
Combining Tableau and Algebraic Methods for Reasoning with

Qualified Number Restrictions in Description Logics

Volker Haarslev∗, Martina Timmann∗, Ralf Möller∗∗

∗University of Hamburg
Computer Science Department
Vogt-Kölln-Str. 30
22527 Hamburg, Germany
haarslev@informatik.uni-hamburg.de

∗∗Univ. of Appl. Sciences in Wedel
Computer Science Department
Feldstrasse 143
22880 Wedel, Germany
rmoeller@fh-wedel.de

Abstract

The paper investigates an optimization technique for reasoning with qualified number
restrictions in the description logic ALCQHR+ (a.k.a. SHQ), which can be seen as one
of the cornerstones for reasoning technology in the context of, for instance, the semantic
web activity. We present a hybrid architecture where a standard tableaux calculus is
combined with a procedure deciding the satisfiability of linear inequations derived from
qualified number restrictions. The advances are demonstrated by an empirical evaluation
using the description logic system RACER. The evaluation demonstrates a dramatic
speed up compared to other known approaches.

1 Introduction

Description logics (DLs) provide an important cornerstone in the development of reasoning
technology in the context of the semantic web initiative [1]. In particular, recent developments
in optimization techniques for DL systems based on tableau calculi demonstrate the practical
applicability of formal reasoning systems in the web context. This has been shown not only
concerning terminological knowledge (TBoxes) but also w.r.t. assertional knowledge about
specific individuals (ABoxes). Furthermore, in the context of the semantic web, it has been
argued that expressive description logics are required [2]. In particular, the logics SHIQ [16]
and SHOQ [14] have been proposed. As a common basis of all these logics for the semantic
web, in this paper, we investigate the logic SHQ (aka. ALCQHR+ in another naming scheme
for DLs [10]).

Over the last few years dedicated optimizations techniques have been proposed for dealing
with expressive description logics. These techniques turned out to be very effective for TBoxes
and ABoxes. In particular, for the logic SHIQ, with FaCT [17, 13] and with RACER1

[6, 10], optimization techniques suitable for large-scale practical applications have been in-
vestigated [8]. Despite recent advances, there exist only very few proposals for optimization
techniques addressing the sources of complexity introduced by so-called qualified number re-
strictions, which are part of the logics discussed above. Number restrictions are often required
in practical applications, e.g., in the context of configuration problems [18]. Qualified number
restrictions provide for an additional expressivity [12].

1RACER download page: http://kogs-www.informatik.uni-hamburg.de/~race/

1

Syntax Semantics
Concepts
A AI ⊆ ∆I , A is a concept name
¬C ∆I \ CI

C � D CI ∩ DI

C � D CI ∪ DI

∃R .C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R .C {a ∈ ∆I | ∀ b : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S .C {a ∈ ∆I | S�(a,C) ≥ n}
∃≤m S .C {a ∈ ∆I | S�(a,C) ≤ m}
Roles
R RI ⊆ ∆I ×∆I

Terminol. Axioms
Syntax Satisfied if
R ∈ T RI = (RI)+

R � S RI ⊆ SI

C � D CI ⊆ DI

Figure 1: Syntax and Semantics of ALCQHR+ (n, m ∈ N, n > 1, m > 0, ‖ · ‖ denotes set
cardinality, S ∈ S , S�(a,C) = ‖{b ∈ ∆I | (a, b) ∈ SI , b ∈ CI}‖).

1.1 The Language ALCQHR+

We briefly introduce the description logic (DL) ALCQHR+ (see the tables in Figure 1) using a
standard Tarski-style semantics based on an interpretation I = (∆I , ·I). ALCQHR+ extends
the description logic ALCNHR+ [6] by qualified number restrictions. We assume a set of
concept names C and a set of role names R. The mutually disjoint subsets P and T of R
denote non-transitive and transitive roles, respectively (R = P ∪ T).

If R,S ∈ R are role names, then the terminological axiom R � S is called a role inclusion
axiom. A role hierarchy R is a finite set of role inclusion axioms. Then, we define �∗ as
the reflexive transitive closure of � over such a role hierarchy R. Given �∗, the set of roles
R↓ = {S ∈ R |S �∗ R} defines the descendants of a role R. R↑ = {S ∈ R |R �∗ S} is the set of
ancestors of a role R. We also define the set S = {R ∈ P |R↓ ∩ T = ∅} of simple roles that are
neither transitive nor have a transitive role as descendant. A syntactic restriction holds for the
combinability of number restrictions and transitive roles in ALCQHR+ . Number restrictions
are only allowed for simple roles. This restriction is motivated by an undecidability result in
case of an unrestricted combinability [15]. The concept name (⊥) is used as an abbreviation
for C � ¬C (C � ¬C).

If C and D are concept terms, then C � D (generalized concept inclusion or GCI) is a
terminological axiom. A finite set of terminological axioms TR is called a terminology or
TBox w.r.t. to a given role hierarchy R.2 We use C

.= D as an abbreviation for {C � D,
D � C}.

The concept satisfiability problem is to decide whether a given concept term C is satisfiable
w.r.t. to T and R, i.e., whether there exists an interpretation I such that I satisfies T and
R and CI #= ∅.

1.2 Problems with Qualified Number Restrictions

In [9] a particular tableaux calculus for ALCQHR+ , the so-called signature calculus, is pre-
sented. The signature calculus addresses a source of inefficiency which is caused by standard
tableau calculi dealing with qualified number restrictions (e.g., see [12] for ALCQ). The

2The reference to R is omitted in the following.

2

signature calculus offers a compact representation for role successors using so-called proxy in-
dividuals. A proxy individual represents a set of role successors. Its corresponding signature
can be understood as a representation for the cardinality of a set of qualified role successors
(see [9] for details). This compact representation of role successors is largely independent
from the values of numbers occurring in qualified number restrictions. New proxy individuals
are generated, if required, in order to capture the interaction of number restrictions and role
hierarchies. The use of the signature calculus already indicates a dramatic performance gain
of several orders of magnitude (see [9]).

However, there still exists a large class of problems (using qualified number restrictions)
which cannot be efficiently dealt with by the signature calculus. One of these problems is
illustrated as follows. Let us assume a role name R, the concept names C1, . . . ,C7,P1, . . . ,P4,
the axioms C3 � C1, C4 � C1, C5 � C1 � C2, C6 � C2, C7 � C2, and the concept D defined as
follows.

D
.= ∃≥2 R . (C3 � P1) � ∃≥3 R . (C4 � P1) � ∃≥1 R . (C5 � ¬P1 � P2 � P3 � ¬P4) �
∃≥1 R . (C5 � ¬P1 � P2 � ¬P3 � ¬P4) � ∃≥2 R . (C5 � ¬P1 � ¬P2 � ¬P4) �
∃≥3 R . (C6 � P1) � ∃≥2 R . (C7 � ¬P1)

Then, the concept term D � ∃≤7 R .C1 � ∃≤7 R .C2 � ∃≤7 R . (C1 � C2) is satisfiable while the
concept term D � (∃≤6 R .C1 � ∃≤6 R .C2 � ∃≤6 R . (C1 � C2)) is not satisfiable. Even with ad-
vances such as the signature calculus, RACER (and other comparable DL systems) cannot
compute the (un)satisfiability of either concept e.g.,term within a reasonable amount of time
(e.g., ≤ 100 seconds). Note that the numbers used in the example are all rather small.

In [20] mathematical programming and atomic decomposition is presented as the basic
TBox inference technique for a large class of modal and description logics. The proposed
techniques seem to be well suited for dealing with qualified number restrictions. However,
the approach in [20] is not based on a tableaux calculus and does not investigate blocking
strategies as required by the description logic ALCQHR+ . In this paper we report on the
integration of an algebraic reasoner into the tableaux-based DL reasoner RACER. Due to
space restrictions, we focus on TBox reasoning.

2 Dealing with Qualified Number Restrictions

In the following we present a tableaux algorithm which decides the satisfiability of ALCQHR+

concepts. It is based on a hybrid architecture combining a tableaux calculus with a reasoner
about sets of linear inequations. The calculus is inspired by [20] and [9]. The calculus
uses internal data structures, which are sometimes called “constraints” (e.g., [3]). In other
contexts, in particular if the DL supports so-called ABoxes, the data structures are also called
“ABox assertions” (see e.g., [6]).

2.1 A Tableaux Calculus for ALCQHR+

First, we introduce ABox assertions used as input for the tableaux algorithm. Let C be a
concept term, R be a role name, O be the set of individual names (disjoint from the set of
concepts names and the set of role names), a, b ∈ O be individual names, and x #∈ O , then
the following expression are ABox assertions: (1) a :C (instance assertion), (2) (a, b) :R (role
assertion), and (3) ∀ x . (x :C) (universal concept assertion). An interpretation I satisfies an
assertional axiom a :C iff aI ∈ CI , (a, b) :R iff (aI , bI) ∈ RI , and ∀ x . (x :C) iff CI = ∆I . An

3

ABox A is satisfiable iff there exists an interpretation I which satisfies all assertions in A and
all axioms in T w.r.t. R.

Given a TBox T , and a role hierarchyR, a concept D is satisfiable iff the ABox A = {a :D}
extended in accordance with the following rules is satisfiable. For every GCI C � D in T the
assertion ∀ x . (x : (¬C � D)) is added to A. Every concept term occurring in A is transformed
into its usual negation normal form. Every concept of the form ∃R .C occurring in A is
replaced by (∃≥1 R′ � ∀R′ .C) and every ∃≥n R .C by (∃≥n R′ � ∀R′ .C), with R′ ∈ R fresh in
A and R′ � R added to R.
ALCQHR+ supports transitive roles and GCIs. In order to guarantee the termination

of the tableaux calculus, the notion of blocking an individual for the applicability of tableau
rules is introduced as follows. Given an ABox A and an individual a occurring in A, we define
the concept set of a as σ(A, a) := { } ∪ {C | a :C ∈ A}. We define an individual ordering ‘≺’
for individuals (elements of O) occurring in an ABox A. If b ∈ O is introduced into A,
then a ≺ b for all individuals a already present in A. Let A be an ABox and a, b ∈ O be
individuals in A. We call a a blocking individual of b if all of the following conditions hold:
(1) σ(A, a) ⊇ σ(A, b), (2) a ≺ b. If there exists a blocking individual a for b, then b is said to
be blocked (by a).

Given an ABox A, �(a,R)A defines the number of potential R-successors for an individual
a mentioned in A.

�(a,R)A =
∑
α∈A

count(a,R, α)A, count(a,R, α)A =

{
n if α = a :∃≥n R′, R′ ∈ R↓

0 otherwise

Given an ABox A, min(a,R)A defines the minimal number of required and max(a,R,C)A
the maximal number of allowed R-successors for an individual a mentioned in A (whose R-
successors satisfy C).

min(a,R)A = max({0} ∪ {n | a :∃≥n S ∈ A, S ∈ R↓}
max(a,R,C)A = min({∞} ∪ {n | a :∃≤n S .C ∈ A, S ∈ R↑})

We are now ready to define the completion rules that are intended to generate a so-called
completion (see also below) of an ABox A w.r.t. a TBox T .

R� The conjunction rule.
if a :C � D ∈ A, and {a :C, a :D} #⊆ A
then A′ = A ∪ {a :C, a :D}

R� The disjunction rule.
if a :C � D ∈ A, and {a :C, a :D} ∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A ∪ {a :D}

R∀C The role value restriction rule.
if a :∀R .C ∈ A, and ∃ b ∈ O ,S ∈ R↓ : (a, b) :S ∈ A, and b :C #∈ A
then A′ = A ∪ {b :C}

R∀+C The transitive role value restriction rule.
if 1. a :∀R .C ∈ A, and ∃ b ∈ O , T ∈ R↓, T ∈ T , S ∈ T↓ : (a, b) :S ∈ A, and

2. b :∀T .C #∈ A
then A′ = A ∪ {b :∀T .C}

R∀x The universal concept restriction rule.
if ∀ x . (x :C) ∈ A, and ∃ a ∈ O : a mentioned in A, and a :C #∈ A
then A′ = A ∪ {a :C}

4

R∃≥n The number restriction exists rule.
if 1. a :∃≥n R ∈ A, and a is not blocked, and

2. ¬∃ b1, . . . , bn ∈ O , S1, . . . ,Sn ∈ R↓ : {(a, bk) :Sk | k ∈ 1..n} ⊆ A
then A′ = A ∪ {(a, bk) :R | k ∈ 1..n} where b1, . . . , bn ∈O are not used in A

Merge The qualified number restriction merge rule.
if 1. ∃ a, C mentioned in A : �(a,R)A > max(a,R,C)A, and

2. R̂ = {R′ ∈ P | a :∃≤m R′ .D ∈ A}, and
3. MR

≥ = {a :∃≥n S ∈ A |S ∈ R′↓, R′ ∈ R̂}, MR
≤ = {a :∃≤m S .D ∈ A |S ∈ R̂}

then 〈SAT,M ,R′〉 ← ISAT(A,R,MR
≥,MR

≤)
if SAT
then A′ = (A \MR

≥) ∪M , R = R′

else A′ = A ∪ {a :⊥}
The qualified number restriction merge rule needs some explanation, it is fairly non-standard.
Intuitively speaking, the idea of the new merge rule can be summarized as follows. It is
invoked whenever there exists an individual with potential successors for a role R such that
the number of these successors violates an at-most restriction for an ancestor role of R. If this
is the case, the rule calls the procedure ISAT (see Section 2.2) with A, R, and the set MR

≥ of
at-least and the set MR

≤ of at-most assertions. If the inequations derived from both sets are
satisfiable, ISAT returns an extended role hierarchy R′ and a set M of new assertions such
that these assertions satisfy all restrictions from MR

≥ and MR
≤ and, thus, the assertions from

M replace the ones from MR
≥. If the inequations are unsatisfiable, the ABox A′ is marked as

contradictory (see below).
Given an ABox A, more than one rule might be applicable to A. The order is determined

by the completion strategy which is defined as follows. A meta rule controls the priority
between individuals: Apply a tableaux rule to an individual b ∈ O only if no rule is applicable
to another individual c ∈ O such that c ≺ b. The completion rules are always applied in the
following order: (1) All non-generating rules (R�, R�, R∀C, R∀+C, R∀x); (2) Qualified
number restriction merge rule; (3) Number restriction exists rule (R∃≥n). In the following
we always assume that the completion strategy is observed. It ensures that rules are applied
to individuals w.r.t. the ordering ‘≺’ and the number restriction exists rule is only applied to
individuals if the qualified number restriction merge rule is not applicable.

We assume the same naming conventions as used above. An ABoxA is called contradictory
if the following clash trigger is applicable: a :⊥ ∈ A or {a :A, a :¬A} ⊆ A, where A is a concept
name. If the clash trigger is not applicable to A, then A is called clash-free. Any ABox
containing a clash is obviously unsatisfiable. A clash-free ABox A is called complete if no
completion rule is applicable to A. A complete ABox A′ derived from an ABox A is called
a completion of A. The purpose of the calculus is to generate a completion for an ABox A
in order to prove the satisfiability of A. For a given ABox A and a role hierarchy R, the
calculus can be invoked by ASAT(A,R). The calculus applies the completion rules as given
above. It stops the application of rules, if a clash occurs. The calculus answers “true” if a
completion can be derived, and “false” otherwise.

2.2 The Algebraic Reasoner

This section introduces an algebraic reasoner which is integrated into our tableaux calculus
for ALCQHR+ . The reasoner decides the satisfiability of a set M of assertions (of the form
a :∃≥n R or a :∃≤n R .D) w.r.t. to a given ABox A and a role hierarchy R (and a TBox T).

5

The reasoner has been inspired by [20]. In contrast to [20] our approach supports cyclic
terminologies, general concept inclusions, and transitive roles. The task of the algebraic
reasoner can be divided into two parts. The first step derives a set S of linear inequations
from M, A, and R using the ASAT test. The second step decides the satisfiability of S with
the help of a Simplex procedure which allows only solutions in N [4]. The algebraic reasoner
can be called via ISAT(A,R,MR

≤,MR
≥) where A is an ABox, R a role hierarchy, and MR

≤
(MR

≥) contains assertions of the form a :∃≤n R .D (a :∃≥n R) with M = MR
≤ ∪ MR

≥ ⊆ A.

2.2.1 Derivation of Inequations

The derivation of inequations is based on a partitioning of sets of potential role successors
whose cardinalities play the role of variables in the inequations. The partitioning into disjoint
subsets is necessary since the variables (i.e., the cardinalities) in the inequations have to
be independent from one another (see [20] for a discussion). This can be achieved by (1)
determining the union of all sets of potential role successors which are referred to in M
and (2) partitioning this union into pairwise disjoint subsets such that every potential role
successor set can be represented as the union of these partitions.

For the partitioning of potential role successors we need a few definitions. Let us assume
that Ra = {b ∈ ∆I | (aI , b) ∈ RI} denotes the potential R-successors of an individual a and
Ra = ∆I \ Ra the complement of Ra. Let RS = {R1, . . . ,Rn} ⊆ R, then RS a = {x1 ∩ · · · ∩ xn |
xi ∈ {Ra

i , Ra
i }, Ri ∈ RS , i ∈ 1..n} defines the set of all possible partitions of potential role

successors w.r.t a and RS . For every role in RS either Ra or Ra is part of an intersection in
RS a. Without loss of generality we can make the following assumptions: (1) The partition
Ra

1 ∩ · · · ∩ Ra
n can be ignored since it is not needed in the following; (2) The emptiness of a

partition due to assertions for a can be determined by only considering the non-negated parts
of the partition since restrictions for a set Ra of potential role fillers cannot be expressed; (3)
Role hierarchies are observed in intersections because Ra ⊆ Sa ⇔ Sa ⊆ Ra. A canonical name
for partitions is needed. Let us assume that an ordering ‘�’ is defined on all elements of R.
The canonical name3 for a partition x1 ∩ · · · ∩ xn ∈ RS a is defined as Ra

1 . . .Ra
m if {R1, . . . ,Rm}

(with m ≤ n) is the set of role names mentioned in x1 ∩ · · · ∩ xn and R1 � · · ·� Rm. By analogy,
r1 . . . rm is the canonical name for a variable denoting the cardinality of x1 ∩ · · · ∩ xn. For
instance, the canonical name of Ra

1 ∩ Ra
2 ∩ Ra

3 is R1R2 and the cardinality of Ra
1 ∩ Ra

2 ∩ Ra
3 is

represented as r1r2, if RS = {R1,R2,R3}.
If MR

≤ ⊆M ⊆ A contains an assertion of the form a :∃≤m R .D, the algebraic reasoner
internally considers it as the conjunction {a :∃≤m R′, a :∀R′ .D, a :∀ R̃′ .¬D} where R′, R̃′ ∈ R
are fresh in A, R′ � R and R̃′ � R are added to R, and R̃′ represents the complement of R′

relative to R. The reasoner has to ensure that Ra is split into two disjoint subsets such that
Ra = R′a ∪ R̃′a with R′a ⊆ DI , R̃′a ⊆ (¬D)I , and R̃′a = Ra \ R′a. The split is performed for
each element of MR

≤. The scheme for canonical names of partitions and cardinality variables
is properly extended, e.g., the canonical name of Ra

1 ∩ Ra
2 ∩ R̃a

3 is R1R2R̃3 and its cardinality
is represented by r1r2r̃3.

As mentioned above, a partition can be the empty set due to assertions in the ABox A. For
instance, if we assume R1 � R, R2 � R, and a :∀R1 .A � ∀R2 .¬A � ∃≥2 R1 � ∃≥2 R2 � ∃≤3 R,
the partition Ra

1 ∩ Ra
2 must be empty due to the clash between A and ¬A. In our hybrid

approach this is decided by the procedure RS SAT(A,R, a,RC) where A is an ABox, R a
3The reference to a is omitted if the context is obvious, i.e., R1 . . . Rm is also used.

6

role hierarchy, a an individual, and RC a set of role names. Let b ∈ O be new in A. The
procedure RS SAT returns true if ASAT(A∪ {(a, b) :S |S ∈ RC},R) returns true. Otherwise
RS SAT returns false. The call of ASAT is necessary in order to correctly deal with ABoxes
where the blocking technique (see Section 2.1) must be applied.

The set S of inequations is computed as follows. We assume that the algebraic reasoner has
been called via ISAT(A,R,MR

≤,MR
≥). Let RS be the set of role names mentioned inMR

≥,MR
≤,

AA contain the assertions resulting from the above-mentioned transformation, R′ be the role
hierarchy extended by the transformation, and AR contain the role names mentioned in AA.
We also assume the operator roles(X) which computes for a partition X the role names involved
in this intersection, e.g., roles(Ra

1R
a
2R̃

a
3) returns {R1, R2, R̃3}. Let RS ′a = (RS ∪AR)a be the

partitioning w.r.t. a and RS ∪AR. For each X ∈ RS ′a the test RS SAT(A′,R′, a,C, roles(X))
is performed with A′ = (A \MR

≥) ∪ {α ∈ AA |α = a :∀R .C}. If the test returns false, the
inequation x ≤ 0 is added to S with x the canonical name for X. Let PR = {X ∈ RS ′a |
R ∈ roles(X)}. For each a :∃≥n R ∈MR

≥, the inequation x1 + · · ·+ xk ≥ n is added to S with
x1, . . . , xk the canonical names of all partitions from PR. For each a :∃≤m R ∈MR

≤ ∪ AA, the
inequation x1 + · · ·+ xk ≤ m is added to S with x1, . . . , xk the canonical names of all partitions
from PR. Finally, for every variable x mentioned in S, the inequation x ≥ 0 is added to S.

2.2.2 Satisfiability of Inequations

This step decides the satisfiability of S with the help of a Simplex procedure which allows only
solutions in N [4]. It is implemented with sparse arrays as basic data structures for matrix
representation. ISAT returns a set M of transformed assertions and a role hierarchy R′ if S is
satisfiable. The assertions from M are used by the tableaux calculus for replacing the asser-
tions fromMR

≥ in A such that no assertion fromMR
≥ violates an assertion fromMR

≤ anymore
and (A \MR

≥) ∪M is satisfiable iff A is satisfiable. The assertions in M are computed as
follows. Let Sol = {x1 = l1, . . . , xk = lk} be the solution for S with x1, . . . , xk variable names
mentioned in S and l1, . . . , lk ∈ N, li > 0, i ∈ 1..k. For each equation x = l ∈ Sol the assertion
a :∃≥l RC is added to M , RC � R is added to R′ for all R ∈ roles(x), and S � RC is added to
R′ for all S #= RC with S � R ∈ R′. Furthermore, all assertion in {α ∈ AA |α = a :∀T .C} are
added to M .

2.2.3 Example

In order to give the reader a better intuition we illustrate the reasoning procedure with
the assertions shown at the top of Figure 2b. Let us assume that ASAT(A, ∅) with the
ABox A = {a :∃≤1 R .B � C, a :∃≤3 R .A, a :∃≥2 R .A � B, a :∃≥2 R .A � C} is called. The only
tableaux rule applicable to assertions in A is the qualified number restriction merge rule. This
rule calls ISAT(A,R,MR

≤,MR
≥) with the ABox A′ = {a :∃≤1 R .B � C, a :∃≤3 R .A, a :∃≥2 R3,

a :∀R3 .A � B, a :∃≥2 R4, a :∀R4 .A � C}, R = {R3 � R, R4 � R}, MR
≤ = {a :∃≤1 R .B � C,

a :∃≤3 R .A}, and MR
≥ = {a :∃≥2 R3, a :∃≥2 R4}. After applying the transformation rules from

Section 2.1 and 2.2.1 we get the transformed assertions in Figure 2b. The partitioning RS a

with the set RS = {R,R1, R̃1,R2, R̃2,R3,R4} is shown as Venn diagram in Figure 2a.4 Each
region in the diagram is labeled by the canonical variable name representing the cardinality
of the associated partition. The enclosing rounded rectangle denotes the set Ra which is split
horizontally and vertically in two halves. The vertical (labeled r1, r̃1) and the horizontal

4Without loss of generality R may be omitted in the partitioning of RS a.

7

r1r2r3r4

r1r2
r1r2

r1 r1
~

r2

r2

r1r2
r1r2

r3

r4

r1r2r3 r1r2r3

r1r2r3
r1r2r3

r1r2r3r4

r1r2r3r4 r1r2r3r4

r1r2r4 r1r2r4

r1r2r4 r1r2r4

~

~

~

~

~

~

~
~

~

~

~

~
~~

~

~

~

Original assertions (satisfiable):
a :∃≤1 R .B � C, a :∃≤3 R .A,
a :∃≥2 R .A � B, a :∃≥2 R .A � C

Transformed assertions (∀i∈1..4 Ri � R ∈ R):
a :∃≤1 R1, a :∀R1 .B � C, a :∀ R̃1 .¬(B � C),
a :∃≤3 R2, a :∀R2 .A, a :∀ R̃2 .¬A,
a :∃≥2 R3, a :∀R3 .A � B, a :∃≥2 R4, a :∀R4 .A � C

Contents of S (∀x mentioned in S : x ≥ 0):
r1r2 + r1r̃2 + r1r2r3 + r1r2r4 + r1r2r3r4 ≤ 1,
r1r2 + r̃1r2 + r1r2r3 + r1r2r4 + r̃1r2r3 + r̃1r2r4 + r1r2r3r4 ≤ 3,
r1r2r3 + r̃1r2r3 + r1r2r3r4 ≥ 2,
r1r2r4 + r̃1r2r4 + r1r2r3r4 ≥ 2,
r1r̃2r3 ≤ 0, r1r̃2r4 ≤ 0, r̃1r̃2r3 ≤ 0, r̃1r̃2r4 ≤ 0,
r1r̃2r3r4 ≤ 0, r̃1r2r3r4 ≤ 0, r̃1r̃2r3r4 ≤ 0

(a) Venn diagram of the partitioning
of Ra (regions are labeled by vari-
ables).

(b) Original/Transformed concept and inequations derived
from partitioning of left subfigure, number restrictions,
and RS SAT tests.

Figure 2: Partitioning of Ra and derived inequations.

halves (labeled r2, r̃2) together form four mutually disjoint quadrants. The star-like shape
(labeled r3) denotes Ra

3, while the smaller rounded rectangle (labeled r4) denotes Ra
4.

The first step of ISAT derives the set S of inequations (see Figure 2b) imposed by the
sets MR

≤, MR
≥, and the results of the RS SAT tests. The RS SAT tests for seven subsets

(marked in Figure 2a by a gray oval background) return false, i.e., these sets must be empty
due to assertions in A. A side condition for the Simplex procedure, which is not stated in
S for sake of brevity, requires for each variable x mentioned in S that x ≥ 0. The first four
inequations are a direct translation from the transformed concept (in the same order) on the
basis of the partitioning displayed in Figure 2a. The remaining seven inequations reflect the
results of the RS SAT tests. For better readability, the empty partitions have been omitted
in the first four inequations. The set S of inequations is satisfiable by setting r1r2r3r4 = 1,
r̃1r2r3 = 1, r̃1r2r4 = 1. All other variables mentioned in S are set to zero. The non-empty
partitions are marked by black dots in Figure 2a. ISAT returns the set M = {a :∃≥1 RC1,
a :∃≥1 RC2, a :∃≥1 RC3, a :∀R1 . (B � C), a :∀ R̃1 .¬(B � C), a :∀R2 .A, a :∀ R̃2 .¬A} and R′ =
{RC1 � Ri | i ∈ 1..4} ∪ {RC2 � R̃1, RC2 � R2, RC2 � R4} ∪ {RC3 � R̃1, RC3 � R2, RC3 � R3}.

The example concept becomes unsatisfiable if it is slightly changed to ∃≥2 R . (A � B) �
∃≥2 R . (A � C) � ∃≤1 R . (B � C) � ∃≤2 R .A. The partitioning and the results of the RS SAT
are still valid for this concept but the inequations are now unsatisfiable due to r1r2 + r̃1r2 +
r1r2r3 + r1r2r4 + r̃1r2r3 + r̃1r2r4 + r1r2r3r4 ≤ 2. This inequation can be rewritten as r1r2 +
r̃1r2 + r1r2r4 + r̃1r2r4 ≤ 0 due to r1r2r3 + r̃1r2r3 + r1r2r3r4 ≥ 2 and it follows that r1r2r4 = 0
and r̃1r2r4 = 0. Together with r1r2r4 + r̃1r2r4 + r1r2r3r4 ≥ 2 this implies r1r2r3r4 ≥ 2 which
contradicts the inequation r1r2 + r1r̃2 + r1r2r3 + r1r2r4 + r1r2r3r4 ≤ 1.

8

2.3 Proof Sketch for the Hybrid Approach

Due to lack of space we give only a short sketch for the proof of our hybrid approach. In
general, we already know that the concept satisfiability problem for the logic ALCQHR+ is
decidable since it is a subset of SHIQ [16]. Thus, it remains to show that our particular
set of tableau rules together with the algebraic reasoner still decide the concept satisfiability
problem. In [20] a proof is given for a particular class of description logics. On the one hand,
we already mentioned that the approach from [20] is not applicable to the logic ALCQHR+

due to the expressivity of ALCQHR+ . On the other hand, we argue that the proof in [20]
is applicable to our approach to some extent provided the possibly recursive call of ASAT
(via ISAT) for testing the emptiness of potential role successor sets is sound, complete, and
terminating.

The termination problem depends on the structure of the tableau rules and the completion
strategy. All rules except the SigMerge rule add new assertions to A. Possible terminological
cycles and transitive roles are properly dealt with by standard rules and the blocking technique
employed. The SigMerge rule calls the ISAT procedure, if an at-most restriction for a role R is
possibly violated. It is important to note that all “related” at-least and at-most restrictions
are handled together by the ISAT procedure. The critical point is the recursive call of ASAT
with a modified ABox and an possibly extended role hierarchy in order to test the emptiness
of a potential role successor set. We argue that the at-least restrictions from MR

≥ may be
removed from A for such a test since they cannot influence the result of an ASAT test. This
is caused by the property of the ALCQHR+ calculus that a role successor for an individual a
cannot add assertions for a to A. The omission also prevents possible cycles since the ISAT
procedure cannot be called again with the same sets of at-least and at-most restrictions. If the
ISAT procedure returns true, the SigMerge rule may replace the original at-least restrictions
by the new set M since the new assertions do not violate any at-most restriction and their
role successors are proven to be satisfiable.

The soundness problem can be addressed in a similar manner. If the tableaux calculus
terminates and returns true, it is rather straightforward to construct a canonical interpretation
from the completion of A that satisfies A, R, and T . We conjecture that proof for ALCNHR+

in [6] can be easily adapted to ALCQHR+ . The completeness problem can be handled in a
similar way.

3 Evaluation

In order to indicate the advancement of this new architecture, we compared the performance
of the hybrid architecture against settings where a standard tableaux calculus were used. A
set of four benchmark problems were generated. The increased difficulty of the problems is
caused by exponentially increasing the size of numbers used in at-least and at-most concepts.
Each of the four problems exists in two variants (a ‘test concept’ is satisfiable vs. unsatisfi-
able). A problem basically employs concept terms of the form ∃≤n R � ∃≥m1 R1 � ∃≥m2 R2 �
∃≥m3 R3 � ∀R2 .C � ∀R3 .¬C with Ri � R, i ∈ 1..3. The (un)satisfiability of these terms has to
be proven. A term is made satisfiable by choosing values for n, mi such that max(m1, m2 +
m3) ≤ n or unsatisfiable if max(m1, m2 + m3) > n.

Figure 3 demonstrates the result of this benchmark w/out algebraic reasoning. The per-
formance gain in Figure 3 is dramatic since these problems can now be solved in constant
time (usually below 0.02 seconds). The speed enhancement also scales up for problems with
qualified number restrictions. The type of “intractable” problems from the introduction can

9

0.01

0.02

0.1

1

10

>100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number merging problem size (1-21; 4 problems in 2 variants: U=Unsatisfiable, S=Satisfiable)

secs

Solid lines indicate use
of algebraic reasoning

Problem 1 (U)
Problem 1 (S)
Problem 2 (U)
Problem 2 (S)
Problem 3 (U)
Problem 3 (S)
Problem 4 (U)
Problem 4 (S)

Figure 3: RACER: benchmark problems w/out algebraic reasoning.

now be handled as well. Using the algebraic reasoner they can be solved below 0.1 seconds.
On the basis of this concept we also generated a set of benchmarks where the numbers oc-
curring in the number restrictions are increased in the same way as for the benchmarks from
Figure 3. There is no need to display the results in detail since the algebraic reasoner can
solve these problems in constant time (below 0.4 seconds) but standard tableau algorithms
cannot even solve the problem with the lowest difficulty within 100 seconds.

However, there exist problems such that the number of required role successor satisfia-
bility tests, and, in turn, the number of variables required for the Simplex procedure, might
increase exponentially in the worst case. This can be illustrated with concepts of the form
∃R .C1 � . . . � ∃R .Cn � ∃≤m R, m < n. The algebraic reasoner has to consider O(2n) vari-
ables for the Simplex procedure and O(2n) role successor satisfiability tests in the worst case.
A similar situation might arise if more and more qualified at-most restrictions are added to a
concept satisfiability test since each restriction increases the number of required role successor
satisfiability tests by a factor of two (see also the example from Section 2.2.3).

One might argue that this type of optimization is not relevant for actual applications since
example knowledge bases rarely contain number restrictions with numbers greater than one.
However, this does not hold for technical application domains such as the configuration of
technical devices, e.g., see the work described in [18]. In this context number restrictions with
values greater than one are quite natural (“an engine with at least 4 valves”, a “hub with at
least 16 connections”, etc).

10

Another argument in favor of this optimization technique is the support of simple reason-
ing about integers. Many knowledge bases developed for the Classic system make use of
min/max reasoning about integer intervals (e.g., “the price is between 200 and 300 dollars”).
This can easily be mapped to a concept description ∃ price . (∃≥200 has value � ∃≤300 has value)
where has value is a feature used to represent the restrictions on the price interval. Of course,
restrictions on integers or reals can be more adequately modeled with so-called concrete do-
mains which are supported by RACER (version 1.6, see [11, 7] for more details).

4 Conclusion and Outlook

In this paper we have presented a hybrid architecture for efficiently dealing with number
restrictions in combination with role hierarchies and/or qualified number restrictions in the
DL ALCQHR+ . The architecture has been implemented for concept satisfiability tests and
evaluated in the ABox description logic system RACER. In contrast to [20] our approach
is integrated into a tableaux calculus and can deal with GCIs, transitive roles, and cyclic
terminologies. We are currently investigating how to extend this approach to ABox reasoning
for ALCQHR+ .

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May
2001.

[2] Jeen Broekstra, Michel Klein, Dieter Fensel, and Ian Horrocks. Adding formal semantics
to the Web: building on top of RDF Schema. In Proc. of the ECDL 2000 Workshop on
the Semantic Web, 2000.

[3] M. Buchheit, F.M. Donini, and A. Schaerf. Decidable reasoning in terminological knowl-
edge representation systems. Journal of Artificial Intelligence Research, 1:109–138, 1993.

[4] R.E. Gomory. An algorithm for integer solutions to linear programs. In R.L. Graves
and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302.
McGraw-Hill, New York, 1963.

[5] R. Goré, A. Leitsch, and T. Nipkow, editors. Proceedings of the International Joint Con-
ference on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy, LNCS.
Springer-Verlag, Berlin, June 2001.

[6] V. Haarslev and R. Möller. Expressive ABox reasoning with number restrictions, role
hierarchies, and transitively closed roles. In A.G. Cohn, F. Giunchiglia, and B. Selman,
editors, Proceedings of Seventh International Conference on Principles of Knowledge
Representation and Reasoning (KR’2000), Breckenridge, Colorado, USA, April 11-15,
2000, pages 273–284, April 2000.

[7] V. Haarslev and R. Möller. Description of the RACER system. In Proceedings of the
Workshop on Methods for Modalities 2 (M4M-2), University of Amsterdam, November
29-30, 2001, November 2001.

[8] V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases:
A practical case study. In B. Nebel, editor, Proceedings of the Seventeenth International

11

Joint Conference on Artificial Intelligence, IJCAI-01, August 4-10, 2001, Seattle, Wash-
ington, USA, pages 161–166, August 2001.

[9] V. Haarslev and R. Möller. Optimizing reasoning in description logics with qualified
number restriction. In McGuinness and Patel-Schneider [19], pages 142–151.

[10] V. Haarslev and R. Möller. RACER system description. In Goré et al. [5], pages 701–705.

[11] V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended with
concrete domains: A practically motivated approach. In Goré et al. [5], pages 29–44.

[12] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In
J. Allen, R. Fikes, and E. Sandewall, editors, Second International Conference on Princi-
ples of Knowledge Representation, Cambridge, Mass., April 22-25, 1991, pages 335–346,
April 1991.

[13] I. Horrocks. FaCT and iFaCT. In Proc. of the 1999 Description Logic Workshop (DL’99),
pages 133–135, 1999.

[14] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In
Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 199–204,
August 2001.

[15] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description log-
ics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the 6th In-
ternational Conference on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in LNAI, pages 161–180. Springer-Verlag, September 1999.

[16] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description
logic SHIQ. In David McAllester, editor, Proc. of the 17th Int. Conf. on Automated
Deduction (CADE 2000), number 1831 in LNCS. Springer-Verlag, Berlin, 2000.

[17] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages
636–647, 1998.

[18] Deborah L. McGuinness. An industrial-strength description logic-based configurator
platform. IEEE Intelligent Systems, July/August:69–77, 1998.

[19] D.L. McGuinness and P. Patel-Schneider, editors. Proceedings of the International Work-
shop on Description Logics (DL’2001), Aug. 1-3, 2001, Stanford, CA, USA, August 2001.

[20] H.J. Ohlbach and J. Köhler. Modal logics, description logics and arithmetic reasoning.
Artificial Intelligence, 109(1-2):1–31, 1999.

12

