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Abstract

In previous years a growing interest in description logics and their
applications was observed. This was mainly due to the development of
very expressive description logics and optimized description logic sys-
tems which support terminological and/or assertional reasoning for
these logics. Recently, more and more applications of description log-
ics have been developed. In the same spirit as the previous workshop
on applications of description logics at KI-2001 this workshop intends
to gather researchers as well as practitioners who are interested in
description logics and their applications.
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Abstract

UML is the most widely accepted formalism for the analysis and design

of software and one of its most important components are UML class

diagrams. In this paper we discuss how to encode UML class diagrams in

the Description Logics DLRifd and ALCQI: the �rst fully captures the

semantics of UML class diagrams, while the second is directly supported

by state-of-the-art DL reasoning systems. We also show some results

obtained by reasoning on UML class diagrams of industrial interest.

1 Introduction

UML is the most widely accepted formalism for the analysis and design of soft-

ware. One of its most important components are UML class diagrams, which

model the static relationships that hold between the objects of the domain of

interest, in terms of classes and associations between them. During the design

phase, it is highly desirable to be able to detect relevant formal properties of

the diagram, such as inconsistencies and redundancies. This requires a formal-

ization of UML class diagrams and several types of formalizations have already

been proposed in the UML literature [12, 13, 14, 11].

Description Logics (DLs) [1] are known to be able to capture several concep-

tual data models [3, 10, 4, 9, 16], included UML class diagrams [5, 2, 6]. This

allows for exploiting DL reasoning services for implementing various forms of

reasoning on such diagrams.

In this paper we discuss encodings of UML class diagrams into two DLs,

namely DLRifd [8, 7], i.e., DLR with identi�cation constraints and functional

dependencies, and ALCQI. The semantics of DLRifd fully captures UML class

diagrams, while ALCQI is the DL directly supported by state-of-the-art DL

reasoning systems [22, 17], and thus facilitates the use of such systems as the

core engines for advanced UML CASE tools.
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We experimented such encodings by exploiting the reasoning services o�ered

by state-of-the-art automated reasoning systems, within an ongoing project in

collaboration with IBM Tivoli, obtaining very encouraging results on industrial

relevant diagrams.

The rest of the paper is organized as follows. In Section 2 we give an overview

of UML class diagrams and for each construct we provide a DLRifd-based for-

malization. In Section 3 we discuss a formalization of UML class diagrams based

on ALCQI and show how and why we can pass from the �rst to the second one.

In Section 4 we present our experiments and discuss them. Section 5 concludes

the paper.

2 Representing UML class diagrams

In this section, we briey illustrate UML class diagrams and for each construct,

we provide an encoding in terms of DLRifd. We refer the reader to [8, 7]

for the syntax and semantics of this DL. Scope of this section is to show that

DLRifd fully captures the semantics of UML class diagrams for the conceptual

perspective [15].

Classes A class in an UML class diagram denotes a set of objects with common

features, hence it can be represented in DLRifd by a concept, since also DLRifd

concepts denote sets of objects.
An attribute a of type1 T for a class C associates to each instance of C a set

of instances of T 2. It can be captured in DLRifd by means of a binary relation

a between instances of C and instances of T and by the following assertion:

C v 8[1](a)(2 :T ));

stating that each relation a having C as �rst component, has T as second com-

ponent. An optional multiplicity [i::j] for a speci�es that a associates to each

instance of C at least i and most j instances of T . When the multiplicity is

missing, [1::1] is assumed. Multiplicity can be naturally captured by number

restrictions, as follows:

C v (� i [1]a) u (� j [1]a):

An operation f(P1; : : : ; Pm) : (R1; : : : ; Rn) of a class C is a function that

associates to an m-tuple of parameters belonging to the classes P1; : : : ; Pm, re-

spectively, an n-tuple of return values belonging to the classes R1; : : : ; Rn, re-

spectively. Recalling that DLRifd has the ability of representing n-ary relations

1For simplicity, we consider types as classes, without distinguishing between classes and
domains, such as integers, reals, . . .

2Note that UML allows one to de�ne two classes having the same attribute, possibly of

di�erent types.
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Figure 1: Aggregation in UML

and functional dependencies on them, we capture the operation above by means

of a relation named opf(P1;:::;Pm):(R1;:::;Rn)
of arity m+ n+ 1, among instances of

the concepts C; P1; : : : ; Pm; R1; : : : ; Rn. On such a relation we impose:

� that parameters and return values have correct types:

C v 8[1](opf(P1;:::;Pm):(R1;:::;Rn)
)

((2 :P1) u � � � u (m+ 1 :Pm) u (m+ 2 :R1) u � � � u (m+ n+ 1 :Rn)));

� functional dependencies from the class the operation belongs to and the

input parameters, to each return value:

(fd opf(P1;:::;Pm):(R1;:::;Rn)
1; : : : ; m+ 1! m+ 2);

: : : ;

(fd opf(P1;:::;Pm):(R1;:::;Rn)
1; : : : ; m+ 1! m+ n + 1);

such assertions state that each return value is uniquely determined by the

object of invocation and the input parameters.

Observe that the formalization of operations in DLRifd allows one to have

operations with the same name or even with the same signature in two di�erent

classes. In particular, following UML speci�cations, our framework allows for

overloading of methods, that takes place between two or more functions having

the same name but di�erent signatures. Overriding requires that two methods

have the same name and signature, but behave in di�erent ways. UML class

diagrams for the conceptual perspective do not specify bodies of methods but

only their signature, hence overriding becomes immaterial and so does in our

representation.

Aggregations An aggregation in UML is a binary relation between the in-

stances of two classes, denoting a generic form of part-whole relationship: ag-

gregation A in Figure 1 indicates that the instances of the (containing) class

C1 have components that are instances of the (contained) class C2. This is

formalized by means of a binary relation A together with the assertion

A v (1 :C1) u (2 :C2):

The distinction between the contained class and the containing class is not lost,

since we can use the convention that the �rst argument of the relation is the

containing class.
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Figure 3: Binary association in UML

The multiplicity of an aggregation can be easily expressed. For example, the

multiplicities shown in Figure 1 are formalized in DLRifd as:

C1 v (� nl [1]A) u (� nu [1]A);

C2 v (� ml [2]A) u (� mu [2]A):

Associations An association in UML, graphically rendered as in Figure 2, is

a relation between the instances of two or more classes. An association often

has a related association class that describes properties of the association such

as attributes, operations, etc.

We model in DLRifd an n-ary association A between classes C1; : : : Cn, that

has not a related association class, by means of an n-ary relation A, and the

assertion

A v (1 :C1) u : : : u (n :Cn);

stating that A has Ci as i-th component, for i = 1; : : : ; n.

If A has a related association class, we formalize it in a rei�ed way: we

introduce a concept A and n binary relations r1; : : : ; rn, one for each component

of the association A. Each binary relation ri has A as its �rst component and

as Ci its second component. Then we introduce the following assertions:

A v 9[1]r1 u (� 1 [1]r1) u 8[1](r1 ) (2 :C1)) u : : :u

9[1]rn u (� 1 [1]rn) u 8[1](rn ) (2 :Cn))

(id A [1]r1; : : : ; [1]rn):

The �rst assertion states that the concept A must have all components r1; : : : ; rn
of the association A and that each such component is single-valued; it also spec-

i�es the class each component has to belong to. The second assertion speci�es
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Figure 4: A class hierarchy in UML

that each instance of A represents a distinct tuple in C1� � � � �Cn. We remind

that an important feature of DLRifd is the ability of capturing identi�cation

constraints on concepts.

For a binary UML association3, we can easily represent multiplicities by

imposing suitable number restrictions on the relations modeling the components

of the association. The multiplicities shown in Figure 3 are captured by:

C1 v (� nl [2](r1 u (1 :A))) u (� nu [2](r1 u (1 :A)))

C2 v (� ml [2](r2 u (1 :A))) u (� mu [2](r2 u (1 :A))):

Generalization In UML, a generalization between a parent class and a child

class, as shown in Figure 4, is used to specify that each instance of the child class

is also an instance of the parent class. The instances of the child class inherit

the properties of the parent class, and usually they satisfy additional properties

that do not hold for the parent class.

Generalization is naturally supported in DLRifd. We can express that an

UML class C generalizes n classes C1; : : : ; Cn, by the set of assertions

Ci v C; for each i 2 f1; : : : ; ng.

Inheritance between DLRifd concepts works exactly as inheritance between

UML classes, as a consequence of the semantics of inclusion assertions, which

is based on sub-setting: given an assertion C1 v C2, every tuple in a relation

having C2 as i-th argument type may have as i-th component an instance of C1,

which is in fact also an instance of C2. Hence, each attribute or operation of C2,

and each aggregation and association involving C2 is correctly inherited by C1.

The above formalization also captures directly inheritance among association

classes, which are treated exactly as all other classes, and multiple inheritance

between classes (including association classes).

In UML, one can impose covering or mutual disjointness between classes.

If the superclass C is a covering of the subclasses C1; : : : ; Cn, we include the

additional assertion

C v C1 t � � � t Cn:

3In UML multiplicities are look-across cardinality constraints [24]. This makes their use in

non-binary associations diÆcult w.r.t. both modeling and reasoning.
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For each pair of subclasses Ci and Cj that are mutually disjoint, we include the
assertion

Ci v :Cj:

Constraints In UML it is possible to add constraints, in order to express

application semantics which cannot be expressed by other constructs of UML

class diagrams. One can exploit the expressive power of DLRifd to formalize

several types of constraints (although not all those that OCL [23], i.e. �rst

order logic, can), that can be taken fully into account when reasoning on class

diagrams.

3 Representing UML class diagrams in ALCQI

DLRifd fully captures the semantics of UML class diagrams (except for general

OCL constructs). Functional dependencies and identi�cation constraints play

a special role since allow one to impose that each instance of a concept repre-

senting an n-ary association A (with a related association class) is univocally

identi�ed by each �rst component of the n roles ri and, similarly, that each re-

turn value of an operation f of arity m belonging to class C is determined once

the instances of the class and of the input parameters are given. Current state-

of-the-art DL-based reasoning systems do not support functional dependencies

and identi�cation constraints yet: these require advanced forms of reasoning on

generalized ABoxes that are not implemented yet [8]. In [8] it is shown that

for a KB without ABox, logical implication of inclusion assertions (note, not

of functional dependency and identi�cation constraint assertions) can be veri-

�ed without considering functional dependencies and identi�cation constraints

at all. This is because a DLRifd TBox has the tree model property [7], i.e.,

if a TBox is satis�able, it admits a model having a tree structure, and since

in such models no tuples exist having more than one component in common,

identi�cation constraints and functional dependencies are trivially satis�ed. We

are exactly in this setting. Hence, if we limit to ask queries not involving either

functional dependencies or identi�cation constraints, we can drop them, obtain-

ing a KB in a DL named DLR. DLR KBs can be translated into ALCQI

KBs4 and we can exploit DL reasoning systems to deduce relevant properties

of UML class diagrams. However, this brings about a disruptive mixture of in-

verse roles with terminological cycles involving existentials, and with functional

restrictions combined with existential restrictions. In fact, in [2], we found out

that state-of-the-art reasoners have diÆculties in classifying KBs obtained in

such a way5.

4Actually, in the variants of ALCQI accepted by the reasoners.
5In fact, techniques that are currently being developed to deal with complex KBs (see [21])

can be of help.
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To overcome this problem, we propose a direct encoding of UML class dia-

grams in ALCQI, in order to obtain KBs on which reasoning services are easier

for the reasoning systems. In particular, the encoding of UML class diagram

constructs is as follows:

� classes are modeled by ALCQI concepts; attribute a of type T for class C

is captured by a binary relation a and by the assertion C v (� i a) u (�

j a); if the attribute has associated a multiplicity [i::j], this is captured by

C v (� i a) u (� j a); operation f(P1; : : : ; Pm) : (R1; : : : ; Rn) of a class

C is represented in a rei�ed way, i.e., by introducing an atomic concept

opf(P1;:::;Pm):(R1;:::;Rn)
, n +m + 1 roles r1; : : : ; rn+m+1 and the following as-

sertion: opf(P1;:::;Pm):(R1;:::;Rn)
v 8r1.C u9r1 u (� 1 r1)u8r2.P1 u9r2 u (�

1 r2) u � � � u 8rm+n+1.Rn u 9rn+m+1 u (� 1 rm+n+1);

� aggregation A in Figure 1 between the containing class C1 and the con-

tained class C2 is modeled by > v 8A.C2 u 8A
�.C1; the multiplicity

constraints shown there are captured by C1 v (� nlA) u (� nuA) and

C2 v (� ml A
�) u (� muA

�);

� n-ary association A between classes C1; : : : Cn, shown in Figure 2, is cap-

tured by reifying the association and by the assertion A v (� 1 r1)u� � �u

(� 1 rn)u9r1.C1u� � �u9rn.Cn, both if it has and it has not a related asso-

ciation class; the multiplicity constraints shown in Figure 3 are represented

by C1 v (� nl r
�

1 .A)u (� nu r
�

1 .A) and C2 v (� ml r
�

2 .A)u (� mu r
�

2 .A).

It can be shown that such encoding is equivalent to the DLR one. In partic-

ular, the ability of correctly representing an n-ary relation through rei�cation,

i.e. with a concept plus one role for each relation component, is again granted

by the tree model property.

4 Experimentation

We performed several experiments on UML class diagrams. In this section we

report results on (successful) classi�cation of diagrams, available on the site

http://www.dis.uniroma1.it/�berardi/uml2dl. The Table in Figure 5 gives

an idea of how easier are the KBs obtained from the encoding above, for the

reasoners. In particular, we have used the two systems FaCT [19, 22, 20]6 (the

executable SHIQ reasoner (shiq-app.exe) contained in the CORBA-FaCT

distribution v.3.1, excluding the CORBA interface) and Racer [18, 17]7 (v.1-

6-7). We have run all our experiments on a Pentium III biprocessor, 866 Mhz,

512MB of RAM and OS Windows 2000 Professional. The �rst set of columns

6Available at http://www.cs.man.ac.uk/�horrocks/FaCT.
7Available at http://kogs-www.informatik.uni-hamburg.de/�race.
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UML class DLR-based encoding ALCQI-based encoding

diagrams FaCT Racer FaCT Racer

Restaurant yes no yes yes

Soccer no no yes yes

Library yes no yes yes

Hospital yes no yes yes

School-exam no no yes yes

Video library no no yes yes

Workshop no no yes yes

Figure 5: Successful classi�cation of the presented KBs.

in the table reports the results of the classi�cation of the KBs obtained from

a DLR-based encoding of UML class diagrams and the second one reports the

results of the classi�cation of the KBs obtained following the ALCQI-based

encoding. Besides, \yes" means that the reasoners can classify the KBs, \no"

that they cannot, because they run out of resources. As one can see, both

reasoners can classify all the presented KBs obtained with the ALCQI-based

encoding, whereas this does not happen with the DLR-based encoding.

We also performed several experiments on UML class diagrams as part of

an ongoing project in collaboration with IBM Tivoli. Scope of this project is to

study how to extract intensional knowledge from Common Information Model,

that can be useful to support the management of an elaboration system. In

particular, we want to exploit reasoning systems to derive such knowledge, from

an arbitrarily complex UML class diagram.

Common Information Model (CIM) is a model based on UML with the pur-

pose of providing a rigorous approach for modelling systems and networks using

the object-oriented paradigm. CIM has a Meta Schema that speci�es how other

schemas can be constructed, in order to form the basis for a sort of vocabulary

for analyzing and describing managed systems. CIM o�ers two main conceptual

layers, that form the CIM Schema: the Core Model, that captures basic notions,
common to all areas of management, and the Common Model, that expresses
concepts related to speci�c management areas (e.g., device, networks, systems,

etc.). In our experiments, we focused on subschemas of CIM Schema v.268.

In our experiments we considered both the DLR-based encoding and the

ALCQI-based one. FaCT and Racer can classify all the KBs presented in a

few seconds. This is due to the fact that they have few multiplicity constraints

on associations and aggregations, which leads to few terminological cycles. As

we expected, with the latter encoding, reasoners take less than with the former

one, since the KBs obtained are much simpler.

8They are available on the page http://www.dmtf.org/standards/cim schema v26.php.
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5 Conclusions

In this paper, we have discussed two encodings of UML class diagrams in terms of

DLRifd and of ALCQI. The DLRifd encoding allows us to capture exactly the

semantics of UML class diagram constructs, since DLRifd can represent n-ary

relations, functional dependencies on relations and identi�cation constraints on

concepts. By dropping functional dependencies and identi�cation constraints,

that cannot be dealt with yet, one can use the state-of-the-art reasoners. How-

ever, we noticed that they have still diÆculties in reasoning on KBs exploiting

the DLR-based encoding of complex UML class diagrams. Hence we have de-

vised a direct encoding into ALCQI, which is the DL adopted by state-of-the-

art DL-based reasoning systems. The experiments we have reported show that

the KBs obtained in this case are easily classi�ed by the reasoners. The use of

DLRifd (but also of DLR) remains a challenge for the future DL-based systems.

Acknowledgments. The author would like to thank Giuseppe De Giacomo

and Diego Calvanese for their support during the writing of this paper.
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Abstract

Approximation is a new inference service investigated in [4]. An ap-

proximation of an ALC-concept by an ALE-concept can be computed in

double exponential time. Consequently, one needs powerful optimization

techniques for approximating an entire unfoldable TBox. Addressing this

issue we identify a special form of ALC-concepts that can be divided into

parts s.t. each part can be approximated independently.

1 Motivation

This paper presents preliminary results on optimization techniques for the com-

putation of approximations. Approximation is a new non-standard inference

service in Description Logics (DLs) introduced in [4]. Approximating a concept,

de�ned in one DL, means to translate this concept to another concept, de�ned

in a second, typically less expressive DL, such that both concepts are as closely

related as possible with respect to subsumption. Like other non-standard infer-

ences such as the least common subsumer (lcs) or matching, approximation has

been introduced to support the construction and maintenance of DL knowledge-

bases (see [9, 5]). Approximation has a number of di�erent applications some of

which we will mention here, see [4] for others.

Computation of commonalities of concepts. Given a set of concepts the problem

is to extract the commonalities of the input concepts. Typically, the lcs is

employed for this task. In case a DL L provides concept disjunction, the lcs

is just the disjunction of C1 and C2 (C1 t C2). Thus, a user inspecting this

concept does not learn anything about the commonalities between C1 and C2.

By using approximation, however, one can make the commonalities explicit to

some extent by �rst approximating C1 and C2 in a sublanguage of L which does

not provide disjunction, and then computing the lcs of the approximations in L.

� This work has been supported by the Deutsche Forschungsgemeinschaft, DFG Project

BA 1122/4-1.
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Translation of knowledge-bases. Approximation can be used to (automatically)

translate a knowledge-base written in an expressive DL into another (seman-

tically closely related) knowledge-base in a less expressive DL. The translation

may become necessary to port knowledge-bases between di�erent knowledge

representation systems or to integrate di�erent knowledge-bases.

We investigate the case of translating an ALC-TBox into an ALE-TBox by

computing the approximation of each concept de�ned in the ALC-TBox. In [4],

a �rst in-depth investigation of the approximation inference has been presented.

In particular, a double-exponential time algorithm has been devised to approx-

imate ALC-concepts by ALE-concepts. Consequently, approximating an entire

TBox requires substantial optimizations. We address this problem by identify-

ing a form of ALC-concept descriptions whose conjuncts can be approximated

independently. This approach speeds-up the computation of a single approxima-

tion. Moreover, it also allows to re-use an obtained approximation in subsequent

approximations by simply inserting the approximation of a subconcept in the

current approximation. Therefore the splitting of concepts in independent parts

is a prerequisite for applying caching techniques to approximation. The full

proofs of the results presented here can be found in our technical report [6].

2 Preliminaries

Concept descriptions are inductively de�ned based on a set of concept construc-

tors starting with a set NC of concept names and a set NR of role names. In

this paper, we consider concept descriptions built from the constructors shown

in Table 1 where C and D denote arbitrary concepts, A a concept name, and

r a role. Note that in ALC every concept description can be negated whereas

in ALE negation is only allowed in front of concept names. In the following a

concept description formed with the constructors allowed in a DL L is called

L-concept description.

As usual, the semantics of a concept description is de�ned in terms of an

interpretation I = (�; �I). The domain � of I is a non-empty set and the

interpretation function �I maps each concept name A 2 NC to a set AI � � and

each role name r 2 NR to a binary relation rI � ���. The extension of �I to

arbitrary concept descriptions is de�ned inductively, as shown in Table 1.

For the sake of simplicity, we assume that the set NR of role names is the

singleton frg. However, all de�nitions and results can easily be generalized to

arbitrary sets of role names. We also assume that each conjunction in an ALE-

concept description contains at most one value restriction of the form 8r:C 0 (this

is w.l.o.g. due to the equivalence 8r:E u 8r:F � 8r:(E u F )).

A TBox is a �nite set of concept de�nitions of the form A
:
= C, where

A 2 NC and C is a concept description. In addition, we require that TBoxes
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Syntax Semantics ALE ALC

> � x x

? ; x x

C uD CI
\DI x x

9r:C fx 2 � j 9y : (x; y) 2 rI ^ y 2 CI
g x x

8r:C fx 2 � j 8y : (x; y) 2 rI ! y 2 CIg x x

:A, A 2 NC � nAI x x

:C � n CI x

C tD CI [DI x

Table 1: Syntax and semantics of concept descriptions.

are unfoldable, i.e., they are acyclic and do not contain multiple de�nitions (see,

e.g., [10]). Concept names occurring on the left-hand side of a de�nition are

called de�ned concepts. All other concept names are called primitive concepts.

In TBoxes of the DL ALE, negation may only be applied to primitive concepts.

An interpretation I is a model of the TBox T i� it satis�es all its concept

de�nitions, i.e., AI = CI for all de�nitions A
:
= C in T .

One of the most important traditional inference services provided by DL

systems is computing the subsumption hierarchy. The concept description C is

subsumed by the description D (C v D) i� CI � DI holds for all interpretations

I; C and D are equivalent (C � D) i� C v D and D v C. Subsumption and

equivalence in ALC is PSPACE-complete [11] and NP-complete in ALE [7].

2.1 ALE-Approximation for ALC

In order to approximate ALC-concept descriptions by ALE-concept descriptions,

we need to compute the lcs in ALE .

De�nition 1 Given L-concept descriptions C1; : : : ; Cn with n � 2 for some

description logic L, the L-concept description C is the least common subsumer

(lcs) of C1; : : : ; Cn (C = lcs(C1; : : : ; Cn) for short) i� (i) Ci v C for all 1 �

i � n, and (ii) C is the least concept description with this property, i.e., if C 0

satis�es Ci v C 0 for all 1 � i � n, then C v C 0.

As already mentioned, inALC the lcs trivially exists since lcs(C;D) � CtD. For

ALE the existence is not obvious. It was shown in [2] that the lcs of two or more

ALE-concept descriptions always exists, that its size may grow exponentially in

the size of the input descriptions, and that it can be computed in exponential

time.

Intuitively, to approximate an ALC-concept description from \above" means

to compute an ALE-concept description that is more general than the input

concept description but minimal w.r.t. subsumption.
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De�nition 2 Let L1 and L2 be two DLs, and let C be an L1- and D be an L2-

concept description. Then, D is called an upper L2-approximation of C (D =

approx
L2
(C) for short) i� (i) C v D, and (ii) D is minimal with this property,

i.e., C v D0 and D0 v D implies D0 � D for all L2-concept descriptions D
0.

Although de�ned in [4] lower approximations are not yet further investigated.

In this paper, we restrict our investigations to upper ALE-approximations of

ALC-concept descriptions. Therefore, whenever we speak of approximations, we

mean upper ALE-approximations. Thus, having de�ned approximation we turn

now to how to actually compute them.

2.2 The Approximation Algorithm

Before a de�ned concept from a TBox can be approximated it has to be unfolded

w.r.t. the underlying TBox to make the information captured in the concept def-

initions explicit. To this end, every de�ned concept is replaced by the concept

description on the right-hand side of its concept de�nition until no de�ned con-

cept occurs in the concept description. It is well known that this process can

cause an exponential blow-up of the concept description, see [10]. To recapit-

ulate the approximation algorithm presented in [4], we need to introduce the

ALC-normal form.

For an unfolded concept description C the role-depth rd(C) is inductively

de�ned as follows:

rd(N) := 0 , where N 2 NC [ f?;>g

rd(:C) := rd(C)

rd(C1 � C2) := maxfrd(C1); rd(C2)g , where � 2 fu;tg

rd(Qr:C) := 1 + rd(C) , where Q 2 f9; 8g

A role-level of a concept C is the set of all concept descriptions occurring on the

same role-depth in C. The topmost role-level of a concept description is called

its top-level.

We call a concept description top-level t-free if it is in negation normal form

(NNF), i.e., negation is pushed inwards until in front of a concept name, and does

not contain any disjunction on top-level. Some notation is needed to access the

di�erent parts of an ALE-concept description or a top-level t-free ALC-concept

description C:

� prim(C) denotes the set of all (negated) concept names and the bottom

concept occurring on the top-level of C;

� valr(C) := C1 u � � � u Cn, if there exist value restrictions of the form

8r:C1; : : : ; 8r:Cn on the top-level of C; otherwise, valr(C) := >;

4



Input: unfolded ALC-concept description C

Output: ALE-approximation of C

1. If C � ?, then c-approx
ALE

(C) := ?;

if C � >, then c-approx
ALE

(C) := >

2. Otherwise, transform C into ALC-normal form C1 t � � � t Cn and return

c-approx
ALE

(C) :=

u
A2
T
n

i=1
prim(Ci)

A u 8r:lcsfc-approx
ALE

(valr(Ci)) j 1 � i � ng u

u
(C0

1
;:::;C0

n
)2exr(C1)�����exr(Cn)

9r:lcsfc-approx
ALE

(C 0

i u valr(Ci)) j 1 � i � ng

Figure 1: The recursive algorithm c-approx
ALE

.

� exr(C) := fC 0 j there exists 9r:C 0 on the top-level of Cg.

Equipped with these we can de�ne the ALC-normal form in which conjuncts are

distributed over the disjuncts. An arbitrary ALC-concept description is trans-

formed into a concept description with at most one disjunction on top-level of

every concept of each role-level.

De�nition 3 An ALC-concept description C is in ALC-normal form i�

1. if C � ?, then C = ?; if C � >, then C = >;

2. otherwise, C is of the form C = C1 t � � � t Cn with

Ci = u
A2prim(Ci)

A u u
C02exr(Ci)

9r:C 0 u 8r:valr(Ci);

Ci 6� ?, and valr(Ci) and every concept description in exr(Ci) is in ALC-

normal form, for all i = 1; : : : ; n.

Obviously, every ALC-concept description can be turned into an equivalent con-

cept description in ALC-normal form. Every disjunct of a concept in ALC-normal

form is top-level t-free. Unfortunately, the normalization may take exponential

time. For instance, the normal form of (A1 tA2)u � � � u (A2n�1 tA2n) is of size

exponential in n.

The approximation algorithm displayed in Figure 1 checks if the input is

a concept equivalent to > or ?|in this case the approximation is trivial|

otherwise it proceeds recursively on the ALC-normal form of the input and ex-

tracts the commonalities of all disjuncts. Unfortunately, the algorithm needs

double-exponential time for arbitrary ALC-concepts in the worst case. Despite
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its high complexity, our prototypical implementation of the algorithm showed a

quite promising performance in respect to run-time and resulting concept sizes,

for details see [4].

3 Optimizing ALE-Approximations

A TBox can be translated by computing the approximation of the concept de-

scription on the right-hand side of every concept de�nition in the TBox. Each

de�ned concept has to be unfolded and transformed into ALC-normal form be-

fore the approximation algorithm can be applied. Unfortunately, both of these

steps cause an exponential growth of the concept description.

For standard reasoning tasks [1, 8] and also for the computation of the lcs [3]

the �rst source of complexity can often be alleviated by lazy unfolding. Here the

idea is to replace a de�ned concept in a concept description only if examination

of that part of the description is necessary. Lazy unfolding unfolds all de�ned

concepts appearing on the top-level of the concept description under consider-

ation while de�ned concepts on deeper role-levels remain unchanged as long as

possible.

When computing the lcs the main bene�t of lazy unfolding is that in some

cases de�ned concepts can be used directly in the lcs concept description. If,

for example a de�ned concept C appears in all input concept descriptions on

the same role-level, the concept de�nition of C does not need to be processed,

but C can be inserted into the lcs directly, see [3] for details. In the case of

approximation, however, this e�ect of lazy unfolding can not be utilized even

if a de�ned concept is obviously common to all disjuncts. For example, in

(A u C) t (C u (:B)) the concept name C cannot be used directly as a name

in the approximation because the ALC-concept description C stands for must

be approximated. Thus unfolding a concept completely cannot be avoided for

approximation.

The double-exponential time complexity of the approximation algorithm,

however, suggests another approach to optimization. Instead of approximating

an input concept C as a whole a signi�cant amount of time could be saved by

splitting C into its conjuncts and approximating them separately. If, for in-

stance, C consists of two conjuncts of size n then the approximation of C takes

some ab
2n

steps while the conjunct-wise approach would just take 2ab
n

. Unfor-

tunately, splitting an arbitrary input concept at conjunctions leads to incorrect

approximations, as examples show [4]. In the following section we will there-

fore introduce a class of so-called nice ALC-concepts for which the conjunct-wise

approximation still produces the correct result.
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3.1 Nice Concepts

In the following we assume that all concept descriptions are unfolded and in

NNF. For an ALC-concept description C and i 2 N the quantor set Qr(C; i)

denotes the set of quantors used on the role-level i of C (referring to role r).

Hence, for 0 � i � rd(C) the quantor set Qr(C; i) is a nonempty subset of

f8; 9g. Similarly, the name set Nr(C; i) denotes the atomic concepts used on a

speci�c role-level. Formally, Q and N are de�ned as follows.

De�nition 4 Let C := tk
i=1Ci be an ALC-concept description in ALC-normal

form. For d 2 N, the sets Qr(C; d) and Nr(C; d) are inductively de�ned by:

� Qr(C; 0) := f9 j
kS

i=1

exr(Ci) 6= ;g [ f8 j uk
i=1 valr(Ci) 6� >g

Nr(C; 0) :=
kS

i=1

prim(Ci)

� Qr(C; d+ 1) :=
kS

i=1

S

C02exr(Ci)

Qr(C
0; d) [

kS

i=1

Qr(valr(Ci); d)

Nr(C; d+ 1) :=
kS

i=1

S

C02exr(Ci)

Nr(C
0; d) [

kS

i=1

Nr(valr(Ci); d).

For a concept description C not in ALC-normal form, Q and N are de-

�ned in terms of the ALC-normal form of C. For example the unfolded concept

C = (9r:(A u B) u 8r:(D t (9r::E))) has the quantor sets Qr(C; 0) = f8; 9g,

Qr(C; 1) = f9g and Qr(C; i) = ; for i � 2. For the name sets, we have

N(C; 0) = ;, N(C; 1) = fA;B;Dg, and N(C; 2) = f:Eg.

We are now ready to specify in detail what nice concepts are. In general,

an approximation approx
ALE

(C uD) cannot be split at the conjunction because

of possible interactions between existential and value restrictions on the one

hand and inconsistencies induced by negation on the other. For example, the

approximation approx
ALE

(9r:>u(8r:At9r:A)) yields 9r:A while the split version

approx
ALE

(9r:>) u approx
ALE

(8r:A t 9r:A) only produces 9r:>. Similarly, the

conjunction A u (:A tB) cannot be approximated separately.

We now call those concepts nice for which this simpli�ed strategy still pro-

duces the correct result and for which a simple syntactic discrimination rule

exists. Firstly, the role quantors occurring in nice concepts are restricted to

one type per role-level. Hence, on every role-level of a nice concept either no

8-restrictions or no 9-restrictions occur. Secondly, a concept name and its nega-

tion may not occur on the same role-level. Consider Figure 2 for an illustration

of these rules. Formally, we can de�ne nice concepts by means of the syntactical

operators from De�nition 4.
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Condition 1. Condition 2.

C D C D

8

9
:A! A�

Figure 2: What nice concepts look like

De�nition 5 Let C be an ALC-concept description in NNF. Then C is nice i�

for every d 2 N it holds that

1. jQr(C; d)j � 1 and

2. Nr(C; d) does not contain a concept name and its negation.

It remains to be shown that nice concepts as de�ned above in fact have the

desired property. In preparation for this we �rstly present a simple set-theoretic

result which later on will allow us to reduce the number of existential restrictions

computed in an approximation of certain nice concepts.

The distribution of a conjunction over a disjunction in theALC-normalization

produces conjunctions of a very regular structure. As an example, consider the

concept E := (C1 t C2) u (D1 t D2) with Ci := 9r:C 0

i and Dj := 9r:D0

j. As-

suming that all existential restrictions are ALE-concepts, the normalization re-

turns ti;j(Ci u Dj). The approximation algorithm then computes the lcs over

every combination of existential restrictions from the four disjuncts. Never-

theless, every existential restriction in the result approx
ALE

(E) either subsumes

9r:lcsfC 0

1; C
0

2g or 9r:lcsfD0

1; D
0

2g because it corresponds to the lcs of a superset

of one of the above sets. The following lemma shows that this subset-superset

property can be generalized.

Lemma 6 Let m;n 2 N. For every i 2 f1; : : : ; mg and j 2 f1; : : : ; ng, let Ai

and Bj be arbitrary �nite sets, let Uij := Ai [ Bj, and let uij 2 Uij. Denote by

U the set of all uij, i.e., U := fuij j 1 � i � m; 1 � j � ng. Then one of the

following claims holds: either, for every i there exist elements ai 2 Ai with fai j

1 � i � mg � U ; or, for every j there exist bj 2 Bj with fbj j 1 � j � ng � U .

For all j 2 f1; : : : ; mg and all j 2 f1; : : : ; ng consider arbitrary uij 2 Uij.

Assume that the second claim for the sets B1; : : : ; Bn does not hold. Then there

is one j 0 with Bj0 \ U = ;, otherwise bj0 could be chosen from this intersection

to satisfy the claim. Since uij0 2 Ai [Bj0 for all i it follows that uij0 2 Ai for all

i, satisfying the �rst claim for A1; : : : ; Am.
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The choice of sets in the unions Uij in the above lemma corresponds to tuples

in the product fA1; : : : ; Amg � fB1; : : : ; Bng. The claim can be generalized to

n-ary products where every union corresponds to a tuple from fS11; : : : ; S1k1g�

� � � � fSn1; : : : ; Snkng. A proof of this generalized version can be found in the

technical report [6]. In the following lemma the above result is applied to the

actual computation of the lcs.

Lemma 7 For 1 � i � 2, let Ci and Di be ALE-concept descriptions such that

C1 u C2 u D1 u D2 is a nice concept. Then it holds that lcsfCi u Dj j i; j 2

f1; 2gg � lcsfC1; C2g u lcsfD1; D2g.

The above claim can again be generalized to larger conjunctions. Let 1 �

i � n and 1 � j � ki and let Cij be ALE-concepts whose overall conjunction

is nice. For every tuple �t 2 f1; : : : ; k1g � � � � � f1; : : : ; kng =: T denote by C�t

the conjunction un
i=1Ci�t(i). Then the least common subsumer lcsfC�t j �t 2 Tg is

equivalent to the conjunction un
i=1 lcsfCij j 1 � j � kig. The proof is analogous

to the one shown above.

We are now ready to show that approximating nice concepts, as de�ned in

De�nition 5, can be simpli�ed to a conjunction of approximations. For the sake

of simplicity we restrict our attention to binary conjunctions. The proof for

n-ary conjunctions is analogous.

Theorem 8 Let C uD be a nice ALC-concept description. Then approx
ALE

(Cu

D) � approx
ALE

(C) u approx
ALE

(D).

For the full proof refer to [6]. The claim is proved by induction over the

sum of the nesting depths of u and t on every role-level in C and D. For the

induction step a case distinction is made depending on whether C or D are

conjunctions or disjunctions. If at least one concept description is a disjunction

the approximation is de�ned as the lcs of all ALC-normalized and approximated

disjuncts (if one of the concepts is a conjunction, it �rstly has to be distributed

over the disjunction). The main idea then is to use Lemma 7 to transform single

lcs calls of a certain form into a conjunction of lcs calls which eventually leads

to the conjunction of the approximations of C and D.

Due to Theorem 8 it is now possible to split the computation of approxi-

mations into independent parts. Although this does of course not change the

complexity class of the approximation algorithm it is still a signi�cant bene�t

for practical applications. The improved approximation algorithm is displayed

in Figure 3. The algorithm requires the unfolded input concept to be in NNF.

In the �rst step the c-approx
ALE

function checks whether the approximation is

trivial. If it is not the next step is to check whether the concept is nice. For nice

concepts the c-nice-approx
ALE

function is invoked. For all other concepts the

ALC-normal form is computed lazily, i.e., the conjunctions are distributed over

9



Input: unfolded ALC-concept description C already in NNF

Output: upper ALE-approximation of C

c-approx
ALE

1. If C � ?, then c-approx
ALE

(C) := ?;

if C � >, then c-approx
ALE

(C) := >

2. If nice-concept-p(C) then return c-approx
ALE

(C) := c-nice-approx
ALE

(C)

3. Otherwise, transform the top-level of C into ALC-normal form C1t� � �tCn

and return

c-approx
ALE

(C) :=

u
A2
T
n

i=1
prim(Ci)

A u 8r:lcsfc-approx
ALE

(valr(Ci)) j 1 � i � ng u

u
(C0

1
;:::;C0

n
)2exr(C1)�����exr(Cn)

9r:lcsfc-approx
ALE

(C 0

i u valr(Ci)) j 1 � i � ng

c-nice-approx
ALE

1. If C � ?, then c-nice-approx
ALE

(C) := ?;

if C � >, then c-nice-approx
ALE

(C) := >

2. If C = C1 u � � � u Cn, then return

c-nice-approx
ALE

(C) := un
i=1 c-nice-approxALE(Ci)

3. Otherwise, return

c-nice-approx
ALE

(C) :=

u
A2
T
n

i=1
prim(Ci)

A u 8r:lcsfc-nice-approx
ALE

(valr(Ci)) j 1 � i � ng u

u
(C0

1
;:::;C0

n
)2exr(C1)�����exr(Cn)

9r:lcsfc-nice-approx
ALE

(C 0

i u valr(Ci)) j 1 � i � ng

Figure 3: The improved algorithm c-approx
ALE

and c-nice-approx
ALE

.

the disjunctions only for the current top-level. Then the c-approx
ALE

algorithm

proceeds as before. The c-nice-approx
ALE

function for nice concepts works simi-

lar. Having treated the trivial cases, the second step is to test if the concept is a

conjunction. In that case the approximation is obtained by splitting the concept

conjunct-wise and making a recursive call for each conjunct. For all other nice

concepts the approximation is computed as in c-approx
ALE

, besides the recursive

calls refer to c-nice-approx
ALE

.

Observe that the test conditions for nice concepts can be checked in linear

time once the concept description is unfolded and in NNF. Unfolding and trans-
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forming the concept description into NNF always have to be performed to apply

c-approx
ALE

, so that testing whether a concept is nice is hardly any extra e�ort

when approximating a concept.

3.2 Approximating Nice Concepts in TBoxes

If anALC-TBox is to be translated into anALE-TBox, the concept description on

the right-hand side of each concept de�nition has to be replaced by its approxi-

mation. For practical applications it is not feasible to perform such a translation

in a naive way. The idea for optimizing this procedure is to re-use the approx-

imation of a de�ned concept when approximating concept descriptions that in

turn make use of this de�ned concept. More precisely, if we have already ob-

tained the approximation of C and want to compute the approximation of, e.g.,

(Du9r:C), we would like to be able to insert the concept description approx(C)

directly into the right place in the concept description of approx(Du9r:C). Un-

fortunately, this approach does not work for arbitrary ALC-concept descriptions

due to possible interactions between di�erent parts of the concept description.

Nice concepts, however, are de�ned to rule out this kind of interaction. Hence,

besides speeding-up the computation of a single approximation, the property of

being a nice concept also is a prerequisite for caching and the re-use of already

computed approximations. For example, if the de�ned concepts C1; C2; C3 from

the following TBox (with A;B and D as primitive concepts)

T = f C1 = (9r::A) t (9r:B);

C2 = 9r:(8r:D t :E) u C1 u :B;

C3 = : (8r:9r:(D u A) t :C1 t :C2) g

are to be approximated and C1 is approximated �rst, then this concept descrip-

tion can be re-used in subsequent approximations. If unfolded and transformed

into NNF the concepts C2 and C3 are nice concepts. Hence, the approxima-

tion of C2 is the conjunction of approx(9r:(8r:D t :E)) and approx(C1) and

approx(B), where the already computed approximation of C1 can be inserted

directly. For C3 we can re-use both approximations of C1 and C2 directly and

only have to compute the approximation of 9r:8r:(:Dt:A). Thus, the cost for

approximating the entire TBox is reduced heavily.

4 Conclusion and Future Work

In this paper we have presented some �rst steps towards optimizing the com-

putation of approximations. The main idea is to identify concepts that can be

decomposed into parts which then can be approximated independently. These

so-called nice concepts are structured in such a way that the top-level conjuncts

11



cannot interact with one another. Therefore, each conjunct can be approximated

separately. Detecting nice concepts and approximating each of their conjuncts

independently should be especially powerful in the context of translating entire

ALC-TBoxes into ALE-TBoxes because it enables the direct re-use of already

computed approximations and caching. Unfortunately, the conditions for nice

concepts are very strict.

It is an open problem whether the rather strict conditions for nice concepts

can be relaxed. To determine if independent approximation of nice concepts is

a real bene�t for practical applications, requires an implementation of modular

approximation. Moreover, it is unknown if nice concepts occur frequently in

application TBoxes.

Another open problem is whether the given conditions for nice concepts can

be extended to the case where ALCN -concept descriptions are approximated by

ALEN -concept descriptions.
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Abstract

In parsing natural language, incremental semantics composition is one

of the most prominent issues. In the past, numerous approaches have

been developed for assigning meaning to noun and verbal phrases and

their complements and modi�ers. Often, their inferential power is too

low for practical applications or the expressiveness of the representation

language leads to intractable inference procedures. As an answer to these

problems, we discuss an approach that relies on Description Logics for

handling this class of semantics construction. We show how a semantic

knowledge base can be setup. We exploit the equivalence between Dis-

course Representation Structures limited to the expressiveness of ALC

and ABoxes for validating DRS with respect to a given knowledge base.

1 Generic Dialogue Management in EMBASSI

The long-term goal of our research is to design and implement a generic dialogue

system for rational (spoken) dialogues, which helps a user to achieve certain goals

in terms of operations of a technical application system { e.g. an information

system, a system for controlling devices, or any other kind of problem solving

system. Among its design criteria are the ability to recognize users' intentions,

to establish corresponding subgoals and control their processing. Furthermore, it

shall enable mixed-initiative, exible and cooperative conversations and provide

a high level of robustness as well as scalability in the linguistic and application

dimensions, which includes portability to new domains with as little e�ort as

possible. It shall also be possible to integrate linguistic interaction with multi-

modal forms of input and output, as e.g. with graphical user interfaces and { by

means of appropriate devices { the recognition of deictic actions.
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To a large extent, our research and development work in the �eld of dia-

logue systems is done within the German joint project EMBASSI (\Elektron-

ische Multimediale Bedien- und Service-Assistenz"), sponsored by the German

Fed. Ministry of Research which aims to provide easy access for everybody to

complex technical systems (A/V home theatre, car devices and public termi-

nals), encouraging multi-modal user input. Besides a chunk parser for spoken

utterances, our contributions to this project are �rst, the dialogue manager,

second, formal ontologies for several application domains and third, a language

generation component to communicate system utterances to the user.

In this paper, we address in detail the issue of semantics construction during

parsing natural language input1. As will be shown in section 3, the backbone

of our incremental approach to composing semantic representations is �-DRT

[Fis96]: The parser builds Discourse Representation Structures (DRS)[KaR93]

incrementally, and after each composition step, the satis�ability with respect to

a given knowledge base is veri�ed by an ABox consistency test. For this purpose,

we exploit the fact that DRSs can be mapped onto ABoxes. In order to carry out

all tasks necessary for semantics composition, we need a more general framework

however, as there are several issues to consider which cannot be handled by using

Description Logics [Don96] only.

2 Overview of the Levels of Utterance Analysis

Except for trivial cases, a direct mapping from a user utterance to a system

command cannot be accomplished. In general, we have to take complex speech

acts into account, where the interpretation of the utterance's propositional con-

tent is determined by its (local) linguistic-pragmatic context in the �rst place.

This, in turn, is to a large extent inuenced by (global) discourse-pragmatic

features which provide constraints based on the dialogue history and the actual

place of the utterance in the dialogue, as, e.g., being the expected answer to a

question. Furthermore, the application provides further constraints by restrict-

ing the meaning of words and phrases to their particular use within a given

thematic framework. Therefore, we have to distinguish several { interleaved {

levels in the analysis of user utterances:

� Linguistic analysis on the utterance-local level, which in turn consists of

several levels of syntactic and semantic construction (see section 3);

� Semantic evaluation, i.e. evaluation of semantic operators, reference reso-

lution, and additional transformations of the logical form, augmented by

speci�c computations;

1This includes some of the open questions mentioned in [Bue01].
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� Application-domain speci�c specialization of the evaluated semantic rep-

resentation (see[Lud02]);

� Discourse-pragmatic analysis - a proper function of the dialogue manager.

Syntactic Level. The syntactic level involves parsing a lattice of word hy-

potheses, using a two-step model for syntactic derivation. We describe syntactic

analysis in section 3. In a �rst step, edges in the lattice are grouped in syntactic

chunks [Abn91].2 In a second step, these fragments are combined into bigger

units obeying semantic and pragmatic constraints, the applicability of which is

checked by valency and case frames of the lexical units.

Currently, we implement chunk grammars in a uni�cation grammar formal-

ism derived from PATR-II [Shi92] and augmented by DRS composition opera-

tors. In parsing with uni�cation grammars, constraints are expressed as path

equations. Instead of representing feature structures in a separate formalism,

they could as well be expressed in DL. As a little experiment with CLASSIC

showed, uni�cation can then be achieved by means of the same-as construct

for attributes, representing coreference. This construct is still a desideratum for

grammar development with more powerful DL-systems.

Semantic Level. For semantic representation, we use the framework of

Discourse Representation Theory (DRT)3. In particular, to provide a strictly

compositional construction, our semantic representation formalism is �-DRT,

which combines the substitutional rigidity of �-calculus with DRT [Kus96]. How

the semantic construction is performed incrementally with the syntactic analysis

is presented in section 3 Whereas the semantic representations of words are

inserted during lexical scanning, their composition is performed by the execution

of semantic operators which are attached to the rules of the chunk grammar.

Semantic evaluation. The DRS obtained by the semantic construction

step has to be evaluated w.r.t. resolution of references, in particular of anaphors,

and DRT-speci�c operators. For anaphor resolution, we developed a computa-

tional framework based on linguistic and pragmatic heuristics in [Fis96]4. DRSs

may contain logical operators, e.g. disjunction and conditional expressions and

so called \duplex conditions" representing natural-language quanti�ers. Evalu-

ating such DRSs means to apply certain transformations to them. Disjunction

will lead to two alternative DRSs. For quanti�ers, the scope ambiguity problem

can be resolved by applying the \Cooper storage" algorithm to several DRSs rep-

resenting the di�erent readings. The evaluation of particular natural-language

quanti�ers as \at-least n" will result in number restrictions. Furthermore, some

2This step is performed by a chart parser with a chunk grammar, working primarily with

a head-driven bottom-up strategy.
3cf. [KaR93] for an introduction to Discourse Representation Theory
4For a general theoretical introduction with a similar computational solution, which covers

also presupposition resolution, cf. vol. II of [Bla99]
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generic computations like temporal and calendrical calculations to determine

precise time and date speci�cations are performed in this step. Currently, all of

these computations are implemented in a procedural way. With the availability

of new tools such as TRIPLE [Sin02], we see an opportunity to specify these

transformations in a uniform and more declarative way which �ts very well with

our underlying DL representation.

Application-domain speci�c specialization. In the next step, the eval-

uated semantic representation is transformed into a domain speci�c form where

the general lexical concepts are replaced by domain concept structures according

to the formal ontology of the application.

3 Incremental Semantic Composition

If we want human-computer-dialogues to be natural, we must allow humans to

talk to the computer as they do to humans. Spontaneous speech often is in-

complete or incorrect, full of interruptions and self-corrections, leading to an

ungrammatical input to the parser. Additionally, given the error rates of speech

recognizers, even with correct input the speech recognizer may produce an out-

put which is not grammatical. Apart from this, parsing German input is diÆ-

cult, since German is a language with fairly free word order, also allowing for

discontinuous constituents. Therefore, the grammar cannot rely only on linear

sequence as its main concept. We try to overcome these problems by designing a

two-phase parsing process (as presented in [Bue02]). In this section we describe

the two phases of parsing looking at the two levels of syntactic and semantic

composition of words to chunks and, hopefully a proposition which - interpreted

in its context - results in a system action.

3.1 Chunk Composition

The �rst phase works with a grammar that employs phrase structure rules to

build small phrases, called chunks (similar to [Abn91]). A chunk consists of a

head element Ch and not more than one other constituent Cf that is a possible

�ller of a free position in the head's (X-Bar-) structure.

C ! C1 C2 where one (Ch; h 2 f1; 2g) of the two categories is the head.

The �ller usually is a complement (as is a noun phrase NP within a prepositional

phrase PP ) or a modi�er (e.g. an adjective phrase AdjP within an NP )5. A

5In generative grammar the term complement is used only for sisters of the lexical head.

To avoid confusion we de�ne a new term compli�er that subsumes both complements and

adjuncts.
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chunk may also consist of only one constituent: C ! C1. If C1 is the head of

the chunk and therefore a terminal lexical category, we get the semantics of C

from the lexicon, where the semantic information is stored as a �-DRS ([Kus96])

�. If C1 is an expanded category6 it contains the head of the chunk, and the

semantics of C is inhibited from C1. So, if there is only one symbol on the right

side of the grammar rule, then the extension of the left side is determined as

follows:

ext(C) :=

8><
>:

� C1 is the category and � is the DRS of the
lexicon entry.

ext(C1) otherwise

The semantic head
7 of the chunk is the one of its DRS:

head(C) := head(ext(C))

In case of a chunk consisting of a head Ch and another constituent Cf (h 6= f 2

f1; 2g), Cf is related to the discourse referent d of Ch by a role R taken from

the inventory of EuroWordNet (see [Lud02]). Syntactically, the combination

of two categories to a chunk is determined by a grammar rule, which relates

the two constituents via the role R. We then get the extension of the chunk by

�-composition of the DRSs of the two constituents (T is a DRS-variable):

ext(C) := (�T:�k + T (d2))

 
(�T:�h + T (d1))�x:y:

"
;

R(x; y)

#!

= �k +�h +

"
;

R(d1; d2)

#

So, when combining two elements, the parser checks the compatibility of the

morphological features (e.g. agreement in case of the combination of a determiner

with an NP ) and merges their DRSs resulting in a DRS for the chunk that is

consistent with the knowledge base (for details of the consistency check see

3.3). This way, each chunk gets an interpretation already at this early stage.

If no further parsing is possible we thereby have means to interpret the whole

utterance chunk by chunk.

For example, take the utterance \Kommt Tatort im ZDF?" from our Em-

bassi application: To combine the preposition im and the NP -chunk ZDF which

was build using the (NP ! EN)-rule we apply the following PP -rule8:

6An example would be a determiner phrase DP that is build from an NP that in turn is

build from the lexical category N .
7Note that the syntactic head and the semantic head might not be the same; take the DP

\den Krimi": the syntactic head of the DP is the determiner \den" but the semantic head is

the noun \Krimi". Both heads of a phrase are de�ned in the prase structure rules.
8The fact that this utterance is a Yes/No-question is irrelevant to phase 1, but word order

information (apart from intonation the only indicator of the type of speech act) is stored and

made available when the pragmatics of the utterance is computed.
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PP: P NP:

head = P:

role = has-value:

P morphfeat position = prepos,

P morphfeat kasrek = NP morphfeat case,

PP vpsynfeat clausetype = NP vpsynfeat clausetype,

PP = P:

�P:NP:

 
Æ(P )

 
Æ(NP )

 
�x:y:

"
;

has-value(y; x)

#!!!

The PP -rule contains syntactic as well as semantic information about the chunk-

combination. The DRS for the PP -chunk is achieved by �-composition of the

DRSs of ZDF and im taken from the lexicon related via the role has-value:

"
i

im-SP(i)

#
+

2
6664

l

TVStation1(l)

value(l; ZDF )

Name(ZDF )

3
7775+

"
;

has-value(i; l)

#
=

2
66666664

i l

TVStation1(l)

value(l; ZDF )

Name(ZDF )

im-SP(i)

has-value(i; l)

3
77777775

After applying all phrase structure rules we get three chunks, i.e. the NP

Tatort, the PP im ZDF, and the verb phrase V P kommt, that after this �rst

phase have a semantic interpretation on their own. The interpretation of the

whole utterance is derived by relating these chunks and their interpretation to

each other. This is done in phase two.

3.2 Applying Case Frames to Chunks

The second phase is di�erent from the �rst phase in that it relates chunks that

do not need to be adjacent to each other, so the order of the constituents is not

relevant but may be an indicator for preferred readings when disambiguation is

called for. Phase 2 relies on a kind of dependency grammar that for each chunk

of the �rst phase gives a list of possible syntactic functions the chunk may have:

C1 has C2 ! hsynfunci

hconstraint equationi

e.g.:

V P has PP ! adverbial

NP has PP ! attribut

V P has NP ! subject

NP agr case = nom;

NP agr num = V P agr num:
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The options are constrained by the morphological features of the chunk, e.g. an

NP -chunk functions as subject only if it has nominative case.

For each chunk there is a case9 frame for its semantic head that stores informa-

tion about the valencies10. The valencies of each chunk are �lled by combining

it with other chunks, e.g. building a V P from a verb and an NP that functions

as its direct object, or expanding a V P by an adverbial PP . The suitability of

the combination of two chunks is determined by the semantic constraints of the

application ontology. Take the case frame for kommen
11:

in�nitive: kommen

syntactic function thematic role lexical concept

subject involved-agent: Program1

adverbial involved-location: TVStation1

From the case frame we derive hypotheses about possible compli�ers of a

chunk using the syntactic functions. Whether a hypothesis is satis�able is de-

termined by the concepts of the chunks. If they �t (see 3.3), the DRS can

be computed: For a semantic head Ch, its compli�er Ck, and a theta role

R = thema(Ch; synfunc) that Ck can �ll, we get the extension of the modi-

�ed chunk ~Ch as follows:

h := head(Ch), k := head(Ck)

ext( ~Ch) = (�T:ext(Ch) + T (h))(�T:ext(Ck) + T (k)))

 
�x:y:

"
;

R(x; y)

#!

= ext(Ch) + ext(Ck) +

"
h k

thema(C1; synfunc)(d1; d2)

#

In our example, the V P kommt can be combined with the adverbial PP im

ZDF since in the case frame of kommen there is a valency for an adverbial with

the concept location. So we get

2
64 i l k

Run(k) TVStation1(l) involved-location

value(l; ZDF ) Name(ZDF ) im-SP(i) has-value(i; l)

3
75

After �-composition of the DRS above with the DRS for Tatort we have a full

DRS for our example utterance that is consistent with our knowledge base.

9The term case is used in the way of Filmore [Fil69] meaning thematic roles
10The term valency here is used in a broader sense: it includes not only obligatory elements

needed to make a phrase syntactically complete; more than that, the case frames list all

semantically and pragmatically suitable modi�cations and their syntactic representations, e.g.

attributes for nouns or adverbials for verbs.
11The lexical concept is taken from EuroWordNet [Vos98]
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3.3 Consistency Check

ADRS composed according to the algorithm outlined above has to be checked for

consistency with respect to the given knowledge base. A DRS which passes the

test, is called admissible. Given a DRS �1 with discourse referent d1 = head(�1)

and DRS �2 with discourse referent d2 = head(�2) related viaR(d1; d2), we have

to verify whether

� = �1 +�2 +

"
;

R(d1; d2)

#

is admissible. C1 is the concept d1 is an instance of, and analogously C2 for d2.

Formally, � is admissible if and only if C2 is a R-�ller and C1 is in the domain

of R.

If we map � to an ABox A, A is inconsistent if � is not admissible. For a

concept D with 8x : D(x)$ :C2(x), we assume

C1 v 8R:D;

If A was satis�able, the following would hold:

d1 2 C1 u 8R:C2 ^ d1 2 C1 u 8R:D ,

d1 2 fxjC1(x) ^ 8y(R(x; y)! C2(y) ^D(y))g

From R(d1; d2) it follows that C2(d2) ^ D(d2) holds in A { in contradiction to

C2(d2) ^ :D(d2). For R, two axioms are de�ned:

9R:TOP v D

TOP v 8R:W

If R was no restriction for C1, C1 is not in the domain of R, i.e. C1 6v W .

Assuming that � is still satis�able, we get

d1 2 9R:C2 ) d1 2 9R:TOP ) d1 2 W

{ a contradiction to d1 2 C1 6v W .

This DRS is domain independent in that it can be derived without context

and without knowledge of the application. but therefore it also fails to connect

the utterance to the application speci�c environment and discourse referents.

How this connection is established is presented in [Lud02].
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Abstract

In this paper, we motivate the use of the expressive description logic

ALCQF(D) with acyclic TBoxes for con�guration design of structural

systems. A solution to the design problem is automatically constructed

from problem-speci�c constraints given in the ABox and the persistent

conceptual description about the structure and its behaviour in the TBox.

Furthermore, we argue that the con�guration design problem, for which a

solution is de�ned to be a canonical model of the constructed knowledge

base, is decidable because the applied DL has the �nite model property.

We give an example of our approach by a simple routine design problem

from practice.

1 Introduction

Conceptual design requires to construct con�gurations of structural elements,

which channel the applied loads safely to the ground. Suitable alternatives have

to be chosen according to the design constraints stated in the design brief. How-

ever, almost two-thirds of the solutions designed by engineers do not comply

with the structural requirements and the given design constraints in practice.

Therefore, structural engineers should be supported by knowledge-based prob-

lem solving methods. Their application reduces errors by exploiting persistent

knowledge for similar design problem instances at the conceptual design stage.

Conceptual design of simple structures shares many commonalities with con-

�guration design because known parameterized elements have to be con�gured

into a structural system with a valid topology. Consequently, problem solving

methods for con�guration design can be applied to conceptual design of such

structural systems and thereby avoid the aforementioned de�ciencies.
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Con�guration design is the task of searching for an assembly of prede�ned

components as solution, which satis�es a set of requirements and obeys a set of

constraints [18, 7, 8]. The problem of conceptually designing a structural frame

from given design constraints by means of persistent structural knowledge about

mereology and topology illustrates our chosen approach in the paper.

We focus on logic-based approaches because we have to employ implicitly

represented knowledge. Di�erent logic-based methods have been developed for

con�guration design and proposed for further research, see [17, 9, 4, 16]. Some

of them have been even deployed in industrial settings [14]. In addition, hybrid

approaches have been used, which apply di�erent techniques for solving routine

design tasks, in order to cover the complexity of given application domains [11].

However, they have a few drawbacks. Either the techniques are undecidable like

those proposed in [10, 11], because they employ very expressive languages as �rst

order predicate logic and a con�guration language called BHIBS, or they have

no declarative semantics for the used DL as in [14], which combines instance

checking with procedural rules on di�erent hierarchical levels. We propose a

model construction approach for the chosen description logicALCQF(D), which
possesses the �nite model property and was �rst described in [1] and further

developed in [9].

In our approach we represent conceptual knowledge about the structure

and its requirements in the terminological component with acyclic TBoxes and

knowledge about the behaviour and component attributes in distinct concrete

domains, if they have di�erent structural values. We use a arithmetical con-

crete domain for equilibrium statics and distinct concrete domains for numeric

attribute values in order to represent properly the structural domain. We can

thus describe that a component is in stable equilibrium because the sum of all

terminal forces is zero. For example, the following concept describes that a

local equilibrium of forces exists for a beam with an attribute of the interval

depth� range from the concrete domain for the dimension length:

Component u 9beamDepth:depth�rangeu

9hasTerminal reaction1; hasTerminal reaction2;

hasTerminal action: + :

By means of the feature agreement we can de�ne that a component and a system

share a single terminal to their outer environment.

System u (InTerminal # Component InTerminal)

This is of particular interest for representing correctly the topology of a system.

Problem-speci�c constraints and an actual con�guration of the structure are

represented in an ABox. The structural engineer starts with the speci�cation
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of the design constraints in the ABox. Afterwards the algorithm tries auto-

matically to construct a canonical model by adding new assertions according

to the de�ned knowledge base, in which a structural engineering expert afore

has deschribed persistent conceptual knowledge about the structure's topology

and mereology in the TBox. If a model can be constructed it is a solution to

the con�guration problem. The solution includes all necessary parts, completely

instantiated components and their connected terminals, which secure valid load-

paths through the structure. Di�erent models can be built due to the speci�c

constraints given in the ABox prior to the model construction process. We as-

sume that the con�guration problem is decidable if the inference problem of

consistency testing of a TBox together with an ABox is decidable in our chosen

DL. The description logic ALCQF(D) is decidable because the fusion of the two
decidable DLs ALCF(D) [12] and ALCQ [6] remains decidable according to [5].

Our paper is organized as follows. First, we introduce the employed descrip-

tion logic ALCQF(D) with acyclic TBoxes, where we de�ne sample concrete

domains for behavioural constraints and concrete attributes. Second, we give a

formal problem speci�cation for model-based con�guration design, where rou-

tine is de�ned by the availability of conceptual knowledge and behavioural con-

straints to the algorithm for the construction process at the outset. Afterwards,

we give a short example from our structural engineering domain and describe

briey the reasoning service for constructing a model as solution on the given

problem speci�cation. Eventually, we conclude the paper.

2 The description logic ALCQF(D)

In this section we describe the decription logic ALCQF(D). We give examples,

why the increased expressivity of concrete domains and feature agreements is

important for modelling a structural system and its mathematical equations

from statics. We use the syntax and semantics given in [2].

De�nition 1 (concrete domain) A concrete domain D is a pair (�D;�D),

where �D is a set, the domain, and �D is a set of predicate names over �D.

Each predicate P from �D is associated with an arity n and a n-ary predicate

PD � �n

D
. According to [3] a concrete domain D is called admissible i�:

� its set of predicate names is closed under negation and contains a name

>D for �D and

� the satis�ability problem for �nite conjunctions of predicates is decidable.

We restrict the use of concrete domains to admissible ones, for which we assume

that ?D is the negation of the predicate >D. Based on the former, we introduce

3



for the equilibrium equations a concrete domain �R := Q over the rational

numbers, which was shown to be admissible in [13], and for each component

attribute type a separate concrete domain �Ai as proposed in [17]. The static

equilibrium condition at terminals or for components can be speci�ed on the

basis of the following predicates:

� unary predicate >R with (>R)
R = Q and a unary predicate ?R with

(?R)
R = ;,

� unary predicates �;= and a binary predicate = with the usual extension

and

� a ternary predicate + with (+)R = f(q1; q2; q3) 2 Q 3 j q1 + q2 = q3g.

Additionally, we introduce the unary predicates depth-range and force-range for

separate concrete domains of di�erent structural values.

De�nition 2 (ALCQF(D) syntax) Let C, R and F be disjoint sets of con-

cepts, role and feature names and n a nonnegative integer. We call a composition

f1 � � �fn of features a feature chain. If C and D are concepts of C, R is a role of

R or F, P 2 �D is a predicate of arity n and u1; : : : ; un are feature chains, then

concepts can be formed according to the following rules:

C;D := > j ? j :Cj

C uD j C tD j

8R:C j 9R:C j

� nR:C j � nR:C j

9u1; : : : ; un:P j u1 # u2 j u1 " u2;

for which the feature chains ui are abstract ones in the agreement and dis-

agreement constructor and concrete feature chains for the existential predi-

cate concept term, accordingly. We will use abbreviations for a feature chain

u = f1 � � � fn, 9u:C and 8u:C for 9f1 � � � 9fn:C and 8f1 � � � fn:C respectively. We

employ the usual set theoretic semantics for concepts.

De�nition 3 (ALCQF(D) semantics) We use an interpretation I = (�I ; �
I),

which consists of a set �I , namely the abstract domain, and an interpretation

function �I. �I is disjoint from �D. The interpretation function maps each

concept name C to a subset CI of the abstract domain, each role name R

to a subset of RI of �I � �I , and each feature name f to a partial function

fI : �I ! �D [�I , which we write in the extensional form (aI ; xI) 2 fI. For

a feature chain u, the semantics is given by the composition of the partial func-

tions interpreting its components, i.e. uI
1
= fI

n
(� � �fI

1
(aI) � � � ). If the symbols
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are de�ned as in De�nition 2, we extend the interpretation function to complex

concept terms as follows:

(C uD)I := CI \DI; (C tD)I := CI [DI ; (:C)I := �I n C
I

(9R:C)I := fa 2 �I j 9b 2 �I : (a; b) 2 RI ^ b 2 CIg

(8R:C)I := fa 2 �I j 8 b : (a; b) 2 RI ! b 2 CIg

(� nR:C)I := fa 2 �I jj fb 2 �I j (a; b) 2 RI ^ b 2 C)Igj � ng

(� nR:C)I := fa 2 �I jj fb 2 �I j (a; b) 2 RI ^ b 2 C)Igj � ng

(9u1; : : : ; un:P )
I := fa 2 �I j 9x1; : : : ; xn 2 �D :

(a; x1) 2 uI
1
^ � � � ^ (a; xn) 2 uI

n
^ (x1; : : : xn) 2 PDg

(u1 # u2)
I := fa 2 �I j 9b 2 �I : b = uI

1
= uI

2
g

(u1 " u2)
I := fa 2 �I j 9b1; b2 2 �I : u

I

1
= b1; u

I

2
= b2 ^ b1 6= b2g

We use the standard notion of a model for a concept C and apply the standard

reductions between the inference problems as can be found in [2].

We employ a TBox for speci�ng the conceptual model of the structure, the

persistent requirements from statics and the loads on the structure. This also

includes necessary parts and terminal connections.

De�nition 4 (TBox) An terminological axiom ' is a concept de�nition C
:
=

D or a concept specialization C v D, where C is a concept name and D is a

complex concept description. A �nite set of such axioms is called a TBox T .
We use the standard semantics for TBoxes. An interpretation I satis�es an

axiom of the form C
:
= D and C v D i� CI = DI and CI � DI, respectively.

Eventually, we say that an interpretation I is a model for the the TBox T i� it

satis�es all ' in T . We restrict T to include only acyclic axioms. Thus, we can

expand the given TBox before starting the reasoning process.

We use an ABox for the task-speci�c constraints and the solution structure,

which is built up by the model construction process.

De�nition 5 (ABox) Let OD and OA be disjoint sets of so-called concrete

and abstract objects. If C, R, f and P are de�ned as in De�niton 2, a and

b are elements of OA and x; x1; : : : ; xn are elements of OD, then the following

expressions are an assertional axiom �:

a : C; (a : b) : R; (a; x) : f; a 6= b; (x1; : : : ; xn) : P:

We call a �nite set of such axioms an ABox A and extend the notion of an

interpretation to the assertional component by mapping every object name from
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OA to an element of �I and every object name from OD to an element of �D, for

which the unique name assumption is not imposed. An interpretation I satis�es

an assertion

a : C i� aI 2 CI;

(a; b) : R i� (aI ; bI) 2 RI ;

(a; x) : f i� (aI ; xI) 2 fI ;

a 6= b) i� aI 6= bI ;

(x1; : : : ; xn) : P i� (xI
1
; : : : ; xI

n
) 2 PD:

An interpretation I j= A, for which we call I a model of the ABox, i� I j= �

for all � 2 A. A is consistent i� it has a model. The canonical model is built up

from A by determining a logical structure from all assertions of the �nal ABox,

which were added by rules application during the construction process. Note

that we can construct di�erent models, when we specify di�erent task-dependent

constraints in A at the beginning of the model �nding process.

3 Con�guration design problem

In this section we start with de�ning the con�guration design problem before

we give an example from our structural engineering domain. We use the no-

tion of constructing an admissible con�guration in the ABox from a conceptual

description in the TBox as �rst de�ned in [1].

De�nition 6 (con�guration design problem) A con�guration design prob-

lem PC = (T ;A0) consists of a TBox T and an initial ABox A0. In the TBox a

conceptual description of possible con�gurations is decribed. The initial ABox

speci�es the design constraints, the goal object and other necessary information

for the model construction process. A solution can be constructed if a �nite

model for PC exists. This model represents an textitadmissible con�guration.

Depending on the stated design constraints in the initial ABox, the algorithm

computes di�erent models for a �xed TBox by introducing new assertions into

the ABox. The algorithm makes thereby all implicit knowledge from T ex-

plicit. It computes �rst a complete ABox A. Afterwards the canonical model

can be built on the domain. The task-dependent requirements stated in A0

reduce thereby the possible solutions, which can be generated on T . For com-

puting a canonical model as solution to our con�guration problem PC , we use

an algorithm as described in [13], which uses concept satis�ability for testing

consistency of T and A.
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Example Our con�guration problem is a simple frame design. In T all re-

quirements regarding necessary parts, the layout of the components and the

allowable concrete domains, which limit structural values to certain intervals or

single concrete objects, are de�ned. Some problem instance speci�c constraints

on the solution together with the frame object, which has to be con�gured, are

stated in A0 before the construction process starts.

We begin with the de�nition of the system and descend the hierarchy top-

down from the frame to the load de�nition. All frames have some common

components. Two overall frame solutions are possible depending on the con-

straint in A0. The structural engineer is mainly interested in a valid topology.

Numeric values are usually not considered at the conceptual design stage, unless

they violate stated geometrical or structural constraints. If this is the case, the

conceptual description of single component parameters or terminals has to be

rewritten in T . We do not take this case into account because we assume a �xed

conceptual description during the solution process.

The following concept de�nitions draw also on the aforehand de�ned con-

crete domains from de�nition 1. The equilibrium of the components' terminals

is speci�ed by the predicates +;= and � over the concrete domain for the di-

mension force, while the predicate � is de�ned over a separate concrete domain

for the dimension length. The predicate depth-range and force-range denote

unary predicates that restricts the numeric value for the dimension length and

force to be in the interval of I1 = [0:4; 0:7] and I2 = [5; 20]. The force-range

predicate restricts the applicability of the solution method to reasonable load-

ing levels. The lower bound of the depth-range constraint is stipulated in the

code and the upper bounded by economical considerations.

StructuralSystem
:
= Frame u

(InTerminal #

Beam1 InTerminal)u

(OutTerminal #

Column1 OutTerminal)u

(OutTerminal #

Column2 OutTerminal)u

(= 1 loadedBy:Load)

Frame
:
= ((:Slender t RigidFrame)t

(:Cheap t SimpleFrame))u

(= 1 hasPart:Beam)u

(= 2 hasPart:Column)u

(= 2 hasPart:Support)u

(= 4 hasPart:Connection)
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RigidFrame
:
= (= 4 hasPart:Rigid)u

(= 2 hasPart:F ixed)

SimpleFrame
:
= (= 2 hasPart:Rigid)u

(= 2 hasPart:Hinged)u

(= 2 hasPart:Simple)

Component v V erticalMember t Beam

V erticalMember
:
= (Column t Connection t Support)u

9hasTerminal action;

hasTerminal reaction : =

Beam
:
= Bendingu

9beamDepth:depth�rangeu

9beamLength: �10 u

9hasTerminal reaction1;

hasTerminal reaction2;

hasTerminal action:+

Column
:
= Compressionu

9columnDepth:depth�rangeu

9columnLength: �4 u

Support
:
= Simple t Fixed

Connection
:
= Hinged tRigid

Terminal v :Component u :StructuralSystem u :Load u

(InputTerminal t OutputTerminal)

InputTerminal
:
= 9action: �0

OutputTerminal
:
= 9reaction: �0 u

(= 1 connected:InTerminal)

Load
:
= 9concentratedForce:force�rangeu

9hasTerminal action: �0

The task speci�c assertions are given in the initial ABox A0.

fFRAMEI: Frame; FRAMEI: Slender;

V LOAD: Load;

(FRAMEI; V LOAD): loadedBy;

(BEAMI; x1): beamLength; (x1): =8;

(BEAMI; x2): beamDepth; (x2): =0:5;

(COLUMN1; x3): columnLength; (x3): =3;
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(FRAMEI; TERM1): InTerminal;

(V LOAD; TERM2): hasTerminal;

(TERM2; TERM1): connected;

(V LOAD; x4): concentratedForce; (x4): =10g

We introduce x1; : : : ; x3 as concrete objects and x4 as a concrete object over an-

other concrete domain, respectively. The equality predicates restrict structural

values to single objects from the concrete domains.

An algorithm for testing consistency of the con�guration problem PC can

compute a complete ABox A [15]. If the con�guration problem is inconsistent,

namely not clash free, there might be two distinct cases. First, constraints were

stated inA0, which are inconsistent on T without introducing new objects during

the construction process at all, being the case for contradictory task-speci�c

constraints in A0. Second, no solution to PC can be found on the completed

ABox A. If the ABox is clash free, a canonical model can be constructed from

the generated object names in A. We give only some typical excerpts from the

whole model due to space restriction and restrict us to one half of the frame

because of symmetry. We do not specify values for the concrete objects from

the domain �R because the actual force distribution is not taken into account

by practitioners in the conceptual design process. The real force distribution is

usually afterwards calculated by structural analysis tools.

�I = fFRAMEI;BEAMI;COLUMN1; F IXED1; RIGIDi; TERMj; : : :g;

�R = fforce1; : : : ; force20g;�A1 = f10g;�A2 = f0:5; 3; 8g;

StructuralSystemI; RigidFrameI = fFRAMEIg;

BeamI = fBEAM1g; ColumnI = fCOLUMN1g; etc.;

InputTerminalI = fTERM1; : : : ; TERM9g;

OutputTerminalI = fTERM2; : : : ; TERM11g;

InTerminalI = f(FRAMEI; TERMI); (BEAMI; TERMI); : : :g; etc.;

hasPartI = f(FRAMEI;BEAMI); (FRAMEI;COLUMN1); : : :g;

hasTerminalI = f(BEAMI; TERM1); (COLUMN; TERM3); : : :g;

actionI = f(TERM1; force1); (TERM3; force3); : : :g;

reactionI = f(TERM2; force2); (TERM4; force4); : : :g;

connectedI = f(TERM3; TERM4); (TERM2; TERM1); : : :g:

The constructed model I from the complete and clash free ABox is a solution,

which describes the actual assembly in terms of the required parts being the

speci�c components and terminals, the components attributes as well as the

resulting topology.
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4 Conclusion

We have shown that con�guration design problems from the domain of struc-

tural engineering can be solved by model construction in a description logic

like ALCQF(D), which possesses the �nite model property. We focused on

the computation of parts, namely components and terminals of the structural

system on di�erent hierachical levels, and of a layout that ensures channeling

the loads within the structure safely to the ground. Especially, the topological

requirements on the structure required feature aggreement in the DL. As far as

we know, regular con�guration languages cannot represent topological require-

ments yet, which are important if the structure of the con�guration cannot be

considered �xed prior the model construction approach.

In addition, we found that only a subset of possible concept expressions,which

are de�ned by the syntax of ALCQF(D), was used for the de�nition of the

structural description in the TBox. It might be possible to take such restriction

into account for increasing the expressiveness of the description logic but still

obtaining decidable inference problems. Hence, the model construction approach

extends to subsets of even more expressive description logics with in�nite models,

as long as the employed subset used for the formulation of the con�guration

problem has the �nite model property.

Because intuitively many �nite solutions exist for usual con�guration design

problems from engineering domains, it might be a further research direction

to identify more clearly a decidable subset of very expressive decription log-

ics, which cover the representation requirements from engineering con�guration

domains.
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Abstract

We present an agent-based supply chain monitoring system for track-

ing orders and their related suborders. We introduce an ontology to en-

able the necessary communication between the agents. Its design and

implementation are discussed in detail.

1 Introduction

Ful�llment processes in a supply chain may show di�erent kinds of irregularities

and disruptions. Irregularities like delays in a production process are the result

of variances in processing times and processing quality. The orders issued by

di�erent supply chain partners are often linked, e.g. an order for a car induces

suborders for parts from suppliers (tires, seats, etc.). The tighter integrated the

partner's supply chain processes are the greater will be the impact of disrup-

tions on the ful�llment processes. Existing systems for order tracking typically

generate standard messages for each order at certain intervals or milestones. As

a result, large databases with information on orders are �lled with data that are

in most cases not related to the serious problems mentioned above. Only a small

percentage of the orders encounters problems during ful�llment. Although in-

formation might be available, it is generally communicated too late, the content

will often not match the needs of a decision maker to react to the problem and

is lost in the large set of data.

Supply chain monitoring solutions for tracking orders need to be analyzed

in the context of a domain. A typical logistics scenario consists of a variety

of manufacturers, suppliers, and logistics service providers. Figure 1 illustrates

1



Figure 1: Supply Chain scenario.

a scenario of a compressor supply chain. The links between the organizations

represent the issued orders and suborders resulting from customer orders.

We developed a decentralized agent-based concept for supply chain mon-

itoring that di�ers from traditional isolated and centralized tracking systems

that are widely implemented within logistics service provider networks [6] and

similar approaches of production control [7]. The solution focuses on critical

orders, allows for real-time tracking of orders across the supply-chain, and o�ers

the opportunity to react in a timely manner to unforeseen events during order

ful�llment. Our supply chain monitoring approach focuses on tracking of indi-

vidual orders already issued. The aim is to gather information on orders and

their related suborders with the help of software agents.

Two layers characterize such an agent architecture. The �rst layer is repre-

sented by a discourse agent which is concerned with communicating the tracking

information across the supply chain by interacting with the di�erent agent plat-

forms of the supply chain participants. The second one, the application layer,

has to gather and aggregate the tracking information from which actions can

be derived. A detailed description of the functionality and interaction of these

agents is presented in [10]. To enable the communication of information between

the agents an ontology for supply chain monitoring is designed.

2 Ontology-Based Agent Communication

Agent-to-agent communication is the key to realize the potential of the agent

paradigm and is a requirement for cooperation. Agents use an Agent Communi-

cation Language (ACL) to communicate information and knowledge about the

domain. Systems which communicate and work together must share an ontology
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which can be implicit or explicit. Implicit ontologies are typically represented

only by procedures whereas explicit ones are (ideally) given as declarative repre-

sentation in a well-de�ned knowledge representation language. It introduces the

concepts and relations needed to exchange messages about application relevant

information. Once an ontology has been incorporated into the communication,

it can be used to construct the message content, one of the key points for com-

munication. The message content can have di�erent granularity with respect to

the ontologies level of abstraction. In communication with an agent, another

agent can ask about both the general knowledge and the knowledge of a speci�c

topic.

On the one hand, the ontology determines what is the possible content of

a message and on the other hand is used to analyse the messages that should

lead to appropriate tasks or actions. For this purpose a reasoning module is

needed. The agent must verify the content with regard to misconceptions. The

reasoning module is used to check if all concepts and relations exist in the

ontology and if they are used properly. If the message contains a question about

some individuals the agent has to verify their existence. In both cases, if an error

is detected, the resulting answer would be negative and should be explained

further in order to be cooperative. In this response the agent must revise the

misconception. If the content is correct, the agent interprets the message and

tries to �nd an answer. An answer can be a response containing the requested

information or some course of actions to ful�l a postulated goal.

Di�erent ontology description languages exist to formalize ontologies. The

supply chain tracking ontology is modeled using the Ontology Inference Layer

(OIL) [4]. OIL uni�es three important aspects provided by di�erent communi-

ties: it inherits the formal semantics and reasoning support from Description

Logics, incorporates the essential modeling primitives of Frame-based systems,

and uses existing Web Standards by providing XML and RDF based syntax [1].

The reasoning is done with Racer [2] a tableau based reasoning module.

3 The Supply Chain Monitoring Ontology

3.1 Methodological Approach

To design an ontology, it is important to de�ne the functionality of the ontology

and to characterize the users of the ontology [8]. The ontology represents an

integrated supply chain model spanning all processes, organizational units, and

objects involved in the scenario. The supply chain monitoring ontology de�nes

all concepts necessary for the supply chain environment as well as basic concepts

of tracking data. It is not the aim of this ontology to provide a formal represen-

tation of all the aspects of supply chain management. Its purpose is to model

the characteristic features of tracking orders in a supply-chain. Therefore the
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modelled concepts are restricted to this domain. Based on this understanding,

a rough �rst draw of the ontology can be derived that is iteratively re�ned step

by step. There are several possibilities to derive this initial design. Holsapple

and Joshi [3] identify �ve basic approaches to ontological design: inspiration,

induction, deduction, synthesis, and collaboration. Combinations of these ap-

proaches are possible. For the design of the supply chain monitoring ontology a

combination of the inductive and the synthetic approach is used. The inductive

approach is characterized by observing, examining, and analysing (a) speci�c

case(s) in the domain of interest and applying this speci�c case(s) to other cases

in the same domain [3]. The intitial ontology is based on a scenario derived

from data of a business partner. This basic scenario consisted of one customer,

one vendor and one logistics service provider. In a top-down process the most

general concepts of this speci�c scenario were de�ned and subsequently re�ned.

In a second step, the ontology was enlarged to incorporate scenarios including

several manufacturers, suppliers and logistics service providers. However, not all

concepts in the ontology are new. Concepts from existing ontologies are adopted

and synthesized into the supply chain monitoring ontology (synthetic approach).

To model this ontology the Enterprise Ontology [9] is partially reused. It spec-

i�es a wide variety of concepts from the domain of enterprises. As the supply

chain monitoring ontology belongs to the same domain, the Enterprise Ontology

already provides some important general concepts that are also necessary for the

supply chain scenario. The main bene�t of using the Enterprise Ontology is to

allow di�erent multi-agent systems that may be concerned with varying aspects

of supply chain management (e.g. procurement planning vs. order tracking) to

communicate on a generic level as long as they commit themselves to the same

top-level-ontology (e.g. the Enterprise Ontology). However, besides re�nements

of existing concepts, some important high-level concepts for the supply chain

domain are missing and have been added, e.g. the concept of an order.

3.2 Concepts

The concepts of the supply chain monitoring ontology described are needed to

reect the scenario of a supply chain and to express the tracking data in a for-

malized mode. To represent the scenario the ful�lment process can be described

as the interaction between three main concepts: Actors, Activities/Processes

and Orders. Linked to the concept of an Order are the di�erent tracking data

types. An Actor issues an Order which is then received by another Actor in the

supply chain. More Actors can be involved in the ful�lment process if further

Orders have to be issued to be able to ful�l the �rst Order. This is the case if a

customer orders a product from a manufacturer who then needs to order com-

ponents from his suppliers for the assembly of this product. When issuing the

Order, a sequence of Activities/Processes is triggered which has to be performed
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to ful�l the Order. These Activities are carried out by the respective Actors. As
the ful�lment process is dynamic the concept of Time is relevant in the context

of supply chain monitoring. The time axis is necessary for tracking the status

of the ful�lment process as the Activities are carried out over a period of time.

Figure 2: Legal Entity.

The central concept concerning Actors is LegalEntity (see �g. 2). A LegalEn-

tity is recognized as having rights and responsibilities in the world by large and

by legal jurisdiction in particular [9]. It includes Person and Corporation. Ven-

dor and Carrier are both Corporations. The Customer can either be a Person
or a Corporation.

The central concept Activity (see �g. 3) represents the generalization of all

actions that need to be executed within the ful�llment process. On the one

hand Activity is needed to describe a speci�c scenario while on the other hand

the ful�llment of an Activity can indicate the achievement of a Milestone and is

therefore also important for representing tracking data.

For the supply chain monitoring ontology eleven speci�c activities can be

identi�ed: OrderReceipt, Con�rmationOfOrder, ProductionOrderOpening, Pro-

ductionPlanning, Manufacturing, QualityAssurance, Picking, Packaging, Outgo-

ingGoods, Handling, Delivery. The execution of an Activity leads to a speci�c

E�ect, which consists of a StateOfA�airs that must hold true at a point of time

(which is speci�ed by the E�ectWhenHold concept). An Activity has a begin

and an end date. The state of the Activity at a point of time is described by

the ActivityState. The ful�llment process is a sequence of Activities that can

usually only be performed one after another. Therefore most Activities have as
a Precondition the execution of another Activity. An Activity is performed by

an Actor.

The concept of an Order is another basic concept to model a supply chain
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Figure 3: Activity concept.

scenario (see �g. 4). As it is a legally binding contract concerning a transaction

between LegalEntities an Order de�nes the relationships between the partners in

a supply chain. An Order consists of one or more OrderItems. There are various

subconcepts of Order depending on whether the Order is incoming or outgoing

and depending on the type of recipient: A �nalCustomer issues anOriginalOrder
addressed to a Vendor. This OriginalOrder corresponds to the OrderIncoming

that the Vendor receives. Usually this Vendor will not produce all the parts

needed for the ful�llment of this OrderIncoming. Therefore this OrderIncoming

can trigger an OrderOutgoing for the components needed that is addressed to

other Vendors. It can also trigger a DeliveryOrderOutgoing directed to a Car-
rier for the delivery to the �nal Customer or to a Vendor if a supplier (another

Vendor) issues this subtype of Order. The Carrier receives this as a Delivery-
OrderIncoming. An Order can be identi�ed by its OrderId. An Order receives an

OrderId from its issuer as well as from the recipient: An OrderOutgoing receives

an OrderOutgoingId, an OrderIncoming an OrderIncomingId. For tracking pur-

poses it is necessary to �nd the corresponding OrderIncoming/OrderOutgoing

combination. Therefore the OrderIncoming also contains the OrderOutgoingId
of its corresponding OrderOutgoing.

Besides the description of a supply chain scenario the Order is the point

of reference for the tracking data. One important concept derived from the

tracking data is the concept of a Milestone, that belongs to the status data in

speci�c to the type of time data. A Milestone is the unit of the E�ect of an

executed Activity and the CalendarDate of its achievement. For each Activity a

Milestone is de�ned. During the ful�llment process, the Milestones are realized

when the respective Activities have been executed. Other types of status data

that are incorporated in the ontology but not further explained here refer to
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Figure 4: Order Concept.

the group of quality measures that can be derived from measures of time and of

quantities of an order (e.g. the relation of delivered to ordered quantity). Apart

from status data, so called decision data has been modeled in the ontology.

During the ful�llment process of an Order, Disruptionsmay occur. These can be

OrderProcessingDisruptions such as an OrderLost, ProductionDisruptions such
as MaterialNotAvailable or a MachineFailure, or DeliveryDisruptions such as a

TraÆcJam.

The concept of Time plays an important role for tracking Orders along the

supply chain. However, it is not speci�c to this environment. The Enterprise

Ontology uses a Time concept imported from Allen's work [5]. This concept

is also used for the supply chain monitoring ontology. Activities are performed

over a TimeRange that is comprised of two TimePoints: a start and an end

date, represented by CalendarDates.

4 Conclusion

Irregularities and disruptions in ful�llment processes have a major inuence on

supply chain performance. It is necessary to optimize the processes of gathering

and communicating information related to such events. An agent-based concept

presented for supply chain monitoring allows to speed up these processes and

to focus on tracking critical orders. To enable the communication of tracking

information between the software agents, an ontology has been developed that

comprises relevant tracking information and important concepts of a supply

chain scenario. The formalized model enables the eÆcient reuse of the ontology

in di�erent applications. As a result complex, dialogs with other supply chain

partners agents emerge using the ontology as the necessary model to specify
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the content of the agent communication and to interpret the received message

to determine appropriate actions. Currently, a �rst prototype of the supply

chain monitoring framework is being implemented in cooperation with a business

partner, and the ontology is used to implement an advanced prototype of the

discourse agent with reasoning capabilities.
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Abstract

In this paper, we outline our approach to mapping domain indepen-

dent semantic representations to extensional statement speci�c to a given

application. Fur this purpose, we exploit the equivalence between Dis-

course Representation Structures limited to the expressiveness of ALC

and ABoxes for validating DRS with respect to a given knowledge base

and explain how task independent semantics representations can be spe-

cialized to a domain speci�c meaning. The paper concludes with some

performance results and remarks on desirable features of DL reasoners

not implemented up to now.

1 DL Models of Applications

Applications are characterized by a DL terminology which models the concepts

used for making propositions about application situations. In [BLG02] it is ex-

plained, how domain independent semantic representations for a certain class of
natural language phrases can be composed relying on EuroWordNet (EWN)

[Vos98] as a linguistic ontology. The remaining question is, how these representa-

tions can be mapped onto ABoxes only containing propositions in a application

speci�c ontology (sec. 2). As a prerequisite, we address the issue of how those
two ontologies can be linked to form a modular DL knowledge base composed

of several smaller parts for covering special purpose ontologies (sec. 4).

Basically, the knowledge base is composed of two parts. The EWN ontol-

ogy encodes the linguistic meaning of words determined on an empirical basis,

whereas the Standard Upper Ontology (SUMO) [NP01] is used as a generic

base model for concepts of the application domain. See section 2 for a descrip-

tion of how we use the knowledge base. We present our experiments with Racer

in section 3. The modular composition of T-Boxes is topic of section 4, and
section 5 gives an overview about further requirements of A-Box reasoning.
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Thematic Role Inverse Thematic Role Inverse

has-mero-part has-holo-part be-in-state-of state-of

has-mero-portion has-holo-portion in-manner manner-of

has-mero-location has-holo-location involved-source

has-mero-member has-holo-member involved-result

has-mero-madeof has-holo-madeof involved-agent

involved-location role-location involved-target

is-subevent-of has-subevent

causes is-caused-by

Table 1: Thematic Roles in EuroWordNet

2 Mapping Semantics onto Pragmatics

This section discusses the mapping from DRS composed during parsing [BLG02]

to ABoxes representing propositions on the current application situation. This

means ABoxes have to be consistent with respect to a given TBox. The rationale
for using DL for constructing natural language semantics is the possibility to
eliminate hypotheses constructed by the parser if the corresponding ABoxes are

inconsistent. Any other hypothesis which passes this test is called admissible.

2.1 EuroWordNet

In order to ease the adaptability of the dialogue system to di�erent domains

and to reect general and domain independent usage of language from that of a

speci�c application the semantics of chunks is expressed in terms of concept ex-
pressions taken from the EuroWordNet terminology. EuroWordNet has

been developed on the basis of the WordNet semantic net which { in ver-

sion 1.5 { encodes the meaning of about 80.000 nouns, 60.000 verbs and 16.000
adjectives and adverbs. Beyond being a pure taxonomy of semantic types, Eu-

roWordNet can be used to de�ne complex concepts for complements verbs

and nouns may take in the German language. In a DL approach to de�ne

them, relations between primitive concepts are expressed by roles whereas sev-

eral di�erent complements for a lexical base form are stated using conjunction

of concepts. The linguistic notion of synonymy can be implemented in a DL

knowledge base via concept equivalence, antonymy by the use of the negation

operator. Disjunction is the tool to state alternative usage of language { for

example of di�erent words for the same semantic notion. An example of such a

concept description is given by the following de�nition:

GetOn1BeOn1 v Air2 u 8involved-agent:Program1

2



2.2 Case Frames

Constraints on complements and modi�ers of German words are expressed in

terms of case frames which state the valencies of a word and their possible

semantic �ller types.

9involved-agent:TOP v Run1

TOP v 8involved-agent:Programme1

The de�nition encodes the meaning of the German verb kommen in the sense

of A �lm is on in channel TV5. A GCI axiom is used to de�ne the domain

and range of the (thematic) role involved-agent. In general, thematic roles

are used in a number of case frames, not just in one. This means, more than

one GCI has to be included in the linguistic terminology that is used to encode

the use of German words that take complments or modi�ers. A number of such

thematic roles is contained in EuroWordNet terminology. The whole set of
roles is listed in table 1. Thematic roles are de�ned to be features as the relation
between discourse referents is functional.

2.3 Mapping DRSs onto ABoxes

The main question to be discussed is the issue of how to verify the mapping
of domain independent { in terms of EuroWordNet to application speci�c

language usage { in terms of a domain model. The general idea is that dis-
course referents in the domain of discourse refer to instances in the applica-

tion domain. Such pairs of a discourse referent and a corresponding instance
are represented by means of a special role called has-lex. In the de�nition
AvEvent v 8has-lex:Program1, it is claimed that an AvEvent is related to a

discourse referent of Program1. As a consequence, all words to whom Program1

is assigned as meaning in EWN, designate an instance of AvEvent. The DRS"
� d

AvEvent(�) has-lex(�; d) Program1(d)

#

can be mapped onto an ABox asserting

Program1(d) ^ has-lex(�; d) ^ AvEvent(�)

The set R of possible application speci�c readings of an instance of Program1

is the set of all concepts (in the application domain) subsumed by the concept

8has-lex:Program1. In general:

R(D := fC : C � 8has-lex:Dg

The second issue concerns to verify relations between individuals in the applica-

tion domain from (thematic) roles in a DRS claimed by the parser. In a domain
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independent DRS, discourse referents e1 and eK may be related by the thematic
roles R1, ..., RK�1:"

e1 e2 ::: eK

E1(e1) R1(e1; e2) E2(e2) ::: RK�1(eK�1; eK) EK(eK)

#

Additionally, we have (from the domain model)"
e1 �1 eK �N

E1(e1) has-lex(e1; �1) A1(�1) has-lex(eK; �N ) AN(�N )

#

The case frames for a particular application allow the parser to draw conclusions

on roles that hold between �1, �2, ..., �N as a consequence on the assertions

made above on e1, ..., eK. With description logics, the consistency of these

conlcusions may be validated with the help of the following GCI (schema) which

is instantiated for each linugistisc valency in the EuroWordNet terminology:

9has-lex:(E1 u 9R1:(E2 u 9 � � �Ri � � � :9RK�1:(EK9has-lex
�1
:TOP)) !

A1 u 9S1:(A2 u 9S2:(A3 u 9 � � �Sj � � � :9SN�1N:AN))

In this axiom, the Ri are thematic roles, the Sj roles in the application do-

main. Ei are EuroWordNet concepts, Aj application concepts. The axiom

is visualized by the following schema:

has-lex

A1(�1) �����! E1(e1)

S1 # & R1

A2(�2) E2(e2)
R2 # & S2

AN�1(�N�1) EK�1(eK�1)
SN�1 # & RK�1

AN (�N) ��������������������������! EK(dK)

has-lex

In order to explain the \genesis" of the axiom schema above, we have to consider

several cases of how thematic roles are mapped onto application speci�c ones.

2.4 Mapping Thematic Roles onto Pragmatic Ones

The interpretation of thematic roles in terms of roles in the application domain
is encoded as the application speci�c part of the case frames describing the

language usage in the application domain as in the following example:

9has-lex:(Program1 u

9involved-time:(um-tp u 9value:(clocktime u 9has-lex�1:TOP))) !

9has-starttime:TimeInterval

4



Given two DRSs, with the help of an ABox consistency test, one has to validate
the application speci�c reading constructed by the parser. For the utterance

\Sendung um 20.15", the parser maps the semantic reprsentation on the left

onto its application speci�c interpretation on the right:

2
6664

d t c

Program1(d) involved-time(d; t)

um-tp(t) value(t; c) clocktime(c)

has-hour(c; 20) has-minute(c; 15)

3
7775

2
666664

� �

AvEvent(�) has-lex(�; d)

TimeInterval(�) has-lex(�; c)

has-starttime(�; �)

has-hour(�; 20) has-minute(�; 15)

3
777775

2.5 Instantiating Parameters and is-part-of Relations

Given a thematic role between two discourse referents from two di�erent DRSs

where the �rst one serves as functor and the second one as compli�er1, and the

individuals corresponding to the discourse referents, the relation to be validated
does not necessarily hold between those two individuals. However, the pragmatic

relation may hold between the individual corresponding to the discourse referent
selected from the functor and an individual accessible via a role path from the
individual corresponding to the discourse referent selected from the compli�er's

DRS as in the following example (DRS: left, A-Box: right):

2
6664

s d

Recording1(s) TVStation1(d)

involved-patient(s; d)

value(d;ZDF) Name(ZDF)

3
7775

2
666664

s d � Æ �

Record(�) has-lex(s; �) has-lex(d; Æ)

AvEventLocation(Æ) AvEvent(�)

has-aveventlocation(�; Æ) String(ZDF)

has-value(Æ;ZDF) has-avevent(�; �)

3
777775

In this example, the thematic role involved-patient is mapped onto the role

path has-aveventÆhas-aveventlocation establishing the following the axiom:

9has-lex:(Recording1 u 9involved-patient:(TVStation1 u 9has-lex�1:TOP)) !

Record u 9has-avevent:(AvEvent u 9has-aveventlocation:

(AvEventLocation u 9has-value:String))

With this GCI, we verify that � is a valid parameter for the action � and that
Æ forms a part of the instance of AvEvent designated by �.

2.6 Instantiating has-part Relations

Often, it happens that a thematic role between two discourse referents induces

more than one relation between individuals in the application domain. For

example, in the DRS

1Compli�er means complement or modi�er as explained in [BLG02].
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2
666664

v1 v2 v3 v4 v5 c3 c4

TimeDate(v1) has-month(v1; c3) Month2CalendarMonth1(c3) month-value(c3; c4)

Number1(c4) value(c4; 1) on(1)

has-date(v1; v2) lc-date(v3) has-day(v3; v4) Day4(v4) day-value(v4; v5)

Number1(v5) value(v5; 5) on(5)

3
777775

ABox Assertion Large KB Small KB

(most-specific-instantiators v4 edge2) 2173 134

Table 2: Performance Evaluation for Racer Version 1.6.3 (in milli seconds)

"
s d

Switch1(s) involved-patient(s; d) Device1(d)

#
;

two roles have to be instantiated in order to construct the application speci�c
reading: has-eib and has-state. This may be validated with an GCI axiom:

9has-lex:(Switch1 u 9involved-patient:(Device1 u 9has-lex�1:TOP)) !

EIBSwitch u 9has-eib:EIBDevice

9has-lex:(Switch1 u 9involved-patient:(Device1 u 9has-lex�1:TOP)) !

9has-state:ONState)

The cooresponding ABox may be represented as follows:

2
6664

s d � Æ

EIBSwitch(�) has-lex(�; s) has-eib(�; Æ)

EIBDevice(Æ) has-lex(Æ; d)

has-state(�; o) OnState(o)

3
7775

In such a case has-state and has-eib are called has-part relations, as the
thematic role involved-patient in the semantic representation of the input

utterance leads to the instantiation of the individuals o and Æ which are part of

the de�nition for �.

3 Experiments with RACER

We evaluated the performance of the outlined approach in terms of computation

time needed on a Pentium III 800 MHz PC running under SuSE Linux 7.2

with 256 MB of RAM. First, we compiled a big knowledge base consisting of

1165 concept de�nitions and a large number of additional disjoint statements.
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This knowledge base contains the complete SUMO ontology encoded in DL,
the EWN upper ontology and the concept de�nitions speci�c to the EMBASSI

applications. The performance test was carried out by parsing the prepositional

phrase am ersten Januar. At a certain step during the parsing the consistency

of the following ABox has to be tested and the most speci�c concepts of the

DRS's head have to be computed. We get the result in table 2.

Of course, more than 2 seconds for a single call to most-specific-instan-

tiators is not acceptable for parsing natural language, as { given a quite com-

plex word lattice { hundreds of such calls have to be performed for parsing one

lattice under the constraint of real time behavior of the overall system.

Obviously, however, many SUMO and EWN concepts could be deleted from
the knowledge base as they were not used by the application speci�c part of

the knowledge base. In an auotmatic precompilation step, we deleted 862 con-

cepts which are only de�ned, but not used as part of another de�nition { many

among them about insects and bacteria which are not considered relevant for
the application. The performance test was then repeated (see table 2).

As the table indicates, RACER performed faster with the smaller knowledge
base, and performance becomes practical. However, the ratio of deleted concepts

would be worse in more complex domains. As we did not include the whole set
of EWN concepts (about 100.000 concepts), in a more complex application the

EWN portion even of the reduced knowledge base would be larger. So, faster
classi�cation is what we are dreaming of ...

4 Modular Composition of T-Boxes

Constructing and maintaining large knowledge bases is a task for which methods
borrowed from software engineering are of help. The most important principles
are modularization and decomposition. As mentioned already, in addition to the

separation between discourse and application, we maintain two upper models for

lexical semantics and the design of application speci�c domain models. The �rst
one is covered by EuroWordNet, the second one by the Standard Upper

Ontology. As EuroWordNet only contains concepts for nouns, verbs, ad-
jectives, and adverbs, we have to complement this linguistic domain model by

separate models for de�ning notions for temporal and spatial expressions { to

mention only the most prominent ones.

In this process, software tools such as OilEd and Proteg�e can support

to a very large extent the engineering task of building such libraries of domain

models. Their visual presentation of concept hierarchies helps avoiding duplicate

de�nitions as well as forgetting crucial disjoint statements. The possibility to

detect incoherent de�nitions by combining editors and DL reasoners improves

the quality of the resulting domain models and speeds up their development.
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5 Further Requirements for A-Box Reasoning

In general, domain-instantiated A-Boxes are partial models for application oper-

ations. Its contents can be modi�ed by user or system messages. As a framework

for processing partial information, we found out that FIL [Abd95] meets all our

requirements. We started with the implementation of a prover for a Horn clause

subset of FIL in Prolog technology, which has later been replaced by a tableau-

based reasoner, operating as a separate module. Such a separate model could

be avoided if hypothetical reasoning could be done with A-Boxes in a direct

way: Starting with a \core" A-Box containing \hard", but partial information,

alternative extensions with hypotheses have to be computed and checked for

consistency and completion. These hypotheses are either already given or have

to be asked from the user, which amounts to a mixed-initiative subdialogue.
Seen as a tableau, leaves of open branches represent possible information states

of the dialogue manager at a given time. Inferences on tableau consistency

are drawn using domain concept de�nitions the constraints of which determine
justi�cations, i.e. possibly underspeci�ed parameters corresponding to optional

phrases. In other words, a context mechanism is required which manages alter-
native contexts consisting of a common core with di�erent extensions depending
on particular sets of assumptions. From a technical point of view we have to deal

with a belief revision problem which could be handled by a reason maintenance
mechanism for A-Boxes (cf. [Neb90, Rei87]).
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Abstract

Component-based software development (CBSD) is a very promising

software engineering technique for improving reuse and maintenance of

software components. However, in order to be able to reuse the com-

ponents, developers should be aware of the available components in the

company, in which contexts those components can be used and how they

will behave. Our approach is to use the technique of software libraries to

classify the components. The structure of these libraries is speci�ed by

ontologies. Those ontologies are speci�ed in the SHIQ description logic.

The reasoning services of DL let us verify whether the ontologies are con-

sistent. This helps automating the process of classifying and retrieving a

component into a software library.

1 Problem

Component-based software development (CBSD) is one of the major e�orts for

improving reusability and maintainability of software applications. A compo-

nent was de�ned at ECOOP 96 [SP97] as follows: A software component is a

unit of composition with contractually speci�ed interfaces and explicit context
dependencies only. A software component can be deployed independently and is

subject to composition by third parties. The great advantage of component-based

software development (CBSD) is that new software can be built by combining

bought and self-made components. To do this, it is necessary to specify in which

contexts the components can be used and how they will behave.

An important e�ort for improving reusability of software is the research done

on software libraries. A software library is de�ned as a "managed collection

of software assets where assets can be stored, retrieved and browsed" [AM].

One of the main ways of organizing a software library is by using the faceted
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classi�cation scheme. In this scheme a facet is a "clearly de�ned, mutually

exclusive, and collectively exhaustive aspects, properties or characteristics of a

class or speci�c subject" [T92]. Each facet is de�ned by a possible hierarchy of

terms. Those terms describe the concrete values the facet can have.

We want to classify components based on the description of the semantics of

those components. To establish this classi�cation, we use:

� software libraries using the faceted approach.

� ontologies describing the behaviour of the components. These ontologies

will represent a multi-dimensional classi�cation of components and will

capture the behaviour of components.

We envision this research as a way of improving reuse because of the use of

a library which consists of an organized collection of components together with

the relevant documentation. We also envision the improvement of evolution

management of component-based applications by having the description of those

applications in the library, including the dependencies and other relationships

between their constituent components. As ontology language the DL SHIQ

[HS00] has been chosen. In the next section we further explain our research

and motivate the choice of the logical formalism. In section 3 examples of these

ontologies are given. Section 4 concludes this paper.

2 The Framework

It is our intention to classify components in software libraries by using the faceted

approach [PD91] [PF87], allowing a multi-dimensional classi�cation of compo-

nents. We de�ne a dimension as a set of facets that are related to the same view

or the same aspect of a component. Di�erent dimensions should be considered

in the classi�cation. Examples are the functionality (what it does, inputs, out-

puts, etc.) of a component, the implementation issues (programming language,

platform, etc.) and so on. We use facets and terms as de�ned in [PD91]. To

be able to have a multi-dimensional classi�cation of components we describe

the di�erent dimensions, their facets and terms. Furthermore, there are also

relevant relations that should be described.

We consider two kinds of relations: inter- and intradimensional ones. The

�rst one are relations between dimensions, the latter one are relations within

one and the same dimension. These relations put restrictions on the di�erent

dimensions, their facets and the respective terms. Remark that this is one

way of classifying the kinds of relations. We are working on a more detailed

classi�cation taking into account other aspects. To de�ne these structures we

will use di�erent ontologies.
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Dependencies between the

different domain−dependent

ontologies

facets and terms of Domain0
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Instantiation of dimensions,
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Instantiation of dimensions,
facets and terms of Domain1

Ontology for Domain0

instantiation

Core Ontology

instantiation

Ontology for Domain2

Ontology for Domain1

instantiation

Figure 1: Ontologies for Component Classi�cation

As depicted in �gure 1 our framework consists of:

Core Ontology

This ontology consists of dimensions that are relevant for all components. Ex-

amples of such dimensions are explained in section 3.1.

Domain-Dependent Ontologies

These ontologies describe the di�erent dimensions relevant for the classi�cation

of a given kind of components. Such a kind consist of components belonging

to the same domain. Examples of such sets of components are communication

network components, user-interface components, data compression components,

etc.. Such an ontology will keep track of the facets, terms, dimensions, inter- and

intra-dimensional relations of components of one single domain. The advantages

of having such ontologies are:

� The knowledge about the components is made explicit by these ontologies.

� The insertion of the components in the library becomes easier because of

the explicit presence of the relations. Given a term of a facet, other terms

can be automatically derived due to those relations.

� Di�erent libraries based on the same ontology can be easily merged.

� Using ontologies, queries can be executed on software libraries.
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As ontology language the very expressive Description Logic SHIQ [HS00]

will be used. The advantages of using Description Logic to build these ontolo-

gies are well-known: concepts can be easily composed to form new concepts. DL

allows for arbitrary binary relations which enables the expression of the di�er-

ent relations between the components, their terms, facets and dimensions. DL

o�ers eÆcient reasoning support. This support can be used to reason about

and to query the constructed ontology. The speci�cation of these ontologies is

terminological expressions.

We remark that next to the inter- and intra-dimensional restrictions within

one ontology, we can also have inter-dimensional restrictions between dimen-

sions in di�erent ontologies as indicated in �gure 1. We will not consider those

relations here because they are still under investigation.

Component Items

They specify the values of the di�erent terms for a speci�c component. For

each component we want to classify, the terms of relevant facets of the di�erent

dimensions as described in the ontology are instantiated. Also on this level, we

have inter- and intra-dimensional relations. These relations only restrict values

concerning these speci�c component items. Also the instances of the di�erent

components and their restrictions will be expressed in DL as assertional knowl-

edge.

In the following section we will give examples of domain-dependent ontolo-

gies, component instances and their representation and the reasoning tasks we

want to de�ne. The speci�cation of these ontologies and the di�erent dimensions

has been �gured out by inspecting and analyzing component-based applications

and their components. We have to mention that this speci�cation is still evolv-

ing.

3 Examples, Representation and Reasoning

3.1 Examples of Dimensions of the Core Ontology

These are dimensions that are relevant for all kinds of components. Two ex-

ample dimensions are the implementation dimension and the quality of service
dimension. The implementation dimension contains information about the im-

plementation of the component such as the platform, the programming language

and the compiler (if available). The quality of service dimension consists of tim-

ing and memory information, or in general it consists of any non-functional

requirements or provisions of a component. Its di�erent facets are (so far):

1. Timing provided: a given time-period in which a component will o�er a

certain service.
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2. Timing required: a given time-period within which a component requires

some service from another component.

3. Memory required: a given amount of memory a component requires for

providing a certain service.

The SHIQ expressions are shown in �gure 21.

3.2 Examples of Domain-Dependent Ontologies

An example of such an ontology is the ontology describing the dimensions, facets

and terms of network components. In general, the functionality dimension of a

component consists of facets that have to do with the functionality part of the

component belonging to this domain. In the case of network components, the

semantical part of the functionality dimension consists of the following facets

and terms:

1. Kind: Information about the kind or type of the component.

� client

� server

2. Actions: the di�erent functions the component can perform. Some terms

of this facet are (remark that these lists are not exhaustive):

� Link

{ Out : reference, subscribe, unsubscribe, connect, disconnect

{ In : referenced, subscribed, unsubscribed, connected, discon-

nected

� Data : send, receive, set, get, notify, stream, answer

An action can have input and output arguments:

� Input: arguments needed to perform some action.

{ String, Number: finteger, oat, ...g, ...

� Output: results of the performed action.

{ String, Number: finteger, oat, ...g, ...

The �gure 2 shows a part of this speci�cation in SHIQ.

18=1R:C is an abbreviation for 8R:C u (� 1R:C) u (� 1R:C)
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3.3 Example of Component Items

Consider a network client component. This component sends strings over a

TCP/IP connection and throws events when a string is received or when the

connection is established or destroyed. So this component has 4 actions: send,

receive, connect and disconnect. The connect action has two input arguments

that are both strings (i.e. the port number and the host name), the output of

this action is the rcvConnect event if the connection succeeds and the rcvClose

event if the connection fails. This knowledge is speci�ed in Abox assertions.

3.4 Relations and Restrictions

A programming language is related to at least one platform in the implementa-

tion dimension. This is an example of an intra-dimensional relation. Another

example of such a relation between facets of the implementation dimension, but

on the component level is the fact that if the component is compiled using the

GNU gcc compiler under Linux, the component's platform must be Linux too.

To express this last restriction in DL, we need to be able to express concept

inclusion axioms in the Abox as shown in 2. This is possible as explained in

[HS01] where SHIQ is extended with nominals. Consider the network com-

ponents' ontology again, there exists a relation between the action facet of the

functionality dimension and the timing provided facet of the quality of service
dimension. The receive action may take at most 8 seconds. This relation is also

written down in �gure 2.

3.5 Reasoning

The developer needs the following reasoning services at the ontology level:

1. consistency checking of a domain-dependent ontology,

2. consistency checking of a domain-dependent ontology combined with the

core ontology,

3. checking satis�ability of concepts and relations,

4. checking subsumption between concepts or relations.

These reasoning services correspond to the di�erent reasoning tasks of SHIQ.

At the component items level, the developer needs support to check the con-

sistency between Abox and Tbox statements and also to check consistency of

the Abox. The following remarks can be made concerning the expressiveness

needed:
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COMPONENT v 8
=1has func.FUNCTIONALITY

u 8
=1 has impl.IMPLEMENTATION

u 8
=1 has qos.QUALITYOFSERVICE

IMPLEMENTATION v 8has plat.PLATFORM u 8has lang.LANGUAGE

u 8 has comp.COMPILER

QUALITYOFSERVICE v 9timeprovided.> u 9timerequired.>

u 9 memoryrequired.>

FUNCTIONALITY v 8
=1has act.ACTION u 8=1has kind.KIND

CLIENT v KIND

SERVER v KIND

ACTION v 8has output.OUTPUT u 8has input.INPUT

DATA v ACTION

SEND v DATA

RECEIVE v DATA

IMPLEMENTATION

u(= 1 has lang.LANGUAGE)
v (� 1 has plat.PLATFORM)

COMPONENT

u 9has func.(FUNCTIONALITY

u 9has act.RECEIVE)

v
9has qos.(QUALITYOFSERVICE

u 9(�8 timerequired))

gcc-Gnu-Linux : COMPILER

Linux : PLATFORM

9has comp.gcc-Gnu-Linux v 9has plat.Linux u (� 1 has plat)

Figure 2: De�nitions of Ontology Concepts and Relations.
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� First of all, we need concrete domains to express certain relations. For

example, the input arguments of an action can be integers or strings.

Unary concrete domains will not be suÆcient in this case. In [CL02], Q�

SHIQ is introduced, which extends SHIQ with concrete domain concept

constructors allowing the representation of rational numbers. However in

our case, we need to consider Integer, String and real numbers and it

should also be possible to express intervals of real numbers. For example

the time required by a certain o�ered service can be between two real

values. The question is of course if decidability is lost if Q � SHIQ is

further extended.

� It should also be possible to use instances of Tbox concepts, i.e. Abox

individuals in Tbox expressions. The name of a certain component can

appear in the domain-dependent ontology to which this component can

be classi�ed. So we need nominals in our language. In [HS01], SHIQ is

extended with nominals.

4 Conclusion

In this paper we presented our ideas to classify software components in libraries

based on ontologies described in the very expressive DL SHIQ. We use De-

scription Logics to specify di�erent ontologies used to classify components. The

reasoning services of DL let us verify whether the ontologies are consistent,

whether dimensions, facets and terms are satis�able, whether certain relations

or certain concepts in the ontology (i.e. dimensions, facets and terms) subsume

each other. This helps automating the process of classifying and retrieving a

component into a software library. The next step in this research is to make a

more detailed classi�cation of the di�erent possible relations appearing in the

ontologies. This will allow us to �nd out if existing DLs (SHIQ in particular)

are expressive enough for our purposes. Another step is to use a SHIQ rea-

soner allowing us to reason about the di�erent ontologies and component items.

Finally, we will de�ne queries about the component items in order to retrieve

components or speci�c facets or terms.
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