
Optimization Techniques for
Retrieving Resources

Described in OWL/RDF Documents:
First Results

Volker Haarslev† and Ralf Möller‡

†Concordia University, Montreal
‡Technical University Hamburg-Harburg

Abstract

Practical description logic systems play an ever-growing role for knowl-
edge representation and reasoning research even in distributed environments.
In particular, the often-discussed semantic web initiative is based on de-
scription logics (DLs) and defines important challenges for current system
implementations. Recently, several standards for representation languages
have been proposed (RDF, OWL). By introducing optimization techniques
for inference algorithms we demonstrate that sound and complete query en-
gines for semantic web representation languages can be built for practically
significant query classes. The paper introduces and evaluates optimization
techniques for tableau-based instance retrieval algorithms for the description
logic SHIQ(Dn)−, which covers large parts of OWL. The paper discusses
practical experiments with the description logic system Racer.

1

1 Introduction

Practical description logic systems play an ever-growing role for knowledge representa-
tion and reasoning research. In particular, the semantic web initiative [6] is based on
description logics (DLs) and defines important challenges for current system implemen-
tations. Recently, one of the main standards for the semantic web has been proposed:
the Web Ontology Language (OWL) [24]. OWL is based on two other standards: Re-
source Description Format (RDF [19]) and its corresponding “vocabulary language”
RDF Schema (RDFS) [9]. In recent research efforts, these languages are mainly consid-
ered as ontology representation languages (see e.g. [1] for an overview). The languages
are used for defining classes of so-called abstract objects. Now, many applications start
to use the RDF part of OWL for representing information about specific abstract ob-
jects of a certain domain. Graphical editors such as OilEd [4] or Protégé [23] support
this way of using OWL quite well.

All information about specific objects (or entities) refers to an ontology (expressed
in OWL). Thus, in contrast to, for instance, simple relational databases, queries for
retrieving abstract objects described in RDF documents have to be answered w.r.t. to
a conceptual domain model (the ontology). The paper introduces and evaluates opti-
mization techniques for tableau-based instance retrieval algorithms for the logical basis
of OWL DL, the description logic SHIQ(Dn)− [17, 13], and discusses practical experi-
ments with the description logic system Racer. By introducing optimization techniques
for tableau-based inference algorithms we demonstrate that sound and complete query
engines for semantic web representation languages can be built for practically significant
query classes. The paper is aimed at semantic web systems developers interested in ap-
plying and implementing sound and complete knowledge representation and reasoning
technologies. Note that we consider soundness and completeness as very important be-
cause incompleteness of instance retrieval can even result in unsoundness if the results
are used for higher-level purposes in an unreflected way.

The paper presupposes only basic knowledge about description logics, which can be
easily acquired from introductory textbooks (see [2]). A few words about the relationship
of description logics, semantic web representation languages, and systems such as Racer
are appropriate, however.

Racer reads OWL ontology documents from web servers and represents ontology
information as a so-called T-box. T-boxes contain so-called generalized concept inclu-
sions (GCIs). For details about description logic syntax and semantics see, e.g., [2].
Racer accepts the so-called OWL DL subset [24] with some minimal restrictions such
as approximated reasoning for nominals, no full number restrictions for datatype prop-
erties, and unique name assumption (see [12] for details). DAML+OIL documents are

1

interpreted with the same restrictions as manifested in OWL DL [24] (the sets of classes
and instances are disjoint, no reified statements, no treatment of class metaobjects etc.).
For the results presented in the paper, these restrictions are of no importance.

Descriptions in RDF documents (with OWL DL restrictions) are represented as A-
boxes managed by the Racer System (for details see the Racer User’s Guide [12]).
Basically, the instance retrieval problem for a query concept Cq and an A-box A can
be implemented as a sequence of instance tests for all individuals that are mentioned in
an A-box. An instance test verifies that an individual i is in the extension of a certain
concept in all models of a given T-box and A-box. Retrieving resources described in
OWL/RDF documents can be implemented using the A-box instance retrieval inference
service [15]. In this paper we discuss a restricted version of conjunctive queries [18]. An
introduction to an XML-based query syntax is given in [5].

The contribution of the paper is twofold. By introducing and analyzing practical
algorithms tested in one of the mature, sound, and complete description logic systems,
which is used in many research projects all over the world, the development of even
more powerful semantic web query engines is directly supported. We also characterize
the research frontier in order to also stimulate theoretical research for providing the
basis for upcoming future system implementations. All example knowledge-bases we
discuss in this paper can be downloaded for verification and comparison purposes (see
the Racer download page).

2 Research Approach, Test Data, and Benchmarks

For implementing sound and complete inference algorithms, tableau-based algorithms
are known to provide a powerful basis. Nowadays, almost all practical systems for
SHIQ(Dn)− employ highly optimized versions of tableau-based algorithms. It should be
emphasized that the research approach behind Racer is oriented towards applications.
Thus, we start with optimization techniques for application-specific knowledge bases in
order to evaluate optimization techniques in the context of instance retrieval problems.
In particular, we consider applications for which the full power of A-box reasoning is
actually required. We are aware of other approaches in which the use of logical reasoning
for computing queries for other formalisms seems to be more appropriate (see [7], [8],
[20]).

2.1 GameKB – An Application-Specific Knowledge Base

For instance, in [10, 11] a case-study with the application of DL inference services in
a natural language (NL) interpretation system is presented. In particular, the instance
retrieval service is investigated for various application-specific subtasks (e.g., resolution

2

of referring expressions, content determination, and content realization). In this applica-
tion, many A-boxes are generated on the fly (see [10, 11] for details) and for each A-box
a specific instance retrieval query is computed. In order to achieve good performance
in the NL application, the performance of the instance retrieval procedure provided by
the DL system is crucial. Furthermore, since A-boxes change quite frequently, standard
techniques for optimizing instance retrieval using indexing techniques (see below for an
explanation) can hardly be employed in order to improve performance because of the
overhead of computing index structures in beforehand.

The T-box consists of 165 possibly cyclic GCIs for concepts as well as domain and
range restrictions for 18 roles. In the T-box, many sufficient conditions for concept names
are given (with appropriate GCIs, see also declarations with sameConceptAs in OWL).
In the A-box around 250 individuals are mentioned in concept and role assertions. The
DL used in the knowledge base is a subset of OWL DL (actually, ALC with inverse roles
[2]).

2.2 Synthetic Knowledge Bases for Testing Behavior on Mass Data

For evaluating specific aspects of DL inference engines, a set of benchmarks containing
synthetically generated KBs was developed [21]. In this paper we consider some of these
tests, which are generated automatically due to different strategies. The tests consist of
a so-called symmetric concept tree of depth d and branching factor b. For each concept
n instances are declared. The instance retrieval query refers to a concept name at the
first layer (one of the children of top). The second kind of test is similar to the first one
but also declares relations between the individuals. An individual is set into relation to
a previously generated one via a so-called role assertion [2]. Only one role is used.

The following discussion about optimization techniques starts with insight gained
from application-knowledge bases. Later on we use some synthetically generated bench-
marks to shed additional light on the behavior of the techniques proposed.

3 Optimization Techniques and their Evaluation

For applications, which generate A-boxes on the fly as part of their problem-solving
processes and ask a few queries w.r.t. each A-box, computing index-structures (with a
process called “realization”, see below) is not worth the effort. In this section we discuss
answering strategies for this kind of application scenario. As we will see, the techniques
can also be exploited if index structures are to be computed (possibly off-line).

If an A-box contains individuals that are not “connected” by role assertions (or
by constraints involving concrete domains), Racer computes so-called subset A-boxes
representing these “islands”, applies the algorithms described below to each subset,

3

and combines the results. We do not mention this kind of processing explicitly in the
following subsections.

3.1 Optimized Linear Instance Retrieval

One possible alternative is to consider one individual at a time. Hence, the procedure
instance retrieval(Cq, A) can be implemented by using the following procedure call:
linear instance retrieval(Cq, contract(i, A), individuals(A)) where individuals(A) re-
turns the set of individuals mentioned in the A-box A and the function contract com-
putes a transformation of an A-box w.r.t. an individual. The idea is to transform
tree-like role assertions “starting” from the individual i into equisatisfiable concept as-
sertions with existential restrictions (see [14] for details). The reason is that in Racer,
caching (see also [14]) is more effective for concepts rather than for A-box role assertions.
Contracting an A-box is part of the processes for building internal data structures for
A-box reasoning algorithms.

We assume that ASAT is the standard A-box satisfiability test implemented as
an optimized tableau calculus [17, 13]. The function linear instance retrieval is then
implemented as follows.

Algorithm 1 linear instance retrieval(C,A, candidates):
result := {}
for all ind ∈ candidates do

if instance?(ind, C, A) then
result := result ∪ {ind}

return result

The function call instance?(i, C,A) could be implemented as ¬ASAT (A ∪ {i : ¬C}).
However, although this implementation of instance? is sound and complete, it is quite
inefficient. A faster variant uses sound but incomplete initial tests for detecting “ob-
vious” non-instances: the individual model merging test (see [16]) and a subsumption
test involving the negation of the query concept (see Algorithm 2).

Algorithm 2 obvious non instance?(i, C,A):
return individual model merging possible?(i, A, negated concept(C))

∨ subsumes?(negated concept(C), individual concept(i))

The main idea of the individual model merging is to extract a (pseudo) model for
an individual i from a completion of the A-box A. If the individual model of i and
the (pseudo) model of ¬C do not “interact” [16], i can easily be shown not to be an
instance of C. If one of the “guards” returns true, the result of instance? is false.

4

Otherwise, an “expensive” instance test using the tableau algorithm is performed. The
function negated concept returns the negation of its input concept whereas the function
individual concept returns the conjunction of the concepts in all A-box concept asser-
tions for an individual. For role assertions found in an A-box, we assume additional
concept assertions. Role assertions for a role R with i on the lefthand side are repre-
sented by at-least terms and, depending on the number of different role assertions for
i, corresponding conjuncts (≥ n R) are generated by individual concept. With these
auxiliaries, the function instance? can be optimized for the average case but is still
sound and complete.

Algorithm 3 instance?(i, C,A):
if obvious non instance?(i, C,A) then

return false
else

return ¬ASAT (A ∪ {i : ¬C})

Although this variant of instance? is significantly faster (mainly due to the individual
model merging guard), in the Game application discussed above, query answering times
in the range of 20 seconds were still unacceptable. Although for many queries the result
consists of a set of only very few individuals (compared to 250 individuals mentioned in
the A-box) around a hundred individuals still cause the “expensive” ASAT test to be
invoked, regardless of the “guards” in Algorithm 3. Thus, although each ASAT test is
quite fast (200 milliseconds), its number should be further reduced in order to provide
adequate performance.

3.2 Binary Instance Retrieval

How can A-box satisfiability tests be avoided at all? The observation is that only very
few additions to A of the kind {i : ¬C} lead to an inconsistency in the function instance?
(i.e., in very few situations i is indeed an instance of C). Therefore, in many realistic
scenarios the following procedure was found to be advantageous.

Algorithm 4 binary instance retrieval(C,A, candidates):
if candidates = ∅ then

return ∅
else

(partition1, partition2) := partition(candidates)
return partition instance retrieval(C,A, partition1, partition2)

We assume now that instance retrieval(Cq, A) is implemented by calling the proce-
dure binary instance retrieval(Cq, contract(i, A), individuals(A)). The function partition

5

is defined in Algorithm 5, it divides a set into two partitions. Given the partitions,
binary instance retrieval calls the function partition instance retrieval. The idea of
partition instance retrieval (see Algorithm 7) is to first check whether none of the
individuals in a partition is an instance of the query concept C. This is done with the
function non instances? (see Algorithm 6).

Algorithm 5 partition(s): /* s[i] refers to the ith element of the set s */
if |s| ≤ 1 then

return (s, ∅)
else

return ({s[1], . . . , s[bn/2c]}, {s[bn/2c+ 1], . . . , s[n]})

Algorithm 6 non instances?(cands, C,A):
return ASAT (A ∪ {i : ¬C | i ∈ cands ∧ ¬obvious non instance?(i, C,A)})

The evaluation we conducted with the natural language application indicates that for
instance retrieval queries which return only very few individuals a performance gain of
up to a factor of 5-10 can be achieved with binary search (compared to linear instance
retrieval). The reason is that the non instances? test is successful in many cases.
Hence, with one “expensive” A-box test a large set of candidates can be eliminated.
The underlying assumption is that, in general, the computational costs of checking
whether an A-box (A ∪ {i : ¬C, j : ¬C, . . .}) is consistent is largely dominated by A
alone. Hence, it is assumed that the size of the set of constraints added to A has only a
limited influence on the runtime. For knowledge bases with, for instance, cyclic GCIs,
this may not be the case, however.

Algorithm 7 partition instance retrieval(C,A, partition1, partition2):
if |partition1| = 1 then
{i} = partition1
if instance?(i, C,A) then

return {i} ∪ binary instance retrieval(C,A, partition2)
else

return binary instance retrieval(C,A, partition2)
else if non instances?(partition1, C, A) then

return binary instance retrieval(C,A, partition2)
else if non instances?(partition2, C, A) then

return binary instance retrieval(C,A, partition1)
else

return binary instance retrieval(C,A, partition1)
∪ binary instance retrieval(C,A, partition2)

6

3.3 Dependency-based Instance Retrieval

Although binary instance retrieval is found to be faster in the average case, one can do
better. If the function non instances? returns false, one can analyze the dependencies
of the tableau structures (“constraints”) involved into all clashes of the tableau branches.
If all clashes are due to an added constraint i : ¬C, then, as a by-product of the test,
the individual i is known to be an instance of the query concept C. The individual
can be eliminated from the set of candidates to be investigated, and it is definitely part
of the solution set. Eliminating candidate individuals detected by dependency analysis
prevents the reasoner from detecting the same clash over and over again until a partition
of cardinality 1 is tested. In the example application, runtimes are reduced by another
factor of 3 (compared to binary instance retrieval). If the solution set is large compared
to the set of individuals in an A-box, there is some overhead compared to linear instance
retrieval because only one individual is removed from the set of candidates at a time as
well with the additional cost of collecting dependency information during the tableau
proofs. In our investigations, dependency-based instance retrieval was always faster
than binary instance retrieval.

3.4 Static Index-based Instance Retrieval

The techniques introduced in the previous section can also be exploited if indexing
techniques are used for instance retrieval (see, e.g., [22, p. 108f.]). Basically, the idea is
to reduce the set of candidates that have to be tested by computing the direct types of
every individual. The direct types of an individual i are defined to be the most specific
concept names (mentioned in a T-box) of which i is an instance. An index is constructed
by deriving a function associated inds defined for each concept name C mentioned in
the T-box such that i ∈ associated inds(C) iff C ∈ direct types(i, A). Computing
the direct types for each individual and the corresponding index associated inds is
also called A-box realization. The optimizations used in the Racer implementation
are inspired by the marking and propagation techniques described in [3] for exploiting
explicitly given information as much as possible.

The standard way to compute the index is to compute the direct types for each
individual mentioned in the A-box separately (one-individual-at-a-time approach). In
order to compute the direct types of individuals w.r.t. a T-box and an A-box, the T-box
must be classified, i.e., for each concept name mentioned in the T-box (and the A-box)
the most-specific subsumers (function parents) and least-specific subsumees (function
children) are precomputed. Thus, parents and children are not really queries but just
functions accessing results stored in data structures. Another view is that the children
(or parents) relation defines a lattice whose nodes are concept names. The root node

7

is called top, the bottom node is called bottom. This lattice is also referred to as the
”taxonomy”.

In the following we assume that CN is the set of all concept names mentioned
in the T-box (including the name top). Furthermore, it is assumed that the func-
tion parents(C) returns the most specific subsumers of C whereas descendants(C)
(ancestors(C)) returns all subsumees (subsumers) of C including C. Subsumers and
subsumees of a concept C are concept names from CN . The function synonyms(C) re-
turns all concept names from CN which are equivalent to C. Static index-based instance
retrieval is implemented as follows (see [22, p. 108f.]).

Algorithm 8 static index based instance retrieval(C,A):
if ∃N ∈ CN : N ∈ synonyms(C) then

return
⋃

D∈descendants(C) associated inds(D)
else

known results :=
⋃

D∈descendants(C) associated inds(D)
candidates :=

⋃
P∈parents(C)(

⋃
D∈descendants(P) associated inds(D)) (*)

return known results ∪ instance retrieval(C,A, candidates \ known results)

It is obvious that instance retrieval can be implemented by any of the techniques
introduced above.

Computing the index structures (i.e., the function associated inds) is known to be
time-consuming. Our findings indicate that for many applications this takes several
minutes, i.e. index computation is only possible in a setup phase. Since for many appli-
cations this is not tolerable, new techniques had to be developed. The main problem is
that for computing the index structure associated inds the direct types are computed
for every individual in isolation. Rather than asking for the direct types of every indi-
vidual in a separate query, we investigated the idea of using sets of individuals which are
“sieved” into the taxonomy, The idea is to use the procedure non instances? to check
whether all individuals from a set of candidates are obviously no instance of a given
concept C (w.r.t. an A-box). If non instances? returns true, many single A-box tests
can be avoided. We call the approach the sets-of-individuals-at-a-time approach (see
Algorithm 9 and Algorithm 10).

Algorithm 9 traverse(inds, C,A, has member):
if inds 6= ∅ then

for all D ∈ children(C) do
if has member(D) = unknown then

instances of D := instance retrieval(D, inds,A)
has member(D) := instances of D; traverse(instances of D,D,A, has member)

8

In the natural language application we investigated, answering a specific query with
realization-based instance retrieval and the set-of-individuals-at-a-time approach re-
quires about 30 seconds using dependency-based instance retrieval (and 80 seconds using
binary instance retrieval). Thus, for this specific application the performance gain for
realization is a factor of three. But it still holds that, if A-boxes are not static, i.e.,
A-boxes are computed on the fly and only very few queries are posed w.r.t. the A-boxes,
the direct implementation of instance retrieval as search without exploiting indexes is
much faster (and it is possible even without T-box classification).

Algorithm 10 compute index sets of individuals at a time(A):
for all C ∈ CN do

has member(C) := unknown; associated inds(C) := ∅
traverse(individuals(A), top, A, has member); has member(top) := individuals(A)
for all C ∈ CN do

if has member(C) 6= unknown then
for all ind ∈ has member(C) do

if ¬∃D ∈ children(C) : ind ∈ has member(D) then
associated inds(C) := associated inds(C) ∪ {ind}

3.5 Dynamic Index-based Instance Retrieval

Computing a complete index (realization) as described in the previous subsection is pos-
sible if many queries are posed w.r.t. a “fixed” A-box (and T-box). However, sometimes
realization is too time-consuming. Therefore, we devised a new strategy that exploits
(i) explicitly given information (e.g. from A-box assertions of the form i : CN where
CN is a concept name) and (ii) the results of previous instance retrieval queries.

The idea can be explained as follows. The function associated inds associates a set
Inds of individuals with each concept name C such that for each i ∈ Inds it holds that i
is an instance of C, for each D ∈ descendants(C) the individual i 6∈ associated inds(D),
and for each D ∈ ancestors(C) the individual i 6∈ associated inds(D).

The function associated inds is updated due to the results of queries. Let us assume
i ∈ associated inds(C) and C ∈ ancestors(E). If it turns out that i is an instance
of E, the function associated inds is changed accordingly. Thus, the index evolves
as instance retrieval queries are answered. Therefore, we call this strategy dynamic
index-based instance retrieval.

In this new approach, the function associated inds(C) returns an individual i even
if C is not “most specific”, i.e. even if there might exist a subconcept D of C such that
i is also an instance of D. The consequence is that Algorithm 8 is no longer complete.
The idea of only considering the parents of the query concept (see the line marked with
an asterisk in Algorithm 8) must be dropped. Before we give a complete algorithm for
dynamic index-based instance retrieval, further optimization techniques are introduced.

9

Let us assume concept D is a subsumer of C. If it is known for an individual
i ∈ associated inds(D) that D ∈ direct types(i), then i can be removed from the set
of candidates for the query concept C. With each concept name we also associate a
set of non-instances. The non-instances are found by queries for the direct types of
an individual (the non-instances are associated with the children of each direct type)
or by exploiting previous calls to the function instance retrieval. If an individual i
is found not to be an instance of a query concept D, this is recorded appropriately
by including i in associated non instance(D) if there is no E ∈ ancestors(D) such
that i ∈ associated non instance(E) (non-redundant caching). The non-instances of a
query concept can then be discarded from the set of candidates. The new algorithm for
instance retrieval is shown in Algorithm 11.

Algorithm 11 dynamic index based instance retrieval 1(C,A):
known results :=

⋃
D∈descendants(C) associated inds(D)

possible candidates :=
⋃

D∈(ancestors(C)\{C}) associated inds(D)
candidates := possible candidates \

⋃
D∈ancestors(C) associated non instances(D)

return known results ∪ instance retrieval(C,A, candidates \ known results)

In order to evaluate the proposed algorithm, we first use a very simple T-box
{Article v Document, Book v Document, CS Book v Book} and consider an A-
box with the following assertions (for n we use different settings):

doc 1 : Article, doc 2 : Article, . . . doc n : Article,
doc n + 1 : Book, doc n + 2 : Book, . . . doc n + n : Book,
doc n + n + 1 : CS Book, doc n + n + 2 : CS Book, . . . doc n + n + n : CS Book

In order to evaluate Algorithm 11, queries for Book and for CS Book are executed.
Queries can be ordered with respect to subsumption. Given the partial order induced by
subsumption, an optimal execution sequence for answering multiple queries can be gen-
erated with a topological sorting algorithm. The more general queries are processed first,
yielding a (possibly reduced) set of candidates for more specific queries as a by-product.
This is demonstrated by considering the query set {retrieve(Book), retrieve(CS Book)}.
There are two strategies, either all instances of CS Book are retrieved first (Strategy 1)
or all instances of Book are retrieved first (Strategy 2). The runtimes of the query sets
under different strategies are indicated in Table 1.

In the first column the number n is specified (note that the A-box contains three
times as many individuals), in the second column the time to generate the problem (i.e.,
the time to “fill” the A-box) is specified, in the third column the time for the initial A-box

10

n Gen. Time ASAT Strategy 1 Strategy 2
10000 1 6 7 5
20000 3 10 29 19
30000 22 15 79 42
40000 34 23 164 115
50000 54 34 320 200
60000 80 42 904 552

Table 1: Runtimes (in secs) of instance retrieval query sets with different strategies.

consistency test is displayed, and in the last two columns the runtimes for the different
strategies are indicated. All tests were performed on a 1GHz Powerbook running Mac
OS X. Memory requirements are neglectable for all experiments (≤ 100MB). Table 1
reveals that for larger values of n, Strategy 2, i.e., to first retrieve all instances of the
superconcept Book, is approximately twice as fast as Strategy 1. The reason is that
with Strategy 2 the set of candidates for the second instance retrieval query can be
considerably reduced due to dynamic index-based instance retrieval.

In order to compare static index-based instance retrieval (one-by-one and set-based
realization) with dynamic index-based instance retrieval, we used the synthetically gen-
erated A-box benchmarks described in Section 2.2).

Name d b n L B ASAT static (1) static (2) dynamic
SCT 3 5 20 0.4 0.5 1.3 6.1 2.7 1.4
SCT 3 5 30 0.5 0.8 2.4 9.9 4.5 2.9
SCT 4 5 10 1.1 1.6 5.4 36.0 7.3 6.2
SCT 4 5 30 3.7 5.1 15.9 330.5 40.7 17.6
SCT 5 5 10 10.9 16.4 18.3 1528.0 70.6 31.7
SCT 5 5 30 62.821 54.8 76.8 timed out 184.7 160.3

SCT rel 3 5 10 0.5 0.8 1.4 2.8 3.6 2.6
SCT rel 4 5 10 3.3 7.5 10.2 40.3 17.4 17.7
SCT rel 5 5 10 22.0 120.0 144.6 1751.0 190.6 159.143

Table 2: Runtimes (in secs) for processing retrieval queries with static and dynamic
index-based instance retrieval techniques.

The test characteristics are specified in the first four columns (SCT stands for sym-
metric concept tree). In column ‘L’ the time to load the problem from a file is given, and
in column ‘B’ the time to build the index structures required by consistency checking
and instance retrieval is indicated. The column ‘ASAT’ contains the time for the initial
A-box consistency test (including the index building time from column B). The column
‘static (1)’ indicates the time for instance retrieval using the sets-of-individuals-at-a-time

11

realization approach whereas ‘static (2)’ indicates the time using the one-individual-at-a-
time approach. The last column contains the runtime for dynamic index-based instance
retrieval. The results obtained from analyzing the experiments can be summarized as
follows.

One-individual-at-a-time realization is much faster for these tests than using sets-of-
individuals-at-a-time realization. In these synthetic benchmarks, there exist n instances
for each of the bd concept names. The assumption that the result set contains only
few individuals is not met in these benchmarks (the result set contains b(d−1) elements).
Furthermore, it can be seen that dynamic index-based instance retrieval causes almost
no overhead for these synthetic benchmarks (this may be due to the fact that the
retrieval concept is located close to the root of the taxonomy). In addition it becomes
apparent that the runtime for instance retrieval is mostly dominated by the initial A-
box satisfiability test (which cannot be easily eliminated). In particular, building index
structures is an expensive process (see column B) and cannot be neglected. Faster query
evaluation results for Racer can be achieved by optimizing this process.

4 Conclusion

In this paper we demonstrated optimization techniques that make A-box inferences
based on tableau-based DL systems suitable for many non-naive applications. We mo-
tivated the techniques described in this paper with the semantic web scenario and its
representation language OWL/RDF. In this context, reasoning over individuals (e.g.,
instance retrieval) cannot be easily reduced to database lookups. The examples we gave
here do not cover the full expressivity of OWL, however, they already demonstrate the
need for more advanced optimization techniques.

For very restricted sublanguages of OWL (i.e., no existential restrictions at all), ini-
tial experiments indicate that datalog-based approaches could become an alternative
to tableau-based approaches [21]. However, research in this area has just started and
no stable implementations are available at the time of this writing. We have shown
that tableau-based algorithms provide a sound basis for applications, provided the im-
plementation technique proposed in this paper are implemented in practical systems.
Nevertheless, the experiments also show some limitations of current DL technology.
Only up to 30,000 individuals can be appropriately handled by current system imple-
mentations given non-naive T-boxes (ontologies) and A-boxes. Note that this holds for
all data stored in main memory. Further research is necessary (in particular for contexts
such as the semantic web) to provide for appropriate internal data structures in order
to avoid unnecessary overhead. This holds for instance retrieval as well as for other
inference services provided by current DL systems.

12

References

[1] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages for
the semantic web. In D. Hutter and W. Stephan, editors, Festschrift in honor of
Jörg Siekmann. LNAI. Springer-Verlag, 2003.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[3] Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard Nebel, and Hans-
Jürgen Profitlich. An empirical analysis of optimization techniques for termino-
logical representation systems or: Making KRIS get a move on. Applied Artificial
Intelligence. Special Issue on Knowledge Base Management, 4:109–132, 1994.

[4] S. Bechhofer, I. Horrocks, and C. Goble. OilEd: a reason-able ontology editor for
the semantic web. In Proceedings of KI2001, Joint German/Austrian conference on
Artificial Intelligence, September 19-21, Vienna. LNAI Vol. 2174, Springer-Verlag,
2001.

[5] S. Bechhofer, R. Möller, and P. Crowther. The DIG description interface. In Proc.
International Workshop on Description Logics – DL’03, 2003.

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

[7] A. Borgida and R. Brachman. Loading data into description reasoners. ACM
SIGMOD Record, 22(2):217–226, 1993.

[8] Paolo Bresciani. Querying databases from description logics. In Knowledge Repre-
sentation Meets Databases, 1995.

[9] D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
Schema, http://www.w3.org/tr/2002/wd-rdf-schema-20020430/, 2002.

[10] Malte Gabsdil, Alexander Koller, and Kristina Striegnitz. Building a text adventure
on description logic. In International Workshop on Applications of Description
Logics, Vienna, September 18. CEUR Electronic Workshop Proceedings, http:

//ceur-ws.org/Vol-44/, 2001.

13

[11] Malte Gabsdil, Alexander Koller, and Kristina Striegnitz. Playing with description
logic. In Proceedings Second Workshop on Methods for Modalities M4M-02. http:
//turing.wins.uva.nl/~m4m/M4M2/program.html, November 2001.

[12] V. Haarslev and R. Möller. The Racer user’s guide and reference manual, 2003.

[13] V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended
with concrete domains: A practically motivated approach. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Proceedings of the International Joint Conference on Au-
tomated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy, Lecture Notes in
Computer Science, pages 29–44. Springer-Verlag, June 2001.

[14] Volker Haarslev and Ralf Möller. Consistency testing: The RACE experience. In
Proceedings International Conference Tableaux’2000, volume 1847 of Lecture Notes
in Artificial Intelligence, pages 57–61. Springer-Verlag, 2000.

[15] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), 2001.

[16] Volker Haarslev, Ralf Möller, and Anni-Yasmin Turhan. Exploiting pseudo models
for tbox and abox reasoning in expressive description logics. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2001.

[17] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description
logic SHIQ. In David MacAllester, editor, Proceedings of the 17th International
Conference on Automated Deduction (CADE-17), Lecture Notes in Computer Sci-
ence, Germany, 2000. Springer Verlag.

[18] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal approach.
In Ian Horrocks and James Hendler, editors, Proc. of the 13th Int. Semantic Web
Conf. (ISWC 2002), number 2342 in Lecture Notes in Computer Science, pages
177–191. Springer-Verlag, 2002.

[19] O. Lassila and R.R. Swick. Resource description framework (RDF)
model and syntax specification. recommendation, W3C, february 1999.
http://www.w3.org/tr/1999/rec-rdf-syntax-19990222, 1999.

[20] Lei Li and Ian Horrocks. Matchmaking using an instance store: Some preliminary
results. In Proceedings of the 2003 International Workshop on Description Logics
(DL’2003), 2003.

14

[21] B. Motik, R. Volz, and A. Maedche. Optimizing query answering in description log-
ics using disjunctive deductive databases. In Proceedings of the 10th International
Workshop on Knowledge Representation Meets Databases (KRDB-2003), pages 39–
50, 2002.

[22] Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems, volume
422 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1990.

[23] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen.
Creating semantic web contents with Protege-2000. IEEE Intelligent Systems,
16(2):60–71, 2001.

[24] F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein. OWL web ontology language reference, http://www.w3.org/tr/owl-
guide/, 2003.

15

