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Abstract

The Semantic Web has seen increased interest in the use of Description Logic
technology to support ontologies, in particular, the use of classification and con-
sistency checking. This requires that the functionality of DL reasoners be made
readily available to applications. We present a simple interface definition for DL
systems that facilitates their use in systems and describe its implementation in
two DL systems.

1 Introduction

Ontologies have become an increasingly important research topic. This is a result both
of their usefulness in a range of application domains [17, 14, 16], and of the pivotal
role that they are set to play in the development of the Semantic Web

The Semantic Web vision, as articulated by Tim Berners-Lee [7], is of a Web in
which resources are accessible not only to humans, but also to automated processes,
e.g., automated “agents” roaming the web performing useful tasks such as improved
search (in terms of precision) and resource discovery, information brokering and in-
formation filtering. The automation of tasks depends on elevating the status of the
web from machine-readable to something we might call machine-understandable. The
key idea is to have data on the web defined and linked in such a way that its mean-
ing is explicitly interpretable by software processes rather than just being implicitly
interpretable by humans.

Thus the provision of languages with well-defined semantics is seen as key to
enabling the notion of machine-understandability, and the latest generation of Web
Ontology languages such as OIL [9], DAML+OIL [1] and OWL [8] have placed much
emphasis on such semantics. In addition, Description Logic languages [2] have emerged
as a leading contender for the logical representation of ontologies. DLs are a family
of languages that provide fragments of first-order logics that are restricted in such
a way to allow tractable reasoning. DAML+OIL was effectively a description logic
and the definition of OWL is being layered [8] in such a way as to provide subsets
of the language that map to an expressive Description Logic. The expressivity of the
OWL-Lite and OWL-DL layers has been tailored to facilitate tractable reasoning over
ontologies represented in those languages.



1.1 DL Systems

In the past, description logic (DL) systems have presented the application programmer
with a functional interface, often defined using a Lisp-like syntax. Such interfaces may
be more or less complex, depending on the sophistication of the implemented system,
and may be more or less compliant with a specification such as KRSS [15].

The Lisp style of the KRSS syntax reflects the fact that Lisp is still a common
implementation language for DLs. This can create considerable barriers to the use of
DL systems by application developers, who often prefer other languages (in particular
the currently ubiquitous Java), and who are becoming more accustomed to component
based software development environments. This is of increasing importance given
current interest in Web Services and service based architectures. In addition, KRSS
can be seen as more of a language description than an API.

In a distributed, web-based environment, a DL might naturally be viewed as a self
contained component, with implementation details, and even the precise location at
which its code is being executed, being hidden from the application [6]. This approach
has several advantages: the issue of implementation language is finessed; the API
can be defined in some standard formalism intended for the purpose; a mechanism
is provided for applications to communicate with the DL system, either locally or
remotely; and alternative DL components can be substituted without affecting the
application.

This approach was adopted in the CORBA-FaCT system [4], where a CORBA
interface was defined for a description logic reasoner. This wrapping of the FaCT rea-
soner facilitated the successful use of the reasoner in applications such as OilEd [3] and
ICOM [10]. Although useful, CORBA-FaCT suffered from a number of inadequacies.
The concept langage does not cover concrete domains, and as the interface was largely
based on the FaCT reasoner (which did not support an A-Box at the time), function-
ality relating to A-Boxes was missing. In addition the concept identifiers allowed were
closely tied to the underlying Lisp implementation (case insensitive strings of essen-
tially alphanumeric characters). This introduces problems when trying to reason over
languages such as DAML4OIL where classes are referred to using URIs!.

The RACER [12] system adopted a slightly different mechanism, providing a socket
based interface for use by client applications. This again provides a language neutral
API, but the lower-level interface places more onus on the client programmer.

The Description Logic Implementation Group (DIG)? is a small self-selected group
of DL system implementors. DIG was formed with the intention of sharing implemen-
tation experiences and moving towards standard system architectures for DL systems.
One of the first activities undergone by DIG was the development of the interface as
described in this paper.

2 The DIG interface

The DIG interface described here provides a basic API to a DL system, and should
be considered as a Lewvel ( specification — in its current version it contains just enough

LOf course such problems are not insurmountable, but do provide barriers to the ease of use of the
systems.
*http://dl.kr.org/dig



functionality to enable tools such as OilEd [3] to use a DL reasoner. It does not provide
what we might truly call a reasoning service, but rather helps to insulate applications
from the location and implementation language of a DL reasoner. The specification
does not address issues such as stateful connections, transactions, reasoner preferences
and so on. There is nothing inherently new in this specification — it is effectively an
XML Schema for a DL concept language along with ask/tell functionality. Along with
the definition of the interface, however, there is a commitment from implementors of
leading DL reasoners (such as FaCT [13], RACER [12] and Cerebra?®) to provide
implementations conforming to the specification (see Section 7). This will truly allow
us to build plug and play applications where alternative reasoners can be seamlessly
integrated into our systems. Applications need not know the details of the underlying
reasoner being used at a particular time, and can instead access reasoning engines
using a common interface.

The remainder of the paper provides a brief overview of the interface. Space
precludes us from providing detailed descriptions of message formats, but further
information (along the latest schemas) can be found at:

http://dl-web.man.ac.uk/dig

Assumptions A number of assumptions have been made for this initial specifica-
tion.

e The specification is agnostic as to multiple client connections. Multi-threaded
implementations of a reasoner may be provided, but no guarantees are made as
to the semantics when clients attempt to simultaneously update and query.

e The connection to the reasoner is effectively stateless. Clients are not identi-
fied to the reasoner, thus the reasoner will not distinguish between clients and
maintain any kind of consistency checking or record of which client is adding
information or making requests. Conversely, a client has no way of ensuring
that the reasoner has not been given additional information (such as additional
axioms) since its last communication.

e There is no explicit classification request. The reasoner will decide when it is
appropriate to, for example, build a classification hierarchy of concepts. This
may happen after each TELL request, alternatively the reasoner may choose to
defer the classification until absolutely necessary, or even when there is a lull in
traffic.

The specification essentially consists of an XML Schema [18] describing the ex-
pressions of the concept language, the available tell and ask operations along with the
expected responses and administrative information.

Note that the specification is not intended as a “database system” for knowledge
bases. It is simply a protocol that exposes the reasoning services provided by a DL
reasoner (hence the presence of a number of restrictions as described below, such as
the absence of retraction).

®http://www.networkinference.com/



3 Protocol

Level 0 uses HTTP [11] as the underlying transfer protocol. In this respect, we borrow
from other initiatives such as SOAP* and XML-RPC? which have both built messaging
protocols using XML on top of HTTP. The use of HTTP allows client (and server)
developers to use existing libraries for implementation®. We are not strongly wedded
to the use of HTTP as the underlying protocol. A richer mechanism may be adopted
in the future. For this Level 0 specification, however, it suffices.

Request Clients communicate with a server through the use of HT'TP POST requests.
The body of the request must be an XML encoded message corresponding to a DIG
request as described below. Content-Type is text/xml, and the Content-Length
must be specified and must be correct.

The server will use the root element of the message body to determine the message
type (i.e. identification, management, ask or tell).

Response Unless there is a low-level error, the server should return 200 0K. As with
requests, the Content-Type is text/xml and Content-Length must be present and
correct. The body of the response must be an XML encoded message corresponding
to a DIG response as described below.

Persistent Connections The HTTP specification supports the use of persistent
connections, which allow requests to be pipelined. This can allow a single TCP con-
nection to be used for multiple requests without waiting for each response. It is
envisaged that DIG reasoners implementing this specification will support persistent
connections.

Why not SOAP? The interface is using XML over HT'TP. Why not just use SOAP?
The protocol is intended to be as light weight as possible — by using XML/HTTP,
we do not have to worry about any of the SOAP container aspects. In addition, the
intention is not to pass objects across the interface, but simply messages (e.g. strings).
The use of SOAP may ultimately help to integrate into a web service framework, but
there is nothing in the current approach that precludes a migration to an alternative
protocol such as SOAP.

4 Reasoner Identification

An aspect lacking from the original CORBA-FaCT specification was the ability to
identify which reasoner was actually behind the interface. This is particularly im-
portant when we may have a number of different reasoners supplying conforming
interfaces.

*http://www.w3.org/TR/SOAP/

Shttp://www.xmlrpc.com/

6 Although this should not be a prime motivation for the use of the protocol, building on top
existing work is likely to improve the chances of the DIG Interface being used.



Reasoner Capabilities Ideally, we would expect all reasoners implementing the
specification to support the entire concept language and tell/ask functionality. In
reality, this is unlikely to be the case in the short term, and some reasoners may
choose not to implement, for example, support for concrete domains. In order to cope
with this, along with information regarding their identification, a reasoner should also
supply details of the language which it supports. This will enable clients to decide
whether or not the reasoner will be of use, or guide the clients as to the questions that
they can ask of the reasoner.

Such “introspective” descriptions of tools and services are crucial to supporting
dynamic component and service discovery as is being pursued in areas such as the
Grid.

In the current specification this capabitility information is rather primitive, and es-
sentially amounts to a list of the concept forming operators, tell assertions and queries
supported. In the long term, it would be desirable to extend this, for example being
able to represent constraints such as whether particular combinations of operation are
allowed.

It is assumed that all reasoners will support primitive concepts and roles.

5 Knowledge Base management

A DIG reasoner can deal with multiple knowledge bases. URIs are used in order to
identify the different knowledge bases. When a request is made to a reasoner to create
a new knowledge base, the reasoner (if successful) will return to the client a URI which
the client can then use to identify the knowledge base during TELL and ASK requests
(see Sections 6 and 6). Knowledge base URIs are guaranteed to be unique, thus a KB
URI is valid for that reasoner only — making a request to another reasoner with the
same URI will result in an error. The use of unique URIs also allows us to sidestep
some of the issues relating to multiple clients. If a client chooses not to share a KB
URI with another client, then the client can be sure that it is the only one interacting
with the KB”. Different clients of the same reasoner, however, may be able to share
knowledge bases by sharing URIs — however it is then the clients’ responsibility to
manage and coordinate this sharing.
There are two MANAGEMENT requests.

e A request for a new knowledge base. The response will return the URI that the
reasoner has allocated for the KB (if successful);

e A request to release a knowledge base. In this case, the client should supply
the URI of the KB to release. Once a knowledge base has been released, any
requests made using the URI should result in an error.

Note that the URIs referred to above simply provide a handle that identifies the
particular incarnation of the KB in the particular reasoner.

"This is not entirely the case, as a malicious client could choose to try sending messages with
random URIS to a running reasoner. There is a (very small) chance that such a client could get lucky
and hit on a URI which is in use, but this potentional situation is unlikely enough for us not to be
concerned with it at this point.



Of course, richer access mechanisms involving, for example, authentication, are
likely to be necessary for wider deployment of reasoning services for real-world applica-
tions in networked environments. We are aware that our current interface specification
(explicitly) ignores this issue in its current form.

6 Message Formats

Communication with the reasoner is via messages which encode the TELL and ASK
functions supported by the reasoner.

Concept Language DIG’s concept language is based on SHOZQD,,, that is a
description logic that includes the standard boolean concept operators (M, U, —),
universal and existential restrictions, cardinality constraints, a role hierarchy, inverse
roles, the one-of construct and concrete domains. SHOZQD,, was chosen as it is rich
enough to support reasoning over DAML~+OIL and OWL-DL. Reasoning for Semantic
Web applications is seen as a prime use for DL reasoners in the near future.

Version 1.1 provides rather restricted support for concrete domains, however. Inte-
gers and strings are provided, along with concept expressions for minimum, maximum,
value equality and ranges. Linear inequations are not provided, nor are named con-
crete objects, although these may be introduced in a later version of the schema.
Ranges can be asserted for attributes using assertions like rangeint or rangestring.
If no range is supplied, attributes have integers as their range by default.

Tell Syntax A TELL request must contain in its body a tells element, which itself
consists of a number of tell statements. TELL requests are monotonic — i.e. once
information has been told to a knowledge base, it can never be retracted or removed.
The only such option available is to release the knowledge base (see Section 5) and then
start again. A TELL request must be made in the context of a particular knowledge
base (which is identified via an attribute of the enclosing tells element).

The order of tell statements is unimportant.

The response to a tell will be a response message containing either an ok element,
signifying that the statements were received and interpreted correctly, or an error
element which may include an optional error code, message and detailed explanation.
In addition, an ok message may contain warnings about the tells received. For exam-
ple, the FaCT reasoner will happily process knowledge bases where primitive concepts
are used without being explicitly introduced. However, it may be useful to warn the
user if this has happened, as this may indicate a spelling or typographical mistake.

Ask Syntax An ASK request must contain in its body an asks element, which itself
consists of a number of ask statements. Each ask statement must have an attribute id
which supplies a unique identifier for the query (within the context of the particular
collection of queries). This allows the presentation of multiple queries in one request,
which may in turn allow the reasoner to optimise the processing of these queries. Each
asks element must also have an attribute that identifies the knowledge base that the
queries are being posed against. The value of this attribute should be a URI which
identifies a KB within the reasoner.



Response Syntax The schema contains a description of the responses expected of
the server to ASK requests. The response to an ASK request must contain in its body a
responses element, which itself consists of a number of responses — one for each query
in the ASK. Each particular response must have an attribute id which corresponds to
the identifier of a submitted query.

In general, responses to concept queries such as a request for all parents will return
sets of sets of concept names, each set being a collection of synonyms.

Interface Granularity One key issue with the specification of an interface is the
granularity of the operations supplied. For example, a criticism of the CORBA-
FaCT interface was that in order to construct a concept hierarchy (a common task for
applications), the client had to make many requests to the server. This was undesirable
due to the overhead involved with communication.

This becomes less of an issue when multiple requests are permitted in a single
communication. For example, in order to determine the classification hierarchy, a
client need only make two requests: one to determine the concepts in the hierarchy
(for example through the use of a <descendants> or <allConceptNames> request,
and one to determine all the immediate children of those concepts. This information
is then sufficient to recreate the hierarchy without further communication with the
reasoner.

7 Implementations

Two implementations of reasoners supporting the DIG protocol are currently available.
RACER 8 and FaCT ° both support DIG 1.1.

The OilEd tool [3] has been altered to use DIG as its primary mechanism for
interacting with a reasoner. This allows users to select FaCT or RACER as the
reasoner with which to classify and consistency check their DAML+OIL and OWL
ontologies.

In addition, a prototype instance store [5] has been implemented that uses DIG
to access a DL reasoner. Again, this has allowed us to experiment with alternative
reasoners, an invaluable facility when testing.

8 Future Work

The interface described here is, of course, simply a first step towards the provision of
reasoners that can be deployed in a component-based architecture. There are many
areas in which the specification could be extended. The assumptions described in 2
could be relaxed, in particular to support multiple or stateful clients. The concept
language could be extended to cover more expressive DLs. Alternatively we can
investigate the provision of a SOAP based interface for better integration in a web
service setting.

8 Available from: http://www.fh-wedel.de/ mo/racer/.
9 Available from: http://www.cs.man.ac.uk/fact.
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