
Racer: An OWL Reasoning Agent for the Semantic Web

Volker Haarslev† and Ralf M̈oller‡
†Concordia University, Montreal, Canada (haarslev@cs.concordia.ca)

‡University of Applied Sciences, Wedel, Germany (rmoeller@fh-wedel.de)

Abstract
Racer, which can be considered as a core reasoning agent

for the semantic web, is briefly described. Racer currently sup-
ports a wide range of inference services about ontologies spec-
ified in the Ontology Web Language (OWL). These services are
made available to other agents via network based APIs. Racer
is currently used by various clients such as ontology editors,
ontology development and visualization tools, and a first web-
based prototype for exploration and analysis of OWL ontolo-
gies.

1 Introduction
The Semantic Web initiative defines important challenges for
knowledge representation and inference systems. Recently,
several standards for representation languages have been pro-
posed. One of the standards for the Semantic Web is the Re-
source Description Framework (RDF [1]). Since RDF is based
on XML it shares its document-oriented view of grouping sets
of declarations or statements. With RDF’s triple-oriented style
of data modeling, it provides means for expressing graph-
structured data over multiple documents (whereas XML can
only express graph structures within a specific document). As
a design decision, RDF can talk about everything. Hence, in
principle, statements in documents can also be referred to as
resources. In particular, conceptual domain models can be rep-
resented as RDF resources. Conceptual domain models are
referred to as “vocabularies” in RDF. Specific languages are
provided for defining vocabularies (or ontologies). An exten-
sion of RDF for defining ontologies is RDF Schema (RDFS
[2]) which only can express conceptual modeling notions such
as generalization between concepts (aka classes) and roles (aka
properties). For properties, domain and range restrictions can
be specified. Thus, the expressiveness of RDFS is very lim-
ited. A much more expressive representation language is OWL
(Ontology Web Language) [3]. Although still in a very weak
way, based on XML-Schema, OWL also provides for means of
dealing with data types known from programming languages.

The representation languages mentioned above are defined
with a model-theoretic semantics. In particular, for the lan-
guage OWL, a semantics was defined such that very large
fragments of the language can be directly expressed using so-
called description logics (see [4]). The fragment is called

OWL DL. With some restrictions that are discussed below one
can state that the logical basis of OWL can be characterized
with the description logicSH I Q (Dn)− [5]. This means, with
some restrictions, OWL documents can be automatically trans-
lated toSH I Q (Dn)− T-boxes. The RDF-Part of OWL docu-
ments can be translated toSH I Q (Dn)− A-boxes.

2 Racer: An OWL Reasoner

The logic SH I Q (Dn)− is interesting for practical applica-
tions because highly optimized inference systems are avail-
able (e.g., Racer [6]). Racer is freely available for research
purposes and can be accessed by standard HTTP or TCP pro-
tocols (the Racer program is subsequently also called Racer
server). Racer can read OWL knowledge bases either from
local files or from remote Web servers (i.e., a Racer server is
also a HTTP client). In turn, other client programs that need
inference services can communicate with a Racer server via
TCP-based protocols. OilEd [7] can be seen as a specific client
that uses the DIG protocol [8] for communicating with a Racer
server, whereas RICE [9] is another client that uses a TCP pro-
tocol providing extensive query facilities (see below).

The DIG protocol [8] is a XML- and HTTP-based standard
for connecting client programs to description logic inference
engines. DIG allows for the allocation of knowledge bases
and enables clients to pose standard description logic queries.
As a standard and a least common denominator it cannot en-
compass all possible forms of system-specific statements and
queries. Let alone long term query processing instructions
(e.g., exploitation of query subsumption, computation of in-
dexes for certain kinds of queries etc., see [10]). Therefore,
Racer also provides a TCP-based interface in order to receive
instructions (statements) and queries. For interactive use, the
language supported by Racer is not XML- or RDF-based. The
advantage is that users can spontaneously type queries which
can be directly sent to a Racer server. However, the Racer TCP
interface can be very easily accessed from Java or C++ appli-
cation programs as well. For both languages corresponding
APIs are available.



Figure 1: The lists of known concepts and individuals.

3 Some Supported Inference Services

In description logic terminology, a tuple consisting of a T-box
and an A-box is referred to as a knowledge base. An individ-
ual is a specific named object. OWL also allows for individuals
in concepts (and T-box axioms). For example, expressing the
fact that all humans stem from a single human called ADAM
requires to refer to an individual in a concept (and a T-box).
Only part of the expressivity of individuals mentioned in con-
cepts can be captured with A-boxes. However, a straightfor-
ward approximation exists (see [11]) such that in practice suit-
ableSH I Q (Dn)− ontologies can be generated from an OWL
document. Racer can directly read OWL documents and rep-
resent them as description logic knowledge bases (aka ontolo-
gies). In the following a selection of supported T-box queries
is briefly introduced.

• Concept consistency: Is the set of objects described by a
concept empty?

• Concept subsumption: Is there a subset relationship be-
tween the set of objects described by two concepts?

• Find all inconsistent concepts mentioned in a T-box. In-
consistent concepts might be the result of modeling er-
rors.

• Determine the parents and children of a concept: The
parents of a concept are the most specific concept names
mentioned in a T-box which subsume the concept. The
children of a concept are the most general concept names
mentioned in a T-box that the concept subsumes.

Whenever a concept is needed as an argument for a query, not
only predefined names are possible. If also an A-box is given,
among others, the following types of A-box queries are possi-
ble:

• Check the consistency of an A-box: Are the restrictions
given in an A-box w.r.t. a T-box too strong, i.e., do they
contradict each other? Other queries are only possible
w.r.t. consistent A-boxes.

• Instance testing: Is the object for which an individual
stands a member of the set of objects described by a cer-
tain query concept? The individual is then called an in-
stance of the query concept.

• Instance retrieval: Find all individuals from an A-box
such that the objects they stand for can be proven to be a

Figure 2: Information about the individual JERRY.

member of a set of objects described by a certain query
concept.

• Computation of the direct types of an individual: Find
the most specific concept names from a T-box of which
a given individual is an instance.

• Computation of the fillers of a role with reference to an
individual.

Given the background of description logics, many application
papers demonstrate how these inference services can be used
to solve actual problems with OWL knowledge bases. The
query interface is extensively used by RICE and a tool for on-
tology exploration and analysis that is introduced in the next
section.

4 Ontology Exploration and Analysis Tool

This section presents a first prototype for an ontology explo-
ration and analysis tool designed for OWL. This tool parses
OWL files and presents a “natural language” interface for ex-
ploring and analyzing ontologies. This is facilitated by using
the inference services of Racer. We demonstrate this with a
simple browsing scenario using a small ontology (for sake of
brevity) about the cartoon characters Tom and Jerry.

Let us assume a corresponding ontology has been loaded.
We start browsing the lists of all concept and individual names
declared in this ontology (see Figure 1). We are interested
in the individual JERRY (shown in Figure 2) and learn that
JERRY is an instance of the class MOUSE. We know that cats
usually eat mice, so we decide to inspect the description of
CAT (see Figure 3) by clicking on the corresponding hyperlink
in Figure 1.

Figure 3 shows a description of the class CAT. This descrip-
tion displays results from the inference services of Racer and
consists of the following information.



Figure 3: Description of class CAT.

• Concept (class) name
• Default name space
• Ontology filename
• The names of the ancestor classes (TOP, which is a syn-

onym for THING, and ANIMAL1, ANIMAL2)
• The names of the descendent classes (BOTTOM, which

is a synonym for NOTHING, and SMALLCAT)
• The parents (ANIMAL1 and ANIMAL2)
• The children (SMALLCAT)
• The names of the roles (properties) mentioned in this

class definition (EAT-MOUSE)
• The individual names that are instances of this class

(TOM)
• The OWL definition (for debugging purposes)
• A description of the class declaration in a formalized

“natural language”

We learn that a cat has to be in the relationship (role) EAT-
MOUSE with at least one individual. After clicking on the
corresponding hyperlink, the description EAT-MOUSE is dis-
played in Figure 4.

Roles may be part of a role hierarchy. For instance, for
this example we discover that EAT-MOUSE is defined as a
child of role EAT-ANIMAL and a parent of role EAT-SMALL-
MOUSE.

Most readers will agree that this kind of information is bet-
ter readable and helpful in understanding ontologies than just
reading the OWL specification. The final version of this web-
based tool will offer more support for the exploration and anal-
ysis of (unknown) OWL ontologies with the help of the OWL
reasoning agent Racer. It is planned to provide a more ad-



Figure 4: Description of property EAT-MOUSE.

vanced query support and better cross-referencing. The tool is
implemented as a web server and can be used with any web
browser. Currently the tool is designed as a reactive agent for
understanding OWL ontologies. However, we also envision a
more proactive version of this tool that would automatically
notify users or agents if interesting information about ontolo-
gies becomes available. In the following section we describe
a general interface supporting the proactive behavior of such a
type of agents.

5 Accessing Retrieval Inference Services

The main examples for the Semantic Web use information re-
trieval applications involving one or more agents. In a full-
fledged information retrieval scenario, an agent might consult
a document management system provided by an agent host
environment. The agent can ask for documents that match a
certain query in a similar way as discussed above. This sce-
nario can also be realized with Racer if documents are anno-
tated with meta data formalized with RDF [12]. Information
about documents can be represented using A-boxes. RDF an-
notations for documents are read by Racer and corresponding
assertions are added to an A-box. Data types and values play

an important role for describing documents (e.g., year, ISBN
number etc.). Agents can retrieve documents by posing re-
trieval queries to A-boxes w.r.t. to specific T-boxes in the way
exemplified above.

5.1 Publish/Subscribe Interface

If we consider an instance retrieval query Q w.r.t. an A-box A,
then it is clear that the solution set for Q could be extended if
more information is added to A over time (whoever is respon-
sible for that, another agent or the agent host environment).
It would be a waste of resources to frequently poll the host
environment with the same query (and repeated migration op-
erations). Therefore, Racer supports the registration of queries
at some server w.r.t. to some A-box (Publish/Subscribe Inter-
face). With the registration, the agent specifies an IP address
and a port number. The corresponding Racer Server passes a
message to the agent if the solution set of a previously regis-
tered instance retrieval query is extended. The message spec-
ifies the new individuals found to be instances of the query
concept Q. We call the registration of a query, a subscription
to a channel on which Racer informs applications about new
query results. For details see the Racer manual [11].

Rather than considering a single query in isolation, a prac-



tical system should be able to consider query sets (as database
systems do in many applications). With the publish/subscribe
interface, multiple queries can be optimized by Racer. Instance
retrieval queries can be answered in a faster way if the set of
candidates can be reduced. In a similar way as for databases,
the idea is to exploit results computed for previous instance
retrieval queries by considering query subsumption (which is
decidable in the case of the query language that Racer sup-
ports). However, this requires computing index structures for
the T-box (the process is known as T-box classification) and,
therefore, query subsumption is enabled on demand only. On
the one hand, there are some applications, in which A-boxes
are generated on the fly with few queries referring to a single
A-box. On the other hand, there are applications which pose
many queries to more or less “static” T-boxes and A-boxes
(which are maybe part of the agent host environment). The
Racer Server supports both application scenarios. As a de-
sign decision, Racer computes answers for queries with as few
resources as possible. Nevertheless, a Racer Server can be in-
structed to compute index structures in advance if appropriate
to support multiple queries.

5.2 Additional Features of the Racer System

Optimizations: Various optimization techniques for ontology-
based query answering with respect to T-boxes, A-boxes, and
concrete values have been developed, implemented, and in-
vestigated with the Racer System. One of the design goals of
Racer is to automatically select state of the art optimization
techniques that are applicable to the current input.

Persistency: In a similar way as in database systems, for
query answering w.r.t. T-boxes and A-boxes complex data
structures are computed and used internally by Racer. Internal
structures of T-boxes and A-boxes being processed for query
answering can be saved to disk for quick access and later reuse
if the Racer Server is restarted.

Multi-User Support, Thread Safeness, Locking, Load Bal-
ancing: In a distributed systems context, there can be multiple
agents connecting to a server at the same time. If they refer
to the same A-boxes and T-boxes, requests must be synchro-
nized. Thus similar problems as with databases such as thread
safeness, locking, and load balancing have to be dealt with.
For instance, if multiple Racer Servers are started, queries can
be automatically directed to “free” Racer Servers. These prob-
lems are tackled by the Racer Proxy, which is supplied as part
of the Racer System distribution.

6 Conclusion

This paper briefly described the OWL reasoning agent Racer
and its services and demonstrated that Racer can cooperate
with an ontology exploration and analysis tool. Description
logic systems freely available for research purposes now pro-
vide for industry-oriented software integration and begin to

ensure stable access in multi-user environments as can be ex-
pected in the context of the semantic web with its XML-based
representation languages (RDF, OWL).

Acknowledgements

We gratefully acknowledge the work of Ying Lu, who is de-
veloping the ontology exploration and analysis tool.

References
[1] O. Lassila and R.R. Swick, “Resource descrip-

tion framework (RDF) model and syntax speci-
fication. recommendation, W3C, february 1999.
http://www.w3.org/tr/1999/rec-rdf-syntax-19990222”,
1999.

[2] D. Brickley and R.V. Guha, “RDF vocabu-
lary description language 1.0: RDF Schema,
http://www.w3.org/tr/2002/wd-rdf-schema-20020430/”,
2002.

[3] F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein, “OWL web
ontology language reference”, 2003.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider,The Description Logic Handbook,
Cambridge University Press, 2003.

[5] F. Baader, I. Horrocks, and U. Sattler, “Description log-
ics as ontology languages for the semantic web”, in
Festschrift in honor of J̈org Siekmann, D. Hutter and
W. Stephan, Eds. 2003, LNAI. Springer-Verlag.

[6] V. Haarslev and R. M̈oller, “Racer system description”,
in International Joint Conference on Automated Reason-
ing, IJCAR’2001, June 18-23, 2001, Siena, Italy., 2001.

[7] S. Bechhofer, I. Horrocks, and C. Goble, “OilEd: a
reason-able ontology editor for the semantic web”, in
Proceedings of KI2001, Joint German/Austrian confer-
ence on Artificial Intelligence, September 19-21, Vienna.
LNAI Vol. 2174, 2001, Springer-Verlag.

[8] S. Bechhofer, R. M̈oller, and P. Crowther, “The DIG
description interface”, inProc. International Workshop
on Description Logics – DL’03, 2003.

[9] R. Möller, R. Cornet, and V. Haarslev, “Graphical inter-
faces for Racer: querying DAML+OIL and RDF docu-
ments”, inProc. International Workshop on Description
Logics – DL’03, 2003.

[10] V. Haarslev and R. M̈oller, “Optimization stategies for
instance retrieval”, inProc. International Workshop on
Description Logics – DL’02, 2002.

[11] V. Haarslev and R. M̈oller, “The Racer user’s guide and
reference manual”, 2003.

[12] Adobe Systems Inc., “Embedding XMP metadata in ap-
plication files”, 2002.


