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Vogt-Kölln-Str. 30
22527 Hamburg, Germany
haarslev@informatik.uni-hamburg.de

Ralf Möller
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Abstract

We introduce the very expressive description logic ALCQHIR+(D)− providing
a limited support for concrete domains. The description logic system Racer
supports TBox and ABox reasoning for ALCQHIR+(D)− using a default concrete
domain for linear inequations. The adaptation of several important optimization
techniques is presented. We conclude the paper with a first proposal for extending
ALCQHIR+(D)− by a restricted form of feature chains.

1 Introduction

Reasoning about objects from other domains (so-called concrete domains, e.g. for real
numbers) is very important for practical applications, in particular, in the context
of the Semantic Web. For instance, one might want to express intervals for integer
values (“the price range is between 200 and 300 Euro”), state the relationship between
the Fahrenheit and Celsius scales, or describe linear inequalities (“the total price for
the three goods must be below 60 Euro”). In [1] the description logic ALC(D) is
investigated and it is shown that, provided a decision procedure for the concrete
domain D exists, the logic ALC(D) is decidable. Unfortunately, adding concrete
domains to expressive description logics (DLs) such as ALCNHR+ [5] might lead to
undecidable inference problems. In [8] it has been shown that ALCNHR+ extended
by a limited form of concrete domains leads to decidable inference problems. This is
achieved by disallowing so-called feature chains in ALCNHR+(D)−. It is easy to see
that the same pragmatic approach can also be applied to very expressive DLs. By
analogy to ALCNHR+(D)− the description logic (DL) ALCQHIR+(D)− extends the
logic ALCQHIR+ or SHIQ [10] with concrete domains.

The DL ALCQHIR+(D)− which is supported by Racer1 is briefly introduced as
follows. We assume five disjoint sets: a set of concept names C , a set of role names R,
a set of feature names F , a set of individual names O and a set of names for (concrete)
objects OC . The mutually disjoint subsets P and T of R denote non-transitive and
transitive roles, respectively (R = P ∪ T ). ALCQHIR+(D)− is introduced in Figure

1Racer download page: http://kogs-www.informatik.uni-hamburg.de/~race/



(a)

Syntax Semantics
Concepts (R ∈ R, S ∈ S , and f, fi ∈ F )
A AI ⊆ ∆I (A is a concept name)
¬C ∆I \ CI

C � D CI ∩ DI

C � D CI ∪ DI

∃R .C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
∀R .C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S .C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≥ n}
∃≤m S .C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≤ m}
∃ f1, . . . , fn .P {a ∈ ∆I | ∃ x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I∧

(x1, . . . , xn) ∈ PI}
∀ f1, . . . , fn .P {a ∈ ∆I | ∀ x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I ⇒

(x1, . . . , xn) ∈ PI}
Roles and Features
R RI ⊆ ∆I × ∆I

f fI : ∆I → ∆D (features are partial functions)
‖ · ‖ denotes the cardinality of a set, and n, m ∈ N with n > 1, m > 0.

(b)

Axioms
Syntax Satisfied if
R ∈ T RI = (RI)+

R � S RI ⊆ SI

C � D CI ⊆ DI

(c)

Assertions (a, b ∈ O , x, xi ∈ OC )
Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

(a, x) : f (aI , α(x)) ∈ fI

(x1, . . . , xn) :P (α(x1), . . . , α(xn)) ∈ PI

Figure 1: Syntax and Semantics of ALCQHIR+(D)−.

1 using a standard Tarski-style semantics with an interpretation ID = (∆I ,∆D, ·I)
where ∆I ∩ ∆D = ∅ holds. A variable assignment α maps concrete objects to values
in ∆D.

In accordance with [1] we also define the notion of a concrete domain. A concrete
domain D is a pair (∆D,ΦD), where ∆D is a set called the domain, and ΦD is a set
of predicate names. The interpretation function maps each predicate name P from
ΦD with arity n to a subset PI of ∆n

D. Concrete objects from OC are mapped to
an element of ∆D. We assume that ⊥D is the negation of the predicate "D. A
concrete domain D is called admissible iff the set of predicate names ΦD is closed
under negation and ΦD contains a name "D for ∆D, and the satisfiability problem
Pn1

1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm
m (xm1, . . . , xmnm) is decidable (m is finite, Pni

i ∈ ΦD, ni is
the arity of Pi, and xjk is a concrete object).

If R, S ∈ R are role names, then R � S is called a role inclusion axiom. A role
hierarchy R is a finite set of role inclusion axioms. Then, we define �∗ as the reflexive
transitive closure of � over such a role hierarchy R. Given �∗, the set of roles
R↓ = {S ∈ R |S �∗ R} defines the sub-roles of a role R. R is called a super-role of S
if S ∈ R↓. We also define the set S := {R ∈ P |R↓ ∩ T = ∅} of simple roles that are
neither transitive nor have a transitive role as sub-role. Due to undecidability issues
number restrictions are only allowed for simple roles (see [10]). In concepts, inverse



roles R−1 (or S−1) may be used instead of role names R (or S). If C and D are concepts,
then C � D is a terminological axiom (generalized concept inclusion or GCI ). A finite
set of terminological axioms TR is called a terminology or TBox w.r.t. to a given role
hierarchy R.2 An ABox A is a finite set of assertional axioms as defined in Figure 1c.

An interpretation I is a model of a concept C (or satisfies a concept C) iff CI %= ∅
and for all R ∈ R it holds that iff (x , y) ∈ RI then (y , x ) ∈ (R−1)I . An interpretation I
is a model of a TBox T iff it satisfies all axioms in T (see Figure 1b). An interpretation
I is a model of an ABox A w.r.t. a TBox T iff it is a model of T and satisfies all
assertions in A (see Figure 1c). Different individuals are mapped to different domain
objects (unique name assumption). Note that features are interpreted differently from
features in [1]. Racer supports the standard TBox and ABox inference services for
ALCQHIR+(D)−, which are described in detail in [7].

2 Using Concrete Domains in Racer

Racer’s standard concrete domain supports reasoning for linear inequations between
rational numbers and interval reasoning (min/max) for integers (the corresponding
domain for the range of features, reals or integers, must be declared). The use of
concrete domains is illustrated with the following example. For sake of readability and
brevity we notate predicates as lambda expressions instead of introducing predicate
names. Let age be a feature (of ‘type’ integer).

teenager ≡ human � ∃ age . λ(x)(x ≥ 16)
old teenager ≡ human � ∃ age . λ(x)(x ≥ 18)

A teenager is a human with an age of at least 16 years and an old teenager is a human
with an age of at least 18 years. Asking for the subsumees of teenager reveals that
old teenager is a subsumee of teenager. The next example demonstrates the use of
linear inequalities between rational numbers. Let temp celsius and temp fahrenheit be
features (of ‘type’ rational).

human with fever ≡ human � ∃ temp celsius . λ(x)(x ≥ 38.5)
seriously ill human ≡ human � ∃ temp celsius . λ(x)(x ≥ 42.0)
human with high fever ≡ human � ∃ temp fahrenheit . λ(x)(x ≥ 107.6)

Obviously, the concept seriously ill human is subsumed by human with fever. How-
ever, the relationship between the Celsius and Fahrenheit scales has to be repre-
sented. After adding the following global axiom, the intended equivalence between
seriously ill human and human with high fever is properly recognized.

" � ∃ temp celsius, temp fahrenheit . λ(x, y)(y = 1.8·x + 32)

Using these TBox axioms the following ABox A sets up constraints between the indi-
viduals eve and doris.

{eve :human, (eve, temp eve) : temp fahrenheit, (temp eve) :λ(x )(x = 102.56),
doris :human, (doris, temp doris) : temp celsius, (temp doris) :λ(x )(x = 39.5)}

2The reference to R is omitted in the following if we use T .



Now, asking for the direct types of eve and doris reveals that both individuals are in-
stances of human with fever. If (temp eve, temp doris) :λ(x , y)(x > y) is added to A, it
causes an inconsistency since eve’s temperature is not higher than doris’s temperature.

3 Optimizing Concrete Domain Reasoning

Experiments with a prototype implementation [14] of ALC(D) indicated that concrete
domain (CD) reasoning should only be integrated into a DL system supporting at least
standard optimization techniques such as dependency-directed backtracking, caching,
GCI absorption, and pseudo model merging. In the following we discuss the interaction
between CD reasoning and some of these optimization techniques in more detail.

3.1 Incremental State-based Concrete Domain Tester

Initial tests indicated that for real applications, incremental constraint satisfaction
algorithms have to be explored for dealing with large search spaces. An incremental
constraint solver for linear inequations inspired by [11] has been developed and inte-
grated into Racer. This solver is based on a so-called CD state keeping track of added
CD predicates, their backtracking dependencies, and the internal data structures (vec-
tors, matrices, etc) maintained by the incremental Simplex procedure. The solver is
embedded into a recursive ABox tableaux procedure traversing a search tree spawned
by ABox assertions. The CD tester is invoked whenever a branch of the search tree is
explored which adds a new CD predicate (e.g., see [8] for example tableau rules). In
case a clash is discovered, the tableaux procedure has to backtrack to the most recent
choice point in the search tree and to explore other alternatives. In order to ensure
correctness, it must be possible for the tableaux procedure to restore previous CD
states either by undoing the changes or by reverting to a copy of the original state of
the choice point. Due to the technical details of the incremental Simplex procedure,
it is rather difficult and time consuming to undo the changes to CD states.

Therefore, we decided to keep copies of CD states. The simplest idea is to always
save a copy for possible backtracking before a CD state is modified. This works well for
small examples but fails for large and complex knowledge bases (KBs) such as Tambis3.
Another alternative is to save a copy of the current CD state before an alternative
at a choice point is explored (e.g., if a disjunct of a disjunction is tested). However,
this may result in many unused copies if the search below the choice point does not
necessarily adds new CD predicates. The third alternative, which is implemented in
Racer, is a refined combination of both approaches. A copy of the current CD state
is only saved if a predicate to be added has new backtracking dependencies which are
not yet recorded in the current CD state, i.e., a new choice point for backtracking must
be observed. Initial tests with the Tambis KB, which has been adapted to concrete
domains, suggested that the third strategy significantly reduces the number of copied
CD states.

3The original Tambis KB uses the ALCQHIR+ logic, contains ∼400 named concepts and over 50
GCIs. For further details see [2]. For our experiments we added concrete domain constructs resulting
in the logic ALCQHIR+(D)−.



3.2 Dependency-directed Backtracking

The adaptation of dependency-directed backtracking (DDB) to ALC(D) is described
in [15] where the following requirement was identified. In order to allow DDB after
a CD clash, the CD tester must identify all minimal, inconsistent sets of concrete
predicates (also referred to as clash culprits). These minimal sets define the necessary
dependencies for backtracking. If this is not supported by the CD tester or not
computationally feasible, DDB must be disabled after a CD clash. In the following
we present a relaxed version of this restriction.

Let us assume a state-based CD tester which does not identify all minimal, incon-
sistent sets. In order to keep the set of recorded predicates and their dependencies
as small as possible, the CD tester is used as follows. Before a predicate P is added,
its negation P is added to a copy of the current CD state. If P causes a clash, the
CD state already entails P. The predicate P is not added to the current CD state
and, in particular, the backtracking dependencies of P can be safely ignored. If P
does not cause a clash, P is added to the original CD state. In case the CD tester
signals an inconsistency, the last predicate added to the CD state is guaranteed to
be a clash culprit. The dependencies for backtracking are defined as the union of
the dependencies of this culprit and the dependencies recorded for all CD predicates
already added to the CD state. With this strategy, a possible overhead is introduced
but this is usually compensated by a better backtracking behavior avoiding (thrash-
ing) situations which introduce redundant choice points. Again, initial experiments
with the extended Tambis KB indicated an improvement in runtime performance if
the improved CD testing is enabled.

3.3 Pseudo Model Merging

Pseudo model merging [9, 8] is known to be a very effective optimization technique
for classifying TBoxes. Of course, this technique should also be extended to DLs with
concrete domains in order to enable optimized TBox classification.

The adaptation of pseudo model merging to ALC(D) is reported in [15, 8]. Due
to the syntactic restriction for concrete domains in ALCQHIR+(D)−, which disallows
feature chains, one can extend the algorithms presented in [8] by a kind of “deep CD
model merging.”

Let A ∈ C be a concept name, R ∈ R a role name, F ∈ F a feature name, and
a ∈ O an individual name. In order to obtain a flat pseudo model for a concept C the
consistency of the ABox A ={a :C} is tested. If A is inconsistent, the pseudo model
of C is defined as ⊥. If A is consistent, then there exists a set of completions C. A
completion A′ ∈ C is selected and a pseudo model M for a concept C is defined as the
tuple 〈M A,M ¬A,M ∃,M ∀,M ∃f ,M ∀f〉 using the following definitions.

M A = {A | a :A ∈ A′}, M ¬A = {A | a :¬A ∈ A′}, M ∃ = {R | a :∃R .C ∈ A′},
M ∀ = {R | a :∀R .C ∈ A′}, M ∀f = {∀ f1, . . . , fn .P | a :∀ f1, . . . , fn .P ∈ A′},
M ∃f = {∃ f1, . . . , fn .P | a :∃ f1, . . . , fn .P ∈ A′}

The procedure ALC(D)-mergable (see Procedure 1) implements the new flat model
merging test for ALC(D) for a given non-empty set of pseudo models MS .



Procedure 1 ALC(D)-mergable(MS)
if ⊥ ∈ MS then

return false
for all pairs {M1, M2} ⊆ MS do

if (M A
1 ∩ M ¬A

2 ) %= ∅ ∨ (M ¬A
1 ∩ M A

2 ) %= ∅ ∨ (M ∃
1 ∩ M ∀

2 ) %= ∅ ∨ (M ∀
1 ∩ M ∃

2 ) %= ∅ then
return false

cd state ← create empty cd state()
for all M ∈ MS do

for all C ∈ M ∃f do
〈sat,new cd state〉 ← predicates satisfiable(C,cd state)
if ¬ sat then

return false
cd state ← new cd state

for all M ∈ MS do
for all C ∈ M ∀f do

if all applicable(C,cd state) then
〈sat,new cd state〉 ← predicates satisfiable(C,cd state)
if ¬ sat then

return false
cd state ← new cd state

return true

ALC(D)-mergable uses the procedure predicates satisfiable which decides the
CD satisfiability. The parameter C must be a concept of the form ∀ f1, . . . , fn .P or
∃ f1, . . . , fn .P. The procedure all applicable decides whether a concept of the form
∀ f1, . . . , fn .P is “applicable” to a CD state. A proof for the soundness of ALC(D)-
mergable can be easily adapted from the one given in [8] if we assume that pred-
icates satisfiable decides the satisfiability of a finite conjunction of CD predicates
representing linear inequations.

3.4 Absorption of Domain and Range Restrictions

The absorption of global TBox axioms representing so-called domain or range re-
strictions of roles [6] can be extended to concrete features accordingly. For instance,
Racer absorbs “feature domain” axioms of the form ∃ f ."D � C and “feature range”
axioms of the form " � ∀ f .P. For instance, this absorption technique demonstrated
a runtime improvement of at least one order of magnitude for classifying a modified
version of the “Stereo KB” developed for the Classic system. This KB4 describes
knowledge about the configuration of HiFi stereo systems and our modified version
has been adapted to concrete domains.

3.5 Adding a Restricted Form of Feature Chains

The last subsection of this paper discusses a proposal to relax the syntax restriction of
ALCQHIR+(D)− w.r.t. feature chains. From a modeling point of view the restriction
to globally disallow feature chains is rather severe. For instance, this restriction pre-
vents the proper representation of “nested data structures” such as vectors where a

4The stereo KB contains over 700 named concepts and over 50 GCIs. For more details see [12].



vector is described by two two-dimensional points (called tip and toe) which, in turn,
are described by two coordinates (called x and y), i.e., one would like to use a concept
∃ (tip · x), (toe · x) . λ(x , y)(x = y) describing a vertical vector (tip, toe, x, y are feature
names). Currently, these “data structures” have to be flattened in order to avoid the
need for feature chains. However, the “flattening” solution is rather unsatisfactory and
results in less flexible descriptions. For instance, if a quadrangle should be specified
by 4 vectors whose end points do pairwise coincide, the vectors have to be flattened
into 16 different features describing the x and y coordinates of the tips and toes of the
4 vectors. In the flattened representation the notion of a vector is no longer present.
Thus, it is not possible to express role value restrictions for vectors.

In the following we propose for ALCQHIR+(D)− a relaxed restriction w.r.t. to
feature chains. The relaxation is motivated by the observation that one has to avoid
concept descriptions using feature chains, which enforce infinite models. This is illus-
trated by the following axioms describing ordered lists of rationals (has val, has succ
are always feature names).

ordered list � ∃ has val, has succ · has val . λ(x, y)(x + 1 = y)

" � ∀ has succ . ordered list

A second variant is an axiom introducing a terminological cycle for ordered list.

ordered list �
∃ (has val), (has succ · has val) . λ(x, y)(x + 1 = y) � ∃ has succ . ordered list

A third variant uses a transitive super-role precedes of has succ.

ordered list �
∃ (has val), (has succ · has val) . λ(x, y)(x + 1 = y) �
∀ precedes .∃ (has val), (has succ · has val) . λ(x, y)(x + 1 = y)

However, feature chains are usually not “harmful” in concepts with finite models.
This observation motivated the following relaxed restriction. We assume an absorption
process for TBox axioms which partitions a TBox T into two sets. One TBox partition
(Tu) contains only axioms which can be dealt with by the lazy unfolding technique.
The other TBox (Tm) contains the remaining axioms. The TBox T is called admissible
if the following condition is met for both partitions. Let u1,. . .,un be feature chains.
Feature chains are only allowed in concepts of the form ∃ u1, . . . , un .P if it holds that
no feature mentioned in the chains ui (1) has a super-role and (2) is involved in a
terminological cycle. Additionally, the conditions (1-2) must also hold for all concept
terms of the form ∀ u1, . . . , un .P occurring in the TBox partition Tu.

4 Outlook

The proposed techniques are implemented in Racer and are currently empirically
evaluated in more detail. The proposed relaxation of the use of feature chains is
subject to ongoing work.
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[4] R. Goré, A. Leitsch, and T. Nipkow, editors. Proceedings of the International Joint Con-
ference on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy, Lecture
Notes in Computer Science. Springer-Verlag, June 2001.
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