syntax: (define-primitive-concept CN C)

Concept definitions state the equality between a concept name and a concept term.
DL notation: (CN .= C)
RACER syntax: (define-concept CN C)

Concept axioms may be cyclic in RACER. There may also be forward references to con-
cepts which will be “introduced” with define-concept or define-primitive-concept in
subsequent axioms. The terminology of a RACER TBox may also contain several axioms
for a single concept. So if a second axiom about the same concept is given, it is added and
does not overwrite the first axiom.

3.3 Role Declarations

In contrast to concept axioms, role declarations are unique in RACER. There exists just one
declaration per role name in a knowledge base. If a second declaration for a role is given,
an error is signaled. If no signature is specified, undeclared roles are assumed to be neither
a feature nor a transitive role and they do not have any superroles.

The set of all roles (R) includes the set of features (F) and the set of transitive roles (R+).
The sets F and R+ are disjoint. All roles in a TBox may also be arranged in a role hierarchy.
The inverse of a role name RN can be either explicitly declared via the keyword :inverse
(e.g. see the description of define-primitive-role in Section 5.3, page 33) or referred to
as (inv RN).

Features (also called attributes) restrict a role to be a functional role, e.g. each individual
can only have up to one filler for this role.

9

Transitive Roles are transitively closed roles. If two pairs of individuals IN 1 and IN 2 and
IN 2 and IN 3 are related via a transitive role R, then IN 1 and IN 3 are also related
via R.

Role Hierarchies define super- and subrole-relationships between roles. If R1 is a super-
role of R2, then for all pairs of individuals between which R2 holds, R1 must hold too.

In the current implementation the specified superrole relations may not be cyclic. If a role
has a superrole, its properties are not in every case inherited by the subrole. The properties
of a declared role induced by its superrole are shown in Figure 6. The table should be read
as follows: For example if a role RN 1 is declared as a simple role and it has a feature RN 2

as a superrole, then RN 1 will be a feature itself.

Superrole RN 1 ∈
R R+ F

Subrole RN 1 R R R F
declared as R+ R+ R+ -
element of: F F F F

Figure 6: Conflicting declared and inherited role properties.

The combination of a feature having a transitive superrole is not allowed and features cannot
be transitive. Note that transitive roles and roles with transitive subroles may not be used
in number restrictions.

RACER does not support role terms as specified in the KRSS. However, a
role being the conjunction of other roles can as well be expressed by using
the role hierarchy (cf. [Buchheit et al. 93]). The KRSS-like declaration of the role
(define-primitive-role RN (and RN 1 RN 2)) can be approximated in RACER by:
(define-primitive-role RN :parents (RN 1 RN 2)).

KRSS DL notation
(define-primitive-role RN (domain C)) (∃ RN.�) � C
(define-primitive-role RN (range D)) � � (∀ RN.D)

RACER Syntax DL notation
(define-primitive-role RN :domain C) (∃ RN.�) � C
(define-primitive-role RN :range D) � � (∀ RN.D)

Figure 7: Domain and range restrictions expressed via GCIs.

RACER offers the declaration of domain and range restrictions for roles. These restric-
tions for primitive roles can be either expressed with GCIs, see the examples in Figure 7
(cf. [Buchheit et al. 93]) or declared via the keywords :domain and :range (e.g. see the
description of define-primitive-role in Section 5.3, page 33).

3.4 Concrete Domains

Racer supports reasoning over the integers (Z) and the rationals (Q) in combination with
linear inequations. However, for the convenience of the users the rational numbers are speci-

10

fied in floating point notation and automatically transformed into their rational equivalents
(e.g., 0.75 is transformed into 3/4). Therefore, the term ‘real’ is used as type designator
although the reasoning is based on Q. Names for values from these concrete domains are
called objects. The set of all objects is referred to as O. Individuals can be associated with
objects via so-called attributes names (or attributes for short). Note that the set A of all
attributes must be disjoint to the set of roles (and the set of features). Attributes can be
declared in the signature of a TBox (see below). The following example is an extension of
the family TBox introduced above.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
...

Asking for the children of teenager reveals that old-teenager is a teenager. A further
extensions demonstrates the usage of reals as concrete domain.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)

(real temperature-celsius)
(real temperature-fahrenheit)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
(equivalent human-with-feaver (and human (>= temperature-celsius 38.5))
(equivalent seriously-ill-human (and human (>= temperature-celsius 42.0)))
...

Obviously, Racer determines that the concept seriously-ill-human is subsumed by
human-with-feaver. For the reals, Racer supports linear equations and inequations. Thus,
we could add the following statement to the knowledge base in order to make sure the
relations between the two attributes temperature-fahrenheit and temperature-celsius
is properly represented.

(implies top (= temperature-fahrenheit
(+ (* 1.8 temperature-celsius) 32)))

If a concept seriously-ill-human-1 is defined as

11

(equivalent seriously-ill-human-1
(and human (>= temperature-fahrenheit 107.6)))

Racer recognizes the subsumption relationship with human-with-feaver and the synonym
relationship with seriously-ill-human.

In an ABox, it is possible to set up constraints between individuals. This is illustrated with
the following extended ABox.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes (...)
:individuals (eve doris)
:objects (temp-eve temp-doris))

...
(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5))

For instance, this states that eve is related via the attribute temperature-fahrenheit to
the object temp-eve. The initial constraint (= temp-eve 102.56) specifies that the object
temp-eve is equal to 102.56.

Now, asking for the direct types of eve and doris reveals that both individuals are instances of
human-with-feaver. In the following Abox there is an inconsistency since the temperature
of 102.56 Fahrenheit is identical with 39.5 Celsius.

(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5)
(> temp-eve temp-doris))

3.5 Concrete Domain Attributes

Attributes are considered as “typed” since they can either have fillers of type integer or real.
The same attribute cannot be used in the same TBox such that both types are applicable,
e.g., (min has-age 18) and (>= has-age 18). If the type of an attribute is not explicitly
declared, its type is implicitly derived from its use in a TBox/ABox. An attribute and its
type can be declared with the signature form (see above and in Section 4.1, page 17)) or by
using the KRSS-like form define-concrete-domain-attribute (see Section 5.4, page 35).

12

3.6 ABox Assertions

An ABox contains assertions about individuals. The set of individual names (or individuals
for brevity) I is the signature of the ABox. The set of individuals must be disjoint to the
set of concept names and the set of role names. There are two kinds of assertions:

Concept assertions state that an individual IN is an instance of a specified concept C .

Role assertions state that an individual IN 1 is a role filler for a role R with respect to
an individual IN 2.

Attribute assertions state that an object ON is a filler for a role R with respect to an
individual IN .

Constraints state relationships between objects of the concrete domain.

In RACER the unique name assumption holds, this means that all individual names used
in an ABox refer to distinct domain objects, therefore two names cannot refer to the same
domain object. Note that the unique name assumption does not hold for object names.

In the RACER system each ABox refers to a TBox. The concept assertions in the ABox
are interpreted with respect to the concept axioms given in the referenced TBox. The role
assertions are also interpreted according to the role declarations stated in that TBox. When
a new ABox is built, the TBox to be referenced must already exist. The same TBox may
be referred to by several ABoxes. If no signature is used for the TBox, the assertions in the
ABox may use new names for roles4 or concepts5 which are not mentioned in the TBox.

3.7 Inference Modes

After the declaration of a TBox or an ABox, RACER can be instructed to answer queries.
Processing the knowledge base in order to answer a query may take some time. The standard
inference mode of RACER ensures the following behavior: Depending on the kind of query,
RACER tries to be as smart as possible to locally minimize computation time (lazy inference
mode). For instance, in order to answer a subsumption query w.r.t. a TBox it is not necessary
to classify the TBox. However, once a TBox is classified, answering subsumption queries
for atomic concepts is just a lookup. Furthermore, asking whether there exists an atomic
concept in a TBox that is inconsistent (tbox-coherent-p) does not require the TBox to be
classified, either. In the lazy mode of inference (the default), RACER avoids computations
that are not required concerning the current query. In some situations, however, in order to
globally minimize processing time it might be better to just classify a TBox before answering
a query (eager inference mode).

A similar strategy is applied if the computation of the direct types of individuals is requested.
RACER requires as precondition that the corresponding TBox has to be classified. If the
lazy inference mode is enabled, only the individuals involved in a “direct types” query are
realized.

4These roles are treated as roles that are neither a feature, nor transitive and do not have any superroles.
New items are added to the TBox. Note that this might lead to surprising query results, e.g. the set
of subconcepts for � contains concepts not mentioned in the TBox in any concept axiom. Therefore we
recommend to use a signature declaration (see below).

5These concepts are assumed to be atomic concepts.

13

The inference behavior of RACER can be controlled by setting the value of the variables
auto-classify and *auto-realize* for TBox and ABox inference, respectively. The
lazy inference mode is activated by setting the variables to the keyword :lazy. Eager
inference behavior can be enforced by setting the variables to :eager. The default value for
each variable is :lazy-verbose, which means that RACER prints a progress bar in order
to indicate the state of the current inference activity if it might take some time. If you want
this for eager inferences, use the value :eager-verbose. If other values are encountered,
the user is responsible for calling necessary setup functions (not recommended).

We recommend that TBoxes and ABoxes should be kept in separate files. If an ABox is
revised (by reloading or reevaluating a file), there is no need to recompute anything for the
TBox. However, if the TBox is placed in the same file, reevaluating a file presumably causes
the TBox to be reinitialized and the axioms to be declared again. Thus, in order to answer
an ABox query, recomputations concerning the TBox might be necessary. So, if different
ABoxes are to be tested, they should probably be located separately from the associated
TBoxes in order to save processing time.

During the development phase of a TBox it might be advantageous to call inference services
directly. For instance, during the development phase of a TBox it might be useful to check
which atomic concepts in the TBox are inconsistent by calling check-tbox-coherence. This
service is usually much faster than calling classify-tbox. However, if an application prob-
lem can be solved, for example, by checking whether a certian ABox is consistent or not (see
the function abox-consistent-p), it is not necessary to call either check-tbox-coherence
or classify-tbox. For all queries, RACER ensures that the knowledge bases are in the ap-
propriate states. This behavior usually guarantees minimum runtimes for answering queries.

3.8 Retraction and Incremental Additions

RACER offers constructs for retracting ABox assertions (see forget,
forget-concept-assertion and forget-role-assertion). If a query has been an-
swered and some assertions are retracted, then RACER might be forced to realize the
ABox again, i.e. after retractions, some queries might take some time to answer.

RACER also supports incremental additions to ABoxes, i.e. assertions can be added even
after queries have been answered. However, the internal data structures used for anwering
queries are recomputed from scratch. This might take some time. If an ABox is used for
hypothesis generation, e.g. for testing whether the assertion i : C can be added without
causing an inconsistency, we recommend using the instance checking inference service. If
(individual-instance? i (not C)) returns t, i : C cannot be added to the ABox. Now,
let us assume, we can add i : C and afterwards want to test whether i : D can be added
without causing an inconsistency. In this case it might be faster not to add i : C directly but
to check whether (individual-instance? i (and C (not D))) returns t. The reason is
that, in this case, the index structures for the ABox are not recomputed.

14

4 Knowledge Base Management Functions

This section documents the functions for managing TBoxes and ABoxes and for specifying
queries.

racer-read-file function

Description: A file in Racer format (as described in this document) containing TBox
and/or ABox declarations is loaded.

Syntax: (racer-read-file pathname)

Arguments: pathname - is the pathname of a file

Remarks: This function is only available in the server version of Racer. It is intended
to load TBox and/or ABox declarations using Racer’s Lisp syntax. Only the
statements described in this document are accepted.

Examples: (racer-read-file "project:onto-kb;my-knowledge-base.lisp")

4.1 TBox Management

in-tbox macro

Description: The TBox with the specified name is taken or a new TBox with that name
is generated and bound to the variable *current-tbox*.

Syntax: (in-tbox TBN &key (init t))

Arguments: TBN - is the name of the TBox.

init - boolean indicating if the TBox should be initialized.

Values: TBox object named TBN

Remarks: Usually this macro is used at top of a file containing a TBox. This macro
can also be used to create new TBoxes.

The specified TBox is the *current-tbox* until in-tbox is called again or
the variable *current-tbox* is manipulated directly.

Examples: (in-tbox peanuts)
(implies Piano-Player Character)

...

See also: Macro signature on page 17.

15

init-tbox function

Description: Generates a new TBox or initializes an existing TBox and binds it to the vari-
able *current-tbox*. During the initialization all user-defined concept ax-
ioms and role declarations are deleted, only the concepts *top* and *bottom*
remain in the TBox.

Syntax: (init-tbox tbox)

Arguments: tbox - TBox object

Values: tbox

Remarks: This is the way to create a new TBox object.

signature macro

Description: Defines the signature for a knowledge base.

If any keyword except individuals or objects is used, the *current-tbox* is
initialized and the signature is defined for it.

If the keyword individuals or objects is used, the *current-abox* is initial-
ized. If all keywords are used, the *current-abox* and its TBox are both
initialized.

Syntax: (signature &key (atomic-concepts nil) (roles nil)
(transitive-roles nil) (features nil) (attributes nil)
(individuals nil) (objects nil))

Arguments: atomic-concepts - is a list of all the concept names, specifying C.
roles - is a list of role declarations.
transitive-roles - is a list of transitive role declarations.
features - is a list of feature declarations.
attributes - is a list of attributes declarations.
individuals - is a list of individual names.
objects - is a list of object names.

Remarks: Usually this macro is used at top of a file directly after the macro
in-knowledge-base, in-tbox or in-abox.

Actually it is not necessary in RACER to specify the signature, but it helps
to avoid errors due to typos.

Examples: Signature for a TBox:
(signature
:atomic-concepts (Character Baseball-Player . . .)
:roles ((has-pet)
(has-dog :parents (has-pet) :domain human :range dog)
(has-coach :feature t))

:attributes ((integer has-age) (real has-weight)))

16

Signature for an ABox:
(signature
:individuals (Charlie-Brown Snoopy . . .)
:objects (age-of-snoopy . . .))

Signature for a TBox and an ABox:
(signature
:atomic-concepts (Character Baseball-Player . . .)
:roles ((has-pet)
(has-dog :parents (has-pet) :domain human :range dog)
(has-coach :feature t))

:attributes ((integer has-age) (real has-weight))
:individuals (Charlie-Brown Snoopy . . .)
:objects (age-of-snoopy . . .))

See also: Section Sample Session, on page 2 and page 3.
For role definitions see define-primitive-role, on page 33, for feature
definitions see define-primitive-attribute, on page 33, for attribute de-
finitions see define-concrete-domain-attribute, on page 35.

ensure-tbox-signature function

Description: Defines the signature for a TBox and initializes the TBox.

Syntax: (ensure-tbox-signature tbox &key (atomic-concepts nil)
(roles nil) (transitive-roles nil) (features nil) (attributes nil))

Arguments: tbox - is a TBox name or a TBox object.

atomic-concepts - is a list of all the concept names.

roles - is a list of all role declarations.

transitive-roles - is a list of transitive role declarations.

features - is a list of feature declarations.

attributes - is a list of attributes declarations.

See also: Definition of macro signature.

current-tbox special-variable

Description: The variable *current-tbox* refers to the current TBox object. It is set by
the function init-tbox or by the macro in-tbox.

17

save-tbox function

Description: If a pathname is specified, a TBox is saved to a file. In case a stream is
specified the TBox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-tbox pathname-or-stream &optional (tbox *current-tbox*)
&key (syntax :krss) (transformed nil) (if -exists :supersede)
(if -does-not-exist :create))

Arguments: pathname-or -stream - is the pathname of a file or an output stream

tbox - TBox object

syntax - indicates the syntax of the TBox (only :krss is currently imple-
mented).

transformed - if bound to t the TBox is saved in the format after preprocess-
ing by RACER.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

Values: TBox object

Remarks: A file may contain several TBoxes.
The usual way to load a TBox file is to use the Lisp function load.

Examples: (save-tbox "project:TBoxes;tbox-one.lisp")
(save-tbox "project:TBoxes;final-tbox.lisp"
(find-tbox ’tbox-one) :if-exists :error)

forget-tbox function

Description: Delete the specified TBox from the list of all TBoxes. Usually this enables
the garbage collector to recycle the memory used by this TBox.

Syntax: (forget-tbox tbox)

Arguments: tbox - is a TBox object or TBox name.

Values: List containing the name of the removed TBox and a list of names of option-
ally removed ABoxes

Remarks: All ABoxes referencing the specified TBox are also deleted.

Examples: (forget-tbox ’smith-family)

18

delete-tbox macro

Description: Delete the specified TBox from the list of all TBoxes. Usually this enables
the garbage collector to recycle the memory used by this TBox.

Syntax: (delete-tbox TBN)

Arguments: TBN - is a TBox name.

Values: List containing the name of the removed TBox and a list of names of option-
ally removed ABoxes

Remarks: Calls forget-tbox

Examples: (delete-tbox smith-family)

delete-all-tboxes function

Description: Delete all known TBoxes. Usually this enables the garbage collector to recycle
the memory used by these TBoxes.

Syntax: (delete-all-tboxes)

Values: List containing the names of the removed TBoxes and a list of names of
optionally removed ABoxes

Remarks: All ABoxes are also deleted.

19

create-tbox-clone function

Description: Returns a new TBox object which is a clone of the given TBox. The clone
keeps all declarations from its original but it is otherwise fresh, i.e., new
declarations can be added. This function allows one to create new TBox
versions without the need to reload the already known declarations.

Syntax: (create-tbox-clone tbox &key (new-name nil) (overwrite nil))

Arguments: tbox - is a TBox name or a TBox object.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of tbox is generated otherwise.

overwrite - if bound to t an existing TBox with the name given by new -
name is overwritten. If bound to nil an error is signaled if a TBox
with the name given by new -name is found.

Values: TBox object

Remarks: The variable *current-tbox* is set to the result of this function.

Examples: (create-tbox-clone ’my-TBox)
(create-tbox-clone ’my-TBox :new-name ’my-clone :overwrite t)

clone-tbox macro

Description: Returns a new TBox object which is a clone of the given TBox. The clone
keeps all declarations from its original but it is otherwise fresh, i.e., new
declarations can be added. This function allows one to create new TBox
versions without the need to reload the already known declarations.

Syntax: (clone-tbox TBN &key (new-name nil) (overwrite nil))

Arguments: TBN - is a TBox name.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of tbox is generated otherwise.

overwrite - if bound to t an existing TBox with the name given by new -
name is overwritten. If bound to nil an error is signaled if a TBox
with the name given by new -name is found.

Values: TBox object

Remarks: The function create-tbox-clone is called.

Examples: (clone-tbox my-TBox)
(clone-tbox my-TBox :new-name my-clone :overwrite t)

See also: Function create-tbox-clone on page 20.

20

find-tbox function

Description: Returns a TBox object with the given name among all TBoxes.

Syntax: (find-tbox TBN &optional (errorp t))

Arguments: TBN - is the name of the TBox to be found.

errorp - if bound to t an error is signaled if the TBox is not found.

Values: TBox object

Remarks: This function can also be used to get rid of TBoxes or to rename TBoxes as
shown in the examples.

Examples: (find-tbox ’my-TBox)

Getting rid of a TBox:
(setf (find-tbox ’tbox1) nil)

Renaming a TBox:
(setf (find-tbox ’tbox2) tbox1)

tbox-name function

Description: Finds the name of the given TBox object.

Syntax: (tbox-name tbox)

Arguments: tbox - TBox object

Values: TBox name

xml-read-tbox-file function

Description: A file in XML format containing TBox declarations is parsed and the result-
ing TBox is returned.

Syntax: (xml-read-tbox-file pathname)

Arguments: pathname - is the pathname of a file

Values: TBox object

Remarks: Only XML descriptions which correspond the so-called FaCT DTD are
parsed, everyting else is ignored.

Examples: (xml-read-tbox-file "project:TBoxes;tbox-one.xml")

21

rdfs-read-tbox-file function

Description: A file in RDFS format containing TBox declarations is parsed and the re-
sulting TBox is returned.

Syntax: (rdfs-read-tbox-file pathname)

Arguments: pathname - is the pathname of a file

Values: TBox object

Remarks: Only RDFS descriptions are parsed, everyting else is ignored.

Examples: (rdfs-read-tbox-file "project:TBoxes;tbox-one.rdfs")

4.2 ABox Management

in-abox macro

Description: The ABox with this name is taken or generated and bound to
current-abox. If a TBox is specified, the ABox is also initialized.

Syntax: (in-abox ABN &optional (TBN (tbox-name *current-tbox*)))

Arguments: ABN - ABox name

TBN - name of the TBox to be associated with the ABox.

Values: ABox object named ABN

Remarks: If the specified TBox does not exist, an error is signaled.

Usually this macro is used at top of a file containing an ABox. This macro
can also be used to create new ABoxes. If the ABox is to be continued in
another file, the TBox must not be specified again.

The specified ABox is the *current-abox* until in-abox is called again or
the variable *current-abox* is manipulated directly. The TBox of the ABox
is made the *current-tbox*.

Examples: (in-abox peanuts-characters peanuts)
(instance Schroeder Piano-Player)

...

See also: Macro signature on page 17.

22

init-abox function

Description: Initializes an existing ABox or generates a new ABox and binds it to the
variable *current-abox*. During the initialization all assertions and the
link to the referenced TBox are deleted.

Syntax: (init-abox abox &optional (tbox *current-tbox*))

Arguments: abox - ABox object to initialize

tbox - TBox object associated with the ABox

Values: abox

Remarks: The tbox has to already exist before it can be referred to by init-abox.

ensure-abox-signature function

Description: Defines the signature for an ABox and initializes the ABox.

Syntax: (ensure-abox-signature abox &key (individuals nil) (objects nil))

Arguments: abox - ABox object

individuals - is a list of individual names.

objects - is a list of concrete domain object names.

See also: Macro signature on page 17 is the macro counterpart. It allows to specify
a signature for an ABox and a TBox with one call.

in-knowledge-base macro

Description: This form is an abbreviation for the sequence:
(in-tbox TBN)
(in-abox ABN TBN)

Syntax: (in-knowledge-base TBN ABN &optional (name ’cl-user))

Arguments: TBN - TBox name

ABN - ABox name

name - Package name

Examples: (in-knowledge-base peanuts peanuts-characters)

current-abox special-variable

Description: The variable *current-abox* refers to the current ABox object. It is set by
the function init-abox or by the macros in-abox and in-knwoledge-base.

23

save-abox function

Description: If a pathname is specified, an ABox is saved to a file. In case a stream is
specified, the ABox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-abox pathname-or-stream &optional (abox *current-abox*)
&key (syntax :krss) (transformed nil) (if -exists :supersede)
(if -does-not-exist :create))

Arguments: pathname-or -stream - is the name of the file or an output stream.

abox - ABox object

syntax - indicates the syntax of the TBox (only :krss is currently imple-
mented).

transformed - if bound to t the ABox is saved in the format it has after
preprocessing by RACER.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

Values: ABox object

Remarks: A file may contain several ABoxes.
The usual way to load an ABox file is to use the Lisp function load.

Examples: (save-abox "project:ABoxes;abox-one.lisp")
(save-abox "project:ABoxes;final-abox.lisp"
(find-abox ’abox-one) :if-exists :error)

forget-abox function

Description: Delete the specified ABox from the list of all ABoxes. Usually this enables
the garbage collector to recycle the memory used by this ABox.

Syntax: (forget-abox abox)

Arguments: abox - is a ABox object or ABox name.

Values: The name of the removed ABox

Examples: (forget-abox ’family)

24

delete-abox macro

Description: Delete the specified ABox from the list of all ABoxes. Usually this enables
the garbage collector to recycle the memory used by this ABox.

Syntax: (delete-abox ABN)

Arguments: ABN - is a ABox name.

Values: The name of the removed ABox

Remarks: Calls forget-abox

Examples: (delete-abox family)

delete-all-aboxes function

Description: Delete all known ABoxes. Usually this enables the garbage collector to recycle
the memory used by these ABoxes.

Syntax: (delete-all-aboxes)

Values: List containing the names of the removed ABoxes

create-abox-clone function

Description: Returns a new ABox object which is a clone of the given ABox. The clone
keeps the assertions and the state from its original but new declarations can
be added without modifying the original ABox. This function allows one to
create new ABox versions without the need to reload (and reprocess) the
already known assertions.

Syntax: (create-abox-clone abox &key (new-name nil) (overwrite nil))

Arguments: abox - is an ABox name or an ABox object.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of abox is generated otherwise.

overwrite - if bound to t an existing ABox with the name given by new -name
is overwritten. If bound to nil an error is signaled if an ABox with
the name given by new -name is found.

Values: ABox object

Remarks: The variable *current-abox* is set to the result of this function.

Examples: (create-abox-clone ’my-ABox)
(create-abox-clone ’my-ABox :new-name ’abox-clone :overwrite t)

25

clone-abox macro

Description: Returns a new ABox object which is a clone of the given ABox. The clone
keeps the assertions and the state from its original but new declarations can
be added without modifying the original ABox. This function allows one to
create new ABox versions without the need to reload (and reprocess) the
already known assertions.

Syntax: (clone-abox ABN &key (new-name nil) (overwrite nil))

Arguments: ABN - is an ABox name.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of abox is generated otherwise.

overwrite - if bound to t an existing ABox with the name given by new -name
is overwritten. If bound to nil an error is signaled if an ABox with
the name given by new -name is found.

Values: ABox object

Remarks: The function create-abox-clone is called.

Examples: (clone-abox my-ABox)
(clone-abox my-ABox :new-name abox-clone :overwrite t)

See also: Function create-abox-clone on page 26.

find-abox function

Description: Finds an ABox object with a given name among all ABoxes.

Syntax: (find-abox ABN &optional (errorp t))

Arguments: ABN - is the name of the ABox to be found.

errorp - if bound to t an error is signaled if the ABox is not found.

Values: ABox object

Remarks: This function can also be used to delete ABoxes or rename ABoxes as shown
in the examples.

Examples: (find-tbox ’my-ABox)

Get rid of an ABox, i.e. make the ABox garbage collectible:
(setf (find-abox ’abox1) nil)

Renaming an ABox:
(setf (find-abox ’abox2) abox1)

26

abox-name function

Description: Finds the name of the given ABox object.

Syntax: (abox-name abox)

Arguments: abox - ABox object

Values: ABox name

Examples: (abox-name (find-abox ’my-ABox))

tbox function

Description: Gets the associated TBox for an ABox.

Syntax: (tbox abox)

Arguments: abox - ABox object

Values: TBox object

5 Knowledge Base Declarations

Knowledge base declarations include concept axioms and role declarations for the TBox and
the assertions for the ABox. The TBox object and the ABox object must exist before the
functions for knowledge base declarations can be used. The order of axioms and assertions
does not matter because forward references can be handled by RACER.

The macros for knowledge base declarations add the concept axioms and role declarations
to the *current-tbox* and the assertions to the *current-abox*.

5.1 Built-in Concepts

top, top concept

Description: The name of most general concept of each TBox, the top concept (�).

Syntax: *top*

Remarks: The concepts *top* and top are synonyms. These concepts are elements of
every TBox.

27

bottom, bottom concept

Description: The name of the incoherent concept, the bottom concept (⊥).

Syntax: *bottom*

Remarks: The concepts *bottom* and bottom are synonyms. These concepts are ele-
ments of every TBox.

5.2 Concept Axioms

This section documents the macros and functions for specifying concept axioms. The dif-
ferent concept axioms were already introduced in section 3.2.

Please note that the concept axioms define-primitive-concept, define-concept and
define-disjoint-primitive-concept have the semantics given in the KRSS specification
only if they are the only concept axiom defining the concept CN in the terminology. This
is not checked by the RACER system.

implies macro

Description: Defines a GCI between C1 and C2.

Syntax: (implies C1 C2)

Arguments: C1, C2 - concept term

Remarks: C1 states necessary conditions for C2. This kind of facility is an addendum
to the KRSS specification.

Examples: (implies Grandmother (and Mother Female))
(implies
(and (some has-sibling Sister) (some has-sibling Twin)
(exactly 1 has-sibling))

(and Twin (all has-sibling Twin-sister)))

28

equivalent macro

Description: States the equality between two concept terms.

Syntax: (equivalent C1 C2)

Arguments: C1, C2 - concept term

Remarks: This kind of concept axiom is an addendum to the KRSS specification.

Examples: (equivalent Grandmother
(and Mother (some has-child Parent)))

(equivalent
(and polygon (exactly 4 has-angle))
(and polygon (exactly 4 has-edges)))

disjoint macro

Description: This axiom states the disjointness of a set of concepts.

Syntax: (disjoint CN 1 . . . CN n)

Arguments: CN 1, . . . , CN n - concept names

Examples: (disjoint Yellow Red Blue)
(disjoint January February . . . November December))

define-primitive-concept KRSS macro

Description: Defines a primitive concept.

Syntax: (define-primitive-concept CN C)

Arguments: CN - concept name

C - concept term

Remarks: C states the necessary conditions for CN .

Examples: (define-primitive-concept Grandmother (and Mother Female))
(define-primitive-concept Father Parent)

29

define-concept KRSS macro

Description: Defines a concept.

Syntax: (define-concept CN C)

Arguments: CN - concept name

C - concept term

Remarks: Please note that in RACER, definitions of a concept do not have to be unique.
Several definitions may be given for the same concept.

Examples: (define-concept Grandmother
(and Mother (some has-child Parent)))

define-disjoint-primitive-concept KRSS macro

Description: This axiom states the disjointness of a group of concepts.

Syntax: (define-disjoint-primitive-concept CN GNL C)

Arguments: CN - concept name

GNL - group name list, which lists all groups to which CN belongs to
(among other concepts). All elements of each group are declared to
be disjoint.

C - concept term, that is implied by CN .

Remarks: This function is just supplied to be compatible with the KRSS.

Examples: (define-disjoint-primitive-concept January
(Month) (exactly 31 has-days))

(define-disjoint-primitive-concept February
(Month) (and (at-least 28 has-days) (at-most 29 has-days)))

...

30

add-concept-axiom function

Description: This function adds a concept axiom to a TBox.

Syntax: (add-concept-axiom tbox C1 C2 &key (inclusion-p nil))

Arguments: tbox - TBox object

C1, C2 - concept term

inclusion-p - boolean indicating if the concept axiom is an inclusion axiom
(GCI) or an equality axiom. The default is to state an inclusion.

Values: tbox

Remarks: RACER imposes no constraints on the sequence of concept axiom declara-
tions with add-concept-axiom, i.e. forward references to atomic concepts
for which other concept axioms are added later are supported in RACER.

add-disjointness-axiom function

Description: This function adds a disjointness concept axiom to a TBox.

Syntax: (add-disjointness-axiom tbox CN GN)

Arguments: tbox - TBox object

CN - concept name

GN - group name

Values: tbox

5.3 Role Declarations

31

define-primitive-role KRSS macro (with changes)

Description: Defines a role.

Syntax: (define-primitive-role RN &key (transitive nil) (feature nil)
(symmetric nil) (reflexive nil) (inverse nil) (domain nil)
(range nil) (parents nil))

Arguments: RN - role name

transitive - if bound to t declares that the new role is transitive.

feature - if bound to t declares that the new role is a feature.

symmetric - if bound to t declares that the new role is a symmetric. This is
equivalent to declaring that the new role’s inverse is the role itself.

reflexive - if bound to t declares that the new role is reflexive (currently only
supported for ALCH). If feature is bound to t, the value of reflexive
is ignored.

inverse - provides a name for the inverse role of RN . This is equivalent to
(inv RN). The inverse role of RN has no user-defined name, if
inverse is bound to nil.

domain - provides a concept term defining the domain of role RN . This is
equivalent to adding the axiom (implies (at-least 1 RN) C)
if domain is bound to the concept term C . No domain is declared
if domain is bound to nil.

range - provides a concept term defining the range of role RN . This is
equivalent to adding the axiom (implies *top* (all RN D)) if
range is bound to the concept term D . No range is declared if range
is bound to nil.

parents - provides a list of superroles for the new role. The role RN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see the examples.

Remarks: This function combines several KRSS functions for defining properties of a
role. For example the conjunction of roles can be expressed as shown in the
first example below.

A role that is declared to be a feature cannot be transitive. A role with a
feature as a parent has to be a feature itself. A role with transitive subroles
may not be used in number restrictions.

Examples: (define-primitive-role conjunctive-role :parents (R-1 . . . R-n))
(define-primitive-role has-descendant :transitive t
:inverse descendant-of :parent has-child)

(define-primitive-role has-children :inverse has-parents
:domain parent :range children))

See also: Macro signature on page 17.
Section 3.3 and Figure 7, on page 10 for domain and range restrictions.

32

define-primitive-attribute KRSS macro (with changes)

Description: Defines an attribute.

Syntax: (define-primitive-attribute AN &key (symmetric nil)
(inverse nil) (domain nil) (range nil) (parents nil))

Arguments: AN - attribute name

symmetric - if bound to t declares that the new role is a symmetric. This is
equivalent to declaring that the new role’s inverse is the role itself.

inverse - provides a name for the inverse role of AN . This is equivalent to
(inv AN). The inverse role of AN has no user-defined name, if
inverse is bound to nil.

domain - provides a concept term defining the domain of role AN . This is
equivalent to adding the axiom (implies (at-least 1 AN) C)
if domain is bound to the concept term C . No domain is declared
if domain is bound to nil.

range - provides a concept term defining the range of role AN . This is
equivalent to adding the axiom (implies *top* (all AN D)) if
range is bound to the concept term D . No range is declared if range
is bound to nil.

parents - provides a list of superroles for the new role. The role AN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see examples.

Remarks: This macro is supplied to be compatible with the KRSS specification. It is re-
dundant since the macro define-primitive-role can be used with :feature
t. This function combines several KRSS functions for defining properties of
an attribute.

An attribute cannot be transitive. A role with a feature as a parent has to
be a feature itself.

Examples: (define-primitive-attribute has-mother
:domain child :range mother :parents (has-parents))

(define-primitive-attribute has-best-friend
:inverse best-friend-of :parent has-friends)

See also: Macro signature on page 17.
Section 3.3 and Figure 7, on page 10 for domain and range restrictions.

33

add-role-axioms function

Description: Adds a role to a TBox.

Syntax: (add-role-axioms tbox RN &key (cd-attribute nil) (transitive nil)
(feature nil) (symmetric nil) (reflexive nil) (inverse nil)
(domain nil) (range nil) (parents nil))

Arguments: tbox - TBox object to which the role is added.

RN - role name

cd -attribute - if bound to t declares that RN is a concrete domain attribute.

transitive - if bound to t declares that RN is transitive.

feature - if bound to t declares that RN is a feature.

symmetric - if bound to t declares that RN is a symmetric. This is equivalent
to declaring that the new role’s inverse is the role itself.

reflexive - if bound to t declares that RN is reflexive (currently only sup-
ported for ALCH). If feature is bound to t, the value of reflexive
is ignored.

inverse - provides a name for the inverse role of RN (is equivalent to (inv
RN)). The inverse role of RN has no user-defined name, if inverse
is bound to nil.

domain - provides a concept term defining the domain of role RN (equivalent
to adding the axiom (implies (at-least 1 RN) C) if domain
is bound to the concept term C . No domain is declared if domain
is bound to nil.

range - provides a concept term defining the range of role RN (equivalent
to adding the axiom (implies *top* (all RN D)) if range is
bound to the concept term D . No range is declared if range is
bound to nil.

parents - providing a single role or a list of superroles for the new role. The
role RN has no superroles, if parents is bound to nil.

Values: tbox

Remarks: For each role RN there may be only one call to add-role-axioms per TBox.

See also: Section 3.3 and Figure 7, on page 10 for domain and range restrictions.

5.4 Concrete Domain Attribute Declaration

34

define-concrete-domain-attribute macro

Description: Defines a concrete domain attribute.

Syntax: (define-concrete-domain-attribute AN &key (type ’integer)

Arguments: AN - attribute name

type - can be either bound to integer or real.

Remarks: Calls add-role-axioms

Examples: (define-concrete-domain-attribute has-age :type integer)
(define-concrete-domain-attribute has-weight :type real)

See also: Macro signature on page 17 and Section 3.5.

5.5 Assertions

instance KRSS macro

Description: Builds a concept assertion, asserts that an individual is an instance of a
concept.

Syntax: (instance IN C)

Arguments: IN - individual name

C - concept term

Examples: (instance Lucy Person)
(instance Snoopy (and Dog Cartoon-Character))

add-concept-assertion function

Description: Builds an assertion and adds it to an ABox.

Syntax: (add-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept term

Values: abox

Examples: (add-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(add-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))

35

forget-concept-assertion function

Description: Retracts a concept assertion from an ABox.

Syntax: (forget-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept term

Values: abox

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

Examples: (forget-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(forget-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))

related KRSS macro

Description: Builds a role assertion, asserts that two individuals are related via a role (or
feature).

Syntax: (related IN 1 IN 2 R)

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - a role term or a feature term.

Examples: (related Charlie-Brown Snoopy has-pet)
(related Linus Lucy (inv has-brother))

36

add-role-assertion function

Description: Adds a role assertion to an ABox.

Syntax: (add-role-assertion abox IN 1 IN 2 R)

Arguments: abox - ABox object

IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - role term

Values: abox

Examples: (add-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(add-role-assertion (find-abox ’peanuts-characters)
’Linus ’Lucy ’(inv has-brother))

forget-role-assertion function

Description: Retracts a role assertion from an ABox.

Syntax: (forget-role-assertion abox IN 1 IN 2 R)

Arguments: abox - ABox object

IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - role term

Values: abox

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

Examples: (forget-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(forget-role-assertion (find-abox ’peanuts-characters)
’Linus ’Lucy ’(inv has-brother))

37

define-distinct-individual KRSS macro

Description: This statement asserts that an individual is distinct to all other individuals
in the ABox.

Syntax: (define-distinct-individual IN)

Arguments: IN - name of the individual

Values: IN

Remarks: Because the unique name assumption holds in RACER, all individuals are
distinct. This function is supplied to be compatible with the KRSS specifi-
cation.

state KRSS macro

Description: This macro asserts a set of ABox statements.

Syntax: (state &body forms)

Arguments: forms - is a sequence of instance or related assertions.

Remarks: This macro is supplied to be compatible with the KRSS specification. It
realizes an implicit progn for assertions.

forget macro

Description: This macro retracts a set of ABox statements.

Syntax: (forget &body forms)

Arguments: forms - is a sequence of instance or related assertions.

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

5.6 Concrete Domain Assertions

38

add-constraint-assertion function

Description: Builds a concrete domain predicate assertion and adds it to an ABox.

Syntax: (add-constraint-assertion abox constraint)

Arguments: abox - ABox object

constraint - constraint form

Remarks: The syntax of concrete domain constraints is described in Section 3.1, page
6, and in Figure 3, page 8.

Examples: (add-constraint-assertion (find-abox ’family)
’(= temp-eve 102.56))

constraints macro

Description: This macro asserts a set of concrete domain predicates for concrete domain
objects.

Syntax: (constraints &body forms)

Arguments: forms - is a sequence of concrete domain predicate assertions.

Remarks: Calls add-constraint-assertion. The syntax of concrete domain con-
straints is described in Section 3.1, page 6, and in Figure 3, page 8.

Examples: (constraints
(= temp-eve 102.56)
(= temp-doris 38.5)
(> temp-eve temp-doris))

add-attribute-assertion function

Description: Adds a concrete domain attribute assertion to an ABox. Asserts that an
individual is related with a concrete domain object via an attribute.

Syntax: (add-attribute-assertion abox IN ON AN)

Arguments: abox - ABox object

IN - individual name

ON - concrete domain object name as the filler

AN - attribute name

Examples: (add-attribute-assertion (find-abox ’family)
’eve ’temp-eve ’temperature-fahrenheit))

39

constrained macro

Description: Adds a concrete domain attribute assertion to an ABox. Asserts that an
individual is related with a concrete domain object via an attribute.

Syntax: (constrained IN ON AN)

Arguments: IN - individual name

ON - concrete domain object name as the filler

AN - attribute name

Remarks: Calls add-attribute-assertion

Examples: (constrained eve temp-eve temperature-fahrenheit)

6 Reasoning Modes

auto-classify special-variable

Description: Possible values are :lazy, :eager, :lazy-verbose, :eager-verbose, nil

See also: Section 3.7 on page 13.

auto-realize special-variable

Description: Possible values are :lazy, :eager, :lazy-verbose, :eager-verbose, nil

See also: Section 3.7 on page 13.

7 Evaluation Functions and Queries

7.1 Queries for Concept Terms

40

concept-satisfiable? macro

Description: Checks if a concept term is satisfiable.

Syntax: (concept-satisfiable? C &optional (tbox *current-tbox*))

Arguments: C - concept term.

tbox - TBox object

Values: Returns t if C is satisfiable and nil otherwise.

Remarks: For testing whether a concept term is satisfiable with respect to a TBox tbox .
If satisfiability is to be tested without reference to a TBox, nil can be used.

concept-satisfiable-p function

Description: Checks if a concept term is satisfiable.

Syntax: (concept-satisfiable-p C tbox)

Arguments: C - concept term.

tbox - TBox object

Values: Returns t if C is satisfiable and nil otherwise.

Remarks: For testing whether a concept term is satisfiable with respect to a TBox tbox .
If satisfiability is to be tested without reference to a TBox, nil can be used.

concept-subsumes? KRSS macro

Description: Checks if two concept terms subsume each other.

Syntax: (concept-subsumes? C1 C2 &optional (tbox *current-tbox*))

Arguments: C1 - concept term of the subsumer

C2 - concept term of the subsumee

tbox - TBox object

Values: Returns t if C1 subsumes C2 and nil otherwise.

41

concept-subsumes-p function

Description: Checks if two concept terms subsume each other.

Syntax: (concept-subsumes-p C1 C2 tbox)

Arguments: C1 - concept term of the subsumer

C2 - concept term of the subsumee

tbox - TBox object

Values: Returns t if C1 subsumes C2 and nil otherwise.

Remarks: For testing whether a concept term subsumes the other with respect to a
TBox tbox . If the subsumption relation is to be tested without reference to
a TBox, nil can be used.

See also: Function concept-equivalent-p, on page 43, and function atomic-
concept-synonyms, on page 57.

concept-equivalent? macro

Description: Checks if the two concepts are equivalent in the given TBox.

Syntax: (concept-equivalent? C1 C2 &optional (tbox *current-tbox*))

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are equivalent concepts in tbox and nil otherwise.

Remarks: For testing whether two concept terms are equivalent with respect to a TBox
tbox .

See also: Function atomic-concept-synonyms, on page 57, and function
concept-subsumes-p, on page 42.

42

concept-equivalent-p function

Description: Checks if the two concepts are equivalent in the given TBox.

Syntax: (concept-equivalent-p C1 C2 tbox)

Arguments: C1, C2 - concept terms

tbox - TBox object

Values: Returns t if C1 and C2 are equivalent concepts in tbox and nil otherwise.

Remarks: For testing whether two concept terms are equivalent with respect to a TBox
tbox . If the equality is to be tested without reference to a TBox, nil can be
used.

See also: Function atomic-concept-synonyms, on page 57, and function
concept-subsumes-p, on page 42.

concept-disjoint? macro

Description: Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

Syntax: (concept-disjoint? C1 C2 &optional (tbox *current-tbox*))

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are disjoint with respect to tbox and nil otherwise.

Remarks: For testing whether two concept terms are disjoint with respect to a TBox
tbox . If the disjointness is to be tested without reference to a TBox, nil can
be used.

concept-disjoint-p function

Description: Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

Syntax: (concept-disjoint-p C1 C2 tbox)

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are disjoint with respect to tbox and nil otherwise.

Remarks: For testing whether two concept terms are disjoint with respect to a TBox
tbox . If the disjointness is to be tested without reference to a TBox, nil can
be used.

43

concept-p function

Description: Checks if CN is a concept name for a concept in the specified TBox.

Syntax: (concept-p CN &optional (tbox *current-tbox*))

Arguments: CN - concept name

tbox - TBox object

Values: Returns t if CN is a name of a known concept and nil otherwise.

concept? macro

Description: Checks if CN is a concept name for a concept in the specified TBox.

Syntax: (concept? CN &optional (TBN *current-tbox*))

Arguments: CN - concept name

TBN - TBox name

Values: Returns t if CN is a name of a known concept and nil otherwise.

concept-is-primitive-p function

Description: Checks if CN is a concept name of a so-called primitive concept in the
specified TBox.

Syntax: (concept-is-primitive-p CN &optional (tbox *current-tbox*))

Arguments: CN - concept name

tbox - TBox object

Values: Returns t if CN is a name of a known primitive concept and nil otherwise.

concept-is-primitive? macro

Description: Checks if CN is a concept name of a so-called primitive concept in the
specified TBox.

Syntax: (concept-is-primitive-p CN &optional (TBN (tbox-name
current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: Returns t if CN is a name of a known primitive concept and nil otherwise.

44

alc-concept-coherent function

Description: Tests the satisfiability of a K(m), K4(m) or S4(m) formula encoded as an ALC
concept.

Syntax: (alc-concept-coherent C &key (logic :K))

Arguments: C - concept term

logic - specifies the logic to be used.

:K - modal K(m),
:K4 - modal K4(m) all roles are transitive,
:S4 - modal S4(m) all roles are transitive and reflexive.

If no logic is specified, the logic :K is chosen.

Remarks: This function can only be used for ALC concept terms, so number restrictions
are not allowed.

7.2 Role Queries

role-subsumes? KRSS macro

Description: Checks if two roles are subsuming each other.

Syntax: (role-subsumes? R1 R2

&optional (TBN (tbox-name *current-tbox*)))

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

TBN - TBox name

Values: Returns t if R1 is a parent role of R2.

role-subsumes-p function

Description: Checks if two roles are subsuming each other.

Syntax: (role-subsumes-p R1 R2 tbox)

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

tbox - TBox object

Values: Returns t if R1 is a parent role of R2.

45

role-p function

Description: Checks if R is a role term for a role in the specified TBox.

Syntax: (role-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if R is a known role term and nil otherwise.

role? macro

Description: Checks if R is a role term for a role in the specified TBox.

Syntax: (role? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if R is a known role term and nil otherwise.

transitive-p function

Description: Checks if R is a transitive role in the specified TBox.

Syntax: (transitive-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is transitive in tbox and nil otherwise.

transitive? macro

Description: Checks if R is a transitive role in the specified TBox.

Syntax: (transitive? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is transitive in TBN and nil otherwise.

46

feature-p function

Description: Checks if R is a feature in the specified TBox.

Syntax: (feature-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is a feature in tbox and nil otherwise.

feature? macro

Description: Checks if R is a feature in the specified TBox.

Syntax: (feature? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is a feature in TBN and nil otherwise.

cd-attribute-p function

Description: Checks if AN is a concrete domain attribute in the specified TBox.

Syntax: (cd-attribute-p AN &optional (tbox *current-tbox*))

Arguments: AN - attribute name

tbox - TBox object

Values: Returns t if AN is a concrete domain attribute in tbox and nil otherwise.

cd-attribute? macro

Description: Checks if AN is a concrete domain attribute in the specified TBox.

Syntax: (cd-attribute? AN &optional
(TBN (tbox-name *current-tbox*)))

Arguments: AN - attribute name

TBN - TBox name

Values: Returns t if the role AN is a concrete domain attribute in TBN and nil
otherwise.

47

symmetric-p function

Description: Checks if R is symmetric in the specified TBox.

Syntax: (symmetric-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is symmetric in tbox and nil otherwise.

symmetric? macro

Description: Checks if R is symmetric in the specified TBox.

Syntax: (symmetric? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is symmetric in TBN and nil otherwise.

reflexive-p function

Description: Checks if R is reflexive in the specified TBox.

Syntax: (reflexive-p R &optional (tbox *current-tbox*))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is reflexive in tbox and nil otherwise.

reflexive? macro

Description: Checks if R is reflexive in the specified TBox.

Syntax: (reflexive? R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is reflexive in TBN and nil otherwise.

48

atomic-role-inverse function

Description: Returns the inverse role of role term R.

Syntax: (atomic-role-inverse R tbox)

Arguments: R - role term

tbox - TBox object

Values: Role name or term for the inverse role of R.

role-inverse macro

Description: Returns the inverse role of role term R.

Syntax: (role-inverse R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: Role name or term for the inverse role of R.

Remarks: This macro uses atomic-role-inverse.

7.3 TBox Evaluation Functions

classify-tbox function

Description: Classifies the whole TBox.

Syntax: (classify-tbox &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Remarks: This function needs to be executed before queries can be posed.

49

check-tbox-coherence function

Description: This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

Syntax: (check-tbox-coherence &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns a list of all atomic concepts in tbox that are not satisfiable, i.e. an
empty list (NIL) indicates that there is no additional synonym to bottom.

Remarks: This function does not compute the concept hierarchy. It is much faster
than classify-tbox, so whenever it is sufficient for your application use
check-tbox-coherence. This function is supplied in order to check whether
an atomic concept is satisfiable during the development phase of a TBox.
There is no need to call the function check-tbox-coherence if, for instance,
a certain ABox is to be checked for consistency (with abox-consistent-p).

tbox-classified-p function

Description: It is checked if the specified TBox has already been classified.

Syntax: (tbox-classified-p &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox has been classified, otherwise it returns nil.

tbox-classified? macro

Description: It is checked if the specified TBox has already been classified.

Syntax: (tbox-classified? &optional (TBN (tbox-name *current-tbox*)))

Arguments: TBN - TBox name

Values: Returns t if the specified TBox has been classified, otherwise it returns nil.

50

tbox-coherent-p function

Description: This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

Syntax: (tbox-coherent-p &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: Returns nil if there is an inconsistent atomic concept, otherwise it returns
t.

Remarks: This function calls check-tbox-coherence if necessary.

tbox-coherent? macro

Description: Checks if there are any unsatisfiable atomic concepts in the current or spec-
ified TBox.

Syntax: (tbox-coherent? &optional (TBN (tbox-name *current-tbox*)))

Arguments: TBN - TBox name

Values: Returns t if there is an inconsistent atomic concept, otherwise it returns nil.

Remarks: This macro uses tbox-coherent-p.

7.4 ABox Evaluation Functions

realize-abox function

Description: This function checks the consistency of the ABox and computes the most-
specific concepts for each individual in the ABox.

Syntax: (realize-abox &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: abox

Remarks: This Function needs to be executed before queries can be posed. If the TBox
has changed and is classified again the ABox has to be realized, too.

51

abox-realized-p function

Description: Returns t if the specified ABox object has been realized.

Syntax: (abox-realized-p &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: Returns t if abox has been realized and nil otherwise.

abox-realized? macro

Description: Returns t if the specified ABox object has been realized.

Syntax: (abox-realized? &optional (ABN (abox-name *current-abox*))

Arguments: ABN - ABox name

Values: Returns t if ABN has been realized and nil otherwise.

7.5 ABox Queries

abox-consistent-p function

Description: Checks if the ABox is consistent, e.g. it does not contain a contradiction.

Syntax: (abox-consistent-p &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: Returns t if abox is consistent and nil otherwise.

abox-consistent? macro

Description: Checks if the ABox is consistent.

Syntax: (abox-consistent? &optional (ABN (abox-name *current-abox*)))

Arguments: ABN - ABox name

Values: Returns t if the ABox ABN is consistent and nil otherwise.

Remarks: This macro uses abox-consistent-p.

52

check-abox-coherence function

Description: Checks if the ABox is consistent. If there is a contradiction, this function
prints information about the culprits.

Syntax: (check-abox-coherence &optional (abox *current-abox*)
(stream *standard-output*)

Arguments: abox - ABox object

stream - Stream object

Values: Returns t if abox is consistent and nil otherwise.

individual-instance? KRSS macro

Description: Checks if an individual is an instance of a given concept with respect to the
current-abox and its TBox.

Syntax: (individual-instance? IN C
&optional (abox (abox-name *current-abox*)))

Arguments: IN - individual name

C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C in abox and nil otherwise.

individual-instance-p function

Description: Checks if an individual is an instance of a given concept with respect to an
ABox and its TBox.

Syntax: (individual-instance-p IN C abox)

Arguments: IN - individual name

C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C in abox and nil otherwise.

53

individuals-related? macro

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related? IN 1 IN 2 R
&optional (abox *current-abox*))

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

R - role term

abox - ABox object

Values: Returns t if IN 1 is related to IN 2 via R in abox and nil otherwise.

individuals-related-p function

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related-p IN 1 IN 2 R abox)

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

R - role term

abox - ABox object

Values: Returns t if IN 1 is related to IN 2 via R in abox and nil otherwise.

See also: Function retrieve-individual-filled-roles, on page 68,
Function retrieve-related-individuals, on page 67.

individual-equal? KRSS macro

Description: Checks if two individual names refer to the same domain object.

Syntax: (individual-equal? IN 1 IN 2 &optional (abox *current-abox*))

Arguments: IN 1, IN 2 - individual name

abox - abox object

Remarks: Because the unique name assumption holds in RACER this macro always
returns nil for individuals with different names. This macro is just supplied
to be compatible with the KRSS.

54

individual-not-equal? KRSS macro

Description: Checks if two individual names do not refer to the same domain object.

Syntax: (individual-not-equal? IN 1 IN 2

&optional (abox *current-abox*))

Arguments: IN 1, IN 2 - individual name

abox - abox object

Remarks: Because the unique name assumption holds in RACER this macro always
returns t for individuals with different names. This macro is just supplied to
be compatible with the KRSS.

individual-p function

Description: Checks if IN is a name of an individual mentioned in an ABox abox .

Syntax: (individual-p IN &optional (abox *current-abox*))

Arguments: IN - individual name

abox - ABox object

Values: Returns t if IN is a name of an individual and nil otherwise.

individual? macro

Description: Checks if IN is a name of an individual mentioned in an ABox ABN .

Syntax: (individual? IN &optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name

ABN - ABox name

Values: Returns t if IN is a name of an individual and nil otherwise.

cd-object-p function

Description: Checks if ON is a name of a concrete domain object mentioned in an ABox
abox .

Syntax: (cd-object-p ON &optional (abox *current-abox*))

Arguments: ON - concrete domain object name

abox - ABox object

Values: Returns t if ON is a name of a concrete domain object and nil otherwise.

55

cd-object? macro

Description: Checks if ON is a name of a concrete domain object mentioned in an ABox
ABN .

Syntax: (cd-object? ON &optional (ABN (abox-name *current-abox*)))

Arguments: ON - concrete domain object name

ABN - ABox name

Values: Returns t if ON is a name of a concrete domain object and nil otherwise.

8 Retrieval

If the retrieval refers to concept names, RACER always returns a set of names for each
concept name. A so called name set contains all synonyms of an atomic concept in the
TBox.

8.1 TBox Retrieval

taxonomy function

Description: Returns the whole taxonomy for the specified TBox.

Syntax: (taxonomy &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: A list of triples, each of it consisting of:

a name set - the atomic concept CN and its synonyms

list of concept-parents name sets - each entry being a list of a concept parent
of CN and its synonyms

list of concept-children name sets - each entry being a list of a concept child
of CN and its synonyms.

Examples: (taxonomy my-TBox)
may yield:
(((*top*) () ((quadrangle tetragon)))
((quadrangle tetragon) ((*top*)) ((rectangle) (diamond)))
((rectangle) ((quadrangle tetragon)) ((*bottom*)))
((diamond) ((quadrangle tetragon)) ((*bottom*)))
((*bottom*) ((rectangle) (diamond)) ()))

See also: Function atomic-concept-parents,
function atomic-concept-children on page 60.

56

concept-synonyms macro

Description: Returns equivalent concepts for the specified concept in the given TBox.

Syntax: (concept-synonyms CN
&optional (tbox (tbox-name *current-tbox*)))

Arguments: CN - concept name

tbox - TBox object

Values: List of concept names

Remarks: The name CN is not included in the result.

See also: Function concept-equivalent-p, on page 43.

atomic-concept-synonyms function

Description: Returns equivalent concepts for the specified concept in the given TBox.

Syntax: (atomic-concept-synonyms CN tbox)

Arguments: CN - concept name

tbox - TBox object

Values: List of concept names

Remarks: The name CN is not included in the result.

See also: Function concept-equivalent-p, on page 43.

concept-descendants KRSS macro

Description: Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

Syntax: (concept-descendants C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

Remarks: This macro return the transitive closure of the macro concept-children.

57

atomic-concept-descendants function

Description: Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

Syntax: (atomic-concept-descendants C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

Remarks: Returns the transitive closure from the call of atomic-concept-children.

concept-ancestors KRSS macro

Description: Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

Syntax: (concept-ancestors C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

Remarks: This macro return the transitive closure of the macro concept-parents.

atomic-concept-ancestors function

Description: Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

Syntax: (atomic-concept-ancestors C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

Remarks: Returns the transitive closure from the call of atomic-concept-parents.

58

concept-children KRSS macro

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (concept-children C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

Remarks: Is the equivalent macro for the KRSS macro concept-offspring, which is
also supplied in RACER.

atomic-concept-children function

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (atomic-concept-children C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

concept-parents KRSS macro

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (concept-parents C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

atomic-concept-parents function

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (atomic-concept-parents C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

59

role-descendants KRSS macro

Description: Gets all roles from the TBox, that the given role subsumes.

Syntax: (role-descendants R
&optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Remarks: This macro is the transitive closure of the macro role-children.

atomic-role-descendants function

Description: Gets all roles from the TBox, that the given role subsumes.

Syntax: (atomic-role-descendants R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

Remarks: This function is the transitive closure of the function
atomic-role-descendants.

role-ancestors KRSS macro

Description: Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

Syntax: (role-ancestors R
&optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

60

atomic-role-ancestors function

Description: Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

Syntax: (atomic-role-ancestors R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

role-children macro

Description: Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

Syntax: (role-children R
&optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Remarks: This is the equivalent macro to the KRSS macro role-offspring, which is
also supplied by the RACER system.

atomic-role-children function

Description: Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

Syntax: (atomic-role-children R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

61

role-parents KRSS macro

Description: Gets the roles from the TBox that directly subsume the given role in the role
hierarchy.

Syntax: (role-parents R &optional (TBN (tbox-name *current-tbox*)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

atomic-role-parents function

Description: Gets the roles from the TBox that directly subsume the given role in the role
hierarchy.

Syntax: (atomic-role-parents R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

loop-over-tboxes function

Description: Iterator function for all TBoxes.

Syntax: (loop-over-tboxes (tbox-variable)
loop-clause

...)

Arguments: tbox -variable - variable for a TBox object

loop-clause - loop clause

all-tboxes function

Description: Returns the names of all known TBoxes.

Syntax: (all-tboxes)

Values: List of TBox names

62

all-atomic-concepts function

Description: Returns all atomic concepts from the specified TBox.

Syntax: (all-atomic-concepts &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: List of concept names

Remarks: (all-atomic-concepts (find-tbox ’my-tbox))

all-roles function

Description: Returns all roles and features from the specified TBox.

Syntax: (all-roles &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: List of role terms

Examples: (all-roles (find-tbox ’my-tbox))

all-features function

Description: Returns all features from the specified TBox.

Syntax: (all-features &optional (tbox *current-tbox*))

Arguments: tbox - TBox

Values: List of feature terms

all-transitive-roles function

Description: Returns all transitive roles from the specified TBox.

Syntax: (all-transitive-roles &optional (tbox *current-tbox*))

Arguments: tbox - TBox object

Values: List of transitive role terms

63

describe-tbox function

Description: Generates a description for the specified TBox.

Syntax: (describe-tbox &optional (tbox *current-tbox*)
(stream *standard-output*))

Arguments: tbox - TBox object or TBox name

stream - open stream object

Values: tbox
The description is written to stream.

describe-concept function

Description: Generates a description for the specified concept used in the specified TBox
or in the ABox and its TBox.

Syntax: (describe-concept CN &optional (tbox-or-abox *current-tbox*)
(stream *standard-output*))

Arguments: tbox -or -abox - TBox object or ABox object

CN - concept name

stream - open stream object

Values: tbox -or -abox
The description is written to stream.

describe-role function

Description: Generates a description for the specified role used in the specified TBox or
ABox.

Syntax: (describe-role R &optional (tbox-or-abox *current-tbox*)
(stream *standard-output*))

Arguments: tbox -or -abox - TBox object or ABox object

R - role term (or feature term)

stream - open stream object

Values: tbox -or -abox
The description is written to stream.

8.2 ABox Retrieval

64

individual-direct-types KRSS macro

Description: Gets the most-specific atomic concepts of which an individual is an instance.

Syntax: (individual-direct-types IN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name
ABN - ABox name

Values: List of name sets

most-specific-instantiators function

Description: Gets the most-specific atomic concepts of which an individual is an instance.

Syntax: (most-specific-instantiators IN abox)

Arguments: IN - individual name
abox - ABox object

Values: List of name sets

individual-types KRSS macro

Description: Gets all atomic concepts of which the individual is an instance.

Syntax: (individual-types IN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name
ABN - ABox name

Values: List of name sets

Remarks: This is the transitive closure of the KRSS macro individual-direct-types.

instantiators function

Description: Gets all atomic concepts of which the individual is an instance.

Syntax: (instantiators IN abox)

Arguments: IN - individual name
abox - ABox object

Values: List of name sets

Remarks: This is the transitive closure of the function
most-specific-instantiators.

65

concept-instances KRSS macro

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (concept-instances C
&optional (ABN (abox-name *current-abox*)))

Arguments: C - concept term

ABN - ABox name

Values: List of individual names

retrieve-concept-instances function

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (retrieve-concept-instances C abox)

Arguments: C - concept term

abox - ABox object

Values: List of individual names

individual-fillers KRSS macro

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (individual-fillers IN R
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name of the predecessor

R - role term

ABN - ABox name

Values: List of individual names

Examples: (individual-fillers Charlie-Brown has-pet)
(individual-fillers Snoopy (inv has-pet))

66

retrieve-individual-fillers function

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (retrieve-individual-fillers IN R abox)

Arguments: IN - individual name of the predecessor
R - role term
abox - ABox object

Values: List of individual names

Examples: (retrieve-individual-fillers ’Charlie-Brown ’has-pet
(find-abox ’peanuts-characters))

retrieve-related-individuals function

Description: Gets all pairs of individuals that are related via the specified relation.

Syntax: (retrieve-related-individuals R abox)

Arguments: R - role term
abox - ABox object

Values: List of pairs of individual names

Examples: (retrieve-related-individuals ’has-pet
(find-abox ’peanuts-characters))

may yield:
((Charlie-Brown Snoopy) (John-Arbuckle Garfield))

See also: Function individuals-related-p, on page 54.

related-individuals macro

Description: Gets all pairs of individuals that are related via the specified relation.

Syntax: (related-individuals R
&optional (ABN (abox-name *current-abox*)))

Arguments: R - role term
ABN - ABox name

Values: List of pairs of individual names

Examples: (retrieve-related-individuals ’has-pet
(find-abox ’peanuts-characters))

may yield:
((Charlie-Brown Snoopy) (John-Arbuckle Garfield))

See also: Function individuals-related-p, on page 54.

67

retrieve-individual-filled-roles function

Description: This function gets all roles that hold between the specified pair of individu-
als.

Syntax: (retrieve-individual-filled-roles IN 1 IN 2 abox).

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

abox - ABox object

Values: List of role terms

Examples: (retrieve-individual-filled-roles ’Charlie-Brown ’Snoopy
(find-abox ’peanuts-characters))

See also: Function individuals-related-p, on page 54.

retrieve-direct-predecessors function

Description: Gets all individuals that are predecessors of a role for a specified individual.

Syntax: (retrieve-direct-predecessors R IN abox)

Arguments: R - role term

IN - individual name of the role filler

abox - ABox object

Values: List of individual names

Examples: (retrieve-direct-predecessors ’has-pet ’Snoopy
(find-abox ’peanuts-characters))

loop-over-aboxes function

Description: Iterator function for all ABoxes.

Syntax: (loop-over-aboxes (abox-variable)
loop-clause

...)

Arguments: abox -variable - variable for a ABox object

loop-clause - loop clause

68

all-aboxes function

Description: Returns the names of all known ABoxes.

Syntax: (all-aboxes)

Values: List of ABox names

all-individuals function

Description: Returns all individuals from the specified ABox.

Syntax: (all-individuals &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: List of individual names

all-concept-assertions-for-individual function

Description: Returns all concept assertions for an individual from the specified ABox.

Syntax: (all-concept-assertions-for-individual IN
&optional (abox *current-abox*))

Arguments: IN - individual name
abox - ABox object

Values: List of concept assertions

See also: Function all-concept-assertions on page 70.

all-role-assertions-for-individual-in-domain function

Description: Returns all role assertions for an individual from the specified ABox in which
the individual is the role predecessor.

Syntax: (all-role-assertions-for-individual-in-domain IN
&optional (abox *current-abox*))

Arguments: IN - individual name
abox - ABox object

Values: List of role assertions

Remarks: Returns only the role assertions explicitly mentioned in the ABox, not the
inferred ones.

See also: Function all-role-assertions on page 70.

69

all-role-assertions-for-individual-in-range function

Description: Returns all role assertions for an individual from the specified ABox in which
the individual is a role successor.

Syntax: (all-role-assertions-for-individual-in-range IN
&optional (abox *current-abox*))

Arguments: IN - individual name

abox - ABox object

Values: List of assertions

See also: Function all-role-assertions on page 70.

all-concept-assertions function

Description: Returns all concept assertions from the specified ABox.

Syntax: (all-concept-assertions &optional (abox *current-abox*))

Arguments: abox - ABox object

Values: List of assertions

all-role-assertions function

Description: Returns all role assertions from the specified ABox.

Syntax: (all-role-assertions &optional (abox *current-abox*))

Arguments: IN - individual name

abox - ABox object

Values: List of assertions

See also: Function all-concept-assertions-for-individual on page 69.

70

describe-abox function

Description: Generates a description for the specified ABox.

Syntax: (describe-abox &optional (abox *current-abox*)
(stream *standard-output*))

Arguments: abox - ABox object

stream - open stream object

Values: abox
The description is written to stream.

describe-individual function

Description: Generates a description for the individual from the specified ABox.

Syntax: (describe-individual IN &optional (abox *current-abox*)
(stream *standard-output*))

Arguments: IN - individual name

abox - ABox object

stream - open stream object

Values: IN
The description is written to stream.

A KRSS Sample Knowledge Base

The following knowledge base is specified in KRSS syntax. It is a version of the knowledge
base used in the Sample Session, on page 1.

71

A.1 KRSS Sample TBox

;;;===
;;; the following forms are assumed to be contained in a
;;; file "racer:examples;family-tbox-krss.lisp".

;;; initialize the TBox family
(in-tbox family :init t)

;;; the roles
(define-primitive-role has-child :parents (has-descendant))
(define-primitive-role has-descendant :transitive t)
(define-primitive-role has-sibling)
(define-primitive-role has-sister :parents (has-sibling))
(define-primitive-role has-brother :parents (has-sibling))
(define-primitive-attribute has-gender)

;;; domain & range restrictions for roles
(implies top (all has-child person))
(implies (some has-child top) parent)
(implies (some has-sibling top) (or sister brother))
(implies top (all has-sibling (or sister brother)))
(implies top (all has-sister (some has-gender female)))
(implies top (all has-brother (some has-gender male)))

;;; the concepts
(define-primitive-concept person

(and human (some has-gender (or female male))))
(define-disjoint-primitive-concept female (gender) top)
(define-disjoint-primitive-concept male (gender) top)
(define-primitive-concept woman (and person (some has-gender female)))
(define-primitive-concept man (and person (some has-gender male)))
(define-concept parent (and person (some has-child person)))
(define-concept mother (and woman parent))
(define-concept father (and man parent))
(define-concept grandmother

(and mother
(some has-child

(some has-child person))))

(define-concept aunt (and woman (some has-sibling parent)))
(define-concept uncle (and man (some has-sibling parent)))
(define-concept brother (and man (some has-sibling person)))
(define-concept sister (and woman (some has-sibling person)))

72

A.2 KRSS Sample ABox

;;;===
;;; the following forms are assumed to be contained in a
;;; file "racer:examples;family-abox-krss.lisp".

;;; initialize the ABox smith-family and use the TBox family
(in-abox smith-family family)

;;; Alice is the mother of Betty and Charles
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

;;; Betty is mother of Doris and Eve
(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

;;; Charles is the brother of Betty (and only Betty)
(instance charles brother)
(related charles betty has-sibling)
;;; closing the role has-sibling for charles
(instance charles (at-most 1 has-sibling))

;;; Doris has the sister Eve
(related doris eve has-sister)

;;; Eve has the sister Doris
(related eve doris has-sister)

B Integrated Sample Knowledge Base

This section shows an integrated version of the family knowledge base.

;;;===
;;; the following forms are assumed to be contained in a
;;; file "racer:examples;family-kb.lisp".

(in-knowledge-base family smith-family)

73

(signature :atomic-concepts (person human female male woman man
parent mother father grandmother
aunt uncle sister brother)

:roles ((has-descendant :transitive t)
(has-child :parent has-descendant)
has-sibling
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t))

:individuals (alice betty charles doris eve))

;;; domain & range restrictions for roles
(implies *top* (all has-child person))
(implies (some has-child *top*) parent)
(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

;;; the concepts
(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother

(and mother
(some has-child

(some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

;;; Alice is the mother of Betty and Charles
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

;;; Betty is mother of Doris and Eve
(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

74

;;; Charles is the brother of Betty (and only Betty)
(instance charles brother)
(related charles betty has-sibling)
;;; closing the role has-sibling for charles
(instance charles (at-most 1 has-sibling))

;;; Doris has the sister Eve
(related doris eve has-sister)

;;; Eve has the sister Doris
(related eve doris has-sister)

References

[Buchheit et al. 93] M. Buchheit, F.M. Donini & A. Schaerf, “Decidable Reasoning in Ter-
minological Knowledge Representation Systems”, in Journal of Artificial Intelligence
Research, 1, pp. 109-138, 1993.

[Haarslev and Möller 2000] Haarslev, V. and Möller, R. (2000), “Expressive ABox reasoning
with number restrictions, role hierarchies, and transitively closed roles”, in Proceedings
of Seventh International Conference on Principles of Knowledge Representation and
Reasoning (KR’2000), Cohn, A., Giunchiglia, F., and Selman, B., editors, Brecken-
ridge, Colorado, USA, April 11-15, 2000, pages 273–284.

[Horrocks-et-al. 99a] I. Horrocks, U. Sattler, S. Tobies, “Practical Reasoning for Descrip-
tion Logics with Functional Restrictions, Inverse and Transitive Roles, and Role Hier-
archies”, Proceedings of the 1999 Workshop Methods for Modalities (M4M-1), Ams-
terdam, 1999.

[Horrocks-et-al. 99b] I. Horrocks, U. Sattler, S. Tobies, “A Description Logic with Transitive
and Converse Roles, Role Hierarchies and Qualifying Number Restrictions”, Technical
Report LTCS-99-08, RWTH Aachen, 1999.

[Horrocks et al. 2000] Horrocks, I., Sattler, U., and Tobies, S. (2000). Reasoning with indi-
viduals for the description logic SHIQ. In MacAllester, D., editor, Proceedings of the
17th International Conference on Automated Deduction (CADE-17), Lecture Notes in
Computer Science, Germany. Springer Verlag.

[Patel-Schneider and Swartout 93] P.F. Patel-Schneider, B. Swartout “Description Logic
Knowledge Representation System Specification from the KRSS Group of the ARPA
Knowledge Sharing Effort”, November 1993. The paper is available as:
http://www-db.research.bell-labs.com/user/pfps/papers/krss-spec.ps

75

Index

auto-classify, 40
auto-realize, 40
bottom, 28
current-abox, 23
current-tbox, 17
top, 27

abox-consistent-p, 52
abox-consistent?, 52
abox-name, 27
abox-realized-p, 52
abox-realized?, 52
add-attribute-assertion, 39
add-concept-assertion, 35
add-concept-axiom, 31
add-constraint-assertion, 39
add-disjointness-axiom, 31
add-role-assertion, 37
add-role-axioms, 34
alc-concept-coherent, 45
all-aboxes, 69
all-atomic-concepts, 63
all-concept-assertions, 70
all-concept-assertions-for-individual,

69
all-features, 63
all-individuals, 69
all-role-assertions, 70
all-role-assertions-for-

-individual-in-domain, 69
all-role-assertions-for-

-individual-in-range, 70
all-roles, 63
all-tboxes, 62
all-transitive-roles, 63
assertion, 13
atomic-concept-ancestors, 58
atomic-concept-children, 59
atomic-concept-descendants, 58
atomic-concept-parents, 59
atomic-concept-synonyms, 57
atomic-role-ancestors, 61
atomic-role-children, 61
atomic-role-descendants, 60
atomic-role-inverse, 49

atomic-role-parents, 62
attribute, 35

bottom, 28

cd-attribute-p, 47
cd-attribute?, 47
cd-object-p, 55
cd-object?, 56
check-abox-coherence, 53
check-tbox-coherence, 50
classify-tbox, 49
clone ABox, 26
clone TBox, 20
clone-abox, 26
clone-tbox, 20
concept axioms, 8
concept definition, 9
concept equation, 9
concept term, 6
concept-ancestors, 58
concept-children, 59
concept-descendants, 57
concept-disjoint-p, 43
concept-disjoint?, 43
concept-equivalent-p, 43
concept-equivalent?, 42
concept-instances, 66
concept-is-primitive-p, 44
concept-is-primitive?, 44
concept-offspring, 59
concept-p, 44
concept-parents, 59
concept-satisfiable-p, 41
concept-satisfiable?, 41
concept-subsumes-p, 42
concept-subsumes?, 41
concept-synonyms, 57
concept?, 44
concrete domain attribute, 35
concrete domain restriction, 8
conjunction of roles, 10
constrained, 40
constraints, 39
copy ABox, 26
copy TBox, 20

76

create-abox-clone, 25
create-tbox-clone, 20

define-concept, 30
define-concrete-domain-attribute,

35
define-disjoint-primitive-concept,

30
define-distinct-individual, 38
define-primitive-attribute, 33
define-primitive-concept, 29
define-primitive-role, 32
delete ABox, 24–26
delete ABoxes, 25
delete TBox, 19, 21
delete TBoxes, 19
delete-abox, 25
delete-all-aboxes, 25
delete-all-tboxes, 19
delete-tbox, 19
describe-abox, 71
describe-concept, 64
describe-individual, 71
describe-role, 64
describe-tbox, 64
disjoint, 29
disjoint concepts, 9, 29, 30
domain restriction, 10

ensure-abox-signature, 23
ensure-tbox-signature, 17
equivalent, 29
exists restriction, 7

feature, 9, 33
feature-p, 47
feature?, 47
find-abox, 26
find-tbox, 21
forget, 38
forget-abox, 24
forget-concept-assertion, 36
forget-role-assertion, 37
forget-tbox, 18

GCI, 8, 28

implies, 28
in-abox, 22

in-knowledge-base, 23
in-tbox, 15
individual-direct-types, 65
individual-equal?, 54
individual-fillers, 66
individual-instance-p, 53
individual-instance?, 53
individual-not-equal?, 55
individual-p, 55
individual-types, 65
individual?, 55
individuals-related-p, 54
individuals-related?, 54
inference modes, 13
init-abox, 23
init-tbox, 16
instance, 35
instantiators, 65

load ABox, 24
loop-over-aboxes, 68
loop-over-tboxes, 62

most-specific-instantiators, 65

name set, 56
number restriction, 7

primitive concept, 9

racer-read-file, 15
range restriction, 10
RDFS, 22
rdfs-read-tbox-file, 22
read Racer file, 15
read RDFS TBox file, 22
read XML TBox file, 21
realize-abox, 51
reflexive-p, 48
reflexive?, 48
related, 36
related-individuals, 67
rename ABox, 26
rename TBox, 21
retraction, 14
retrieve-concept-instances, 66
retrieve-direct-predecessors, 68
retrieve-individual-filled-roles,

68

77

retrieve-individual-fillers, 67
retrieve-related-individuals, 67
role hierarchy, 10
role-ancestors, 60
role-children, 61
role-descendants, 60
role-inverse, 49
role-offspring, 61
role-p, 46
role-parents, 62
role-subsumes-p, 45
role-subsumes?, 45
role?, 46

save TBox, 18
save-abox, 24
save-tbox, 18
signature, 6
signature, 16
state, 38
subrole, 33
superrole, 33
symmetric-p, 48
symmetric?, 48

taxonomy, 56
tbox, 27
tbox-classified-p, 50
tbox-classified?, 50
tbox-coherent-p, 51
tbox-coherent?, 51
tbox-name, 21
top, 27
transitive role, 10, 33
transitive-p, 46
transitive?, 46

unique name assumption, 13

value restriction, 7

XML, 21
xml-read-tbox-file, 21

78

