
Combining Tableaux and Algebraic Decision Procedures for Dealing with
Qualified Number Restrictions in Description Logics

Volker Haarslev, Martina Timmann, Ralf Möller
University of Hamburg, Computer Science Department

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract

This paper investigates an optimization technique for reasoning with qualified
number restrictions in the description logic ALCQHR+ . We present a hybrid
architecture where a standard tableaux calculus is combined with a procedure
deciding the satisfiability of linear (in)equations derived from qualified number
restrictions. The advances are demonstrated by an empirical evaluation using the
description logic system RACER which implements TBox and ABox reasoning
for ALCQHIR+ . The evaluation demonstrates a dramatic speed up compared to
other known approaches.

1 Introduction

Over the last few years many optimizations techniques have been proposed for dealing
with expressive description logics (DLs). These techniques turned out to be very effec-
tive for synthesized TBoxes as well as application TBoxes. However, there exist only
very few proposals for optimization techniques addressing the sources of complexity
introduced by qualified number restrictions. In [3] mathematical programming and
atomic decomposition is presented as the basic TBox inference technique for a large
class of modal and description logics. The proposed techniques seem to be well suited
for dealing with qualified number restrictions. However, the approach in [3] is not
based on a tableaux calculus and cannot deal with ALCQHR+ . In this paper we re-
port on the integration of an algebraic reasoner into the DL reasoners RACER whose
architecture is based on a highly optimized tableaux calculus.

In [1] a particular tableaux calculus for ALCQHR+ , the so-called signature calcu-
lus, is presented. The signature calculus addresses a source of inefficiency which is
caused by standard tableaux calculi dealing with qualified number restrictions (e.g.
see [2] for ALCQ). The signature calculus offers a compact representation for role suc-
cessors using so-called proxy individuals. A proxy individual represents a set of role
successors and its corresponding signature can be understood as a representation for
the cardinality of a set of qualified role successors (see [1] for details). This compact
representation of role successors is independent from the values of numbers occurring
in qualified number restrictions. The use of the signature calculus already indicates a
dramatic performance gain of several orders of magnitude (see [1] and Figure 3).

However, there still exist problems which cannot be efficiently dealt with by the
signature calculus. One of these problems is illustrated as follows. Let us assume a

1

role name R, the concept names C1, . . . ,C7,P1, . . . ,P4, the axioms C3 � C1, C4 � C1,
C5 � C1 � C2, C6 � C2, C7 � C2, and the concept D defined as follows.

D
.= ∃≥2 R . (C3 � P1) � ∃≥3 R . (C4 � P1) � ∃≥1 R . (C5 � ¬P1 � P2 � P3 � ¬P4) �
∃≥1 R . (C5 � ¬P1 � P2 � ¬P3 � ¬P4) � ∃≥1 R . (C5 � ¬P1 � ¬P2 � ¬P4) �
∃≥3 R . (C6 � P1) � ∃≥2 R . (C7 � ¬P1)

Then, the concept term D � ∃≤7 R .C1 � ∃≤7 R .C2 � ∃≤7 R . (C1 � C2) is satisfiable
while the concept term D � (∃≤6 R .C1 � ∃≤6 R .C2 � ∃≤6 R . (C1 � C2)) is not satisfi-
able. Using the signature calculus, RACER cannot compute the (un)satisfiability of
either concept term within a reasonable amount of time (e.g. ≤ 100 seconds). In the
next sections we present a new architecture which can compute the (un)satisfiability
of these concept terms in almost constant time even if the values of the numbers oc-
curring in the qualified number restrictions of D are appropriately increased to values
around 1000.

2 Qualified Number Restrictions as Sets of Inequations

The inefficiency of tableaux algorithms for deciding the satisfiability of the above-
mentioned concept terms is caused by their negligence of sets of inequations over set
cardinalities induced by qualified number restrictions. A solution for this problem is
presented in [3] where reasoning about sets of inequations is proposed. However, this
approach is not based on a tableaux calculus but on atomic decomposition techniques.
The contribution of our paper is two-fold. (1) We present a hybrid architecture which
decides concept consistency for ALCQHR+ by combining a tableaux calculus with a
reasoner about sets of linear (in)equations. The architecture is inspired by [3] and [1].
(2) Furthermore, we integrated this architecture into the RACER system (version
1.6) and present a first empirical evaluation which indicates a dramatic performance
gain compared to other known approaches.

2.1 The Language ALCQHR+

We briefly introduce the description logic (DL) ALCQHR+ (see the tables in Figure
1) using a standard Tarski-style semantics based on an interpretation I = (∆I , ·I).
ALCQHR+ extends the basic description logic ALC by role hierarchies, transitively
closed roles, and qualified number restrictions. The concept name � (⊥) is used as
an abbreviation for C � ¬C (C � ¬C). We assume a set of concept names C , a set of
role names R, and a set of individual names O . The mutually disjoint subsets P and
T of R denote non-transitive and transitive roles, respectively (R = P ∪ T).

If R,S ∈ R are role names, then the terminological axiom R � S is called a role
inclusion axiom. A role hierarchy R is a finite set of role inclusion axioms. Then,
we define �∗ as the reflexive transitive closure of � over such a role hierarchy R.
Given �∗, the set of roles R↓ = {S ∈ R |S �∗ R} defines the descendants of a role
R. R↑ = {S ∈ R |R �∗ S} is the set of ancestors of a role R. We also define the
set S = {R ∈ P |R↓ ∩ T = ∅} of simple roles that are neither transitive nor have a
transitive role as descendant. A syntactic restriction holds for the combinability of

2

Syntax Semantics
Concepts
A AI ⊆ ∆I , A is a concept name
¬C ∆I \ CI

C � D CI ∩ DI

C � D CI ∪ DI

∃R .C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R .C {a ∈ ∆I | ∀ b : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S .C {a ∈ ∆I | S�(a,C) ≥ n}
∃≤m S .C {a ∈ ∆I | S�(a,C) ≤ m}
Roles
R RI ⊆ ∆I × ∆I

Terminological Axioms
Syntax Satisfied if
R ∈ T RI = (RI)+

R � S RI ⊆ SI

C � D CI ⊆ DI

Figure 1: Syntax and Semantics of ALCQHR+ (n, m ∈ N, n > 0, ‖ · ‖ denotes set
cardinality, S ∈ S , and S�(a,C) = ‖{b ∈ ∆I | (a, b) ∈ SI , b ∈ CI}‖).

number restrictions and transitive roles in ALCQHR+ . Number restrictions are only
allowed for simple roles.

If C and D are concept terms, then C � D (generalized concept inclusion or GCI) is
a terminological axiom. A finite set of terminological axioms TR is called a terminology
or TBox w.r.t. to a given role hierarchy R.1

The concept satisfiability problem is to decide whether a given concept term C is
satisfiable w.r.t. to T and R, i.e. whether CI = ∅.

2.2 A Tableaux Calculus for ALCQHR+

In the following we present an ABox tableaux algorithm which decides the satisfiability
of ALCQHR+ concepts.

First, we introduce ABox assertions used as input for the tableaux algorithm. Let
C be a concept term, R be a role name, O be the set of individual names, a, b ∈ O be
individual names, and x ∈ O , then the following expression are ABox assertions: (1)
a :C (instance assertion), (2) (a, b) :R (role assertion) ∀ x . (x :C) (universal concept
assertion). An interpretation I satisfies an assertional axiom a :C iff aI ∈ CI , (a, b) :R
iff (aI , bI) ∈ RI , and ∀ x . (x :C) iff CI = ∆I . An ABox A is consistent iff there exists
an interpretation I which satisfies all assertions in A and all axioms in T .

Given a TBox T , and a role hierarchy R, the concept C is satisfiable iff the ABox
A created according to the following rules is consistent. For every GCI C � D in T
the assertion ∀ x . (x : (¬C � D)) is added to A. Every concept term occurring in A is
transformed into its usual negation normal form. Every concept of the form ∃R .C
occurring in A is replaced by (∃R′ � ∀R′ .C) and every ∃≥n R .C by (∃≥n R′ � ∀R′ .C),
with R′ ∈ R fresh in A and R′ � R ∈ R.

ALCQHR+ supports transitive roles and GCIs. Thus, in order to guarantee the
termination of the tableaux calculus, the notion of blocking an individual for the ap-
plicability of tableaux rules is introduced as follows. Given an ABox A and an individ-
ual a occurring in A, we define the concept set of a as σ(A, a) := {�} ∪ {C | a :C ∈ A}.

1The reference to R is omitted in the following.

3

We define an individual ordering ‘≺’ for individuals (elements of O) occurring in an
ABox A. If b ∈ O is introduced into A, then a ≺ b for all individuals a already present
in A. Let A be an ABox and a, b ∈ O be individuals in A. We call a the blocking
individual of b if all of the following conditions hold: (1) σ(A, a) ⊇ σ(A, b), (2) a ≺ b.
If there exists a blocking individual a for b, then b is said to be blocked (by a).

Given an ABox A, �(a,R)A defines the number of potential R-successors for an indi-
vidual a mentioned in A.

�(a,R)A =
∑
α∈A

count(a,R, α)A, count(a,R, α)A =

{
n if α = a :∃≥n R′, R′ ∈ R↑

0 otherwise.

Given an ABox A, min(a,R)A defines the minimal number of required and max(a,R,C)A
the maximal number of allowed R-successors for an individual a mentioned in A (whose
R-successors satisfy C).

min(a,R)A = max({0} ∪ {n | a :∃≥n S ∈ A, S ∈ R↓}
max(a,R,C)A = min({∞} ∪ {n | a :∃≤n S .C ∈ A, S ∈ R↑})

We are now ready to define the completion rules that are intended to generate a
so-called completion (see also below) of an ABox A w.r.t. a TBox T .
R� The conjunction rule.

if a :C � D ∈ A, and {a :C, a :D} ⊆ A
then A′ = A ∪ {a :C, a :D}

R� The disjunction rule.
if a :C � D ∈ A, and {a :C, a :D} ∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A ∪ {a :D}

R∀C The role value restriction rule.
if a :∀R .C ∈ A, and ∃ b ∈ O ,S ∈ R↓ : (a, b) :S ∈ A, and b :C ∈ A
then A′ = A ∪ {b :C}

R∀+C The transitive role value restriction rule.
if 1. a :∀R .C ∈ A, and ∃ b ∈ O , T ∈ R↓, T ∈ T , S ∈ T↓ : (a, b) :S ∈ A, and

2. b :∀T .C ∈ A
then A′ = A ∪ {b :∀T .C}

R∀x The universal concept restriction rule.
if ∀ x . (x :C) ∈ A, and ∃ a ∈ O : a mentioned in A, and a :C ∈ A
then A′ = A ∪ {a :C}

R∃≥n The number restriction exists rule.
if 1. a :∃≥n R ∈ A, and a is not blocked, and

2. ¬∃ b1, . . . , bn ∈ O , S1, . . . ,Sn ∈ R↓ : {(a, bk) :Sk | k ∈ 1..n} ⊆ A
then A′ = A ∪ {(a, bk) :R | k ∈ 1..n} where b1, . . . , bn ∈O are not used in A

Merge The qualified number restriction merge rule.
if 1. ∃ a, C mentioned in A : �(a,R)A > max(a,R,C)A, and

2. R̂ = {R′ ∈ P | a :∃≤m R′ .D ∈ A}, and
3. MR

≥ = {a :∃≥n S ∈ A |S ∈ R′↓, R′ ∈ R̂}, MR
≤ = {a :∃≤m S .D ∈ A |S ∈ R̂}

then 〈SAT,M 〉 ← inequations satisfiable(MR
≥,MR

≤,A)
if SAT
then A′ = (A \MR

≥) ∪ M (add transformed assertions)
else A′ = A ∪ {a :⊥}

Observe the completion strategy defined below. The qualified number restriction
merge rule needs some explanation. It is invoked whenever there exists an individual

4

with potential successors for a role R such that the number of these successors violates
an at-most restriction for an ancestor role of R. If this is the case, the rule calls the
algebraic reasoner with the set MR

≥ of at-least and the set MR
≤ of at-most assertions.

If the inequations derived from both sets are satisfiable, the algebraic reasoner returns
a set M of new assertions such that these assertions satisfy all restrictions from MR

≥
and MR

≤ and, thus, the assertions from M may replace the ones from MR
≥. The

replacement is required in order to guarantee the termination of the calculus. If the
inequations are unsatisfiable, the ABox A′ is marked as contradictory (see below).

Given an ABox A, more than one rule might be applicable to A. The order is
determined by the completion strategy which is defined as follows. A meta rule controls
the priority between individuals: Apply a tableaux rule to an individual b ∈ O only
if no rule is applicable to another individual c ∈ O such that c ≺ b. The completion
rules are always applied in the following order: (1) All non-generating rules (R�, R�,
R∀C, R∀+C, R∀x); (2) Qualified number restriction merge rule; (3) Number restriction
exists rule (R∃≥n). In the following we always assume that the completion strategy is
observed. It ensures that rules are applied to individuals w.r.t. the ordering ‘≺’ and
the number restriction exists rule is only applied to individuals if the qualified number
restriction merge rule is not applicable.

We assume the same naming conventions as used above. An ABox A is called
contradictory if the following clash trigger is applicable. If the clash trigger is not
applicable to A, then A is called clash-free. The clash trigger has to deal with so-
called primitive clashes: a :⊥ ∈ A or {a :A, a :¬A} ⊆ A, where A is a concept name.
Any ABox containing a clash is obviously unsatisfiable. A clash-free ABox A is called
complete if no completion rule is applicable to A. A complete ABox A′ derived from
an ABox A is called a completion of A. The purpose of the calculus is to generate a
completion for an ABox A in order to prove the consistency of A. For a given ABox
A, the calculus applies the completion rules. It stops the application of rules, if a
clash occurs. The calculus answers “yes” if a completion can be derived, and “no”
otherwise.

2.3 The Algebraic Reasoner

The algebraic reasoner has to determine whether the assertions contained in MR
≤ ∪MR

≥
are satisfiable. This is achieved by a derivation process which is inspired by the ap-
proach presented in [3]. A set of (in)equations over set cardinalities is derived from
the sets MR

≤ ∪MR
≥. These (in)equations can be mapped to a set of linear inequa-

tions where set cardinalities are represented as “variables” of the inequations. The
satisfiability of such a set of linear inequations is decided with the help of a Simplex
procedure which allows only solutions in N.

In the following we illustrate this process with a simple example. Let R1, R2,
R3, and R be role names with R1 � R, R2 � R, R3 � R, and C be an atomic con-
cept. As an example, we assume that the satisfiability of the following concept
∃≤3 R � ∃≥2 R1 � ∃≥2 R2 � ∃≥2 R3 � ∀R2 .C � ∀R3 .¬C has to be checked. According
to the rules described in the previous sections, the algebraic reasoner will be called
with the sets MR

≥ = {a :∃≥2 R1, a :∃≥2 R2, a :∃≥2 R3} and MR
≤ = {a :∃≤3 R}, and the

5

{R}a

{R1}a {R2}a

{R3}a

{R1,R2}a

{R1,R2,R3}a

{R1,R3}a {R2,R3}a

Partitioning:
Ra

1 = {R1}a ∪ {R1,R2}a ∪ {R1,R3}a ∪ {R1,R2,R3}a

Ra
2 = {R2}a ∪ {R1,R2}a ∪ {R2,R3}a ∪ {R1,R2,R3}a

Ra
3 = {R3}a ∪ {R1,R3}a ∪ {R2,R3}a ∪ {R1,R2,R3}a

Ra = {R}a ∪ {R1}a ∪ {R2}a ∪ {R3}a ∪ {R1,R2}a ∪
{R1,R3}a ∪ {R2,R3}a ∪ {R1,R2,R3}a

Contents of S:
{‖Ra‖ ≥ 0, ‖Ra

1‖ ≥ 2, ‖Ra
2‖ ≥ 2, ‖Ra

3‖ ≥ 2, ‖Ra‖ ≤ 3,
‖Ra

1‖ = r1 + r1r2 + r1r3 + r1r2r3,
‖Ra

2‖ = r2 + r1r2 + r2r3 + r1r2r3,
‖Ra

3‖ = r3 + r1r3 + r2r3 + r1r2r3,
‖Ra‖ = r + r1 + r2 + r3 + r1r2 + r1r3 + r2r3 + r1r2r3}

(a) Venn diagram illustrating the
partitioning of Ra.

(b) Partitions according to left figure and (in)equa-
tions derived from partitions and number re-
strictions.

Figure 2: Partitioning of Ra and derivation of initial (in)equations.

ABox A = MR
≥ ∪MR

≤ ∪ {a :∀R2 .C, a :∀R3 .¬C, . . . }.
In order to better understand the following derivation process one has to keep in

mind that the sets of successors for aI w.r.t. the roles R1, R2, R3, and R are split in dis-
joint subsets as illustrated in Figure 2a. Let us assume that Ra = {b ∈ ∆I | (aI , b) ∈ RI}
denotes the R-successors of aI . For a non-empty subset RS ⊆ R we define a set
RS a = {b ∈ ∆I | (aI , b) ∈ R′I , R′ ∈ RS , (aI , b) /∈ R′′I , R′′ ∈ (R \ RS)}. Now we can
represent the partitioning of the sets Ra, Ra

1, Ra
2, and Ra

3 as shown in Figure 2b. For
better readability we denote ‖RS a‖ by ri1 . . . rik if RS = {Ri1 , . . . ,Rik}. The set S of lin-
ear (in)equations initially contains ‖Sa‖ ≥ 0 for every role S mentioned in MR

≤ ∪MR
≥,

‖Sa‖ ≥ n for every a :∃≥n S ∈ MR
≥, and ‖Sa‖ ≤ m for every a :∃≤m S ∈ MR

≤.2 For our
example the initial contents of S is displayed in Figure 2b.

The algebraic reasoner has to verify whether a set RS a has to be empty, i.e.
‖RS a‖ = 0. It uses a role successor satisfiability test RSAT(A, a,C,RS) where A is an
ABox, a an individual, C a concept term, and RS a role set. The test RSAT(A, a,C,RS)
is successful, i.e. RS a = ∅, iff the ABox A′ = A ∪ {a :C} ∪ {(a, b) :S |S ∈ RS} with b
new in A is consistent.

For our example, the reasoner iteratively has to test all non-empty subsets RS
of {R,R1,R2,R3}: If ¬RSAT(A \MR

≥, a,�,RS) holds, the equations ‖RS ′a‖ = 0 are
added to S for every set RS ′ with {R,R1,R2,R3} ⊇ RS ′ ⊇ RS . Since A contains
a :∀R2 .C and a :∀R3 .¬C there cannot exist a {R2,R3}-successor of a. Thus, the
equations ‖{R2,R3}a‖ = 0 and ‖{R1,R2,R3}a‖ = 0 have to be added to S. This leads
to an unsatisfiable set S of (in)equations:
‖Ra‖ ≤ 3
‖Ra‖ = r + r1 + r2 + r3 + r1r2 + r1r3 ≥ (r2 + r1r2) + (r3 + r1r3) = ‖Ra

2‖ + ‖Ra
3‖ ≥ 4

If the set MR
≤ contains assertions of the form a :∃≤m S .D, these are transformed

by the algebraic reasoner into a : (∃≤m S′ � ∀R′ .D � ∀R\R′ .¬D) where R′ is fresh in
A and R′ � R ∈ R. The new operator (∀R\R′ .E) is based on set difference for roles

2Elements of the form a :∃≤m S . C with CI �= ∆I are discussed below.

6

0.01

0.1

1

10

>100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number merging problem size (1-21; 4 problems in 2 variants: U=Unsatisfiable, S=Satisfiable)

secs

Lines without dots
indicate use of
signature calculus

Problem 1 (U)
Problem 1 (S)
Problem 2 (U)
Problem 2 (S)
Problem 3 (U)
Problem 3 (S)
Problem 4 (U)
Problem 4 (S)

Figure 3: RACER: benchmark problems w/out signature calculus (in color).

(see [3] for details). Its semantics is defined as follows:
(∀R\R′ .E)I = {a ∈ ∆I | ∀ b : (a, b) ∈ (RI \R′I) ⇒ b ∈ EI}.

The algebraic reasoner implements this semantics as follows. Let us assume that as-
sertions of the form a :∃≤m1 S1 .D1, . . . , a :∃≤mk

Sk .Dk with k ≥ 1 have to be handled.
Then, the role successor satisfiability tests have the form RSAT(A, a,E1 � . . . � Ek,
{S1, . . . ,Sk}) where Ei is indeterministically chosen from {Di, ∼Di}, i ∈ 1..k (∼D de-
notes the negation normal form of ¬D).

3 Evaluation

In order to indicate the advancement of this new architecture, we compare the perfor-
mance of the hybrid architecture against settings where a standard tableaux calculus
and the signature calculus is used. A set of four benchmark problems were generated.
The increased difficulty of the problems is caused by exponentially increasing the size of
numbers used in at-least and at-most concepts. Each of the four problems exists in two
variants (a ‘test concept’ is consistent vs. inconsistent). A problem basically employs
concept terms of the form ∃≤n R � ∃≥m1 R1 � ∃≥m2 R2 � ∃≥m3 R3 � ∀R2 .C � ∀R3 .¬C
with Ri � R, i ∈ 1..3. The (in)consistency of these terms has to be proven. A term
is made consistent by choosing values for n, mi such that max(m1, m2 + m3) ≤ n or
inconsistent if max(m1, m2 + m3) > n.

Figure 3 demonstrates the result of this benchmark w/out the signature calculus
and Figure 4 the result w/out algebraic reasoning. Although the performance gain in
Figure 3 (signature calculus) is dramatic, the result in Figure 4 (algebraic reasoning) is
even more dramatic since these problems can now be solved in constant time (usually
below 0.02 seconds). The speed enhancement also scales up for problems with qualified
number restrictions. The “intractable” problem from the introduction can now be
handled as well. Using the algebraic reasoner it can be solved well below 0.1 seconds
even if the values occurring in number restrictions are increased up to ∼1000.

However, there exist problems such that the number of required role successor

7

0.01

0.02

0.1

1

10

>100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number merging problem size (1-21; 4 problems in 2 variants: U=Unsatisfiable, S=Satisfiable)

secs

Lines without dots
indicate use of
algebraic reasoning

Problem 1 (U)
Problem 1 (S)
Problem 2 (U)
Problem 2 (S)
Problem 3 (U)
Problem 3 (S)
Problem 4 (U)
Problem 4 (S)

Figure 4: RACER: benchmark problems w/out algebraic reasoning (in color).

satisfiability tests, and, in turn, the number of variables required for the Simplex
procedure, might increase exponentially in the worst case. This can be illustrated
with concepts of the form ∃R .C1 � . . . � ∃R .Cn � ∃≤m R, m < n. If such a concept
is satisfiable, the algebraic reasoner has to consider O(2n) variables for the Simplex
procedure and O(2n) role successor satisfiability tests. Our experiments indicate that
these concepts can usually be dealt with by the signature calculus [1] quite efficiently.

4 Conclusion and Outlook

In this paper we have presented a hybrid architecture for efficiently dealing with
qualified number restrictions in the DL ALCQHR+ . The architecture has been im-
plemented and evaluated in the ABox description logic system RACER (version 1.6).
In contrast to [3] our approach is integrated into a tableaux calculus and can deal
with GCIs, transitive roles, and cyclic terminologies. We are currently extending this
approach to arbitrary ABoxes for the DL ALCQHIR+ which extends ALCQHR+ by
inverse roles.

References

[1] V. Haarslev and R. Möller. Optimizing reasoning in description logics with quali-
fied number restriction: Extended abstract. Submitted to DL’2001.

[2] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.
In J. Allen, R. Fikes, and E. Sandewall, editors, Second International Conference
on Principles of Knowledge Representation, Cambridge, Mass., April 22-25, 1991,
pages 335–346, April 1991.

[3] H.J. Ohlbach and J. Köhler. Modal logics, description logics and arithmetic rea-
soning. Artificial Intelligence, 109(1-2):1–31, 1999.

8

