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Einleitung und Motivation

Die Probleme, die in Anwendungsprojekten der Informationstechnologie zu bearbei-
ten sind, werden zunehmend komplexer, da vielfach “tiefere” ontologische Modellie-
rungen zur Problemlösung eingesetzt werden, Aspekte der Verteilung zu beachten
sind, sowie auch Sicherheitsaspekte eine große Rolle spielen. So wundert es nicht,
daß verschiedene Ansätze, Techniken und Methoden zur Bewältigung der Komple-
xität vorgeschlagen wurden. Zu nennen sind in diesem Zusammenhang zum Beispiel
wissensbasierte Systeme, objektorientierte Rahmensysteme, vereinheitlichte Model-
lierungssprachen (z.B. UML, Unified Modeling Language), Spezifikationssprachen
für das Verhalten von technischen Systemen, Modellierungssprachen für Arbeits-
vorgänge (workflow modeling languages), Organisationsmodelle für Geschäftsprozes-
se usw. Das Ziel der verschiedenen Ansätze ist, die Erstellung benutzbarer, verläßli-
che und anpaßbare Softwaresysteme zu unterstützen. Allen Ansätzen gemeinsam ist
der Bedarf nach automatischen Überprüfungstechniken für definierte Modelle. Es
zeigt sich weiterhin in vielen Anwendungskontexten seit jeher ein hoher Bedarf für
Systeme, mit denen komplexe Anwendungsprobleme bzw. deren Teilprobleme auf der
Basis von deklarativen Modellen der Anwendungsdomäne automatisch gelöst werden
können. Automatisches Lösen bedeutet in diesem Zusammenhang, daß die Pro-
blemlösung durch allgemeine Dienste bzw. vorgefertigte Bausteine und nicht durch
Programmierung eines speziellen, anwendungsabhängigen Spezialverfahrens erbracht
wird. Diese Habilitationsschrift faßt praktische und theoretische Forschungsergebnis-
se zur Entwicklung von Modellierungswerkzeugen zusammen, mit denen es möglich
ist, deklarative Modelle aufzustellen, die einerseits auf Konsistenz geprüft werden
können und andererseits als Basis für automatische Problemlösungsprozesse in ver-
schiedenen Anwendungskontexten dienen können.

Um die automatische Verarbeitung von deklarativen Modellen zu ermöglichen, ist es
notwendig, daß die Modellierungssprache auf einer formalen Semantik beruht. Auf
der Basis der formalen Semantik einer Repräsentationsprache lassen sich Inferenzpro-
bleme formal definieren. Das Lösen eines Inferenzproblems eines bestimmten Typs
durch ein Softwaresystem wird häufig auch Inferenzdienst genannt. Algorithmen
zur Realisierung von Inferenzdiensten können unter Bezugnahme auf die Seman-
tik der Repräsentationssprache daraufhin bewertet werden, ob sie vollständig und
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korrekt sind und auch terminieren. Je nach Ausdrucksmächtigkeit der Repräsentati-
onssprache kann die Lösung von Inferenzproblemen durch unterschiedliche Verfahren
erfolgen.

So kann zum Beispiel ein Inferenzproblem durch Suche über einem extensional ge-
gebenen Datenbestand gelöst werden (vgl. z.B. klassische Datenbanksysteme). Bei
komplexeren Anwendungen werden zunehmend ausdrucksstärkere Repräsentations-
und Anfragesprachen untersucht, so daß die Beantwortung von Anfragen nicht mehr
nur in einer reinen Wiedergabe der explizit gespeicherten Daten besteht. Die Be-
antwortung von Anfragen bedingt ein Schlußfolgern über implizite Informationen.
Obwohl neuere Datenbanksysteme sich mehr und mehr in diese Richtung bewegen
(vgl. [Abiteboul et al., 1995; Zaniold et al., 1997]), so läßt sich doch sagen, daß der
Fokus von klassischen Datenbanksystemen eher auf Themen liegt wie z.B. Persistenz
und Transaktionen sowie auch Effizienz in Bezug auf Speicherbedarf, Speicherge-
schwindigkeit und Suchgeschwindigkeit. Die Beantwortung von Anfragen, bei denen
über implizite Informationen (bzw. Sachverhalte) geschlossen werden muß, fällt in
den Bereich der sog. Inferenzsysteme (z.B. [Genesereth & Nilsson, 1987; Fitting,
1996; Poole et al., 1998]). Nichtsdestotrotz, da ausdruckstärkere Repräsentations-
sprachen in vielen Anwendungen benötigt werden, spielen auch Inferenzen im Daten-
bankkontext eine immer größere Rolle [Chomicki & Saake, 1998; Kuper et al., 2000].
Es überrascht daher nicht, daß die Ergebnisse von Forschungsarbeiten zu formalen
Inferenzsystemen und zur Wissensrepräsentation im Rahmen der konventionellen In-
formatik immer bedeutsamer werden (und umgekehrt).

Unter dem Begriff (formale) Inferenzsysteme seien Systeme zusammengefaßt, die
Theoreme in einer entsprechend ausdrucksstarken Logik beweisen können. Wichti-
ge Anwendungen von Inferenzsystemen sind sog. Informationssysteme, d.h. Anwen-
dungssysteme mit denen ein Benutzer Auskünfte über einen bestimmten Informati-
onsbestand erhalten kann. Ein Informationssystem, dessen Hauptleistungen durch
formale Inferenzsysteme für ausdrucksstarke Beschreibungssprachen erbracht wer-
den, soll hier als deduktives Informationssystem bezeichnet werden. Ein deduktives
Informationssystem muß allerdings nicht auf einer monolithischen Architektur basie-
ren, es kann durch mehrere kooperierende Teilkomponenten realisiert sein.

Die Entwicklung von formalen Inferenzsystemen bzw. Theorembeweisern hat eine
lange Tradition. In der Literatur sind viele Beiträge aus unterschiedlicher Sicht
und mit unterschiedlichem mathematischen Hintergrund zu finden. Für viele An-
wendungsprobleme eignen sich zur Problemlösung logikbasierte Modellierungs- und
Schlußsysteme. In dieser Arbeit wird in diesem Kontext ein anwendungsorien-
tierter Ansatz verfolgt, in dem theoretische Resultate über die Entscheidbarkeit
von verschiedenen Repräsentationssprachen durch praktische Arbeiten zu

”
effizien-

ten“ Beweisprozeduren ergänzt werden. Effiziente Beweisprozeduren wiederum sind
notwendig für die praktische Realisierung von Anfragebeantwortungssystemen mit
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ausdrucksstarken Repräsentationssprachen. Die Entwicklung von Algorithmen, die
vollständig und korrekt sind (und terminieren), aber im Durchschnittsfall nicht in ei-
ne kombinatorische Explosion hineinlaufen, ist ein vielversprechendes Forschungsfeld
und stellt vielfältige Anforderungen auch aus einer theoretischen Sicht.

Wie schon erwähnt, können formale Beweissysteme in einem Informationsrecherche-
Szenario zur Beantwortung von Anfragen eingesetzt werden. In diesem Kontext
müssen Repräsentationssysteme, die in der Praxis angewendet werden sollen, ei-
ne adäquate Ausdruckskraft für eine breitgefächerte Art von Phänomen und Effek-
ten aufweisen. So bildet zum Beispiel für geographische Informationssysteme (GIS)
räumliches Hintergrundwissen über Artefakte und natürliche Objekte die Basis für
Problemlösungsprozesse. Falls Anwendungsprobleme durch Inferenzdienste gelöst
werden sollen, so ist die Festlegung einer formalen Semantik für die verwendeten Re-
präsentationskonstrukte unumgänglich, da nur so die Aufgabe von Inferenzdiensten
definiert werden kann. Dabei ist das Zusammenspiel von räumlichem (bzw. zeitli-
chem) und terminologischem Wissen auf einer semantischen Ebene von besonderer
Bedeutung. Die systematische Integration des konzeptuellen, begrifflichen Schließens
mit Aspekten des räumlichen Schließens ist ein noch junges Forschungsgebiet zu dem
in dieser Arbeit durch die Entwicklung von vollständigen und korrekten Inferenzal-
gorithmen wichtige Grundlagen gelegt werden. Um eine automatische Verarbeitung
von deklarativen Modellen zu ermöglichen, sollten auch im Kontext von Informati-
onsrecherchesystemen vorzugsweise Repräsentationssprachen untersucht werden, für
die vollständige und korrekte (und terminierende) Inferenzalgorithmen existieren.
Auf verschiedene Ansätze zur Logikprogrammierung mit Horn-Formeln wird daher
nur am Rande eingegangen (vgl. auch die Argumentation in [Baader, 1999]).

Informationssysteme sind nicht die einzigen Anwendungsfelder, in denen formale
Inferenzsysteme erfolgreich eingesetzt werden können. Durch das stets wachsende
Interesse im Bereich des elektronischen Handels in verteilten Systemen wird das
Problem der Verifikation vordringlich. Es geht dabei darum, durch Auswertung ei-
nes Modells zu prüfen, daß bestimmte, meist interagierende Dienste auch unter allen
Umständen erbracht werden können. Als weiteren bedeutsamen Anwendungskontext
für die formale Verifikation sind Telekommunikationssysteme zu nennen. In diesen
Systemen wird eine Vielzahl von ebenfalls stark interagierenden Diensten angebo-
ten. Die Kombinierbarkeit von Diensten stellt dabei ein großes Problem dar. Daher
besteht vielfach der Wunsch, ausgehend von einem formalen Modell eines Systems
und einer Menge von Einschränkungen (Invarianten) zu prüfen, ob ein fehlerfreier
Betrieb des Systems gewährleistet werden kann. In diesem Kontext werden vielfach
sogenannte Algorithmen zur Modellüberprüfung (model checking algorithms, vgl.
[Clarke & Kurshan, 1996] für eine Übersicht) eingesetzt, um zu überprüfen, ob eine
spezielle Realisierung eines Systems bestimmte Anforderungen erfüllt. Grundannah-
me bei der Modellierung eines Systems ist dabei, daß das Verhalten des Systems

5



als endlicher Zustandsraum repräsentierbar ist. Zustandsübergänge werden durch
Aktionen bzw. Ereignisse ausgelöst. Anforderungen legen fest, daß in bestimmten
Zuständen bestimmte Prädikate gelten müssen. Ziel der Modellüberprüfung ist es
zu überprüfen, daß eine gegebene Systemrealisierung die Anforderungen erfüllt.

Ein Problem des Ansatzes der Modellüberprüfung ist, daß (i) nur endliche Zu-
standsräume behandelt werden können und (ii) nur zustandsorientierte Aspekte von
Anwendungen betrachtet werden können. Daher werden in zunehmendem Maße auch
Theorembeweiser zur Überprüfung von Spezifikationen eingesetzt. Theorembewei-
ser können mit unendlichen Zustandsräumen umgehen und unterstützen auch eine
Überprüfung der Datenmodelle [Katoen, 1999].

Damit Deduktionstechniken erfolgreich in Anwendungen eingesetzt werden können,
müssen ausdrucksstarke Modellierungs- und Repräsentationssprachen verwendet wer-
den und effiziente Beweiserimplementierungen verfügbar sein. Wir werden in dieser
Arbeit sehen, daß Theorembeweiser entwickelt werden können, die im Bereich der Ve-
rifikation von Spezifikationen für Telekommunikationssysteme erfolgreich eingesetzt
werden können und somit Modellüberprüfungsansätze ergänzen können.

Eine Familie von logikbasierten Repräsentationsprachen, die für die obengenann-
ten Aufgaben sehr gut geeignet ist, wird als Beschreibungslogiken bezeichnet (de-
scription logics, DLs) [Baader et al., 2001]. Mit Beschreibungslogiken wird eine
rechnerinterne Modellierung von Objekten und Phänomenen der Realwelt vorrangig
aus einer objektzentrierten Sicht vorgenommen [Woods & Schmolze, 1992; Donini
et al., 1996]. Es werden hierzu Konstrukte zur Formulierung von sog. Konzepten
und Rollen (binäre Relationen) sowie entsprechende, auf der formalen Semantik der
Repräsentationssprache basierende Inferenzdienste bereitgestellt (z.B. Konsistenz-
prüfung, Klassifikation). In jüngster Zeit sind auch Beschreibungslogiken mit n-
stelligen Relationen untersucht worden [Calvanese et al., 1998]. Lassen sich Teilpro-
bleme einer Anwendung unter Rückgriff auf Beschreibungslogiken als entsprechende
Inferenzprobleme formulieren, so stehen theoretisch abgesicherte und systematisch
getestete Beweissysteme zur Lösung dieser Teilprobleme zur Verfügung.

Erfahrungen mit Anwendungen belegen, daß ausdrucksstarke Formalismen benötigt
werden, damit nicht auf Ad-hoc-Lösungen für Teilprobleme zurückgegriffen werden
muß. Die Entwicklung von Inferenzsystemen, die auf vollständigen und korrekten
Algorithmen basieren und im mittleren Fall (average case) ein gutes Laufzeitver-
halten zeigen, ist für ausdrucksstarke (aber entscheidbare) Beschreibungslogiken ein
relativ neues Forschungsgebiet. Innerhalb dieser Habilitationsarbeit wurden zu den
Problemstellungen der aufgezeigten Forschungsbereiche Lösungen erarbeitet. Es sind
folgende Hauptpunkte hervorzuheben:

• Theoretische Arbeiten zur Entwicklung von Kalkülen für ausdrucksstarke Be-
schreibungslogiken.
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• Entwicklung von optimierten aber vollständigen und korrekten Algorithmen
für praxisgerechte Schlußverfahren (insbesondere für das Schließen mit Indivi-
duen).

• Implementierung eines Beschreibungslogik-Inferenzsystems namens RACE zur
Durchführung von Untersuchungen zum durchschnittlichen (average case) Ver-
halten von Inferenzalgorithmen für Anwendungswissensbasen. Hierzu gehören
empirische Analysen der Performanz des Inferenzsystems RACE für von an-
deren Forschergruppen entwickelten Formalisierungen von großen Ontologien
(ontology engineering) sowie auch für die Verifikation von Soft- und Hardwa-
resystemen am Beispiel von Telekommunikationsanlagen.

• Erweiterung der Theorie zu Beschreibungslogiken zur Einbeziehung von Schlüs-
sen bzgl. Einschränkungen über kontinuierlichen und diskreten Domänen (sog.
Constraints) mit Anwendungen im Bereich der Konfigurierung.

• Theoretische Arbeiten zur semantikbasierten Integration von Techniken zum
räumlichen (und zeitlichen) Schließen in das konzeptuelle Schließen mit Be-
schreibungslogiken.

• Aufzeigen der praktischen Verwendung der beschreibungslogischen Modellie-
rungskonstrukte für Anwendungen aus verschiedenen Kontexten: Inferenz-
basierte bzw. deduktive Informationssysteme, geographische Informationssy-
steme und Agenten-orientierte Informationssysteme.

In dieser Arbeit wird aufgezeigt, daß sich Beschreibungslogiken in vielfältiger Wei-
se zur Modellierung und Problemlösung in Anwendungssystemen einsetzen lassen.
Obwohl nicht bestritten wird, daß in bestimmten Kontexten auch andere Logikfor-
malismen erfolgreich als Basis von Inferenzsystemen zum Einsatz kommen können
(z.B. Datalog in sog. deduktiven Datenbanken), bildet gerade das breite Anwen-
dungsspektrum für Beschreibungslogiken die Motivation für die aufgezeigten For-
schungsarbeiten.
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Stand der Kunst, Forschungsziele
und -ergebnisse

Im folgenden Abschnitt wird der Stand der Forschung im Gebiet der beschreibungs-
logischen Repräsentations- und Inferenzsysteme näher beleuchtet. Nach einer Be-
trachtung der konzeptuellen Wissensrepräsentation werden Aspekte des Forschungs-
gebietes räumliches Schließen aufgeführt, die bzgl. der in dieser Arbeit verfolgten
Kopplung von konzeptuellem und räumlichem Schließen besonders bedeutsam sind.
Hierauf aufbauend werden die in dieser Arbeit erreichten Fortschritte zusammenge-
faßt.

Konzeptuelle Wissensrepräsentation

Logische Repräsentationssprachen haben sich bei der Erstellung von formalen Mo-
dellen als ein wichtiges Mittel zur Wissensrepräsentation erwiesen. Wir betrachten in
dieser Arbeit mit Beschreibungslogiken primär sog. konzeptuelle Wissensrepräsenta-
tionsansätze [Brachman & Schmolze, 1985], da sie sich für viele Anwendungsbereiche
als ein gutes Fundament erwiesen haben.

Frühe Ansätze zur konzeptuellen Wissensrepräsentation waren zunächst noch stark
durch Ad-hoc-Betrachtungen der menschlichen Informationsverarbeitung geprägt.
Inzwischen hat sich durch die Untersuchung der Semantik von Repräsentationskon-
strukten eine starke Formalisierung durchgesetzt (siehe [Baader, 1999; Baader &
Sattler, 2000] für einen Überblick über verschiedene Arbeiten). Die Ergebnisse der
Forschungsarbeiten verdeutlichen, daß beschreibungslogische Repräsentationsspra-
chen für die maschinelle Informationsverarbeitung besonders geeignet sind. Durch
die formale Semantik von logischen Repräsentationssprachen ist es möglich, Inferenz-
dienste mit verifizierten Algorithmen zu realisieren. Dadurch werden Anwendungs-
architekturen möglich, die sich nicht auf anwendungsspezifische Verfahren sondern
auf allgemeine, formal definierte Inferenzdienste stützen. Durch diese Art der Mo-
dellierung von zumeist komplexen Systemen kann eine erhebliche Einsparung bei
den Entwicklungskosten bei gleichzeitiger Erhöhung der Sicherheit erzielt werden,
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da für eine Einzelanwendung auf theoretisch untersuchte und praktisch ausgetestete
Algorithmen und Problemlösungsverfahren zurückgegriffen werden kann.

Von besonderer Wichtigkeit für die maschinelle Verarbeitung der Modelle ist in die-
sem Zusammenhang die Entscheidbarkeit der logischen Repräsentationssprache. Der
Einsatz von unentscheidbaren Sprachen und unvollständigen Inferenzverfahren ist
zwar grundsätzlich möglich, birgt jedoch die Gefahr, daß die Unvollständigkeit im
Anwendungskontext nicht besonders beachtet wird. Für viele Deduktionsprobleme
sind dagegen Lösungen auf der Basis eines vollständigen und korrekten (und terminie-
renden) Kalküls erforderlich. Dabei wird die Tatsache, daß sich ein Teilproblem einer
Anwendung bei entscheidbaren Sprachen direkt durch formale Deduktionstechniken
lösen läßt (sofern das Problem nicht in einer zu hohen Komplexitätsklasse liegt) als
besonderer Vorteil angesehen. Eine teure Entwicklung und Verifikation von Spezialal-
gorithmen ist nicht notwendig. Beschreibungslogiken sind ein prominenter Vertreter
der Klasse der entscheidbaren Repräsentationssprachen und stehen im Mittelpunkt
der hier zusammengefaßten Forschungsarbeiten.

Beschreibungslogiken: In Beschreibungslogiken werden sog. Konzeptterme zur
Repräsentation von Klassen von (abstrakten) Objekten verwendet. Für eine spezi-
elle Anwendung werden primitive Basiskonzepte festgelegt und mit Kombinations-
operatoren zu komplexeren Konzepttermen verknüpft. Binäre Beziehungen zwischen
Individuen werden durch sog. Rollenterme beschrieben. Über Rollenterme können
die Eigenschaften von Objekten festgelegt werden.

Konzeptterme beschreiben Modellstrukturen (im logischen Sinne) und drücken Ein-
schränkungen über Modellstrukturen aus. Je nach Ausdrucksmächtigkeit der Spra-
chen werden Termbildungsoperatoren wie Konjunktion, Disjunktion und Negation
zur Konzeptbildung, sowie Existenz- und Allquantoren zur Einschränkung der Struk-
turen von Rollenfüllern zugelassen (siehe z.B. die Referenzsprache ALC [Schmidt-
Schauss & Smolka, 1991]). Ein wichtiges Inferenzproblem ist der Konsistenz- bzw.
Erfüllbarkeitstest für Konzeptterme (siehe unten für weitere Inferenzdienste). Ein
Konzept ist konsistent, wenn es eine Interpretationsfunktion gibt, die das Konzept in
eine nicht-leere Menge abbildet, d.h. es gibt Individuen, die Instanz von dem Konzept
sind.

Eine Menge von terminologischen Axiomen repräsentiert das terminologische Hin-
tergrundwissen einer Anwendung und wird auch als TBox bezeichnet. Dabei wird
zwischen einfachen (definitorischen) Axiomen und generellen Axiomen unterschieden.
Bei einfachen Axiomen besteht deren linke Seite nur aus einem Konzeptnamen. Bei
vielen Beschreibungslogiken wird vorausgesetzt, daß die Menge der terminologischen
Axiome in der TBox zyklenfrei und eindeutig sind (siehe z.B. [Nebel, 1991] für eine
Diskussion zur Semantik von Zyklen). Damit werden entweder Definitionen mit not-
wendigen und hinreichenden Bedingungen oder partielle Definitionen mit ausschließ-
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lich notwendigen Bedingungen eingeführt. Bei generellen Axiomen zur Beschreibung
von Konzeptinklusionen darf auf der linken Seite ein komplexer Konzeptterm stehen.
Damit wird eine Erhöhung der Ausdruckskraft bei der Modellierung erreicht (siehe
auch [Baader, 1990]).

Durch assertorische Axiome können auch Aussagen über einzelne Objekte getätigt
werden, wobei eine Menge von assertorischen Axiomen als ABox bezeichnet wird.
Da nicht nur Grundterme (Namen) in der ABox zugelassen sind, sondern allgemeine
Konzeptterme (z.B. Disjunktionen) zur Beschreibung von Individuen verwendet wer-
den können, läßt sich auch unvollständiges Wissen über Individuen repräsentieren.
In Beschreibungslogiken wird eine Semantik der offenen Welt (open world semantics)
realisiert.

Inferenzdienste: Ein beschreibungslogisches Repräsentationssystem stellt sowohl
für TBoxen als auch für ABoxen eine Menge von Inferenzdiensten zur Verfügung,
die hier ohne technische Details kurz aufgeführt werden. Wie schon erwähnt, ist der
wichtigste Dienst der Erfüllbarkeitstest bzw. Konsistenztest für Konzeptterme. Bei
der Erstellung eines terminologischen Modells einer Anwendung deutet die Inkonsi-
stenz von bestimmten Konzeptnamen auf eventuelle Modellierungsfehler hin.

Ein weiter Dienst dient dazu, die Subsumptionsbeziehung zwischen Konzepttermen
zu ermitteln. Die Subsumption von Konzepttermen ist für den Aufbau einer sog. Ta-
xonomie (sog. Subsumptionshierarchie) bedeutsam. Für jeden Konzeptnamen (sog.
atomares Konzept) werden automatisch die direkten Ober- und Unterkonzeptna-
men bestimmt. Dies erfolgt auf der Basis der in der TBox aufgeführten Axiome
zur Beschreibung des terminologischen Hintergrundwissens. Dieser Dienst wird auch
TBox-Klassifikation genannt und kann in Anwendungen z.B. zur Strukturierung des
Wissens in der Phase der Erstellung eines formalen Modells verwendet werden. Eine
Verallgemeinerung des zuletzt angesprochenen Dienstes besteht darin, für jeden be-
liebigen Konzeptterm die direkten Ober- und Unterkonzeptnamen aus der TBox zu
bestimmen (sog. Konzeptklassifikation). In Anwendungen kann dieser Dienst z.B.
zur Abstraktionsbildung in Bezug auf das Hintergrundwissen eingesetzt werden.

Für viele Anwendungen ist es bedeutsam, Aussagen nicht nur über Konzepte (also
über Mengen von Objekten) zu machen, sondern Aussagen über ganz bestimmte In-
dividuen zu verwalten. Wie oben schon erwähnt, können Aussagen über Individuen
durch assertorische Axiome formal deklariert werden. Der wichtigste Dienst ist die
Überprüfung einer Menge von assertorischen Axiomen (also einer ABox) auf Konsi-
stenz. Auch die Prüfung, ob ein Individuum eine Instanz eines gegebenen Konzeptes
ist, kann für die Formalisierung von Anwendungsproblemen vielfach eingesetzt wer-
den. Weiterhin kann die Menge der speziellsten atomaren Konzepte aus der TBox
berechnet werden, von denen ein Individuum eine Instanz ist (auch Realisierung
der ABox genannt). Dieser Inferenzdienst kann in z.B. in einem Anwendungkontext
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zur bedingungsgesteuerten Auslösung von verschiedenen Aktionen verwendet wer-
den. Grundlage für die Realisierung einer ABox sind die hinreichenden Bedingungen
von Konzepten in der TBox. Sie bilden auch die Basis für den weiteren Dienst des
Findens aller Individuen, die Instanz von einem gegebenen Konzept sind. Letzerer
Dienst kann zur Recherche nach Individuen, die bestimmte Bedingungen erfüllen
sollen, verwendet werden. Aus Sicht eines speziellen Individuums werden die über
eine Rolle (Relation) zu diesem Objekt in Beziehung gesetzten Objekte als Füller
dieser Rolle bezeichnet. Die Rollenfüller können ebenfalls über einen Inferenzdienst
bestimmt werden.

Auf einige weitere Inferenzdienste (sog. Nicht-Standard-Inferenzdienste) soll kurz
hingewiesen werden: Musteranpassung (matching) [Baader & Küsters, 2000], Term-
ersetzung unter Berücksichtigung von Terminologien (rewriting using terminologies)
[Baader et al., 2000] sowie Berechnung des kleinsten gemeinsamen Subsumierers
(least common subsumer, LCS) [Cohen et al., 1992; Baader & Molitor, 2000]. Die
Anwendungsgebiete dieser Inferenzdienste liegen z.B. in der Entdeckung von Red-
undanzen in Wissensbasen und in der Integration von verschiedenen Wissenbasen.
Die LCS-Bestimmung kann beispielsweise zum induktiven Aufbau von Wissensbasen
durch Beispiele verwendet werden. In dieser Arbeit wird die LCS-Bestimmung im
Rahmen einer Anwendung zur beispielbasierten Informationsrecherche diskutiert.

Aus Sicht der Forschung gilt es, Inferenzdienste für möglichst ausdrucksstarke Be-
schreibungskonstrukte zu entwickeln, so daß für die Realisierung von Anwendungen
Ad-hoc-Erweiterungen nicht notwendig sind.

Ausdrucksstarke Beschreibungslogiken: Die Beschreibungslogik ALC ist pro-
positional vollständig, d.h. es wird die volle Negation unterstützt (daher der Na-
me: Attributive Language with Complement). Es ist leicht zu sehen, daß in Spra-
chen, die bezüglich Komplementbildung abgeschlossen sind, die oben eingeführten
Standard-Inferenzdienste auf ABox-Konsistenz zurückgeführt werden können. Das
ABox-Konsistenzproblem fürALC ist (ohne TBoxen) PSPACE-vollständig [Schmidt-
Schauss & Smolka, 1991]. Mit allgemeinen TBoxen liegt das Problem in EXPTIME.

Frühe Arbeiten zu Beschreibungslogiken [Donini et al., 1991b] untersuchten Teilspra-
chen von ALC mit polynomieller Zeitkomplexität für das Konzeptkonsistenzproblem
(ohne allgemeine TBoxen). Teilsprachen von ALC werden auch unter dem Begriff
ausdrucksschwache Beschreibungslogiken zusammengefaßt. Sprachen, die eine höhe-
re Ausdrucksstärke als ALC besitzen, werden i.a. auch als ausdrucksstark bezeichnet.
Die Begriffe dienen allerdings nur zur groben Charakterisierung der Logiken. Für
ausdrucksstarke Beschreibungslogiken sind die Inferenzprobleme (im schlimmsten
Fall) intraktabel.

Weitere, in der Literatur häufig diskutierte Operatoren zur Bildung von Konzept-
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termen schränken die Anzahl von möglichen Rollenfüllern ein (z.B. ALCN [Donini
et al., 1991a] mit einfachen Anzahlrestriktionen oder ALCQ [Hollunder & Baader,
1991] mit sog. qualifizierenden Anzahlrestriktionen). Einen Spezialfall der Anzahl-
restriktion stellen sog. Attribute (features) dar. Attribute sind Rollen, die nur einen
Füller bzgl. eines Individuums haben können. Zur Beschreibung von Rollen (bzw.
Relationen) werden besondere Ausdrucksmittel bereitgestellt, z.B. Rollenhierachien,
inverse Rollen, transitive Rollen. ALC mit transitiven Rollen wurde z.B. in [Satt-
ler, 1996] untersucht. Algorithmen für den Konzeptkonsistenztest bzgl. Sprachen
u.a. mit Attributen, Rollenhierarchien und transitiven Rollen wurden von [Horrocks,
1998] untersucht. Mit dem System FaCT wurde für diese Logik ALCHfR+ eine op-
timierte Implementation entwickelt [Horrocks, 1997]. FaCT unterstützt allerdings
keine ABox-Inferenzdienste.

ABox-Inferenzdienste mit vollständigen und korrekten Algorithmen sind ein zentraler
Bestandteil dieser Habilitationsarbeit. Aufbauend auf dem Kalkül in [Buchheit et al.,
1993b] für die Logik ALCNR wurde ein Kalkül für ABox-Konsistenz in der Logik
ALCNHR+ , also ALC mit Anzahlrestriktionen, Rollenhierarchien und transitiven
Rollen entwickelt [Haarslev & Möller, 1999c]. Dieser Kalkül dient als Basis für das
hochoptimierte ABox-Inferenzsystem RACE. Wir kommen im nächsten Abschnitt
darauf zurück.

Naturgemäß entwickelte sich während der Entwicklung von RACE der Stand der
Kunst weiter. Ein kurzer Abriß soll hier die Darstellung abrunden. Die Interaktion
von inversen Rollen mit qualifizierenden Anzahlrestriktionen und Rollenhierarchien
(Logik ALCQHIR+) bei der Bestimmung der Konzeptkonsistenz wird in [Horrocks
& Sattler, 1999; Horrocks et al., 1999b] analysiert. Eine prototypische Implementie-
rung (ohne ABox) wird in [Horrocks, 1999] aufgezeigt. Inzwischen wurde die Ent-
scheidbarkeit des ABox-Konsistenzproblems sogar für die Logik ALCQHIR+ gezeigt
[Horrocks et al., 2000].1 Eine Implementation liegt derzeit noch nicht vor. Weiterhin
wurden im Kontext von ausdrucksstarken Beschreibungslogiken vollständige und kor-
rekte Algorithmen für das Schließen mit Restriktionen für die Anzahl der Instanzen
von Konzepten (und nicht nur Anzahlrestriktionen für Rollenfüller) sowie für Kon-
zeptterme mit Individuen entwickelt [Tobies, 2000] (vgl. auch vorausgehende Arbei-
ten zu den beiden Themen [Baader et al., 1996] und [Schaerf, 1994]). Eine weitere
Arbeit befaßt sich mit sog. symbolischen Anzahlrestriktionen bzw. arithmetischen
Beziehungen zwischen Anzahlrestriktionen und stellt fest, daß alle Inferenzprobleme
sogar schon unentscheidbar werden, wenn symbolische Anzahlrestriktionen mit aus-
drucksschwachen Basislogiken kombiniert werden [Baader & Sattler, 1999]. Für eine
detailliertere Übersicht über die Forschung im Bereich Beschreibungslogiken sei auf
[Baader, 1999] und [Baader & Sattler, 2000] verwiesen.

1Die Autoren sprechen auch von einer sehr ausdrucksstarken Beschreibungslogik.
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Optimierte Inferenzverfahren: In den vorherigen Abschnitt haben wir gese-
hen, daß viele Arbeiten sich auf die Erforschung von Repräsentationskonstrukten
sowie auf die asymptotische Komplexität (worst case) der entsprechenden Inferenz-
verfahren konzentrieren (z.B. Verfahren für den Konsistenztest von Konzepttermen
oder Verfahren für den Subsumptionstest zwischen Konzepttermen) [Donini et al.,
1991a; Donini et al., 1997a]. Während die Forschungsarbeiten zu Beschreibungs-
logiken zunächst auf das Finden von traktablen (Teil-)sprachen (mit polynomieller
Zeitkomplexität) fokussiert waren [Donini et al., 1991b; Cadoli, 1995], hat sich in
jüngster Zeit eine neue Forschungsdisziplin etabliert, die sich damit beschäftigt, für
im schlechtesten Fall exponentielle Inferenzprobleme geeignete domänenunabhängige
Optimierungsverfahren und Heuristiken zu entwickeln, die es dennoch gestatten, die
in realistischen Anwendungen verwendeten Konzeptterme

”
effizient“ zu verarbeiten

[Baader et al., 1994; Ginsberg & McAllester, 1994; Freeman, 1995; Giunchiglia & Se-
bastiani, 1996; Horrocks, 1998; Horrocks & Patel-Schneider, 1999] (vgl. auch ähnlich
motivierte Arbeiten im Kontext der Aussagenlogik, z.B. [Freeman, 1995; Truemper,
1998]). Der Begriff “effizient” soll nicht auf eine Optimierung auf der Bit-Ebene
hindeuten, sondern bezieht sich auf die adaptive Auswahl von informierten Suchver-
fahren und die problembezogene Verwendung von zulässigen Heuristiken. In diesem
neuen Forschungsgebiet sind in jüngster Zeit sehr motivierende Resultate im Bereich
des Konsistenztests und der Klassifikation von TBoxen erzielt worden.

Aufbauend auf diesen Arbeiten (bzw. frühen Versionen hiervon) wurde für die aus-
drucksstarke Beschreibungslogik ALCNHR+ das Repräsentations- und Inferenzsy-
stem RACE erstellt [Haarslev & Möller, 1999a; Haarslev & Möller, 1999d; Haarslev
et al., 1999c]. RACE stellt zur Zeit eines der leistungsfähigsten implementierten
Beschreibungslogiksysteme dar, das ABox-Schlußfolgerungen mit vollständigen, kor-
rekten sowie terminierenden Algorithmen für eine Logik dieser Ausdruckskraft un-
terstützt [Haarslev & Möller, 2000b]. Auch bei den TBox-Inferenzdiensten gehört
RACE zu den leistungsfähigsten Systemen, ist vielleicht sogar führend, da zur Zeit
kein anderes System existiert, das auch für sehr große Wissensbasen (ca. 160.000
ggf. zyklische Axiome) eingesetzt werden kann und auf vollständigen und korrekten
Algorithmen basiert [Haarslev & Möller, 2000c].

Einschränkungen über kontinuierlichen und diskreten Domänen: Für vie-
le Anwendungen, insbesondere in technischen Bereichen, ist es nicht ausreichend, nur
abstrakte Objekte (Symbole) zu betrachten. Vielmehr müssen beispielsweise auch
reelle Zahlen in die konzeptuelle Modellierung einbezogen werden. Hierfür wurden im
Bereich Beschreibungslogiken geeignete Konzeptbildungsoperatoren untersucht. Sie-
he hierzu insbesondere die Arbeiten zu ALC(D) [Baader & Hanschke, 1991a; Baader
& Hanschke, 1992; Hanschke, 1993; Lutz, 1999b]. In ALC(D) können z.B. Prädikate
über reelle Zahlen in das konzeptuelle Schließen integriert werden (eine Grundmenge
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zusammen mit einer Menge von Prädikaten wird in ALC(D) als
”
konkrete Domäne“

D bezeichnet). In diesem Zusammenhang bedeutet
”
integriert“, daß sowohl beim

Konsistenztest als auch beim Subsumptionstest von Konzepten die durch Prädikate
der konkreten Domäne gegebenen Einschränkungen berücksichtigt werden.

Die Sprache ALC(D) enthält im Vergleich zu ALC zwei neue Elemente. ALC(D)
gestattet die Deklaration von Attributen (s.o.) und erlaubt die Verwendung von
Attributketten in einem neuen konzeptbildenden Operator (prädikatbasierte Exi-
stenzrestriktion). Mit diesem Operator kann die Existenz einer Sequenz von Attri-
butketten gefordert werden, an deren Ende sich jeweils ein sog. konkretes Objekt
befindet. Konkrete Objekte (auch Variablen genannt) stehen, je nach gewählter
Grundmenge der konkreten Domäne, z.B. für eine reelle Zahl. Die Wertebereiche
der Variablen, deren Existenz durch eine prädikatbasierte Existenzrestriktion gefor-
dert werden kann, können durch Prädikate in Existenzrestriktionen eingeschränkt
werden. Mittels einer ABox können Einschränkungssysteme

”
aufgespannt“ werden.

Obwohl mit ALC(D) aus Sicht der Anwendung im Gegensatz zu ALC eine erheb-
lich erhöhte Ausdruckskraft bereitsteht und sich viele weitere praktische Probleme
lösen lassen, sind schon frühzeitig mögliche Erweiterungen untersucht worden. Wie
sich herausstellte [Baader & Hanschke, 1992], führt die Integration von weiteren be-
schreibungslogischen Sprachkonstrukten in ALC(D) ohne Beschränkungen der Kom-
binierbarkeit von Sprachkonstrukten schnell zur Unentscheidbarkeit der Repräsen-
tationssprache (siehe auch [Baader & Sattler, 1998]). Die Erweiterung von ALC(D)
um einen Operator für den transitiven Abschluß von Rollen ist beispielsweise unent-
scheidbar für allgemeine konkrete Domänen. Obwohl für praktische Anwendungen
gegebenenfalls naheliegend, sind also Erweiterungen kritisch in Bezug auf Entscheid-
barkeit.

In dieser Arbeit werden konkrete Domänen für die Sprache ALCNHR+ (s.o.) unter-
sucht. Durch syntaktische Einschränkung der prädikatbildenden Existenzrestriktion
auf die Verwendung von ausschließlich Attributen (im Gegensatz zu Attributket-
ten) wurde eine Sprache definiert (ALCNHR+(D)−), für die durch Vorstellung ei-
nes vollständigen und korrekten (und terminierenden) Kalküls gezeigt werden konn-
te, daß die Standard-Inferenzprobleme entscheidbar sind. Die Anwendungen von
ALCNHR+(D)− sind vielfältig. In dieser Arbeit werden mit ALCNHR+(D)− ins-
besondere Konstruktionsaufgaben gelöst.

Probabilistisches konzeptuelles Schließen

Arbeiten zur Integration von probabilistischen Informationen in beschreibungslogi-
sche Modelle werden in dieser Arbeit im Kontext von Anwendungen zur Informati-
onsrecherche untersucht. Ein Ansatz zur probabilistischen Abstraktion von Konzept-
termen wird in diesem Rahmen zur beispielbasierten Informationssuche vorgestellt
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(siehe auch [Mantay & Möller, 1998; Mantay et al., 1999]).

Die Arbeiten basieren auf einer Erweiterung der Beschreibungslogik ALN zur Re-
präsentation von Vagheiten und Unsicherheiten in Beschreibungslogiken (sog. proba-
bilistische Beschreibungslogiken) [Koller et al., 1997]. Auf andere, in diesem Kontext
relevante und auf der Fuzzy-Set-Theorie basierende Beschreibungslogiken [Straccia,
1998; Tresp & Molitor, 1998] soll hier nicht weiter eingegangen werden. Eine Im-
plementation der in [Koller et al., 1997] vorgestellten probabilistischen Logik wurde
von [Kaplunova, 1999] erstellt und im Projekt

”
BAND“ des Labors für Künstliche

Intelligenz evaluiert [Möller et al., 1998; Mantay & Möller, 1998].

Räumliches konzeptuelles Schließen

Nachdem in den vorangegangenen Abschnitten Beschreibungslogiken und ihre bis-
her erfolgten Erweiterungen dargestellt wurden, wenden wir uns jetzt speziell dem
Forschungsstand auf dem Gebiet des räumliches Schließens zu. In dieser Arbeit wird
aufgezeigt, daß das konzepuelle Schließen mit Beschreibungslogiken eng mit dem
räumlichem Schließen gekoppelt werden kann (und muß). Die Kopplung erfolgt auf
der Basis der Semantik der Repäsentationskonstrukte und stellt also nicht nur eine
rein softwaretechnische Kopplung von Inferenzkomponenten dar.

Obwohl der Bereich des zeitlichen Schließens eine ebenso große Bedeutung hat und
ebenfalls mit dem konzeptuellen Schließen in systematischer Weise verknüpft werden
sollte, wird hier exemplarisch der Bereich des räumlichen Schließens, insbesondere
des qualitativen räumlichen Schließens, vertiefend dargestellt.

Für Geo-Informationssysteme (vgl. [Bartelme, 1995]) wäre es beispielsweise interes-
sant auszusagen, daß sich ein bestimmtes Objekt

”
innerhalb“ eines anderen Objektes

befindet. Durch die qualitative Angabe des Ortes braucht die Position nicht in quan-
titativen Koordinaten angegeben zu werden. Diese sind eventuell nicht bekannt oder
schwer zu beschaffen (siehe auch [Frank, 1997]). Weiterhin kann es bedeutsam sein,
für alle Objekte

”
innerhalb“ eines bestimmten Objektes bestimmte Aussagen zu ma-

chen, ohne die enthaltenen Objekte explizit aufzuzählen. Zum Beispiel können alle

”
Regionen“ in einer

”
Stadt“ als

”
Bezirke“ ausgewiesen werden. Diese Beispiele ver-

deutlichen die Modellierungsmöglichkeiten mit beschreibungslogischen Konstrukten
und lassen erkennen, daß der Kombination von räumlichen und beschreibungslogi-
schen Schlüssen eine wichtige Bedeutung zukommt.

Qualitatives räumliches Schließen: Der Bereich des
”
qualitativen räumlichen

Schließens“ ist ein Teilgebiet des
”
qualitativen Schließens“. Beim qualitativen Schlie-

ßen wird versucht, das (qualitative) Verhalten von Systemen auf durch Verwendung
von Begrifflichkeiten wie z.B.

”
zu hoch“,

”
zu niedrig“ und nicht durch absolute Wer-
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tebereiche zu modellieren. Mit qualitativen Schlußverfahren werden dann aus ge-
gebenen, expliziten Informationen neue, implizite Informationen gewonnen. In den
letzten Jahren hat sich das

”
qualitative räumliche Schließen“ als ein eigenständiges

Teilgebiet etabliert (siehe [Stock, 1997] für eine Übersicht). Da der Raum mehrdi-
mensional und damit nicht adäquat durch einzelne symbolisch repräsentierte Größen
modellierbar ist, können viele Erkenntnisse aus dem Bereich des zeitlichen quali-
tativen Schließens nur bedingt auf räumliche Problemstellungen übertragen werden.
Eine wichtige Herausforderung für das qualitative räumliche Schließen besteht darin,
Kalküle mit guten Repräsentationsmöglichkeiten und Inferenzleistungen für räumli-
che Größen zu ermöglichen (vgl. hierzu auch [Frank, 1997]). Vielfache Verwendung
hat der RCC-8 Kalkül zur Repräsentation von topologischen Beziehungen gefunden
[Randell et al., 1992].

Topologische Beziehungen zwischen räumlichen Entitäten sind für viele Anwendun-
gen bedeutsam. Wir haben schon betont, daß in diesem Zusammenhang eine Inte-
gration des konzeptuellen, begrifflichen Schließens und des Schließens über räumliche
Relationen notwendig ist. Dies sei an einem sehr einfachen Beispiel erläutert. Wir
nehmen an, ein

”
Ferienhaus mit Angelmöglichkeit“ sei definiert als ein Ferienhaus,

an das eine Wasserfläche direkt angrenzt. Weiterhin sei ein Konzept
”
Mückenfrei-

er Wald“ definiert als ein Wald, wobei zusätzlich gilt, daß alle Areale, die nicht
separat zum Wald liegen, keine Wasserflächen sind. Durch Inferenztechniken sollte
es möglich sein, automatisch zu erkennen, daß z.B. ein Wunschferienhaus

”
Ferien-

haus mit Angelmöglichkeit“, das sich in einem
”
Mückenfreien Wald“ befindet, nicht

existieren kann. Ohne ein Schließen über topologische Relationen in Zusammenhang
mit der Formulierung von Konzeptwissen ist dieses nicht möglich.

Die bisher entwickelten Inferenzverfahren für qualitative räumliche Relationennetze
basieren überwiegend auf sog. Kompositionstabellen, die für Paare von Relationen
Ri und Rj, wobei Ri(a, b)∧Rj(b, c) gilt, alle möglichen Beziehungen zwischen a und
c in Form einer Disjunktion angeben. Durch Rückführung des Konsistenzproblems
für bestimmte Formeln einer intuitionistischen Logik auf das Konsistenzproblem für
Relationennetze konnte in [Bennett, 1994] die Entscheidbarkeit des Konsistenzpro-
blems von RCC-8-Netzen gezeigt werden. In [Bennett et al., 1997] wurde untersucht,
wann das Pfadkonsistenzverfahren vollständig für eine gegebene Raumtheorie ist.
Für Netze, an deren Kanten nur Basisrelationen aus RCC-8 stehen, wurde die Trak-
tabilität des Konsistenzproblems bewiesen [Nebel, 1995]. Falls allerdings beliebige
Disjunktionen von Relationen zugelassen werden, ist die Prüfung der Erfüllbarkeit
von RCC-8-Netzen ein Inferenzproblem, daß nicht nicht mehr traktabel ist [Renz
& Nebel, 1997]. Die Ermittlung einer global konsistenten Lösung kann durch An-
wendung eines Backtracking-Verfahrens erfolgen. In [Renz & Nebel, 1997] werden
maximal traktable Teilmengen von RCC-8-Relationen vorgestellt, die zur Optimie-
rung eines vollständigen Konsistenztests ausgenutzt werden können (Partitionierung
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der Relationennetze). Geometrische Realisierungen von Relationennetzen wurden in
[Renz, 1998] untersucht. RCC-8 gehört zu den gut erforschten Gebieten des quali-
tativen räumlichen Schließens. In dieser Habilitationsarbeit wird daher vielfach auf
RCC-8 zurückgegriffen, jedoch wird RCC-8 nur als ein Beispiel für einen Formalis-
mus zum räumlichen Schließen verstanden. Die in dieser Arbeit erzielten Ergebnisse
sind allerdings nicht an qualitative Formalismen gebunden, sondern lassen sich auch
auf quantitative und andere qualitative Repräsentationsstrukturen verallgemeinern.

Mit den Relationennetzen können räumliche Beziehungen zwischen Entitäten gut re-
präsentiert werden. Ein Defizit besteht jedoch darin, daß bei den bisherigen Ansätzen
kein konzeptuelles Wissen über die zueinander in Beziehung gesetzten Objekte in die
Schlüsse einbezogen werden kann.

Beschreibungslogisches und räumliches Schließen: In [Haarslev et al., 1994]
wurde erstmals ein Ansatz zum konzeptuellen Schließen über räumliche Objekte
mithilfe von Beschreibungslogiken vorgestellt. Dieser Ansatz integriert quantitative,
qualitative und konzeptuelle Information über Raumdomänen durch Benutzung

”
ge-

nerativer qualitativer Relationen“, die die Integration spezieller Raumindizierungs-
techniken ermöglichen. Im logischen Sinne sind die räumlichen Relationen allerdings
noch als primitiv anzusehen, denn topologische Schlüsse über räumliche Relationen
werden bei der Terminologiebildung noch nicht adäquat berücksichtigt (vgl. den Ab-
schnitt zu den beschreibungslogischen Inferenzdiensten). Obwohl die Modellierung
mit objektzentrierten logischen Repräsentationsformalismen wie Beschreibungslogi-
ken eine lange Tradition hat, wurde erst in jüngster Zeit die systematische Kombinati-
on von konzeptuellen und räumlichen bzw. raum-zeitlichen Repräsentationsformalis-
men näher untersucht (vgl. z.B. [Haarslev & Möller, 1997a]). Die Arbeiten sind durch
aktuelle Anwendungsgebiete wie z.B. Geo-Informationssysteme motiviert. In diesen
Systemen ist eine systematische Integration der konzeptuellen Wissensrepräsentation
und des räumlichen bzw. raum-zeitlichen Schließens besonders wünschenswert.

In [Haarslev & Möller, 1997a] wird erstmals auf der Basis der Beschreibungslogik
Classic [Brachman et al., 1991] eine Erweiterung zur Integration räumlicher Rela-
tionen unter Berücksichtigung ihrer Semantik diskutiert und ein entsprechend erwei-
terter Konzeptoperator vorgeschlagen. Schlüsse über räumliche Relationen werden
mit dem Ansatz auch für die Klassifikation von TBoxen durchgeführt. Die theoreti-
schen Ergebnisse werden in [Haarslev, 1998] auf allgemeine visuelle Notationen (z.B.
ER-Diagramme, Petrinetze, etc.) angewendet.

Um eine adäquatere Behandlung von Beschreibungsformen für räumliches und raum-
zeitliches Wissen zu ermöglichen, wurde die Theorie zu ALC(D) erweitert [Lutz &
Möller, 1997; Möller et al., 1997; Haarslev et al., 1998; Haarslev et al., 1999b].
Durch Prädikate über konkreten Domänen können räumliche (und auch zeitliche)
Relationen als definierte Rollen eingeführt werden. Durch definierte Rollen wird
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eine erhebliche Erhöhung der Ausdruckskraft gegenüber ALC(D) erreicht. Schluß-
folgerungen über topologische Beziehungen zwischen räumlichen Objekten lassen sich
in das konzeptuelle Schließen integrieren (siehe [Haarslev et al., 1999b]).

Für die Beschreibungslogik ALCRP(D) konnte die Entscheidbarkeit bewiesen wer-
den, sofern syntaktische Einschränkungen in der Konzeptbeschreibungssprache hin-
genommen werden [Lutz et al., 1997; Lutz, 1998; Haarslev et al., 1998]. Ohne
Syntaxeinschränkungen bleibt das Konsistenzprüfungsverfahren vollständig und kor-
rekt, aber seine Terminierung kann nicht mehr garantiert werden [Lutz & Möller,
1997]. Aus Sicht des Stands der Forschung wird deutlich, daß ALCRP(D) – ent-
sprechend instanziiert z.B. mit einer konkreten Domäne mit Prädikaten für RCC-8
– somit eine erste entscheidbare Raumlogik erster Ordnung ist. Das oben skizzier-
te Ferienhausbeispiel läßt sich mit ALCRP(D) auf einfache Weise formalisieren.
Die angesprochene Inkonsistenz des Wunschferienhauses wird durch den Kalkül aus
[Haarslev et al., 1998] entdeckt. Komplexere Anwendungsbeispiele zur Belegung der
Ausdruckskraft von ALCRP(D) finden sich in [Haarslev et al., 1999b].

In dieser Arbeit wird die Anwendung von ALCRP(D) auch zur Modellierung von
zeitlichen und raum-zeitlichen Phänomenen aufgezeigt (siehe auch [Lutz et al., 1997;
Haarslev et al., 1999b]). Auf die Darstellung der umfangreichen Arbeiten zur Mo-
dellierung von zeitlichen Relationen z.B. mit Allens Zeitlogik soll hier allerdings
verzichtet werden (siehe [Stock, 1997] und [Frank, 1998]).

Ermangelungsschließen in Beschreibungslogiken: Es wurden im Kontext von
beschreibungslogischen Modellierungssystemen sowohl theoretische als auch prakti-
sche Arbeiten zur Repräsentation von Regeln für das Ermangelungsschließen (defaults)
durchgeführt, um damit die Repräsentation von unvollständigem Wissen zu un-
terstützen. Da das Gebiet des Ermangelungsschließens selbst sehr groß ist (vgl.
[Antoniou, 1997; Schaub, 1997] für zusammenfassende Arbeiten), wird hier nur
auf Arbeiten eingegangen, die in direktem Zusammenhang mit Beschreibungslogi-
ken stehen. Zu den Erweiterungen von beschreibungslogischen Systemen gehören
Techniken des Ermangelungsschließens unter Verwendung von Ermangelungsregeln
(Regeln mit zusätzlichen Konsistenzbedingungen) zur Repräsentation von Standard-
annahmen [Baader & Hollunder, 1992; Padgham & Zhang, 1993; Padgham & Nebel,
1993], Techniken zur Behandlung von Standardannahmen mit Prioritäten [Baader
& Hollunder, 1993] sowie Techniken zum Schließen unter der Annahme der abge-
schlossenen Welt (closed world assumption) [Weida, 1996]. Relevant sind in diesem
Zusammenhang auch die Arbeiten zur Formalisierung von vorwärtsverkettenden Re-
gelsystemen [Donini et al., 1992; Donini et al., 1994; Donini et al., 1998]. Im Zusam-
menhang mit konkreten Domänen und ALC(D) wurden Regelsysteme in [Hanschke,
1993] untersucht.

Ermangelungsschlüsse in Bezug auf konzeptuelle und räumliche Relationen werden
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für zukünftige Anwendungen beispielsweise im Bereich der Geo-Informationssysteme
als besonders wichtig eingestuft. Wenn z.B. nichts über die Position des Rathauses in
einer Stadt bekannt ist, so sollte als Standardannahme gelten, daß sich das Rathaus
im Zentrum der Stadt befindet, es sei denn, es spricht etwas dagegen. Die Behand-
lung von räumlichen und konzeptuellen Informationen durch Ermangelungsschlüsse
in Beschreibungslogiken wurde zuerst in [Möller & Wessel, 1999; Möller et al., 1999b]
untersucht.

Anwendungen

Anwendungen des räumlich-terminologischen Schließens mit Defaults im Bereich der
Spezifikation von visuellen Notationen und Anfragesprachen sind in [Haarslev et al.,
2000b] beschrieben. Beschreibungslogische Repräsentationssysteme können in der
Praxis vielfältige weitere Anwendungen finden. Um das Potential des entwickel-
ten Systems RACE einerseits sowie auch die umfangreichen Möglichkeiten der vor-
geschlagenen theoretischen Erweiterungen andererseits zu verdeutlichen, werden in
dieser Arbeit Anwendungen aus verschiedenen Kontexten vorgestellt. Wir betrach-
ten insbesondere:

• Überprüfung von Spezifikationen von Telekommunikationsanlagen [Areces et al.,
1999],

• Entwicklung von großen Ontologien in der Medizin- bzw. Bioinformatik [Schulz
& Hahn, 2000],

• Konstruktion von technischen Geräten,

• Wissensbasierte Bildverarbeitung,

• Deduktive Informationssysteme mit Einsatzperspektiven im elektronischen Han-
del.

Die ersten beiden Anwendungen wurden von anderen Forschergruppen untersucht
(op. cit.). Sie dienen zur Evaluierung des DL-Systems RACE. Die weiteren Anwen-
dungen motivieren die Verwendung von formalen Inferenzsystemen im Kontext von
Konstruktionsaufgaben, Interpretationsaufgaben und Rechercheaufgaben in koope-
rierenden Informationssystemen [Papazoglou & Schlageter, 1998].

Beschreibungslogiken haben sich in verschiedenen Arbeiten als ein vielversprechendes
Werkzeug zur Informationsintegration herausgestellt (vgl. [Catarci & Lenzerini, 1993;
Levy et al., 1996; Calvanese et al., 1998; Kashyap & Sheth, 1998; Klusch, 1998]). Die
in dieser Habilitationsschrift zusammengefaßten Forschungsergebnisse zeigen neue

19



Möglichkeiten und Anwendungsgebiete auf. Als Beispiel betrachten wir die deduktive
Zuordnung von Werbungen bei einem Fernsehprogramm-Auskunftssystem in einem
verteilten Szenario [Möller et al., 2001].
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Zusammenfassung

Zur Entwicklung eines formalen Repräsentations- und Inferenzsystems wurde in die-
ser Arbeit ein berechnungsorientierter Ansatz verfolgt. Es wurden Fortschritte so-
wohl im theoretischen als auch im praktischen Bereich erzielt. Die Zusammenfassung
der Arbeit schließt mit einer Einschätzung des Erreichten und zeigt mit einem Aus-
blick einige der möglichen Erweiterungen zu den hier präsentierten Arbeiten auf.

Einschätzung

Mit dem System RACE wurde ein sehr mächtiges Repräsentations- und Inferenz-
system entwickelt. Die Architektur des RACE-Systems ist auf die Lösung von An-
wendungsproblemen mit großen TBox und ABoxen zugeschnitten. RACE stellt
neue Optimierungs- und Inferenztechniken bereit, so daß größere Anwendungspro-
jekte von beschreibungslogischen Schlüssen, die auf vollständigen und korrekten Al-
gorithmen basieren, profitieren können. Aufgrund der engen Beziehungen zwischen
Beschreibungs- und Modallogiken [Schild, 1991a] kann RACE auch als Modallogik-
Theorembeweiser verwendet werden.

Das Ziel der Entwicklung von RACE war es, eine Architektur zu entwickeln, die
gute Performanz im Bereich des modallogischen Schließens und gute Performanz im
Bereich des TBox- und ABox-Schließens zeigt. Wie die empirischen Untersuchun-
gen belegen, müssen in diesem Kontext Kompromisse gemacht werden. Für spezielle
kombinatorische Probleme, die als Konsistenztest für bestimmte Typen von logischen
Formeln kodiert werden (z.B. Formeln der Modallogik Km), sind spezialisierte Bewei-
ser entwickelt worden, die für diese Formelklasse etwa zweimal bis dreimal schneller
sind als RACE. Allerdings können sie nur eingesetzt werden, wenn die Probleme
mit den speziellen Logiken repräsentiert werden können. In vielen Anwendungen
werden jedoch ausdruckstarke Konstrukte wie z.B. Anzahlrestriktionen zur Model-
lierung benötigt. Anzahlrestriktionen bedingen allerdings komplexere Algorithmen
für den Konfliktest in Tableaubeweisern. Daher werden in RACE die Algorithmen
adaptiv zur Eingabe automatisch ausgewählt, so daß für Sprachen ohne Anzahlre-
striktionen keine Performanzeinbußen zu erwarten sind. RACE ist auch heute noch
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eines der schnellsten Inferenzsysteme, die für Beschreibungslogiken verfügbar sind.
Die Entwicklung von RACE ist noch nicht abgeschlossen, d.h. Optimierungtechni-
ken für ausdruckstärke Konstrukte, wie z.B. inverse Rollen befinden sich derzeit in
der Entwicklung und werden in RACE integriert. Man darf allerdings nicht au-
ßer Acht lassen, daß mit der Einführung von Optimierungstechniken die Integration
neuer Sprachkonstrukte erheblich schwieriger wird. Obwohl also eventuell für die

”
neuen“ Sprachkonstrukte schon Entscheidungsverfahren vorliegen, kann eine Im-

plementierung für größere Anwendungen nur sinnvoll vorgenommen werden, wenn
bekannt ist, wie die neuen Konstrukte im Zusammenhang mit Optimierungs- und
Cachingtechniken behandelt werden können.

Ein weiterer Teil dieser Arbeit betrachtete das Zusammenspiel zwischen räumlichem
und konzeptuellem Schließen. Mit der Logik ALCRP(D) bzw. der speziellen In-
stanz ALCRP(RCC) wurde ein Vorschlag zur Integration des konzeptuellen und
räumlichen Schließens am Beispiel von qualitativen topologischen räumlichen Be-
ziehungen gemacht. Inzwischen wurde eine prototypische Implementierung erstellt
[Turhan, 1998]. Es muß allerdings konstatiert werden, daß bislang noch keine opti-
mierte Implementierung von ALCRP(D) (und ALC(D)) existiert, die im Kontext
von ALC-Termen mit der Leistung von RACE vergleichbar wäre. Allerdings bieten
die Resultate der Entwicklung von RACE eine gute Ausgangsbasis für die Entwick-
lung von neuen Optimierungstechniken für ALC(D) und ALCRP(D) (siehe [Turhan,
2000] für erste Ergebnisse).

Es sei allerdings betont, daß die mit ALCRP(D) und der konkreten Domäne RCC-8
möglichen Repräsentationen im Bereich des räumlich-konzeptuellen Schließens nur
als ein erster Schritt aufzufassen sind. Einerseits lassen sich weitere Phänomene des
räumlichen Schließen mit anderen konkreten Domänen modellieren. Andererseits
wäre es auch wünschenswert, die mit ALCRP(D) eingeführten Rollenoperatoren im
Kontext von ALCNHR+(D)− zu untersuchen. ALCRP(D) bietet zwar definierte
Rollen, jedoch werden Anzahlrestriktionen nicht unterstützt und Rollenhierachien
bzw. transitive Rollen können nur über konkrete Domänen eingeführt werden.

Die im Kontext von Informationsrechercheanwendungen untersuchten Beispiele zei-
gen, daß die entwickelten Logiken eine gute theoretische Basis für den Aufbau von In-
formationssytemen mit Inferenzkomponente darstellen (sog. Inferenz-basierte Infor-
mationssysteme oder auch deduktive Informationssysteme). Mit Hilfe von Beschrei-
bungslogik-Formalismen wurden Lösungen zur Realisierung einer Inferenzkomponen-
te in einem verteilten System vorgeschlagen, in dem mehrere unterschiedliche Re-
präsentationssprachen und ihre Schlußkomponenten integriert werden können. Wei-
terhin werden im Kontext von Abstraktionsoperatoren zur Analyse von Anfragen
auch probabilistische Inferenzkomponenten wirkungsvoll eingesetzt (siehe [Kapluno-
va, 1999] für Details der Implementation der Inferenzalgorithmen).

Der in dieser Arbeit verfolgte Ansatz kann als Ergänzung zu anderen Ansätzen ge-
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sehen werden, welche die Beschreibungslogiklandschaft z.B. aus Sicht der Komple-
xitätstheorie betrachten [Donini et al., 1997a]. Eine Übersicht über viele andere
Arbeiten mit wichtigen Resultaten, die auf vielfältige Weise diese Arbeit beeinflußt
haben, bieten auch [Baader, 1999] und [Baader & Sattler, 2000]. Beschreibungs-
logiken bilden die Basis für eine Vielzahl von Projekten in einer sehr lebendigen
Forschungslandschaft.

Ausblick

Es wurde betont, daß qualitative räumliche Relationen auf Basis des RCC-8-Kalküls
nur als ein Beispiel für räumliches Schließen angesehen werden kann. Topologische
Relationen eignen sich nur zur Repräsentation ganz bestimmter Beziehungen zwi-
schen Objekten. Wie Schlußfolgerungen über Form, Position und Orientierung ge-
winnbringend in den Rahmen des konzeptuellen Schließens integriert werden, ist ein
noch offenes Forschungsgebiet. Weiterhin ist die Integration von qualitativem und
quantitativem Schließen in diesem Zusammenhang ein wichtiges Forschungsfeld. Die
Interaktion zwischen qualitativen und metrischen Prädikaten wurde im räumlichen
Bereich bisher kaum untersucht (siehe aber [Kautz & Ladkin, 1991; Meiri, 1996] für
die Interaktion von qualitativen und metrischen Prädikaten über Zeitstrukturen).
Obwohl bewiesen wurde, daß für die konkrete Domäne der reellen Zahlen ein Erfüll-
barkeitsalgorithmus für Ungleichungen über ganzzahlige Polynome existiert [Tarski,
1951], konnte das Ergebnis bisher nicht praktisch umgesetzt werden. Für praktische
Anwendungen ist ein effektives Verfahren notwendig, das bislang noch nicht in einem
Beschreibungslogiksystem realisiert wurde. Erst in jüngster Zeit sind theoretische
Resultate verfügbar geworden, die eine Implementierung eines Entscheidungsalgo-
rithmus ermöglichen (siehe die Theorie der zylindrisch-algebraischen Dekomposition
[Caviness & Johnson, 1998]), so daß räumlich-metrische Einschänkungen auf Erfüll-
barkeit getestet werden können. Die Arbeiten hierzu sind allerdings noch in einen
Beschreibungslogikkontext zu integrieren.

Ein weiteres noch offenes Problem ist die Erweiterung der bestehenden, hochopti-
mierten Inferenzalgorithmen in Bezug auf den Umgang mit konkreten Domänen im
allgemeinen und räumlichen Informationen im speziellen. Relevant sind in diesem
Kontext z.B. Arbeiten zur inkrementellen Erfüllung von Beschränkungen. Ebenfalls
unklar ist bislang die Optimierung von Revisionsstrategien [Nebel, 1990a], insbe-
sondere für räumliches Wissen. Bei inkrementeller Hinzufügung von assertorischen
Axiomen läßt sich beispielsweise die Bestimmung der speziellsten atomaren Kon-
zepte, von denen ein Individuum eine Instanz ist, eventuell mit deutlich weniger
Aufwand inkrementell durchführen.

Eine Verallgemeinerung der Arbeiten zum Defaultschließen wurde durch die Ein-
führung von autoepistemischen Operatoren in Beschreibungslogiken erreicht (siehe
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[Donini et al., 1997b; Rosati, 1997]). Durch autoepistemische Operatoren können
z.B. auch Integritätsbedingungen (Bedingungen an das Datenmodell und nicht an
die repräsentierte Welt) ausgedrückt werden. Eine Untersuchung dieser Operatoren
im Kontext von räumlich-terminologischen Schlüssen ermöglicht die Formalisierung
von nicht-monotonen Schlüssen mit autoepistemischen Operatoren auch in diesem
Bereich.

Mit der Verfügbarkeit von Inferenzsystemen für ausdrucksstarke Beschreibungslogi-
ken wird es z.B. möglich, für wichtige Teile der Sprache UML (Unified Modeling
Language, e.g. [Page-Jones, 2000]) eine formale Semantik zu definieren, so daß UML
nicht nur zur Präsentation und Kommunikation von Objektmodellen innerhalb der
Designphase einer Anwendung verwendet werden kann, sondern auch zur Lösung von
Problemen eingesetzt werden kann, ohne daß Code für Spezialalgorithmen geschrie-
ben werden muß. Arbeiten zur Verifikation von UML-Zustandsraum-Modellen mit
Ansätzen der Modellüberprüfung finden sich etwa in [Lilius & Paltor, 1999c; Lilius
& Paltor, 1999b; Lilius & Paltor, 1999a].

Probabilistische Erweiterungen von Beschreibungslogiken sind bisher noch nicht in
Bezug auf die Modellierung von räumlichem Wissen untersucht worden. Wenn also
im Falle unseres Rathausbeispiels wiederum keine Position bekannt ist, so könnte
mit Techniken zur Behandlung von Unsicherheiten der angenommenen Position des
Rathauses in der Mitte der Stadt eine höhere Wahrscheinlichkeit zugewiesen wer-
den als etwa einer Position am Stadtrand. Einsatz und Weiterentwicklung dieser
Techniken im Kontext der Repräsentation von räumlichem und zeitlichem Wissen in
Beschreibungslogiken wurden bislang noch nicht eingehend untersucht, bieten aber
beispielsweise für GIS-Modellierungen beträchtliches Potential.

Es wird argumentiert, daß der in dieser Arbeit verfolgte logische Ansatz eine Grund-
lage für Informationssysteme mit Inferenzdiensten bildet. ABoxen können im Prin-
zip zur Repräsentation von Informationen über bestimmte Objekte einer Domäne
verwendet werden. Solange allerdings ABoxen im Hauptspeicher verwaltet werden,
ist das Einsatzspektrum dieser Technologie auf bestimmte Anwendungen mit ein-
geschränktem Datenvolumen beschränkt. Es ist daher sehr vielversprechend, für
ABox-Schlüsse Inferenzalgorithmen zu implementieren, die persistente Daten mit
Transaktionen und Rücksetzmechanismen unterstützen (vgl. z.B. [Borgida & Brach-
man, 1993; Borgida, 1995] für erste Ansätze). Es sollte allerdings auch darauf hin-
gewiesen werden, daß die Revision von logischen Assertionen, insbesondere im Kon-
text von räumlich-terminologischem Wissen, für sich genommen noch ein aktives
Forschungsfeld darstellt.
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Résumé

Mit der Arbeit konnten Grundlagen für ein Repräsentationsmedium entwickelt wer-
den, so daß mit automatischen Inferenzdiensten Lösungen für (Teil-)Probleme ei-
ner Anwendung berechnet werden können. Dadurch ist eine kosteneffizientere Ent-
wicklung von robusten und anpaßbaren Anwendungen mit erweiterter Funktionalität
möglich. Die Einsichten, die die Entwicklung von optimierten Algorithmen vermit-
teln, verdeutlichen, daß die Dienste, die durch automatische Inferenzsysteme erbracht
werden, nicht ohne weiteres durch Ad-hoc-Techniken der Softwareentwicklung rea-
lisiert werden können. Wissenschaftliche Arbeit ist notwendig, um Beweistechniken
anzuwenden, so daß Korrektheit, Vollständigkeit und Terminierung auf der Ebene der
Algorithmen gezeigt werden kann. Dedizierte Programmentwicklungs- und Testtech-
niken garantieren, daß die Implementation dieser Algorithmen möglichst fehlerfrei ist.
Einmal entwickelt, können Inferenzsysteme in verschiedenen Anwendungskontexten
wirkungsvoll zum Einsatz kommen.

Formale Inferenzsystemen und speziell auch Beschreibungslogiken können als sich
wandelnde Disziplinen angesehen werden. Vor einigen Jahren noch bestand eine
große Kluft zwischen Theorie und Praxis. Mit der Entwicklung von Optimierungs-
techniken jedoch zeigt sich, daß theoretische Ergebnisse bezüglich Entscheidbarkeit
und Komplexität direkt bedeutsam sind für die Implementierung von praktischen In-
ferenzsystemen. Die Notwendigkeit von Optimierungstechniken in einer praktischen
Implementierung stellt neue Anforderungen an theoretische Arbeiten bzgl. Beweis-
techniken, Analyse von Durchschnittsfällen usw. Neue Optimierungstechniken, die in
RACE implementiert sind und auf der Basis von theoretischen Ergebnisse entwickelt
wurden, ermöglichen die Realisierung von neuartigen Anwendungen.

Nicht zuletzt die aufgezeigten Anwendungsbeispiele belegen die Signifikanz der in
dieser Arbeit erzielten Ergebnisse für die Wissensrepäsentation und auch die Infor-
matik generell. Vieles wurde erreicht, doch vieles mußte offen bleiben. Ich hoffe, daß
durch diese Arbeit neue Forschungsarbeiten mit neuen Resultaten angeregt werden.
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Chapter 1

Introduction

The problems which application developers are facing in projects involving informa-
tion technology tend to become more and more complex. In many applications – in
particular in the web context – models based on large ontologies are more and more
important. Moreover, aspects of distribution as well as safety and verification con-
cerns have to be considered. In order to reduce complexity, topics such as knowledge-
based systems, object-oriented frameworks, unified modeling languages, workflow
models, business (re)organization models etc. dominate the discussion about how to
ensure that computer systems can be constructed which, on the one hand, match the
requirements and, on the other hand, are reliable, robust and adaptable. In order to
fulfill these requirements there is a huge demand for systems that automatically solve
complex (sub)problems of applications based on declarative models of the domain.
In addition, the verification of models used for computational purposes is often re-
quired in some application scenarios. The formalization of subtasks of applications
as well-understood computational inference problems is a prerequisite to support
the development of more powerful systems with better quality but less development
costs. It should be emphasized, however, that a user of an application need not
be aware of internal computational processes being based on formal models. For
instance, users can successfully interact with web-based information retrieval sys-
tems based on database technology without being aware of the underlying relational
calculus.

This Habilitation Thesis describes the results of practical and theoretical investiga-
tions for developing representation systems which support the construction of declar-
ative models, which can be checked for consistency and which can be used as the
basis for problem solving processes in different application contexts. In order to
support automatic processing of models, the modeling language must be based on
a clear semantics such that inference problems can be formally defined, inference
algorithms can be systematically analyzed, and formal inference systems can be suc-
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cessfully developed [Genesereth & Nilsson, 1987; Fitting, 1996; Poole et al., 1998].
Formal inference systems are of particular importance in safety-critical applications
in order to check system specifications before systems are actually deployed in prac-
tice. Based on a formal model of the application domain, inference systems can also
be used to directly implement subtasks of application systems. In so-called infor-
mation systems, the subtasks of applications can be realized by specifying queries
to be answered based on an explicitly given information model. Query answering
is the basic operation found in information systems – be they web-based or not.
Usually, this scenario is the realm of information retrieval and database systems.
In both research areas more and more powerful representation and query languages
are investigated. Rather than being a mere information lookup, answering queries
in information systems for complex domains involves reasoning about implicit infor-
mation, i.e. query answering systems require inference systems as subcomponents.
Thus, a new generation of information systems, especially in a web-based scenario,
can be called deductive information systems.

The focus of classical database systems is still mainly on other important aspects such
as persistency, efficiency (storage requirements and speed of retrieval), transactions
with rollback etc. However, as more powerful representation languages are required
for building applications, inferences play a more and more important role in database
systems as well (cf. [Abiteboul et al., 1995; Zaniold et al., 1997]). Not surprisingly, the
results of research on formal inference systems and knowledge representation become
directly relevant to “conventional computer science” (and vice versa) [Chomicki &
Saake, 1998; Kuper et al., 2000]. An information system whose main services are
based on formal inference processes will be called a deductive information system. A
deductive information systems need not be implemented as a monolithic architecture,
it could be comprised of many cooperating (deductive) subsystems.

The development of formal inference systems has a long tradition. The literature
contains many contributions from different points of view and with different mathe-
matical background. For many problems, it is appropriate that formal modeling and
inference techniques are based on a logical approach, i.e. a logical characterization
of various problem classes has already been developed in terms of deduction, induc-
tion, abduction, synthesis etc. In this work we pursue a computational approach
combining theoretical results about the decidability of different logical representa-
tion languages with practical results concerning “efficient” proof procedures which
are sound and complete (and terminating). Efficient proof techniques, in turn, are
needed for implementing, for instance, query answering and specification checking
systems based on expressive languages. The development of efficient algorithms that
do not run into combinatorial explosion in the average case is a very active and
exciting research field not only from a practical but also from a theoretical point of
view.
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In the context of deductive information system scenarios, formal representation sys-
tems applied in practice must support adequate representational expressivity to
model different kinds of phenomena. For instance, in many geographic information
systems (GIS), spatial knowledge about artifacts and natural objects should provide
the basis for problem solving processes. If application problems are to be automat-
ically solved from problem specifications, a sound semantics for the representation
formalism is mandatory. In order to be able to give an abstract characterization
about what is to be computed as a problem solution, it is very important to in-
tegrate conceptual and spatial (as well as temporal) representation structures on a
semantical basis. There is no question that even in information retrieval contexts
preferably representation languages for which sound and complete inference proce-
dures exist should be considered. Therefore, logic programming approaches with
Horn clauses are only briefly discussed (see also the analysis in [Baader, 1999]).

Information systems are not the only area where formal inference systems can be suc-
cessfully applied. The ever-growing interest in electronic commerce in the context of
distributed systems raises the problem of verifying that possibly interacting services
can actually be provided in all circumstances. Furthermore, telecommunication sys-
tems also tend to supply a vast amount of different features that cannot necessarily
be combined without any trouble. Thus, based on models of these systems and a
set of constraints (or invariants), formal verification is a prevalent demand to ensure
secure operation of these systems. In this context, model checking techniques (see
e.g. [Clarke & Kurshan, 1996] for an overview) are successfully used to check whether
a property stated for a system (based on a finite state model) is valid. A problem
with model checking techniques is that (i) only finite state spaces can be handled
and (ii) only control-oriented aspects of application can be verified. Therefore, model
checking can be successfully complemented with theorem proving techniques which
can handle infinite models and can also be used to verify data models [Katoen, 1999].

A family of logic-based representation languages that is well-suited for many of the
above-mentioned tasks is known as description logics (DLs) [Baader et al., 2001]. The
main representational means are concepts (unary predicates) and roles (binary pred-
icates).1 Description logics, which have a strong correspondence to modal logics, are
interesting from a theoretical as well as from a computational point of view. With
these modeling languages, application problems (or subproblems) can be reduced
to formally well-defined inference services. Experiences with applications indicate
that expressive description logics are required to solve practical modeling problems
without resorting to ad hoc extensions. For expressive description logics the devel-
opment of inference systems based on sound and complete calculi is a relatively new
research area. The focus of the work presented in this Habilitation Thesis is on the
development of decidable description logics with enough expressive power for solving

1In some approaches even n-ary roles have been investigated [Calvanese et al., 1998].
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application problems. The work extensively investigates language features that can
be used in practical applications. Thus, if a language feature – at the current state of
the art – leads to combinatorial explosion even for toy problems, it is not considered
for implementation. The significance of the new results presented in this work is
shown by discussing problems that could not be solved before.

The formalization of application problems as deduction tasks and the employment
of theoretically well-investigated proof systems as problem solvers results in a faster
development of more robust applications with increased functionality. As many
experiments indicate, in the average case solutions for many problems can indeed
be computed in a reasonable amount of time on todays computers even though the
worst-case complexity class of the problems might be exponential.

1.1 Applications, Research Problems and Research Method-
ology

The use of formal representation and inference systems is motivated with different
kinds of applications:

• Checking of specifications for telecommunication systems [Areces et al., 1999].

• Development of large ontologies in bio-informatics [Schulz & Hahn, 2000].

• Construction of technical devices.

• Knowledge-based image interpretation.

• Deductive information systems with application perspective in ecommerce.

The first two application scenarios have been investigated by other groups (op. cit.).
They serve as interesting testbeds for the practical evaluation of description logic
inference algorithms. Besides configuration and image interpretation tasks, another
application area considered in this work are deductive and cooperative information
systems [Papazoglou & Schlageter, 1998]. In particular, we motivate the use of de-
scription logics in the context of spatial (geographical) as well as agent-based infor-
mation systems. Description logics have been proven to be an important technology
for information integration [Catarci & Lenzerini, 1993; Levy et al., 1996; Calvanese
et al., 1998; Kashyap & Sheth, 1998; Klusch, 1998]).

The research problems being tackled in this Habilitation Thesis can be characterized
as follows. The prevalent goal is to provide a language with adequate means for
representation and inference. Although some aspects of nonmonotonic reasoning
(default reasoning) are also investigated in this context, the focus of this work is on
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conceptual representation languages for representing terminological and assertional
knowledge with description logics.

First, sound and complete algorithms for expressive description logics are developed.
Based on decidability proofs, sound and complete algorithms that allow for an opti-
mized implementation are developed and evaluated using a practical implementation.
Different subproblems have to be solved on the way to a practical inference system:

1. Development of an inference system based on a formal calculus for decidability
proofs. The problem is to integrate and extend (i) techniques for informed
search and (ii) techniques for caching intermediate results.

2. Application of benchmark generators to approach the point where combinator-
ial explosions occurs (transition phase) in order to identify combinatorial prob-
lems. Testing and verifying the implementation with benchmarks for which the
results are known. Automatic testing with different optimization techniques
dis/enabled.

3. Testing of application problems encoded as logical inference problems and test-
ing of application knowledge bases (either manually composed or automatically
generated) such that empirical experiments with “mass data” are possible.

Second, reasoning about predicates over discrete and continuous domains (e.g. about
real numbers) is integrated with expressive conceptual reasoning using description
logics. In the context of configuration problems a new DL representation language is
used for describing the space of possible configurations. An inference algorithm for
the representation language is given and its soundness, completeness (and termina-
tion) is shown.

Third, known theories for dealing with aspects of spatial reasoning are integrated
into the framework for conceptual reasoning with description logics. The integrated
treatment of conceptual and spatial reasoning on a semantical basis with a decidable
description logic is a hard problem that, due to the best of our knowledge, is first
considered in the work reported on in this thesis. For application problems, not only
the standard inference services are important. Default reasoning about conceptual
and spatial information is another problem for which solutions are provided.

As mentioned above, in order to solve an application problem with a logical ap-
proach, it is necessary to analyze how an application problem can be formalized and
what kind of logic is required. However, not all application problems can be solved
by resorting to one specific inference service offered by a logical inference system.
Different representation problems might require different formalisms. For instance,
as will be argued in this thesis, this is the case in an application scenario for building
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a deductive information system in a distributed context. If query results obtained
from inference systems for different formalisms are to be combined, for instance in
an information system, a difficult problem is the translation of data and queries (i.e.
abstraction and specialization) and the combination of the results. Thus, a compu-
tational architecture is developed in which certain subproblems can be solved with
formal reasoning techniques.

Dealing with technical aspects of network protocols and “lower-level” communication
techniques is an important problem. However, since much progress has been made
in this area, the research methodology we pursue in this thesis is to focus on logical
representations in order to define what is to be computed in order to organize a
multi-agent inference scenario.

With this Habilitation Thesis it is shown that expressive description logics can be
used in various ways for modeling and problem solving in application systems. Ex-
pressive description logics can complement other logic-based formalisms that might
be used for subproblems as well (e.g. Datalog in deductive databases). However, as
we will see, the broad spectrum of possible applications it the main motivation for
the practical and theoretical investigations of description logics in this Habiliation
Thesis.

1.2 Overview

Focusing on the description logic ALCNHR+ , Chapter 2 gives an introduction to
description logics with a definition of the syntax and semantics of concept and role
constructors.2 Terminological and assertional axioms are introduced. Furthermore,
inference problems are defined. For the description logic ALCNHR+ the first sound
and complete ABox calculus has been published in [Haarslev & Möller, 2000b].
ALCNHR+ extends the basic logic ALC [Schmidt-Schauss & Smolka, 1991] with
number restrictions, role hierarchies and transitive roles. In Chapter 2, additional
concept and role constructors are introduced that are used in subsequent chapters.
Thus, Chapter 2 provides the foundation for the other parts of this Habilitation
Thesis.

In order to perform empirical tests of practical inference algorithms, the TBox and
ABox description logic inference system RACE (Reasoner for ABoxes and Concept
Expressions) for the DL ALCNHR+ has been implemented. Chapter 3 gives an
introduction to the design philosophy of description logic systems (see also [Möller
& Haarslev, 2001]). With this chapter the motivation behind the design of DL
representation and reasoning systems is given.

The DL system RACE is described in Chapter 4. RACE is the first implemented

2A convenient pronunciation of ALCNHR+ is ALC-nature.
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DL system for ABox reasoning in the DL ALCNHR+ which is based on sound and
complete algorithms (see also [Haarslev et al., 1999c]). For the implementation of
RACE, practical inference procedures known in the literature (see below for a dis-
cussion) have been adapted and extended. New algorithms and data structures
have been developed and evaluated. Although, meanwhile, for some very expressive
description logic constructs and their combination, sound and complete (and termi-
nating) tableaux calculi have been presented in the theory literature, in many cases
it is currently unknown how to optimize the average case. Rather than implementing
an ad hoc version which is sound and complete but cannot compute solutions for
even simple inference problems, the methodology of the RACE system is to support
only those constructors for which it can be shown that larger problems can be solved.
The algorithms and data structures used in the implementation of RACE are given
in Chapter 4. Empirical evaluations of different algorithms are presented as well.
The results have been published in [Haarslev & Möller, 1999a; Haarslev & Möller,
1999b; Haarslev & Möller, 2000a; Haarslev & Möller, 2000c; Haarslev & Möller,
2000d]. Furthermore, empirical investigations about the performance of RACE on
the encoding of algorithmic problems in modal logics (e.g. for searching a maze)
are described in [Haarslev & Möller, 2000a]. Although the focus of this work is on
description logics, considering the direct correspondence between description logics
and modal logics [Schild, 1991a] reveals that the results are of particular relevance
to many other parts of computer science. Some of the results presented in Chapter 4
are published in this Habilitation Thesis for the first time.

Chapter 5 introduces the results about the combination of the DL ALCNHR+ with
constraint reasoning (involving so-called concrete domains). The decidability of the
resulting language ALCNHR+(D)− is shown (see also [Haarslev et al., 2000a]. Based
on the language ALCNHR+(D)− logical representations for application problems
which can be represented as synthesis tasks (e.g. configuration problems) are devel-
oped.

In the sixth chapter, research results on the combination of terminological and spatial
reasoning are discussed. A promising combination of spatial, temporal and concep-
tual reasoning on a semantical basis without resorting to ad hoc techniques has been
presented with the DL ALCRP(D) [Haarslev et al., 1998; Haarslev et al., 1999b].
Today, these theoretical results are particularly important for knowledge representa-
tion but, since formal modeling is now more and more important also in the field of
object-oriented modeling and database theory, the combination of conceptual and,
for instance, spatial reasoning will possibly influence other areas of computer science
in the near future. The work presented in Chapter 6 is originally based on ear-
lier approaches concerning a less expressive variant presented in [Haarslev & Möller,
1997a]. Examples are based on work presented in [Haarslev & Möller, 1997b]. Initial
results on the language ALCRP(D) and its calculus have been published in [Lutz,
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1998] (see also [Lutz & Möller, 1997]). The reader who is mainly interested in spatial
reasoning in combination with terminological reasoning can skip the chapters 3 and 4
and, after reading Chapter 5, may continue with Chapter 6. Chapter 6 also considers
spatioterminological default reasoning [Möller & Wessel, 1999] with applications to
image understanding [Möller et al., 1999a] and applications in visual query languages
[Haarslev et al., 2000b].

Chapter 7 presents an extended example. For different application problems different
representation languages are discussed. In order to combine specific representation
formalisms for solving compound problems, an agent-based scenario is investigated.
A broker agent is used to transform queries in such a way that specialist agents can
be used to answer queries. For the languages used in this scenario, implementations
are available that can be used in practical applications. Pointers to ongoing work and
new results are provided where appropriate. The chapter is based on work published
in [Möller et al., 1998; Möller et al., 2001]. Abstraction operators developed in the
field of machine learning (least-common subsumer operation) are used to support
example-based query answering. Parts of chapter 7 refer to notions defined in Chap-
ter 5 (concrete domains) and Chapter 6 (complex roles). At the end of chapter 7,
a combination of description logics and Bayesian networks is used in an information
system. New results for defining abstraction operators are presented in this frame-
work (see also [Mantay et al., 1999]). The development of abstraction operations
in the context of conceptual and probabilistic inference systems demonstrates that
both formalisms can be fruitfully combined.
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Chapter 2

The Description Logic ALCNHR+

In the field of formal inference systems, description logics have been proven to be a
sound basis for solving application problems. Detailed introductions to description
logics can be found in [Woods & Schmolze, 1992; Donini et al., 1996; Baader &
Sattler, 2000]. The relation of description logics to logic programming techniques is
described in [Baader, 1999].

In description logics, the main notions for domain modeling are concepts (unary
predicates) and roles. In most DLs roles are binary predicates (but see [Calvanese
et al., 1998] for a DL with n-ary roles). A set of axioms (TBox) is used for modeling
the terminology of an application. Knowledge about specific individuals and their
interrelationships is modeled with a set of additional axioms (so-called ABox).

The description logic ALC [Schmidt-Schauss & Smolka, 1991] is a propositionally
complete representation language providing conjunction, universal quantification and
full negation. As an introductory example, let us consider family relationships. For
instance, a woman is a human whose gender is restricted to be female whereas a man
is a human whose gender is restricted to be male. The concepts male and female
are disjoint. A parent is a human which has at least one child which must be a
human. Furthermore, a mother is a woman and a parent. This kind of termino-
logical knowledge can easily be modeled with concepts and roles in the language
ALC.

woman
.
= human 
 ∀ has gender . female

man
.
= human 
 ∀ has gender . male

parent
.
= human 
 ∃ has child . human

mother
.
= woman 
 parent

male � ¬female
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The first four declarations declare necessary and sufficient conditions for the concepts
on the left-hand side. In the last declaration only necessary conditions are provided
for male which is declared to be disjoint to female. From this it follows that the
concepts man and woman are disjoint as well.

The description logic ALCNHR+ extends ALC with number restrictions, role hier-
archies, and transitively closed roles. For instance, in the family example, we assume
a role has descendant which is declared to be transitive. A direct descendant can be
distinguished using role hierarchies, i.e. a non-transitive role has child is declared with
has descendant as a “superrole”.

has child � has descendant

Concept terms can be composed to describe complex conceptual notions. A “queen
with a small family” can be defined as a mother who has at most two children and
whose descendants are either princes or princesses. This type of queen can be de-
scribed with the following axioms:

queen with small family �
mother 

∃≤2 has child 

∀ has descendant . (prince � princess)

prince � man

princess � woman

In this case only necessary conditions for the concepts queen with small family, prince
and princess are provided.

Now, let us turn to reasoning about individuals. If there exists an individual i1
which has a child i2 which, in turn has a child i3, then, due to has descendent being
transitive and a “superrole” of has child, i3 is implicitly declared a descendant of
i1.

(i1, i2) : has child

(i2, i3) : has child

i1 : queen with small family

i1 : ∀ has descendant .∀ has gender . female

Moreover, since the individual i1 is known to be an instance of the above-mentioned
concept queen with small family, the individual i3 can be inferred to be an instance of
(prince � princess). With the assertional axiom i1 :∀ has descendant .∀ has gender . female
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it can be proven that i3 is an instance of princess because due to the disjointness of
male and female the alternative prince of the disjunction prince � princess is ruled out.

In the following sections the representation language ALCNHR+ as well as basic
inference problems are formally defined.

2.1 The Concept Language of ALCNHR+

For presenting the syntax and semantics of the languageALCNHR+ a few definitions
are required.

Definition 1 (Roles, Role Axioms, Role Hierarchy) Let R be a set of role names .
A role name is also called an atomic role or role for brevity. Furthermore, let S ⊆ R
be the set of simple roles . If R and S are role names, then R � S is a role inclusion
axiom. If R is a role name, then transitive(R) is called a role transitivity axiom. Both
kinds of axioms are called role axioms . A set of role inclusion axioms is also called
a role hierarchy .

Additionally, we define the set of ancestors and descendants of a role as well as the
set of transitive roles w.r.t. a set of role axioms.

Definition 2 (Role Descendants/Ancestors) Let R be a set of role axioms and
�R be defined as {(R, S) |R � S ∈ R} and let �∗

R be the reflexive transitive closure
of �R over R. Given a set of role axioms R the set R↑

R := {S ∈ R | (R, S) ∈ �∗
R}

defines the ancestors and R↓
R := {S ∈ R | (S, R) ∈ �∗

R} the descendants of a role R
w.r.t. a set of role axioms R. The set of transitive roles TR of a set of role axioms R
is defined as {R | transitive(R) ∈ R}.

Definition 3 (Role Box) A finite set of role axioms is called a role box R if
∀R ∈ S : R↓

R ∩ TR = ∅. A role box is also called RBox for brevity.

In the following, the index R is omitted if the role box R is clear from the context.

Using the definitions from above, the syntax of concept terms in ALCNHR+ is
defined as follows.

Definition 4 (Concept Terms) Let C be a set of concept names which is disjoint
from R. Any element of C is a concept term. If C and D are concept terms, R ∈ R
is an arbitrary role, S ∈ S is a simple role, n, m ∈ N, n > 1, and m > 0, then the
following expressions are also concept terms:

• C 
 D (conjunction)
• C � D (disjunction)
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• ¬C (negation)
• ∀R . C (value restriction)
• ∃R . C (exists restriction)
• ∃≤m S (at most number restriction)
• ∃≥n S (at least number restriction).

A concept term may be put in parentheses. Concept names are also called atomic
concepts. For brevity, concept terms are also called concepts. � (⊥) is considered
as an abbreviation for C � ¬C (C 
 ¬C) for some C ∈ C . For an arbitrary role R, the
term ∃≥1 R can be rewritten as ∃R .�, ∃≥0 R as �, and ∃≤0 R as ∀R .⊥. Thus, we
do not consider these terms as number restrictions in our language.

Definition 5 (Terminological Axiom, TBox) If C and D are concept terms, then
C � D is a terminological axiom. A terminological axiom is also called generalized
concept inclusion or GCI . A finite set of terminological axioms T is called a ter-
minology or TBox . For a pair of axioms C � D, D � C the abbreviation C

.
= D is

used.

The next definition gives a model-theoretic semantics to the language introduced
above.

Definition 6 (Semantics) An interpretation I = (∆I , ·I) consists of a set ∆I (the
abstract domain) and an interpretation function ·I . The interpretation function
·Imaps each concept name C to a subset CI of ∆I , each role name R from R to a
subset RI of ∆I ×∆I . Let the symbols C, D be concept expressions and let R, S be
role names. Then, the interpretation function is extended to arbitrary concept and
role terms as follows (‖ · ‖ denotes the cardinality of a set):

(C 
 D)I := CI ∩ DI

(C � D)I := CI ∪ DI

(¬C)I := ∆I \ CI

(∃R . C)I := {a ∈ ∆I | ∃ b : (a, b) ∈ RI , b ∈ CI}
(∀R . C)I := {a ∈ ∆I | ∀ b : (a, b) ∈ RI ⇒ b ∈ CI}
(∃≥n R)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI}‖ ≥ n}
(∃≤m R)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI}‖ ≤ m}

An interpretation I is a model of a concept C iff CI %= ∅. An interpretation I satisfies
a terminological axiom C � D iff CI ⊆ DI . I is a model of a TBox T iff it satisfies
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all terminological axioms C � D in T . An interpretation I is a model of an RBox R
iff RI ⊆ SI for all role inclusions R � S in R and, in addition, ∀ transitive(R) ∈ R :
RI = (RI)

+
.

2.2 The Assertional Language of ALCNHR+

In the following, the language for representing knowledge about specific individuals
is introduced.

Definition 7 (Assertional Axioms, ABox) Let O = OO ∪ON be a set of indi-
vidual names (or individuals), where the set OO of “old” individuals is disjoint with
the set ON of “new” individuals. Old individuals are those names that explicitly
appear in an ABox given as input to an algorithm for solving an inference problem
(see below), i.e. the initially mentioned individuals must not be in ON . Elements
of ON will be generated internally. If C is a concept term, R ∈ R a role name and
a, b ∈ OO are individual names, then the following expressions are assertional axioms
or ABox assertions :

• a :C (concept assertion),
• (a, b) :R (role assertion),

An ABox A is a finite set of assertional axioms.

We need a few additional terms: An individual b is called a direct successor of
an individual a in an ABox A iff A contains the assertional axiom (a, b) :R. An
individual b is called a successor of a if it is either a direct successor of a or there
exists in A a chain of assertions (a, b1) :R1, (b1, b2) :R2, . . . , (bn, b) :Rn+1. In case that
Ri = Rj or Ri ∈ R↓ for all i, j ∈ 1..n + 1 we call b the (direct) R-successor of a. A
(direct) predecessor is defined analogously.

The interpretation function ·I of the interpretation I can be extended to the as-
sertional language. Every individual name from O is mapped to a single element
∆I in such a way that for a, b ∈ OO , aI %= bI if a %= b (unique name assumption).
This ensures that different individuals in OO are interpreted as different objects.
The unique name assumption does not hold for elements of ON , i.e. for a, b ∈ ON ,
aI = bI may hold even if a %= b.

An interpretation satisfies an assertional axiom a :C iff aI ∈ CI and (a, b) :R iff
(aI , bI) ∈ RI . An interpretation I is a model of an ABox A iff it satisfies all as-
sertional axioms in A.

If an interpretation I is a model of a TBox T , an RBox R or an ABox A, then I is
also said to satisfy T , R or A, respectively.
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Definition 8 (Knowledge Base) A knowledge base is a triple (T ,R,A) where T
is a TBox, R is an RBox and A is an ABox. An interpretation I is a model of a
knowledge base (T ,R,A) iff I is a model of T , R and A.

2.3 Inference Problems

In the following we define several inference problems. The inference problems are not
only relevant for ALCNHR+ but also for other description logics discussed below.

Definition 9 (Consistency Problem) A concept is called consistent (w.r.t. a TBox
T and an RBox R) iff there exists a model of C (that is also a model of T and R).
An ABox A is consistent (w.r.t. a TBox T and an RBox R) iff A has model I
(which is also a model of T and R). A knowledge base is called consistent iff there
exists a model. A concept, ABox or knowledge base which is not consistent is called
inconsistent.

Definition 10 (Subsumption Problem) A concept term D subsumes a concept
term C (w.r.t. a TBox T and an RBox R) iff CI ⊆ DI for all interpretations I (that
are models of T and R). If D subsumes C, then C is said to be subsumed by D.

Besides these basic problems, some additional inference services are provided by
description logic systems. A basic reasoning service is to compute the subsumption
relationship between atomic concepts (i.e. elements from C ). This inference is needed
to build a hierarchy of concept names w.r.t. specificity. The problem of computing
the most-specific atomic concepts mentioned in T which subsume a certain concept
is known as computing the parents of a concept. The children are the most-general
atomic concepts mentioned in T which are subsumed by a certain concept. We use
the name concept ancestors (concept descendants) for the transitive closure of the
parents (children) relation. The computation of the parents and children of every
concept name is also called classification of the TBox. Another important inference
service for practical knowledge representation is to check whether a certain atomic
concept is inconsistent. Usually, incoherent atomic concept are the consequence of
modeling errors. Checking the consistency of all atomic concepts mentioned in a
TBox without computing the parents and children is called a TBox coherence check .

If the description logic supports full negation, consistency and subsumption can be
mutually reduced to each other since D subsumes C (w.r.t. a TBox T and an RBox
R) iff C 
 ¬D is inconsistent (w.r.t. T and R) and C is inconsistent (w.r.t. T and
R) iff C is subsumed by ⊥ (w.r.t. T and R). Consistency of concept terms can be
reduced to ABox consistency as follows: A concept term C is consistent (w.r.t. a
TBox T and an RBox R) iff the ABox {a :C} is consistent (w.r.t. T and R).
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Definition 11 (Instance Problem) An individual i is an instance of a concept C
(w.r.t. a TBox T and RBox R and an ABox A) iff iI ∈ CI for all models I (of T ,
R and A).

Again, for description logics which support full negation for concept terms, the in-
stance problem can be reduced to the problem of deciding if the ABox A ∪ {a :¬C}
is inconsistent (w.r.t. T and R). The test is also called instance checking .

Definition 12 (Direct Types) The most-specific atomic concepts mentioned in
a TBox T of which an individual is an instance are called the direct types of the
individual w.r.t. a knowledge base (T ,R,A).

The direct types inference problems can be reduced to subsequent instance problems
(see [Nebel, 1990a] for details).

Definition 13 (Instance Retrieval) The retrieval inference problem is to find all
individuals mentioned in an ABox that are an instance of a certain concept term C.

The retrieval inference problem can also be reduced to subsequent instance problems.

Definition 14 (Filler Retrieval) The set of fillers of a role R w.r.t. an individ-
ual i in a knowledge base (T ,R,A) is defined as {x | (T ,R,A) |= (i, x) :R} where
(T ,R,A) |= ax means that all models of T and A w.r.t. R are also models of ax.

Given the ABox consistency problem is decidable, the filler retrieval inference prob-
lem can be implemented as follows. Let Test be an atomic concept not mentioned in
A and the TBox T . It is easy to verify that determining the filler of a role w.r.t. an
individual can be reduced to checking for all individuals x mentioned in an ABox A
whether the ABox AT ∪ {i :∀R . Test, x :¬Test} is inconsistent w.r.t. T and R.

Recently, additional inference problems (so-called non-standard inference problems)
have been discussed in the literature. For the sake of completeness we just mention
some of them: matching [Baader & Küsters, 2000], rewriting concept terms using ter-
minologies [Baader et al., 2000], least common subsumer (LCS) [Cohen et al., 1992;
Baader & Molitor, 2000], computation of maximal consistent (minimal inconsistent)
ABox subsets [Baader & Hollunder, 1995a]. For a detailed discussion of applications
for these inference problems see the cited literature.

In [Haarslev & Möller, 2000b] it is shown that the ABox consistency problem for
the language ALCNHR+ is decidable. Decidability is shown by giving a tableaux
calculus that is sound and complete and terminates (for the proofs see [Haarslev &
Möller, 2000b]).
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In Chapter 4 the description logic inference system RACE is described. RACE is
based on the results of [Haarslev & Möller, 2000b] and implements a DL reasoner
offering inference services for all standard inference problems described above.

2.4 Using DLs in Applications: An Example

The inference services offered by a DL representation and inference system can be
used to build application domain models and to also implement specific (sub)problems
of applications. Examples are given in this section. Note that, for conciseness, the
examples are somewhat small-grained, but they should convey the main ideas. We
begin by specifying some terminological axioms for modeling concepts in a merchant
navy domain.

captain � person

ship � ∀ has home port . port 
 ∀ has captain . captain

cargo ship
.
=

ship 
 ∃≥1 has captain 
 ∃≤1 has captain 
 ∃≥1 has cargo storage

shipyard � ∀ has ship in repair dock . ship in shipyard

The first terminological axiom declares a subsumption relationship between atomic
concepts. All captains are persons. The axiom for ship specifies that each filler of the
attribute has home port must be a port, i.e. in DL terminology, each filler must be
an instance of the concept port. Furthermore, each filler of the attribute has captain
must be a captain.

Note that it is not always necessary to introduce a name for concepts used in a ap-
plication. For instance, it might be useful to retrieve all ship individuals which have
at least one captain as a role filler for the role has captain. This can be implemented
by invoking the retrieval inference service on the concept ship 
 ∃≥1 has captain. For
instance, in a deductive information system, a certain concept term might be auto-
matically computed, for instance, during web crawling activities etc.

For real-world problems, large TBoxes are usually required. If in the ontology
engineering phase of a large project a new concept name is introduced, it might
not be obvious to which concept names already in the terminology it is actually
related. Let us add an an example axiom for ship with captain to our example
TBox.

ship with captain
.
= ship 
 ∃≥1 has captain 
 ∃≤1 has captain

Though not explicitly stated it is evident that, due to the semantics given above,
ship with captain subsumes cargo ship. That is to say, cargo ship is a subconcept
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of ship with captain. Invoking the inference service for computing the parents and
children of the “new” concept name ship with captain w.r.t. the example TBox will
lead to the answer {ship} for the parents and {cargo ship} for the children. A DL
reasoning and inference system automatically issues a warning if, probably by a
modeling mistake, a concept name is inconsistent. Furthermore, if concept names
are found to subsume each other (i.e. they are equivalent) a warning is generated as
well.

Not all subsumption relationships are as obvious as the subsumption between the
concepts ship with captain and cargo ship, as the following example axioms indicate.
First, a few role axioms are defined.

has container storage � has cargo storage

has cooling storage � has container storage

has gas storage � has container storage

The role has container storage is a subrole of has cargo storage. Afterwards, two sub-
roles for has container storage are defined: has cooling storage and has gas storage.
Then, the following concept axioms are added to the TBox.

container ship � cargo ship

∃ has container storage .� � container ship

� � ∀ has container storage . container

� � ∀ has cooling storage . cooled container

� � ∀ has gas storage . gas container

type 1 ship �
∃≤1000 has container storage 

∃≥600 has cooling storage 

∃≥600 has gas storage


A container ship is a ship. Moreover, a so-called domain restriction for the role
has container storage is declared with the second axiom. If there are any individ-
uals set into relation to an individual i via the role has container storage (i.e. i
is on the left-hand side), then the individual i must be a container ship. After-
wards, three range restrictions are defined. For any individual it holds that the
fillers of the role has container storage must be instances of container, the fillers of
has cooling storage must be instances of the concept cooled container, and the fillers
of has gas storage must be instances of gas container. The last axiom specifies a
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type 1 ship as an object with up to 1000 fillers for has container storage, at least 600
fillers for has cooling storage and at least 600 fillers for has gas storage.

Now let us assume that due to safety problems, container ships with storage capac-
ity for containers which can be cooled and which may contain gas are classified
as a dangerous ships. For instance, the following axiom is added to the TBox
in order to define a concept dangerous ship with necessary and sufficient condi-
tions.

dangerous ship
.
=

(∃ has container storage . (cooled container 
 gas container)) �
(∃ has cargo storage . toxic waste)

After TBox classification, non-obvious subsumption relationships become apparent.
Due to the domain restriction for has container storage, the concept dangerous ship
is inferred to be an instance of container ship. Furthermore, and more interesting, it
can be deduced that the concept type 1 ship is subsumed by dangerous ship. Since
there can be at most 1000 fillers for has container storage, there must exist at least
200 individuals which are fillers of both roles has cooling storage and gas container.
Hence, there must be at least 200 fillers of has container storage which are instances
of the concept cooled container 
 gas container. Classifying the TBox and asking for
the concept descendants of dangerous ship yields type 1 ship, possibly among others.

A container itself could include dangerous things. For instance, a certain class of con-
tainers with toxic waste (but with an innocent name) is defined.

type 47 container � container 
 ∃ has cargo storage . toxic waste

type 2 ship � ∃ has container storage . type 47 container

Unfortunately, with the axioms given above type 2 ship would not be classified as a
dangerous ship. This would be the case, however, if has cargo storage were declared
as a transitive role. As indicate above, this facility is also supported by ALCNHR+ .

Now let us turn to an ABox example and introduce some assertional axioms for
individuals. In some circumstances an individual should be an instance of a concept
when the instance is set into relation to another instance. For example, a ship
individual should be an instance of the concept ship in shipyard when it is set into
relation to a shipyard. A similar situation occurs when persons become customers if
they are set into relation to a bank. This dynamic classification is no problem when
ABoxes are used for object representation. The ship example is continued with the
following assertions.

s1 : ship, yard1 : shipyard, (yard1, s1) : has ship in repair dock
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Even though s1 is “created” as a ship, asking for the direct types of s1 reveals
that s1 is also an instance of ship in shipyard because s1 is set into relation to yard1
via has ship in repair dock and, due to the axiom for shipyard in the TBox, for each
shipyard all fillers of has ship in repair dock are instances of ship in shipyard. This
instance classification is “dynamic” because s1 will no longer be a ship in shipyard
when the related statement is retracted. In applications, this kind of “dynamic
typing” can be used as a “trigger” to invoke certain actions. For instance, in a
listing of a set of ships a ship in shipyard might be marked accordingly etc.

Note that in some sense an ABox is more expressive than a relational database.
With assertional axioms individuals can be declared as being instances of arbitrary
concepts of the DL. In particular, it is possible do declare that an individual is an
instance of, for example, motorship � sailingship. In standard databases this is usually
not supported with the same generality.

Another difference between description logic and databases is that in DLs open-
world reasoning is the standard inference mode, i.e. even if (s1, c1) :has captain was
added to our example ABox, asking whether s1 is an instance of ship with captain
would yield the answer ‘no’. Number restrictions can be used to “simulate” some
kind of closed world reasoning. For example, after asserting the ABox statements
and s1 :∃≤1 has captain, the ship s1 is automatically classified as a ship with captain
because the sufficient conditions for ship with captain are fulfilled (see also the axiom
for ship presented above).

Advanced reasoning examples for description logics in general, and for ALCNHR+

in particular, are presented in subsequent chapters.

2.5 Related Work on DL Theory

In the literature different kinds of additional concept and role constructors are dis-
cussed and it is hard to characterize different languages using a common naming
scheme. As can be seen by the example of ALCNHR+ , different letters are used
to indicate the operators supported by a specific description logic: N is used for
(simple) number restrictions, an H indicates that role hierarchies are supported. An

R+ stands for transitive roles.

ALCNHR+ is an extension of ALCNH that itself can be polynomially reduced
to ALCNR [Buchheit et al., 1993a] and vice versa. The letter R indicates role
conjunctions. It is possible to rephrase every hierarchy of role names with a set of
role conjunctions and vice versa [Buchheit et al., 1993a]. The language ALCNHR+

extendsALCNR by additionally providing transitively closed roles. ALCNHR+ also
extends other related description logics such as ALCR+ [Sattler, 1996] and ALCHfR+

[Horrocks, 1998]. In contrast to ALCNHR+ the logic ALCHfR+ supports only so-
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called features (hence the letter f is used). In principle, if a role f is declared to a
be feature, an implicit GCI of the form � � ∃≤1 f is assumed. Thus, features are
functional roles.

If also the (in)equality of features fillers can be enforced, the letter F is used. Some
description logics do not provide full negation. In this case, the letter E indicates that
exists restrictions of the form ∃R . C are provided (e.g. the language ALE provides
existential restrictions but no disjunction and negation only for concept names). In
subsequent chapters the letter h will be used to indicate role hierarchies with single
inheritance only. Furthermore, the suffix trans indicates the availability of an operator
for the transitive closure of roles [Baader, 1991].

A sound and complete tableaux calculus for concept reasoning with ALC and quali-
fied number restrictions is presented in [Hollunder & Baader, 1991]. Qualified number
restrictions are indicated with the letter Q. Compared to simple number restrictions,
in qualified number restrictions restrict the number of fillers which are instances of
a given concept (rather than all fillers). The work on these logics has been extended
and a tableaux calculus for deciding concept consistency for the language SHIQ has
been presented in [Horrocks et al., 1999b]. In addition to ALCHfR+ , SHIQ also
supports qualified number restrictions and inverse roles (indicated with the letter I).
According to the naming scheme used in this Habilitation Thesis the name of SHIQ
would be ALCQHIR+ .1 First tests with a prototype implementation presented in
[Horrocks, 1999] reveal that optimizations for expressive languages with the addition
of inverse roles still have to be devised.

Another approach is presented in [De Giacomo & Lenzerini, 1996] where the logic
CIQ for reasoning with TBoxes and ABoxes is introduced. The reasoning proce-
dures developed for CIQ are based on a polynomial encoding of CIQ TBoxes into
sublanguages of CIQ [De Giacomo & Lenzerini, 1996]. A similar approach is taken
for ABoxes of the languages CI and CQ. In comparison to ALCNHR+ and the
other approaches mentioned above, CIQ offers more operators (e.g. inverse roles and
transitive closure of roles) but supports role conjunction instead of role hierarchies
and allows number restrictions only for primitive roles. No implementation of CIQ
has been developed.

Some description logics provide support for reasoning with individuals in concept
terms (see e.g. [Schaerf, 1994]). For describing a concept extensionally as a set of
individuals the one-of construct {i1, . . . , in} is used (indicated with O). For logics
without full existential restrictions of the form ∃R . C sometimes a so-called fills
construct R : i is introduced (indicated with the letter B). The construct indicates
that a certain individual i is a filler of a role R for all instances of a concept. However,
this operator is syntactic convenience if existential restrictions are provided since it

1The pronunciation of ALCQHIR+ is assumed to be ALC-choir.
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could be written as ∃R . {i} (see also [Schaerf, 1994, p. 25]). In description logics
supporting the one-of operator, for instance, the concept consistency problem can
only be defined w.r.t. a knowledge base (i.e. an ABox must always be considered
for TBox classification). In practice, this means that it is not possible to classify
a TBox in advance and use the results for many ABoxes that refer to the TBox.
It is still an open problem whether the concept constructor for sets of individuals
O can be integrated into expressive description logics with inverse roles such as
ALCQHIR+ . For detailed overviews on additional description logic operators see
for instance [Baader & Sattler, 2000].

The tableaux calculus for deciding the ABox consistency problem [Haarslev & Möller,
2000b] also provides the basis for the ALCNHR+ description logic system RACE
that implements sound and complete (and terminating) inference algorithms for all
standard inference problems mentioned above. The RACE system and the optimiza-
tion techniques used in the implementation are introduced in detail in Chapter 4.
Recently, an extension of SHIQ for dealing with ABoxes has been presented in
[Horrocks et al., 2000]. At the time of this writing a DL inference system for this
logic supporting reasoning about ABox inference problems comparable to RACE is
not available.

As we will see in the next two chapters, a direct implementation of a tableaux
calculus with chronological backtracking is hardly appropriate for practical purposes.
Dedicated search strategies are necessary in order to avoid combinatorial explosion
to occur even for simple inference problems. Before well-established as well as new
optimization techniques are introduced for an implementation of ALCNHR+ , we
will give an overview of related work on the development of system architecture for
representing and reasoning with terminological and assertional knowledge.
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Chapter 3

Related Work on DL Systems

In this chapter a description of the goals behind the development of different DL sys-
tems is given from a historical perspective. The description of DL systems allows im-
portant insights into the development of the knowledge representation research field
as a whole. The design decisions behind the well-known systems which we discuss
in this chapter do not only reflect the trends in different knowledge representation
research areas but also characterize the point of view on knowledge representation
that different researchers advocate. The chapter discusses general capabilities of the
systems and gives an analysis of the main language features and design decisions
behind system architectures. The analysis of current systems in the light of a histor-
ical perspective might lead to new ideas for the development of even more powerful
description logic systems of the future. References to previous descriptions of DL
systems (e.g., [MacGregor, 1991a; Woods & Schmolze, 1992; Horrocks, 1997]) or
publications on DL theory that also contain discussions about description logic sys-
tems (e.g. [Patel-Schneider, 1987a; Nebel, 1990a; Schmidt, 1991]) are included where
appropriate. For references to other systems not mentioned here see also [Woods &
Schmolze, 1992] and [Nebel, 1990b, p. 46f., p. 63f.].

3.1 The First Generation

Inspired by research on human cognitive behavior, proposals for knowledge repre-
sentation languages were first discussed in the late sixties. E.g. [Quillian, 1967] is
one of the first publications of these languages called “semantic networks” (see also
[Quillian, 1968]). Originally, semantic network formalisms were seen as alternatives
to first-order logic. In a similar spirit, [Minsky, 1975] has introduced the initial
notion of a frame system. The motivation of these representation formalisms was
to mimic human reasoning in the sense of achieving “cognitive adequacy”. Thus,
the idea was to support problem solving with appropriate representation structures
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that somehow “resemble” representation structures assumed in human information
processing. The exploitation of inheritance was a predominant idea in frame sys-
tems. The specification of knowledge bases should be simple and the use of the
representation structures should be intuitive (“epistemological adequacy”). How-
ever, as pointed out by [Woods, 1975], it was not at all simple to specify what an
inference system was supposed to actually compute. The late seventies saw initial
research on the relation of frame systems and first-order logic [Hayes, 1977; Hayes,
1979] which revealed that some aspects of frame-based systems can be considered
as special “instantiations” of first-order reasoning. Hayes argued that frame-based
reasoning was not an entirely new way of knowledge representation that had partic-
ular advantages over first-order reasoning. Specific features of frame systems beyond
first-order reasoning, e.g. defaults, were not very well understood at that time. The
consequence of these publications was that many researchers did not consider frame
systems and semantic network systems as possible alternatives to logic-based ap-
proaches any more.

The criticisms of early frame and semantic network representation formalisms stim-
ulated research on the development of mathematical structures and techniques for
defining the semantics of the constructs supported by different representation lan-
guages. For instance, in early frame systems there was no clear distinction between
constructs for representing “generic” knowledge about sets of individuals and knowl-
edge about “specific” individuals. Furthermore, frames were often used as data
structures in procedural programs. For these programs a formal specification of
what they were expected to compute was rarely provided. Rather than interpret-
ing frame structures as data structures, [Woods, 1975] suggested to use a formal
semantics to clearly specify what is to be computed by inference algorithms.

Kl-One

Inspired by critics such as [Woods, 1975], Brachman started to develop a new rep-
resentation system (called Kl-One) that inherently included the notion of inferring
implicit knowledge from given declarations [Brachman, 1977; Brachman, 1979]. Al-
though the initial approach was not logic-based, Kl-One started the era of repre-
sentation systems which can be used to formalize application problems as inference
problems over the constructs supported by the representation language. One of the
prevailing inference patterns is centered around inheritance [Brachman, 1983]. The
final report on the Kl-One language is published in [Brachman & Schmolze, 1985].

One of the core ideas behind Kl-One as a representation language for the “episte-
mological level” resulted from problems with languages offering built-in primitives
for general representation purposes (e.g. the CD theory [Schank, 1975]). Rather than
providing general built-in primitives, in Kl-One, for a specific representation prob-
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lem a set of adequate primitives is defined by the user. The primitives are denoted
by so-called concept names. The next idea was to use concept-forming operators to
build new concepts from basic concepts. These compound concepts are also referred
to as “concepts”, “concept terms” or “concept descriptions”. Generic concepts were
intended to denote classes of individuals and individual concepts were intended to de-
note individuals (see also [Nebel, 1990a, p. 42]). Individuals are related by so-called
roles which, in turn, can be primitive roles (role names) or roles described with role
constructors [Brachman & Schmolze, 1985].

Concepts and roles are the building blocks for representational purposes. The main
idea behind concepts and concept constructors in Kl-One is that the meaning of a
concept is derived only from the meaning of its superconcepts and other restrictions
associated with a concept [Brachman & Schmolze, 1985]. A Kl-One generic concept
consists of a set of superconcept names, a set of role descriptions, and a set of struc-
tural descriptions [Patel-Schneider, 1987a, p. 58f.].1 Roles can be viewed as potential
relationships between individuals of the class denoted by the concept and other in-
dividuals in the world [Nebel, 1990a, p. 42]. Role descriptions are restrictions and
differentiations. The former restricts the class of permitted fillers (value restrictions)
or the number of fillers (number restrictions). Differentiations are used to describe a
subrole with possible value or number restrictions. Structural descriptions were used
to state relationships between the fillers of roles (see also [Patel-Schneider, 1987a,
p. 58f.]). Individual concepts consist simply of a set of values for roles plus a set of
generic concepts which they are an instance of. Thus to be a subconcept of a generic
concept, an individual concept has to satisfy all the restrictions inherited by the
generic concept. However, the semantics of individuals was never completely worked
out (see [Schmolze & Brachman, 1982, p. 23–31] cited after [Nebel, 1990a, p. 64]).

The representation structures offered by Kl-One are similar to semantic networks
or frames. Although, initially, the structures offered by Kl-One are called “struc-
tural inheritance networks” [Brachman, 1977; Brachman, 1979], in [Brachman &
Levesque, 1984] the authors talk again of frame structures.2 In accordance with
[Nebel, 1990a, p. 45] we argue that in contrast to e.g. the CD theory [Schank, 1975],
providing a (large) set of primitive representation structures (names) for all kinds of
representation purposes was not the development goal of Kl-One. As Nebel points
out [Nebel, 1990a, p. 45], more important and unique for Kl-One is the core idea

1Note that, in Kl-One-like languages, there are specific syntactic constructs for specifying
superconcepts. These specific constructs are no longer present in logic-based concept languages of
the nineties.

2There are big differences between frame systems and description logic systems: if for i the
restriction ∀R.C holds, and we set i into relation to j via the role r, then every Kl-One-based
system concludes that j is an instance of C. In standard frame-based systems, j can only be set
into relation to i via R if it is already known that j is an instance of C. Otherwise, in frame systems
at least a warning is issued or even an error is signalled.
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of proving ways to specify concept definitions, i.e. the possibility to let a knowledge
engineer declare the relation of “high-level concepts” to “lower-level primitives”.

A concept definition is an assignment of a (unique) name to a concept term. In
Kl-One the well known distinction between the two kinds of concept definitions,
definitions with necessary and sufficient conditions and definitions with only neces-
sary conditions (so-called primitive definitions), has been investigated for knowledge
representation purposes for the first time.3 In the original approach no cycles are
allowed in the set of concept definitions.4

The most important consequence of the introduction of concept definitions with
necessary and sufficient conditions was that reasoning about the relationships be-
tween concepts became important. The superconcept-subconcept relationships are
dependent on the concept terms used in the definitions. Especially the notion of
defined concepts (with necessary and sufficient conditions) led to the idea of concept
subsumption. Rather than with frame systems where the superconcepts are always
given explicitly, in Kl-One the set of direct superconcepts (i.e. concept names) can
be computed automatically given a set of concept definitions. Thus, the idea was
that the inheritance hierarchy (or subsumption hierarchy) can be computed auto-
matically by inferring implicit information. Inferences in Kl-One are based on the
open-world assumption. Considering the inheritance structure and the lattice of
direct superconcepts, concepts can be “inserted” between other concepts automati-
cally. In Kl-One there is still the notion of a “told” subsumer mentioned explicitly
in a list of so-called superconcepts but, according to the semantics, there are also
computed most-specific subsumers, i.e. those concept names appearing in the TBox
which are the most-specific concept names subsuming a certain concept term. The
development of an algorithm for computing the direct subsumers (the “classifier”)
is described in [Schmolze & Lipkis, 1983]. Another inference component called “re-
alizer” computes the most specific atomic concepts of which an individual is an
instance [Mark, 1981]. Initial Kl-One systems were implemented in INTERLISP
[Lipkis, 1981] and Smalltalk [Fikes, 1981]. The inference services offered by the clas-
sifier and realizer are first exploited in the Consul system [Kaczmarek et al., 1986].

First investigation about defaults, exceptions and concept definitions have been pub-
lished in [Brachman, 1984]. Nowadays, the semantical theory of defaults and de-
scription logic is much clearer, see [Baader & Hollunder, 1992; Baader & Hollunder,

3In the literature, some authors use the word “definition” as a synonym for concept terms
themselves (e.g. [Schmidt, 1991], see also [Woods, 1991, p. 65]). In this case, “primitive” concepts
with only necessary conditions are introduced with a specific marker to be used in concept terms.

4The semantics of cycles has been analyzed in [Baader, 1990; Baader, 1991; Nebel, 1990a; Nebel,
1991]. The so-called descriptive semantics provides many advantages compared to so-called fixed
point semantics. For details see [Nebel, 1990a]. One of the first publications of an expressive
description logic supporting cyclic axioms with a descriptive semantics and a sound and complete
calculus is [Buchheit et al., 1993a].
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1993; Baader & Schlechta, 1993; Padgham & Zhang, 1993; Padgham & Nebel, 1993;
Baader & Hollunder, 1995a; Baader & Hollunder, 1995b; Donini et al., 1997b].

At the first Kl-One workshop [Schmolze & Brachman, 1982] it became clear that
the informal specification of the semantics of Kl-One concept and role construc-
tors led to serious problems. The development of the classifier was based on the
intuitive meaning of the Kl-One formalism [Nebel, 1990a, p. 46]. Attempts to log-
ically reconstruct the representation constructs, e.g. [Schmolze & Israel, 1983; Israel
& Brachman, 1984] resulted in a deeper understanding of the formalism. Given
the formal semantics, implemented algorithms for classification and realization have
been shown to be incomplete. Later, investigations showed that Kl-One (with the
formal semantics given in the logical reconstruction approaches) is undecidable (e.g.
this holds for the combination of conjunction, value restrictions and role-value maps
[Schmidt-Schauss, 1989]). In [Brachman & Levesque, 1984] first thoughts about
the tractability of subsumption for sublanguages are discussed. Terminological rea-
soning with concept definitions even for sublanguages with low expressiveness has
been shown to be inherently intractable [Nebel, 1990b, p. 28 and p. 71f.]. Propos-
als for a semantics based on many-valued logics (e.g. [Patel-Schneider, 1986; Patel-
Schneider, 1987a; Patel-Schneider, 1987b; Patel-Schneider, 1989a]) ensure tractable
algorithms concerning concept consistency reasoning but also result in a weak ex-
pressiveness: many intuitive inferences are not sanctioned by this semantics (see also
[Nebel, 1990a]).

Another result of [Schmolze & Brachman, 1982] was that the semantics of individual
concepts was not quite clear (e.g. concerning coreference and unique name assump-
tion, see above). Thus, at the first Kl-One workshop [Schmolze & Brachman, 1982],
the notions of a hybrid reasoning system consisting of a TBox (a set of concept de-
finitions) and an ABox (a set of assertions concerning individuals) were made more
precise. The change of the view on Kl-One spelled out in [Schmolze & Brachman,
1982, pp. 8–17] (see also [Nebel, 1990a, p. 46]) can be summarized as follows: Not
the names of the representation structures are important but the functionality, i.e.
the inference services the system provides. The inferences have to be formally de-
fined based on the semantics of the representation formalism. This view led to the
development of the functional view of knowledge representation as pursued with the
development of the system Krypton.

Krypton

The knowledge representation system Krypton [Brachman et al., 1983a; Brachman
et al., 1983b; Brachman et al., 1985] can be seen as the first approach to define a new
language of the Kl-One family with a formal, Tarskian semantics. The distinction
between TBox and ABox was first mentioned by the Krypton approach (see also
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[MacGregor, 1991a, p. 391]). Similar to Kl-One the distinction between primitive
and defined concepts and the computation of the most-specific atomic concepts which
instantiate individuals is one of the core ideas of Krypton. Furthermore, the goal
was to overcome the problems with individuals in Kl-One [Nebel, 1990a, p. 63].

Krypton offers a concept language with low expressiveness. While the initial ap-
proach [Brachman et al., 1983b] was too expressive to be tractable (see also [Mac-
Gregor, 1991a, p. 390]), in a revised version [Brachman et al., 1985] the concept
constructors of Krypton are defined as conjunction, value restrictions and role
chains. Thus, subsumption checking is polynomial [Patel-Schneider, 1987a, p. 75].
For the ABox a full-fledged resolution-based FOPL theorem prover [Stickel, 1982]
is used, i.e. the ABox reasoner of Krypton is incomplete. Another perspective is
that Krypton starts with a first-order logic theorem prover and augments it with a
special-purpose inference system for terminological reasoning to cut out some of the
combinatorial search [Vilain, 1985]. Krypton can be regarded as one of the first
efforts in combining knowledge representation and theorem proving techniques but
was not used for applications [Nebel, 1990a, p. 63f.].

Rather than dealing with specific representation structures and operations on them,
Krypton offers a so-called “functional approach.” Using interface functions tell and
ask, the system can define the knowledge base and ask queries about it, respectively.
In this sense, a “functional approach” means that Krypton does not necessar-
ily maintain, for instance, the inheritance hierarchy or even an ABox as a graph
structure. If, for internal implementation purposes of the inference engine, graph
structures are used, they are nevertheless hidden from the user in order to avoid
“procedural” operations to be carried out with knowledge representation structures.
Arbitrary procedural operations are usually not related to the semantics of the repre-
sentation formalism such that it is hard to characterize what is actually represented
and computed as solutions to inference problems. Thus, the focus of Krypton is on
the structures to be maintained by the system but is centered around the question
about what should the system do for the user, i.e. what services should be made avail-
able. In other publications this idea was described as the “knowledge level” [Newell,
1982]: inference services for concept terms are checks for consistency, disjointness
and subsumption, for the TBox the most-specific subsumers and for the ABox con-
sistency, instance checking, realization and instance retrieval are offered as inference
services. The user should know, at some level not dependent on implementation
details, what questions the system is capable of answering and what operations are
permitted that allow new information to be provided to it and to be derived. For
instance, it is not important how the association between an individual and a cer-
tain role filler is actually represented in terms of memory arrangements (called the
symbol level). What counts for the underlying implementation is what operations
must be supported in order to answer queries at the semantical level. This view
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about Kl-One-based representation systems was one of the major achievements of
the Krypton project.

Nikl, Penni, Kl-Two

At the same time as Krypton, the knowledge representation system Nikl was
developed as a successor of Kl-One. Nikl was a New Implementation of Kl-One
[Schmolze & Israel, 1983; Schmolze, 1985; Schmolze & Mark, 1991]. As discussed in
[Kaczmarek et al., 1986] in Nikl roles are also ordered with respect to subsumption
(see also [Schmidt, 1991, p. 13]).

The assertional components of Kl-One have been initially discarded in the Nikl
system (see the Nikl user guide [Robins, 1986]). Compared to the initial Kl-One
implementation, the algorithms in the Nikl classifier are faster in the average case
because “obvious” information is exploited to a larger degree (see [MacGregor, 1988,
p. 405] or [MacGregor, 1991a, p. 392]). However, the subsumption algorithm of Nikl
is incomplete and it is hard to characterize which inferences are omitted [Schmolze
& Israel, 1983] (see also [Patel-Schneider, 1987a, p. 74]).

Later, an assertional reasoning component was added with the system Penni which
is based on RUP [McAllester, 1982]. The resulting system was called Kl-Two [Vi-
lain, 1985] (see also [Schmidt, 1991, p. 15]). In Kl-Two a propositional reasoner
with equality (the Penni subsystem) is augmented with a so-called quantificational
reasoning component (the Nikl subsystem). For the propositional part in the Penni
component, incremental additions and retractions are supported due to the facilities
provided by RUP. However, as shown in [Patel-Schneider, 1989b] the concept lan-
guage of Nikl contains concept and role constructs that render the satisfiability
problem for Nikl concept terms undecidable (see also [Schmidt-Schauss, 1989]).

Concerning hybrid reasoning, i.e. the systematic integration of TBox and ABox rea-
soning, there are shortcomings as well. Because in RUP different constants do not
necessarily denote different objects, the unique name assumption is not built into the
assertional component Penni. Thus, number restrictions imposed by Nikl concepts
often do not have the intended effects concerning hybrid reasoning. Other sources
of incompleteness have been pointed out (see also the analysis of “inferential gaps”
in [Nebel, 1990a, p. 63f.]). The research on the Kl-Two system demonstrated that
hybrid reasoning is not just a matter of integrating reasoning subsystems at the soft-
ware level. Hybrid reasoning requires a dedicated architecture implementing a sound
and complete calculus which, in turn, can be developed only after a deep analysis
of the semantics of the representation constructs. Nevertheless, the principle idea
of exploiting subsumption information for resolution-based first-order reasoning has
been integrated in many theorem proving systems.
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Kandor

Research on Kandor [Patel-Schneider, 1984] was influenced by the Krypton archi-
tecture and the performance problems of the Nikl approach. The goal of Kandor
was to increase the expressive power of the terminological representation component
in such a way that an efficient subsumption algorithm could be developed. Basi-
cally, Kandor supported conjunction, value restriction and number restrictions as
concept-forming operators. In minimum number restrictions, range restricted roles
could be used (qualifying minimum number restriction, see also [Patel-Schneider,
1987a, p. 76]). In order to provide effective inference algorithms (e.g. for an in-
formation retrieval scenario) in the Kandor approach the expressiveness of the
assertional component was cut down to a representation system comparable to a
database (without revision mechanisms). Subsumption in Kandor was shown to
be co-NP-complete (see [Nebel, 1988], and [Nebel, 1990a, p. 90] for details). The
initially proposed subsumption algorithm with polynomial runtime must have been
incomplete.

Kandor was called a frame-based system (which might be reasonable because of
the expressiveness offered by the ABox language). A frame in Kandor was es-
sentially a specification of conditions for describing how an individual can be an
instance of it (in terms of superframes and restrictions). Kandor supported defined
frames and primitive frames. The system adopts the “small interfaces” approach
of Krypton, i.e. models were built using the declaration interface (tell interface),
and application services were realized with the query interface (ask interface). Al-
though called a frame system, frames were not treated as record structures to be
manipulated by procedural programs. The authors of Kandor argued for a small
knowledge representation system that could be used as part of larger systems with
different subcomponents. The main achievement of Kandor was the introduction
of a small-can-be-beautiful approach which, finally, led to the design of the system
Classic which will be discussed in detail in the next section.

3.2 Second Generation DL Systems

Whereas the prototypical implementations of first generation systems have been used
to study knowledge representation problems, second generation DL systems have
been more extensively used in serious applications. The implementations discussed
in this section are not only prototypes but are much more stable. In addition, at
the beginning of the nineties, the systems have been called description logic systems.
We first discuss systems for (almost) tractable languages based on (almost) complete
algorithms.
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Classic

The basic Classic system supported the logic ALNFIh with TBoxes and ABoxes
plus facilities for dealing with numbers [Borgida et al., 1989]. Classic is still avail-
able for research purposes. Implementation languages are Common Lisp and C. The
interfaces are described in [Resnick et al., 1995]. Full Classic also contained the
concept constructors O and B for referring to individuals in concept terms.

Subsumption in full Classic was initially assumed to be polynomial [Borgida et al.,
1989]. Problems with individuals in full Classic was recognized in [Patel-Schneider
et al., 1991]. At the same time Classic was shown to be co-NP complete [Lenzerini
& Schaerf, 1991]. In the modified semantics for the concept constructors O and B
(see [Borgida & Patel-Schneider, 1994]) the interpretation function maps individuals
in concept terms to disjoint sets of domain objects. With this semantics concern-
ing individuals the inference algorithms of the Classic system could be shown to
be complete [Borgida & Patel-Schneider, 1994]. However, given the non-standard
semantics for the concept constructors O and B, the same effect can be achieved
with exists restrictions for atomic concepts and disjunction of atomic concepts:5 For
each individual I a new atomic concept AI can be introduced. Atomic concepts are
also mapped to sets of individuals. Additionally, a set of axioms ensures that the
new atomic concepts are disjoint. Now every term of the form r : I can be replaced
by ∃r.AI . Terms of the form {I1, . . . , In} can be replaced by AI1 � . . . � AIn . In an
ABox, for each individual I a concept assertion is added to ensure that the individual
is an instance of the associated atomic concept AI . Thus, only in an ABox, a real
coreference between roles can be enforced. On the one hand, we can call the Clas-
sic system “almost” complete. “Almost” refers to non-standard semantics w.r.t.
individuals being supported by the current system implementations. On the other
hand, the transformation makes clear that in Classic nevertheless a limited kind
of disjunction (with concept names for which no definitions exist) can be expressed
while retaining polynomial inference algorithms.

The recommended techniques for knowledge-based system development with Clas-
sic are outlined in [Brachman et al., 1991]. As Brachman [Brachman, 1992, p. 256]
points out, a tractable description logic does not guarantee that a system is use-
ful in practice. Therefore, the Classic system was also carefully designed to meet
practical requirements and to guarantee predictable system behavior. The context
in which the system was expected to be used requires that many queries are given
to knowledge bases which rarely change. The architectural design of Classic sup-
ports a precomputation of index structures such that queries can be answered quickly
(mostly by simple storage retrieval). The architecture is made possible by a careful
selection of the concept and role constructors of the description logic language. In-

5Note that these concept constructors are not directly provided by Classic.
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ference services for the description logic supported by Classic can be implemented
by transforming concept expressions into a normal form (“structural subsumption”).
Once the normal form is computed, queries can be answered by inspecting the data
structures used to encode the normal form. It should be noted that in Classic
retraction of told information is possible but not optimized.

Another facility offered by Classic is a rule system. Rules are applied to individuals
explicitly named in the ABox. Furthermore, rules are applied in a forward-chaining
way. Basically, a rule has a precondition (a concept) and a conclusion (also a con-
cept). If it can be shown that an individual mentioned in the ABox is an instance of
the precondition concept, a concept assertion for stating the membership of the indi-
vidual in the conclusion concept is added to the ABox. In order to provide support
for modeling, the rule base is statically checked for inconsistencies. For instance, if
there are two rules whose preconditions subsume each other, the conclusions must
not be disjoint.

Furthermore, Classic provides simple support for closed-world reasoning ([Resnick
et al., 1995], see also [Weida, 1996]). Closing a role for an individual means adding
an appropriate maximum number restriction for the role. The maximum number of
fillers is restricted to the largest integer such that the minimum number restriction
with this integer (and the corresponding role) is entailed by the knowledge base.
The problem is that in combination with rules, the exact sequence of several closing
operations determines what actually holds in the resulting ABox. These and other
problems concerning different closing operations have to be considered with default
reasoning as theoretical background [Baader & Hollunder, 1995a; Baader & Hollun-
der, 1995b; Donini et al., 1997b; Rosati, 1997]. For an integration of defaults into
the Classic system see [Wahlöf, 1996; Lambrix et al., 1998].

Classic is one of the first systems that provides support for incorporating infer-
ences over other domains. Consistency and subsumption checking for expressions of
another domain (e.g. the reals) can be integrated into the Classic system via an ex-
tension interface [Borgida et al., 1996]. Classic was one of the first description logic
systems being designed with respect to users which are non-experts in description
logic theory. An important lesson learned by the Classic approach was the im-
portance of explanation and output pruning facilities [McGuinness & Borgida, 1995;
McGuinness, 1996; Borgida & McGuinness, 1996]. Moreover, Classic was the first
system capable of supporting some reasonable form of error reporting [Brachman,
1992]. However, at the current state of the art there is hardly an adequate measure
for the quality of these indispensible services [Brachman, 1992, p. 253].

Although Classic is a very successful description logic modeling environment, the
low expressiveness of the Classic description logic made it hard to use the system
in many kinds of applications. In many cases, users wanted more expressiveness
[Patel-Schneider et al., 1990]. In the following sections we discuss systems for (more)
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expressive description logics. As can be expected, increases in expressiveness came
at a certain price. The predictability of the behavior of Classic in terms of per-
formance could not be reached by systems implementing complete algorithms. On
the other hand, incomplete algorithms have the problem that results computed a
system cannot be trusted in general. Thus, the complete-incomplete debate for ex-
pressive description logic systems started at the end of the eighties and the beginning
of the nineties. First, we describe the systems Loom and Back, which are based
on incomplete algorithms. Afterwards, research on description logic systems based
on complete algorithms is summarized with a discussion of the systems KRIS and
Crack.

Loom

The Loom architecture [MacGregor & Bates, 1987; MacGregor, 1991b] offers TBox
and ABox reasoning facilities for a description logic that can be characterized by the
name ALCQRIFO plus additional constructs for dealing with numbers (see also
[Brill, 1994] or [Horrocks, 1997, p. 43]). Loom is based on Kl-One, i.e. concept
definitions with necessary or with necessary and sufficient conditions play an im-
portant role in domain modeling with Loom. It should be emphasized that truth
maintenance facilities for revision have been built into the Loom architecture right
from the beginning and have influenced the design of the whole system [MacGregor,
1988; MacGregor & Brill, 1992]. While first Loom versions have been based on
description logics [MacGregor & Brill, 1992] in later versions an attempt was made
to develop a “description classifier for the Predicate Calculus” [MacGregor, 1994].
For instance, facilities for dealing with definitions for relations were added. However,
the inference algorithms used in the Loom system are known to be incomplete. One
of the design goals of Loom was to support rule-based programming [Yen et al.,
1991b; Yen et al., 1991a; MacGregor & Burstein, 1991]. Based on the rule system,
it is possible to specify additional necessary conditions for individuals which (i) are
explicitly mentioned in the ABox and (ii) are derived to be instances of a certain
defined concept. The additional necessary conditions are called “implications” in
Loom [MacGregor, 1988]. Note however, that these additional necessary conditions
are not exploited for TBox reasoning, i.e. these “implications” are not to be confused
with generalized concept inclusions which are standard in newer systems.

In order to meet the performance requirements of the applications for which Loom
has been developed (e.g. natural language and image interpretation), incomplete
algorithms for concept consistency and subsumption are implemented. Concern-
ing ABox reasoning, the Loom applications require specific strategies to avoid the
computation of unused results. Rather than employing the usual forward-chaining
strategy of computing the most-specific atomic concepts of which the ABox indi-
viduals are instances, Loom uses a scheme that considers the queries being posed

61



to the system. Thus, backward-chaining strategies for query answering are used in
the implementation [MacGregor & Brill, 1992]. However, for the rule system, it is
important to detect whether an individual is an instance of a concept that is used
as a precondition of a rule. In this case, forward-chaining techniques are exploited
[MacGregor, 1991b; MacGregor & Brill, 1992]. The combination of forward-chaining
and backward-chaining inferences can be specified for a certain application problem
by “marking” concepts accordingly. The user can control the inference process by
these means but he is also responsible for estimating the effects of these declarations.

The arguments for the Loom approach can be summarized as follows: The in-
tractability of the representation language can hardly be avoided to fulfill the re-
quirements of users. Therefore, the idea is to support the features in one system
rather than as a set of application-specific ad hoc supplements (“Where resides the
scruffiness?” [MacGregor, 1991a, p. 396]). Obviously, incompleteness is no problem
as long as the answers of the inference system are interpreted in the right way (i.e.
“no” answers should not be trusted). Several researchers have argued that there is
always the inherent danger that non-expert users either do not know this or might
not recognize this as a potential danger (cf. the work on complete systems [Baader &
Hollunder, 1991a; Baader & Hollunder, 1991b] discussed below). However, if a com-
binatorial explosion occurs in a complete algorithm, in practice, no result is available
as well. Concerning incomplete algorithms for decidable description logics, similar
arguments as for other modeling environments based on first-order logic can be men-
tioned: If, in a certain application, concept terms are checked for consistency and
a combinatorial explosion occurs in complete algorithms, incomplete algorithms at
least might provide some support e.g. for building a TBox. Just signalling a timeout
during the execution of a complete algorithm that runs into a combinatorial explo-
sion might result in less information. In this case, an incomplete algorithm might
succeed in finding at least some inconsistencies. Note however, that in modern in-
ference system technologies that support complete reasoning, incomplete reasoners
are used as “preprocessors” in order to speed up the inference system (see the next
chapter).

Loom supports different kinds of individuals (classified instances, light instances,
CLOS instances). For different kinds of instances different levels of inference services
are supported. E.g., for classified instances, the set of most specific atomic concepts
of which the classified individual is an instance is computed once new assertions
are specified. Thus, for these instances, the rule-based forward chaining engine is
triggered and possibly new assertions are automatically added to an ABox (for details
see [MacGregor & Brill, 1992]).

A problem with the Loom approach is that from a user perspective it is hard to
characterize the source of the incompleteness of the Loom reasoning algorithms
(see the discussion in [Horrocks, 1997, p. 42]). Although the inference techniques
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used in Loom are characterized in [MacGregor, 1991b, p. 90], once a system is in-
complete, there is no adequate measure for the “quality of service” in terms of an
implementation-independent characterization. For instance, in Classic the charac-
terization of the incompleteness of the inference system concerning individual rea-
soning has been given in terms of a weak semantics for the offered representation
constructs (see above). It should be noted that specifying the incompleteness on
the semantical level is no trivial task. Not only incompleteness issues are important
in this context. For instance, the theoretical background for giving a semantics for
rule-based computations has only been analyzed recently [Donini et al., 1992; Donini
et al., 1994; Donini et al., 1998].

Incomplete reasoning facilities might not only be a problem that has to be considered
at the tell and ask interface. With an example we demonstrate that incomplete
inference algorithms can have effects in situations a user might not be aware of:
Loom also supports closed-world reasoning. The strategy for closing a role for an
individual is to count the number of known role fillers. However, in addition to the
individuals explicitly mentioned in the ABox, existential restrictions and minimum
number restrictions have to be considered. Assuming too few of these individuals
might result in an inconsistency. This is demonstrated with a simple knowledge base
example with the following ABox {i : ∃r.A 
 ∃r.B 
 ∃r.C, (i, j) : r}. Let us assume,
in the TBox there exist axioms such that A is implicitly declared as disjoint from
both concepts, B and C. In the Loom system, specific reasoning techniques (e.g.
“conditioning”) are implemented to compute the number of necessary fillers. Closing
the role r for i by adding i : (≤ 1 r) makes the ABox inconsistent. However, since
Loom is incomplete, it might be the case that the disjointness of A and B as well
as A and C is not detected and, therefore, too few fillers are assumed to exist in
the closing process. Thus, the added maximum number restriction might be too
restrictive, i.e. the system is unsound if closed-world reasoning is employed. Note
that the semantic basis of automatic closing of roles as offered by Loom is hard to
characterize for expressive representation languages. Obviously, closing the role r
for i with i : (≤ 2 r) might be a candidate. However, closing the role r for i with
i : (≤ 3 r) might also be possible. In this case we have more individuals but with
less specific constraints.

The current version of Loom is implemented in Common Lisp and is available for
research purposes. A new system (called PowerLoom) for Common Lisp as well as
C and Java-based platforms is under way.

Back and Flex

Research on Back (Berlin Advanced Computational Knowledge representation sys-
tem) started in 1985 approximately at the same time as work on the Loom system
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was initiated. Back can also be called a knowledge representation environment [von
Luck et al., 1987; Peltason et al., 1989; Kindermann & Quantz, 1990; Peltason,
1991].

The description logic of the initial Back system can be called ALQRI. There was
support for reasoning with numbers and attribute sets. Research on the inference
algorithms for the basic Back language has stimulated the development of theoret-
ical results on the complexity of concept consistency reasoning (e.g., [Nebel, 1988;
Nebel, 1990a]) as well as the semantics of cycles [Nebel, 1991]. Additionally, not
only terminological reasoning was considered but an investigation was made on the
development of a hybrid architecture consisting of a TBox and an ABox. Issues of
integration and balancing in hybrid knowledge representation systems, namely bal-
anced expressiveness and tight coupling in hybrid systems, are analyzed in [Nebel &
von Luck, 1987; Nebel & von Luck, 1988]. Research on the Back system helped to
shape the current view on balanced representation schemes with TBox and ABox.
TBox concept terms are also used in the ABox to assert information about individu-
als. In addition, distinct individuals are assumed to denote distinct objects. Hence,
the number of role fillers can be counted and compared against number restrictions
(this was also done in Krypton as pointed out by [Woods & Schmolze, 1992, p.
165]). The algorithms used in Back for instance checking and instance retrieval
are described in [Nebel & von Luck, 1987; Nebel & von Luck, 1988; Kindermann &
Randi, 1990]. In general, the discussion of the problems of incomplete algorithms
that has been sketched in the previous section also applies to the Back system
because the inference algorithms used in Back are also known to be incomplete.

In order to provide a knowledge representation environment, the Back architecture
was designed to support incremental additions to the ABox. Back was one of the
first attempts to implement algorithms for reasoning about retractions of ABox as-
sertions. Back supports retraction of told information, also called literal retraction
[Nebel, 1990a; Kindermann, 1992]. This is also supported in the Loom system.
ABox assertions can be retrieved from a database by automatically computing SQL
queries [Schmiedel, 1993]. For the applications considered in the Back project, rea-
soning about time was important. Therefore, an integration of temporal reasoning
and terminological reasoning was investigated by several project members. Investi-
gations about how to incorporate temporal reasoning into terminological reasoning
are reported in [Schmiedel, 1988; Schmiedel, 1990; Schild, 1991b; Fischer, 1992;
Neuwirth, 1993].

In the successor system Flex [Quantz et al., 1995], incomplete algorithms have been
implemented for the description logic ALCQRIFO. Additionally, reasoning about
equations and inequations concerning integers is supported. Furthermore, the Flex
system served as a testbed for investigating weighted defaults [Quantz & Royer,
1992]. The initial implementation of Flex has been developed in Prolog. Flex ++
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is a reimplementation in C++. The implementation was faster, but for application
knowledge bases the performance was not sufficient. Appropriate optimization tech-
niques (see the next chapter) had not been investigated in the context of description
logics at the time of the development of the Flex implementation.

In general, it is quite difficult to compare different systems and knowledge representa-
tion environments because the services being offered and the representation languages
are not standardized (see [Patel-Schneider & Swartout, 1993] for a proposal on stan-
dardizing representation languages and inference services). Experiences with system
implementations indicated that either limited expressiveness or incompleteness of
reasoning can lead to problems in some applications. Therefore, other researchers
investigated the implementation of systems based on sound and complete algorithms
(published at the end of the eighties and beginning of the nineties). One can con-
sider [Schmidt-Schauss & Smolka, 1991] as a starting point of this development (see
also [Donini et al., 1997a]). Based on tableaux calculi, practical description logic
implementations have been developed. We discuss the architectures of the systems
KRIS and Crack.

KRIS

The development of sound and complete reasoning systems for more expressive de-
scription logics started at the end of the eighties. One of the main developments in
this direction is the system KRIS. The approach of KRIS was to implement sound
and complete algorithms for an expressive description logic but develop optimization
techniques for TBox reasoning such that, in practice, reasonable performance could
be expected. The description logic of KRIS isALCNF [Baader & Hollunder, 1991a;
Baader & Hollunder, 1991b]. As an addition, KRIS provides enumerated types (O
operator) and an interface for reasoning about so-called concrete domains [Baader &
Hanschke, 1991a; Baader & Hanschke, 1992] (e.g. linear inequations over the reals).
Role conjunctions were supported with a prototype implementation. The focus of
the work in the KRIS project was on TBox-Classification. Nevertheless, KRIS
is one of the first systems also supporting sound and complete ABox reasoning in
expressive description logics. Even multiple ABoxes can be handled. The implemen-
tation language of KRIS is Common Lisp (see [Hollunder et al., 1991] for a User’s
Guide and [Achilles et al., 1991] for a description of the graphical user interface).

The idea of optimizing TBox classification was to exploit “obvious” information
concerning “told” superconcepts and primitive concepts. In many concept definitions
of application knowledge bases the right-hand side is a conjunction with concept
names and concept terms. The conjuncts which are concept names on the right-
hand side are defined as the “told” subsumers. Another important point was to avoid
recomputation of subsumption relations found in preceding computation steps. Thus,
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caching and propagation techniques were implemented. Information is propagated
in the subsumption lattice such that expensive subsumption tests are avoided where
possible. KRIS is the first system for which systematic empirical tests have been
carried out. The algorithms evaluated in [Baader et al., 1992; Baader et al., 1994]
are still in use in modern description logic systems (see below). Extensions such
as defaults have been investigated (see also [Baader & Hollunder, 1992; Baader &
Hollunder, 1993; Hollunder, 1994]) but have not been implemented in KRIS.

Although the benchmarks considered in [Baader et al., 1994] revealed that the per-
formance of KRIS for TBox reasoning was comparable to that of other systems
of that time, the more or less direct implementation of nondeterministic tableaux
algorithms that were developed for proving the decidability of problems in the field
of theoretical computer science with chronological backtracking as in KRIS leads to
performance problems for many applications. One of the main results of the KRIS
project was that sound and complete inference algorithms are an important starting
point for research on optimized sound and complete algorithms for practical system
development.

Crack

One of the main research goals of the system Crack was to implement sound and
complete algorithms for dealing with inferences about individuals in concept terms.
Rather than providing a non-standard semantics as in Classic (individuals are
mapped onto sets of domain objects), in Crack, individuals are mapped to el-
ements of the domain. Thus, coreferences also have to be considered in concept
terms. Crack supports the description logic ALCRIFO [Bresciani et al., 1995].
The implementation of Crack is based on Common Lisp. Crack provided a web
interface.

In a similar way as in KRIS, obvious information is exploited in the architecture
to some extent but, nevertheless, Crack is a direct implementation of the tableaux
rules of the underlying calculus. In the middle of the nineties it became clear that
sound and complete reasoning is needed for many applications but the employed
inference techniques which have been developed for (manually) deriving decidability
results, e.g. with tableaux algorithms, were not suited for direct implementation.
Thus, it became clear that there is a long way to go from a decidability proof to
a working system, which has good performance in the average case. In the next
section, we describe research on new system architectures where this problem has
been treated by different optimization techniques concerning informed search while
still retaining soundness, completeness and termination.

Before we discuss research on next generation description logics that provide op-
timization techniques suitable for large-scale practical applications, we present an
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overview of some additional systems with interesting features developed at the be-
ginning of the nineties.

Other systems

The list of systems we have discussed in this chapter is certainly incomplete. At the
beginning of the nineties, the large number of projects involved in the development
of knowledge representation systems shows the importance of this area. Usually de-
scription logic systems are built around a core engine which is a consistency checker.
However, there are other services to be supplied which are also important to make
the systems usable in larger application projects.

Among other points, the graphical manipulation of representations has been inves-
tigated in the SB-ONE project [Allgayer, 1990; Kobsa, 1991b; Kobsa, 1991a]. The
implementation language was Common Lisp. Techniques for graphical interfaces to
support knowledge base development with SB-ONE are described in [Kalmes, 1988;
Kalmes, 1990] (see also [Abrett & Burstein, 1987] for a description of the KREME
system). Furthermore, in SB-ONE the use of contexts (also called partitions) was
explored for user modeling applications in natural language generation.

Another important point for DL inference systems is persistency and transaction
management. We have already discussed the Back approach [Schmiedel, 1993] (see
also [Borgida, 1995]). Additional investigations have been made in the K-REP system
[Mays et al., 1991b; Mays et al., 1991a].

3.3 The Next Generation

The declarative nature of description logic modeling is even more important when
problems are treated for which languages are required that are no longer tractable.
Inspired by theoretical advances, e.g. for handling number restrictions, role conjunc-
tions, generalized concept inclusions as well as cyclic axioms with descriptive se-
mantics (ALCNR [Buchheit et al., 1993a]), transitive roles (ALCR+ [Sattler, 1996]),
role hierarchies and features (ALCHfR+ [Horrocks, 1998]) at the end of the nineties
another generation of sound and complete description logic systems was developed.
The logic ALCNHR+ introduced in the previous chapter extended this line of work.
While for ALCR+ and ALCHfR+ only a calculus for concept consistency was de-
veloped, for ALCNHR+ ABox consistency was considered right from the beginning
in a similar way as for ALCNR. However, with the addition of transitive roles
ALCNHR+ is more expressive than ALCNR. Meanwhile, as mentioned before, the
development of sound and complete calculi for even more expressive description log-
ics than ALCNHR+ is in progress. However, as we will see, optimization techniques
for more expressive logics than ALCNHR+ still have to be developed.
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The new generation systems available today are FaCT, DLP and RACE. All systems
can be called fast in the average case. Systematic benchmarking and performance
competitions provided for stable implementations. However, rather than directly
implementing the tableaux calculus used for the theoretical decidability proofs and
complexity analyses, a rigorous investigation into methods for informed search was
made for developing the next generation of description logic systems. The pioneer-
ing system was FaCT. Since details about optimization techniques are discussed
in the next chapter in order to present the novelties of the RACE architecture,
we just mention some features of the DL systems FaCT and DLP for the sake of
completeness.

The system FaCT supports TBox reasoning for the description logic ALCHfR+

[Horrocks, 1997; Horrocks, 1998]. Furthermore, an experimental version of FaCT
also supports concept reasoning with inverse roles and qualified number restrictions
(iFaCT, [Horrocks, 1999]). However, most of the optimization techniques used in
FaCT had to be disabled in this version. FaCT has been used for applications
in the medical domain. Recent work on applications concerning query containment
[Horrocks et al., 1999a] has demonstrated the necessity for also supporting ABox
reasoning.

Based on similar techniques as FaCT, the system DLP utilizes extended techniques
for optimizations [Horrocks & Patel-Schneider, 1998b; Horrocks & Patel-Schneider,
1998c; Horrocks & Patel-Schneider, 1999; Patel-Schneider, 1999]. DLP supports
TBox reasoning for the description logic ALCNtrans . From a modal logic perspective,
ALCNtrans can also be called propositional dynamic logic (PDL) with a restricted
form of graded modalities, i.e. simple number restrictions. However, in the current
version no generalized concept inclusions and no TBoxes with forward references are
supported (e.g. more optimizations are possible, certain algorithms for dealing with
GCIs are currently not implemented). ABoxes are not supported either.

3.4 Lessons Learned

Considering the evolving technology of description logic systems it becomes clear that
at the end of the nineties there is an enormous interest in description logic reasoning
systems. This is demonstrated by the quite large number of system implementations.
Currently, all modern DL systems are based on sound and complete algorithms.
Thus, system developers can really rely on all answers computed by a DL system.
This positive trend has been initiated by the development of optimization techniques
that ensure stable runtimes for average case inputs for real-world problems even if the
worst-case complexity is exponential (see also below). The trend has been initiated
by the landmark system FaCT.

The original idea of the tell and ask interface of Krypton is still realized in modern
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systems. However, currently, the systems support only some kind of batch-oriented
behavior. A knowledge base (TBox and ABox) is passed to the systems (tell in-
terface). Afterwards, queries can be answered (ask interface). But, no incremental
additions to the knowledge base are possible after the first query is answered. The
difficulty is that complex transformations on the knowledge bases are necessary in or-
der to compute an internal representation that can be used for relatively fast query
answering (see the discussion on optimization techniques in subsequent chapters).
The price to pay is that algorithms for appropriately handling incremental additions
to a knowledge base are not yet known. Other features, e.g. explanation facilities,
retraction etc. still have to be developed for expressive DLs as well.

As a second and quite important lesson one can see that description logics with
more expressiveness and sound and complete algorithms impose a different view in
modeling. Concept definitions as known from, for instance, Classic are no longer
the central modeling device if generalized concept inclusions (representing cyclic
implications or equalities) are available.6

A third lesson we can learn from considering description logic systems and their devel-
opment is that the implementation language is hardly important for the magnitude of
speed (compared to the expressiveness of the description logic). What really counts
is the set of optimization strategies, the implementation of index data structures and
the selection of clever heuristics. There are first attempts to provide a distributed
implementation of a description logic system. However, performance problems in
network communication lead to server-based solutions, i.e. a knowledge base is be-
ing processed at a single workstation computer (but may be accessed from different
clients). Benchmark generators and standardized application knowledge bases are
used for metering system performance. Thus, different system implementations can
be compared.

Another lesson is that the development of techniques for incorporating space and
time into description logics is still an open issue. The necessity of a semantics-based
integration of temporal and terminological reasoning has been emphasized in first in-
vestigations in the Back project. However, early approaches (e.g. [Schmiedel, 1990])
have been shown to be undecidable [Halpern & Shoham, 1991; Schild, 1993]. In the
context of planning, the opportunities of an integrated environment combining tem-
poral and terminological reasoning were clearly demonstrated with the RHET system
[Allen, 1991]. It has been shown that spatial reasoning (e.g. about topological rela-
tions) induces non-obvious subsumption relations between concept terms [Haarslev
& Möller, 1997a]. We will return to this topic in Chapter 6.

6Nevertheless, description logics can still be called object-based representation formalisms, al-
though there are some approaches to deal with n-ary relations [Schmolze, 1989; Calvanese et al.,
1998] as well.
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Chapter 4

RACE: From a Tableaux Calculus
to an Inference System

This chapter investigates optimization techniques for practical reasoning with ex-
pressive ABox description logic systems. We discuss optimization techniques well
known in the field and introduce new techniques for TBox and ABox reasoning. The
analysis is based on the description logic ALCNHR+ described in Chapter 2. In
order to empirically evaluate optimization techniques for the ALCNHR+ tableaux
calculus, the DL system RACE has been developed [Haarslev et al., 1999c]. RACE
implements an ALCNHR+ reasoner for answering queries concerning ABoxes and
TBoxes (with generalized concept inclusions, GCIs) and can handle knowledge bases
that cannot be processed with FaCT or DLP.1

It is demonstrated that optimization techniques developed for testing concept con-
sistency and concept subsumption [Horrocks & Patel-Schneider, 1999] scale up for
testing ABox consistency and can be directly integrated into an ABox reasoning
architecture. We introduce and analyze several optimization techniques which are
either novel or significantly extend the techniques presented in [Horrocks & Patel-
Schneider, 1999]. RACE supports the logic ALCNHR+ because (i) ALCNHR+

is an expressive DL which can be used for solving many application problems (see
below), and (2) it was the design philosophy of RACE is to support only those
representation constructs for which optimization techniques were available or could
be developed.

As we have seen in Section 2.3 all standard inference problems in ALCNHR+ can
be reduced to knowledge base consistency. In the following a calculus to decide
the consistency of an ALCNHR+ knowledge base (T ,R,A) is devised. The first
publication with a calculus for this language is [Haarslev & Möller, 2000b]. Basically,

1RACE is freely available for research purposes [Haarslev & Möller, 1999e].
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the calculus is given as set of non-deterministic rules. Thus, in an implementation
of the non-deterministic algorithm, dedicated search techniques are required (see
below).

4.1 A Tableaux Calculus for ALCNHR+

As a first step the original ABox A of the knowledge base is transformed w.r.t. the
TBox T . The idea is to derive an ABox AT that is consistent w.r.t. an RBox R
(and an empty TBox) iff (T ,R,A) is consistent. The calculus introduced below is
applied to AT and the role box R.

In order to define the transformation steps for deriving AT , we have to introduce a
few technical terms. First, for any concept term we define its negation normal form.

Definition 15 (Negation Normal Form) A concept is in negation normal form
iff negation signs occur only in front of concept names.

Proposition 16 Every ALCNHR+ concept term C can be transformed into an eq-
uisatisfiable concept nnf (C) in negation normal form by recursively applying the
following transformation rules to subconcepts from left to right. If no rule is applica-
ble, the resulting concept is in negation normal form and all models of C are also
models of nnf (C) and vice versa. The transformation is possible in linear time.

• ¬¬C → C
• ¬(C 
 D) → ¬C � ¬D
• ¬(C � D) → ¬C 
 ¬D
• ¬∀R . C → ∃R .¬C
• ¬∃R . C → ∀R .¬C
• ¬∃≤m S → ∃≥m+1 S
• ¬∃≥m S → ∃≤m−1 S

In order to deal with GCI and number restrictions, some additional ABox assertions
are used internally.

Definition 17 (Additional ABox Assertions) Let C be a concept term, a, b ∈ O
be individual names, then the following expressions are also assertional axioms:

• ∀ x . x :C (universal concept assertion),2

• a % .= b (inequality assertion).

2∀ x . x :C is to be read as ∀ x . (x :C).
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An interpretation I satisfies an assertional axiom ∀ x . x :C iff CI = ∆I and a % .= b iff
aI %= bI .

We are now ready to define an augmented ABox as input to the tableaux rules.

Definition 18 (Augmented ABox) For an initial ABox A we define its aug-
mented ABox AT w.r.t a TBox T by applying the following transformation rules
to A. Then, for every GCI C � D in T the assertion ∀ x . x : (¬C � D) is added to A.
Every concept term occurring in A is transformed into its negation normal form. Let
OA = {a1, . . . , an} be the set of individuals mentioned in A, then the set of inequality
assertions {ai % .= aj | ai, aj ∈ OA, i, j ∈ 1..n, i %= j} is added to A.

In order to check the consistency of an ALCNHR+ knowledge base (T ,R,A) the
augmented ABox AT is computed. Then, the tableaux rules are applied to the
augmented ABox AT and a role box R. The rules are applied in accordance with a
completion strategy (see below).

Lemma 19 A knowledge base (T ,R,A) is consistent if and only if AT is consistent
w.r.t. the role box R (and an empty TBox).

Proof. “⇒” Since (T ,R,A) is consistent there exists a model ID = (∆I , ∆D, ·I) such
that ∀C � D ∈ T : CI ⊆ DI . This is equivalent to ∀ a ∈ ∆I : a ∈ CI =⇒ a ∈ DI .
Hence, ∀ a ∈ ∆I : a ∈ (¬C)I ∨ a ∈ DI or ∀ a ∈ ∆I : a ∈ (¬C � D)I . In other words:
(¬C � D)I = ∆I . Thus, due to the semantics given above ∀ x . x :¬C � D is also
satisfied.

“⇐” This can be shown by applying the arguments in the other direction.

Since all terminological axioms in T are appropriately represented in AT , a model
for both AT and R is also a model for A, T and R and vice versa. �
The tableaux rules require the notion of blocking their applicability. This is based on
so-called concept sets, an ordering for new individuals and the notion of a blocking
individual.

Definition 20 (Concept Set) Given an ABox A and an individual a occurring in
A, we define the concept set of a as σ(A, a) := {C | a :C ∈ A}.

Definition 21 (Ordering) We define an individual ordering ‘≺’ for new individuals
(elements of ON ) occurring in an ABox A. If b ∈ ON is introduced in A, then a ≺ b
for all new individuals a already present in A.

Definition 22 (Blocking Individual, blocked) LetA be an ABox and a, b ∈ ON

be individuals in A. We call a the blocking individual of b if the following conditions
hold:
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1. σ(A, a) ⊇ σ(A, b)
2. a ≺ b

If a is a blocking individual for b, then b is said to be blocked by a.

We are now ready to define the completion rules that are intended to generate a
so-called completion (see also below) of an ABox AT w.r.t. an RBox R. From this
point on, if we refer to an ABox A, we always consider ABoxes derived from AT .

Definition 23 (Completion Rules)

R
 The conjunction rule.
if 1. a :C 
 D ∈ A, and

2. {a :C, a :D} %⊆ A
then A′ = A ∪ {a :C, a :D}
R� The disjunction rule (nondeterministic).
if 1. a :C � D ∈ A, and

2. {a :C, a :D} ∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A ∪ {a :D}
R∀C The role value restriction rule.
if 1. a :∀R . C ∈ A, and

2. ∃ b ∈ O , S ∈ R↓ : (a, b) :S ∈ A, and
3. b :C %∈ A

then A′ = A ∪ {b :C}
R∀+C The transitive role value restriction rule.
if 1. a :∀R . C ∈ A, and

2. ∃ b ∈ O , T ∈ R↓, T ∈ T , S ∈ T↓ : (a, b) :S ∈ A, and
3. b :∀T . C %∈ A

then A′ = A ∪ {b :∀T . C}
R∀x The universal concept restriction rule.
if 1. ∀ x . x :C ∈ A, and

2. ∃ a ∈ O : a mentioned in A, and
3. a :C %∈ A

then A′ = A ∪ {a :C}
R∃C The role exists restriction rule (generating).
if 1. a :∃R . C ∈ A, and

2. a ∈ ON ⇒ (¬∃ c in A : c ∈ ON , c is a blocking individual for a), and
3. ¬∃ b ∈ O , S ∈ R↓ : {(a, b) :S, b :C} ⊆ A

then A′ = A ∪ {(a, b) :R, b :C} where b ∈ON is not used in A
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R∃≥n The number restriction exists rule (generating).
if 1. a :∃≥n R ∈ A, and

2. a ∈ ON ⇒ (¬∃ c in A : c ∈ ON , c is a blocking individual for a), and
3. ¬∃ b1, . . . , bn ∈ O , S1, . . . , Sn ∈ R↓ :

{(a, bk) :Sk | k ∈ 1..n} ∪ {bi % .= bj | i, j ∈ 1..n, i %= j} ⊆ A
then A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi % .= bj | i, j ∈ 1..n, i %= j}

where b1, . . . , bn ∈ON are not used in A
R∃≤n The number restriction merge rule (nondeterministic).
if 1. a :∃≤n R ∈ A, and

2. ∃ b1, . . . , bm ∈ O , S1, . . . , Sm ∈ R↓: {(a, b1) :S1, . . . , (a, bm) :Sm} ⊆ A
with m > n, and

3. ∃ bi, bj ∈ {b1, . . . , bm} : i %= j, bi % .= bj %∈ A
then A′ = A[bi/bj], i.e. replace every occurrence of bi in A by bj

We call the rules R� and R∃≤n nondeterministic rules since they can be applied in
different ways to the same ABox. The remaining rules are called deterministic rules.
Moreover, we call the rules R∃C and R∃≥n generating rules since they are rules that
can introduce new individuals.

Given an ABox A, more than one rule might be applicable to A. Rule application is
controlled by a completion strategy in accordance to the ordering for new individuals
(see Definition 21).

Definition 24 (Completion Strategy) We define a completion strategy that must
observe the following restrictions.

• Meta rules:

– Apply a rule to an individual b ∈ ON only if no rule is applicable to an
individual a ∈ OO .

– Apply a rule to an individual b ∈ ON only if no rule is applicable to
another individual a ∈ ON such that a ≺ b.

• The completion rules are always applied in the following order. A step is
skipped in case the corresponding set of applicable rules is empty.

1. Apply all nongenerating rules (R
, R�, R∀C, R∀+C, R∀x, R∃≤n) as long
as possible.

2. Apply a generating rule (R∃C, R∃≥n) and restart with step 1 as long as
possible.
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In the following we always assume that rules are applied in accordance to this strat-
egy. It ensures that the rules are applied to new individuals w.r.t. the ordering ‘≺’
which enforces a kind of breadth-first order.

Despite of the completion strategy, there might be more than rule applicable to
different ABox assertions (cf. the R∃≤n rule) or a rule application results in more
than one possible conclusion ABox (cf. the rule R�). In a computer program, non-
determinism must be implemented with search techniques. The branches of the
search space are referred to as choice points . In a concrete implementation the
application of rules stops immediately and backtracks to (possibly) remaining choice
points, if a so-called clash is discovered.

Definition 25 (Clash, Clash Triggers, Completion) We assume the same nam-
ing conventions as used above. An ABox A contains a clash if one of the following
clash triggers is applicable. If none of the clash triggers is applicable to A, then A
is called clash-free.

• Primitive clash: {a :C, a :¬C} ⊆ A

• Number restriction merging clash:
∃S1, . . . , Sm ∈ R↓ : {a :∃≤n R} ∪ {(a, bi) :Si | i ∈ 1..m}∪
{bi % .= bj | i, j ∈ 1..m, i %= j} ⊆ A with m > n

A clash-free ABox A is called complete if no completion rule is applicable to A. A
complete ABox A′ derived from an ABox A is also called a completion of A.

Any ABox containing a clash is obviously unsatisfiable (w.r.t. an RBox R). The
purpose of the calculus is to generate a completion for an initial ABoxAT that proves
the consistency of AT (w.r.t. an RBox R) or its inconsistency if no completion can
be found.

As mentioned before, soundness and completeness (and termination) of this calcu-
lus has been published in [Haarslev & Möller, 2000b]. Hence, ABox reasoning in
ALCNHR+ is decidable. Since in Chapter 5 of this Habilitation Thesis the decid-
ability of an extension of ALCNHR+ is proven, the proofs given in [Haarslev &
Möller, 2000b] are not repeated here.

4.2 Optimization Techniques for Inference Algorithms

On the one hand, the tableaux calculus introduced in the previous section is of the-
oretical interest for proving the decidability of the ABox consistency problem. On
the other hand, a tableaux calculus provides the basis for developing an implemen-
tation of the calculus as part of an inference system. However, for practical purposes
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such calculi are highly inefficient if nondeterminism is handled with simple back-
tracking search techniques. Therefore, the development of optimization techniques
is an important research topic. This section briefly summarizes some of the already
established optimization techniques known in the field in order to demonstrate the
effectiveness of additional optimization techniques that are integrated into the archi-
tecture of the RACE system. RACE uses a highly optimized variant of the calculus
for ALCNHR+ supported by corresponding data structures.

These techniques form the basis of other ‘modern’ DL system implementations (e.g.
FaCT and DLP [Horrocks & Patel-Schneider, 1999]). The techniques were devel-
oped for reasoners deciding only the concept consistency problem. With RACE
we demonstrate that these techniques scale up and can be integrated into an ABox
reasoning architecture [Haarslev & Möller, 1999b]. In order to explain the effect of
new optimizations, some of the known techniques need to reviewed in the following
paragraphs.3

For the introduction of the optimization techniques a few definitions are required.
For brevity we refer to the ABox assertions involved in an application of the dis-
junction rule R� or the number restriction merge rule R∃≤n as or-constraints. In
addition, other ABox assertions used in a consistency proof are also referred to as
constraints (see also [Schmidt-Schauss & Smolka, 1991] or [Buchheit et al., 1993a]).
An alternative introduced by an or-constraint is also called a disjunct . Applying a
rule to a set of constraints is also called expanding the constraints . If a completion
can be derived based on the expansion of a constraint, the constraint (or a set of
constraints) is said to be satisfiable. Generating rules (R∃C and R∃≥n) introduce
constraints for new individuals. For brevity, the contraints for a new individual
introduced by a generating rule are referred to as a subtableau.

4.2.1 Optimizing Concept Consistency Reasoning

In this section a very brief overview is given about the state-of-the-art techniques
that have been incorporated into the RACE architecture. For detailed examples see
the cited literature.

Normalization and Encoding

Normalization of concepts ensures that concepts are represented in a canonical forms.
For instance, for the concept terms A 
 B and B 
 A the form A 
 B might be chosen
as a normalization. Encoding ensures that for each concept term with the same

3See also work on stochastic search techniques for proving the satisfiability of formulae [Selman
et al., 1992]. Stochastic search techniques are incomplete, i.e. stochastic techniques can prove the
consistency of a formula but not its inconsistency. Nevertheless, stochastic techniques could be
investigated as optimization techniques in future work.
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normal form, a unique identifier is used. In the FaCT system a number is used. The
negation of a concept with number n is always encoded with the number n + 1. The
concept number can be used to index an array of records with additional information
about concepts. For software engineering purposes, in RACE a different strategy is
used. Rather than using numbers, which might be hard to interpret for debugging
purposes, RACE encodes concepts with pointers to record structures. Concepts with
the same normal form are represented by the same pointer. Each record structure
contains a reference to the negated concept. Thus, the implementation of clash
detection is a mere search for a pointer (if no number restrictions are involved). In
RACE, there is no necessity to predefine the number of concepts that can be handled
by allocating an array of a certain size. Due to the object-oriented architecture of
Common Lisp, special print methods can be declared to provide appropriate output
in situations where lists of concepts are to be debugged with an inspector toolkit.

The Trace Technique

Let us assume that the concept term ∃R . A 
 ∀R . B 
 ∃ S . C 
 ∀ S . D is to be checked
for consistency. It can be easily verified that the test can be carried out by consid-
ering the two subproblems A 
 B and C 
 D in succession. Thus, it is not necessary
to actually represent the whole search space at a time. After checking the consis-
tency of A 
 B all constraints generated during the proof can be discarded before
the consistency of C 
 D is checked. For each of the subproblems, the same idea can
be applied recursively. Thus, it is only required that a certain “trace” of the search
space is actually represented in memory. Note that not only the polynomial space re-
quirements are important. Reducing the number of ABox assertions (or constraints)
to be considered at a time is a great advantage from an implementation-oriented
point of view. Thus, all DL systems employ this technique whenever possible. A
prerequisite of the trace technique is that the R∀C rule is always applied right after
(or together with) the generating rules R∃C and R∃≥n.

For description logic ALC, the trace technique has been first presented in [Schmidt-
Schauss & Smolka, 1991]. The applicability of the idea to more expressive languages
such as ALCR and ALCN is shown in [Hollunder & Nutt, 1990]. For the logic
ALCHfR+ a variant of the trace technique is also applicable but due to the interaction
of features and role hierarchies, the computation of the concept terms that must
be tested in combination, i.e. the determination of the subproblems (partitions), is
much more complex because, due to features, merging operations are necessary (for
details see [Horrocks, 1997][p. 74]. For the logic ALCNHR+ with number restrictions
similar techniques for determining a partition to be tested as a subproblems is even
more complex. At-most restrictions along the role hierarchy have to be taken into
consideration. For ABoxes not only concept terms but also role assertions have to
be considered.
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Dependency-Directed Backtracking

As indicated above, implementing a nondeterministic algorithm on a practical com-
puter requires search. Naive backtracking algorithms (i.e. jumping always to the last
choice point) often explore regions of the search space rediscovering the same contra-
dictions (clashes) repeatedly. Dependency-directed backtracking records the depen-
dencies of expanded constraints and in case of a clash backtracks to or-constraints
that are responsible for at least one of the clash culprits in the subtree. The initial
ideas behind dependency-directed backtracking have been published in [Stallman &
Sussman, 1977].

In the FaCT system implementation [Horrocks, 1997] dependency-directed back-
tracking was first systematically integrated into a DL tableaux algorithm (see also
[Drollinger, 1993] about ideas about how to integrate dependency-directed back-
tracking into DL reasoning algorithms). In FaCT and RACE recursion is used to
store the “state” involved in a choice point, i.e. in accordance with the completion
strategy a recursive procedure applies the tableaux rules to a set of ABox assertions
(constraints). After a constraint is expanded by applying a rule, the procedure is
recursively called to process the new set of constraints. Before applying a rule, the
procedure checks for a clash. If a clash is found, the procedure backtracks in such
a way that the control flow continues at an appropriate choice point set up by a
nondeterministic rule. This form of dependency-directed backtracking is also called
backjumping [Ginsberg, 1993; Horrocks, 1997].

The backjumping point is controlled by a list of so-called catcher constraints. The
catchers are those constraints to which a nondeterministic rule is applied. When a
constraint is expanded, and a new constraint is generated by applying a rule, the pre-
condition constraints of the rule are pushed onto the list of dependencies of the new
constraints. In the RACE implementation, every or-constraint on the dependencies
of a precondition constraint is also pushed onto the list of dependencies of the result-
ing constraint (dependency propagation). When a clash is found, the dependencies
of the clash culprits (i.e. the or-constraints that generated these constraints) are
stored on the list of catchers and backjumping is started. Thus, the control flow falls
back out of recursion. Whenever a choice point is encountered during backjumping,
it is checked whether the involved or-constraint is responsible for a clash culprit. If
the or-constraint is not found in the list of catchers, the choice point can be safely
bypassed. In case the or-constraint is found either the remaining alternatives are
tried or the or-constraint is considered as unsatisfiable in the current subtree. The
backtracking continues but removes the current or-constraint from the list of clash
dependencies and adds the saved clash dependencies of the previously unsatisfiable
alternatives.

The basic idea of dependency-directed backtracking implemented in RACE is due to
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FaCT [Horrocks, 1997]. However, RACE provides support for number restrictions
and, therefore, the dependency tracking mechanism had to be extended w.r.t. the
rule R∃≤n and w.r.t. ABox reasoning.

One insight of empirical investigations with the FaCT system is that dependency-
directed backtracking is indeed a very useful optimization technique for many de-
scription logic problems (as opposed to the results in [Freeman, 1995; Truemper,
1998] for propositional logic). Experiments with FaCT, DLP and RACE demon-
strated that disabling dependency-directed backtracking does not make much sense
and, therefore, the dependency management system is wired into the RACE archi-
tecture and its data structures to achieve maximum performance.

Analyses of dependency-directed backtracking can also be found in [Ginsberg, 1993].
In [Ginsberg, 1993] a related technique, called dynamic backtracking is introduced
as well.4

Semantic Branching

Problems are usually given in conjunctive normal form (CNF). In contrast to syntac-
tic branching, i.e. processing disjunctions in writing order, where redundant search
spaces may be repeatedly explored, semantic branching uses a splitting rule which
replaces the original problem by two smaller subproblems (see also [Freeman, 1995]
and [Davis et al., 1962] for the original work concerning propositional logic). Seman-
tic branching is usually supported by various techniques intending to speed up the
search.

Boolean Constraint Propagation: A lookahead algorithm or constraint propa-
gator tries to reduce the size of the open search space. If the satisfiability of a disjunct
is not known, it is called open. After every expansion step, RACE propagates the
truth value of a newly added constraint into all open disjuncts of all unexpanded
or-constraints. As a result of this step, or-constraints might become satisfied (i.e.
one disjunct is satisfied), deterministic (i.e. exactly one disjunct remains open), or
might even clash (no disjunct leads to a completion).

Heuristics-Guided Search: Various heuristics are used to select the “next” un-
expanded or-constraint and one of its associated disjuncts. Similar to FaCT, RACE
employs a dynamic selection scheme. A so-called oldest-first strategy is used for se-
lecting one or-constraint with at least two open disjuncts. The idea behind the
oldest-first strategy is to maximize the effect of dependency-directed backtracking.

4See also [Ginsberg & McAllester, 1994] for work on dynamic backtracking in stochastic search
algorithms.
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For every new or-constraint which is generated during the search tree expansion a
number is generated. The number represents the age of the or-constraint. Smaller
numbers represent older or-constraints, i.e. or-constraints that have been generated
early in the search. If a selected or-constraint leads to a clash, then backjumping is
performed (see above). The idea of selecting the oldest or-constraints is to skip as
much of the search space as possible by performing backjumping.

Once an or-constraint is selected for expansion, one of its open disjuncts must be
chosen. In accordance with [Freeman, 1995] the selection heuristics is based on the
number of the negated and non-negated occurrences for each open disjunct in all
other unexpanded or-constraints. These numbers are used as input for a priority
function that selects a disjunct by applying a certain weighting scheme. In order
to minimize the search space, disjuncts are preferred that have a similar number
of negated and non-negated occurrences. Furthermore, those disjuncts from the
selected or-constraint are preferred that occur in other or-constraints with a small
number of disjuncts. The idea behind the latter strategy is to maximize the effect
of boolean constraint propagation (see above). In order to perform the counting
required for implementing the priority function very quickly, for every or-constraint
RACE precomputes two lists for cross-referencing other or-constraints that contain
the or-constraint’s disjuncts in negated or non-negated form.

Once a disjunct is selected, the priority function is also used to determine whether the
constraint is tried in negated or non-negated form first. In case of a failure, the other
alternative is explored. Since semantic branching is combined with dependency-
directed backtracking, a specific dependency management is required for disjuncts
during backtracking and forward checking.

Semantic branching optimization techniques have also been developed for provers in
modal logics (see the so-called “SAT techniques” initially described in [Giunchiglia
& Sebastiani, 1996]).

4.2.2 Optimizing TBox Reasoning

Dealing with TBoxes requires specific optimization techniques tailored to the infer-
ence services provided.

Lazy Unfolding

The tableaux calculus described above treats axioms of the form C � D by trans-
forming them into universal concept restrictions of the form ∀ x . x :¬C � D. The
rule R∀x is applied to every new individual introduced by the generating rules R∃C
and R∃≥n. This adds additional assertions to every subtableau. Even worse, the
universal concept restrictions contain disjunctions, i.e. the search space is dramat-
ically extended. Although techniques for efficiently managing the search space are
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integrated into modern DL architectures (see above), in the average case it is always
advantageous to reduce the number of assertions the prover has to deal with. There-
fore, in the KRIS system a technique called lazy unfolding was investigated [Baader
et al., 1992; Baader et al., 1994] for the logic ALCNF .5 The idea is to exploit special
forms of GCIs in the TBox. If there is a GCI A � C in the TBox with a concept
name A on the left-hand side and (i) there is no other GCI with A on the left-hand
side, (ii) there is no GCI C � A in the TBox and (iii) the GCI A � C is not cyclic
with respect to the TBox, then the GCI A � C is called a primitive concept definition
(i.e. a definition with only necessary conditions). If there exists an additional GCI
C � A, the set {A � C, C � A} is called a concept definition (i.e. a definition with
necessary and sufficient conditions). For a concept definition the abbreviation A

.
= C

is used. In the following we call GCIs that represent primitive concept definitions
simple GCIs. Other GCIs are also referred to as true GCIs. Concept definitions and
primitive concept definition are also called concept introductions .

Now, given a TBox where concept definitions and primitive concept definitions are
identified, then, by the introduction of additional rules the DL prover “expands”
assertions of the form i :A and i :¬A in a lazy way. Let us discuss the first case. If
for A there exists a primitive concept definition A � C, the definition of A is inserted
into the ABox as an assertion i :C. If there exists a concept definition for A, i :A is
expanded as well in the same way as for primitive concept definitions. For concept
definitions, assertions of the form i :¬A are treated in a similar way, i.e. the assertion
is expanded by inserting i :¬C into the ABox. However, i :¬A need not be expanded
using the above-mentioned technique if there exists a primitive concept definition.

Empirical tests indicate a significant speed gain if the lazy unfolding technique is
implemented in a prover architecture [Baader et al., 1992; Baader et al., 1994].

GCI Transformations

The general idea of this technique is to eliminate true GCIs in a preprocessing
phase by transforming them into concept definitions or simple GCIs [Horrocks,
1997]. The GCI transformation is illustrated by the following example. The two
GCIs {A � E � F, A 
 B � C 
 D} are transformed into the single concept inclusion
A � (E � F) 
 (¬B � (C 
 D)). Due to the transformation there remains only one
concept inclusion with A on the left-hand side. Thus, we have a simple GCI. Since
after the transformation there are fewer GCIs in the equisatisfiable TBox, the old
GCIs are called absorbed GCIs .

Any non-simple GCI that could not be absorbed has to be represented by a universal
concept restriction (see the corresponding rule in tableaux calculus presented in

5Probably, similar techniques have been used in other DL systems before KRIS as well. How-
ever, only the work on KRIS contains a systematic empirical evaluation of the effects.
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Section 4.1). These restrictions usually add disjunctions to every subtableau and are
a major source of complexity (see the discussion about lazy unfolding). As we have
discussed before, for simple GCIs it is not necessary to introduce universal concept
restrictions if the lazy unfolding technique is used. In summary, the goal of this
compilation process is to keep the structure of the GCIs as “simple as possible” and,
furthermore, to keep their number as small as possible. The remaining GCIs are also
called meta constraints and are dealt with by the rule completion rule R∀x.

Marking and Propagation Techniques

The RACE architecture incorporates the TBox reasoning algorithms described in
[Baader et al., 1992; Baader et al., 1994] for computing the sets of parents and
children for each atomic concept used in a TBox. Let us assume there exists a lattice
of concept names defined by the parent (or children) relation (see the definition of the
inference problems in Section 2.3). Now let us assume that the parents and children
of a new concept name are to be computed, i.e. the new concept name is “inserted”
into the so-called subsumption lattice. The parents for a new concept name CN are
computed in a so-called top-search phase. Starting from the top of the lattice, the
so-called � concept, the subsumption relation between CN and the concept names
already found in the lattice is determined. The search proceeds downwards until
the most-specific concept names found in the lattice that subsume CN are identified
(for details see [Baader et al., 1992; Baader et al., 1994]). The children of CN are
identified in a analogous way in a so-called bottom-search phase proceeding from the
bottom (⊥) of the lattice towards the top.

The construction of the subsumption lattice starts with an initial lattice consisting
only of � and ⊥. Then, all concept names are inserted one after another. In the
worst case, constructing the lattice requires O(n2) subsumption tests where n is the
number of atomic concepts. Therefore, marking and propagation techniques based on
intermediate computation results in the subsumption lattice are analyzed in [Baader
et al., 1992; Baader et al., 1994]. The main idea is to avoid “expensive” subsumption
tests with full tableaux proofs by exploiting “obvious” information as far as possible
(see also the work on Kl-One and KRIS described in Chapter 3).

Flat Model Merging

The model merging strategy tries to avoid a consistency test for a conjunction of
concepts, which relies on the “expensive” tableaux technique (see above). A model
merging test is designed to be a “cheap” test operating on cached “concept mod-
els.” It is a sound but incomplete consistency tester for a set of concepts. Minimal
computational overhead and the avoidance of any nondeterminism are important
characteristics of such a test. If a model merging test returns false, a sound and
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complete tableaux calculus is applied. In order to be more precise, we use the term
pseudo model instead of “concept model.” A model is understood in the sense of an
interpretation and a pseudo model as a data structure containing recorded informa-
tion.

Model merging is particularly important for implementing TBox inference services.
The test whether a concept C subsumes a concept D is preceded or may be even
replaced by a merging test for so-called pseudo models of ¬C and D. Pseudo models
are data structures that capture the constraints represented by a completion used to
prove the consistency of a concept term. If the constraints (pseudo models) found in
the completions of two consistent concept terms do not interact, the conjunction of
the concepts is consistent as well [Horrocks, 1997] (see below for a detailed definition).
The idea is to store the constraints in such a way that the test whether the constraints
interact can be executed in a very fast way.

If the pseudo models are mergable, C does not subsume D. This technique was
first realized in the FaCT system for ALCHfR+ . RACE extends this technique for
ALCNHR+ . The model merging test in RACE correctly deals with number restric-
tions, i.e. the model merging test is realized as an incomplete structural consistency
test for the languageALENH (ALE plus number restrictions and role hierarchies). If
non-ALENH language constructs are encountered, the answer of the structural sub-
sumption test is “do not know.” In this case the full sound and complete ALCNHR+

tableaux calculus is used. In order to avoid redundancy, details are explained below
in the context of proposed extensions.

4.2.3 ABox Partitioning and Multiple TBoxes or ABoxes

Only very few publications consider optimizations for ABox reasoning. A notable
exception is [Hollunder, 1994]. In the context of the KRIS system it is suggested
to automatically partition an ABox into independent subparts. This scheme of au-
topartitioning is supported by RACE. RACE offers additional optimizations which
will be discussed in the next sections. As the KRIS system [Baader & Hollunder,
1991b; Baader & Hollunder, 1991a], RACE also supports the declaration of multiple
ABoxes w.r.t. a certain TBox. TBox inferences are only required once. A TBox can
serve as the “background knowledge” employed for specific inference problems about
“data” (ABoxes). Similar to the KRIS system but in contrast to the FaCT system,
RACE also supports multiple TBoxes, i.e. TBoxes are objects that can be stored in
data structures etc.
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4.3 Demanding Problems for Testing DL Systems

Although much has been achieved in recent years, there are many interesting ap-
plication problems that could not be solved with existing DL technology before the
development of RACE. With the new and extended optimization techniques de-
scribed in this chapter RACE can cope with “complex” knowledge bases developed
in the area of system verification and medical ontologies. In the former case the
complexity is due to cyclic axioms whereas in the latter case it is the large number
of axioms and concept names that contributes to complexity. We briefly introduce
different variants of knowledge bases from both areas which, at the time of their de-
velopment, could only be processed with the RACE system within appropriate time
limits. Afterwards, a set of quasi-standard benchmark problems is discussed in order
to compare RACE with other DL systems when extended and new optimization
techniques implemented in RACE are introduced.

4.3.1 TBox for Specification Verification in Telecommunication Systems

The first application of DL technology uses the consistency inference problem in
order to verify the specification of telecommunication systems. Since telecommuni-
cation systems offer many features which become more and more complex, it is often
not apparent whether different features can be effectively combined. Features can
interact in unwanted and unforeseen ways. If an unwanted feature interaction occurs
in a telecommunication system which is already installed at the site of a customer,
usually high reconfiguration costs are the consequence. Thus, checking the formal
specification of a system before actually installing it can be essential. Although some
progress has been made in this area, approaches where interactions are described in
a formal logic and where interaction detection is formulated as a reasoning task,
are relatively rare [Areces et al., 1999]. Automatically generated formal proofs, de-
rived with verified provers can raise the confidence in a telecommunication system
specification. Empirical studies have shown that most of the interactions occurring
in telecommunication systems can be detected by considering systems with up to 7
users.

In [Areces et al., 1999] an approach for detecting feature interactions using descrip-
tion logics is presented. As a description logic ALC with TBoxes containing cyclic
GCIs is used. In the following the main idea behind the encoding of the behavior of
a phone system with a description logic TBox is briefly reviewed. The behavior of a
phone system is modeled with a state space graph (see Figure 4.1). In a state space
graph, vertices denote states, and edges represent actions. States are described by
concept names, actions are represented by roles. Let us assume that a phone system
is in a certain state. The state is an instance of one or more concepts. For the con-
cepts, a set of axioms is defined. The axioms describe possible actions of the users
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Figure 4.1: States (vertices) and actions (edges) of a telecommunication system with
two subscribers (the symbol ∼ in front of an action means that the successor vertex
denotes a system state with constraints for another subscriber).

(also called subscribers). The basic idea is to use exists restrictions (∃R . C) on the
right-hand side of the axioms. The role R of an exist restriction used for that purpose
denotes the action of a certain subscriber. The concept C of the exists restriction
models the state of the phone system after the action. Thus, a TBox is used to
model the state-space graph of a so-called basic call system with n subscribers.

In Figure 4.1 a part of the state space of the telecommunication system is presented.
Only two subscribers A and B are considered. As can be seen in Figure 4.1 the graph
is cyclic. Hence, the TBox for describing the state space contains (indirectly) cyclic
axioms.

In the approach described in [Areces et al., 1999], features of telephones such as
‘call forwarding unconditional’ (CFU) or ‘terminating call screening’ (i.e. rejecting
calls, TCS) are modeled with a set of additional axioms for each feature and for each
subscriber.

The specification of the basic call system is faulty if one of the concept names used in
the initial TBox (called BCS) is inconsistent. Now, if certain features are activated
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for certain phones, additional axioms are added. Even though the BCS might be
coherent, adding additional axioms for activated features might result in an inconsis-
tency to occur. In this case a feature interaction is detected. This might be the case
when, for instance, a subscriber B redirects calls to another subscriber C in order to
receive phone calls there, but is not aware that the subscriber C rejects calls from
subscriber A. In this case the subscriber B unintentionally rejects calls from A.

In a BCS TBox (and possibly a TBox with additions for activated features) a very
large state space is encoded for even few subscribers and, hence, checking the coher-
ence of such a cyclic TBox is a hard problem for description logic inference systems.
Due to the combinatorics adding another subscriber results in an exponential in-
crease in runtime. For evaluating the performance of RACE, BCS-TBoxes for three
to five subscribers are considered. The TBoxes are called ‘BCS3’, ‘BCS4’ and ‘BCS5’,
respectively. The evaluation results are presented below.

The BCS problems can be considered as representatives for similar specification ver-
ification problems from other domains. Hence, solving the TBox coherence problem
for BCS (and its extensions with certain features) demonstrates the relevance of DL
inference technology for modern software engineering and verification problems and
shows the practical usefulness of the RACE system in this context. For details of
the BCS system formalization see [Areces et al., 1999].

4.3.2 Ontology Engineering in Bio-Informatics: UMLS-TBox

For web information systems, thesaurus-based information retrieval has proven to be
a very effective means for providing answers that are better focused to the interests
of users. Recently, a discipline called ontology engineering has emerged from various
research fields in artificial intelligence and database theory.6 The main idea of ontol-
ogy engineering is to augment thesaurus-based but semi-structured representations
with inheritance-based inference techniques.

As an example we consider a “reconstruction” of important parts of the UMLS
(Unified Medical Language System [McCray & Nelson, 1995]). The reconstruction
employs the DL ALCNH with cyclic axioms and is described in [Schulz & Hahn,
2000] and introduces a specific scheme that uses several concept names to represent
subset as well as composition aspects of each word mentioned in the UMLS thesaurus.
A TBox is (more or less) automatically generated from specifications in the UMLS
thesaurus [Schulz & Hahn, 2000]. For instance, for the notion of a ‘heart’, the
following axioms for heart structures (suffix ‘s’), heart parts (suffix ‘p’) and heart
entities (no suffix) are declared (see [Schulz & Hahn, 2000] for details):

6For ontology engineering an organization has been founded, see www.ontology.org.
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ana heart � ana heart s 

ana hollow viscus 

umls body part organ or organ component

ana heart s � ana hollow viscus s 

ana cardiovascular system p

ana heart p � ¬ana heart 

ana heart s 

∃≥1 anatomical part of ana heart

Note the disjointness declaration between ana heart p and ana heart. The following
role axiom is generated as well.

anatomical part of ana heart � anatomical part of ana hollow viscus

It is beyond the scope of this chapter to discuss the pros and cons of specific modeling
techniques used in the UMLS reconstruction.

In many application projects that are comparable to the UMLS example it is nec-
essary to deal with TBoxes with a large number of axioms. In addition, in many
applications only a small subset of the axioms are true generalized concept inclu-
sions (GCIs). In most cases, axioms are concept introduction axioms. Usually it has
been argued that only systems based on incomplete calculi can deal with knowledge
bases with more than 100,000 axioms of this kind. With the empirical analysis of
the performance of the description logic system RACE it is shown that description
logic systems based on sound and complete algorithms are particularly useful for
simple but large knowledge bases consisting mainly of primitive concept definitions.
A knowledge base is called simple if no meta constraints remain after the absorption
phase (see Section 4.2.2) and there exist (almost) no defined concepts.

The performance of the RACE system is evaluated with different versions of the
UMLS knowledge base. UMLS-1 is a preliminary version that contains many incon-
sistent concept names. It consists of approximately 100,000 concept names and for
almost all of them there exists a primitive concept definition A � C with C not being
�. In addition, in UMLS-1 80,000 role names are declared. Role names are arranged
in a hierarchy. UMLS-2 is a new version in which the reasons for the inconsisten-
cies have been removed. The version of UMLS-2 that is used for the empirical tests
contains approximately 160,000 concept names. Furthermore, about 80,000 roles are
declared.
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Originally, the UMLS knowledge base has been developed with Loom 4.0 [MacGregor,
1994]. If Loom encounters a cyclic definition for a certain concept, then Loom does
not classify this concept (and the concepts which use this concept). Due to Loom’s
treatment of cycles, the concepts are placed in a so-called :implies clause, i.e. these
restrictions are only asserted for individuals in an ABox via the rule mechanism.
For the same reason, the UMLS reconstruction uses :implies for domain and range
restrictions for roles, i.e. domain and range restrictions are only asserted in the ABox.

With RACE, none of these pragmatic distinctions are necessary. However, in order
to mimic the Loom behavior, for each of the knowledge base versions, UMLS-1 and
UMLS-2, three different subversions were generated (indicated with letters a, b and
c). Version a uses axioms of the style presented above, i.e. the :implies parts are
omitted for TBox classification (and coherence checking). In version b the :implies
part of the Loom knowledge base is indeed considered for classification by RACE.
Thus, additional axioms of the following form are generated and added to the TBox.

ana heart � ∃ has developmental fo . ana fetal heart 

∃ surrounded by . ana pericardium

Version c is the hardest version. Additional axioms provide domain and range restric-
tions for roles. For example, for anatomical part of ana heart the following axioms are
generated.

∃ anatomical part of ana heart .� � ana heart p

� � ∀ anatomical part of ana heart . ana heart

Axioms of this kind cannot be absorbed by the GCI transformation algorithm used
in FaCT. Thus, since there are 80,000 roles used in the UMLS-2c TBox, a DL system
that does not deal with domain and range restrictions in a special way will instantly
run into combinatorial explosion if GCIs of this kind are treated with the universal
concept restriction rule R∀x (see Section 4.1).

In summary, for the performance evaluation of RACE we have tested 6 different
knowledge bases. Currently, RACE is the only DL system based on sound and
complete inference algorithms that can cope with very large TBoxes such as those
generated in the UMLS reconstruction approach. Details about the performance
analysis of different optimization techniques are presented below.

4.3.3 Testing Methodology

Most of the tests for evaluating optimizations in RACE use CPU time as a mea-
sure of performance. Some researchers have argued that performance measurements
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should not consider CPU time but rather “abstract” operations involved in an algo-
rithm. Many of these abstract operations can be recorded in the RACE system and
are available for debugging purposes (e.g. semantic splits for semantic branching,
number of model merging tests, number of subsumption tests with the tableaux cal-
culus, number of retracted models etc.). However, presenting internal details would
result in a discussion which would be far too fine-grained to be of general interest
in this context. Furthermore, many of the operations are specific to a certain im-
plementation of a tableaux calculus (e.g. constraint system sizes). Therefore, for
the evaluation results presented in this chapter absolute runtime is used as a very
general indicator for the effect of certain optimization technology. Moreover, since
many of the benchmarks consist of a sequence of problems each of which requires an
exponentially increasing runtime, for instance, doubling the mere processing power
results in at most one additional problem to be solved. With this kind of setting,
only new algorithms and data structures can help in achieving a speed gain of an
order of magnitude.

For the application problems mentioned in the two previous subsections, it is only
important that they can be solved in a “reasonable amount of time”, i.e. within a
few hours. As we will see, at the time of this writing, RACE is the only system
that can deal with these kinds of applications of DL technology. The effectiveness
of optimization techniques is also evaluated with 11 additional TBoxes developed in
other application projects. However, with modern systems, classification times range
from a few seconds to a few minutes. These knowledge bases have been used in several
system competitions and they are used to compare RACE with other systems. The
‘Galen’ TBox was already used in [Horrocks, 1997; Horrocks, 1998; Horrocks &
Patel-Schneider, 1999]. Three different versions of ‘Galen’ use different DLs ranging
from ALE to ALCHfR+ . The TBoxes ‘ESPR’, ‘WISBER’, ‘CKB’, and ‘FSS’ are
enhanced versions of the TBoxes used in the DL’98 system comparison [Horrocks
& Patel-Schneider, 1998a]. We restored role hierarchies and domain and/or range
restrictions for primitive roles using GCIs [Haarslev & Möller, 1999b]. A set of nine
new TBoxes ‘Bike1’ to ‘Bike9’ represent configuration knowledge about various types
of bicycles using ALCNH with GCIs. ‘Bike1’ to ‘Bike9’ evaluate the efficiency of
the implementation of the number restriction exists rule and the number restriction
merge rule. For the Bike-TBoxes, corresponding ABox benchmarks are also available
[Haarslev & Möller, 1999b].

In addition to various TBoxes derived from applications, a set of synthetic concept
consistency and TBox benchmark problems is used to compare RACE with other
systems. This set of benchmark has also been used for evaluating the KRIS sys-
tem [Baader et al., 1994] and the FaCT system [Horrocks, 1997]. Furthermore, a
new set of synthetic ABox benchmarks has been developed in order to measure the
performance of the RACE system concerning ABox consistency testing [Haarslev &
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Möller, 1999b]. Each synthetic benchmark contains 21 problem sets (or levels) that
are constructed in such a way that runtimes increase exponentially from level to level
if no specific optimization techniques are employed. Thus, using a faster machine
should result in at most one additional level to be solved.

4.4 Extended and New Optimizations in RACE

Many new optimization techniques have been developed for the RACE system.
Some of them are extensions or adaptations of previously published techniques. This
section gives an overview about the utility of different techniques using empirical
investigations.

4.4.1 Optimizations for Concept Consistency and TBox Reasoning

In this section we discuss TBox optimization techniques that are either novel or have
been implemented and evaluated for the first time.

New Transformations on GCIs

Based on the results in [Horrocks, 1997], RACE transforms GCIs into a form such
that lazy unfolding can be more effectively exploited. A formal analysis of GCI
transformation techniques has been presented in [Horrocks & Tobies, 2000]. RACE
used a slightly extended scheme for transforming GCIs.

Domain and range restrictions for roles might be given implicitly as GCIs. These
GCIs are removed by RACE since domain and range restrictions are specially treated
in the RACE architecture (see below). Furthermore, GCIs of the form � � ∃≤0 R (or
� � ∀R .⊥) are removed as well. Instead, the role R and all its subroles are declared
as features. Features are handled in a special way in accordance with [Horrocks,
1997][p. 74f.].

Other transformations are motivated by a heuristic which tries to maximally simplify
GCIs and to absorb GCIs (elements of a set G) into a set D (‘concept definitions’
and ‘primitive concept definitions’) whose elements are specially treated in RACE
by the lazy unfolding technique (see above). Let us assume that all concepts are
in negation normal form and the terms ‘concept definition’ and ‘primitive concept
definition’ are defined as above. The transformation scheme starts with the sets D ,G
initialized as follows.

D :={A � C |A � C is a primitive concept definition in T }
G :={C � D ∈ T } \ D
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The GCIs in G are iteratively transformed or removed from G and added to D .
The process stops and returns G and D if no GCI transformation rule is applicable
anymore. The process employs the transformation rules as given in [Horrocks, 1997]
with the additional rule application steps roughly sketched below.

1. If two GCIs A � C, C � A are in G such that {A � C, C � A} is a concept
definition in D ∪G, the two GCIs A � C, C � A are removed from G and the
term A

.
= C is added to D .

2. If there exists a concept definition C
.
= D1 
 . . . 
 Dn in D and Di � E ∈ G ,

then remove C
.
= D1 
 . . . 
 Dn from D and add C � D1 
 . . . 
 Dn to D and

D1 
 . . . 
 Dn � C to G . The condition Di � E ∈ G ensures that the trans-
formation is only performed if there is an inclusion axiom for one of the Di

concepts.

3. If there exists a GCI C � D1 
 . . . 
 Dn in G and there exists an i such that Di

is a negated concept7, remove the GCI C � D1 
 . . . 
 Dn from G and add the
GCIs {C � D1, . . . , C � Dn} to G . Let us assume there exist a Di = ¬A.
Then, other transformation rules subsequently transform the GCI C � ¬A
into A � ¬C. If A � ¬C is a primitive concept definition in D ∪ G or can
be absorbed such that a primitive concept definition remains, then the GCI
C � D1 
 . . . 
 Dn can be more effectively treated. Furthermore, it might also
be possible to absorb C � Dj (j %= i) using other transformation rules.

4. Furthermore, if there are two GCIs C1 � D and C2 � D in G, then replace
these GCIs by one GCI of the form C1 
 C2 � D. This transformation might
also be implemented in the FaCT system. It represents an application of the
distributive law. Due to our experiences, for some optimization techniques
mentioning D twice might lead to problems with the heuristics used to select
disjuncts (see the section on heuristics guided search in Section 4.2.1).

Note that, in contrast to FaCT, RACE also supports absorption of GCIs into
inclusions ¬A � C1 (but only if no inclusion A � C2 or definition A

.
= C2 exists).

Some knowledge bases can only be handled effectively with ¬A � C1 absorptions.

Empirical investigations of the new GCI transformation techniques are presented
below.

7Actually, as a concept is required to be in NNF, the concept in the scope of a negation must
be a concept name.
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Caching in RACE

Caching of intermediate computation results is a necessary prerequisite to prove
the (in)consistency of many concept terms [Horrocks & Patel-Schneider, 1999]. In
tableaux calculi for testing concept consistency, sets of concepts representing a con-
junction are manipulated. These concept sets are also called “labels”. For instance,
let us assume a concept set L contains the set {∃R . C,∀R . D,∀R . E} as a subset
and there are no other all-concepts for the role R in L. The tableaux rule for treat-
ing some-concepts identifies corresponding all-concepts and checks if a completion
of subtableau {C, D, E} can be found. The concepts in the original concept set L
are not relevant for this test. It can be shown that even for ALCNHR+ this trace
technique can be applied for consistency testing (see Section 4.2.1). In other words,
concept sets resulting from some-concepts (and corresponding all-concepts) can be
independently tested for consistency because there is no interaction with the original
concept set which contains the some- and all-concepts.

Once the solution for the consistency problem for a set of concepts has been com-
puted, the answer is stored in a cache. The key of the cache is the set of concepts
being considered.8 The cache value indicates whether the conjunction of the key is
satisfiable or not. Now, given such a cache, an “expensive” tableaux proof can be
avoided if a “cheap” cache lookup indicates whether a set of concepts has already
been proven to be consistent or inconsistent.

For concept consistency , the cache technique described above is sketched in [Horrocks
& Patel-Schneider, 1999]. However, in an implementation of a tableaux calculus
for deciding ABox consistency , the technique cannot be directly applied since it
might be possible that the new individual which is generated by applying the rule
for treating some-assertions must possibly be identified with an old individual, i.e.
additional assertions are possibly imposed. Furthermore, if we consider the logic
ALCNHR+ , number restrictions can also require the identification of individuals.
However, when there are neither role assertions nor at-most restrictions imposed for
the corresponding role, the above-mentioned situations can be ruled out and the trace
technique becomes applicable. The assertions for the new individual do not interact
with assertions in the original ABox, and the consistency of the new assertions can be
tested by checking whether the new “partition” (a fresh ABox with just the concept
constraints for the new individual) is consistent. Since there is only one individual
and no role assertions, the set of concepts of the corresponding concept assertions
can be checked against a cache, i.e. the same subtableaux caching technique as used
in implementations for concept consistency algorithms can be employed.

8In many cases, sets are implemented as lists. Thus, in order to preserve the set semantics when
using the key for cache retrieval, the list has to be sorted such that the elements in the list are in
a canonical order.
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1. {i0 :E}

2. {i0 :E, i0 :∃R . C} ∨ {i0 :E, i0 :∃R . D}

3. {i1 :C}

4. {i1 :C, i1 :∃R . D, i1 :∃ S . X, i1 :∀ S .¬X 
 A}

5. {i2 :D}

6. {i2 :D, i2 :∃R . C}

7. {i3 :C}

8. {i4 :X, i4 :A, i4 :¬X}

9. {i5 :D}

Figure 4.2: Caching example with blocking (see text).

Although memory consumption might lead to problems and memory management
strategies might be necessary, empirical tests indicate that the subtableaux caching
technique is very effective for many ABox consistency problems (see below for a dis-
cussion of the effects when subtableaux caching is disabled). However, there are some
benchmark problems where memory management techniques are indeed required in
order to preserve an upper bound on memory consumption. Subtableaux caching
has been first investigated with DLP. Only recently, FaCT has been extended with
this technique. No details have been published, though.

Solving a consistency problem {i0 :E} w.r.t. the following (cyclic) inclusion axioms
demonstrates that caching must depend on the “blocking context”. If the blocking
context is not considered carefully, invalid models might be entered into the cache.
This is shown with an example. Let us consider the following TBox:

C � (∃R . D) 
 (∃ S . X) 
 ∀ S . (¬X 
 A)

D � ∃R . C

E � (∃R . C) � (∃R . D)

Furthermore, the consistency of the concept E w.r.t. the TBox is to be tested. The
proof steps are presented in Figure 4.2. Although the RACE system employs various
heuristics for choosing the next assertion to be expanded, for presentation purposes
we assume that the constituents of a conjunction or disjunction are considered in
writing order. The effect described below would also occur when specific selection
strategies are exploited but the presentation would be much more complex. In the

94



figure the sequence of “expansion” steps is indicated with numbers. Furthermore,
the lazy unfolding strategy for dealing with inclusion axioms is used (there are no
meta constraints).

In step 1, the initial problem {i0 :E} is presented. Since there is an axiom for E
involving a disjunction we get two constraint systems (see line 2). Let us assume the
first alternative is tried first. This leads to a subconstraint system (number 3). The
assertion from step 3 is expanded w.r.t. the axioms and we get the constraint system
in step 4. The first some-constraint is expanded first. In step 5 the corresponding
subconstraint system is considered. The right-hand side of the axiom for D is inserted
(step 6). The some-constraint yields another subconstraint system (step 7). Due
to the blocking strategy (see Definition 22), the constraint system in step 7 is not
expanded (see the constraint system in step 3 with the blocking individual i1). Hence,
the assertion i2 :∃R . C from step 6 is assumed to be satisfiable. In Figure 4.2 the
corresponding interpretation is indicated with a dashed arrow.

An often-employed strategy is to cache intermediate results, i.e. the satisfiability of D
is stored as a pseudo model {D,∃R . C} (see below for details). Let us assume that at
the end of step 7 a pseudo model for D is stored as indicated above. In our example,
there are some proof steps pending. In step 8 the remaining constraints from step 5
are considered. Obviously, the second some-constraint for the role S together with
the value restriction for S causes a clash. Therefore, the second alternative in step
2 has to be considered. The corresponding subconstraint system is presented as
step 9. If the consistency of D is checked by examining a cache entry for D, the
overall result will be “E is consistent”. Obviously, this is erroneous. The reason is
that the caching principle described above does not consider the dependency on the
satisfiability of C. Therefore, a dependency tracking mechanism for cache entries is
implemented in RACE. Once the system detects the inconsistency of a concept (or
constraint system) on which a cached pseudo model is dependent, the corresponding
cache entries are (recursively) invalidated.

If, during a certain tableaux proof for the consistency of a concept term, a some-
constraint (e.g. ∃R . C interacts with all-constraints ∀R . D and ∀R . E), then an-
other strategy is to cache the result of checking the consistency of the subproblem
{inew :C, inew :D, inew :E}. Again, the dependency tracking mechanism implemented in
RACE ensures correct behavior of the subtableaux caching strategy in the case of
blocking.

RACE supports different caching policies. A cache for finding information about
(sorted) sets of concepts is used for checking whether a set of concepts is satisfiable or
unsatisfiable (so-called equal cache implemented as a hash table). Furthermore, a pair
of caches for satisfiable as well as unsatisfiable concept sets is provided. These caches
support queries concerning already encountered supersets and subsets of a given set of
concepts, respectively. If the equal cache is enabled, it is the first reference. Only if a
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cache lookup fails, the superset or the subset caches are consulted. If the equal cache
is enabled, all retrieval results from the superset of subset caches are also entered
into the equal cache. The data structures for the subset/superset caches are inspired
by [Hoffmann & Köhler, 1999]. The default mode of RACE uses subset/superset
caching only. In the context of DL systems, subset/superset caching has first been
investigated with the RACE system (see also [Giunchiglia & Tacchella, 2000] for an
investigation of this technique for modal logic provers that do not require blocking).

Summary of Empirical Results for the BCS TBoxes

In Table 4.1 the runtimes for the example problems BCS3 to BCS5 are shown. The
tests have been performed with Macintosh Common Lisp on a 400MHz PowerMac
in a partition of about 90MByte. Without subtableaux caching, none of the prob-
lems can be solved in a reasonable amount of time. For the tests in Table 4.1 equal
caching is always enabled. The tests indicate that with subset/superset caching also
enabled (setting 1) a speed gain can be achieved. However, runtimes do not increase
dramatically if subset/superset caching is disabled (setting 2). The settings 3 and
4 correspond to setting 1 and 2, respectively, but the enhanced GCI transforma-
tion techniques are disabled. Execution times for knowledge bases in which feature
interactions concerning CFU and TCS are detected require comparable runtimes.

The system FaCT has been extended with subtableaux caching only recently (only
equal caching and no subset/superset caching) [Horrocks, 2000]. No runtimes for
the BCS problems are available. Details are about caching in FaCT have not been
published. The initial version of FaCT could not cope with BCS5. The DLP
system does not support GCI absorption and, therefore, cannot deal with the BCS
problems, either. As we have seen, RACE can handle specifications for systems with
up to 5 users. So, some progress has been made to support the practical verification
of system specifications with automatic theorem provers. However, dealing with
systems of 6 or even 7 users is currently beyond reach (cf. Section 4.3.1).

Table 4.1: BCS TBox classification tests with caching (times in seconds).

KB (1) (2) (3) (4)
BCS3 4.8 5.7 18.5 19.5
BCS4 105 146 180 203
BCS5 47460 51175 57030 83251
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Exploiting Deep Models for TBox Reasoning

In Section 4.2.2 we have discussed that a subsumption test or a test to check whether
a conjunction of concepts is satisfiable can be replace by a so-called flat-model merg-
ing test. In the following we present and analyze a technique called deep model
merging that generalizes the original model merging approach [Horrocks, 1997] in
two ways. (1) We extend the model merging technique to the logic ALCNHR+ .
(2) We introduce deep pseudo models which are recursively traversed and checked
for possible clashes. To the best of our knowledge this is the first formal treatment
showing the soundness of model merging.

Definition 26 (Pseudo Model) A pseudo model for a concept term C is defined
as follows. Let A ∈ C be a concept name, R ∈ R a role name, F ∈ F a feature
name. If C is inconsistent, the pseudo model of C is defined as ⊥. If C is con-
sistent, then there exists a set of completions C for the ABox A ={a :C}. A
completion A′ ∈ C is selected and a pseudo model M for a concept C is defined
as the tuple 〈M A,M ¬A,M ∃,M ∀〉 of concept sets using the following definitions:

M A = {A | a :A ∈ A′}, M ¬A = {A | a :¬A ∈ A′}
M ∃ = {∃R . C | a :∃R . C ∈ A′} ∪ {∃≥n R | a :∃≥n R ∈ A′}
M ∀ = {∀R . C | a :∀R . C ∈ A′} ∪ {∃≤n R | a :∃≤n R ∈ A′} ∪ {∃F . C | a :∃F . C ∈ A′}

For brevity a pseudo model is called a pmodel . Note that the set M ∃ contains all
exists- and at-least concepts while M ∀ contains all at-most- and all-concepts as well
as all exists-concepts for features. This guarantees the correct treatment of features.

The procedure mergable shown in Procedure 1 implements the flat and deep model
merging test. In case of deep merging it has to test for a blocking situation, i.e.
whether the actual pmodel set MS is a member of the set VM of visited pmodel
sets. The initial call of mergable has the empty set as value for VM . The third
parameter D? controls whether the deep or flat mode (see below) of mergable will
be used.

We assume a procedure get pmodel that retrieves for a concept C its cached pmodel.
In case the pmodel does not yet exist, it is computed.

The procedure atoms mergable tests for a possible primitive clash between pairs
of pmodels. It is applied to a set of pmodels MS and returns false if there exist
{M1, M2} ⊆ MS with (M A

1 ∩M ¬A
2 ) %= ∅ or (M ¬A

1 ∩M A
2 ) %= ∅. Otherwise it returns

true.

The procedure critical at most tests for a potential number restriction clash in
a set of pmodels and tries to avoid true answers which are too conservative. It is

97



Procedure 1 mergable(MS ,VM ,D?)

1: if MS = ∅ ∨MS ∈ VM then
2: return true
3: else if ⊥ ∈ MS ∨ ¬atoms mergable(MS ) then
4: return false
5: else
6: for all M ∈ MS do
7: for all C ∈ M ∃ do
8: if critical at most(C,M ,MS ) then
9: return false

10: else
11: MS ′ ← collect pmodels(C,MS )
12: if (¬D? ∧MS ′ %= ∅) ∨ ¬mergable(MS ′,VM ∪ {MS},D?) then
13: return false
14: end if
15: end if
16: end for
17: end for
18: end if
19: return true

applied to a concept C of the form ∃ S . D or ∃≥n S, a pmodel M (the current model)
and a set of pmodels MS = {M1 , . . . ,Mk} and returns true if there exists a pmodel
M ′ ∈ (MS \M) and a role R ∈ S↑ with ∃≤m R ∈ M ′∀ such that

∑
E∈N numRS (E) > m,

N = ∪i∈1 ..k M ∃
i , RS = S↑ ∩ R↓. In all other cases critical at most returns false. The

procedure numRS (E) returns 1 for concepts of the form E = ∃R′ . D and n for E = ∃≥n R′,
provided R′ ∈ RS .

The procedure collect pmodels is applied to a concept C of the form ∃ S . D or
∃≥n S and a set of pseudo models MS . It computes the pmodels of the set Q of
“qualifications”. We define Q ′ = {D} if C = ∃ S . D and Q ′ = ∅ otherwise.

Q = Q ′ ∪ {E | ∃M ∈ MS , R ∈ S↑ : (∀R . E ∈ M ∀ ∨ ∃R . E ∈ M ∀)}∪
{∀T . E | ∃M ∈ MS , R ∈ S↑, T ∈ T ∩ S↑ ∩ R↓ : ∀R . E ∈ M ∀}

The procedure collect pmodels returns the set {get pmodel(C) |C ∈ Q}. Observe
that ∃R . E ∈ M ∀ implies that R is a feature.

In the following we prove the soundness of the procedure mergable for the description
logic ALCNHR+ . Note that mergable depends on the clash triggers of the particular
tableaux calculus chosen since it has to detect potential clashes in a set of pmodels.

Proposition 27 (Soundness of mergable) Let D? have either the value true or
false, CS = {C1, . . . , Cn}, MCi = get pmodel(Ci), and PM = {MCi | i ∈ 1..n}. If the
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procedure call mergable(PM , ∅,D?) returns true, the concept C1 
 . . . 
 Cn is con-
sistent.

Proof. This is proven by contradiction and induction. Let us assume that the call
mergable(PM , ∅,D?) returns true but the ABox A = {a : (C1 
 . . . 
 Cn)} is incon-
sistent, i.e. there exists no completion of A. Every concept Ci must be satisfiable,
otherwise we would have ⊥ ∈ PM and mergable would return false due to line 3 in
Procedure 1. Let us assume a finite set C containing all contradictory ABoxes en-
countered during the consistency test of A. Without loss of generality we can select
an arbitrary A′ ∈ C and make a case analysis of its possible clash culprits.

1. We have a primitive clash for the “root” individual a, i.e. {a :D, a :¬D} ⊆ A′.
Thus, a :D and a :¬D have not been propagated to a via role assertions and
there have to exist Ci, Cj ∈ CS , i %= j such that a :D (a :¬D) is derived from a :Ci

(a :Cj) due to the satisfiability of the concepts Ci, i ∈ 1..n. It holds for the as-
sociated pmodels MCi ,MCj ∈ PM that D ∈ M A

Ci
∩M ¬A

Cj
. However, due to our

assumption the call of mergable(PM , ∅,D?) returned true. This is a contra-
diction since mergable called atoms mergable with PM (line 3 in Procedure 1)
which returned false since D ∈ M A

Ci
∩M ¬A

Cj
.

2. A number restriction clash in A′ is detected for a, i.e. a :∃≤m R ∈ A′ and there
exist l > m distinct R-successors of a.9 These successors can only be de-
rived from assertions of the form a :∃ Sj . Ej or a :∃≥nj Sj with Sj ∈ R↓, j ∈ 1..k1.
The concepts Ci ∈ CS , i ∈ 1..n are satisfiable and there has to exist a subset
CS ′ = {Ci1 , . . . , Cik2

} ⊆ CS such that ∃≤m R ∈ ∪Ci∈CS ′M ∀
Ci

and
∑

E′∈N numRS (E′)

≥ l , N = ∪Ci∈CS ′M ∃
Ci

, RS = (∪j∈1..k1 Sj
↑) ∩ R↓. However, due to our assump-

tion the call of mergable(PM , ∅,D?) returned true. This is a contradiction
since there exists an i′ ∈ 1..k2 and a concept E′ ∈ M ∃

Ci′
such that mergable

called critical at most(E′,MCi′ ,PM ) (lines 6-8 in Procedure 1) which returned
true since

∑
E′∈N numRS (E′) ≥ l > m.

3. Let the individual an be a successor of a0 via a chain of role assertions
(a0, a1) :R1, . . . , (an−1, an) :Rn, n > 0 and we now assume that a clash for an is
discovered.

(a) In case of a primitive clash we have {an :D, an :¬D} ⊆ A′. These clash
culprits are derived from assertions for an−1 of the form an−1 :∃≥m Rn

or an−1 :∃Rn . E1, and an−1 :∀ S . E2 and/or an−1 :∀ S′ . E3 with S, S′ ∈ Rn
↑.

Due to the clash there exists a pair Ei, Ej with D ∈ M A
Ei
∩M ¬A

Ej
for some

i, j ∈ 1..3, i %= j. Each role assertion in the chain between a0 and an−1 can
only be derived from an assertion of the form ak−1 :∃Rk . Ek or ak−1 :∃≥mk

Rk

with k ∈ 1..n− 1. The call graph of mergable(PM , ∅,D?) contains a chain
of calls resembling the chain of role assertions. By induction on the call

9Due to our syntax restriction all elements of R↓ are not transitive.
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graph we know that the node resembling an−1 of this call graph chain con-
tains the call mergable(PM ′,VM ′, true) such that {MEi ,MEj } ⊆ PM ′ and
atoms mergable has been called with a set MS ′ and {MEi ,MEj } ⊆ MS ′.
The call of atoms mergable has returned false since D ∈ M A

Ei
∩M ¬A

Ej
. This

contradicts our assumption that mergable(PM , ∅,D?) returned true.
(b) In case of a number restriction clash we can argue in an analogous way.

Again, we have a chain of role assertions where a number restriction clash
is detected for the last individual of the chain. It exists a corresponding
call graph chain where by induction the last call of mergable called criti-
cal at most with a set of pmodels for which critical at most returned true.
This contradicts the assumption that mergable(PM , ∅,D?) returned true.

It is easy to see that this proof also holds in the case the value of D? is false since
the “flat mode” is more conservative than the “deep” one, i.e. it will always return
false instead of possibly true if the set of collected pmodels M ′ is not empty (line 12
in Procedure 1) �

The advantage of the deep vs. the flat mode of the model merging technique is demon-
strated by empirical tests using a set of “quasi-standard” application TBoxes/ABoxes
[Horrocks & Patel-Schneider, 1998a; Horrocks & Patel-Schneider, 1999; Haarslev &
Möller, 1999b]. Figure 4.3a-b shows the runtimes for computing the subsumption
lattice of these TBoxes. Each TBox is iteratively classified using 3 different parame-
ter settings. The first setting has all optimization techniques enabled, in the second
one the subtableaux caching technique (see above) is disabled. The third setting has
both subtableaux caching and the deep mode of model merging disabled but the flat
mode of model merging is still enabled. The 3 different settings are justified by the
order in which these optimization techniques are applied if a subtableau is tested
for consistency in RACE. First, subtableaux caching is applied. If no cache entry
exists, (deep) model merging is tried. If it returns false the standard tableaux test
is invoked. Thus, tableaux caching might reduce the number of encountered model
merging tests and the advantage of the deep against the flat mode of model merging
can only be accurately evaluated if one compares the runtimes between the second
and third setting. The comparison between these settings indicates a speed gain in
runtimes of a factor 1.5− 2 for almost all TBoxes if the deep mode is enabled. The
comparison between the first and second setting clearly demonstrates that the deep
mode can sometimes compensate the disabled subtableaux caching technique.

The empirical results for the application TBoxes (see Figure 4.3) indicate a speed
gain of up to one order of magnitude if the above-mentioned additional GCI trans-
formation rules are applied (compare the runtimes of ‘all 3 techniques enabled’ vs.
‘no enh. gci transformation’). There is no speed gain for the ‘Galen’ TBoxes since
‘Galen2’ and ‘Galen1’ do not contain any GCIs and the procedure from [Horrocks,

100



20

30

40

50

60

70

80

90

100

Galen2 Galen1 Galen

Setting 1
Setting 2
Setting 3

0

10

20

30

40

50

60

Bike1 Bike2 Bike3 Bike4 Bike5 Bike6 Bike7 Bike8 Bike9

Setting 1
Setting 2
Setting 3

(a) Galen TBoxes (b) Bike TBoxes

Figure 4.3: Evaluation of model merging techniques (3 runs for each TBox, left-right
order corresponds to top-bottom order in the legend).

1997] already absorbs all GCIs in ‘Galen.’

Dealing with Domain and Range Restrictions

Domain and range restrictions for roles are often-used modeling constructs in ap-
plications. A domain restriction C for a role R can be expressed with the GCI
∃R .� � C. Whenever an individual i is set into relation to another object via a
role R it is implied that the individual i is an instance of the concept C. A range
restriction C for a role R can also be expressed with a GCI. � � ∀R . C specifies that
all individuals are instances of the concept ∀R . C.

In order to avoid disjunctions, RACE deals with GCIs for domain restrictions with
a generalized kind of lazy unfolding. In a similar way as for names, all situations
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where unfolding of concept terms ∃R . D w.r.t. axioms of the form ∃R .� � C must
occur can be easily identified, i.e. unfolding of a domain restriction for a role R is
applied whenever a constraint i :∃R . C for an arbitrary ALCNHR+ concept term is
encountered in an ABox (see above for the ALCNHR+ tableaux calculus).10

Although it is possible to absorb a domain restriction such as the one expressed
by ∃ anatomical part of ana heart .� � ana heart p into an equivalent inclusion ax-
iom ¬ana heart p � ∀ anatomical part of ana heart .⊥, lazy unfolding cannot be eas-
ily applied if an inclusion axiom for ana heart p � . . . exists. However, this is the
case for UMLS. Note that, in principle, RACE also supports absorption of GCIs
into inclusions ¬A � C1 (but only if no inclusion A � C2 or definition A

.
= C2 exists

– see above). Some knowledge bases can only be handled effectively with ¬A � C1

absorptions.

In contrast to domain restrictions, range restrictions for roles do not introduce dis-
junctions. However, in a practical implementation it is advantageous to keep the
number of internal data structures to be managed as small as possible. Therefore,
range restrictions ∀R . C are “considered” only if an existential restriction for R or
a subrole of R are imposed for a certain individual i. These cases can also be easily
detected.

Summary of Empirical Results for Standard TBoxes

In Table 4.2 the runtimes for classifying realistic TBoxes from the DL’98 bench-
marks with quite many terminological axioms are listed (see the column named
“Num. of concepts”, for details see also [Horrocks & Patel-Schneider, 1998a]). For
some knowledge bases, different version have been tested (the extensions “roles” and
“GCIs” indicates that domain and range restrictions for roles are ignored or appro-
priately represented by GCIs, respectively. The tests have been carried out for all
systems, RACE, FaCT and KRIS using the same test environment as indicated
above (Macintosh Common Lisp). We used version 1.11 of FaCT which does not
support number restrictions (FaCT can handle ALCHfR+ TBoxes). The new ver-
sion of FaCT which supports qualified number restrictions does not apply model
merging, so runtimes could not be compared. Furthermore, KRIS does not sup-
port GCIs, so some tests are left out (indicated with NA). The columns RACE and

10Implementation note: Due to our experiences, domain restrictions cannot be easily consid-
ered in the (recursive) encoding process for concepts. Encoding a concept term (some r d) as
C 
 ∃R .D (with C being the domain restriction for R) would cause all kinds of trouble concerning
the negation (not (some r d)) of this term. The negation of this term would still be ∀R .¬D
and not ¬C � ∀R .¬D as suggested when (some r d) were encoded as C 
 ∃R .D. So, a special
treatment is necessary for these terms. But what if C 
 ∃R .D happens to be a concept term used
in the knowledge base itself? Then, the negation definitely would be ¬C � ∀R .¬D. In this case,
the encoding procedure can hardly guarantee uniqueness of the encoding result (which is essential
for clash detection).
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RACE d indicate the runtimes of RACE without deep model merging and with
deep model merging enabled, respectively.

Table 4.2: Realistic TBox classification tests (times in seconds).

KB Num. of concepts Time
RACE RACE d FaCT KRIS

ckb-roles 79 0.13 0.15 NA 0.28
ckb GCIs 79 13.70 13.94 NA NA
datamont-roles 120 0.38 0.21 NA 0.53
espr-roles 142 0.19 0.22 NA 0.41
espr GCIs 142 12.74 12.53 NA NA
fss-roles 132 0.34 0.50 NA 0.67
fss GCIs 132 23.25 23.55 NA NA
wisber-roles 140 0.35 0.36 NA 0.69
wisber GCIs 140 4.81 4.43 NA NA
galen GCIs 2748 125.95 74.57 97.18 NA
galen1 2728 56.84 38.88 43.07 >2000
galen2 3926 32.39 27.80 25.93 189.97

Topological Sorting for Achieving Quasi Definition Order

For TBox classification the RACE system employs the marking and propagation
techniques introduced in [Baader et al., 1994]. We have discussed these techniques in
Section 4.2.2. For large knowledge bases it is particularly important to avoid as many
traversals as possible. Let us assume, a TBox to be classified can be transformed
such that no meta constraints but maybe cyclic (primitive) concept definitions exist.
Then, if concepts are classified in a so-called ‘definition order’, the bottom search
phase can be omitted for concept names for which only a primitive concept definition
exists [Baader et al., 1994]. According to [Baader et al., 1994] we assume that a
concept name A ‘directly uses’ a concept name B if B occurs in the concept on
the right-hand side of the definition of A.11 The relation ‘uses’ is the transitive
closure of ‘directly uses’. If A uses B then A precedes B in the definition order.
For acyclic TBoxes (i.e. the uses relation is irreflexive) with concept introduction
axioms only, the set of concepts can be processed in definition order, i.e. a concept
is not classified until all of the concepts used in its definition are classified. In this
case the set of children of a concept name consists only of the bottom concept.

11If lazy unfolding of domain restrictions is applied, domain restriction have to considered in a
special way w.r.t. the ‘directly uses’ relation.
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Thus, a common syntactical restriction for description logic systems is to accept
only TBox declarations that do not include so-called forward references. However,
for a language such as ALCNHR+ , which offers cyclic axioms and GCIs, in general,
the bottom search phase cannot be skipped [Horrocks, 1997, page 103].

Unfortunately, in the UMLS examples there are many forward references involved in
value restrictions and existential restrictions (i.e. modalities). Thus, the definition
order of concept names has to be computed in a preprocessing step. In addition,
a slightly less strict notion of definition order has been developed. We assume a
relation ‘directly refers-to’ similar to ‘directly uses’ but without considering references
occurring in the scope of quantifiers. Again ‘uses’ is the transitive closure of ‘directly
refers-to’. For acyclic concepts the ‘refers-to’ relation induces a partial order relation
on concept names. All concept names involved in a cycle are treated as one node (i.e.
a set Si) w.r.t. the partial order. Using a topological sorting algorithm the partial
order can be serialized such that a total order between concept names (or sets of
concept names) is defined. We call the serialization a “quasi definition order”.

Topological sorting is of order n + e where e is the number of given ‘refers-to’ rela-
tionships. Thus, we have approximately O(n log n) steps while the bottom search
procedure requires O(n2) steps in the worst case. Note that in [Baader et al., 1994]
no experiments are discussed that involve the computation of a serialization given a
TBox with axioms not already in (strict) definition order.

During classification of a TBox with RACE the concept names are processed in the
order given by the linearization w.r.t. topological sorting. For each atomic concept A
that is not a member of a set Si and for which no inclusion ¬A � C is available (see
Section 4.4.1), the bottom search can be omitted. The ‘refers-to’ relation and the
quasi definition order serialization ensures that either all concepts that are potential
subconcepts of a certain primitive concept A are inserted after A has been inserted
into the subsumption lattice or the bottom search is indeed performed. The quasi
definition order is conservative w.r.t. the potential subsumers (note that ALCNHR+

does not support inverse roles). Moreover, in a basic subsumption test the sub-
sumption lattice under construction is never referred to. Thus, strict definition order
classification is not necessary.

In order to effectively apply the topological sorting optimization, incorporating do-
main restrictions into the tableaux calculus was a necessary prerequisite because
meta constraints must not exist for topological sorting to be a valid optimization.

Clustering

A problem with large knowledge bases is that the set of children of some concept
names can get very large. Thus, the top-search procedures exhibits worst case per-
formance, i.e. the optimization techniques presented in [Baader et al., 1994] are not
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effective. Therefore, in the implementation of RACE a special clustering technique
is employed.

If more than θ concept names are found to be children of a certain concept name, the
θ children are grouped into a so-called bucket Anew, i.e. a (virtual) concept definition
Anew

.
= A1 � . . . � Aθ is assumed and Anew is virtually inserted into the subsumption

lattice with A1 . . . Aθ being its children. Note that bucket concepts Anew are virtual
concepts in the sense that they are not mentioned in the set of children or parents
of the concept names mentioned in a TBox.

Let us assume, a certain concept name A is inserted. Instead of testing whether each
Ai (i ∈ {1..θ}) subsumes A during the top-search phase, our findings suggest that it
is more effective to initially test whether Anew does not subsume A using the model
merging technique. For the subsumption test, only the pmodel of ¬Anew is computed.
If a subsumption relation indeed exists, then clustering introduces some overhead.
But, since in most cases, no subsumption relation can be found between any Ai and
A, with clustering one model merging test possibly replaces θ single model merging
tests. For almost all concept names only primitive concept definitions are included
in the TBox. Therefore, the pmodel of ¬Anew being used for model merging is very
“simple”. The pmodel basically consists only of a set of negated concept names
(see Section 4.4.1 for further details about model merging in RACE). Performing
a single model merging test with the pmodel for ¬Anew causes less overhead than
performing θ steps testing subsumption with each of the pmodels for ¬Ai. If a new
parent is computed for concept names involved in a bucket, the bucket structure
must be recomputed.

For best performance, the number of concepts to be kept in a bucket depends on
the number of subconcepts of the concept. However, the number of subconcepts
of a concept can hardly be estimated. Therefore, the following strategy is used.
If more and more concept names are “inserted” into the subsumption lattice, the
number of buckets increases as well. If a new bucket is to be created for a certain
concept A and there are already σ buckets clustering the subconcepts of A, then two
buckets (those buckets with the smallest number of children) are merged. Merging of
buckets Anew

.
= A1 � . . . � An and Bnew

.
= B1 � . . . � Bm means that the bucket Anew

is “redefined” as Anew
.
= A1 � . . . � An � B1 � . . . � Bm and the bucket Bnew is reused

for the new bucket to be created (see above).12 Whether hierarchical clustering
techniques lead to performance improvements is subject to further research.

The current evaluation of clustering with buckets uses a setting with θ = 10 and
σ = 15.

12Note that due to subsequent merging operations, n and m need not be equal to θ.
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Exploiting Disjointness Declarations

As has been discussed in [Baader et al., 1994], it is important to derive told sub-
sumers for each concept name for marking and propagation processes. Besides told
subsumers, RACE exploits also the set of “told disjoint concepts”. In the ‘heart’
example presented in Section 4.3.2, ana heart is computed as a told disjoint concept
of ana heart p by examining inclusion axioms. If it is known that a concept B is
a subsumer of a concept A then A cannot be a subsumee of the told disjoints of
B. This kind of information is recorded (and propagated) with appropriate non-
subsumer marks (see [Baader et al., 1994] for details about marking and propagation
operations) such that this information is not rediscovered with a model merging or
even a tableaux-based subsumption test. Exploiting disjointness information has not
been investigated in [Baader et al., 1994].

Traversing the subsumption lattice is also needed for ABox realization. The idea
is to exploit disjointness information to speed up the realization process as follows.
Whenever an instance checking test i :A returns ‘yes’, it is obvious that i cannot be an
instance of a concept that is a member of the set of told disjoint concepts of A. Thus,
in the subsumption lattice, the told disjoint concepts are marked accordingly and
an instance checking test for these concepts, which possibly involves an “expensive”
ABox consistency test, is not necessary. Since a large number of instance checking
tests must be performed, the exploitation of disjointness information is particularly
effective for ABox realization (see below for experimental results).

Summary of Empirical Results for the UMLS TBoxes

In Section 4.3.2 the basic idea of the encoding of the UMLS thesaurus with a TBox
has been introduced. Two major versions (1 and 2) and corresponding minor versions
(a-c) have been investigated. UMLS-1 contains 100,000 concept names and UMLS-2
contains 160,000 names. In both versions approximately 80,000 role names are used.
In this section the effectiveness of optimization techniques introduced in the previous
sections is evaluated with the UMLS TBoxes. All measurements have been performed
on a Sun UltraSPARC 2 with 1.4 GByte main memory and Solaris 2.6. RACE is
implemented in ANSI Common Lisp and for the tests Franz Allegro Common Lisp
5.0.1 has been used. The results are as follows.

Without clustering and topological sorting, classifying UMLS-1a can be done in
approximately 11 hours (1636 concepts are incoherent). With clustering and topo-
logical sorting enabled, only 5.5 hours are necessary to compute the same result for
UMLS-1a. The second version UMLS-1b requires 3.6 hours with optimization and
6.1 hours without optimization. The reason for enhanced performance with more
constraints is that in this version already 47855 concepts are inconsistent. With
domain and range restrictions we found that even 60246 concepts are inconsistent.
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Table 4.3: Evaluation of the classifications of the UMLS-2 knowledge bases (T =
topological sorting, C = clustering, R = runtime [hours:minutes], NST = number of
subsumption tests, NM = number of cached models, MaxNC = maximal number of
children, NB = number of buckets).

UMLS T C R NST (×106) NM (×103) MaxNC NB
2a on on 10:13 232 251 26,874 3,110

on off 25:06 2,341 237 ” NA
off on 22:40 1,256 362 ” 2,740
off off 31:26 2,796 281 ” NA

2b on on 10:11 232 251 26,874 3,110
on off 24:33 2,341 237 ” NA
off on 22:00 1,200 360 ” 2,700
off off 30:18 2,796 281 ” NA

2c on on 14:53 222 255 21,298 3,273
on off 40:54 3,723 240 ” NA
off on >120:00 ? ? ” ?
off off 61:18 5,814 277 ” NA

The computation times with RACE are 3.4 hours with optimization and 8.7 hours
without optimization. Up to 500 MBytes of memory are required to compute the
classification results. For UMLS-1, checking TBox coherence requires approximately
10 minutes.

The new second version UMLS-2 contains an additional part of the UMLS and,
therefore, is harder to deal with. Furthermore, there are no inconsistent concepts,
i.e. classification is much harder because there are much more nodes in the sub-
sumption lattice. In UMLS-1, due to the large number of inconsistent concepts, the
subsumption lattice is rather small because many concept “disappear” as synonyms
of the bottom concept. For UMLS-2, checking TBox coherence requires between 15
and 50 minutes (2a: 16 min, 2b: 19 min, 2c: 51 min).

More detailed performance evaluations of RACE applied to UMLS-2 and TBox
classification are presented in Table 4.3. In order to provide a machine-independent
evaluation, not only runtimes are given but also the number of subsumption tests as
well as other indicators are presented. It should be noted that the tableaux algorithm
is needed (only) for computing pseudo models. In other words, all subsumption tests
are determined by deep model merging tests.

A comparison of setting 1 (both topological sorting and clustering enabled) and
setting 2 (clustering disabled) reveals that clustering is a very effective optimization
technique for the UMLS-2 TBoxes. The result for UMLS-2a and setting 3 (topological
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sorting disabled and clustering enabled) supports the fact that topological sorting
is also very effective. The reason for the extraordinary runtime result for setting 3
and UMLS-2c is not completely clear. Perhaps, it is due to removed buckets. A
bucket is removed if a member of this bucket is assigned a new parent (see above).
This is very likely if topological sorting is disabled. However, since this effect is not
apparent for version 2a and 2b, it might be possible that the effect is due to a bug
in the Allegro Common Lisp memory management system. For UMLS-2 up to 800
MBytes are required.

If, in setting 4, both clustering and topological sorting are disabled, runtimes in-
crease as well. Moreover, according to the evaluation results, the second version
UMLS-2b does not require more computational resources than UMLS-2a (see the
discussion about :implies in Section 4.3.2). Only the incorporation of domain and
range restrictions cause runtimes to increase. For other benchmark TBoxes (e.g.
Galen with approx. 3000 concepts) our results suggest that there is neither over-
head imposed by the clustering and topological sorting optimization techniques nor
is there a significant gain to be observed.

In summary, the results for the UMLS TBoxes clearly demonstrate that cluster-
ing is particularly effective in conjunction with topological sorting establishing a
quasi-definition order. The work reported here indicates that sound and complete
description logic systems can now effectively deal with some instances of very large
knowledge bases.

4.4.2 Optimizations for ABox Reasoning

Now we consider new optimization techniques for ABox reasoning that have been
investigated for the first time during the development of RACE. In the following
paragraph all inference problems are considered w.r.t. a role box R. The role box R
is omitted for brevity.

Exploiting Flat Models for ABox Reasoning

An ABox is realized through a sequence of instance checking tests. The realization
of an individual a occurring in an ABox A w.r.t to a TBox T computes the direct
types of a (w.r.t. A and T ). For instance, in order to compute the direct types
of a for a given subsumption lattice of the concepts D1, . . . , Dn, a sequence of ABox
consistency tests for ADi

= A ∪ {a :¬Di} might be required. However, individuals are
usually members of only a small number of concepts and the ABoxes ADi

are proven
as consistent in most cases. The basic idea is to design a cheap but sound model
merging test for the focused individual a and the concept terms ¬Di without explicitly
considering role assertions and concept assertions for the other individuals mentioned
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in A since these interactions are reflected in the “individual pseudo model” of a. This
is the motivation for devising the novel individual model merging technique.

A pseudo model for an individual a mentioned in a consistent ABox A w.r.t. a TBox
T is defined as follows. Since A is consistent, there exists a set of completions C of
A. Let A′ ∈ C. An individual pseudo model M for an individual a in A is defined as
the tuple 〈M A,M ¬A,M ∃,M ∀〉 w.r.t. A′ and A using the following definitions.

M A = {A | a :A ∈ A′}, M ¬A = {A | a :¬A ∈ A′}
M ∃ = {∃R . C | a :∃R . C ∈ A′} ∪ {∃≥n R | a :∃≥n R ∈ A′} ∪ {∃≥1 R | (a, b) :R ∈ A}
M ∀ = {∀R . C | a :∀R . C ∈ A′} ∪ {∃≤n R | a :∃≤n R ∈ A′} ∪ {∃F . C | a :∃F . C ∈ A′}

The procedure get ind pmodel called with an individual a mentioned in a con-
sistent ABox A (w.r.t. a TBox T ) either appropriately creates a pmodel for a or
retrieves the cached pmodel of a.

Individual model merging is accomplished by applying the procedure mergable to
the models computed by get ind pmodel(a) and get pmodel(¬C). The flat mode is
used, i.e. the third parameter is set to false.

Proposition 28 (Soundness of Individual Model Merging) Let a be an indi-
vidual mentioned in a consistent ABox A w.r.t. a TBox T , ¬C be a satisfiable con-
cept, Ma (M¬C ) denote the pmodel returned by get ind pmodel(a) (get pmodel(¬C)),
and the set PM be defined as {Ma ,M¬C}. If the procedure call mergable(PM , ∅, false)
returns true, the ABox A ∪ {a :¬C} is consistent, i.e. a is not an instance of C.

Proof. This is proven by contradiction. Let us assume that the procedure call
mergable({Ma ,M¬C}, ∅, false) returns true but the ABox A′ = A ∪ {a :¬C} is incon-
sistent, i.e. there exists no completion of A′. Let us assume a finite set C containing
all contradictory ABoxes encountered during the consistency test of A′. Without
loss of generality we can select an arbitrary A′′ ∈ C and make a case analysis of its
possible clash culprits. In the following the same definitions as in Procedure 1 (see
page 98) are assumed.

1. A clash is detected for an individual b in A′′ that is distinct to a. Since A is
consistent the individual b must be a successor of a via a chain of role assertions
(a, b1) :R1, . . . , (bn, b) :Rn+1, n ≥ 0 and one of the clash culprits must be derived
from the newly added assertion a :¬C and propagated to b via the role asser-
tion chain originating from a with (a, b1) :R1. Since ¬C is satisfiable and A is
consistent we have an “interaction” via the role or feature R1. This implies for
the associated pmodels Ma ,M¬C that (M ∃

a ∩M ∀
¬C ) ∪ (M ∀

a ∩M ∃
¬C ) %= ∅. This
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contradicts the assumption that mergable({Ma ,M¬C}, ∅, false) returned true
since mergable eventually called collect pmodels for Ma ,M¬C which returned
a non-empty set (line 11 in Procedure 1).

2. In case of a primitive clash for a we have {a :D, a :¬D} ⊆ A′′. Since a :¬C is
a concept assertion we know that a :D and a :¬D cannot both be propagated
to a via role assertions. Thus, either a :D or a :¬D must be derived from
a :¬C and we have D ∈ (M A

a ∩M ¬A
¬C )∪ (M ¬A

a ∩M A
¬C ). This contradicts the

assumption that mergable({Ma ,M¬C}, ∅, false) returned true since mergable
called atoms mergable({Ma ,M¬C}) which returned false (line 3 in Procedure
1) since D ∈ (M A

a ∩M ¬A
¬C )∪ (M ¬A

a ∩M A
¬C ).

3. A number restriction clash in A′′ is detected for a, i.e. a :∃≤m R ∈ A′′ and
there exist l > m distinct R-successors of a in A′′. This implies that the
set N = M ∃

a ∪M ∃
¬C contains concepts of the form ∃ Sj . Ej or ∃≥nj Sj,

13 Sj ∈ R↓,

j ∈ 1..k, such that
∑

E′∈N numRS (E′) ≥ l , RS = (∪j∈1..k Sj
↑) ∩ R↓. This contra-

dicts the assumption that mergable({Ma ,M¬C}, ∅, false) returned true since
mergable called critical at most (lines 6-8 in Procedure 1) which returned true
since

∑
E′∈N numRS (E′) ≥ l > m.

�
The performance gain by the individual model merging technique has been empiri-
cally evaluated using a set of five ABoxes containing between 15 and 25 individuals.
Each of these ABoxes is realized w.r.t. to the application TBoxes Bike7-9 derived
from a bike configuration task. The TBoxes especially vary on the degree of explicit
disjointness declarations between atomic concepts. Figure 4.4 shows the runtimes
for the realization of the ABoxes 1-5. Each ABox is realized with three different
parameter settings. The first setting has all optimization techniques enabled, in
the second setting an optimization technique is disabled that considers disjointness
between concepts (see Section 4.4.1),14 and additionally the third setting has the
individual model merging technique disabled. The comparison between setting two
and three reveals a speed gain of at least one order of magnitude if the individual
model merging technique is used. Note the use of a logarithmic scale.

Role Path Contraction

In order to make ABox realization as fast as possible a transformation technique
for ABoxes has been developed that maximizes the effect of caching techniques. As
we have seen above, caching whether a concept is consistent or not is an important

13Any role assertion of the form (a, b) :R ∈ A implies that ∃≥1 R ∈ M ∃
a .

14This technique interacts with individual model merging since it prunes the search space for
realization and thus decreases the number of instance checking tests that can be solved by individual
model merging.
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Figure 4.4: Evaluation of model merging techniques for Bike ABoxes (3 runs for each
ABox, left-right order corresponds to top-bottom order in the legend).

optimization technique. If ABox consistency for an ABox A can be decided by
transforming A (or parts of A) such that a concept is computed that is consistent
iff the transformed ABox is consistent then the caching techniques developed for
the concept consistency problem become applicable also to ABox reasoning. As we
will see in the following for some ABoxes or parts thereof a transformation is indeed
possible. Empirical investigations indicate that the transformation overhead can be
neglected.

Informally, the role path contraction idea is the following. Let us assume, the direct
types of a certain individual a have to be computed. We transform the original
ABox in such a way that acyclic “role paths” between individuals in “tree-like”
ABox structures are represented by an appropriate some-concept. The corresponding
concept and role assertions representing the role paths are deleted from the ABox.
In order to transform an ABox, the following transformation rule is applied as often
as possible (a is the individual being realized).

We illustrate this contraction idea by an example presented in Figure 4.5. The indi-
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Example for a "chain"

a

a

i

i

i  :

Figure 4.5: Example for ABox chain contraction (see text). The upper ABox is
transformed into the lower one.

vidual a is represented by a gray circle. A some-concept “representing” a contracted
role path is added as a concept assertion to the individual starting the contracted
path.

RC1 Contraction Rule for ALC.
if 1. (i, j) :R ∈ A, j :C1 ∈ A, . . . , j :Cn ∈ A, i %= a, ¬∃ (j, k) :R′ ∈ A, and

2. ¬∃ (l, j) :R′′ ∈ A, l %= i, ¬∃ j :Cn+1 ∈ A : ∀ i ∈ 1..n : Cn+1 %= Ci

then A′ := (A \ {(i, j) :R, j :C1, . . . , j :Cn}) ∪ {i :∃R . C1 
 . . . 
 Cn}

We define an algorithm contraction alc(A) that iteratively applies the rule RC1 to
a consistent input ABox A as long as possible. The computed ABox A′ is used as
A in subsequent steps. Finally, when RC1 is no longer applicable, the algorithm
returns the ABox A′.

Proposition 29 The algorithm contraction alc transforms a consistent ALC ABox
A into an ABox A′ that is consistent iff A is consistent.

In every step RC1 removes a role assertion of the form (i, j) :R. In the premise of
RC1 a role assertion is used as a precondition for applying the rule. Thus, if there are
n role assertions in the original ABox A, the algorithm contraction alc(A) terminates
after n steps, at the latest. If the rule RC1 is applied, the ABox A′ does not contain
assertions for the individual j. However, considering the new some-concept assertion
for i and the sound and complete rules of the underlying tableaux calculus (see
Chapter 2) we can see that the tableaux rules will create a new individual j′ with
the same concept assertions as for j in the original ABox. The additional assertion
j′ :C1 
 . . . 
 Cn is expanded into j′ :C1, . . . , j′ :Cn.

The contraction rule RC1 can be used for ALC ABoxes (whose associated TBoxes
are also ALC TBoxes). In the presence of number restrictions, the contraction is not
applied to an ABox if there exist more than one role filler for a certain role R. The
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reason is that individuals explicitly mentioned in the ABox must not be eliminated
due to the unique name assumption. If these individuals are “represented” by some-
concepts, their uniqueness information is lost. Thus, for ALCNHR+ ABoxes we need
a more conservative contraction rule RC2.

RC2 Contraction Rule for ALCNHR+ .
if 1. (i, j) :R ∈ A, j :C1 ∈ A, . . . , j :Cn ∈ A, j %= a, and

2. (j, k) :R′ %∈ A, and
3. (i, j) :R′′ %∈ A, R′′ %= R, and
4. (l, j) :R′′′ %∈ A, l %= i, and
5. (i, o) :S %∈ A, o %= j, R↑ ∩ S↑ %= ∅, and
6. j :Cn+1 %∈ A : ∀ i ∈ 1..n : Cn+1 %= Ci

then A := (A \ {(i, j) :R, j :C1, . . . , j :Cn}) ∪ {i :∃R . C1 
 . . . 
 Cn}

In the same way as above, we define an algorithm contraction alcnhr+(A) that iter-
atively applies RC2 to a consistent input ABox A.

Proposition 30 The algorithm contraction alcnhr+(A) transforms a consistent ABox
A into an ABox A′ that is consistent iff A is consistent.

As in the argumentation for contraction alc(A) it is easy to see that the algorithm
terminates and is sound and complete. The additional requirement in the premise
guarantees that role assertions are not transformed into appropriate some-concept
assertions if there exist more than one role assertion (i, j) :R for R where i occurs on
the left-hand side. If there exists a common superrole, number restrictions might be
imposed.

The role path contraction technique for ABoxes has several advantages:

1. The number of individuals and role assertions is reduced.

2. The some-concepts resulting from the contraction are automatically subject to
the subtableaux and concept caching and merging techniques.

3. The ABox realization multiplies the savings effect due to iterated instance
checking tests for the same individual over all named concepts in a TBox.

Our empirical tests with instance checking problems [Haarslev et al., 1999a] indicate
that the role path contraction technique is very effective. The graph in Figure 4.6
shows execution times of different problems with ABox realization and in Figure 4.7
with instance checking. Due to our experiences, the set of ABox assertions is reduced
by several orders of magnitude by the contraction technique. The speed gain of this
technique is indicated in Figures 4.6 and 4.7. It shows that the contraction technique
can result in a speed gain of about one order of magnitude. However, many of these
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Figure 4.6: RACE: ABox realization with and without role path contraction. Lines
without dots indicate the use of role path contraction. The lines of the same color
with and without dots should be compared.

problems are still very hard and ask for the design of more sophisticated optimization
techniques. The performance gain by using instance checking instead of realization is
up to several orders of magnitude. Older ABox DL systems such as KRIS [Baader
et al., 1992; Baader et al., 1994] are not able to check ABox consistency for any
problem with size greater than 1 and even time out for some problems of size 1.

4.5 Summary: Benefit of the RACE Technology

The empirical tests reveal that new applications can be implemented using the
RACE technology. First, we have considered a specification checking scenario in
a telecommunications application. Second, a logical reconstruction of the medical
knowledge implicitly represented in the UMLS thesaurus is now possible with a very
large knowledge base. In the first context, the RACE technology made specification
checking using automated theorem proving techniques possible. In both contexts,
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more reliable applications are possible due to sound and complete reasoning with
RACE. Although much has been achieved, there are still instances of inference
problems in both contexts that cannot be solved yet in a reasonable amount of time.
Although RACE supports literal retraction of ABox assertions and incremental ad-
ditions to TBoxes and ABox at the functional level, these operations might still be
time-consuming. Additional research is necessary to either integrate known opti-
mization techniques into the RACE architecture or to develop new optimization
techniques that have not been used before.
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Chapter 5

ALCNHR+ Extended with
Concrete Domains

An application domain where DLs have been successfully applied is configuration.
Since effective reasoners for expressive languages are available only recently, most
studies have been performed with DLs with limited expressivity (see e.g. [Wright
et al., 1993]) or with undecidable logics [Buchheit et al., 1994; Buchheit et al.,
1995]. The description logicALCNHR+ is an expressive but decidable representation
language and with RACE an effective inference engine is available. However, the
requirements derived from practical applications of DLs ask for even more expressive
languages with features not covered in the previous chapters. It is well-known that
reasoning about objects from other domains (so-called concrete domains, e.g. for
the reals) is very important for practical applications as well [Baader & Hanschke,
1991a; Baader & Hanschke, 1991b]. Thus, an extension of the ALCNHR+ knowledge
representation system RACE with concrete domain is investigated.

Unfortunately, adding concrete domains to expressive description logics might lead
to undecidable inference problems. For instance, in [Baader & Hanschke, 1992] it
is proven that the logic ALC(D) plus an operator for the transitive closure of roles
is undecidable. ALCNHR+ offers transitive roles but no operator for the transitive
closure of roles (see [Sattler, 1996, p. 342] for a detailed discussion about expressivity
differences). In [Lutz, 1999a] it is shown that ALC(D) with generalized inclusion
axioms (GCIs) is undecidable. Thus, if termination and soundness are to be retained,
there is no way extending an ALCNHR+ DL system such as RACE with concrete
domains as in ALC(D) without losing completeness. Even if GCIs were discarded,
ALCNHR+ with concrete domains would be undecidable because ALCNHR+ offers
role hierarchies and transitive roles, which provide the same expressivity as GCIs.
With role hierarchies it is possible to (implicitly) declare a universal role, which can
be used in combination with a value restriction to achieve the same effect as with
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GCIs.

Thus, ALCNHR+ can only be extended with concrete domain operators with limited
expressivity. In order to support practical modeling requirements at least to some
extent, we pursue a pragmatic approach by supporting a limited kind of predicate
exists restriction which supports only features (and no feature chains as in ALC(D),
for details see below). The resulting language is called ALCNHR+(D)−. By proving
soundness and completeness (and termination) of a tableaux calculus, the decidabil-
ity of inference problems w.r.t. the language ALCNHR+(D)− is proved. As shown
in this section, ALCNHR+(D)− can be used, for instance, as a basis for building
practical application systems for solving certain classes of configuration problems,
see also [Buchheit et al., 1995; Schröder et al., 1996].

5.1 The Description Logic ALCNHR+(D)−

The description logic ALCNHR+(D)− augments ALCNHR+ with so-called concrete
domains.

5.1.1 The Concept Language of ALCNHR+(D)−

For presenting the syntax and semantics of the language ALCNHR+(D)− a few ad-
ditional definitions to those introduced for ALCNHR+ (see Chapter 2) are required.

Definition 31 (Features) Let F be a set of feature names which is disjoint from
R, the set of role names . For brevity, a feature name is also called a feature.

In accordance with [Baader & Hanschke, 1991a] we also define the notion of a concrete
domain.

Definition 32 (Concrete Domain) A concrete domain D is a pair (∆D, ΦD), where
∆D is a set called the domain, and ΦD is a set of predicate names. Each predicate
name PD from ΦD is associated with an arity n and an n-ary predicate PD. A
concrete domain D is called admissible iff:

• The set of predicate names ΦD is closed under negation and ΦD contains a
name �D for ∆D,

• The satisfiability problem Pn1
1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm

m (xm1, . . . , xmnm) is decid-
able (m is finite, Pni

i ∈ ΦD, ni is the arity of P, and xjk is a name for an object
from ∆D).

We assume that ⊥D is the negation of the predicate �D. Using the definitions from
above, the syntax of concept terms in ALCNHR+(D)− is extended as follows.
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Definition 33 (Additional Concept Terms) Let P ∈ ΦD be a predicate of the
concrete domain, and let f, f1, . . . , fk ∈ F be features, then the following expressions
are also concept terms:

• ∃ f1, . . . , fk . P (predicate exists restriction).
• ∀ f .⊥D (no concrete domain filler restriction).

The next definition gives a model-theoretic semantics to the language introduced
above. Let D = (∆D, ΦD) be a concrete domain.

Definition 34 (Semantics) An interpretation ID = (∆I , ∆D, ·I) consists of a set
∆I (the abstract domain), a set ∆D (the domain of the ‘concrete domain’ D) and an
interpretation function ·I . The interpretation function ·I maps each concept name C
to a subset CI of ∆I , each role name R from R to a subset RI of ∆I × ∆I . Each
feature f from F is mapped to a partial function fI from ∆I to ∆D where fI(a) = x
will be written as (a, x) ∈ fI . Each predicate name P from ΦD with arity n is mapped
to a subset PI of ∆n

D. Let f, f1, . . . , fn be features and let P be a predicate name.
Then, the interpretation function given in Definition 6 is extended to additional
concept terms as follows:

(∃ f1, . . . , fn . P)I := {a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D :

(a, x1) ∈ f1
I , . . . , (a, xn) ∈ fn

I ,

(x1, . . . , xn) ∈ PI}
(∀ f .⊥D)I := {a ∈ ∆I | ¬∃x1 ∈ ∆D : (a, x1) ∈ fI}

The form of the terminological axioms for ALCNHR+(D)− is the same as form
ALCNHR+(D).

5.1.2 The Assertional Language of ALCNHR+(D)−

The assertional language is extended as follows.

Definition 35 (Additional Assertional Axioms) Let OC be a set of names for
concrete objects (OC ∩O = ∅). If f ∈ F is a feature, a ∈ OO is an individual name
and x, x1, . . . , xn ∈ OC are names for concrete objects, then the following expressions
are assertional axioms or ABox assertions :

• (a, x) : f (concrete domain feature assertion),
• (x1, . . . , xn) :P (concrete domain predicate assertion).

119



Note that concrete domain objects are not considered as successors or predecessors
in the sense defined in Section 2.1.

The interpretation function ·I of the interpretation ID can be extended to the as-
sertional language. Concrete objects from OC are mapped to elements of ∆D. An
interpretation satisfies an assertional axiom (a, x) : f iff (aI , xI) ∈ fI and an assertional
axiom (x1, . . . , xn) :P iff (x1

I , . . . , xn
I) ∈ PI .

5.2 Solving Configuration Problems with ALCNHR+(D)−

According to [Buchheit et al., 1994; Buchheit et al., 1995] configuration problem solv-
ing processes can be formalized as synthesis inference tasks. Following this approach,
a solution of a configuration task is defined to be a logical model of the given knowl-
edge base consisting of both the conceptual domain model (TBox, RBox) as well as
the task specification (ABox).1 The TBox and the RBox describe the configuration
space.

Note that specific languages for describing the configuration space might be used.
For instance, Bhibs [Cunis, 1991] is a configuration frame language which allows
one to describe the properties of instances by specifying restrictions for the required
values of named slots. The values can be either single objects or sets of objects, and
the restrictions can be specified extensionally by directly giving concrete values like
numbers, symbols or instances of concepts, or by intensionally describing sets and
sequences of objects. The following example of an expression of the Bhibs-language
describes the concept of a cylinder:

(is! (a Cylinder)
(a Motorpart

(part-of (a Motor))
(displacement [1ccm 1000ccm])
(has-parts

(:set #[(a Cylinderpart) 4 6] :=
#[(a Piston) 1 1]
#[(a Piston-Rod) 1 1]
#[(a Valve) 2 4]))))

A Cylinder is required to be a Motorpart, to be part of a Motor, to have a displacement
of 1 to 1000ccm, and to have a set of 4 to 6 parts (has parts) which are all Cylinderparts
and it consists of exactly 1 Piston, exactly 1 Piston Rod, and 2 to 4 Valves. This
expression can be transformed to a terminological inclusion axiom of a description
logic providing concrete domains. Let the concrete domain 6 be defined as in [Baader
& Hanschke, 1991b]: 6 = (R, Φ�) where Φ� is a set of predicates which are based

1[Buchheit et al., 1995] additionally considers relations defined with definite clauses.
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on polynomial equations or inequations. The concrete domain 6 is admissible (see
also [Baader & Hanschke, 1991b]).

The cylinder example is translated as follows. Using the language ALCNHR+(D)−

the cylinder specification from above can be translated into description logics. First
of all, a role boxR is defined to contain the following role inclusion axioms.

has cylinder part � has part

has piston part � has part

has piston rod part � has part

has valve part � has part

Then, a TBox T is given as a set of terminological axioms. For instance, the following
range restrictions are declared.

� � ∀ has cylinder part . Cylinder

� � ∀ has piston part . Piston

� � ∀ has piston rod part . Piston Rod

� � ∀ has valve part . Valve

For Cylinderpart a so-called cover axiom is given. Moreover, additional axioms ensure
the disjointness of more specific subconcepts of Cylinderpart.

Cylinderpart � Piston � Piston Rod � Valve

Piston � ¬Piston Rod 
 ¬Valve

Piston Rod � ¬Piston 
 ¬Valve

Valve � ¬Piston 
 ¬Piston Rod

Now another axiom relates a Cylinder to its parts. We assume that displacement is
declared as a feature.
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Cylinder � Motorpart 

∃=1 part of 

∃ displacement . displacement range 

∀ has parts . Cylinderpart 

∃≥4 has cylinder part 

∃≤6 has cylinder part 

∃=1 has piston part 

∃=1 has piston rod part 

∃≥2 has valve part 

∃≤4 has valve part

The term displacement range denotes a unary predicate λVol c . 0.001 ≤ c ≤ 1 of a
numeric concrete domain for the dimension volume with base unit m3. Furthermore,
we assume a predicate λVol c . c ≥ 0.5 with the name medium to large displacement is
declared for the concrete domain.

In our example, the ABox being used is very simple:

A = {a :Cylinder 
 ∃ displacement . medium to large displacement}.
In order to solve the configuration problem, the knowledge base (T ,R,A) is tested
for consistency. If the knowledge base is consistent, there exists a model. The
model can be interpreted as a solution to the configuration problem [Buchheit et al.,
1994]. Note that (T ,R,A) is only a very simplified example for a representation of
a configuration problem. For instance, using an ABox with additional assertions it
is possible to explicitly specify some required cylinder parts etc.

In order to actually compute a solution to a configuration problem, a sound and
complete calculus for the ALCNHR+(D)− knowledge base consistency problem is
required that terminates on any input. If the calculus returns “consistent” then
(parts of) the internal structures used in the proof can be printed as a problem
solution in a convenient form. We will return to this point after the discussion of the
tableaux calculus for ALCNHR+(D)−.

5.3 Decidability of ALCNHR+(D)−

In the following a calculus to decide the consistency of anALCNHR+(D)− knowledge
base (T ,R,A) is devised. The calculus is given as an extension to the calculus for
ALCNHR+ discussed in Section 4.1.

The following additional transformation rules are required to compute the negation
normal form of ALCNHR+(D)− concepts.
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• ¬∃ f1, . . . , fn . P → ∃ f1, . . . , fn . P � ∀ f1 .⊥D � . . . � ∀ fn .⊥D
where P is the negation of P.

• ¬∀ f .⊥D → ∃ f .�D

Definition 36 (Fork, Fork Elimination) If it holds that
{(a, x1) : f, (a, x2) : f} ⊆ A then there exists a fork in A. In case of a fork w.r.t. x1, x2,
the replacement of every occurrence of x2 in A by x1 is called fork elimination.

In an augmented ABox for the language ALCNHR+(D)− all forks have to be elim-
inated. It is easy to see that with forks being eliminated, Lemma 19 also holds for
ALCNHR+(D)−.

Definition 37 (Concrete Object Ordering) A concrete object ordering ‘≺C ’ for
elements of OC occurring in an ABox A is defined as follows. If y ∈ OC is introduced
in A, then x≺C y for all concrete objects x already present in A.

The completion rules of ALCNHR+ are extended with an additional rule as follows:

Definition 38 (Additional Completion Rule)

R∃P The predicate exists rule (generating).
if 1. a :∃ f1, . . . , fn . P ∈ A, and

2. ¬∃x1, . . . , xn ∈ OC : {(a, x1) : f1, . . . (a, xn) : fn, (x1, . . . , xn) :P} ⊆ A
then A′ = A ∪ {(a, x1) : f1, . . . (a, xn) : fn, (x1, . . . , xn) :P}

where x1, . . . , xn ∈OC are not used in A,
eliminate all forks {(a, x) : fi, (a, xi) : fi} ⊆ A
such that (a, x) : fi remains in A if x≺Cxi, i ∈ 1..n

The rule R∃P is called a generating rule since it generates concrete objects.

Proposition 39 (Invariance) LetA andA′ be ABoxes andR be a role box. Then:

1. If A′ is derived from A w.r.t. R by applying a deterministic rule, then A is
consistent w.r.t. R iff A′ is consistent w.r.t. R.

2. If A′ is derived from A w.r.t. R by applying a nondeterministic rule, then A
is consistent w.r.t. R if A′ is consistent w.r.t. R. Conversely, if A is consistent
w.r.t. R and a nondeterministic rule is applicable to A, then it can be applied
in such a way that it yields an ABox A′ consistent w.r.t. R.

Proof.

1. “⇐” Due to the structure of the deterministic rules one can immediately verify
that A is a subset of A′. Therefore, A is consistent w.r.t. R if A′ is consistent w.r.t.
R.

123



“⇒” In order to show thatA′ is consistent w.r.t.R after applying a deterministic rule
to the consistent ABox A, we examine each applicable rule separately. We assume
that ID = (∆I , ∆D, ·I) satisfies A and R. Then, we observe that it is an obvious
consequence that RI ⊆ SI iff (R, S) ∈ �∗

R.

If the conjunction rule is applied to a :C 
 D ∈ A, then we get a new ABox
A′ = A ∪ {a :C, a :D}. Since ID satisfies a :C 
 D, ID satisfies a :C and a :D and
therefore A′.

If the role value restriction rule is applied to a :∀R . C ∈ A, then there must be a role
assertion (a, b) :S ∈ A with S ∈ R↓ such that A′ = A ∪ {b :C}. Since ID satisfies A
and R, it holds that (aI , bI) ∈ SI , SI ⊆ RI . Since ID satisfies a :∀R . C, it holds that
bI ∈ CI . Thus, ID satisfies b :C and therefore A′.

If the transitive role value restriction rule is applied to a :∀R . C ∈ A, there must
be an assertion (a, b) :S ∈ A with S ∈ T↓ for some T ∈ T and T ∈ R↓ such that
we get A′ = A ∪ {b :∀T . C}. Since ID satisfies A and R, we have aI ∈ (∀R . C)I

and (aI , bI) ∈ SI , SI ⊆ TI ⊆ RI . Since aI ∈ (∀T . C)I , ID satisfies a :∀T . C and
T ∈ T , T ∈ R↓, it holds that bI ∈ (∀T . C)I unless there exists a successor c of b such
that (b, c) :S′ ∈ A, (bI , cI) ∈ S′I ⊆ TI and cI %∈ CI . It follows from (aI , bI) ∈ TI ,
(bI , cI) ∈ TI , and T ∈ T that (aI , cI) ∈ TI , TI ⊆ RI and aI %∈ (∀R . C)I in contra-
diction to the assumption. Thus, ID satisfies b :∀T . C and therefore A′.

If the universal concept restriction rule is applied to an individual a in A because
of ∀ x . x :C ∈ A, then A′ = A ∪ {a :C}. Since ID satisfies A and R, it holds that
CI = ∆I . Thus, it holds that aI ∈ CI and ID satisfies A′.

If the role exists restriction rule is applied to a :∃R . C ∈ A, then we get the ABox
A′ = A ∪ {(a, b) :R, b :C}. Since ID satisfies A and R, there exists a y ∈ ∆I such
that (aI , y) ∈ RI and y ∈ CI . We define the interpretation function ·I′

such that
bI′

:= y and x I′
:= x I for x %= b. It is easy to show that I ′

D = (∆I , ∆D, ·I′
) satisfies

A′.

If the number restriction exists rule is applied to a :∃≥n R ∈ A, then we get the ABox
A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi % .= bj | i, j ∈ 1..n, i %= j}. Since ID satisfies A and
R, there must exist n distinct individuals yi ∈ ∆I , i ∈ 1..n such that (aI , yi) ∈ RI .
We define the interpretation function ·I′

such that bi
I′

:= yi and x I′
:= x I for

x %∈ {b1, . . . , bn}. It is easy to show that I ′
D = (∆I , ∆D, ·I′

) satisfies A′.

If the predicate exists rule is applied to a :∃ f1, . . . , fn . P ∈ A, then we get the ABox
A′ = A ∪ {(x1, . . . , xn) :P, (a, x1) : f1, . . . , (a, xn) : fn}. After fork elimination, some xi

may be replaced by zi with zi≺Cxi. Since ID satisfiesA andR, there exist y1, . . . , yn ∈
∆D such that ∀i ∈ {1, . . . , n} : (aI , yi) ∈ fi

I and (y1 , . . . , yn) ∈ PI . We define
the interpretation function ·I′

such that xi
I′

:= yi for all xi not replaced by zi and
(y1 , . . . , yn) ∈ PI′

. The fork elimination strategy used in the R∃P rule guarantees
that concrete objects introduced in previous steps are not eliminated. Thus, it is
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ensured that the interpretation of xi is not changed in I ′
D. It is easy to see that

I ′
D = (∆I , ∆D, ·I′

) satisfies A′.

2. “⇐” Assume that A′ is satisfied by I ′
D = (∆I , ∆D, ·I′

). By examining the
nondeterministic rules we show that A is also consistent w.r.t. R.

If A′ is obtained from A by applying the disjunction rule, then A is a subset of A′

and therefore satisfied by I ′
D.

IfA′ is obtained fromA by applying the number restriction merge rule to a :∃≤n R ∈ A,
then there exist bi, bj in A such that A′ = A[bi/bj]. We define the interpreta-

tion function ·I such that bi
I := bj

I′
and xI := xI

′
for every x %= bi. Obviously,

ID = (∆I , ∆D, ·I) satisfies A and R.

“⇒” We suppose that ID = (∆I , ∆D, ·I) satisfies A and R and a nondeterministic
rule is applicable to an individual a in A.

If the disjunction rule is applicable to a :C � D ∈ A and A is consistent w.r.t. R, it
holds aI ∈ (C � D)I . It follows that either aI ∈ CI or aI ∈ DI (or both). Hence, the
disjunction rule can be applied in a way that ID also satisfies the ABox A′.

If the number restriction merge rule is applicable to a :∃≤n R ∈ A and A is consistent
w.r.t. R, it holds aI ∈ (∃≤n R)I and ‖{b | (a, b) ∈ RI}‖ ≤ n. However, it also holds
‖{b | (aI , bI) ∈ RI}‖ > m with m ≥ n. Without loss of generality we only need to
consider the case that m = n+1. Thus, we can conclude by the Pigeonhole Principle
that there exist at least two R-successors bi, bj of a such that bi

I = bj
I . Since ID

satisfies A and R, at least one of the two individuals must be a new individual. Let
us assume bi ∈ ON , then ID obviously satisfies A[bi/bj]. �
Given an ABox A, more than one rule might be applicable to A. The completion
strategy is the same a forALCNHR+ (see Definition 24). However, a set of additional
clash triggers are required for ALCNHR+(D)−.

Definition 40 (Additional Clash Triggers) In addition to the clash triggers in
Definition 25 the following additional clash triggers are applied.

• No concrete domain feature clash: {(a, x) : f, a :∀ f .⊥D} ⊆ A.

• Concrete domain predicate clash: (x
(1)
1 , . . . , x

(1)
n ) :P1 ∈ A, . . . ,

(x
(k)
1 , . . . , x

(k)
nk ) :Pk ∈ A and the conjunction

∧k
i=1 Pi(x

(i)
1 , . . . , x

(i)
ni ) is not satisfi-

able in D. Note that this can be decided since D is required to be admissible.

Any ABox containing a clash is obviously unsatisfiable (w.r.t. an RBox R). The
purpose of the calculus is to generate a completion for an initial ABoxAT that proves
the consistency of AT (w.r.t. an RBox R) or its inconsistency if no completion can
be found.
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The following lemma proves that whenever a generating rule has been applied to an
individual a ∈ ON , the concept set σ(·, a) of a does not change for succeeding ABoxes.
Note that the original ABox does not contain elements from ON (see Definition 7).

Lemma 41 (Stability) Let A be an ABox and a ∈ ON be in A. Let a generating
rule be applicable to a according to the completion strategy. Let A′ be any ABox
derivable from A by any (possibly empty) sequence of rule applications. Then:

1. No rule is applicable in A′ to an individual b ∈ ON with b ≺ a

2. σ(A, a) = σ(A′, a), i.e. the concept set of a remains unchanged in A′.

3. If b ∈ ON is in A with b ≺ a then b is an individual in A′, i.e. the individual b
is not substituted by another individual.

Proof. Since in the original input ABox no elements of ON are mentioned, a rule
must have been applied if b ≺ a holds. 1. By contradiction: Suppose A = A0 →∗
· · · →∗ An = A′, where ∗ is element of the completion rules and a rule is applicable
to an individual b with b ≺ a in A′. Then there has to exist a minimal i with i ∈ 1..n
such that this rule is also applicable in Ai. If a rule is applicable to a in A then
no rule is applicable to b in A due to our strategy. So no rule is applicable to any
individual c such that c ≺ a in A0, . . . ,Ai−1. It follows that from Ai−1 to Ai a rule
is applied to a or to a d such that a ≺ d. Using an exhaustive case analysis of all
rules we can show that no new assertion of the form b :C or (b, e) :R can be added
to Ai−1. Therefore, no rule is applicable to b in Ai. This is a contradiction to our
assumption.

2. By contradiction: Suppose σ(A, a) %= σ(A′, a). Let b be the direct predecessor of
a with b ≺ a. A rule must have been applied to a and not to b because of point 1.
Due to our strategy only generating rules are applicable to a that cannot add new
elements to σ(·, a). This is an obvious contradiction.

3. This follows from point 1 and the completion strategy. �
In order to define a canonical interpretation from a completion A, the notion of a
specific blocking individual is introduced. This blocking individual is called a witness.

In order to show soundness of the calculus a so-called canonical interpretation is
constructed from a completion. For the construction process the notion of a witness
is defined.

Definition 42 (Witness) Let A be an ABox and a, b ∈ ON be individuals in A.
We call a the witness of b if the following conditions hold:

1. σ(A, a) ⊇ σ(A, b)

126



2. a ≺ b
3. ¬∃ c in A : c ∈ ON , c ≺ a, σ(A, c) ⊇ σ(A, b).

The next lemma proves the uniqueness of a witness for a blocked individual.

Lemma 43 Let A′ be an ABox and a be a new individual in A′. If a is blocked then

1. a has no direct successor (individual from O) and
2. a has exactly one witness.

Proof. 1. By contradiction: Suppose that a is blocked in A′ and (a, b) :R ∈ A′. There
must exist an ancestor ABox A where a generating rule has been applied to a in A.
It follows from the definition of the generating rules that for every new individual c
with c ≺ a in A we had σ(A, c) %⊇ σ(A, a). Since A′ has been derived from A we can
use Lemma 41 and conclude that for every new individual c with c ≺ a in A′ we also
have σ(A′, c) %⊇ σ(A′, a). Thus there cannot exist a blocking individual c for a in A′.
This is a contradiction to our hypothesis.

2. This follows directly from condition 3 in Definition 42. �

Definition 44 (Canonical Interpretation) Let A be a complete ABox that has
been derived by the calculus from an augmented ABox AT w.r.t. the role box R.
Since A is clash-free, there exists a variable assignment α that satisfies (the con-
junction of) all occurring assertions (x1, . . . , xn) :P ∈ A. We define the canonical
interpretation IC = (∆IC , ∆D, ·IC) w.r.t. A and R as follows:

1. ∆IC := {a | a is an individual in A}

2. aIC := a iff a is mentioned in A

3. xIC := α(x) iff x is mentioned in A

4. a ∈ AIC iff a :A ∈ A

5. (a, α(x)) ∈ fIC iff (a, x) : f ∈ A

6. (a, b) ∈ RIC iff ∃ c0, . . . , cn, d0, . . . , dn−1 mentioned in A :2,

(a) n ≥ 1, c0 = a, cn = b, and

(b) (a, c1) :S1, (d1, c2) :S2, . . . (dn−2, cn−1) :Sn−1, (dn−1, b) :Sn ∈ A, and

2Note that the variables c0, . . . , cn, d0, . . . , dn−1 not necessarily denote different individual names.
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R

R'

S1 S2 S3 S4 S5

R

R'

S1 S2 S4 S5

a c1 c2 c3 c4 b

a c1 = d1 c2 c3 = d3 c4 = d4 b

S3d2

Figure 5.1: Construction of the canonical interpretation (two examples for case 6).
In the lower example we assume that the individual d2 is a witness for c2 (see text).

(c) ∀i ∈ 0..n− 1 :
di = ci or
di is a witness for ci, and (di, ci+1) :Si+1 ∈ A, and

(d) if n > 1
∀ i ∈ 1..n : ∃R′ ∈ T , R′ ∈ R↓, Si ∈ R′↓

else
S1 ∈ R↓.

The construction of the canonical interpretation for the case 6 is illustrated with
two examples in Figure 5.1. In the lower example the dotted arrow which is con-
structed due to case (6c) in the definition of the canonical interpretation, is called
a gap. The following cases can be seen as special cases of case 6 introduced above
(n = 1, c0 = a, c1 = b):

• c0 = d0 : (a, b) ∈ RIC iff (c0, c1) :S1 ∈ A for a role S1 ∈ R↓.

• c0 %= d0: (a, b) ∈ RIC iff d0 is a witness for c0, and
(d0, c1) :S1 ∈ A, for a role S1 ∈ R↓.
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Due to Lemma 43, the canonical interpretation is well-defined because there exists
a unique blocking individual (witness) for each individual that is blocked.

Theorem 45 (Soundness) Let A be a complete ABox that has been derived by
the calculus from an augmented ABox AT w.r.t. the role box R, then AT has a
model which also satisfies all role axioms in R.

Proof. Let IC = (∆IC , ∆D, ·IC) be the canonical interpretation for the ABox A
constructed w.r.t. the TBox T . A is clash-free.

Features are interpreted in the correct way: There can be no forks in A because (i)
there are no forks in the augmented ABox AT and (ii) forks are immediately elimi-
nated after an application of the R∃P rule. This rule is the only rule that introduces
new assertions of the form (a, x) : f ∈ A. Note that forks cannot be introduced by
the R∃≤n rule due to the completion strategy. Thus, IC maps features to (partial)
functions because the variable assignment α is a function.

All role inclusions in the RBox R are satisfied: For every S � R in R it holds that
SIC ⊆ RIC This can be shown as follows. If (aIC , bIC) ∈ SIC , case 6 of Definition 44
must be applicable. Hence, there exists a chain of subroles possibly with gaps and
witnesses (see Definition 44, case 6). Thus, the corresponding construction for IC
adding (aIC , bIC) to SIC is also applicable to R since S ∈ R↓ (see 6d). Therefore, there
is also tuple (aIC , bIC) ∈ RIC .

All transitivity axioms in the RBoxR are satisfied, i.e. transitive roles are interpreted
in the correct way: ∀ transitive(R) ∈ R : RIC = (RIC)

+
. If there exist (aIC , bIC) ∈ RIC

and (bIC , cIC) ∈ RIC then case 6 in Definition 44 must have been applied for each
tuple. But then, a chain of roles from a to c exists as well (possibly with gaps and
witnesses) such that (aIC , cIC) is added to RIC as well.

In the following we prove that IC satisfies every assertion in A.

For any a % .= b ∈ A or (a, b) :R ∈ A, IC satisfies them by definition.

For any (a, x) : f ∈ A, IC satisfies them by definition.

For any (x1, . . . , xn) :P ∈ A, IC satisfies them by definition. SinceA is clash-free there
exists a variable assignment such that the conjunction of all predicate assertions is
satisfied. The variable assignment can be computed because the concrete domain is
required to be admissible.

Next we consider assertions of the form a :C. We show by induction on the structure
of C that aIC ∈ CIC .

If C is a concept name, then aIC ∈ CIC by definition of IC.
If C = ¬D, then D is a concept name since all concepts are in negation normal form
(see Definition 18). A is clash-free and cannot contain a :D. Thus, aIC %∈ DIC , i.e.
aIC ∈ ∆IC \ DIC . Hence aIC ∈ (¬D)IC .
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If C = C1 
 C2 then (since A is complete) a :C1 ∈ A and a :C2 ∈ A. By induction
hypothesis, aIC ∈ C1

IC and aIC ∈ C2
IC . Hence aIC ∈ (C1 
 C2)

IC .

If C = C1 � C2 then (since A is complete) either a :C1 ∈ A or a :C2 ∈ A. By induction
hypothesis, aIC ∈ C1

IC or aIC ∈ C2
IC . Hence aIC ∈ (C1 � C2)

IC .

If C = ∀R . D, then we have to show that for all bIC with (aIC , bIC) ∈ RIC it holds that
bIC ∈ DIC . If (aIC , bIC) ∈ RIC , then according to Definition 44, b is a successor of a
via a chain of roles Si ∈ R↓ or there exist corresponding witnesses as domain elements
of Si ∈ R↓, i.e. the chain might contain “gaps” with associated witnesses (see Fig-
ure 5.1). Since (aIC , bIC) ∈ RIC and Si

IC ⊆ RIC there exists tuples (ci
IC , ci+1

IC) ∈ Si
IC .

Due to Definition 44 it holds that ∀i ∈ 1..n : ∃R′ ∈ T , R′ ∈ R↓, Si ∈ R′↓. Therefore
ck :∀R′ . D ∈ A, (k ∈ 1..n− 1) because A is complete. For the same reason b :D ∈ A.
By induction hypothesis it holds that bIC ∈ DIC . As mentioned before, the chain of
roles can have one or more “gaps” (see Figure 5.1). However, due to Definition 44 in
case of a “gap” there exists a witness such that a similar argument as in case 6 can be
applied, i.e. in case of a gap between ci and ci+1 with witness di for ci, the blocking
condition ensures that the concept set of the witness is a superset of the concept
set of the blocked individual. Since it is assumed that (di, ci+1) :Si+1 ∈ A and A is
complete it holds that ci+1 :∀R′ . D ∈ A. Applying the same argument inductively,
we can conclude that cn−1 :∀R′ . D ∈ A and again, we have bIC ∈ DIC by induction
hypothesis.

If C = ∃R . D, then we have to show that there exists an individual bIC ∈ ∆IC with
(aIC , bIC) ∈ RIC and bIC ∈ DIC . Since ABoxA is complete, we have either (a, b) :S ∈ A
with S ∈ R↓ and b :D ∈ A or a is blocked by an individual c and (c, b) :S ∈ A (again
S ∈ R↓). In the first case we have (aIC , bIC) ∈ RIC by the definition of IC (case 6,
n = 1, ci = di) and bIC ∈ DIC by induction hypothesis. In the second case there ex-
ists the witness c with c :∃ S . D ∈ A and S ∈ R↓. By definition c cannot be blocked
and by hypothesis A is complete. So we have an individual b with (c, b) :S ∈ A and
b :D ∈ A. By induction hypothesis we have bIC ∈ DIC and by the definition of IC
(case 6, n = 1, ci %= di, di is a witness for ci and a = ci, c = di) we have (aIC , bIC) ∈ RIC .

If C = ∃≥n R, we prove the hypothesis by contradiction. We assume that aIC %∈ (∃≥n R)IC .
Then there exist at most m (0 ≤ m < n) distinct S-successors of a with S ∈ R↓. Two
cases can occur: (1) the individual a is not blocked in IC. Then we have less than
n S-successors of a in A and the R∃≥n-rule is applicable to a. This contradicts the
assumption that A is complete. (2) a is blocked by an individual c but the same
argument as in case (1) holds and leads to the same contradiction.

For C = ∃≤n R we show the goal by contradiction. Suppose that aIC %∈ (∃≤n R)IC .
Then there exist at least n + 1 distinct individuals b1

IC , . . . , bn+1
IC such that

(aIC , bi
IC) ∈ RIC , i ∈ 1..n + 1. The following two cases can occur. (1) The individual

a is not blocked: We have n+1 (a, bi) :Si ∈ A with Si ∈ R↓ and Si %∈ T , i ∈ 1..n+1.
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The R∃≤n rule cannot be applicable since A is complete and the bi are distinct,
i.e. bi % .= bj ∈ A, i, j ∈ 1..n + 1, i %= j. This contradicts the assumption that A is
clash-free. (2) There exists a witness c for a with (c, bi) :Si ∈ A, Si ∈ R↓, and Si %∈ T ,
i ∈ 1..n+1. This leads to an analogous contradiction. Due to the construction of the
canonical interpretation in case of a blocking condition (with c being the witness) and
a non-transitive role R (R is required to be a simple role, see the syntactic restrictions
for number restrictions and role boxes), there is no (aIC , bk

IC) ∈ RIC if there is no
(cIC , bk

IC) ∈ RIC (k ∈ 1..n + 1).

If C = ∃ f1, . . . , fn . P we show that there exist concrete objects y1, . . . , yn ∈ ∆D such
that (aIC , y1 ) ∈ f1

IC , . . . , (aIC , yn) ∈ fn
IC and (y1, . . . , yn) ∈ PIC . The R∃P rule gen-

erates assertions (a, x1) : f1, . . . , (a, xn) : fn, (x1, . . . , xn) :P. Since A is clash-free there
is no concrete domain predicate clash. Hence there exists a variable assignment
α that maps x1, . . . , xn to elements of ∆D. The conjunction of concrete domain
predicates is satisfiable and (x1

IC , . . . , xn
IC) ∈ PIC . By definition of IC it holds that

(aIC , x1
IC) ∈ f1

IC , . . . , (aIC , xn
IC) ∈ fn

IC . Thus, there exist y1, . . . , yn such that the
above-mentioned requirements are fulfilled and therefore aIC ∈ (∃ f1, . . . , fn . P)IC

If C = ∀ f .⊥D then we show that aIC ∈ (∀ f .⊥D)IC . Because A is clash-free, there
cannot be an assertion (a, x) : f ∈ A for some x in Oc and an f ∈ F . Thus, it does not
hold that there exists (aIC , y) ∈ fIC and hence aIC ∈ (∀ f .⊥D)IC .

If ∀ x . x :D ∈ A, then –due to the completeness of A– for each individual a in A we
have a :D ∈ A and, by the previous cases, aIC ∈ DIC . Thus, IC satisfies ∀ x . x :D.
Finally, since IC satisfies all assertions in A, IC satisfies A.

�

Theorem 46 (Completeness) Let AT be an augmented ABox and R be a role
box. If AT is consistent w.r.t. R, then there exists at least one completion A′ being
computed by applying the completion rules w.r.t. the role box R.

Proof. By contraposition: Obviously, an ABox containing a clash is inconsistent. If
there does not exists a completion of AT , then it follows from Proposition 39 that
the ABox AT is inconsistent w.r.t. the role box R. �

Definition 47 (Maximum Number of Concepts) Let A be a completion of an
augmented ABox. Then,
nA := ||{C|∃ (a :D) ∈ A : C ∈ subs(D), or ∃(∀ x . x :D) ∈ A : C ∈ subs(D)}|| is called
the maximum number of concepts in A. The function subs applied to a concept D
returns the set of all concepts appearing as substrings in D (incl. D).

Note that nA is bounded by the length of the string of the augmented ABox A. In
the following we assume that || · || returns the cardinality of a set plus 1.
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Lemma 48 Let A be a completion of an augmented ABox AT . Furthermore, let TR
be the finite set of transitive roles mentioned in a role box R. In any set X consisting
of individuals occurring in A with a cardinality greater than 2||TR||×nA there exist at
least two individuals a, b ∈ X whose concept sets are equal.

Proof. The only rule that generates assertions with concepts not already mentioned
in A is the R∀+C rule. New concepts of the form ∀T . C may be generated. The
number of these concepts is bounded by ||TR|| × nA because there are only ||TR||
transitive roles mentioned in the role box R and only nA different concepts in A.
There cannot exist more than 2||TR||×nA different concept sets for the individuals in
A′. If we have 2||TR||×nA individuals with different concept sets, then there can be no
additional individual with a new concept set. �

Lemma 49 Let AT be an augmented ABox and let A′ be a completion of AT w.r.t.
R. Furthermore, let TR be the finite set of transitive roles mentioned in the role box
R. Then, there occur at most 2||TR||×nA non-blocked new individuals in A′.

Proof. Suppose we have 2||TR||×nA + 1 non-blocked new individuals in A′. From
Lemma 48 we know that there exist at least two individuals a, b in A′ such that
σ(A′, a) = σ(A′, b). By Definition 21 we have either a ≺ b or b ≺ a. Assume with-
out loss of generality that a ≺ b holds. The condition σ(A′, a) = σ(A′, b) implies
σ(A′, a) ⊇ σ(A′, b) and therefore a is a blocking individual for b (see Definition 42).
This contradicts the hypothesis that b is not blocked. �

Theorem 50 (Termination) Let AT be an augmented ALCNHR+(D)− ABox
(with numbers occurring in number restrictions expressed in binary). Every comple-
tion of AT w.r.t. a role box R is finite and its size is O(24n) where n = ||TR|| × n0.

Proof. Let A′ be a completion of AT . From Lemma 49 we know that A′ has at most
2||T ||×nA′ ≤ 2n non-blocked new individuals. Therefore, a total of at most m×2n new
individuals can exist in A′, where m is the maximum number of direct successors for
any individual in A′.

Note that m is bounded by the number of ∃R . C concepts (≤ n) plus the total sum
of numbers occurring in ∃≥n R. Since numbers are expressed in binary, their sum is
bounded by 2n0(≤ 2n). Hence, we have m ≤ 2n +n. Since the number of individuals
in the initial ABox is also bounded by n, the total number of individuals in A′ is at
most m× (2n + n) ≤ (2n + n)× (2n + n), i.e. O(22n).

The number of different assertions of the form a :C or ∀ x . x :C in which each indi-
vidual in A′ can be involved, is bounded by n and each assertion has a size linear in
n. Hence, the total size of these assertions is bounded n× n× 22n, i.e. O(23n).
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The number of different assertions of the form (a, b) :R or a % .= b is bounded by (22n)2,
i.e. O(24n).

The number of different assertions of the form (a, x) : f is bounded by O(22n) due to
fork elimination.

The number of different assertions of the form (x1, . . . , xn) :P is bounded by n+(n×
22n), i.e. O(23n). The initial set of concrete domain predicate assertions is bounded
by n. In addition, for each individual there may be n concept assertions yielding
additional predicate assertions.

In conclusion, we have a size of O(24n) for A′. �

Theorem 51 (Decidability) Checking whether a knowledge base (T ,R,A) is con-
sistent is a decidable problem.

Proof. Given a knowledge base (T ,R,A), an augmented ABox AT can be con-
structed in linear time. Thus, the claim follows immediately from Lemma 19 and
Theorems 45, 46, and 50. �

5.4 Applying ALCNHR+(D)−: Configuration Revisited

In the previous section the decidability of the ABox consistency problem for the lan-
guageALCNHR+(D)− has been shown. Thus, in principle all configuration problems
formalized as consistency queries for ALCNHR+(D)− knowledge bases as indicated
in Section 5.2 can be solved. If the input knowledge base is consistent, the config-
uration will be represented by a model represented by the canonical interpretation
which can be derived from a completion. However, due to the fact that the algorithm
is nondeterministic, some problems might remain.

5.4.1 Unintended Blocking

In the context of configuration, blocking might lead to an “undesirable” model. Let
us consider the ABox {a :A � C}, the TBox {C � ∃R . A � C} and an empty role box.
One possible completion that might be derived by a concrete implementation of the
knowledge base consistency algorithm is the following:

{∀ x . x : (¬C � ∃R . A � C),
a : (A � C), a : (¬C � ∃R . A � C), a :C, a :∃R . A � C,
(a, b) :R, b : (A � C), b : (¬C � ∃R . A � C), b :C, b :∃R . A � C,
(b, c) :R, c : (A � C), c : (¬C � ∃R . A � C), c :C, c :∃R . A � C}

This is a completion with c being blocked by b. Hence, the canonical interpretation
contains a loop w.r.t. to the role R. Whether this is acceptable or not might depend
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on the application context of the configuration solution. However, it should be noted
that in this specific case there also exists a completion without a blocked individual.
The configuration example presented in Section 5.2 is solved without blocking.

5.4.2 Limited Expressivity

For engine configuration, a set of cylinders all of which have equal piston displace-
ments might be required. However, with ALCNHR+(D)− concrete domains predi-
cates can only be established for a single individual, i.e. a single cylinder, rather than
between different cylinders. A whole set of cylinders being part of an engine can only
be constrained using an ABox and respective concrete domain assertions. Thus, only
a fixed set of individuals can be considered during the configuration process. If it is
not clear in beforehand whether a 4-, 6- or 8-cylinder engine will be required, a more
expressive description logic is needed.

5.4.3 Analysis of an Extension of ALCNHR+(D)−

A possibility for extending the expressivity of ALCNHR+(D)− might be to employ
the predicate exists restriction of ALC(D) which offers feature chains [Baader &
Hanschke, 1991a]. We call the language ALCNHR+(D). Unfortunately, it holds that
ALCNHR+ augmented with a predicate exists restriction supporting feature chains
as in ALC(D) is undecidable because in [Lutz, 1999a] it is shown that ALC(D)
with generalized inclusion axioms (GCIs) is undecidable. ALCNHR+ offers role
hierarchies and transitive roles which provide the same expressivity as GCIs.

An undecidability proof may lead to insights about how to come up with new opera-
tors or syntactic restrictions of existing operators in order to develop a representation
language that can cope with specific application requirements not covered by less ex-
pressive (decidable) languages. Since the GCI-based undecidability proof with Turing
machines presented in [Lutz, 1999a] is rather involved, we give a more direct proof
based on transitive roles and role hierarchies and demonstrate that even if TBoxes
are discarded, ALCNHR+ with concrete domains is undecidable in general.

The syntax and semantics of ALCNHR+(D) is a slightly modified variant of the
syntax and semantics of ALCNHR+(D)−.

Definition 52 (New Predicate Exists Restriction) InALCNHR+(D) a specific
subset A ⊆ S of simple roles called attributes is distinguished (see Definition 1 for
the definition of the set S of simple roles). If a1a2 · · · an−1 are attributes and fn is
a feature, then a composition of attributes and features (written a1a2 · · · an−1fn) is
called a chain (with length n). A single feature (i.e. a chain of length 1) is also
called a chain. If P ∈ ΦD is a predicate of the concrete domain D and u1, . . . , uk

are chains, then the following expression is a concept term: ∃ u1, . . . , uk . P (predicate
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exists restriction). In addition to ALCNHR+(D)−, attributes can be used instead
of roles in value and exists restrictions.

Each attribute a from A is mapped to a partial function aI from ∆I to ∆I . If
u = a1 · · · an−1fn is a chain, then uI denotes the composition a1◦. . .◦an−1◦fn of partial
functions a1

I , . . . ,an−1
Ifn

I . The interpretation function is modified as follows:

(∃ u1, . . . , un . P)I := {a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D :

(a, x1) ∈ u1
I , . . . , (a, xn) ∈ un

I ,

(x1, . . . , xn) ∈ PI}

Proposition 53 (Undecidability of ALCNHR+(D)) The concept consistency
problem for ALCNHR+(D) is not decidable.

The proposition can be proven by a reduction from the Post Correspondence Problem
(PCP). The general idea of the proof is a slight variation of the undecidability proofs
for the description logics ALC(D) with a transitivity operator [Baader & Hanschke,
1992] and ALCRP(D) [Lutz, 1998; Lutz & Möller, 1997].

Proof. A Post Correspondence Problem S is defined as follows. Given a nonempty
finite set S = {(li, ri) | i = 1, . . . m}, where li and ri are words over an alphabet
Σ, a solution of S is a sequence of indices i1, . . . , ik with k ≥ 1 such that the
concatenations wl = li1 . . . lik and wr = ri1 . . . rik denote the same word. The PCP
is known to be undecidable if Σ contains at least two symbols.

For the reduction, the elements of Σ are viewed as digits from {1, . . . , B-1} at base
B, where B := |Σ| + 1. w denotes the nonnegative integer at base 10 which the
(nonempty) word w represents at base B (see also [Baader & Hanschke, 1992]). If
vw is the concatenation of two words v, w ∈ Σ∗, then vw = v ∗ B|w| + w, where |w|
is the length of the word w. The function w 9→ w is a 1–1-mapping from Σ∗ into
the set of nonnegative integers. Let wl, wr be features and f1, . . . , fm be attributes.
Furthermore, let R be a transitive superrole of the attributes fi (i ∈ 1, . . . , m).
Then, for a given instance S of the PCP we define a concept C(S):

C(S)
.
= ∃wl.null-p 
 ∃wr.null-p


m
i=1(∃wl, fiwl.constr-pi

l 
 ∃wr, fiwr.constr-pi
r)


∀R. 
m
i=1 (∃wl, fiwl.constr-pi

l 
 ∃wr, fiwr.constr-pi
r)


∀R.∃wl, wr.notequal-p

The predicates used are defined as follows:

null-p(a) := a = 0

constr-pi
l(a, b) := b = li + a ∗B|li|

constr-pi
r(a, b) := b = ri + a ∗B|ri|

notequal-p(a, b) := a %= b
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wrwl

wrwl

wrwl

...
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a0,0

a1,0 a1,1 a1,m

a2,m
2 a2,m

2
+m-1

f1 f2 fm

f1 fm

lm rm

lml1 rmr1

Figure 5.2: Search space of the Post Correspondence Problem encoded as a model
of a concept C(S).

The undecidability of ALCNHR+(D) is proven by showing that C(S) is consistent iff
the PCP S has no solution. Therefore, if the consistency of C(S) could be decided,
the algorithm could also be used to decide if a PCP S has a solution.

We first show that S has no solution if C(S) is consistent. This can be easily seen
by considering the definition of C(S). If C(S) is consistent there must exist an
interpretation I with C(S)I %= ∅. Figure 5.2 demonstrates that the interpretation
encodes the (infinite) search space for a solution of S. However, since C(S) is assumed
to be consistent, ∀R.∃wl, wr.notequal-p holds. Therefore, none of the paths in the
search space leads to a solution.

Now we prove that C(S) is consistent if S has no solution. This direction is proven by
defining an interpretation with C(S)I %= ∅ for a PCP S for which it is known that no
solution exists.

∆I = {aij | i ≥ 0, 1 ≤ j < mi};
∀i ≥ 0, 0 ≤ j < mi :

f1
I(aij) = ai+1 j∗m, . . . , fm

I(aij) = ai+1 j∗m+m−1,

wl
I(aij) = φl(i, j), wr

I(aij) = φr(i, j)

where φl and φr are two recursively defined concatenation functions (concat concate-
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nates words and :; denotes the floor function):

φl(0, 0) = ε

φr(0, 0) = ε

φl(i, j) = concat(φl(i− 1, :j/m;), lj+1−(m∗�j/m�))

φr(i, j) = concat(φr(i− 1, :j/m;), rj+1−(m∗�j/m�)).

�
As we have discussed before, the undecidability proof for ALCNHR+(D) presented
here follows the approach for showing the undecidability of ALC(D)-trans presented
in [Baader & Hanschke, 1992]. Furthermore, the idea to construct a concept C(S)
in such a way that it is satisfiable iff the PCP S has no solution has been taken
from [Lutz & Möller, 1997; Lutz, 1998; Haarslev et al., 1998]. The basic idea of
the undecidability proofs is to construct a transitive role in order to propagate a
concept constraint to all individuals in the tree which encodes the search space of a
PCP. In the undecidability proof for ALCNHR+(D) presented here, a similar effect
is achieved by exploiting role hierarchies and transitive roles.3

Analyzing the model of the PCP it becomes clear that the undecidability is caused by
the possibility to establish predicates for concrete domain objects that are referred
to via features with different individuals on the left-hand side of the corresponding
ABox assertions. The finite model property is lost in ALCNHR+(D). However, as
long as a finite model is actually found by a calculus, this is no problem. So there
might be some hope that “conditions” under which non-termination is “likely to
occur” can be established. If these conditions are encountered, then the answer to
the inference problem could be “unknown”.

Rather than considering the quite complex PCP concept in detail, we discuss a
simpler ALCNHR+(D) concept intended for describing lists of numbers.4 As in the
previous subsection, there are predicates established for concrete objects that are
referred to by different individuals.

Let us assume, car is a feature cdr is an attribute and Rest is a transitive superrole
of cdr. We also use the name cadr for the chain cdr car. Let P, Q1 and Q2 be
elements of Φ� (see Section 5.2) such that P(x, y) := y − x = 1, Q1(x) := x > 7 and
Q2(x) := x = 100.

Example 1: ∃ car, cadr . P 
 ∀Rest . (∃ car, cadr . P)

3Decidability problems with concrete domains and cyclic axioms are also discussed in [Buchheit
et al., 1995].

4In a configuration context, for instance, a list of cylinders might be described.
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cdr cdr

car car car

i j k

x y zP(x,y) P(y,z) P(z,...)

...

...

cdr

Figure 5.3: List of numbers greater than 7 decreasing by 1.

i j k

x y zP(x,y) P(y,z) P(z,...)

...

...

Q1(x)
Q2(x)

Q1(y) Q1(z)

cdr cdr

car car car

cdr

Figure 5.4: List of numbers greater than 7 decreasing by 1 starting at 100.

Figure 5.3 sketches a model for this concept (i, j and k are individuals and x, y, z
are concrete objects). Since P is based on a total strict ordering, the model for the
concept in Example 1 must be infinite.

Example 2: ∃ car . Q1 
 ∃ car . Q2

 ∃ car, cadr . P 
 ∀Rest . (∃ car . Q1 
 ∃ car, cadr . P)

Figure 5.4 shows an interpretation which is to be continued to the right in the
expected way. Since x is equal to 100 it can easily be seen that this interpretation
cannot be a model because it must be extended to the right until some ‘successor’
(filler of the role Rest) will be less than 7.

Example 3: ∀ cdr .⊥ � (∃ car, cadr . P 
 ∀Rest . (∀ cdr .⊥ � ∃ car, cadr . P))

A model for this concept has the structure of the interpretation shown in Figure 5.3
but can be finite because there is no role filler for cdr required. Even the interpreta-
tion consisting only of one individual without fillers for cdr and car is a model. This
interpretation represents an empty list.

From an application-oriented point of view, it is often not necessary to describe
infinite lists. The concept in Example 3 captures that lists can be of arbitrary but
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finite length.5 Since there exists a finite model it might be possible to devise a
calculus to compute a configuration based on an initial input ABox (cf. Figure 5.4).
However, since the language is undecidable in general, a sound and complete (and
terminating) calculus for deciding knowledge base consistency inevitably must return
‘unknown’ in some situations. We conjecture that it might be possible to detect
these situations (i.e. guarantee termination) while preserving that both ‘yes’ and
‘no’ answers can be trusted. In the case of “linear” structures as discussed with
the examples above it might be possible to integrate additional proof techniques
involving the induction principle. In Example 1 and Example 2, “unknown” might
be returned. Details of a calculus still have to be worked out.

5.5 Discussion

In this chapter the description logic ALCNHR+(D)− has been introduced as an
extension of ALCNHR+ . A tableaux calculus deciding the knowledge base consis-
tency problem for ALCNHR+(D)− has been presented. Soundness, completeness
and termination has been shown. In addition, applications of the logic in the con-
text of configuration problems have been sketched. The Cylinder example demon-
strates that some requirements of a model-based configuration system are fulfilled
by ALCNHR+(D)−. The calculus presented in this chapter can be used to solve
“simple” configuration problems in which the configuration space can be described
by an ALCNHR+(D)− knowledge base (see [Cunis et al., 1991; Buchheit et al.,
1995; Günter, 1995] for additional representation structures for solving configuration
problems).

The DL system RACE will be extended with support for reasoning with concrete do-
mains in the near future. The adaptation of important optimization techniques such
as dependency-directed backtracking and model merging in the context of concrete
domains is discussed in [Turhan & Haarslev, 2000; Turhan, 2000].

5It should be emphasized that, obviously, the concept of Example 3 is by no means equisatisfiable
compared to the concept of Example 2.
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Chapter 6

Spatiotemporal Terminological
Reasoning

In the previous chapters it has been shown that expressive description logics can
be developed such that many representation requirements in different application
scenarios can be adequately fulfilled with formal inference systems. Besides the
facilities offered by the base language ALC, with ALCNHR+ we have considered
number restrictions, transitive roles and role hierarchies. With RACE a powerful
DL inference system for this logic has been introduced. Furthermore, the language
ALCNHR+(D)− introduced in the previous chapter, extends ALCNHR+ with facil-
ities for reasoning about other domains such as the reals.

AlthoughALCNHR+(D)− is an expressive description logic, some inferences required
for dealing with natural phenomena cannot be adequately captured inALCNHR+(D)−

(and other logics as well). For instance, spatial and temporal knowledge cannot be
represented in an appropriate way in the context of terminological reasoning with
description logics (see also Section 3.4). One approach might be to use role names
to represent spatial relations such as ‘inside’ etc. Then, quantification over the ob-
jects which are inside a certain object are possible with value or exist restrictions.
Although with ALCNHR+ roles can be declared as transitive, this is not sufficient
to capture, for instance, qualitative spatial inferences.

Let us consider an example where the well-known topological spatial relations from
the RCC-8 theory [Cohn et al., 1997] are represented by role names (see Figure 6.1).
As an ontological commitment, we assume that each abstract domain object is associ-
ated with its spatial representation via a feature has area. Then, we consider termino-
logical axioms for two different kinds of cities: city 1 and city 2.

city 1
.
= city 
 (∃ ntppi . center) 
 (∃ dc . suburb)

city 2
.
= city 
 ∃ ntppi . (center 
 ∃ dc . suburb)
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A B A B A B

DC (DisConnected) EC (Externally Connected) PO (Partial Overlapping)

B

A

B

A

TPP (Tangential Proper Part) NTPP (Non-Tangential Proper Part)

Figure 6.1: Elementary relations between two regions A and B. The inverses of TPP
(TPPI) and NTPP (NTPPI) as well as the relation EQ (EQual) are not shown.

Both kinds of cities contain a center (topological relation ntppi, non-tangential proper
part). In addition, in the former concept definition there exists a suburb which is
disconnected (topological relation dc) from the city. In the second definition the
existing suburb is disconnected only from the center (but not from the city as a
whole). In Figure 6.2, models for the two concepts are given using a graph notation.
Edges drawn with full lines correspond to existential quantification over roles in
the concept definitions. Dashed lines between abstract objects represent predicates
holding between the associated has area features of the objects. If we require the
suburb to be disconnected from the city, it is certainly disconnected from a region
inside the city (in this case the center region). However, if a concept requires the
existence of a suburb which is only disconnected from the center, then the suburb
can be in any of the indicated relations to the city as a whole (see the lower parts
in Figure 6.2). This set of possible topological relations in the example city 2 can
easily be verified using an RCC-8 relation composition table (see e.g. [Cohn et al.,
1997]). By considering Figure 6.2, we see that the concept city 2 should subsume the
concept city 1 (the predicate dc ec po tppi ntppi represents a disjunction of spatial
relations including dc).

However, since the semantics of topological relations is not represented when only
role names (and defined roles) are used for modeling, the subsumption relation will
not be detected. Even declaring roles as transitive does not suffice to achieve the
necessary inferences.

We define another city concept as a specialization of city 2 with the additional restric-
tion that all individuals which are spatially connected are no suburbs.

city 3
.
= city 2 
 ∀ spatially connected .¬suburb

The role spatially connected is to be interpreted as the disjunction of all topological
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ntppi dc

dc
center suburb

city

city-1

i1

i2 i3

dc-ec-po-tppi-ntppi

dc
center suburb

city

city-2

i4

i5 i6

ntppi ntppi dc

dc
center suburb

city

city-3

i1

i2 i3

Figure 6.2: Models for concepts city 1 and city 2 with inferred role filler relationships
(see text). In the lower part, examples for the spatial regions of the corresponding
objects in the upper part are given. The regions are assumed to be associated with
the corresponding abstract object with the feature has area.

base relations except dc (disconnected). The concept city 3 is defined as a city 2 with
an additional value restriction for the role spatially connected. Although not directly
apparent, careful thinking reveals that city 3 is more specific than city 1. Due to the
value restriction for the role spatially connected (see the concept definition of city 3)
we can infer that only dc can hold between the city and the suburb. This and the
additional restriction for the city (see Figure 6.2) are the reasons that city 3 is more
specific than city 1. Again, the semantics of topological relations is not modeled by
the representation formalism.

In order to formally integrate spatial and terminological reasoning, the description
logic ALCRP(D) has been developed (see also [Haarslev et al., 1998; Lutz, 1998;
Haarslev et al., 1999b]).

6.1 The Description Logic ALCRP(D)

ALCRP(D) is a description logic with less expressive power than ALCNHR+ re-
garding some features such as number restrictions, but is at the same time more
powerful because of the incorporation of roles defined w.r.t. predicates of a concrete
domain. Note that some notions (e.g. features are defined in a slightly different way
as in the context of ALCNHR+(D)−).

6.1.1 The Concept Language of ALCRP(D)

We first present the syntax and semantics of the language for specifying concept and
role inclusions.
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Definition 54 (Role Terms) Let R and F be disjoint sets of role and feature
names, respectively. Any element of R ∪ F is an atomic role term. A composition
of features (written f1f2 . . . fn) is called a feature chain. A simple feature can be
considered as a feature chain of length 1. If P ∈ ΦD is a predicate name with arity
n+m and u1, u2, . . . , un as well as v1, v2, . . . , vm are feature chains, then the expression
∃(u1, . . . , un)(v1, . . . , vm).P (role-forming predicate operator) is a complex role term.
Let S be a role name and let R be a role term. Then S

.
= R is a terminological axiom

or role axiom. This type of terminological axiom is also called role introduction. The
role S is also called a defined role.

Using the definitions from above, we define the syntax of concept terms inALCRP(D).

Definition 55 (Concept Terms) Let C be a set of concept names which is disjoint
from R and F . Any element of C is a concept term. If C and D are concept terms,
R ∈ R is an arbitrary role, P ∈ ∆D is a predicate of the concrete domain, ui is a
feature chain, n > 1, then the following expressions are also concept terms:

• C 
 D (conjunction)
• C � D (disjunction)
• ¬C (negation)
• ∀R . C (concept value restriction)
• ∃R . C (concept exists restriction)
• ∃ u1, . . . , un . P (predicate exists restriction).

A concept term may be put in parentheses. � (⊥) is considered as an abbreviation
for C � ¬C (C 
 ¬C).

For ALCRP(D) it would have been possible to also introduce a role box as a set of
role axioms. However, because there is no need to impose special conditions on role
boxes (in contrast to ALCNHR+ , see Section 2.1), in ALCRP(D) the role axioms
are just part of the TBox.

Definition 56 (TBox, Introduction Axioms) Let A be a concept name and let
D be a concept term. Then A

.
= D and A � D are terminological axioms as well. A

finite set of terminological axioms T is called a terminology or TBox if the left-hand
sides of all terminological axioms in T are unique and, furthermore, all concept defi-
nitions are acyclic. The axioms A � D in a TBox are also called concept introduction
axioms .

The next definition provides a model-theoretic semantics for the language introduced
above. Let D = (∆D, ΦD) be a concrete domain.
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Definition 57 (Semantics) An interpretation ID = (∆I , ·I)D consists of a set ∆I

(the abstract domain), a set ∆D (the domain of the ‘concrete domain’ D) and an
interpretation function ·I . The interpretation function ·I maps each concept name
C to a subset CI of ∆I , each role name R from R to a subset RI of ∆I ×∆I , each
feature f from F to a partial function fI from ∆I to ∆I ∪∆D,1 and each predicate
name P from ΦD with arity n to a subset PI of ∆n

D. If u = f1 · · · fn is a feature chain,
then uI denotes the composition f1

I ◦ . . .◦ fn
I of partial functions f1

I , . . . ,fn
I . Let the

symbols C, D be concept expressions, R, S be role names, u1, . . . , un be feature chains
and let P be a predicate name. Then, the interpretation function can be extended
to arbitrary concept and role terms as follows:

(C 
 D)I := CI ∩ DI

(C � D)I := CI ∪ DI

(¬C)I := ∆I \ CI

(∃R . C)I := {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
(∀R . C)I := {a ∈ ∆I | ∀ b : (a, b) ∈ RI ⇒ b ∈ CI}

(∃ u1, . . . , un . P)I := {a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D :

(a, x1) ∈ u1
I , . . . , (a, xn) ∈ un

I ,

(x1, . . . , xn) ∈ PI}
(∃ (u1, . . . , un)(v1, . . . , vm) . P)I := {(a, b) ∈ ∆I ×∆I |

∃x1, . . . , xn, y1, . . . , ym ∈ ∆D :

(a, x1) ∈ u1
I , . . . , (a, xn) ∈ un

I ,

(b, y1) ∈ v1
I , . . . , (b, ym) ∈ vm

I ,

(x1, . . . , xn, y1, . . . , ym) ∈ PI}

An interpretation I is a model of a TBox T iff I satisfies AI ⊆ DI (AI = DI) for all
concept introduction axioms A � D (A

.
= D) in T and SI = RI for all terminological

axioms S
.
= R (role introductions) in T .

6.1.2 The Assertional Language of ALCRP(D)

In the following, the language for representing knowledge about individuals is in-
troduced. An ABox A is a finite set of assertional axioms which are defined as
usual:

Definition 58 (ABox Assertions) Let O be a set of individual names. Further-
more, let X be a set of names for concrete objects (X ∩O = ∅). If C is a concept

1Note the difference between the semantics for features in ALCNHR+(D)− and ALCRP(D).
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term, R a role name, a, b ∈ O are individual names and x, x1, . . . , xn ∈ X are names
for concrete objects, then the following expressions are assertional axioms :

• a :C (concept assertion),
• (a, b) :R (role assertion),
• (a, x) : f (concrete domain feature assertion),
• (x1, . . . , xn) :P (concrete domain predicate assertion).

The interpretation function ·I of the interpretation I for the concept language can be
extended to the assertional language by additionally mapping every individual name
from O to a single element ∆I (the unique name assumption does not necessarily
hold). Concrete objects from X are mapped to elements of ∆D.

An interpretation satisfies an assertional axiom a :C iff aI ∈ CI , (a, b) :R iff (aI , bI) ∈ RI ,
(a, x) : f iff (aI , xI) ∈ fI and (x1, . . . , xn) :P iff (x1

I , . . . , xn
I) ∈ PI .

An interpretation I is a model of an ABox A w.r.t. a TBox T iff I is a model of T
and furthermore satisfies all assertional axioms in A.

6.2 Decidability and Undecidability Results

Based on the notion of a model, the inference problems for ALCRP(D) are defined
in a similar way as for ALCNHR+ (see Section 2.3). As mentioned above, for brevity,
no role box is considered in the context of ALCRP(D).

In [Lutz & Möller, 1997] as well as in [Haarslev et al., 1998] it is shown that, unfortu-
nately, the inference problem of checking the consistency of concepts (and ABoxes) in
the “generic” language ALCRP(D) is undecidable in general. However, in [Haarslev
et al., 1999b] a restricted variant of ALCRP(D) is described that is indeed decidable
if only (syntactically) restricted concept terms are used. Thus, the above-mentioned
ALCRP(D) inference problems can be decided if only restrictedALCRP(D) concept
terms are admitted.

Definition 59 A concept term X is called restricted w.r.t. a TBox T iff its equivalent
X′ which is unfolded w.r.t. T and in negation normal form fulfills the following
conditions:2

(1) For any subconcept term C of X′ that is of the form ∀R1 . D (∃R1 . D) where R1

is a complex role term, D does not contain any terms of the form ∃R2 . E (∀R2 . E)
where R2 is also a complex role term.

(2) For any subconcept term C of X′ that is of the form ∀R . D or ∃R . D where R is a
complex role term, D contains only predicate exists restrictions that (i) quantify over

2For technical reasons, we assume that a concept term is a subconcept term of itself.
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attribute chains of length 1 and (ii) are not contained inside any value and exists
restrictions that are also contained in D.

A terminology is called restricted iff all concept terms appearing on the right-hand
side of terminological axioms in T are restricted w.r.t. T . An ABox A is called
restricted w.r.t. a TBox T iff T is restricted and all concept terms used in A are
restricted w.r.t. the terminology T .

Theorem 60 The ABox consistency problem for restricted ALCRP(D) concept
terms is decidable if D is an admissible concrete domain.

The proof is given in [Haarslev et al., 1999b].

Given two restricted concept terms, their subsumption relationship can be tested.
This follows from the following proposition.

Proposition 61 The set of restricted ALCRP(D) concept terms is closed under
negation.

For the proof see [Haarslev et al., 1999b].

6.3 Spatioterminological Reasoning

The examples discussed in this section employ reasoning with a concrete domain
which can represent spatial relations between domain objects. Due to its widespread
use, we focus on topological relations known from the RCC-8 theory [Randell et al.,
1992].

6.3.1 ALCRP(RCC)

Before presenting examples we briefly introduce the concrete domain RCC. We will
consider specific spatial objects whose spatial representations are given as polygons.
It is shown that RCC provides predicates which can be used to describe qualitative
spatial RCC-8 relations as roles between spatial objects. The relations are depicted
in Figure 6.1.

Definition 62 The concrete domain RCC is defined w.r.t. the topological space
〈R2, 2R

2〉. The domain ∆RCC contains all non-empty, regular closed subsets of R
2,

which are called regions for short. The set of predicate names is defined as follows:

• A unary concrete domain top predicate is-region with is-regionRCC = ∆RCC and
its negation is-no-region with is-no-regionRCC = ∅.
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• The 8 basic predicates dc, ec, po, tpp, ntpp, tppi, ntppi and eq correspond to
the RCC-8 relations (see Figure 6.1). I would like to refer to [Haarslev et al.,
1999b] for a formal definition of the semantics.

• In order to name disjunctions of base relations, we need additional predicates.
Unique names for these “disjunction predicates” are enforced by imposing the
following canonical order on the basic predicate names: dc, ec, po, tpp, ntpp,
tppi, ntppi, eq. For each sequence p1, . . . , pn of basic predicates in canonical
order (n ≥ 2), an additional predicate of arity 2 is defined. The predicate has
the name p1- · · · -pn and we have (r1, r2) ∈ p1- · · · -pn

RCC iff (r1, r2) ∈ p1
RCC or

. . . or (r1, r2) ∈ pn
RCC. The predicate dc-ec-po-tpp-ntpp-tppi-ntppi-eq is also

called spatially-related.

• A binary predicate inconsistent-relation with inconsistent-relationRCC = ∅ is the
negation of spatially-related.

Proposition 63 The concrete domain RCC is admissible.

This is proven in [Haarslev et al., 1999b].

Based on the results presented in [Renz, 1998] we can conclude that there exists
always a model whose individuals are polygons which are not necessarily internally
connected. Although in some specific contexts this might be disturbing, for many
applications, internal connectedness is not required. For instance, countries can have
islands which are not connected to the main area of the country etc.

6.3.2 Reasoning with ALCRP(RCC): A GIS Application

The city examples from the introduction of this chapter demonstrate the importance
of spatioterminological TBox reasoning. With the following role axioms the above-
mentioned implicit subsumption relationships between the different city concepts do
indeed follow.

ntppi
.
= ∃ (has area)(has area) . ntppi

dc
.
= ∃ (has area)(has area) . dc

spatially connected
.
= ∃(has area)(has area).ec-po-tpp-ntpp-tppi-ntppi-eq

With the concrete domain RCC introduced above, we can now turn to another ex-
ample where the expressive power of ALCRP(D) is demonstrated in the context
of spatioterminological ABox reasoning. First, we consider a set of additional role
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Figure 6.3: Candidate configurations for ABox individuals (see text).

introduction axioms.

related
.
= ∃(has area)(has area).spatially-related

inside
.
= ∃(has area)(has area).tpp-ntpp

inside i
.
= ∃(has area)(has area).tppi-ntppi

touching
.
= ∃(has area)(has area).ec

overlapping
.
= ∃(has area)(has area).po-tpp-ntpp-tppi-ntppi-eq

The following concept introduction axioms constitute the TBox of our example for
reasoning inALCRP(RCC).

coastal city
.
= city 
 ∃ touching . sea

country � ∀ overlapping .¬sea

sea � ocean

A coastal city is defined as a city which is touched by a sea (in the sense of ocean).
Furthermore, the second axiom enforces that countries do not overlap with seas.
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The inferential power ofALCRP(RCC) is further explained with an instance problem
concerning the following ABox.

loc 1 : city

country 1 : country

port 1 : port

sea 1 : sea

(loc 1, country 1) : inside

(loc 1, port 1) : inside i

(port 1, sea 1) : touching

The TBox and the ABox of the example contain only restricted concept terms.
Therefore the inference problems are decidable. We consider the instance problem
instance?(loc 1, coastal city) posed as a query to the description logic system. As
indicated above (see Section 2.3), the answer of the query is determined by the test
whether the ABox becomes inconsistent if the assertion loc 1 :¬coastal city is added).

Possible spatial configurations based on ABox information are shown in Figure 6.3.
Considering the definition of inside, the topological relation between the city loc 1 and
the country country 1 is either tpp (tangential proper part) or ntpp (non-tangential
proper part). The basic relations between the city and the port are tppi or ntppi
(i for inverse), i.e. the port port 1 is a tangential or a non-tangential proper part
of the city. Since the port touches the sea sea 1 (relation ec, externally connected)
and, due to the second terminological axiom, a country and a sea cannot over-
lap (base relations po, tppi, ntppi or eq) only the third configuration in Figure 6.3
leads to a consistent scenario. However, since, due to the query, it is claimed that
loc 1 :¬coastal city holds, there must not be a sea touching the city (see the termi-
nological axiom for coastal city). Hence, the ABox is inconsistent and the answer to
the query instance?(loc 1, coastal city) is ‘yes’.

6.4 Spatiotemporal Terminological Reasoning

Considering the general mechanism for integrating concrete domains, it becomes
clear that another instance of ALCRP(D) can deal with qualitative temporal re-
lations between time intervals according to [Allen, 1983]. The idea is to define
a concrete domain ALLEN for modeling constraints for time intervals with binary
predicates representing Allen’s Interval Algebra (before, after, meets, met by, overlaps,
overlapped by, during, contains, starts, started by, finishes, finished by, equal and dis-
junctions of these basic predicates). Constraint satisfaction algorithms known from
the literature (see e.g. [Gerevini, 1997] for an overview) can then be employed to check
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Figure 6.4: A clip from a city map (see text).

the satisfiability of conjunctions of predicates. Furthermore, in [Baader & Hanschke,
1991b] it is shown that, from a technical perspective, any two disjoint admissible
concrete domains can be combined to form a single admissible concrete domain (the
combination operator is called ⊕). An extension ⊕′ of ⊕ concerning roles based on
predicates as in ALCRP(D) is discussed in [Haarslev et al., 1999b]. The combina-
tion RCC ⊕′ ALLEN also defines predicates as conjunctions of predicates from the
component concrete domains, i.e. the spatial and the temporal concrete domain.

The use of the temporal domain in combination with the spatial domain will be
illustrated with an example from the GIS application introduced in Figure 6.4. We
assume that, in the GIS database, a certain area is defined to be a bird sanctuary from
the beginning of March to the end of May (see the dark-gray bar in Figure 6.4). Now,
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as part of a planning scenario, let us assume a hypothetical dredging operation is to be
scheduled from April to June inclusive (middle-gray bar). In Figure 6.4 the affected
area of the creek “Schleemer Bach” is indicated with a hatched region. In addition, we
assume that dredging a creek involves handling trucks and dredging machinery. Thus,
we assume the existence of a so-called “support area” touching the real dredging area
in the creek (the topological relation is ec). Furthermore, background knowledge
should indicate that the “support process” starts earlier and lasts longer than the
proper dredging operation because the dredging machinery has to be installed and
deinstalled (see the light-gray bar in Figure 6.4 which is used as an example here).
Obviously, as the reader might expect, the spatiotemporal constraints, the conceptual
knowledge and the knowledge about individuals in this example suggest that dredging
in an “active” bird sanctuary should not be sanctioned by the planning module
of the GIS. The question is: How can this planning problem using GIS facilities
be solved by knowledge representation techniques and logical inferences? In the
following we describe a solution with the description logicALCRP(RCC⊕′ALLEN ).
The planning problem is represented as a knowledge base consistency problem. The
TBox contains the background knowledge of the domain and the ABox represents
supposed spatial and temporal constraints for the bird sanctuary and for a certain
dredging operation.

Both domain objects, the bird sanctuary and the dredging operation, are represented
as ABox objects. The idea is to show that the corresponding ABox can be proven to
be inconsistent given the constraints modeling the knowledge informally introduced
in the previous section.

As an ontological decision, let us assume that temporal intervals are associated with
individuals via the feature has duration. We can define a spatiotemporal process as a
process for which an interval and a region exist as fillers for the corresponding fea-
tures. The predicate is interval is assumed to check membership in the corresponding
concrete domain (see the admissibility criterion in Definition 32).

spatiotemporal process
.
= process 
 ∃ has duration . is interval 
 ∃ has area . is region

noisy process � process

dredging support process � spatiotemporal process 
 noisy process

In addition, several auxiliary concepts are introduced to capture the noisiness of
a dredging support process. These concepts are only partially defined with inclu-
sion axioms. The concept spatiotemporal process is used in subsequent terminologi-
cal inclusion axioms for more specific spatiotemporal processes. The interaction of
space and time in the example can be represented by introducing two roles ec during
and ntppi overlaps which relate fillers of corresponding has area and has duration fea-
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tures.

ec-during
.
= ∃ (has area, has duration)(has area, has duration) . ec-during

ntppi-overlaps
.
= ∃ (has area, has duration)(has area, has duration) . ntppi overlaps

connected-ends-during-overlaps
.
=

∃ (has area, has duration)(has area, has duration) . connected-ends-during-overlaps

The predicate ec-during ensures that (i) the constraint ec is imposed on the fillers of
the has area features and (ii) the constraint during describes a relation between the
fillers of the has duration features. With ntppi-overlaps the corresponding constraints
are established between the has area and has duration features, respectively. We also
define a role connected-ends-during-overlaps combining spatial connectedness and gen-
eralized temporal overlapping. Thus, the predicates from both domains simultane-
ously hold for a pair of abstract individuals. Now, we can (partially) define two con-
cepts dredging process and bird sanctuary.

dredging process �
spatiotemporal process 
 ∃ ec-during . dredging support process

bird sanctuary �
spatiotemporal process 
 ¬noisy process 

∀ connected-ends-during-overlaps .∀ connected .¬noisy process

The spatiotemporal role ec-during is used to relate the dredging support process in the
appropriate way. A bird sanctuary is modeled as a non-noisy spatiotemporal process
with all fillers of the defined spatiotemporal role connected-ends-during-overlaps be-
ing objects which, in turn, are connected to non-noisy processes. The idea behind
this definition is that temporally overlapping connected objects must not be spa-
tially connected to noisy processes because this would cause an inconsistency. The
ALCRP(D) restrictedness criterion is fulfilled for this terminology.

In order to represent GIS information concerning the bird sanctuary we simply
add the following ABox axiom for an individual i1 which is assumed here to rep-
resent the available information about a particular bird sanctuary stored in the
GIS. As a hypothesis for the dredging process, additional ABox axioms for the
individual i2 and its spatiotemporal relationship with i1 (see also Figure 6.4) are
used.3

A0 :=
{

i1 : bird sanctuary, i2 : dredging process, (i1, i2) : ntppi-overlaps
}

3We neglect the technical details about the GIS implementation and its relation to the ABox of
the DL system.
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Figure 6.5: ABox for testing the satisfiability of the dredging process query with
implicit spatial and temporal information shown in two constraint nets (see text).

The ABox A0 is checked for consistency. In Figure 6.5 a graphical representation
of the ABox A0 is shown. Due to the constraints given in ABox A0, an individual
i3 is generated. For this individual, the constraint dredging support process is as-
serted. Furthermore, additional constraints resulting from the given spatiotemporal
relationship between i1 and i2 are derived (see the role ec-during and the spatial and
temporal constraints in Figure 6.4). The filler of i1 for connected-ends-during-verlaps
is i2 in this ABox (see Figure 6.4 and 6.5). Due to the value restriction for this role
in the concept bird sanctuary, new constraints are added to i2. The value restriction
over connected is asserted. The fillers of the connected role with respect to i2 are
i1, i3 and i2 itself.4 Let us consider the individual i3. The constraint ¬noisy process
is added to i3. However, this causes a clash because i3 is a dredging support process
which is a noisy process by definition. Thus, due to the spatiotemporal constraints,
there is no way to find a consistent tableau and, therefore, ABox A0 is inconsistent.
The reader can easily verify that the existence of i3 (the dredging support process) is
indeed required to make the ABox inconsistent because, in our example, the dredging
process itself is not assumed to be a noisy process. If this were the case, there would
be another inconsistency concerning i2, of course.

The example shows that the interaction between spatiotemporal and conceptual
knowledge is very important for GIS systems. The inconsistency of the ABox A0 can
be interpreted by the application system in such a way that the dredging operation
should better be planned in another period of the year.5 Note that ABox reasoning
cannot easily be replaced by model checking because the implicit processes (see
the exists constraint in the definition of dredging process) are not given as part of
the input to the GIS system. For the application system, the knowledge about a

4The predicate of the role connected subsumes the predicates ntppi, ec and po-tppi-ntppi.
5It would be attractive to compute alternatives for the has duration intervals but this is beyond

the scope of this example.
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necessary dredging support process need not be directly available. Furthermore, in
ALCRP(D) we have seen that with defined roles, the interaction between different
concrete domains provides a powerful modeling technique which is neither available
in ALC(D) nor in ALCNHR+(D)−.

In the example ABox A0 we have explicitly added the spatiotemporal constraint
ntppi-overlaps between i1, the bird sanctuary, and the dredging process i2. This is re-
quired because the corresponding ABox assertion cannot be inferred. In principle,
we have to add similar constraints for every pair of spatiotemporal processes. So,
could we find a way to avoid this? In Figure 6.4 “explicit” regions and time intervals
are indicated. We could use the concept-forming predicate operator together with
additional predicates from an extended concrete domain in order to represent quan-
titative knowledge about regions and time intervals with explicit coordinates and
time points, respectively. However, the problem of combining metric and topological
constraints has to be investigated in future research (but see [Haarslev et al., 1999b]).

6.5 Spatioterminological Default Reasoning

In the following we investigate a Reiter-based approach [Reiter, 1980] to terminolog-
ical default reasoning about spatial information. Originally, a default rule has the
form

α : β1, β2, . . . , βn

γ

(also written α : β1, β2, . . . , βn / γ), where α, βi and γ are FOPL formulae. α is
called the precondition of the rule, the βi terms are called justifications, and γ is the
consequent. Intuitively the idea behind default reasoning is the following: starting
with a world description A of what is known to be true, default rules can be applied
such that they augment A by default rule conclusions γ to yield a set of beliefs. A
default can be applied, i.e. its conclusion γ can be added to the set of current beliefs
iff α is entailed by this set, each formula βi is consistent with the current set of beliefs
and γ is not already entailed.

Defaults may interact and depending on the set of default rules being applied, dif-
ferent “possible worlds” or hypotheses can be computed. These possible worlds are
referred to as extensions (see below for a formal definition). Depending on the rea-
soning mode the consequence problem for terminological default theories is to decide
whether a given assertional axiom is member of all extensions (skeptical mode) or of
at least one extension (credulous mode) [Reiter, 1980].

Using description logic concept terms in default rules instead of first-order or proposi-
tional logic formulae has been extensively considered in [Baader & Hollunder, 1995a].
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A terminological default theory is a pair (A, D) where A is an ABox, and D is a
finite set of terminological default rules whose preconditions, justifications and con-
sequents are concept terms. Because concept terms correspond to unary predicates
ranging over a free variable, these defaults are called open defaults. In contrast,
closed defaults do not contain any free variables. Unlike Reiter’s original proposal,
the approach of [Baader & Hollunder, 1995a] applies defaults only to those individu-
als that are explicitly mentioned in the world description (ABox). Default rules are
never applied to implicit individuals introduced by ∃-restrictions. With this kind of
semantics the consequence problem for (A, D) is decidable (see [Baader & Hollunder,
1995a] for details). Closed default rules can be obtained by instantiating the free
variable in the concept expressions with all explicitly mentioned ABox individuals
(see [Baader & Hollunder, 1995a] for a formal definition). Thus, for closed defaults,
α, βi and γ are concept membership assertions (ABox concept axioms).

Once we have a closed default theory, a set of consequences of such a theory is
referred to as an extension which is a set of deductively closed formulae defined by a
fixed point construction. In the case of terminological default reasoning about spatial
information it is also interesting to conclude spatial relations by default. Therefore,
we extended the approach presented in [Baader & Hollunder, 1995a] to be able to deal
with role assertions in default rules. This can be achieved by allowing ALCRP(RCC)
ABoxes inside the default rules as α, βi and γ. Before discussing the computation of
extensions of such closed default theories, we first consider some examples of using
defaults in the context of terminological reasoning about spatial information.

6.6 An Image Understanding Application

We will now illustrate the use of a DL with integrated topological reasoning for an
example which could be part of an aerial image interpretation task. The idea is
to use defaults for hypothesis generation regarding the classification of areas in an
image. The default reasoning component of the DL will generate extensions of the
ABox representing hypothesized classifications which are consistent with the rest of
the knowledge base. The consistency check involves spatial reasoning. Additionally,
also spatial relationships between areas could be hypothesized, for example, in case
of partial object occlusions (see below).

Example 1

Suppose we have incomplete knowledge regarding the classification of the object b in
Figure 6.6(a). We already know that a is a country, but area b is only known to be
an area. The image interpretation system may want to generate possible hypotheses
for b, which either could be a city (Figure 6.6(b)) or a lake (Figure 6.6(c)). Both
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a : country

b : area
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Figure 6.6: Generation of hypotheses for object b.

concepts are plausible hypotheses w.r.t. the size of area b. Obviously, these different
hypotheses are disjoint, since b cannot be both a city and a lake. Other hypotheses
are not generated although these might be plausible at first sight. In particular,
since we require that countries are always disjoint (relation dc) or touching (relation
ec), the system deduces that the hypothesis shown in Figure 6.6(d) should not be
generated.

Formalizing the Example: Using ALCRP(RCC)’s role-forming predicate-based
operator, we declare a set of role axioms according to the mentioned RCC predicates:

inside
.
= ∃(has area)(has area).tpp-ntpp

contains
.
= ∃(has area)(has area).tppi-ntppi

overlaps
.
= ∃(has area)(has area).po

touches
.
= ∃(has area)(has area).ec

disjoint
.
= ∃(has area)(has area).dc

The following definitions of concepts are required to model domain objects represent-
ing different kinds of regions in a TBox which satisfies the ALCRP(D) restrictedness
criteria. This conceptual background knowledge also applies to the subsequent ex-
amples.
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area
.
= ∃(has area).is-region

natural region
.
= ¬administrative region

country region �̇ administrative region 

large scale 
 area

city region �̇ administrative region 

¬large scale 
 area

lake region �̇ natural region 
 area
river region �̇ natural region 
 area

An area is a two-dimensional region with some extent. Furthermore, we distinguish
between administrative regions and natural regions which are disjoint concepts.
The difference between a country region and a city region is that the former is
large scale, but the latter is not. Thus, these two concepts are disjoint as well. The
intention behind the other concept definitions should be obvious.

country
.
= country region 


∀contains.¬country region 

∀overlaps.¬country region 

∀inside.¬country region

city
.
= city region 


∃inside.country region
lake �̇ lake region

river
.
= river region 


∀overlaps.¬lake region 

∀contains.⊥ 

∀inside.¬lake region

A country is a country region that can never contain or be contained within other
country regions. Also, countries never overlap other country regions. Each city
must belong to a specific country, i.e. must lie within a country. Unfortunately, we
cannot write this directly as ∃inside.country because the unfolded resulting term is
no longer restricted. So, we have to use the somewhat weaker version with the base
concept country region. In our world model a city must be inside a country. For a
river we require that it never overlaps or is inside with a lake region.

river flowing into a lake
.
= river 
 ∃touches.lake region

A river flowing into a lake is a specific river that touches a lake region (recall
that the RCC-8 relations ec and po and also ec and ntpp-tpp are disjoint). It would
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b : city ?

a : country

b : city ?

c : country_regiona : country

Can b be a city? No!

Figure 6.7: Subtle inferences due to topological constraints.

be reasonable to also state that cities do not overlap other cities etc., but this is
ignored here for the sake of brevity.

Formalizing hypothesis generation in the way we already discussed informally, we
now consider the following spatioterminological default rules d1, d2 and d3:

d1 =
area : city

city
d2 =

area : lake

lake
d3 =

area : country

country

Suppose we have an ABox according to our world description as shown in Fig-
ure 6.6(a):

{a : country, b : area, (a, b) : contains, (b, a) : inside}

Closing defaults, i.e. instantiating the defaults d1, d2, d3 over the ABox individuals a
and b yields 6 different closed defaults. Now, let us assume α, β and γ have been
replaced by the corresponding assertional axioms (e.g. instantiating the default
area : city / city with the individual a yields the closed default rule {a : area} :
{a : city} / {a : city} – expressions like a : city are called assertional axioms or
ABox axioms). We use the notation di(ind) to refer to a default that is instantiated
with the individual ind. Given our 6 closed default rules let us examine the status
of each:

• Default d1(a) cannot be applied because adding a : city to the ABox yields a
contradiction with a : country. The concepts country region and city region
are disjoint (due to large scale and ¬large scale).

• Default d1(b) can be applied. We get an augmented ABox or Extension 1, see
Figure 6.6(b):
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{a : country, b : area, b : city, (a, b) : contains, (b, a) : inside}

• Default d2(a) cannot be applied because adding a : lake to the ABox yields a
contradiction with a : country. A country is an administrative region and a
lake is defined as a natural region, and both are disjoint concepts.

• Default d2(b) can be applied. Thus, we can get an augmented ABox or Exten-
sion 2, see Figure 6.6(c):

{a : country, b : area, b : lake, (a, b) : contains, (b, a) : inside}

However, if we have an ABox already augmented by the conclusion of default
d1(b), b : city, we cannot apply d2(b). So, only one of d1(b) or d2(b) can be
applied, resulting in two different extensions.

• Default d3(a) cannot be applied, because its conclusion is already entailed by
the ABox.

• Default d3(b) cannot be applied even if no other default has been applied be-
fore. Adding the default’s consequent b : country would yield an inconsis-
tent ABox because a is already known to be a country and so, among others,
a : ∀contains.¬country region holds. Because (a, b) : contains holds and
b : country would imply b : country region, the default cannot be applied.
Thus, we cannot get an extension corresponding to the wrong interpretation
in Figure 6.6(d).

Example 2

Another subtle inference can be demonstrated by showing that the default d1(b) (as
defined above) cannot be applied to conclude that object b in Figure 6.7 is a city.
Figure 6.7 corresponds to the ABox or world description

{a : country, b : area, (a, b) : overlaps, (b, a) : overlaps}

Trying to assert b : city would result in a constraint b : city region 

∃inside.country region. Therefore, polygon a cannot be the appropriate
country region because (b, a) : overlaps holds. Due to the exists restriction there
exists an implicit individual c which is a country region such that (b, c) : inside
holds. As can be seen in Figure 6.7, there is no way to find a spatial arrangement
such that b is inside c and c does not overlap with a or does not contain a. Because
a is a country and, therefore, may not overlap or may not be contained in another
country region, there is no way to conclude that b could possibly be a city.
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r : river
l : lake

cloud

Figure 6.8: Incomplete spatial information.

Example 3

Let us consider Figure 6.8. In this case, we only have incomplete spatial information
w.r.t. to the topological relationship between r and l, because a cloud occludes
relevant parts of the two objects. The corresponding ABox is

{l : lake, r : river}

Since we already know that l is a lake and r is a river (perhaps this is also a hypothesis
generated by previous default rule applications), we can conclude from our conceptual
background knowledge that the spatial relationship between the river and the lake
must be either ec (touches) or dc (disconnected or disjoint). There are no other
possibilities, e.g., a river never overlaps a lake and is never contained within a lake.
We can therefore hypothesize these two possible spatial relationships by default rule
applications. This shows that not only concept or class memberships can be deduced
by defaults. The important insight is the following duality: We can either use spatial
relations between object pairs to conclude their concept memberships, or we can use
already known concept memberships to conclude particular spatial relations between
objects.

Unfortunately, conclusions about relations between individuals cannot be expressed
with the terminological default rules introduced so far, because α, βi and γ are limited
to concept expressions. We now extend the terminological default rules introduced
in [Baader & Hollunder, 1995a] by permitting so-called ABox patterns instead of
concept expressions for α, βi and γ ([Möller & Wessel, 1999]). ABox patterns are
basically ABoxes with placeholders for individuals (written with capital letters).
Closing the default rules instantiates the patterns with all possible combinations of
individuals yielding closed defaults whose α, βi and γ are ALCRP(RCC) ABoxes:

d4 =
{X : lake, Y : river} : {(X, Y ) : disjoint}

{(X, Y ) : disjoint}
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d5 =
{X : lake, Y : river} : {(X, Y ) : touches}

{(X, Y ) : touches}

Closing the patterns, i.e. instantiating X, Y over the ABox A = {l : lake, r : river}
would yield eight different closed defaults whose α, βi and γ are ALCRP(RCC)
ABoxes, e.g. instantiating d4 with X ← l, Y ← r yields the closed default rule

{l : lake, r : river} : {(l, r) : disjoint}
{(l, r) : disjoint}

Additionally, as well as allowing variables such as X and Y , one might also be able to
refer to specific ABox individuals in the ABox patterns (for instance, the individual
“Bodensee”).

6.7 Default Reasoning with Specificity

Let us consider the world description

A = {r : river flowing into a lake, l : lake}

Since it is already known that r is actually a river flowing into a lake and not only
a river, we would like to conclude that the lake l in A should be the lake. That is,
the complex role assertion (l, r) : touches should be added:

d6 =
{X : lake, Y : river flowing into a lake} : {(X, Y ) : touches}

{(X, Y ) : touches}

In the case of d6, we would like to render the application of d4 and d5 invalid, because
they are “less specific” than d6 (even if d5 yields the same conclusion, touches).

A default da is said to be more specific than db, da ≺ db iff (α(da) |= α(db))∧(α(db) %|=
α(da)) where α(d) denotes the precondition of the default d. Algorithms for com-
puting the so-called S-extensions (S for specificity) have already been developed by
Baader and Hollunder [Baader & Hollunder, 1995b]. There is a strong conjecture that
these algorithms can be applied in our ALCRP(RCC) context as well. In contrast,
the ordinary extensions are called R-extensions (R for Reiter). In our example, we
would get two different R-extensions, but only one S-extension containing the ABox
axiom (r, l) : touches. The other R-extension containing (r, l) : disjoint could not
be derived, since only the most specific active defaults are applied when computing
S-extensions. This would render the application of d4 and d5 impossible because d6

is also active and more specific than both d4 and d5.

This concludes the illustrating examples. We have shown that standardized reasoning
services of a DL can be used to generate hypotheses consistent with the available
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knowledge. This is, of course, only one of several building blocks required for image
interpretation. Questions regarding the ordering of extensions, the verification of
possible extensions with additional evidence, the incorporation of metric information
a.o. have not been treated and in many cases cannot be answered. Below the line,
however, we hope that the value of inference services has been demonstrated.

In the next section we will show that the consequence problem is decidable for ter-
minological default theories with default rules containing ALCRP(RCC) ABoxes.
Since we can always obtain ordinary ABoxes from our ABox patterns by closing
them, the consequence problem is decidable for defaults with ABox patterns as well.
We believe this is an important result which extends the applicability of default
reasoning to interpretation tasks as they arise in high-level computer vision.

6.8 Computing Extensions

Intuitively, given a closed terminological default theory (A, D) a deductively closed
set of consequences of such a theory is referred to as an extension. As usual, the
exact definition is given by a fixpoint construction. We cite a formal definition taken
from [Baader & Hollunder, 1995a]. Th(Γ) stands for the deductive closure of a set
of formulae Γ. In a description logic context Γ is an ABox.

Definition 64 Let E be a set of closed formulae and (A, D) be a closed default
theory. We define E0 := A and for all i ≥ 0

Ei+1 := Ei ∪ {γ | α : β1, . . . , βn/γ ∈ D, α ∈ Th(Ei),¬β1, . . . ,¬βn /∈ Th(E)}

Then, Th(E) is an extension of (A, D) iff

Th(E) =
∞⋃
i=0

Th(Ei)

Note that, in principle, this definition for an extension Th(E) has a non-constructive
nature because in the definition the deductive closure Th(E) is already used in
each iteration step. Nevertheless, as we will see below, the definition induces an
algorithm for actually computing extensions if the implicit entailment subproblems
in the definition are decidable (see also [Baader & Hollunder, 1995a]).

In order to be able to infer spatial relations between domain objects, the basic ter-
minological default reasoning approach described in [Baader & Hollunder, 1995a] is
adapted. The basic idea is that the precondition, the justifications and the conse-
quent of a default can be ABoxes.
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Definition 65 A spatioterminological default rule d (or spatioterminological default
for short) has the form d = α : β1 . . . βn / γ where α, βi and γ are consistent and
restricted ALCRP(RCC) ABoxes which may, among others, contain predicate-based
role axioms of the form (a, b) : ∃(has area)(has area).P with P being anRCC predicate
of arity two. A spatioterminological default theory is a tuple (A, D) where D is a set of
spatioterminological default rules and A is a consistent and restricted ALCRP(RCC)
ABox.

Lemma 66 A restricted ALCRP(RCC) ABox axiom δ is logically entailed by a
restricted ALCRP(RCC) ABox A,

A |= δ, iff




δ = a : C −→
¬SAT (A ∪ {a : ¬C})

δ = (a, b) : R −→
¬SAT (A ∪ {a : ∀R.Xnew, b : ¬Xnew}),

δ = (a, b) : f −→
¬SAT (A ∪ {a : ∀f.Xnew�

∃(f).is-region, b : ¬Xnew}),
δ = (a, x) : f −→

¬SAT (A ∪ {a : ∃(f).Ψ � ∃f.� � ∀f.⊥, x : Ψ}),
δ = (x1, x2) : P −→

¬SAT (A ∪ {(x1, x2) : P})
δ = (a, b) : ∃(u)(v).P −→

¬SAT (A ∪ {(a, b) : ∃(u)(v).P}) ∧
¬SAT (A ∪ {a : ∀u.�}) ∧ ¬SAT (A ∪ {b : ∀v.�}),
where u = v = has area,

where Xnew is a new atomic concept that does not appear elsewhere in the ABox
A. Xnew is used as a “marker” concept. Analogously, Ψ (resp. Ψ) is a new (other-
wise unused) concrete domain “marker” predicate. These two predicates have the
property that they do not interact with the other concrete domain predicates Pi.
Therefore, the two arbitrary conjunctions of concrete domain predicates

∧k
i=1 Pi ∧Ψ

and
∧k

i=1 Pi ∧Ψ are satisfiable iff
∧k

i=1 Pi is satisfiable. However,
∧k

i=1 Pi ∧Ψ ∧Ψ is

always unsatisfiable, regardless of the satisfiability of
∧k

i=1 Pi. Additionally, R is a
primitive role and f is a feature. SAT (A) decides the ABox consistency problem for
an ABox A. Please note that a, b are interpreted as abstract domain objects, unlike
x, x1, x2 which are interpreted as concrete domain objects. The concrete domain S2

and the abstract domain are disjoint.

Proof. (Sketch) The first case is the instance checking problem, which is decidable
because C is a restricted concept term. The second case deals with primitive role as-
sertions. In case that b is an R successor of a, the assertion a : ∀R.Xnew would entail
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b : Xnew, where Xnew is a new (otherwise unused) atomic “marker” concept. This
would obviously contradict the assertion b : ¬Xnew. The same trick can be applied
to check whether (a, b) : f holds. Unlike primitive roles, the f successor of a might
be a concrete domain object, which would also contradict the assertion a : ∀R.Xnew.
However, we can check for the presence of a concrete domain filler f of a by asserting
∃(f).is-region. To check if (a, x) : f holds, we cannot propagate a Xnew marker, since
x : Xnew yields an immediate contradiction (recall that the concrete domain and
the abstract domain are disjoint). We therefore have to propagate a new, otherwise
unused concrete domain “marker” predicate Ψ. As stated above, Ψ (resp. Ψ) does
not affect the satisfiability of the other concrete domain predicates Pi, and therefore
the only possibility to get a contradiction with respect to Ψ (Ψ) is to have asserted
both Ψ(x) and Ψ(x) for a concrete domain object x. However, we do not want to
infer (a, x) : f if a has an f successor in the abstract domain or can not have an f
successor in the concrete or abstract domain. We therefore check for the presence of
an abstract domain filler f of a by asserting ∃f.� and additionally check whether it
is known that a can’t have an f successor by asserting a : ∀f.⊥. In the fifth case we
must decide whether the binary concrete domain predicate P holds for the concrete
domain objects x1, x2. There exists a concrete domain predicate P , the negation of
P . The last case is more problematic, because the ALCRP(RCC) language does
not provide a negation operator for predicate-based role axioms. However, we can
check whether (a, b) : ∃(has area)(has area).P ∨ a : ¬∃(has area).is-region ∨
b : ¬∃(has area).is-region holds. The NNF of ¬∃(has area).is-region is
∃(has area).is-no-region � ∀(has area).�. Since ∃(has area).is-no-region is incon-
sistent, the resulting term is (a, b) : ∃(has area)(has area).P ∨ a : ∀has area.� ∨
b : ∀has area.�. Obviously, this is not an ALCRP(RCC) ABox. However,
A∪{a1∨ a2∨ · · · ∨ an} is inconsistent iff ∀ai : A∪{ai} is inconsistent. Note that the
predicate name P exists because the concrete domain is required to be admissible.
�

Theorem 67 The consequence problem for a spatioterminological default theory
(A, D) is decidable.

Proof. Considering the sound and complete tableaux calculus for deciding the con-
sistency of restricted ALCRP(RCC) ABoxes, δ ∈ Th(Γ) iff Γ |= δ. Thus, instead
of taking Th(E) we can view the ABox E as a representative for an extension. The
fixpoint construction in Definition 64 can be used as a tester for determining whether
a given ABox E really is an extension of a default theory (A, D). Since each ex-
tension E is an ABox having the form A ∪ {γ |α : β1 . . . βn/γ ∈ D′} for a set of
so-called generating defaults D′ ⊆ D, we can simply check for each element E of
{A ∪X | X ∈ 2{γ |α:β1...βn/γ∈D}} whether it is an extension or not.

The following inference problems need to be decided:
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1. α ∈ Th(Ei): This can be easily tested by checking whether Ei |= α where
α = {a1, a2, . . . , an}. We can decide this ABox entailment problem iff we can
decide whether each assertional axiom ai is logically entailed by Ei, i.e. ∀ai ∈
α : Ei |= ai. This can be decided according to Lemma 66.

2. ¬βi /∈ Th(E): This can be checked by testing whether E %|= ¬βi. However, E %|=
¬βi, where βi = {b1, b2, . . . , bn} iff A ∪ βi is consistent. The ABox consistency
problem for restricted ALCRP(RCC) ABoxes is decidable.

3. Th(E) =
⋃∞

i=0 Th(Ei): The fixpoint can be constructed in a finite number of
steps because we consider only a finite number of defaults. In principle, we
have to decide the ABox equivalence problem. An ABox A1 is equivalent to
an ABox A2, A1 ≡ A2 iff A1 |= A2 and A2 |= A1, i.e. the ABox equivalence
problem can be reduced to two ABox entailment problems.

�
In [Baader & Hollunder, 1995a] another algorithm is discussed for computing exten-
sions. Empirical tests with prototype implementations indicate that this algorithm
seems to be more efficient in the average case. There is a strong conjecture that the
algorithm is also applicable in the ALCRP(RCC) context. Furthermore, it can easily
be seen that the results for spatioterminological default theories wrt. ALCRP(RCC)
can be extended to ALCRP(D) as well.

6.9 Discussion

In the context of computer vision a first theory for applying spatioterminological
default reasoning has been investigated. The work presented in this chapter ex-
tends previous work on ALCRP(RCC) [Haarslev et al., 1998; Haarslev et al., 1999b]
by integrating default reasoning into spatioterminological reasoning. New contri-
butions to previous work on terminological default reasoning [Baader & Hollunder,
1995a] are: As a base language, the expressive spatioterminological description logic
ALCRP(RCC) is used. Allowing not only concept terms as formulae in default rules
but also restricted ALCRP(RCC) ABoxes with complex role assertions is neces-
sary from an application-oriented point of view but imposes a number of theoretical
problems. We have shown that the possible extensions of a closed ALCRP(RCC)
spatioterminological default theory can be effectively computed.

An implementation of ALCRP(D) is described in [Turhan, 1998]. With the im-
plementation of the ALCRP(D) default reasoning substrate, an implementation of
an ALCRP(D) TBox and ABox management system as well as an RCC-8 relation
network consistency checker is also available for research purposes. Qualitatively
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speaking, tests with the current implementation indicate that for small problems
with few ABox assertions, results can be expected in a reasonable time but, cur-
rently, runtimes dramatically increase when more than only a few individuals are
involved.

As pointed out before, spatioterminological default reasoning can provide an impor-
tant service for constrained hypothesis generation in vision systems. The develop-
ment of the underlying foundations is a necessary step towards knowledge-based vi-
sion system architectures, where powerful inference services can be employed instead
of costly and error-prone application-specific programming. As pointed out before,
the selection of RCC-8 predicates is motivated by its widespread use. Other calculi
for qualitative and quantitative spatial representations might be considered as well.
See e.g. [Eschenbach, 1999] for a careful theoretical analysis of spatial structures.
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Chapter 7

Deductive Information Systems

As more and more information sources of various kinds become available for an in-
creasing number of users, one major challenge for computer science is to provide
adequate access and retrieval mechanisms. This is not only true for web-based infor-
mation which by its nature tends to be highly unorganized and heterogeneous, but
also for dedicated databases which are designed to provide a particular service.

7.1 Example-Based Instance Retrieval

The instance retrieval inference problem is usually defined with respect to a concept,
an ABox and a TBox and possibly an RBox. The problem can be slightly extended.
We can characterize the set of individuals which are to be retrieved not only by a
concept term but also – or alternatively – by a set of example individuals.

An example-based instance retrieval problem is given by a filter concept F and a set of
individuals {i1, . . . , in}. The filter concept F is used to preselect a set of individuals.
The example individuals {i1, . . . , in} have the purpose to select “similar” individuals
from the set of preselected individuals. Note that the individuals {i1, . . . , in} need
not be instances of F . We will show that the example individuals can be used to
derive a second concept term C describing individuals which are “related” to the
example individuals. The returned individuals are instances of F 
 C.

In order to retrieve individuals “related” to example individuals it is necessary to
compute an abstraction representing the commonalities of the example individuals.
As “relatedness” of individuals is usually hard to define, we pursue a terminology-
based approach. Instead of the individuals, we consider the direct types of the
individuals with respect to a TBox and an RBox. More specifically, we describe
each individual of the example-based instance retrieval query by the conjunction of
its direct types. Informally speaking, the idea is to compute an abstraction for all
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direct type conjunctions. The abstraction will represent the commonalities of the
example individuals as described by the direct type conjunctions.

We now give a formalization of the commonalities of a set of concepts in terms of
the Least Common Subsumer (LCS).

Definition 68 (Least Common Subsumer) A concept C is a least common sub-
sumer of two consistent concepts D1 and D2 iff C subsumes both D1 and D2 and
there is no other common subsumer of D1 and D2 that is subsumed by C (see [Cohen
et al., 1992]).

If the representation language contains an OR operator, the LCS of two concepts is
the disjunction of the input concepts. As we have seen above, some description logic
languages such as Classic do not offer an OR operator. Furthermore, for many
applications, the expressivity of Classic is appropriate. Even a more restricted
language such as ALN can successfully be used for representing domain models in
many cases. The advantage is that the consistency problem is in P in this case.
Thus, there have been investigations to develop algorithms for computing the LCS
in these less expressive languages.

For the language ALN the LCS of two consistent concepts can be computed as
follows [Cohen et al., 1992]. If the LCS operation is applied w.r.t. a TBox with
concept introduction axioms, the arguments must be unfolded before applying the
following LCS function. Any concept term can be transformed into an unfolded form
by iteratively replacing (or inserting) concept names by their defining terms.

• LCS(C11 
 . . . 
 C1k
,C21 
 . . . 
 C2l

) := LCS(C11 ,C21) 
 . . . 
 LCS(C1k
,C2l

)

• LCS(∀ r1 .C,∀ r2 .D) := if r1 = r2 then∀ r1 . LCS(C,D) else�

• LCS(∃≥n r1,∃≥m r2) := if r1 = r2 then (∃≥min(n,m) r1) else�

• LCS(∃≤n r1,∃≤m r2) := if r1 = r2 then (∃≤max(n,m) r1) else�

It can be easily verified that the LCS is an associative operation. Using the LCS
operation we define a sequence Qi of query concepts. Let Ti be the conjunction
of the direct types of the individual ik. Further, let Q0 := {T1, . . . , Tn} be the
set of direct type conjunctions for each example individual ik given as parame-
ter to the example-based instance retrieval operation (k ∈ 1..n). Furthermore,
LCSi := lfold(LCS,�, (Qi1 , . . . , Qini

)). The function lfold successively applies the
first argument, a left-associative function f , to the result of the previous application
of f (initially � is used) and the components of the third argument (a sequence).
The index ni is the cardinality of the set Qi. Qi+1 is defined as the set of parents of
LCSi. Note that there always exists an LCSl which is equal to �.
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The example-based instance retrieval problem is to find a minimal index i for the
sequence of concepts Qi such that the set of example individuals {i1, . . . , in} is a
proper subset of the set of individuals S Qi retrieved by instance retrieval(F 
Qi1

. . .
Qini

) or S LCSi retrieved by instance retrieval(F 
LCSi). Once the minimal
index i is obtained, the result of the example-based instance retrieval operation is
S Qi if {i1, . . . , in} is a proper subset of S Qi, or S LCSi otherwise. The concept F
is the filter concept introduced above.

In addition to example-based instance retrieval, the LCS operator is used as a subtask
for the “bottom-up” construction of knowledge bases based on the DLs ALN with
cyclic concept definitions [Baader & Küsters, 1998]. See also [Kietz & Morik, 1994]
for a similar application concerning the constructive induction of a Classic TBox
from data.

7.2 Cooperative Information Systems: Agent-Based Com-
puting

In this section a cooperative information system scenario with different agent, each
with specific reasoning capabilities, is discussed. The guiding example is a “TV-
Assistant” with a database containing TV-program information. The task of the
TV-Assistant is to guide TV watchers in selecting “their” favorite program item
from a potentially large set of candidates. For example, the TV-Assistant should be
able to identify “a pirate movie with sailing ships” among the 300 movies which a
new German digital TV channel broadcasts every 30 minutes. Furthermore, based
on the preferences of a user w.r.t. the TV program, the TV-assistant also has to
determine suitable commercials. Thus, it is demonstrated that description logics can
play an important role in the important area of e-business applications.

There is obviously a large variety of criteria by which TV watchers would like to
express their preferences. They may want to refer to the contents of the program
item in terms of its genre type, main characters, location, historical events, plot etc.
They may also want to refer to production information, e.g. producer, cast, recording
technique, date of origin etc., maybe also to their particular viewer situation, e.g.
language and age requirements. While some of these criteria can already be used
in existing TV-program services (e.g. genre, cast, age recommendations), inference-
based or deductive information retrieval is in its infancy.

The prevailing approaches for inference-based access and retrieval utilize textual
information in terms of keywords and word statistics. Surface-based textual infor-
mation retrieval, typically based on string-indexing, offers several advantages, in
particular the use of queries involving natural language terms, and the availabil-
ity of text documents. On the other hand, string-indexing is unreliable in several

171



respects. First, documents may not be produced with the aim to support textual
retrieval. Hence it is a matter of chance whether or not a desirable keyword really
appears in the document. Second, as examples of TV-program selections show, nat-
urally expressed queries may involve terms which are less specific than the textual
descriptor of the data (or only conceptually close to it), e.g. “sailing ship” instead of
“frigate”. Similarly, one may be interested in a movie about one’s home town, say
Hamburg. Inference-based retrieval should not only index into descriptors involving
the string “Hamburg” but possibly also into locations spatially related to Hamburg,
e.g. “Northern Germany” or “Reeperbahn” (Hamburg’s famous red-light district). It
is also apparent that additional conceptual information must be exploited to avoid
unwanted retrieval hits involving certain popular food items.

In this chapter we investigate the use of conceptual descriptions based on description
logics for deductive information retrieval with an agent-based scenario. The chapter
deals with two main aspects. First, strengths and limitations of DLs for information
retrieval are investigated. Second, cooperation strategies for agents whose reasoning
is based on different DLs are analyzed.

When investigating DLs for information retrieval, one can consider a wide variety
of languages which have been analyzed in research and partly implemented so far.
The most important differentiating aspect of DLs is expressiveness, i.e. what concept
expressions may be formulated within a particular DL, and the resulting complexity
of inference procedures such as consistency checking or subsumption computations.
Hence there are DLs of fairly limited expressiveness but attractive runtime prop-
erties, and there are DLs with enriched expressiveness for which one has to pay
with doubly exponential inference complexity. Furthermore, if certain restrictions
on expressiveness are not observed, a DL may become undecidable in the sense that
terminating inference procedures which are sound and complete do not exist any
longer. This may be acceptable in some applications, but must be considered a
severe disadvantage where reliability is at stake.

From what we know about DLs today, it seems reasonable to expect that there will
not be a single DL optimally suited for all knowledge-based applications. Rather we
have to consider heterogeneous special-purpose knowledge bases using DLs of differ-
ent expressiveness. Each of the knowledge bases may be designed to meet different
design goals. One knowledge base may provide quick but crude inferences, another
may allow more sophisticated inferences at the cost of longer response times, a third
one may be a specialist for temporal reasoning, a forth one for spatial reasoning, and
so on. This has led us to investigate DL systems in an agent-based scenario, where
different DLs are organized to cooperate in an information retrieval task.

The general structure of an agent-based scenario is shown in Figure 7.1. The user
(which may be a software system) submits information retrieval tasks to a broker
which is the central node in the agent network. The broker may invoke services of
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Program Agent GIS Agent

TV-Broker Agent

TV-Assistant Web Software

User-1 User-2 User-3

Figure 7.1: Overview of the System Architecture. A broker agent communicates
with an agent which responsible for the tv program and an agent which is a specialist
for geographical information system (GIS) requests. The broker agent provides the
interface for the software of the TV-Assistant web server.

other agent nodes which are his subagents. The knowledge bases of the agents may
be based on different DLs and may have been developed independently from each
other. In order to communicate with his subagents, the broker must have certain
interschema knowledge to formulate an information retrieval task for a subagent and
make use of his result.

We will consider instance retrieval and instance checking as basic information re-
trieval tasks. As defined above, instance retrieval is an inference service of a DL
system where a concept term is submitted as a query, and the task is to retrieve
all individuals which are instances of the concept term. For instance checking, a
query comprises a concept term together with a set of individuals which are to be
checked against the concept term. Both tasks are identical from a logical perspective
and amount to consistency checking of ABoxes (if full negation is supported in the
logic). We will also consider the application an example-based extension of instance
retrieval, where examples are used to compute a second concept term of which the
retrieved individuals have to be instances (see above).

Since all reasoning processes of an agent are based on the agent’s terminology, it
is obvious that instance checking can only be performed by an agent if the task
is formulated in terms of the agent’s own terminology. In our scenario, it is the
task of the broker to transform queries or subtasks thereof so that subagents can
be employed. For this purpose, the broker is equipped with interschema knowledge
which relates different terminologies to each other. Thus, the broker can approximate
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assertional descriptions and concept terms by expressions which only use the concepts
and roles of a particular subagent (for details see below). In exceptional cases, these
expressions may be equivalent, but in general they will be approximations. Hence
it is an interesting question whether subagent reasoning can be employed at all for
instance checking without jeopardizing the correctness of the overall result.

In this section it is shown that this is indeed possible - albeit only to some extent. The
basic idea is to approximate queries in such a way that the concept term of a query
(which constrains individuals) is specialized, and individual descriptions - if there are
any - are generalized. Thus, if approximated individuals are found to be instances of
the approximated concept term, the original individuals will also be instances of the
original concept term. On the other hand, we have to be aware of the fact that the
combined logics of two agents may be undecidable. If this is the case, inconsistency
may not be detected reliably by any procedure which combines the knowledge of
these agents. This is an inherent limitation with interesting consequences regarding
the conclusions which one can draw in a multi-agent information retrieval scenario.

7.2.1 Multi-Agent Inference Problems

We now turn to the multi-agent information retrieval problem which has been
sketched in the introduction of this section. Agents comprising different knowledge
bases expressed in different description logics cooperate for information retrieval. The
approach presented in this section presumes that one of the agents plays the part of
a broker, the others, called specialists, supply information to the broker. The broker
receives queries from a user, communicates with specialists, and delivers answers to
the user. Communication with the user is performed using the broker’s terminology.
To be able to communicate with the other agents, the broker has knowledge about
the concept and role names of each agent, and how they relate to the broker’s ter-
minology (interschema axioms [Catarci & Lenzerini, 1993]). The main task of the
broker is to transform queries into the terminology of another agent and transform
answers back into the broker’s terminology. In the following, this is described more
precisely.

Inference Problems w.r.t. Namespaces

In order to use a description logic in an application, a set of atomic concepts and roles
tailored to the application must be specified. Relationships between the atomic con-
cepts or roles can be defined with axioms. To distinguish between different knowledge
bases, we define the notion of a namespace.

Definition 69 (Namespace) A namespace n is a set of atomic concepts or atomic
roles with a common prefix n: where n is the name of the namespace.
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Definition 70 (Concept and Role from a Namespace) A concept is called a
concept from a namespace n iff all atomic component concepts have the prefix n:. A
role is called a role from a namespace n iff it has a prefix n:.

Using the notion of a namespace, the special role of the broker agent can be specified.
Its knowledge base contains atomic concepts and roles from multiple namespaces
(with different prefixes). Thus the broker can perform inference services w.r.t. to
different namespaces. For instance, the broker can compute the parents of a (not
necessarily atomic) concept C w.r.t. a namespace n and a TBox T . The result is the
set of most-specific atomic concepts in the namespace n that subsume C. The set of
children w.r.t. to a namespace and the direct types of an individual w.r.t. a certain
namespace are defined analogously.

Namespace Transformations for Concepts, Roles and ABoxes

Let us consider an instance checking task now, and how the broker may invoke a
specialist. The query consists of a concept term, an individual name and an ABox in
the broker’s terminology. The task is to check whether the individual is an instance
of the concept term. If the broker can prove w.r.t. its own knowledge base either
that the individual is an instance of the concept term or that it is not, the task is
solved (but see the section on inconsistent queries below). If the broker’s knowledge
is inconclusive, a specialist may help. Hence the query must be transformed into
an approximate query with concepts and roles only in the namespace of the spe-
cialist. The key idea is to transform the query such that the ABox is abstracted
and the concept term is refined (or specialized). Furthermore, it might be necessary
to ensure that abstractions and refinements fulfill certain restrictedness criteria (see
Section 6.2).

Definition 71 (ABox Abstraction) An ABox A′ is an abstraction of an ABox A
iff A |= A′ holds.

We use the following heuristics to compute an ABox abstraction. For each role found
in a role assertion of an ABox the most-specific superrole of the namespace of the
destination agent is inserted. Note that the most-specific superrole in the namespace
of the destination agent may also be a synonym of the role being transformed. If the
most-specific superrole is not unique, in the namespace of the consulted agent a new
role is dynamically added with appropriate inclusion axioms such that the new role
is a subrole of the set of most-specific superroles. If no superrole exists in the TBox
of a certain destination agent, then agent name:related is used. The role related is
assumed to be a superrole of all atomic roles of an agent. Similar transformations
are employed for the atomic concepts used in concept assertions. Either synonyms
or the conjunction of the parents w.r.t. the namespace of the destination agent are
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inserted. Note that in the worst case � will be returned as an abstraction of a certain
concept.

Definition 72 (Concept Refinement) A concept C′ is a refinement of a concept
C iff C subsumes C′.

There are different strategies for computing concept refinements. First, in order
to refine a query concept C0, the children w.r.t. the namespace of the destination
agent are computed. Given the children C1, . . . , Cn of a concept C0, a refinement
is the disjunction C1 � . . . � Cn. If only the bottom concept ⊥ is returned as a
child of C0, a second strategy is employed. A refinement can be computed w.r.t.
the form of the concept. In a similar way as in the abstraction process of the
ABox, the roles and the concept terms in the query concepts are transformed. Let
us consider an existential restriction ∃R . C as an example. The transformation is
a concept ∃R′ . C′ where R′ is the most-general subrole of R in the namespace of
the destination agent and C′ is the result of the (recursive) transformation of C.
For atomic concepts, the transformation is the disjunction of the children w.r.t. the
namespace of the destination agent (see the first strategy). Another strategy could
be to use defaults in order to specialize queries (see e.g. [Wahlöf, 1996; Lambrix
et al., 1998] for applications in the context of information retrieval). The refinement
or rewriting of concepts using terminologies has also been investigated, for instance,
in [Baader et al., 2000] and [Badea & Niehuys-Cheng, 2000].

Broker-Based Query Answering

Let us consider now how the answers of different agents can be combined from a
logical perspective.

We will first take a principled view of this problem. Let us assume that we have two
TBoxes, T1 and T2, representing the knowledge of the agents A and B, respectively.
For instance, let T1 be an ALCNHR+ TBox and T2 be an ALCRP(D) TBox. Con-
sidering the results of Section 5.4.3 we know that the combination of ALCNHR+ and
ALCRP(D) is undecidable. Hence, in general, we know that there is no sound and
complete (and terminating) calculus for answering a query posed to two knowledge
bases of these two DLs. Nevertheless, let us consider an instance checking problem
instance?(i, C) w.r.t. the knowledge base (T1 ∪ T2,A). Furthermore, let us assume
that A is an ABox of T1 and that A is not inconsistent. The idea is to address the
query – or a suitable transformation thereof – to each knowledge base separately. If
the answer to the instance checking problem instance?(i, C) w.r.t. (T1,A) is ‘yes’,
then it is obvious that the answer w.r.t. (T1 ∪ T2,A) is ‘yes’ as well. In order to
address the query to T2 we may have to transform it since we assume that A is a
T1 ABox. For instance, A may contain number restrictions which are no T2 concept
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terms. If we transform the instance checking problem such that instance?(i, C ′)
w.r.t. (T2,A′) is solved, with A′ an abstraction and C ′ a refinement, it can be easily
seen that we can exploit the answer for the original query: If the answer to the sub-
problem instance?(i, C ′) w.r.t. (T2,A′) is ‘yes’ then the answer to instance?(i, C)
w.r.t. (T1 ∪ T2,A) is ‘yes’ as well.

If both terminologies return ‘no’, we cannot be sure of the overall result because of
undecidability. But we can attempt to solve the inference problem instance?(i,¬C),
again by addressing each knowledge base separately. If the answer to the comple-
mentary query is ‘yes’ then the answer to the original query instance?(i, C) is ‘no’
for sure.

Although some limitations are inevitable, we now have the basis for a sound query
answering schema in an arbitrary agent scenario. Each agent has a sound and com-
plete (and terminating) sub-algorithm for the inference tasks in question. There is
one specific agent, the broker, which poses inference problems to other agents. For
this task the broker needs a TBox that is a close approximation of the TBoxes of
the other agents.

We now put things together and describe how an instance checking query can be
dealt with in a multiagent scenario. The broker first tries to answer a query himself
using his own ABox. If the answer is negative, the broker consults an agent whose
namespace contains the individual of the query. The concept of the query must be
specialized and the broker’s ABox fragment of the individual (if any) must be ab-
stracted in order to preserve correctness. If the answer of the specialist is positive,
this answer is returned by the broker. In the case of a negative answer, we assume
that the specialist returns his ABox fragment in which the individual in question
is mentioned. The broker transforms this information into his terminology and can
now consult other specialist agents using the enriched ABox information about the
individual. In each case, the atomic concepts and roles are translated into the spe-
cialist’s namespace while preserving correctness by ABox abstraction and concept
refinement. If one of the specialists returns ‘yes’ then the broker returns ‘yes’, oth-
erwise the answer is undecided. In this case, the broker may try to answer the query
with the negated concept. If he (or one of the specialists) succeeds, the answer to
the original query is ‘no’, otherwise it remains undecided.

A broker delegates an example-based instance retrieval task to a specialist agent
whose name is determined by the namespace of the individuals mentioned in the
example-based instance retrieval query. As a restriction, all individuals must be
from the same namespace. The filter concept is a concept from the namespace of the
broker. Therefore, it has to be transformed to be “understandable” by the consulted
specialist agent. The transformed filter concept is defined to be a concept refinement
w.r.t. the namespace of the consulted agent.
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7.2.2 Supporting E-Business: Inferences for Internet Technology

As we have discussed in the introduction, the motivating scenario for the agent-
based architecture which we investigate in this section is an information retrieval
application. In particular, we focus on a TV-Assistant whose main task is to pro-
vide personalized TV-programs in a web-based environment. The user can ask for a
personalized TV-program by (i) providing a time window and (ii) examples of broad-
casts which characterize his interests. The TV-assistant will then retrieve broadcasts
of that time window (the so-called basic selection) and mark broadcasts which are of
special interest to the user according to his examples (his personal selection). This
can be done, for example, by highlighting broadcast in a program table.

As a second task, the TV-Assistant has to select advertisements to be inserted into
the personalized program display. To accomplish this, advertisements are associated
with conceptual descriptions, so-called trigger concepts, of the types of broadcasts
for which the advertisements should be displayed. So if a broadcast contained in
the personal selection of a user turns out to be an instance of a trigger concept, the
associated advertisement will be shown.

In our application scenario we assume that the TV-Assistant makes use of the services
of a multiagent information system as shown in Figure 7.1).

At first, the basic program selection is retrieved by posing an instance retrieval
query to the TV-Broker Agent with the time window expressed as the conceptual
constraint. The TV-Broker Agent forwards this query to the Program Agent and
receives the basic program selection.

As a second step, the personal program selection is obtained by posing an example-
based instance retrieval query to the TV-Broker Agent with the examples provided
by the user and the time window as a filter concept. The answer is a set of broad-
casts (the personal selection) associated with additional information, for example the
actors or the main location in the case of a movie.

Now the advertisements have to be determined based upon the trigger concepts which
are maintained by the TV-Assistant. For each broadcast of the personal selection the
TV-Broker Agent is asked whether the broadcast is an instance of a trigger concept.
In our scenario, there are two agents besides the TV-Broker Agent which can possibly
solve the instance checking problem. We assume that, at first, the Program Agent
is asked. When his answer is ‘no’, the broker turns to a specialist which in our case
is a GIS-agent with spatial-reasoning power.

We will now present the agents in detail and then discuss several examples.
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The Agents of the Application Example

The Program Agent uses the language ALN with concept introduction axioms only
(i.e. non-cyclic terminological axioms with the additional condition that each termi-
nological axiom is used only once on the left-hand side of the axioms). A prototype
system for the Program Agent [Möller et al., 1998] has been implemented with the
knowledge representation system Classic [Brachman et al., 1991] which provides an
optimized ABox implementation for the language ALN (actually, Classic supports
a slightly more expressive DL, see Chapter 3). In this chapter we present only a sub-
set of the implemented knowledge base. We assume that the TBox of the Program
Agent contains the terminological axioms explained in Section 2.4.

The Program Agent will perform the example-based instance retrieval procedure
explained in Section 7.1. To this end, we will extend the domain model with defi-
nitions for movie and define new concepts sailing ship and titanic as subconcepts of
ship.1 In addition, we assume that soldier and pirate are declared as subconcepts
of person. Furthermore, the domain model is extended with concepts for specific
movies. Important roles for movies are has main character and has main location.
For the examples we use the following terminological axioms.

soldier � person

pirate � person

sailing ship � ship

titanic � ship

pirate movie � movie 

∀ has main character . (pirate 
 captain) 

∀ has main location . sailing ship

titanic movie � movie 

∀ has main character . captain 

∀ has main location . titanic

action movie � movie 

∀ has main character . action hero

The structure shown in the ABox below represents a small excerpt of the domain
model for objects (ABox) in our TV-Assistant application.

1The notion titanic is modeled as a concept rather than as an instance because different individual
ships might carry this name.
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movie 1 : movie 

∃≤1 has main character 

∃≤1 has main location

hornblower : captain 
 soldier

lydia : sailing ship

(movie 1, hornblower) : has main character

(movie 1, lydia) : has main location

movie 2 : pirate movie

movie 3 : titanic movie

For our second example we assume that the Program Agent has de-
tailed information about the James Bond movie the world is not enough 1:

the world is not enough 1 : action movie

james bond 1 : action hero

loc 1 : baku

loc 2 : london

country 1 : azerbaijan

continent 1 : asia

port 1 : port

sea 1 : caspian sea

(the world is not enough 1, james bond 1) : has main character

(the world is not enough 1, loc 1) : has main location

(the world is not enough 1, loc 2) : has main location

(loc 1, country 1) : capital of

(loc 1, port 1) : has port

(port 1, sea 1) : located at

(country 1, continent 1) : located on continent

The GIS Agent uses the description logic ALCRP(RCC). We assume that the TBox
of the GIS Agent contains the role and concept introduction axioms introduced in
Section 6.3. Before the role of the GIS Agent in our scenario can be understood we
first have to discuss the inferences of the central agent, the TV-Broker Agent.
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The TV-Broker Agent uses the description logic ALCNHR+ . We assume that all
atomic concepts and roles of the Program Agent and the GIS-Agent as well as the
corresponding terminological axioms are also available in the TBox of the TV-Broker
Agent. Atomic concepts and roles “imported” from other agents are indicated by a
prefix. We use prefixes pa, ga and ba for the Program Agent, the GIS Agent and
the TV-Broker Agent, respectively. Queries to the TV-Broker Agent and trigger
concepts use atomic concepts and roles with prefix ba only.

The first part of the TBox of the TV-Broker Agent specifies the relationships between
the roles used by the Program Agent and the roles used by the GIS Agent in terms
of terminological axioms:

pa:capital of � ga:inside

pa:has port � ga:inside i

pa:located at � ga:touching

pa:located on continent � ga:inside

pa:has main location � ga:inside

ga:spatially connected � ba:spatially connected

Within the description logic ALCNHR+ , the relationships are manifested using role
inclusion axioms. Furthermore, in order to approximate the semantics of topological
RCC-8 relations, ga:inside and ga:inside i are declared to be transitive roles. Obvi-
ously ga:touching is not a transitive role.

For each agent acquaintance, axioms indicating the direct subsumption relationships
(parents and children) of the atomic concepts which are imported from the agent are
added automatically to the TBox of the TV-Broker Agent. For instance, the role
axiom

ga:inside � ga:spatially connected

is added to the TBox of the TV-Broker Agent. Additional concept inclusion axioms
are employed to relate the concept terms of different TBoxes. These axioms cannot
be set up automatically but have to be modeled by a system engineer.

181



pa:baku � ga:city

pa:london � ga:city

pa:azerbaijan � ga:country

pa:port
.
= ga:port

pa:caspian sea � ga:sea

ga:coastal city � ba:coastal city

ga:coastal city
.
= ga:city 
 ∃ ga:touching . ga:sea

ga:country � ∀ ga:overlapping .¬ga:sea

ba:asian city
.
= pa:city 
 ∃ ga:inside . pa:asia

Note that generalized concept inclusion axioms are used as well. In addition, all
axioms from Section 6.3 for representing the knowledge of the GIS Agent are included
into the TBox of the TV-Broker Agent (with appropriate prefixes).

Reasoning Examples

As a first example, let us assume that movie 2 and movie 3 and the filter concept C
are used in an example-based query posed to the Program Agent.

example base instance retrieval({movie 2, movie 3}, C)

For answering this query, the LCS operation is applied to the (unfolded) direct types
of both movies (see Section 7.1) and returns the following concept:

movie 
 ∀ has main character . captain 
 ∀ has main location . ship

We can see that an abstraction of the original movies has been computed. From
pirate movie the concept sailing ship has been abstracted to ship and from titanic movie
the concept titanic has been abstracted to ship as well. The resulting LCS concept
presented above is used as a query for retrieving instances from the ABox of the
Program Agent. The results to this query are further restricted by the time window
filter concept.

In our example the movie movie 1 is an instance of the LCS concept and, therefore,
it is returned as an answer (possibly among others).

As a second example, we assume that advertisements for cruises and trips to asian
cities are to be associated with appropriate broadcasts. To trigger the advertise-
ments we consider the concept ∃ ba:spatially connected . ba:coastal city and the con-
cept ∃ ba:spatially connected . ba:asian city, which might be set up in the interest of
a travel agency. If a retrieval result (e.g. the movie the world is not enough 1) is an
instance of a trigger concept, the associated role fillers for ba:spatially connected that
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are instances of ba:coastal city or ba:asian city are examined to find cruises or trips
offered by the travel agency. The idea is, of course, that after viewing the movie,
people might be inclined to book a cruise to the main location of the movie.

The TV-Broker can prove that the world is not enough 1 is an instance of
∃ ba:spatially connected . ba:asian city because ga:inside is declared as a transitive role
in the knowledge base of the TV-Broker Agent. Thus, there is no need to consult
another agent.

Unfortunately, given the ABox associated with the world is not enough 1 (see
above) the TV-Broker Agent cannot prove that the movie is an instance of
∃ ba:spatially connected . ba:coastal city. It cannot even prove that it is an instance of
¬∃ ba:spatially connected . ba:coastal city.

In our scenario, the TV-Broker Agent therefore asks the GIS Agent to check
whether the individual the world is not enough 1 is an instance of the concept
∃ ga:spatially connected . ga:coastal city. After transforming the ABox which the TV-
Broker Agent has received from the Program Agent, the following ABox is delegated
to the GIS Agent.

the world is not enough 1 : �
james bond 1 : �

loc 1 : ga:city

loc 2 : ga:city

country 1 : ga:country

port 1 : ga:port

sea 1 : ga:sea

(the world is not enough 1, james bond 1) : ga:related

(the world is not enough 1, loc 1) : ga:inside

(the world is not enough 1, loc 2) : ga:inside

(loc 1, country 1) : ga:inside

(loc 1, port 1) : ga:inside i

(port 1, sea 1) : ga:touching

(country 1, continent 1) : ga:inside

Considering the example presented in Section 6.3 it can be easily verified, that the
answer of the GIS Agent to the query is ‘yes’ because ga:spatially connected is a su-
perrole of ga:inside. In fact, the third configuration shown in Figure 6.3 qualitatively
describes exactly the relation of Baku and Azerbaijan (see Figure 7.2).
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Figure 7.2: Map indicating the position of Baku, the capital of Azerbaijan.

Once the TV-Broker Agent knows the result of the query, it adds the result
to the ABox originally sent to the GIS Agent, in our example the assertion
the world is not enough 1 :∃ ga:spatially connected . ga:coastal city. Now the software
module of the TV-Broker can be instructed to insert specific travel agency commer-
cials associated with the trigger concepts (in this case e.g. cruises).

Note that, in general, combining knowledge of independent knowledge bases may
uncover inconsistencies. For example, the ABox returned by the GIS Agent could
prove inconsistent with the ABox of the TV-Broker Agent. In this case no meaningful
answer can be supplied.

The example in this section demonstrates the combined expressive power of differ-
ent DLs. ALCNHR+ provides generalized concept inclusions, role hierarchies and
transitive roles which are needed to represent much of the knowledge required in
the application domain. However, some of the ontological interdependencies cannot
be captured due to undecidability results. Using the formalism ALCRP(RCC) it is
possible to include ontological interdependencies concerning conceptual and spatial
knowledge.

It would be possible to extend the language ALCNHR+ with inverse roles and so-
called qualified number restrictions (e.g. [Horrocks et al., 1999b]) in order to better
approximate the knowledge of the specialists (in our case the GIS Agent) in the TV-
Broker Agent. However, developing an optimized ABox reasoner implementation
for the extended logic is a difficult task and subject to further research. In any
case, due to the undecidability result, it would be only an approximation. The
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agent architecture proposed in this chapter provides an organized way to cope with
the undecidability and incompleteness problems resulting from the combination of
different expressive representation languages.

7.2.3 Related Work

Information retrieval in a distributed context is a commercially very interesting re-
search topic. There exists a vast amount of scientific contributions and it is hardly
possible to cover at least a small subset. Each of the different approaches has its own
pros and cons. Here, we focus on related work concerning information retrieval in
the context of description logics rather than on work based on database theory and
data structure conversion (e.g. the TSIMMIS system [Garcia-Molina et al., 1997]) or
other knowledge representation approaches (e.g. [Fensel et al., 1998]).

An early work about the application of description logics for information retrieval
purposes is [Meghini et al., 1993]. While some authors focus on multi-valued logic
in order to capture the notion of “relevance” (e.g. [Meghini & Straccia, 1996]) most
contributions rely on a standard semantics. For instance, the Information Manifold
project [Levy et al., 1996] has extended the Classic description logic [Brachman
et al., 1991] with so-called conjunctive queries in order to provide a more expres-
sive query language. Solutions for query refinement based on defaults have been
developed in [Lambrix et al., 1998].

Subsumption of conjunctive queries for expressive description logics have also been
investigated in [Horrocks et al., 1999a]. It would be interesting to also support in-
stance retrieval based on conjunctive queries to expressive description logics such as
ALCNHR+ but the development of efficient algorithms for instance retrieval based
on conjunctive queries are still an active research area. A first approach is described
[Horrocks & Tessaris, 2000]. Conjunctive queries are related to Datalog-like specifi-
cations. However, in Datalog-like approaches reasoning is supported only about one
specific model (the database) where for conjunctive queries of description logics all
models are considered.

The FindUr approach [McGuinness, 1998] also relies on the Classic system. FindUr
uses so-called ontologies for supporting web browsing and search. FindUr focuses on
the retrieval of web pages which are annotated with ontological notions. Agent
communication in a description logic context has been considered by [Klusch, 1998].
In addition and complementary to our approach, game theory is used to control the
“activity” of agents.

Schema integration and inter-schema knowledge modeling has been investigated by
[Catarci & Lenzerini, 1993]. In contrast to the approach presented in this chapter,
[Catarci & Lenzerini, 1993] does not rely on the assumption that the domains of
different agents are identical. As a consequence, the notion of intensional inclusion

185



of different concepts is defined (rather than extension inclusions with GCIs). If
desired, this could also be considered in our agent scenario. The decomposition
of queries in a multidatabase scenario has been considered by [Cardiff et al., 1998].
Ideas taken from this context can also be applied in an agent scenario. Newest results
on information integration with a description logic capturing the expressiveness of
entity-relationship models are described in [Calvanese et al., 1998].

7.2.4 Summary

Agent-oriented problem solving has been analyzed from a formal knowledge represen-
tation point of view. Based on interschema knowledge a central agent, called broker,
transforms inference problems such that they can be delegated to other agents pre-
serving at least a sound overall inference algorithm. We have discussed examples
involving instance retrieval and instance checking.

In the first example the motivation for delegation was to employ an agent which uses
a less expressive description logic (the Program Agent) such that inferences can be
computed more efficiently. In the second example an agent based on a description
logic with different expressive power is employed for dealing with an instance checking
problem that cannot be solved w.r.t. the knowledge represented by the broker. We
have seen that the combined description logic is undecidable in general. Although the
abstraction of the ABox and the refinement of the query concept as proposed in this
section yields a sound inference algorithm based on delegation many inferences will be
lost if the abstraction is too general and the refinement is too specific. Therefore, the
knowledge of the broker must be a close approximation of the knowledge represented
by the consulted specialist. The examples indicate that ALCNHR+ is well-suited
as a representation language for a broker. On the one hand, the logic is expressive
enough to approximate the knowledge of other agents. On the other hand, with
RACE there exists an implementation which guarantees quite encouraging average-
case performance for practical reasoning.

The deficiencies of the approach have been indicated as well. As the combined
language ALCNHR+ and ALCRP(D) is not decidable in general, it is not possible
to check whether any given input ABox is inconsistent w.r.t. the combined knowledge
of the overall agent system. Thus, cases where query answering is not very useful
due to an inconsistent input ABox might remain undetected. Although a specialist
agent might conclude that the abstracted ABox is inconsistent, there are cases where
the abstraction is consistent whereas the original is not. An idea to circumvent this
problem in some cases might be to compute a refinement of the input ABox and to
let the broker refuse query answering if one of the specialist acquaintances can prove
that the refinement is inconsistent. Details of this approach have to be investigated
in future work.
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Implicit knowledge plays an important role in agent-based communication because,
for expressive representation languages, there exists no “canonical form” that can be
used as format for knowledge interchange. Comparisons between different represen-
tation structures have to be computed on a semantical basis. The work presented
in this chapter discusses examples in the context of spatioterminological reasoning.
Apparently, the key to adequate domain knowledge modeling is not only the defini-
tion of many ontological notions with class-subclass or part-whole relations. Instead,
representation formalisms that capture the semantics of spatial object are required
in order to avoid unintended models. The topological relations we have discussed in
this chapter are part of the whole story. Obviously, reasoning facilities for spatial
knowledge must be augmented with reasoning techniques for temporal knowledge
(see section 6.3.2 for a first account in the context of spatiotemporal terminolog-
ical reasoning). Whether the combination of spatial and temporal terminological
reasoning can be adequately exploited in the agent-oriented scenario that we have
investigated in the chapter is subject to future research.

7.3 Information Retrieval with Probabilistic Description
Logics

In the previous section, we have seen that the task of similarity-based information
retrieval can be split into three subtasks: First, the direct types of a finite set of
individuals are computed yielding a finite set of concepts. Then, the LCS of these
concepts is computed. Finally, by determining its instances the LCS concept is used
as a retrieval concept. For the purpose of similarity-based information retrieval, the
first task is fulfilled by the well-known realization inference service. The third sub-
task, determining the instances of the LCS concept, is accomplished by the instance
retrieval inference service of the knowledge representation system.

In certain cases, computing the LCS of a set of concepts yields a very general concept.
As a consequence, a large set of information items are retrieved resulting in an
information flood if all items are displayed at once. Thus, at least a ranking is
needed or we have to define a new operator for computing the commonalities between
concepts. In this chapter, we pursue the second approach and define an LCS operator
that takes additional domain knowledge into account.

The main contribution of this chapter is the proposal of a probabilistic LCS operation
for a probabilistic extension of the DL ALN which has been introduced in [Koller
et al., 1997] for the knowledge representation system P-Classic. The probabilis-
tic LCS operator makes use of P-Classic’s ability to model the degree of overlap
between concepts. With the probabilistic LCS operator we investigate an example-
based retrieval approach in which well known information retrieval techniques are
integrated with formally well investigated inference services of DLs.
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7.3.1 Preliminaries: P-Classic

Despite its name P-Classic does not support all concept operators supported by the
Classic system. The description logic of P-Classic is ALN , i.e. negation only for
concept names, value restrictions ∀R . C and number restrictions (≥ nR) and (≤ nR).
In the following we assume that (= n R) as an abbreviation for (≥ n R)
 (≤ n R).
The semantics of concepts is given in terms of an interpretation in the same way
as specified above. Note that � and ⊥ are expressible by (≥ 0 R) and A 
 ¬A,
respectively.

A few definitions are required for the algorithms presented below.

Definition 73 (Depth) The depth of a concept is recursively defined as follows:

• If C = A, C = ¬A, C = (≥ n R), or (≤ n R), then depth(C) := 0.

• If C = ∀R.C ′, then depth(C) := 1 + depth(C ′).

Note that, in contrast to usual definitions of the concept depth, we define the depth
of number restrictions as 0.

Definition 74 (Canonical form) Let C1, . . . , Cm be concepts and {R1, . . . , RM}
the set of all roles occurring at toplevel (nesting depth 0) in C1, . . . , Cm. Then Ci is
in canonical form iff

Ci = αi1 
 · · · 
 αini

 βiR1 
 · · · 
 βiRji

where ji ∈ {0, . . . , M}, αik is an atomic concept or negated atomic concept with no
atomic concept appearing more than once and βiRj

= (≥ liRj
Rj) 
 (≤ miRj

Rj) 

∀Rj.C

′
iRj

with C
′
iRj

also being in canonical form.

It is easy to see that any concept can be transformed into an equivalent concept in
canonical form in linear time.

The following example shows that the concept computed by the LCS is some-
times too general and, thus, might not always be a useful retrieval con-
cept. Let sports-tool (ST), sports-broadcast (SB), team-sports-broadcast (TSB),
individual-sports-broadcast(ISB), basketball (B), football (FB), and tennis-racket (TR)
be atomic concepts, has-sports-tool an atomic role, and

basketball-broadcast (BB) := team-sports-broadcast 
 (= 1 has-sports-tool) 

∀ has-sports-tool.basketball,

football-broadcast (FB) := team-sports-broadcast 
 (= 1 has-sports-tool) 

∀ has-sports-tool.football, and

tennis-broadcast (TB) := individual-sports-broadcast 
 (= 1 has-sports-tool) 

∀ has-sports-tool.tennis-racket
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be concepts. Subsequently, the concept abbreviations given in brackets are used.
Let us consider a user interested in TV broadcasts similar to FB and BB. Then,
computing the LCS of FB and BB would result in a useful retrieval concept: TSB
(=
1 has-sports-tool)
∀ has-sports-tool.ST. However, there might be another user whose
interests are expressed by FB and TB. The LCS computation then yields the retrieval
concept A := SB 
 (= 1 has-sports-tool) 
 ∀ has-sports-tool.ST denoting the set of
all sports broadcasts with a sports tool. Since A is a very general concept, using
A as a retrieval concept would result in a large amount of TV broadcasts, which
might not be acceptable on the part of the user. A more suitable result would be
to allow for B := TSB 
 (= 1 has-sports-tool) 
 ∀ has-sports-tool.ST and C := ISB 

(= 1 has-sports-tool) 
 ∀ has-sports-tool.ST as alternative retrieval concepts. This is
plausible because in Davis Cup matches, for instance, teams of tennis players compete
against each other. Hence, in our intuition, there is a non-empty overlap between the
concepts TSB and ISB which cannot be adequately quantified in ALN . This is where
P-Classic comes into play. In order to model the degree of overlap between concepts
by probabilities, the knowledge representation system P-Classic was introduced in
[Koller et al., 1997]. The DL underlying P-Classic is a probabilistic extension of
ALN augmented by functional roles (attributes).

One of the goals of P-Classic is to compute probabilistic subsumption relationships
of the form P (D|C) denoting the probability of an individual to be an instance of
D given that it is an instance of C. In case C ≡ �, we write P (D). In order to
fully describe a concept, its atomic concept components and the properties of num-
ber restrictions and universal role quantifications need to be described. Therefore,
a set P of probabilistic classes (p-classes) is introduced describing a probability dis-
tribution over the properties of individuals conditioned on the knowledge that the
individuals occur on the right-hand side of a role. Each p-class is represented by
a Bayesian network and one of the p-classes P ∗ ∈ P is the root p-class. The root
p-class describes the distribution over all individuals and all other p-classes describe
the distribution over role successors assuming independence between distinct indi-
viduals. The Bayesian networks are modeled as directed acyclic graphs whose nodes
represent atomic concepts, number restrictions [Number(R)], and the p-class from
which role successors are drawn [PC(R)]. In addition to P-Classic, we introduce
extra nodes for negations of atomic concepts. Dependencies are used to model con-
ditional probabilities and are modeled by edges in the network. For instance, for an
individual, we can state the probability of this individual to be an instance of ISB
under the condition that it is an instance of SB. The range of the variables of a node
representing an atomic or negated atomic concept can be either true or false and for
Number(R) it is a subset of IN. In order to guarantee termination of the inference
algorithm for computing P (D|C), this subset must be finite. Thus, the number of
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Figure 7.3: P-Classic TBox about sports broadcasts.

role successors for a role is bounded. The function bound(R) indicates the maximum
number of role successors for R. The range of a PC(R) node is the set of p-classes
P indicating the p-classes the R-successors are drawn from. The reason for intro-
ducing special nodes for negations of atomic concepts is that this extension enables
us to evaluate expressions of the form P (A 
 ¬A) as 0 which will be a necessary
property subsequently. In order to demonstrate the advantages of the probabilistic
LCS operator, we will now create a P-Classic TBox with overlapping concepts.
Figure 7.3.1 shows a knowledge base about sports broadcasts enriched by probabil-
ity information. For instance, it is stated that a broadcast is considered to be about
team-sports (TSB) with probability 0.3 given that it is a broadcast about sports
(SB) but no individual-sports (-ISB). Two p-classes are represented. The concept
sports-broadcasts is the root p-class and the role successors for the role has-sports-
tool are drawn from the p-class sports-tools. For each concept C, the probability
PP ∗(C) with which an individual is an instance of C can then be computed by a
standard inference algorithm for Bayesian networks. For example, the probability of
PP∗(TSB
(= 1has-sports-tool)
∀has-sports-tool.B) is computed by setting the nodes
for TSB and B to true, Number(has-sports-tool) = 1, and PC(has-sports-tool) = STs.
By Bayesian network propagation we yield a value of 0.015. With the formalism for
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computing expressions of the form P (D|C) it is possible to express the degree of
overlap between C and D by a probability.

Based on the probabilistic description logic summarized in this section, it is possible
to define a probabilistic LCS operator which takes into account the degree of overlap
between concepts.

7.3.2 A Probabilistic Extension of Example-Based Retrieval

Intuitively, given concepts C1, . . . , Cm, the key idea is to allow those concepts for
candidates of a probabilistic least common subsumer (PLCS) of C1, . . . , Cm which
have a non-empty overlap with C1, . . . , Cm. In order to keep the set of candidates
finite, we consider only concepts whose depth is not larger than max{depth(Ci)|i ∈
{1, . . . , m}}. From the viewpoint of information retrieval this is no severe restriction,
since in practical applications deeply nested concepts usually do not have any relevant
individuals as instances (e.g., the concept FB 
 ∀has-sports-tool.∀has-sports-tool.F in
our example).

Definition 75 Let C1, . . . , Cm be ALN concepts and P ∗ the root p-class of a P-
Classic TBox. Then we define the set of PLCS concept candidates of C1, . . . , Cm

as

Can(C1, . . . , Cm) := {E|PP ∗(E 
 C1) > θ ∧ · · · ∧ PP ∗(E 
 Cm) > θ ∧
depth(E) ≤ max{depth(Ci)|i = 1, . . . , m}}.

Definition 75 induces the following observation.

Proposition 76 Let C1, . . . , Cm be ALN concepts. Then, in the worst case, the
cardinality of Can(C1, . . . , Cm) is exponential in m.

Proof. Given a P-Classic TBox in which C1, . . . , Cm are all atomic concepts with
∀i, j ∈ {1, . . . , m} : P (Ci 
 Cj) > θ, we can bound <Can(C1, . . . , Cm) by the expo-
nential function 2m. �
The threshold θ can be equal to 0 but, since the number of candidates is exponen-
tial in the worst case, in practice a value should be chosen such that runtimes are
acceptable.

In the next step, we want to measure the effectiveness of using a certain PLCS
candidate for retrieval. It will be helpful to be able to express the probability of an
individual to be an instance of a concept disjunction. Since this language operator
is not contained in ALN , we use the following definition which is essentially taken
from [Rohatgi, 1976].
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Definition 77 Let C1, . . . , Cm be ALN concepts. Then we define

P (C1 � · · · � Cm) := (−1)2
∑

k=1,... ,m

P (Ck) + (−1)3
∑

k1<k2

P (Ck1 
 Ck2) +

(−1)4
∑

k1<k2<k3

P (Ck1 
 Ck2 
 Ck3) + . . .

+(−1)m+1P (C1 
 · · · 
 Cm).

It should be noted that by Definition 77 we do not extend the syntax of the underlying
DL.

Proposition 78 Let C1, . . . , Cm be concepts. Then computing P (C1 � · · · �Cm) is
exponential in m.

The proof is obvious and is omitted here.

In many retrieval environments, it is customary to use two real numbers: recall and
precision. Both values indicate the quality of a concept E to function as an appropri-
ate PLCS. By these measures the qualities of potential PLCSs can be compared to
one another. The comparison will be formalized by the notion of dominance between
triples (E, rE,C1,... ,Cm , pE,C1,... ,Cm) and (E ′, rE′,C1,... ,Cm , pE′,C1,... ,Cm).

Definition 79 (Recall) Let E and C1, . . . , Cm be ALN concepts. Then we define
the recall of E’s w.r.t. C1, . . . , Cm as

rE,C1,... ,Cm := P (C1 � · · · � Cm|E) =
P (E 
 (C1 � · · · � Cm))

P (E)
.

According to this definition, the larger the recall measure of a concept E, the more
specific it is w.r.t. probabilistic subsumption of C1, . . . , Cm. For a concept E, a per-
fect recall is yielded iff rE,C1,... ,Cm = 1. For example, if E is a PLCS candidate and A
an atomic concept such that A � E, then rE,A,¬A = 1. Unlike in the definition of the
(crisp) LCS, a concept expression does not necessarily need to subsume C1, . . . , Cm

(completely) in order to be a PLCS candidate. This motivates the introduction of
the precision measure.

Definition 80 (Precision) Let E and C1, . . . , Cm be ALN concepts. Then we
define E’s precision of C1, . . . , Cm as

pE,C1,... ,Cm := P (E|C1 � · · · � Cm) =
P (E 
 (C1 � · · · � Cm))

P (C1 � · · · � Cm)
.
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C D

E1E2

Figure 7.4: Scenario of four concepts illustrating the meaning of “recall”
and “precision”.

The precision measures the probability with which a randomly chosen individual,
which is an instance of any of the Ci, i ∈ {1, . . . , m}, is also an instance of the PLCS
candidate E. As a consequence of Definition 80, if E = lcs(C1, . . . , Cm), we have
pE,C1,... ,Cm = 1.

Figure 7.3.2 illustrates the meaning of both measures given four concepts represented
as areas in the 2D space. The recall of E1, rE1,C,D, corresponds to the ratio of the
size of the hatched area and the size of E1. E1’s precision, pE1,C,D, is the ratio of the
size of E1 and the size of the union of E1, C, and D. Given the appropriate values
for E2 we see that rE2,C,D is smaller than rE1,C,D but pE2,C,D is larger than pE1,C,D.

Proposition 81 Let E and C1, . . . , Cm be ALN concepts. Then, computing
rE,C1,... ,Cm and pE,C1,... ,Cm takes time exponential in the length of E, C1, . . . , Cm.

Proof. Since P (E
(C1�· · ·�Cm)) = P (E)−(P (E�C1�· · ·�Cm)−P (C1�· · ·�Cm)),
the claim follows from Proposition 78. �

With the above considerations, we will define the set of PLCSs of concepts
C1, . . . , Cm as a set of triples where the first component is a concept E ∈
Can(C1, . . . , Cm) and the other components are E’s recall and precision. In a con-
crete application, a user should be able to specify minimum values for at least one of
the measures that he is willing to accept. For example, he could specify a recall of
0.8 preventing him from obtaining too general PLCS concepts and, thus, restricting
the amount of retrieved data.

With the notion of dominance between candidates we can define the set of proba-
bilistic least common subsumers.

Definition 82 (Dominance) Let E, E ′ and C1, . . . , Cm be ALN concepts. Then
(E, rE,C1,... ,Cm , pE,C1,... ,Cm) dominates (E ′, rE′,C1,... ,Cm , pE′,C1,... ,Cm) iff
(rE,C1,... ,Cm > rE′,C1,... ,Cm) ∧ (pE,C1,... ,Cm > pE′,C1,... ,Cm).
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Definition 83 (Probabilistic Least Common Subsumers) Let C1, . . . , Cm be
ALN concepts. Then we define the set of probabilistic least common subsumers of
C1, . . . , Cm as

p-lcs(C1, . . . , Cm) := {(E, rE,C1,... ,Cm , pE,C1,... ,Cm) ∈ Can(C1, . . . , Cm)× IR× IR|
¬∃(E ′, rE′,C1,... ,Cm , pE′,C1,... ,Cm) :

(E ′, rE′,C1,... ,Cm , pE′,C1,... ,Cm) dominates

(E, rE,C1,... ,Cm , pE,C1,... ,Cm)}.

p-lcs(C1, . . . , Cm) is called minimal iff
∀(E, rE,C1,... ,Cm , pE,C1,... ,Cm), (E ′, rE′,C1,... ,Cm , pE′,C1,... ,Cm) ∈ p-lcs(C1, . . . , Cm) : E %≡
E ′.

In Definition 83 we formalize the ideas of Figure 7.3.2 conditioned on the general case
of m concepts. When defining p-lcs(C1, . . . , Cm) we consider only concepts with a
non-empty overlap with each of the C1, . . . , Cm. We only accept triples with the best
quality measures and, therefore, accept only dominating triples in p-lcs(C1, . . . , Cm).
From this definition we can derive the following statement.

Proposition 84 The set p-lcs(C1, . . . , Cm) has the following properties:

(i) p-lcs(C1, . . . , Cm) is finite.

(ii) Minimality: (E, rE,C1,... ,Cm , pE,C1,... ,Cm) ∈ p-lcs(C1, . . . , Cm) =⇒
∀i ∈ {1, . . . , m} : P (E 
 Ci) > 0 ∧ ¬∃(E ′, rE′,C1,... ,Cm , pE′,C1,... ,Cm) :
(rE′,C1,... ,Cm > rE,C1,... ,Cm) ∧ (pE′,C1,... ,Cm > pE′,C1,... ,Cm) ∧
(depth(E ′) ≤ depth(E)).

Proof. (i) is obvious since the maximum depth of the concepts in p-lcs(C1, . . . , Cm)
is limited by the maximum depth of the C1, . . . , Cm and the number of concept
components of C1, . . . , Cm is finite ensuring the number of PLCS candidates to be
finite. Hence, p-lcs(C1, . . . , Cm) is finite as well. For (E, rE,C1,... ,Cm , pE,C1,... ,Cm) ∈
p-lcs(C1, . . . , Cm), the fact that P (E 
 Ci) > 0, for all i ∈ {1, . . . , m}, follows
immediately by the definition of Can(C1, . . . , Cm). ¬∃(E ′, rE′,C1,... ,Cm , pE′,C1,... ,Cm) :
rE′,C1,... ,Cm > rE,C1,... ,Cm ∧ pE′,C1,... ,Cm > pE,C1,... ,Cm ∧ depth(E ′) ≤ depth(E) also
follows since p-lcs(C1, . . . , Cm) contains only dominating triples
(E, rE,C1,... ,Cm , pE,C1,... ,Cm) with depth(E) ≤ max{depth(Ci)|i ∈ {1, . . . , m}}. �
The minimal set p-lcs(C1, . . . , Cm) can be computed in three steps: First, the set
of concepts which have a non-empty overlap with each of the C1, . . . , Cm must
be computed. Proposition 84 (i) states a necessary criterion for a correspond-
ing algorithm to terminate since the set of concepts E which have a non-empty
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overlap with each of the Ci is finite. Then, for each concept E in this set, we
have to compute the parameters rE,C1,... ,Cm and pE,C1,... ,Cm and then build the set
of dominant triples p-lcs(C1, . . . , Cm). Proposition 84 (ii) guarantees that there
is no relevant retrieval concept with better recall and precision than the corre-
sponding measures of the triples in p-lcs(C1, . . . , Cm). Finally, the minimal set
p-lcs(C1, . . . , Cm) must be determined. This can be done by successively eliminat-
ing a triple (E, rE,C1,... ,Cm , pE,C1,... ,Cm) from p-lcs(C1, . . . , Cm) as long as the following
condition holds:

∀(E, rE,C1,... ,Cm , pE,C1,... ,Cm) ∈ p-lcs(C1, . . . , Cm) :

¬∃(E ′, rE′,C1,... ,Cm , pE′,C1,... ,Cm) ∈ p-lcs(C1, . . . , Cm) with E ≡ E ′.

The necessary equivalence test can be performed by structural comparisons since the
involved concepts are in canonical form. In general, a minimal p-lcs(C1, . . . , Cm) is
not unique since there is no rule stating which triple to eliminate in case two triples
with equivalent concepts are present. However, in our similarity-based information
retrieval application this is no problem because the sets of instances of equivalent
concepts are equal.

Procedure 2 computes the set of PLCS candidates given concepts C1, . . . , Cm and the
TBox as a Bayesian network BN . In the first step, all atomic concepts and negated
atomic concepts in the Bayesian network are collected in the set X1 if there is a
non-empty overlap with each of the C1, . . . , Cm. Computing the concept candidates
for our example, compute-concept-candidate(FB, TB), we get X1 = {SB,TSB,ISB}.
Secondly, we build the set of all conjunctions of concepts of X1 which have a non-
empty overlapping with each of the C1, . . . , Cm including the ones consisting of only
one conjunct. In our case, we yield X2 = {SB,TSB,ISB, SB 
 TSB, SB 
 ISB, ISB 

TSB, SB 
 TSB 
 ISB}. In the next part of the algorithm, we collect all number
restrictions having a non-empty overlap with each of the C1, . . . , Cm in the set X3.
Since the maximum number of role successors is bounded, we can guarantee finiteness
of X3. Let X be an abbreviation for (= 1 has-sports-tool) and Y an abbreviation
for (≥ 0 has-sports-tool) 
 (≤ 1 has-sports-tool). Then, in our example, we have
X3 = {X, Y }. Subsequently, for all roles Ri and all ∀-quantifications occurring in
C1, . . . , Cm and involving Ri, we add those concepts to X4 which have a non-empty
overlap with each of the Ri quantifiers (C

′
1, . . . , C

′
m in the algorithm). In our ex-

ample, we compute X4 := {ST}. Now, in X5 we collect all conjunctions of number
restrictions from X3 involving role R and ∀ R.D where D is a concept overlap with
R’s quantifiers C

′
1, . . . , C

′
m. Let X ′ be an abbreviation for X 
 ∀ has-sports-tool.ST

and Y ′ an abbreviation for Y 
 ∀ has-sports-tool.ST. Then, in our example, we have
X5 = {X ′, Y ′}. In X6, we collect the conjunctions of elements of X5 over all oc-
curring roles if a conjunction has a non-empty overlap with each of the C1, . . . , Cm.
Since, in our example, we have only one role, we get X6 = X5. Finally, the re-
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sults in X2 (conjunctions of atomic and negated atomic concepts) and the ones in
X6 (conjunctions of number restrictions and ∀-quantifications) are combined into
X7 which is returned by the algorithm. In our example, X7 consists of 21 con-
cepts from which we will only list the ones which are unique w.r.t. to equivalence:
{E1, . . . , E12} = {SB, TSB, ISB, TSB
 ISB, SB
X ′, TSB
X ′, ISB
X ′, TSB
 ISB

X ′, SB 
 Y ′, TSB 
 Y ′, ISB 
 Y ′, TSB 
 ISB 
 Y ′} as desired.

Theorem 85 For concepts C1, . . . , Cm and a Bayesian network BN representing a
P-Classic TBox, algorithm compute-concept-candidates returns the set
Can(C1, . . . , Cm).

Proof. We give only a sketch of the proof. Algorithm compute-concept-candidates
terminates because the maximum number of iterations is bounded by the maximum
depth of C1, . . . , Cm. It is sound since every output concept has a non-empty overlap
with C1, . . . , Cm. It is also complete because the algorithm recursively checks all
possible concepts resulting from the concept-forming operators of ALN for a non-
empty overlap with C1, . . . , Cm. �

The set of concept candidates computed by Algorithm 2 can easily be transformed
into a set in which all pairs of concepts are not equivalent. Therefore, later no addi-
tional algorithm for transforming p-lcs(C1, . . . , Cm) into a minimal p-lcs(C1, . . . , Cm)
will be necessary. Now recall and precision must be determined for each candidate
by means of the formulae given in Definitions 79 and 80. This can be done straight-
forwardly by algorithms taking concepts E and C1, . . . , Cm as input parameters and
returning rE,C1,... ,Cm and pE,C1,... ,Cm , respectively. The set p-lcs(C1, . . . , Cm) contains
only those triples whose quality measures dominate those of other triples.

Algorithm 3 computes the largest subset of dominant triples of {(E1, rE1,C1,... ,Cm ,
pE1,C1,... ,Cm), . . . , (En, rEn,C1,... ,Cm , pEn,C1,... ,Cm)}. In the example, we get
p-lcs(FB, TB) = {(SB 
X ′, 0.22, 1), (SB 
 Y ′, 0.22, 1), (TSB 
X ′, 0.24, 0.354),
(TSB
Y ′, 0.24, 0.354), (ISB
X ′, 0.26, 0.345), (ISB
Y ′, 0.26, 0.345)}. As a result we
get six possible retrieval concepts. SB
X ′ is the (crisp) LCS of FB and TB. Naturally,
this concept has a precision of 1.0 since, according to Definition 68, lcs(FB, TB)
is a concept which (completely) subsumes FB and TB. Alternatively, the result
suggests the use of TSB 
 X ′ or ISB 
 X ′ as retrieval concepts. Both concepts
have a better recall measure, and using them for retrieval results in a smaller set
of information items. On the other hand, TSB 
 X ′ and ISB 
 X ′ have a worse
precision measure than SB 
 X ′. Hence, the probability of meeting an individual
which does not incorporate the commonalities represented by the concepts FB and
TB is higher. The three concepts involving Y ′ have the same quality measures than
the ones involving X ′. The reason is that from our P-Classic TBox it follows that
P (Number(has-sports-tool) = 0) = 1.0, i.e. we do not need to consider them.
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Procedure 2 compute-concept-candidates(C1, . . . , Cm, BN)

Initialization: X1, . . . , X7:= ∅, pclass:= P ∗, d:= max{depth(C1), . . . , depth(Cm)}
for D ∈ literals (T-Box) do

insert D into X1 if ∀i ∈ {1, . . . , m} : Ppclass(D 
 Ci) > 0
end for
for E := D1 
 . . . 
Dk ∈ 2X1 do

insert E into X2 if ∀i ∈ {1, . . . , m} : Ppclass(E 
 Ci) > 0
end for
for R ∈ roles ({C1, . . . , Cm}) do

for (i, j) ∈ number-restrictions (R, {C1, . . . , Cm}) do
insert (≥ l R) 
 (≤ u R) into X3

such that 0 ≤ l ≤ j ∧ u ≤ i ≤ bound(R) ∧ l ≤ u
end for
for {Cd−1

1 , . . . , Cd−1
m } ∈ all-quantification (R, {C1, . . . , Cm}) do

for rpclass ∈ relevant-p-classes ({Cd−1
1 , . . . , Cd−1

m }, {C1, . . . , Cm}) do
insert results of
compute-concept-candidates({Cd−1

1 , . . . , Cd−1
m }, rpclass)

into X4

end for
end for
for E := A 
 ∀R.B : A ∈ X3, B ∈ X4 do

insert E into X5

end for
end for
for E := D1 
 . . . 
Dk ∈ 2X5 do

insert E into X6 if ∀i ∈ {1, . . . , m} : Ppclass(E 
 Ci) > 0
end for
for E:=A 
B : A ∈ X2, B ∈ X6 do

insert E in X7 if ∀i ∈ {1, . . . , m} : Ppclass(E 
 Ci) > 0
end for
return X2 ∪X7

Procedure 3 compute-minimal-plcs((E1, r1, p1), . . . , (En, rn, pn))

p-lcs(C1, . . . , Cm) := sort(((E1, r1, p1), . . . , (En, rn, pn)), pi)
for i = 1 to n do

eliminate all (E ′, r′, p′) from p-lcs(C1, . . . , Cm) with r′ < ri and p′ < pi

end for.
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Theorem 86 Let C1, . . . , Cm be ALN concepts. Then, in the worst case, comput-
ing p-lcs(C1, . . . , Cm) takes time exponential in m.

Proof. This result follows from Proposition 76 since computing the set of PLCS
candidates of C1, . . . , Cm is a subtask of computing p-lcs(C1, . . . , Cm). �
Propositions 78, 76, and 81 show the sources of complexity for the presented inference
task. Due to the subterms P (C1 � · · · � Cm) and P (E 
 (C1 � · · · � Cm)) occurring
in Definitions 79 and 80, the computation of the precision and the recall measure
take time exponential in the number of m. Also the computation of the set of PLCS
candidates takes time exponential in the number of concepts. In practice, however,
the exponential behavior of the computation comes into effect only for knowledge
bases with many overlapping concepts. Thus, when building a TBox, the number of
concept overlaps should be kept small and the threshold θ should be set appropriately.

7.3.3 Summary

In this section, we contributed to the problem of similarity-based information re-
trieval on the basis of the DL ALN . It is shown that in certain cases the compu-
tation of commonalities with the (crisp) LCS operation yields too general retrieval
concepts which can result in an information flood in a retrieval context. In order
to circumvent this problem, we introduced a probabilistic LCS for a probabilistic
extension of the DL ALN . It is proved that the retrieval concepts provided by this
operation are in some sense optimal and can be used as an alternative to retrieval
concepts computed by a crisp LCS operation. By demonstrating the performances
of the PLCS operator with an example we showed that meaningful retrieval results
can be achieved with this operator. In the retrieval approach we integrated known
information retrieval techniques with formally investigated inference services of DLs.

It has been shown that, in the information system scenario, it is even possible to
successfully apply a theory for integrating probabilistic and logical representation
formalisms such that a probabilistic abstraction operator for information retrieval
applications could be implemented (see [Kaplunova, 1999] for details on the imple-
mentation).
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Chapter 8

Conclusion

We have discussed the application of description logics to information processing
tasks of different areas. Applications range from verification of specifications for
telecommunication systems over support for the development of very large ontologies
in a bio-informatics domain to deductive information systems in an agent-oriented
retrieval scenario. Description logics constitute the common basis of many projects
in a lively area of research. We conclude with an assessment of what problems have
been solved in this Habilitation Thesis and present some apparent extensions of the
work presented here.

8.1 Assessment

For modeling application problems as inference problems, tableaux calculi for expres-
sive description logics such as ALCNHR+ , ALCNHR+(D)− and ALCRP(D) had to
be developed. The development of extended and new optimization techniques and
their empirical evaluation with the DL system RACE shows that significant prac-
tical problems can be represented as inference problems. We have emphasized the
importance of sound and complete (and terminating) TBox and ABox reasoning for
solving subproblems of applications. The advantage is that with this solid theoretical
foundation new applications with extended functionaliy can be developed with less
effort.

The research summarized in this Habilitation Thesis complements other approaches
exploring the description logic “landscape” from a complexity theory point of view
[Donini et al., 1997a]. The detailed overviews over theoretical description logic re-
search given in [Baader, 1999] and [Baader & Sattler, 2000] are not to be repeated
here.

With the RACE system a very powerful representation and inference system has
been developed. Much of the practical work is inspired by the landmark results on
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optimization strategies presented in [Horrocks, 1997]. The architecture of RACE is
tailored towards application problems with TBoxes and ABoxes and provides new
optimization techniques such that larger application projects can use description
logic systems which are based on sound and complete algorithms.

As the empirical investigations indicate, there is also price to pay for modeling with
expressive languages. For specific combinatorial problems encoded as consistency
tests for certain kinds of logical formulae, specialized inference systems are slightly
faster than RACE but can be used only if the problems are formalized using the
modal logic Km (see e.g. [Giunchiglia et al., 1999]). For instance, number restrictions
come at the price of more complex clash tests which slow down the performance of
RACE for pure propositional or modal logic inference problems quite a bit (although
RACE adapts its clash testing algorithms to the language constructs used in a certain
problem). However, RACE is still one of the fastest systems available today and,
since the development of optimized algorithms is a very active area of research,
newer versions of RACE will support optimization techniques for even more powerful
language features. The integration of new features such as inverse roles into the
RACE architecture is possible but it becomes more and more complex to safely
integrate new features into optimized inference algorithms. Thus, currently, there is
some kind of gap between what is proven at the calculus level and what has to be
implemented in order to achieve adequate performance using optimized search and
caching strategies.

Another part of this work considers spatioterminological reasoning. For the impor-
tant combination of spatial and terminological reasoning a theory has been proposed
with ALCRP(RCC). Meanwhile other authors have published complexity analy-
ses [Lutz, 1999b] and have developed a prototypical implementation [Turhan, 1998].
Nevertheless, there does not exist an optimized implementation for ALCRP(D) (and
ALC(D) as well) that is comparable to the performance of RACE for ALCNHR+ .
The results about RACE should provide the basis for developing adequate al-
gorithms for ALCRP(D) that can be practically implemented. First results on
this topic have recently been discussed in [Turhan & Haarslev, 2000; Turhan,
2000]. However, although some aspects of spatial reasoning can be captured with
ALCRP(RCC), it is only a first step.

In order to achieve soundness, completeness and termination of the ABox consis-
tency algorithm, syntactic restrictions have to be imposed on the formulae used in
ALCRP(D) knowledge bases. Furthermore, the DL part of ALCRP(D) does not
offer number restrictions, and role hierarchies and transitive roles can only be intro-
duced via concrete domains. An important insight was that all interesting concrete
domains provide enough expressivity that syntactic restrictions are indeed necessary
to ensure termination.

The application examples discussed in this thesis demonstrate that the results pro-
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vide a foundation for information systems that can answer queries in a distributed
scenario and by reasoning about conceptual and spatial information.

8.2 Outlook

We have emphasized that qualitative spatial relations and the RCC-8 calculus are
only taken as an example for dealing with some aspects of spatial reasoning. Topo-
logical relations are only one kind of knowledge relevant for spatial reasoning. For
instance, reasoning about shape, position and orientation are to be investigated in
the context of conceptual reasoning with description logics as well. In addition,
the integration of quantitative knowledge into spatioterminological reasoning is an
important area of research.

A generalization of the work on spatioterminological default reasoning could be inves-
tigated by extending description logics with autoepistemic operators [Donini et al.,
1997b; Rosati, 1997]. With these operators even integrity conditions (restrictions on
the data model rather than on the represented world) can be expressed. An inves-
tigation of these operators in the context of spatioterminological default reasoning
could lead to fruitful results.

The idea of defining roles based on concrete domain predicates in ALCRP(D) and
using a concrete domain consistency tester can be generalized. Rather than using
an external reasoner and a concrete domain it might be possible to reason about
properties of relations within the description logic formalism. In other words: it is
interesting to investigate ways to integrate the semantics of spatial relations into
the semantics of the description logic formalism itself. Research about this has just
started [Wessel et al., 2000]. The new language is called ALCRA and extends ALC
with role axioms such that, for instance, the meaning of RCC-8 relations can be
directly provided by specifying role axioms which, in turn, directly correspond to
the composition table of RCC-8.

The language ALCRA would be useful for enhanced reasoning about concep-
tual knowledge as well [Wessel et al., 2000]. This will be explained with a
small example. Consider a man whose brother has a sister which, in turn,
has a sister whose daughter is a computer science student. If we claim
that all his nieces are indeed no computer science students, then it should
be obvious that something is wrong. However, if we consider the ALC con-
cept term Man 
 (∃ brother .∃ sister .∃ sister .∃ daughter . Computer science student)

∀ niece .¬Computer science student without representing the relationships between
the roles, then the inherent inconsistency of the concept would not be detected.

The following role axioms are required in order to derive the inconsistency (the
operator ◦ denotes role composition).

201



brother ◦ sister � sister

sister ◦ daughter � niece

daughter ◦ sister � daughter

sister ◦ sister � sister

However, if ALCRA is decidable or not, is currently an open research question.

With the availability of expressive description logic inference systems it will become
possible to extend the development of UML (Unified Modeling Language, e.g. [Page-
Jones, 2000]). Based on description logics it might be possible to define a semantics
for parts of UML such that UML cannot only be used for presentation or communica-
tion purposes during the design phase of a software project but – with an optimized
inference system – can also be used for solving problems without code for algorithms
being written manually. Furthermore, it might be possible to use a DL system for
verifying UML state space models. Investigations for verifying state space models in
UML with model checking techniques are described in [Lilius & Paltor, 1999c; Lilius
& Paltor, 1999b; Lilius & Paltor, 1999a].

As we have argued, the logical approach pursued in this thesis provides a foundation
for information systems with inference components. ABoxes are used to represent
information about specific objects of a certain domain. However, as long as ABoxes
(and TBoxes) have to be kept in main memory, the spectrum of possible applications
is somewhat limited. Thus, it would be very interesting to investigate algorithms
for implementing ABox persistency with transactions and rollback. It should be
noted however, that revision in the context of logical representation formalism is
still a research topic on its own. In the context of spatial knowledge, revision and
retraction are definitely exciting areas for future research.

8.3 Résumé

In recent years, the research field covered in this Habilitation Thesis has seen many
contributions from different groups and perspectives. The application examples pre-
sented in this thesis demonstrate that the results are important for knowledge rep-
resentation and computer science in general. The intention behind the work in this
field is to develop a representation “medium” that can be used for modeling in such
a way that automatic inferences are supported and application (sub)problems can
be automatically solved by invoking inference service. The insights gained by devel-
oping optimization algorithms convinced us that the services provided by automatic
inference systems can hardly be provided by ad hoc software development within a
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reasonable amount of time and with the necessary reliability. The key to the suc-
cessful development of applications with description logics are the inference services
rather than particular data structures for storing information. Expressive descrip-
tion logics and optimized inference systems are a necessary prerequisite for success
in a practical context.

Formal inference systems in general and description logics in particular can be called
a changing discipline. Previously, there was a gap between theoretical results and
implemented modeling and inference systems. Implemented systems either used in-
complete algorithms or supported only “weak” representation languages. Now, with
the optimization techniques of today, it becomes clear that theoretical results about
decidability and complexity for expressive description logics are directly relevant for
practical work. Much has been achieved but still much has to be learned. I hope
that this work stimulates new research results in the near future.
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Master’s thesis, Linköping University, Thesis 591, Department of Computer and
Information Science.

Weida, R. (1996). Closed terminologies in description logics. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence AAAI-96, pages 592–
599.
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