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Abstract. Combining different knowledge representation languages is one of
the main topics in Qualitative Spatial Reasoning (QSR). This allows the com-
bined languages to compensate each other’s representational deficiencies, and
is seen as an asnwer to the emerging demand from real applications, such as
Geographical Information Systems (GIS), robot navigation, or shape descrip-
tion, for the representation of more specific knowledge than is allowed by each
of the languages taken separately. Knowledge expressed in such a combined
language decomposes then into parts, or components, each expressed in one of
the combined languages. Reasoning internally within each component of such
knowledge involves only the language the component is expressed in, which is
not new. The challenging question is to come with methods for the interaction
of the different components of such knowledge. With these considerations in
mind, we propose a calculus, cCO.A, combining, thus more expressive than each
of, two calculi well-known in QSR: Frank’s cardinal direction calculus, CDA,
and a coarser version, ROA, of Freksa’s relative orientation calculus. An origi-
nal constraint propagation procedure, PcSjc+(), for cCO.A-CSPs is presented,
which aims at (1) achieving path consistency (Pc) for the CD.A projection; (2)
achieving strong 4-consistency (S4c) for the ROA projection; and (3) more
(+) (the “+” consists of the implementation of the interaction between the
two combined calculi). Dealing with the first two points is not new, and in-
volves mainly the CD.A composition table and the RO.A composition table,
which can be found in, or derived from, the literature. The originality of the
propagation algorithm comes from the last point. Two tables, one for each of
the two directions CDA-to-RO.A and ROA-to-CD.A, capturing the interaction
between the two kinds of knowledge, are defined, and used by the algorithm.
The importance of taking into account the interaction is shown with a real
example providing an inconsistent knowledge base, whose inconsistency (a)
cannot be detected by reasoning separately about each of the two components
of the knowledge, just because, taken separately, each is consistent, but (b)
is detected by the proposed algorithm, thanks to the interaction knowledge
propagated from each of the two compnents to the other.
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1 Introduction

Reasoning about orientation has been, for about a decade now, one of the main aspects
focussed on in Qualitative Spatial Reasoning (QSR). A possible explanation stems
from the large number of real applications in need for a formalism for representing
and reasoning about orientation; among these, we have robot navigation, Geographical
Information Systems (GIS), and shape description. The reader is referred to [3] for
a survey article on the different representation techniques, and the different aspects
dealt with, in QSR.

Two important, and widely known, calculi for the representation and processing of
orientation are the calculus of cardinal directions, CD.A, developed by Frank [7, 8],
and the relative orientation calculus developed by Freksa [9,10]. The former uses a
global, south-north/west-east reference frame, and represents knowledge as binary
relations on (pairs of) 2D points. The latter allows for the representation of relative
knowledge as ternary relations on (triples of) 2D points. Both kinds of knowledge are
of particular importance, especially in GIS.

The research in QSR has reached a point where the need for combining different
aspects, such as, in the present work, global orientation [7, 8] and relative orientation
[9, 10], and different techniques, such as, also in the present work, path consistency and
strong 4-consistency, is necessary in order to face the increasing and often challenging
demand coming from real applications.

The aim of this work is to look at the importance of combining the two orienta-
tion calculi mentioned above. Considered separately, Frank’s calculus [7,8], CDA,
represents knowledge such as “Hamburg is north-west of Berlin”, whereas Freksa's
relative orientation calculus [9, 10] represents knowledge such as “You see the main
train station on your left when you walk down to the cinema from the university”. We
propose a calculus, cCOA, combining CD.A and a coarser version, ROA, of Freksa’s
calculus. cCOA allows for more expressiveness than each of the combined calculi, and
represents, within the same base, knowledge such as the one in the following example.
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Fig. 1. A model for the RO.A component (left), and a model for the CD.A component (right),
of the knowledge in Example 1.

Example 1 Consider the following knowledge on four cities, Berlin, Hamburg, Lon-
don and Paris:



1. viewed from Hamburg, Berlin is to the left of Paris, Paris is to the left of London,
and Berlin is to the left of London;

2. viewed from London, Berlin is to the left of Paris;

3. Hamburg is to the north of Paris, and north-west of Berlin; and

4. Paris is to the south of London.

The first two sentences express the ROA component of the knowledge (relative orien-
tation relations on triples of the four cities), whereas the other two express the CD.A
component of the knowledge (cardinal direction relations on pairs of the four cities).*
Considered separately, each of the two components is consistent, in the sense that
one can find an assignment of physical locations to the cities that satisfies all the
constraints of the component —see the illustration in Figure 1. However, considered
globally, the knowledge is clearly inconsistent.

Example 1 clearly shows that reasoning about combined knowledge consisting of an
ROA component and a CDA component, e.g., checking its consistency, does not
reduce to a matter of reasoning about each component separately —reasoning sepa-
rately about each component in the case of Example 1 shows two components that
are both consistent, whereas the conjunction of the knowledge in the two components
is inconsistent. As a consequence, the interaction between the two kinds of knowledge
has to be handled. With this in mind, we propose a constraint propagation procedure,
PcSjc+(), for cCOA-CSPs, which aims at:

1. achieving path consistency (Pc) for the CD.A projection;
2. achieving strong 4-consistency (S4c) for the RO.A projection; and
3. more (+).

The procedure does more than just achieving path consistency for the CD.A projection,
and strong 4-consistency for the RO.A projection. It implements as well the interaction
between the two combined calculi. For this purpose:

1. The procedure makes use, on the one hand, of an augmented composition table
of the CDA calculus:
(a) the table records, for each pair (r, s) of CD.A atoms, the standard composition,
ros, of r and s, which is not new, and can be found in the literature [7, 8,
19]; and
(b) more importantly, the table records the CDA-to-ROA interaction, by pro-
viding, for each pair (r,s) of CDA atoms, the most specific ROA relation,
r ® s, such that, for all z,y, z, the conjunction r(z,y) A s(y, z) logically im-
plies (r ® s)(z,y, 2).
2. On the other hand, the procedure makes of a table for the ROA-to-CDA inter-
action, providing, for each ROA atom ¢, the constraints it imposes on the CDA
relations on the different pairs of the three arguments.

The procedure is, to the best of our knowledge, original.

The rest of the paper is organised as follows. Section 2 provides some background
on constraint satisfaction problems (CSPs), on constraint matrices and on relation

! Two cardinal direction calculi, to be explained later, are known from Frank’s work [7, 8];
we assume in this example the one in Figure 2(right).



algebras. Section 3 presents a quick overview of Frank’s cardinal directions calculus
[7,8], and of Freksa’s relative orientation calculus [9, 10]. Section 4 defines a relative
orientation calculus, ROA, which is a caorser version of Freksa’s [9, 10]. Reasoning in
the combined language of CDA relations and RO A relations is dealt with in detail in
Section 5; in particular, the section presents the CDA-to-ROA and the ROA-to-CDA
interaction tables, as well as the constraint propagation algorithm PcS/c+(), both
alluded to above. Section 6 summarises the work.

2 Constraint satisfaction problems

A constraint satisfaction problem (CSP) of order n consists of:

1. a finite set of n variables, z1,...,Zy,;
2. a set U (called the universe of the problem); and
3. a set of constraints on values from U which may be assigned to the variables.

An m-ary constraint is of the form R(z;,,---,z;, ), and asserts that the m-tuple of
values assigned to the variables z;,,- -, z;, must lie in the m-ary relation R (an m-
ary relation over the universe U is any subset of U™). An m-ary CSP is one of which
the constraints are m-ary constraints. We will be concerned exclusively with binary
CSPs and ternary CSPs.

For any two binary relations R and S, RN S is the intersection of R and S, RU S is
the union of R and S, Ro S is the composition of R and S, and R~ is the converse
of R; these are defined as follows:

RN S ={(a,bd): (a,b) € R and (a,b) € S},

RUS ={(a,b): (a,b) € R or (a,b) € S},

RoS ={(a,b): for some ¢, (a,c) € R and (c,b) € S},
(a,0)

R~ ={(a,b): (b,a) € R}.

Three special binary relations over a universe U are the empty relation () which
contains no pairs at all, the identity relation Z%, = {(a,a) : a € U}, and the universal
relation T%, =UxU.

Composition and converse for binary relations were introduced by De Morgan [4, 5].
Isli and Cohn [15,16] extended the two operations to ternary relations; furthermore,
they introduced for ternary relations the operation of rotation, which is not needed
for binary relations. For any two ternary relations R and S, RN S is the intersection
of R and S, RUS is the union of R and S, Ro S is the composition of R and S, R~
is the converse of R, and R™ is the rotation of R; these are defined as follows:

={(a,b,¢) : (a,b,c) € R and (a,b,c) € S},
(a,b,c): (a,b,c) € Ror (a,b,c) € S},
RoS —{(a,b,c) for some d, (a,b,d) € R and (a,d,c) € S},
(a,b,0) : (a,c,b) € R},
={(a,b,¢) : (¢,a,b) € R}.

Three special ternary relations over a universe U are the empty relation () which
contains no triples at all, the identity relation Z}; = {(a,a,a) : a € U}, and the
universal relation T4, =U x U x U.



2.1 Constraint matrices

A binary constraint matrix of order n over U is an n x n-matrix, say B, of binary
relations over U verifying the following:

(Vi <n)(Bi; CIY) (the diagonal property),
(V3,5 <n)(B;; = (Bji)™) (the converse property).

A binary CSP P of order n over a universe U can be associated with the following
binary constraint matrix, denoted B’

1. Initialise all entries to the universal relation: (i, < n)((BF);; + T%)

2. Initialise the diagonal elements to the identity relation:
(Vi <n)((BY)ii  I7)

3. For all pairs (z;, ;) of variables on which a constraint (z;, ;) € R is specified:
(BP)ij < (BP)ij N R, (BY)ji < ((BY)i;)~.

A ternary constraint matrix of order n over U is an n X n X n-matrix, say 7, of ternary
relations over U verifying the following:

(Vi <n)(Taui CIE) (the identity property),
(Vi, 4,k < n)(Tijr = (Tix;)~) (the converse property),
(Vi,4,k < n)(Tije = (Tki;)") (the rotation property).

A ternary CSP P of order n over a universe U can be associated with the following
ternary constraint matrix, denoted 7%:

1. Initialise all entries to the universal relation:
(Vi, 4,k <n)(TP)iji + Th)
2. Initialise the diagonal elements to the identity relation:
(Vi <n)((TF)iii < Zf;)
3. For all triples (z;,z;,x)) of variables on which a constraint (z;,z;,zx) € R is
specified:
(T)ije = (TF)ige O R, (TF)ing = (T)ign) ™
(T i = ((TF)ige) ™5 (TE)jin = (TF)jri) 7
(TP)kis = (TF)jri) ™5 (TP)wgi = (TF)rig)~-

We make the assumption that, unless explicitly specified otherwise, a CSP is given as
a constraint matrix.

—~
’
—~
’

2.2 Strong k-consistency, refinement

Let P be a CSP of order n, V its set of variables and U its universe. An instantiation

of P is any n-tuple (a1,as,...,ay,) of U", representing an assignment of a value to
each variable. A consistent instantiation is an instantiation (aj, as,...,a,) which is a
solution:

e If P is a binary CSP: (V4,5 < n)((as,a;) € (BY)i;)
e If Pis a ternary CSP: (Vi, j, k < n)((ai, aj,ar) € (TF)ijr)



P is consistent if it has at least one solution; it is inconsistent otherwise. The consis-
tency problem of P is the problem of verifying whether P is consistent.

Let V! = {x;,,..., 2} be a subset of V.. The sub-CSP of P generated by V', denoted

Py, is the CSP with V' as the set of variables, and whose constraint matrix is
obtained by projecting the constraint matrix of P onto V':

e If P is a binary CSP then: (Vk,I < j)((BPV') = (BY)i,4)
e If P is a ternary CSP then: (V&,I,m < 5) (TP )i = (TF)ivirir, )

P is k-consistent [11,12] if for any subset V' of V' containing k — 1 variables, and for
any variable X € V, every solution to Py can be extended to a solution to Py x3-
P is strongly k-consistent if it is j-consistent, for all 57 < k.

1-consistency, 2-consistency and 3-consistency correspond to node-consistency, arc-
consistency and path-consistency, respectively [20, 21]. Strong n-consistency of P cor-
responds to what is called global consistency in [6]. Global consistency facilitates the
important task of searching for a solution, which can be done, when the property is
met, without backtracking [12].

A refinement of P is a CSP P’ with the same set of variables, and such that

o (Yi,5)((BF")ij C (BP)ij), in the case of binary CSPs.
o (Yi,5,k)((T"")iji C (TP)ij1), in the case of ternary CSPs.

2.3 Relation algebras

The reader is referred to [22,17] for the definition of a binary Relation Algebra (RA),
and to [16] for the definition of a ternary RA. Of particular interest to this work are:

1. binary RAs of the form (4, ®,®,”, 1, T,0,~,Z), where A is a non empty finite
set, and o and ~ are the operations of composition and converse, respectively;
and

2. ternary RAs of the form (A, ®,®,”, L, T,0,~,7,7), where A is a non empty
finite set, and o, = and ™ are the operations of composition, converse and rotation,
respectively.

3 Existing orientation calculi

Some background on existing orientation calculi is in order.

3.1 Frank’s cardinal directions calculi

Frank’s models of cardinal directions in 2D [7, 8] are illustrated in Figure 2. They use
a partition of the plane into regions determined by lines passing through a reference
object, say S. Depending on the region a point P belongs to, we have No(P,S),
NE(P7 S)a Ea(Pa S)7 SE(Pa S)a SO(Pa S)a SW(Pa S)a We(Pa S)7 NW(P7 S)a or EQ(Pa S)7
corresponding, respectively, to the position of P relative to S being north, north-east,
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Fig. 2. Frank’s cone-shaped (left) and projection-based (right) models of cardinal directions.
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Fig. 3. The partition of the universe of 2D positions on which is based the relative orientation
calculus in [9, 23].

east, south-east, south, south-west, west, north-west, or equal. Each of the two models
can thus be seen as a binary RA, with nine atoms. Both use a global, west-east/south-
north, reference frame. We focus our attention on the projection-based model (Figure
2(right)), which has been assessed as being cognitively more adequate [7, 8] (cognitive
adequacy of spatial orientation models is discussed in [9, 10]).

3.2 Freksa’s relative orientation calculus

A well-known model of relative orientation of 2D points is the calculus defined by
Freksa [9], and developed further by Zimmermann and Freksa [23]. The calculus cor-
responds to a specific partition, into 15 regions, of the plane, determined by a parent
object, say A, and a reference object, say B (Figure 3(d)). The partition is based on
the following:

1. the left/straight/right partition of the plane determined by an observer placed
at the parent object and looking in the direction of the reference object (Figure

3(a));



2. the front/neutral/back partition of the plane determined by the same observer
(Figure 3(b)); and

3. the similar front/neutral/back partition of the plane obtained when we swap the
roles of the parent object and the reference object (Figure 3(c)).

Combining the three partitions (a), (b) and (c) of Figure 3 leads to the partition of
the universe of 2D positions on which is based the calculus in [9, 23] (Figure 3(d)).

4 A new relative orientation calculus

Frank’s model of cardinal directions uses a global, west-east/south-north, reference
frame; its use and importance in GIS are well-known. Freksa’s calculus is more suited
for the description of a configuration of 2D points (a spatial scene) relative to one
another. Combining the cardinal directions with Freksa’s calculus would lead to more
expressiveness than allowed by each of the combined calculi, so that one would then be
able to represent, within the same base, knowledge such as the one in the 4-sentence
example provided in the introduction.

The coarser relative orientation calculus can be obtained from Freksa’s calculus by
ignoring, in the construction of the partition of the plane determined by a parent ob-
ject and a reference object (Figure 3(d)), the two front/neutral/back partitions (Figure
3(b-c)). In other words, we consider only the left/straight/right partition (Figure 3(a)).
The final situation is depicted in Figure 4, where A and B are the parent object and
the reference object, respectively:

1. Figure 4(b-c) depicts the general case, corresponding to the parent object and
the reference object being distinct from each other: the system is based on the
left/straight/right partition of the plane determined by the directed straight line
joining the parent object to the reference object (Figure 4(b)); this general-case
partition leads to 7 regions (Figure 4(c)), numbered from 2 to 8: these 7 regions
correspond to 7 of the nine atoms of the calculus, which we refer to as Ir (to
the left of the reference object), bp (behind the parent object), cp (coincides with
the parent object), bw (between the parent object and the reference object), cr
(coincides with the reference object), br (behind the reference object), and rr (to
the right of the reference object).

2. Figure 4(a) illustrates the degenerate case, corresponding to equality of the parent
object and the reference object. The two regions, corresponding, respectively, to
the primary object coinciding with the parent object and the reference object, and
to the primary object distinct from the parent object and the reference object,
are numbered 0 and 1. The corresponding atoms of the calculus will be referred
to as de (degenerate equal) and dd (degenerate distinct).

From now on, we refer to the cardinal directions calculus as CD.A (Cardinal Directions
Algebra), and to the coarser version of Freksa’s relative orientation calculus as RO.A
(Relative Orientation Algebra). A CDA (resp. RO.A) relation is any subset of the set
of all CDA (resp. ROA) atoms. A CDA (resp. ROA) relation is said to be atomic if
it contains one single atom (a singleton set); it is said to be the CDA (resp. ROA)
universal relation if it contains all the CDA (resp. RO.A) atoms. When no confusion
raises, we may omit the brackets in the representation of an atomic relation.
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Fig. 4. The partition of the universe of 2D positions on which is based the ROA calculus.

5 Reasoning about combined knowledge of CDA relations
and RO A relations

We start now the main part of the paper, i.e., the representation of knowledge about
2D points as a combined conjunction of:

1. CDA relations on (pairs of) the objects, on the one hand; and
2. ROA relations on (triples of) the objects, on the other hand.

More importantly, we deal with the issue of reasoning about such a combined knowl-
edge. We first present for each of the combined calculi, CDA and ROA:

1. tables recording the internal reasoning: the tables of converse and composition for
CDA, which can be found in the literature [7,8,19]; and the tables of converse,
rotation and composition for ROA, which can be derived from the work in [15,
16]; and

2. a table for the interaction with the other calculus: a CDA-to-ROA interac-
tion table, recording the ROA knowledge inferred from CD.A knowledge; and
an ROA-to-CDA interaction table, recording the CD.A knowledge inferred from
ROA knowledge.

We then give a quick presentation of what is already known in the literature: CSPs
of CDA relations [7,8,19], and the way to solve them [19]. Then come the definition
of CSPs of ROA relations, and a discussion on how to adapt a known propagation
algorithm [15, 16] to such CSPs. We finish the section with the presentation of CSPs
combining both kinds of knowledge (CSPs of CDA relations and ROA relations on
2D points): most importantly, this last part will present in detail the propagation
algorithm PcSjc+() we have already alluded to.

5.1 Reasoning within CDA and the CD.A-to-ROA interaction: the
tables

The table in Figure 5 presents the augmented CD.A composition table; for each pair
(r1,r2) of CDA atoms, the table provides:

1. the standard composition, ry o ry, of 1 and r3 [7,8,19]; and



|% ||No |50 |Ea We |NE |NW |SE |sw |

No [[No [So, No] NE NW NE NW [SE, NE] [[SW, NW]
br {Tp, cp, bw}|rr Tr r T rr Tr
So |[[So, No] So SE SW [SE, NE] _[[SW, NW] |SE SW
{bp, cp, bw}|br r rr r rr r r
Fa ||[NE SE Fa [We, Ea] NE [NW, NE] |SE [SW, SE]
T r br {tp, cp, bu} |Ir Tr r e
We [[NW SW [We, Ba] We [NW, NE] [NW, [SW, SE]_|SW
r r {bp, cp, bu}|br e r Ir r
NE ||[NE [SE, NE] NE [NW, NE] _|NE [NW, NE] |[SE, NE| |7
T r r Tr {Tr, b, 7Y | Ir r {Tr, tp, <p;
bw, rr}
NW|[NW [SW,NW] |[[NW, NE| _|NW [NW, NE] |[NW B [SW, NW]
v Ir e r e Tir, br, 77} | {1r bp, cpy | Ir
bw, rr}
SE |[ISE, NE| _|SE SE [SW, NE] |[SE, NE| |7 SE [SW, NE]
Tr r Tr e Tr T, 5> ep, [ {1, bry 7o} [rr
bw, rr}
SW[[SW, NW] _|[SwW [SW, SE] _|SwW H [SW, NW] |[SW, SE| _|SwW
r Tr r r {Tr, bp, cp, |7 Tr {Tr, b, 77}
bw, rr}

Fig. 5. The augmented composition table of the cardinal directions calculus: for each pair
(r1,72) of CDA atoms, the table provides the composition, ri o ra, of r1 and r2, as well as
the most specific ROA relation r1 ® ra such that, for all 2D points z,y, z, the conjunction
ri(z,y) A ra(y, z) logically implies (r; @ r2)(z,y, z). The question mark symbol ? represents
the CDA universal relation {No, NW, We, SW, So, SE, Ea, NE, Eq}.

2. the most specific ROA relation r1 ® ro such that, for all 2D points z,y, 2, the
conjunction 71 (z,y) A r2(y, z) logically implies (11 ® r2)(z,y, 2)-

The operation o is just the normal composition: it is internal to CDA, in the sense
that it takes as input two CDA atoms, and outputs a CD.A relation. The operation ®,
however, is not internal to CDA, in the sense that it takes as input two CD.A atoms,
but outputs an ROA relation; ® captures the interaction between CDA knowledge
and ROA knowledge, in the direction CDA-to-ROA, by inferring RO.A knowledge
from given CDA knowledge. As an example for the new operation ®, from

SE(Berlin, London) A No(London, Paris),

saying that Berlin is south-east of London, and that London is north of Paris, we infer
the ROA relation Ir on the triple (Berlin, London, Paris):

Ir(Berlin, London, Paris),

saying that, viewed from Berlin, Paris is to the left of London. As another example,
from

No(Paris, Rome) A So(Rome, London),

the most specific ROA relation we can infer on the triple (Paris, Rome, London) is
{bp, cp, bw}:
{bp, cp, bw}(Paris, Rome, London).

The reader is referred to [7,8,19] for the CD.A converse table, providing the converse
r~ for each CDA atom r.

5.2 Reasoning within ROA and the ROA-to-CD.A interaction: the
tables
Figure 6 provides for each of the ROA atoms, say t, the converse ¢t~ and the rotation

t™ of t. Figure 7 provides the ROA composition tables, which are computed in the

10



|Region R[[0[1]2]3[4][5][6][7]8]
Atom t ||de|dd|lr|bp|cp|bw|cr|br|rr
t— de|cp|rr{ bp|dd| br|cr|bw|lr
t de|cp|lr|bw|cr| br|dd| bp|rr

Fig. 6. For each of the nine regions 0, ...,8 in Figure 4(a-c), the corresponding RO.A atom
t, as well as the converse ¢t~ and the rotation ¢~ of ¢.

following way. Given four 2D points z,y,2,w and two ROA atoms ¢; and tz, the
conjunction ¢ (z,y, z) Atz(z, z,w) is inconsistent if the most specific relation b, (z, z),
one can infer from ¢ (z,y,2) on the pair (z,z), is different from the most specific
relation be(z, z), one can infer from ¢3(z,2,w) on the same pair (z,z). The ROA
composition splits therefore into two composition tables, one for each of the following
two cases:2

1. Case 1: z = z (i.e., each of by and by is the relation =). This corresponds to
t1 € {de, cp} and t5 € {de, dd}.

2. Case 2: ¢ # z (i.e., each of b; and by is the relation #). This corresponds to
t1 € {dd, Ir, bp, cp, bw, br, rr} and t2 € {Ir, bp, cp, bw, cr, br, rr}.

The CDA knowledge one can infer from ROA relations is presented in the table of
Figure 8, which makes use of the following two functions, Lir and Rir:

{SE, Ea, NE} if r = So, {NW, We, SW} if r = So,
{SE, Ea, NE, No, NW} if r = SE, {NW, We, SW, So, SE} if r = SE,
{NE, No, NW} if r = Ea, {SW, So, SE} if r = Ea,
Cirry = d {NE No,NW, We,SW} it r=NB, o ) {SW,So,SE, Ea, NE} if r=NE,
Y {NW, We, SW} if r = No, ~ ) {SE, Ea, NE} if r = No,
{NW, We, SW, So, SE} ifr=NW, {SE, Ea, NE, No, SW} ifr=NW,
{SW, So, SE} if r = We, {NE, No, NW} if r = We,
{SW, So, SE, Ea, NE}  if r = SW. {NE, No, NW, We, SW} if r = SW.

The function Lir (Left inferred relation) provides for its argument, say r (a CDA
atom), the most specific CDA relation R such that for all z,y,z, the conjunction
r(z,y)Alr(z,y, z) logically implies R(z, z). For instance, if r is So then R = Lir(So) =
{SE, Ea, NE} —from So(Paris, London) and Ir(Paris, London, M adrid), we get
{SE, Ea, NE}(Paris, Madrid). As another example, if r is SE then R = Lir(SE) =
{SE, Ea, NE, No, NW} —see the illustration of Figure 9: from SE(Berlin, Hamburg)
and Ir(Berlin, Hamburg, Paris), we get {SE, Ea, NE, No, NW}(Berlin, Paris). The
function Rir (Right inferred relation) is defined in a similar way, with Ir replaced
with rr.

Given a ¢cCOA-CSP P, the table in Figure 8 illustrates how the ROA constraint
(TT)ijr. on the triple (X;, X;, X)) of variables interacts with each of the three CDA
constraints (B%);;, (BF)i and (BP);i, on the pairs (X;, X;), (X;, Xi) and (X, Xj).
If (T?)ijx is an atomic relation, say r, then the interaction is given by the three
functions roa-to-cdal2, roa-to-cdal3 and roa-to-cda23 of Figure 8; namely:

2 A similar way of splitting the composition into more than one table has been followed for
the ternary RA, CYC;, presented in [15,16].
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|o ||de|dd |

de||de|dd
ep||ep|{lr, bp, bw, cr, br, rr}
|o ||lr |bp |cp|bw |cr|br |rr |
dd||dd dd de|dd dd|dd dd
lr ||{lr, bp, rr} rr cp|lr Ir |lr {lr, bw, cr, br, rr}
bp ||rr {bw, cr, br}|cp|bp bp |bp Ir
bw||lr bp cp|bw bw|{bw, cr, br}|rr
er (|lr bp cp|bw cr |br rr
br ||lr bp ep|{bw, cr, br}|br [br rr
rr ([{lr, bw, cr, br, rr}|lr cp|rr rr|rr {lr, bp, rr}

Fig.7. The ROA composition tables: in each of the two tables, the entry at the intersection
of a line £ and a column c is the composition, r1 o r2, of r1 and r2, where r; is the ROA
atom appearing as the first element of line £ and r» is the RO.A atom appearing as the top
element of column c.

B7)ij
B )J ((BP)ZJ)V?
. (BY);1, + roa-to-cdal3(r, P, i, j, k);
BP )i+ ((BP)ax) s
B*) i + roa-to-cda23(r, P, i, j, k);
BP)ij « (BP)jk)™;

If (Tp)ijk is a disjunctive, non atomic relation, say R, then the interaction is the
union of the interactions at the atomic level; namely:

1. (BP);; « U roa-to-cdal2(r, P, 1, j, k);
r€ER
(BF)ji < ((BP)i) 7
2. (BP)i, + U roa-to-cdal3(r, P, 1, j, k);
r€ER
(B )i = ((BP)ir) ™
3. (BP)i + U roa-to-cda23(r, P, i, j, k);
reR
(B kg < ((B”)j1) s

5.3 CSPs of cardinal direction relations on 2D points

We define a CDA-CSP as a CSP of which the constraints are CD.A relations on pairs
of the variables. The universe of a CD.A-CSP is the set IR? of 2D points.

A CDA-matrix of order n is a binary constraint matrix of order n of which the entries
are CDA relations. The constraint matrix associated with a CD.A-CSP is a CD.A-
matrix.

A scenario of a CDA-CSP is a refinement P’ such that all entries of the constraint
matrix of P’ are atomic relations.
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|r |roa-to—cda12(r, P,i,j,k) |roa-to-cda13(r, P,i,j, k)|roa-to—cda23(r, P,i,j, k)|

de|(B)i; N {Eq} (BT)ir N {Eq} (BP)JI» N{Eq}
dd|(B”)i; N {Eq} (BY)ir N (BY)jx N {Eq} | (BT )ix

Ir |(B”)i; N {Eq} (B")ix N Lir((BY)y3)  |(BY)jx N Rir((B”);:)
bp |(B”)ij N (B” )k N (B )i; N {Eq}|(BT);i (BT )ik

cp|(B”)i; N (BY)x; N {Eq} (B”)ir N {Eq} (BY)ji

bw|(B")ij N (BY)ix N (BY)x; N {Eg}|(B)i; (B)ji

cr [(BY)i; N (BY)a N {Eq} (B)i (B");x N {Eq}

br |(B”)i; N (BY)ix 0 (BY)jx N {Eq}|(BY )i (BY)i

rr |(B”)i; N {Eq} (BY)ir N Rir((B”)i;)  |(BY)jx 0 Lir((B”),i)

Fig. 8. Given a cCOA-CSP P, the constraints imposed by the ROA relation (77)i;1, on
the CDA relations on the different pairs of the three arguments. The table presents the case
when (7F)jx is an atomic relation, say r; the case when (77)i;1 is a disjunctive ROA
relation is explained in the main text.

If we make the assumption that a CD.A-CSP does not include the empty constraint,
which indicates a trivial inconsistency, then a CD.A-CSP is strongly 2-consistent.

Solving a CD.A-CSP

A simple adaptation of Allen’s constraint propagation algorithm [1] can be used to
achieve path consistency (hence strong 3-consistency) for CD.A-CSPs. Applied to a
CDA-CSP P, such an adaptation would repeat the following steps until either stability
is reached or the empty relation is detected (indicating inconsistency):

1. Consider a triple (X;, X;, X;,) of variables verifying (BF);;  (BY)ix o (BY)k;
2. (BY)ij « (BY)i; N (BP)ix, o (B”);
3. If ((BP);; = 0) then exit (the CSP is inconsistent).

Path consistency is complete for atomic CD.A-CSPs [19]. Given this, Ladkin and
Reinefeld’s solution search algorithm [18] can be used to search for a solution, if any,
or otherwise report inconsistency, of a general CD.A-CSP.

5.4 CSPs on relative orientation of 2D points

We define an ROA-CSP as a CSP of which the constraints are RO.A relations on
triples of the variables. The universe of an RO.A-CSP is the set IR? of 2D points.

An ROA-matrix of order n is a ternary constraint matrix of order n of which the
entries are ROA relations. The constraint matrix associated with an ROA-CSP is
an ROA-matrix.

A scenario of an ROA-CSP is a refinement P’ such that all entries of the constraint
matrix of P’ are atomic relations.

If we make the assumption that an RO.A-CSP does not include the empty constraint,
which indicates a trivial inconsistency, then an RO.A-CSP is strongly 3-consistent.
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Hamburg

Paris O
Paris© Berlin
Paris @) Paris D Paris @)

Fig. 9. From “Berlin is south-east of Hamburg” and “viewed from Berlin, Paris is to the left
of Hamburg”, we infer that “Berlin is south-east, east, north-east, north, or north-west of,
Paris”.

Searching for a strongly 4-consistent scenario of an RO.A-CSP

A simple adaptation of Isli and Cohn’s constraint propagation algorithm [15,16] can
be used to achieve strong 4-consistency for RO.A-CSPs. Applied to an ROA-CSP P,
such an adaptation would repeat the following steps until either stability is reached
or the empty relation is detected (indicating inconsistency):

1. Consider a quadruple (X;, X;, Xi, X;) of variables verifying (7)1 € (T%)ijk ©
(TE)ira

2. (TP)ijt < (TP)iji N (T o (BY )i

3. If ((T?)sj = 0) then exit (the CSP is inconsistent).

Isli and Cohn have proposed a complete solution search algorithm for CSPs expressed
in their CYC; algebra [15,16]. The algorithm is similar to the one of Ladkin and
Reinefeld [18] for temporal interval networks [1], except that:

1. it refines the relation on a triple of variables at each node of the search tree,
instead of the relation on a pair of variables; and

2. it makes use of a constraint propagation procedure achieving strong 4-consistency,
in the preprocessing step and as the filtering method during the search, instead
of a procedure achieving path consistency.

Unless we can prove that Isli and Cohn’s strong 4-consistency procedure is complete
for the ROA atomic relations, we cannot claim completeness of the solution search
procedure for general RO.A-CSPs. But we can still use the procedure to search for a
strongly 4-consistent scenario of the input CSP. For more details on the algorithm,
and on its binary counterpart, the reader is referred to [15, 16, 18].
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5.5 CSPs of cardinal directions relations and relative orientation
relations on 2D points

We define a cCOA-CSP as a CSP of which the constraints consist of a conjunction of
CDA relations on pairs of the variables, and RO relations on triples of the variables.
The universe of a cCOA-CSP is the set IR? of 2D points.

Matrix representation of a cCO.A-CSP
A ¢cCOA-CSP P can, in an obvious way, be represented as two constraint matrices:

1. a binary constraint matrix, B”, representing the CD.A part of P, i.e., the subcon-
junction consisting of CD.A relations on pairs of the variables; and

2. a ternary constraint matrix, 77, representing the ROA part of P, i.e., the rest
of the conjunction, consisting of ROA relations on triples of the variables.

We refer to the representation as (BY, T7).

A constraint propagation procedure for cCO.A-CSPs

A path consistency algorithm, such as Allen’s [1], applied to a binary CSP such as a
CDA-CSP, uses a queue Queue, which can be supposed, for simplicity, to have been
initialised to all pairs (z,y) of the CSP variables verifying x < y (the variables are
supposed to be ordered). The algorithm removes one pair of variables from Queue at
a time; a removed pair is used to eventually update the relations on the neighbouring
pairs of variables (pairs sharing at least one variable). Whenever such a pair is suc-
cessfully updated, it is entered into Queue, if it is not already there, in order to be
considered at a future stage for propagation. The algorithm terminates if the empty
relation, indicating inconsistency, is detected, or if Queue becomes empty, indicating
that a fixed point has been reached and the input CSP is made path consistent.

A strong 4-consistency algorithm, such as Isli and Cohn’s [15, 16], applied to a ternary
CSP such as an ROA-CSP, is, somehow, an adaptation to ternary relations of a path
consistency algorithm. It uses a queue Queue, which can be supposed, for simplicity, to
have been initialised to all triples (z,y, z) of the CSP variables such that z <y < 2.
The algorithm removes one triple from Queue at a time; a removed triple is used
to eventually update the relations on the neighbouring triples (sharing at least two
variables). Whenever such a triple is successfully updated, it is entered into Queue,
if it is not already there, in order to be considered at a future stage for propagation.
The algorithm terminates if the empty relation, indicating inconsistency, is detected,
or if Queue becomes empty, indicating that a fixed point has been reached and the
input CSP is made strongly 4-consistent.

In Figure 10, we propose a constraint propagation procedure, PcSjc+(), for cCOA-
CSPs, which aims at:

1. achieving path consistency (Pc) for the CD.A projection;

2. achieving strong 4-consistency (54c) for the RO.A projection; and
3. more (+).
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The procedure does more than just achieving path consistency for the CD.A projection,
and strong 4-consistency for the RO.A projection. It implements as well the interaction
between the two combined calculi; namely:

1. The path consistency operation, (BY)s, < (BY)ix N (BF)s; o (B”),k, which, under
normal circumstances, operates internally, within a same CSP, should now be, and
is, augmented so that it can send information from the CD.A component into the
ROA component; this is achieved by a call to the procedure pair-propagation().
Specifically, whenever a pair (X;, X;) of variables is taken from Queue for propa-
gation, the following is performed for all variables Xj:

e the procedure pair-propagation() of Figure 10 checks whether the relation on
the pair (X;, Xj;) —see lines 1-4— or the relation on the pair (X, X;) —see
lines 6-9— can be successfully updated. If this happens, the corresponding
pairs of variables are entered into Queue in order to be considered for prop-
agation at a later point of the process. This part of the propagation is not
new, and is widely known in the literature on propagation algorithms, such
as path consistency (see [1] for Allen’s well-known propagation algorithm, for
the case of constraint-based qualitative temporal reasoning). What is new in
the procedure pair-propagation() is the call to the procedure CD.A-to-ROA()
—see lines 5 and 10— which aims at checking, whenever a pair (X;, X;) is
taken from Queue, whether the CDA relation on (X;,X;) can update the
ROA relation on the triple (X;, X;, X}) or that on the triple (X, X;, X;). If
either of the two ROA relations gets successfully updated, the corresponding
triple of variables is entered into Queue in order to be considered for propa-
gation at a later point of the process. The procedure CDA-to-ROA() is the
implementation of the CDA-to-ROA interaction operation, ®, defined in the
table of Figure 5, which outputs the ROA relation, r ® s, logically implied by
the conjunction of two CDA atoms, r and s.

2. The strong 4-consistency operation, (77);jx < (TF)ije N (TF)ijio (T )ur, which
also operates internally under normal circumstances, is augmented so that it can
send information from the ROA component into the CD.A component; this is
achieved by a call to the procedure triple-propagation(). Specifically, whenever a
triple (X;, X, X},) is taken from Queue for propagation, the following is performed
for all variables X,,:

e the procedure triple-propagation() of Figure 10 checks whether the relation
on the triple (X;, X;,X,,) —see lines 1-4— or the relation on the triple
(Xi, Xk, Xm) —see lines 5-8— or the relation on the triple (X;, X, X,,) —see
lines 9-12— can be successfully updated. If this happens, the corresponding
triples of variables are entered into Queue in order to be considered for prop-
agation at a later point of the process. This part of the propagation is taken
from Isli and Cohn’s strong 4-consistency algorithm [15,16]. What is new in
the procedure triple-propagation() is the call to the procedure RO.A-to-CDA()
—see line 13— which aims at checking, whenever a triple (X;, X;, X}) is taken
from Queue, whether the ROA relation on (X;, X;, X;) can update the CDA
relations on the different pairs of the three arguments: the pairs (X;, X;),
(Xi, Xi) and (Xj, Xy). If any of the three CD.A relations gets successfully
updated, the corresponding pair of variables is entered into Queue in order to
be considered for propagation at a later point of the process. The procedure
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ROA-to-CDA() is the implementation of the RO.A4-to-CD.A interaction table
of Figure 8.

Input: the matrix representation (BY, TF) of a cCO.A-CSP P with set of variables V.
Output: the CSP P made strongly 4-consistent.
procedure PcS4c+();

1. initialise Queue: Queue «+ {(z,y) € V2 :z < y}U{(z,y,2) € V3 :2 <y < z};
2. repeat{

3. get (and remove) next element Q from Queue;

4. if Q is a pair, say (X;, X;){

5. for k < 1 to n{pair-propagation(P,i,j,k);}

6}

7. else (Q is a triple, say (X, X;, X#)){

8. for m + 1 to n{triple-propagation(P,%,j, k, m);}

o}
10.
11. until Queue is empty;

procedure pair-propagation(P, i, j, k);

1. Temp + (BY);x N (BF)ij 0 (BY ) jk;

2. If Temp = 0 then exit (the CSP is inconsistent);

3. if Temp # (BY )ix

4. {add-to-queue(X;, Xz); (BF)ix + Temp; (BY )ri « Temp™; }
5. CDAto-ROA(P, i, ], k);

6. Temp + (BY )x; 0 (B )i o (B )ij;

7. If Temp = 0 then exit (the CSP is inconsistent);

8. if Temp # (B )x;

9. {add-to-queue(Xy, X;); (BY )x; + Temp; (BY)j1, + Temp™; }
10. CDAto-ROA(P, k, i, j):

procedure triple-propagation(P, i, j, k, m);

L Temp — (TF)ijm 0 (T )ijr © (TF)ikm;

2. If Temp = 0 then exit (the CSP is inconsistent);

3. if Temp # (TF)ijm

4. {add-to-queue(X;, X;, Xy, );update(P, i, j, m, Temp);}
5. Temp < (TF)ikm N (TF)irj © (TF)ijms

6. If Temp = 0 then exit (the CSP is inconsistent);

7. if Temp # (TF)item

8. {add-to-queue(X;, X, X );update(P, i, k, m, Temp);}
9. Temp «— (TF)jrem V(T )jri 0 (TF)jim;
10. If Temp = 0 then exit (the CSP is inconsistent);
11. if Temp # (TF)jkm
12. {add-to-queue(X;, X, X );update(P, j, k, m, Temp);}
13. ROA-to-CDA(P, 3, j, k);

procedure update(P, i, j, k,T);
L (TP)ijn < T (TP )ing T 5 (T ) jui + T
20 (TP)gin — (TD)a0) 75 (T ks = (TF)i0) ™5 (T ngs = (TP i) s

Fig. 10. A constraint propagation procedure, PcS4c+(), for cCO.A-CSPs. The procedures CDA-to-ROA

and ROA-to-CDA used by the algorithm are defined in Figure 11.

Theorem 1 The constraint propagation procedure PcSdc+() runs into completion in
O(n*) time, where n is the number of variables of the input cCO.A-CSP.

Proof. The number of variable pairs is O(n?), whereas the number of variable triples
is O(n?®). A pair as well as a triple may be placed in Queue at most a constant number
of times (9 for a pair, which is the total number of CD.A atoms; and also 9 for a triple,
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procedure CDA-to-ROA(P, i, j, k);
1. roa-ir «— U 1 ® r2;
r1€(BF);;,ra€(BF)
2. Temp + (TF)ijr Nroa-ir;
3. If Temp = 0 then exit (the CSP is inconsistent);
4 if Temp # (Tp)ijk
5 {add-to-queue(X;, X;, Xy );update(P, i, j, k, Temp);}

procedure RO A-to-CDA(P, i, j, k);

Temp < U roa-to-cdal2(r, P, 4, j, k);

rER
If Temp = 0 then exit (the CSP is inconsistent);
if Temp # (T7)s;
{add-to-queue(X;, X;); (BY)ij + Temp; (BY);i < Temp™; }

Temp < U roa-to-cdal3(r, P, 4, j, k);

=

ok LN

rER
If Temp = 0 then exit (the CSP is inconsistent);

if Temp # (T7)in
{add-to-queue(X;, Xr); (BY )i < Temp; (BF )pi + Temp™; }

Temp < U roa-to-cda23(r, P, 4, j, k);

© ®» N

rER
10. If Temp = 0 then exit (the CSP is inconsistent);

11. if Temp # (TF) i
12. {add-to-queue(X;, Xy); (BY) i + Temp; (B )y; + Temp™; }

Fig. 11. The procedures CDA-to-RO.A and RO.A-to-CD.A used by the constraint propagation algorithm
PcSjc+() of Figure 10.

which is the total number of ROA atoms). Every time a pair or a triple is removed
from Queue for propagation, the procedure performs O(n) operations. m

Example 2 Consider again the description of Example 1. We can represent the sit-
uation as a cCOA-CSP with variables Xy, Xpn, Xi and X,,, standing for the cities of
Berlin, Hamburg, London and Paris, respectively.

1. The knowledge "viewed from Hamburg, Berlin is to the left of Paris” translates
into the ROA constraint It(Xp, Xp, Xp): (TF)npy = {Ir}.

2. The other ROA knowledge translates as follows: (TF)nip = {It}, (TF)np = {Ir},
(TP)ipp = {Ir}.

3. The CDA part of the knowledge translates as follows: (BF)s, = {No}, (B ) =
{NW}, (B”)p = {So}.

As discussed in Example 1, reasoning separately about the two components of the
knowledge shows two consistent components, whereas the combined knowledge is clearly
inconsistent. Using the procedure PcS4c+(), we can detect the inconsistency in the fol-
lowing way. From the CDA constraints (BY)s, = {No} and (BF),; = {So}, the algo-
rithm infers, using the augmented CD.A composition table of Figure 5 —specificaly, the
CDA-to-ROA interaction operation @ — the ROA relation {bp, cp,bw} on the triple
(Xn, Xp, Xi1). The conjunction of the inferred knowledge {bp, cp, bw} (X4, Xp, X;) and
the already existing knowledge {Ir}(Xp, X;, Xp) —equivalent to {rr}(Xpn, Xp, X;)—
gives the empty relation, indicating the inconsistency of the knowledge.
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6 Summary

We have presented the combination of two calculi of spatial relations well-known in
Qualitative Spatial Reasoning (QSR): Frank’s cardinal direction calculus [7,8] and
Freksa’s relative orientation calculus [9,10]. With an example illustrating the impor-
tance of such a combination to Geographical Information Systems (GIS), we have
shown that reducing the issue of reasoning about knowledge expressed in the com-
bined language to a simple matter of reasoning separately about each of the two
components was not sufficient. The interaction between the two kinds of knowledge
has thus to be handled: we have provided a constraint propagation algorithm for such
a purpose, which:

1. achieves path consistency for the cardinal direction component;
2. achieves strong 4-consistency for the relative orientation component; and
3. implements the interaction between the two kinds of knowledge.

Combining and integrating different kinds of knowledge is an emerging and challenging
issue in QSR. Related work has been done by Gerevini and Renz [13], which deals
with the combination of topological knowledge and relative size knowledge in QSR.
Similar work might be carried out for other aspects of knowledge in QSR, such as
qualitative distance [2] and relative orientation [9,10], a combination known to be
highly important for GIS and robot navigation applications, and on which not much
has been achieved so far.

This work has been carried out within the context of a DFG project “Description
Logics and Spatial reasoning” (DLS). The goal of the project is to use description
logics with concrete domains, where the concrete domain is a language of spatial
relations. Work on description logics with a language of qualitative spatial relations
as a concrete domain can be found in the literature, such as the one in [14]; work
that has been, however, restricted to the case of binary relations, such as the RCC-8
relations in [14]. The definition of qualitative spatial languages of ternary relations is
an emerging and promising issue in QSR [9, 10,15, 16], and one of the main goals of
our project is to define description logics with concrete domains, where the concrete
domain is a language of spatial ternary relations, or a language of spatial ternary
relations and spatial binary relations, as the one we have defined in this work.
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