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6 Summary

EXECUTIVE SUMMARY

Ontology evolution is a complex activity that is required in order to ensure the consistency of
an ontology when any modifications are applied. Ontology evolution becomes even more complex
in the context of BOEMIE, due to the management of multimedia resources and ontologies and
to the multi-modal semantic information extraction to be enabled. To this end, starting from
the state of the art in the field of ontology evolution methodologies and techniques, we define an
evolution methodology that takes into account the new requirements posed by multimedia informa-
tion extraction and management. The BOEMIE methodology for multimedia ontology evolution
determines the manner in which the interlinked ontologies of the BOEMIE semantic model will
be updated, preserving their semantic consistency. At the same time, the methodology complies
with the bootstrapping process, using the information extracted from the multimedia content and
providing the necessary semantic information back to the information extraction modules. The
ontology is enriched with new knowledge as a consequence of the extraction process and the new
evolved ontology is used to further improve the extraction process, thus triggering a new boost-
rapping cycle.

Design principles. The design choices of the overall methodology implementing ontology evo-
lution have been driven by the core ontology-oriented architecture of the BOEMIE project as
follows.

• Evolution support in presence of multiple ontological modules. In order to provide the neces-
sary background knowledge for the automated processes of semantics extraction from multi-
media content and for ontology evolution, the Multimedia Semantic Model consists of several
interlinked ontological modules, each of them serving a different purpose in the knowledge
space structure. Maintaining such a division of functionalities enables the independent use
of each ontology knowledge space, and furthermore, allows for their linking, combination
and extension. This requires to develop an evolution methodology capable of managing the
coordinated evolution of such interlinked ontological modules, by which the modification ap-
plied to a part of the ontology will be automatically and consistently propagated to other
interlinked ontological modules, to keep them aligned and consistent each other.

• Pattern-driven evolution. The extraction process has the goal of understanding what is
represented into a set of multimedia resources. This activity is called interpretation. In
particular, interpretation has the goal of associating the contents retrieved in the resources
with the concepts contained in the ontology. In other terms, the ontology is the background
knowledge that we use to explain the resources. The expected result of the interpretation is
to find a single explanation for a resource, but, if the background knowledge is not sufficient
to explain a resource, it could happen that more than one possible explanation is found,
or that no explanations at all are available. Finally, it is also possible that neither the
explanation of the media objects contained in a resource is available. These different results
of the interpretation process lead to different situations in ontology evolution. These different
situations are managed by means of four evolution patterns, namely:

– P1: Single concept explanation.

– P2: Multiple concept explanation.

– P3: Missing concept with metadata explanation.

– P4: Missing concept without metadata explanation.

• Open system approach. When background ontology knowledge is not sufficient to interpret
new incoming instances, new knowledge, such as a new concept, has to be added to the
ontology. Concept definition is usually a manual, human-intensive activity which requires
the ontology expert to find the most appropriate specification of the missing concept. In
BOEMIE, we support a knowledge discovery approach typical of open networked systems for
enriching the local knowledge of a given node. Thus, we design the evolution methodology to
provide a concept discovery functionality which comes into play for acquiring new knowledge
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by probing external knowledge sources for the same domain, looking for candidate concepts
semantically matching the incoming instance. This way, the ontology knowledge space is
open towards external knowledge sources, which can provide useful knowledge for evolving
the ontology adequately.

• Minimization of human involvement. It has to be noted a completely automated evolution
process is not really feasible neither recommended, due to the intrinsically interactive nature
of the evolution process, which eventually requires a qualified supervision of the ontology
expert. However, it is commonly recognized that a key issue for an evolution methodology is
the minimization of human involvement, especially for the labor-intensive manual activities
related to new concept identification and definition. To this end, we design a methodology
providing a set of learning, matching, and reasoning techniques that offer support in the
various evolution activities, to allow the ontology expert to refine proposed working knowledge
(e.g., discovered candidate concepts) and/or to validate/choose among proposed alternative
choices, thus limiting the human involvement as much as possible.

Overview of the methodology and activities. The ontology evolution methodology of BOEMIE
is shown in Figure 1.

PATTERN SELECTION

Change
analysis

Change identification
and validation

Change
implementation

Versioning and
change auditing

OUTPUTINPUT

POPULATION

ENRICHMENT COORDINATION

ONTOLOGY EXPERT

EVOLUTION SERVICES

FEEDBACK TO THE EXTRACTION PROCESS

PATTERNS P1&P2

PATTERNS P3&P4
EXTRACTION 

PROCESS

Instances extracted from 
multimedia resources
The BOEMIE ontology framework
External knowledge sources, 
together with mapping knowledge

New evolved version of 
the ontology framework
Mapping knowledge
Optimized change log

Figure 1: The BOEMIE evolution methodology

The BOEMIE evolution methodology is articulated in the following activities:

Pattern selection. The goal of the pattern selection activity is to analyze the input information
in order to understand which pattern has to be triggered.

Population. Ontology population is the activity of adding new concept instances into the on-
tology. Ontology population is triggered by P1 and P2 evolution patterns, meaning that either a
single (P1) or more (P2) explanations have been found during the interpretation activity to explain
the extraction results for a single multimedia resource.

Enrichment. Ontology enrichment is the activity of extending the ontology, through the ad-
dition of new concepts/relations. Ontology enrichment is performed every time the background
knowledge is not sufficient to explain the extracted information from the processed multimedia doc-
uments. Thus, the ontology enrichment activity is expected to extend this background knowledge
through the addition of new concepts/relations, in order to better explain extracted information
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in subsequent cycles of the bootstrapping process.

Coordination. Coordination is the activity of producing a log of the changes introduced into
the new evolved version of the ontology with respect to the previous version and of defining and
updating the mapping knowledge between the domain ontology and other related external knowl-
edge sources. Since this activity is affected by the changes of the background knowledge, it is
executed after patterns P3 and P4.

Evolution services. The evolution process is based on a reasoning service and on a matching
service. The reasoning service provides a set of standard and non-standard techniques. Standard
techniques are used to ensure consistency upon population and enrichment activities. Non-standard
reasoning techniques are used to support the activity of ontology enrichment. In particular, non-
standard description logic inference problems are used for formalizing the learning problem in
BOEMIE (e.g., LCS, MSC, rewriting). The matching service is used to perform all the ontology
matching operations required by the methodology, namely: instance matching during the popula-
tion activity; concept matching during the enrichment activity for knowledge discovery; concept
matching during the coordination activity in order to define and update mappings between the
BOEMIE ontology and the external knowledge sources.

Phases and activities. The evolution methodology activities that are executed in a cycle of
the bootstrapping process are differently depending on the evolution pattern which is activated,
that is the situation we have to deal with, and on the current evolution phase, that is what we are
doing in that moment in order to evolve the ontology. This organization is shown in Table 1.

Phases/Patterns Pattern 1 Pattern 2 Pattern 3 Pattern 4

Change analy-
sis

Pattern selection

Change
identification
and validation

Population
(Instance match-
ing, Instance
grouping, ABox
validation)

Population
(Instance match-
ing, Instance
grouping, ABox
refinement, ABox
validation)

Enrichment
(Concept learn-
ing, Concept
enhancement,
Concept defini-
tion)

Enrichment
(Concept defini-
tion)

Change imple-
mentation

Population
(ABox assimilation)

Enrichment
(Concept assimilation)

Versioning and
change auditing

- - Coordination
(Ontology versioning and manage-
ment,
Ontology alignment)

Table 1: Organization of the activities and tasks with respect to the evolution patterns and phases

The outcome of the proposed methodology is an open architecture that will use the BOEMIE
multimedia semantic model and specifies the interfaces for the various types of ontology evolution
tools and services (see Section 8).

Innovation. The development of the proposed evolution methodology compliant with the design
principles described above requires the investigation of several research issues that are matter of
investigation in several research fields, such as innovative non-standard reasoning services (see
Section 4), advanced instance matching and clustering (see Section 5), “knowledge discovery”-
enabled ontology enrichment (see Section 6). A more detailed description of the contribution to
innovation is given in Section 9.
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1 INTRODUCTION

Ontology evolution is generally defined as the timely adaptation of an ontology to changing re-
quirements and the consistent propagation of changes to dependent artifacts [Maedche et al., 2003;
Stojanovic et al., 2002]. Ontology evolution is a complex process whose ultimate goal is to en-
sure the consistency of the ontology and its related artifacts after applying any kind of ontology
modification.

In BOEMIE, the goals and results of the ontology evolution methodology are defined in the
project technical annex, p.55:

A novel methodology for multimedia ontology evolution is required that will determine
the manner in which the interlinked ontologies will be updated, preserving their se-
mantic consistency. At the same time, the methodology will control the bootstrapping
process, using the information extracted from the multimedia content and providing
the necessary semantic information back to the information extraction modules. The
outcome of the proposed methodology will be an open architecture that will use the
BOEMIE multimedia semantic model and specify the interfaces for the various types
of ontology evolution tools.

According to the BOEMIE Multimedia Semantic Model, the ontology is organized into several
inter-linked ontological modules, where domain knowledge, multimedia feature knowledge, and
spatio-temporal knowledge related to multimedia resource management are properly specified.
Furthermore, according to the BOEMIE bootstrapping process, the ontology is enriched with new
knowledge as a consequence of the extraction process and the new evolved ontology is used to
improve the extraction process, thus triggering a new boostrapping cycle. The more the ontology
evolves, the more it can extract; the more is extracted, the more the ontology evolves.

Thus, the BOEMIE ontology evolution methodology models a complex process involving the
following activities:

• ontology population and enrichment, concerning the identification of the required ontology
modifications (like the addition of new concepts/relations or the addition of new instances)
and their implementation;

• ontology coordination, concerning the alignment against other external knowledge sources for
the same domain that are exploited for knowledge discovery;

• maintenance of semantic consistency, concerning the validation of the ontology, to guarantee
that no inconsistencies are introduced in any part of the ontology as a consequence of ontology
modification(s).

The outcome of the proposed methodology is an open architecture, which will communicate
with the semantic extraction modules described in the project deliverable D2.1 - Methodology
and architecture for semantics extraction, by acquiring multimedia resources with different levels
of associated semantic information and by providing back an evolved ontology, containing new
information to improve the semantic extraction process. The architecture will also specify the
interface for the evolution tools (namely, the population, enrichment, and coordination tools) and
the support services (namely, the reasoning service and the matching service) defined in the present
document. Consequently, the architecture will be completely open to the replacement of the tools
with new ones in the future.

Additionally, the methodology will cover the evaluation of the evolution process based on the
separate evaluations of the components for ontology population and enrichment and for ontology
coordination. The integration of the whole evolution process into the BOEMIE framework will
also be evaluated.

The deliverable is organized as follow. In Section 2, we present the design principles and
requirements for the ontology evolution methodology. In Section 3, the evolution methodology is
outlined. Section 4 is devoted to provide the logical foundations of the proposed methodology.
Sections 5, 6, and 7 describe in detail the population, enrichment, and coordination activities of
the methodology, respectively. In Section 8, we describe the open architecture for the ontology
evolution. In Section 10, evaluation criteria are proposed while, in Section 12, conclusions are
given.
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2 THE MULTIMEDIA SEMANTIC MODEL AND THE
BOOTSTRAPPING PROCESS OF BOEMIE

2.1 The Multimedia Semantic Model of BOEMIE

The Multimedia Semantic Model plays the role of providing the necessary background knowledge
for the processes of semantics extraction from multimedia content and of ontology evolution in
BOEMIE. To account for the different types of knowledge involved and for the functionalities re-
quired, the proposed Multimedia Semantic Model consists of several ontological modules, shown
in Figure 2, each of them serving a different purpose in the knowledge structure. Maintaining such
a separation of functionalities enables the independent use of each ontology, and furthermore, it
allows for their linking, combination and extension. The Multimedia Semantic Model enables the
implementation of a mixed bottom-up and top-down approach to media interpretation which is
useful also in the ontology evolution process. The model represents the structure and content of
multimedia documents, athletics events and their sub phases, geographic information, spatiotem-
poral relations, the various modalities, i.e. image, text, audio, video and finally the background
knowledge for fusion purposes during the semantic extraction process.

Core Ontology

Athletics Events
Ontology

Geographic Information
Ontology

Domain Ontologies

SpatioTemporal  Relations
Ontology

Multimedia Descriptors
Ontology

Modality Element
Ontology

Multimedia Content
Ontology

Multimedia Ontologies

Figure 2: The BOEMIE Multimedia Semantic Model

The Multimedia Semantic Model is implemented with ontology languages deriving from the
Ontology Web Language (OWL) family, such as OWL-DL, OWL 1.1 and SWRL. These ontology
languages are based on Description Logics, knowledge representation formalisms that belong to
the family of logic-based representation formalisms. Knowledge Representation Systems (KRS)
using Description Logics describe the notions of the domain of interest using a variant of first
order predicate calculus by first defining the relevant concepts of the domain (the terminology),
and then using these concepts to specify properties of objects and individuals occurring in the
domain (the world description), for a more detailed presentation see [Baader et al., 2003]. Another
important feature of KRSs based on Description Logics is that they provide reasoning services,
i.e. verification of logical consequence and ability to find implicit consequences of the explicitly
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represented knowledge. A more detailed introduction to Description Logics can be found in Section
4. In the following subsections the ontological modules of the Multimedia Semantic Model are
presented, and by focusing on the definition of the sport event Pole Vault the interrelations-links
between the modules are shown.

2.1.1 The Athletics Events Ontology

The Athletics Events Ontology represents the conceptualization of the domain of interest of the
BOEMIE use case scenario which is related to public athletics events (i.e., jumping, running and
throwing events held in European cities) at human level, i.e., the concepts and events of interest,
their logical relations, their attributes and so on. The Athletics Ontology serves as the background
knowledge Σ for the interpretation process of the various modalities multimedia documents, i.e.
still images, videos, audio and text.

As an example, we provide hereafter the specification of the concept Athlete by taking into
account the requirements that its description has to comply with the semantics extraction require-
ments of different modalities. For example, according to the textual analysis an athlete can be
perceived as an entity that has one name, one age, one nationality, one gender, one ranking and
participates in one round of a sports event, whereas, according to the visual analysis, an athlete
can be perceived as an entity that has a face or a body. The following Description Logics axioms,
shown in Figure 3, of the TBOx of the Athletics Events Ontology define the concept Athlete taking
into account the requirements for both modalities.

Person v ((∃has Part.Face)t (∃has Part.Body))t
(∃has Name.Nameu
∃has Age.nonNegativeIntegeru
∃has Gender.Genderu
∃has Nationality.Country)

Athlete ≡ Personu ((∃participates At Round.Sports Event Round)
t(∃has Ranking.nonNegativeInteger))

Person v ((∃=1 has Name)u
(∃=1 has Age)u
(∃=1 has Nationality)u
(∃=1 has Gender)t
((∃=1 has Part.Face)t (∃=1 has Part.Body))

Athlete v (∃=1 has Ranking)u
(∃=1 participates At Round))

Figure 3: The representation of the concept Athlete in the T-Box of the Athletics Ontology taking
into account text and image analysis requirements

A detailed description of the concepts, relations and properties currently contained in the
Athletics Events Ontology can be found in the Deliverable 3.2 Domain Ontologies.

Another important feature for the semantics extraction process is the distinction between Mid
Level Concepts (MLCs) and High Level Concepts (HLCs), where the MLCs are base concepts
that can be associated directly with automatically extracted multimedia features, and HLCs are
concepts defined in terms of other concepts, either MLCs or HLCs. For instance the concept
Horizontal Bar is an MLC for image as it is associated directly with a visual representation of
shape, size, position, color, texture. HLCs are concepts denoting aggregate entities in the domain,
such as athletics events. An example of a HLC in the athletics domain, is the concept Pole Vault
which is defined as an aggregation of the MLCs Pole and Horizontal Bar and of the HLC Athlete
, shown in Figure 4.
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Pole V ault v Jumping Eventu
∃has Part.Poleu
∃has Part.Horizontal Baru
∃has Part.Foam Matu
∃has Part.Athlete

Jumping Event v ∃takes P lace In.Stadium

Figure 4: The definition of the Pole Vault in the TBox of the athletics domain

2.1.2 The Geographic Information Ontology

According to the BOEMIE use case scenario it is important to consider also knowledge about
geographic information such as Points Of Interest (POI), geographic areas, metrics, coordinates
and so on. Some examples of classes describing sports POIs are the Stadium, Sports Center, which
are defined as subclasses of the class Sports POI. Considering the example of the definition of the
Pole Vault event in Figure 4, the use of the geographic ontology is here to provide the exact location
where the event has taken place. This is done through the relation takes Place In, which relates
the event with the stadium ,where it has taken place. The definition of the Stadium is shown in
Figure 5, where also the city in which it is located is provided through the relation is Located In
and the range of the relation City. More details about the classes, relations and properties included
in the Geographic Information Ontology can be found in D3.2.

Geopolitical Area v Geographical Area
Country v Geopolitical Area

City v Geopolitical Area
Sports POI v POI

Stadium v Sports POI u (∃is Located In.City)

Figure 5: A tiny example of the TBox of the Geographic Information Ontology

2.1.3 Modality Element Ontology

As already mentioned, an important feature for the semantics extraction process is the distinc-
tion between mid-level concepts (MLCs) and high-level concepts (HLCs). Since this distinction
constitutes critical knowledge for both analysis and reasoning tasks, appropriate definitions have
been introduced in the Modality Element ontology to determine whether a concept constitutes an
MLC for a particular modality. More specifically, the MLC concept has been defined as the set of
domain concepts that instantiate the has Modality Representation relation. The subsumed, with
respect to the different modalities, relations enable to further distinguish between MLC Visual,
MLC Textual etc. concepts.

This ontology also models the representations that an MLC may have across the different
modalities. Therefore, the Modality Representation concept is subclassed with respect to the
supported modalities, i.e., it is subclassed by the Visual Representation, Textual Representation,
Auditory Representation and Video Representation concepts. Additional relations such as the
has Visual Representation for the visual modality are defined with respect to the supported modal-
ities. For each MLC a corresponding concept is introduced with respect to the considered modality.
For example, in the Pole Vault definition the domain concept Pole might have a visual and a video
representation, therefore the concepts Pole Visual and Pole Textual are defined as subclasses of the
Visual Representation and Textual Representation concepts respectively in the Modality Element
Ontology.

To account for the detection by analysis of modality representations that do not match to any of
the currently available MLCs representation, the unknown concept is introduced as an additional
subclass to each of the four modalities top level representation concept, e.g. the Unknown Visual
concept subclasses the Visual Representation concept. It is important to preserve the modality
distinction among the unknown representations extracted by analysis so that when at a later
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stage evolution is performed the correct modality representation will be associated with a newly
introduced MLC. To support also the insertion of new HLCs, during the ontology population
and enrichment process, the UnknownMLC and UnknownHLC concepts have been introduced as
subclasses of the MLC and HLC classes respectively.

The part of the TBox of the Modality Element Ontology describing all the aforementioned is
shown in Figure 6.

MLC v ∃has Modality Representation.Modality Representation
V isual Representation v Modality Representation

Textual Representation v Modality Representation
Auditory Representation v Modality Representation

V ideo Representation v Modality Representation
MLC V isual v MLC

MLC Textual v MLC
MLC Auditory v MLC

MLC V ideo v MLC
MLC V isual v ∃≥1has Modality Representation.V isual Representation

MLC Textual v ∃≥1has Modality Representation.Textual Representation
MLC Auditory v ∃≥1has Modality Representation.Auditory Representation

MLC V ideo v ∃≥1has Modality Representation.V ideo Representation
Pole V isual v V isual Representation

Pole v ∃has Modality Representation.Pole V isual
Pole Textual v Textual Representation

Pole v ∃has Modality Representation.Pole Textual
MLC Unknown v MLC
HLC Unknown v HLC

Figure 6: A part of the TBox of the Modality Element Ontology

2.1.4 Spatio-temporal Relations Ontology

This ontology module includes the definitions of the spatial and temporal relations which are
exploited by all the other ontological modules of the Semantic Model. Some examples of spatial
directional relations are the following is Left, is Right, is Above and Topological touches,overlaps,
etc. Some examples of temporal relations are the following: before, starts, during. Because THE
expressiveness of Description Logics is not adequate enough for the representation of these relations,
the Multimedia Semantic Model will be extended with so called DL-safe rules. An example of the
definition of the Pole Vault event of the Athletics Events ontology using also the spatial relations
near and touches is shown in Figure 7 and are explained in more detail in sections 4 and 5 of this
document.

Pole V ault(X) → Jumping Event(X),
hasPart(X, A), Foam Mat(A),
hasPart(X, B), Athlete(B),
hasPart(X, C),Horizontal Bar(C),
near(B,C),
hasPart(X, D), Pole(D).
touches(B,D).

Figure 7: Additional restrictions for Pole V ault in the form of rules.

2.1.5 Multimedia Content Ontology

This ontological module represents the structure of the content of the multimedia documents.
The top-level hierarchy consists of the following five concepts: Image, Video, Audio, Audiovisual
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and Multimedia. Each of these types has its own segment subclasses. A number of specialized
subclasses deriving from the generic MPEG-7 Segment Description Scheme for describing the
structure of multimedia content in time and space have been represented here. These subclasses
describe the specific types of multimedia segments, such as video segments, moving regions, still
regions and mosaics, which result from spatial, temporal, and spatiotemporal segmentation of the
different multimedia content types. These classes are going to be used for the representation of
the segments extracted from multimedia documents during the semantic extraction process. For
example, a region that depicts a pole, extracted from an image during the image analysis will
instantiate the concept Still Region which is related with the concept Image through the property
has Spatial Decomposition and will also be related to the concept Pole Visual of the Modality
Element Ontology through the relation depicts.

Image v ∃≥1has Spatial Decomposition.Still Region
Still Region v ∃≥1depicts.V isual Representation

Figure 8: A tiny example of the TBox of the Multimedia Content Ontology

2.1.6 Multimedia Descriptor Ontology

The Multimedia Descriptor Ontology includes the descriptor definitions with respect to the differ-
ent multimedia modalities. The linking between a representation and the corresponding descrip-
tors is performed though appropriately defined relations. The defined relations are organized in
a hierarchical way; for example, the has DominantColorDescriptor relation is subsumed by the
has ColorDescriptor relation which in turn is subsumed by the has VisualDescriptor one. In the
following Figure 9, an example of how the still region that depicts the visual representation of
the pole (aforementioned Pole Visual), is related to the low-level descriptors, such as the Color
Descriptor and Texture Descriptor through the relation has Visual Descriptor is shown.

Color Descriptor v V isual Descriptor
Texture Descriptor v V isual Descriptor

Still Region v ∃≥1has V isual Descriptor.V isual Descriptor

Figure 9: A tiny example of the TBox of the Multimedia Descriptor Ontology

2.1.7 Core ontology

The use of a core ontology in still under investigation. Using a core ontology to harmonize the other
ontology modules has certain advantages in terms of ensuring extensibility and easy adaptation
to different domains, while cleaner ontology engineering can be achieved, e.g., when more than
one domain-specific ontologies are needed to fully capture the required knowledge. However, the
evolution process described in the following will remain the same also when a core ontology is
employed 1.

2.2 The BOEMIE bootstrapping process

The BOEMIE project employs a bootstrapping approach, aiming to improve the overall perfor-
mance of the system when operating in a constantly changing environment. The bootstrapping
process is an iterative process, which uses an initial ontology to analyze and extract information
from a corpus. The extracted information can be used to evolve the ontology, and through the
evolved ontology the extraction of information can be improved. This cycle of using an ontology to
extract information, which in return can be used to evolve the ontology is repeated until no more
new information can be extracted from the corpus. The overall architecture of the bootstrapping
process is shown in Figure 10. The bootstrapping process initiates by assuming that an initial

1For a detailed description of pros and cons of using a core ontology, the reader can refer to the project deliverables
“D3.1, Multimedia Content and Descriptor Ontologies” and “D3.2, Domain Ontologies”.
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Figure 10: The BOEMIE Bootstrapping process

ontology exists, along with an information extraction system that is able to extract information
related to mid-level concepts (MLCs) in the ontology. When a multimedia document is available
to be processed, it goes through the first processing stage, the cross-modality coordination stage.
The cross-modality coordinator is responsible for separating the multimedia document (possibly
comprising more than one modality, e.g., text, images) into single-modality document elements.
Each single-modality document element is processed by the corresponding single-modality infor-
mation extraction system, in order to extract a set of mid-level concept instances (MLCis), along
with a set of relations among these MLCis. The next processing stage, the single-modality se-
mantic interpretation employs reasoning to construct a set of high-level concept instances, that
explain every single-modality document element. Finally, fusion, the last processing stage of the
information extraction phase, merges the explanations of single-modality document elements in
order to produce a set of explanations for the original multimedia document. Each explanation is
a high-level concept instance (HLCi), involving several MLCis and relations among them. These
HLCis constitute the input to the ontology evolution phase. The ontology evolution phase receives
as input the HLCis (explanations) produced by the information extraction phase and aims at the
construction of an enhanced version of the ontology. The main phases of evolution are change
analysis, change identification and validation, change implementation, and versioning. In the rest
of the document, we provide a detailed description of the evolution process and of the methodology
that is followed.
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3 METHODOLOGY FOR ONTOLOGY EVOLUTION

In this section, the BOEMIE evolution methodology is described according to the input and the
output, the methodological phases, the activities and tasks, and the supporting services enabling
the execution of the different activities. The organization of the activities in the different phases
depends on the different situations that can occur during the evolution process and on the con-
notations that feature the input data. In order to capture these different situations, we introduce
in the methodology four evolution patterns that are described in this section together with their
corresponding activities.

3.1 Design principles

Ontology evolution is a complex activity that aims to ensure the consistency of the ontology and
possible dependent artifacts after that any modification has been applied. Ontology evolution
becomes even more complex in the context of BOEMIE, due to the management of multimedia
resources and ontologies and to the multi-modal semantic information extraction to be enabled.
To this end, based on the state of the art in the field of ontology evolution methodologies and
techniques, we define an evolution methodology that takes into account the new requirements
posed by multimedia information extraction and management.

The design choices of the overall methodology have been driven by the ontology-oriented archi-
tecture the BOEMIE: the domain of application across all media is modeled through an ontology
whereas the output of semantics extraction is used to trigger the appropriate evolution patterns
resulting either in ontology population or ontology enrichment followed by ontology coordination.

The main design choices that have driven the definition of the Multimedia Ontology Evolution
methodology are summarized as follows.

• Evolution support in the presence of multiple ontological modules. In order to provide the
necessary background knowledge for the automated processes of semantics extraction from
multimedia content and ontology evolution, the Multimedia Semantic Model consists of sev-
eral interlinked ontological modules, each of them serving a different purpose in the knowledge
space structure. Maintaining such a division of functionalities enables the independent use of
each ontology knowledge space (i.e., an ontology module), and furthermore, allows for their
linking, combination and extension. This requires to develop an evolution methodology ca-
pable of managing the coordinated evolution of such interlinked ontology modules, by which
the modification applied to a part of the ontology will be automatically and consistently
propagated to other interlinked ontological modules, to keep the them aligned and consistent
each other.

• Pattern-driven evolution. Ontology evolution is affected by the background knowledge actu-
ally available in the ontology and by the kind and number of media objects produced by the
extraction process. The different combinations of this available information correspond to
typical situations that trigger ontology evolution in BOEMIE, each one requiring an appro-
priate combination of ontology modification activities. We design a pattern-driven evolution
methodology, where different evolution patterns are identified, each one dealing with a dif-
ferent evolution scenario that can occur, automatically identified on the basis of the results
of the multimedia extraction activity against the background knowledge.

• Open system approach. When background knowledge is not sufficient to interpret new in-
coming instances, new knowledge, such as a new concept, has to be added to the ontology.
Concept definition is usually a manual, human-intensive activity which requires the ontology
expert to find the most appropriate specification of the missing concept. In BOEMIE, we
support a knowledge discovery approach typical of open networked systems for enriching the
local knowledge of a given node. Thus, we design the evolution methodology to provide a
concept discovery functionality which acquires new knowledge by probing external knowledge
sources for the same domain, looking for candidate concepts semantically matching the in-
coming instance. This way, the ontology knowledge space is open towards external knowledge
sources, which can provide useful knowledge for evolving the ontology adequately.
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• Minimization of human involvement. A completely automated evolution process is not fea-
sible, due to the intrinsically interactive nature of the evolution process, which eventually
requires a qualified supervision of the ontology expert. However, it is commonly recognized
that a key issue for an evolution methodology is the minimization of human involvement,
especially for the labor-intensive manual activities related to new concept identification and
definition. To this end, we design a methodology providing a set of learning, matching, and
reasoning techniques that offer support in the various evolution activities, to allow the on-
tology expert to refine the proposed working knowledge (e.g., discovered candidate concepts)
and/or to validate/choose among proposed alternative choices, thus limiting the human in-
volvement as much as possible to expected interactions with support tools.

3.2 Overview of the methodology

The ontology evolution methodology of BOEMIE is shown in Figure 11.

PATTERN SELECTION

Change
analysis

Change identification
and validation

Change
implementation

Versioning and
change auditing

OUTPUTINPUT

POPULATION

ENRICHMENT COORDINATION

ONTOLOGY EXPERT

EVOLUTION SERVICES

FEEDBACK TO THE EXTRACTION PROCESS

PATTERNS P1&P2

PATTERNS P3&P4
EXTRACTION 

PROCESS

Figure 11: The BOEMIE evolution methodology

The main elements of the methodology are the following:

• Input

– Instances extracted from multimedia resources

1. A set of high-level concept instances (HLCis)
2. A set of mid-level concept instances (MLCis)
3. A set of modality descriptors without and associated MLC (Unknown MLCis)

– The BOEMIE semantic model

– A set of external knowledge sources

• Output

– Evolved BOEMIE semantic model
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– Mapping knowledge

– Log of ontology changes

• Phases

– Change analysis

– Change identification and validation

– Change implementation

– Versioning and change auditing

• Evolution patterns

– Single concept explanation (P1)

– Multiple concept explanation (P2)

– Missing concept with metadata explanation (P3)

– Missing concept without metadata explanation (P4)

• Activities/Tasks/Operations

– Pattern selection

– Population

1. Instance matching
2. Instance grouping
3. ABox refinement
4. ABox validation
5. ABox assimilation

– Enrichment

1. Concept learning
(a) Clustering
(b) Concept formation

2. Concept enhancement
3. Concept definition
4. Concept validation
5. Concept assimilation

– Coordination

1. Ontology versioning and management
2. Ontology alignment

(a) Mapping definition
(b) Mapping maintenance

• Supporting services

– Reasoning

– Learning matching

• Roles

– Ontology expert
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3.3 Input

The input of the evolution methodology is composed of:

• A set of concept instances extracted from the multimedia documents in the information
extraction process. Given a multimedia resource, the extraction process has the aim of
identifying in the resource a set of multimedia objects and to give an interpretation of the
whole resource by associating (if possible) the media objects with a high-level concept (HLC)
denoting a real object or an event. The input of the ontology evolution is the result of the
extraction process, that can be:

– A single HLCi or a set of HLCis describing the resources. This input is available when
the extraction process is able to produce an explanation for the multimedia resources.

– A set of MLCis describing the media objects in the resources without a HLCi. In this
case, resource interpretation failed, but the media objects retrieved in the resources have
been identified and, thus, associated with the corresponding MLC.

– A set of modality descriptors associated with an unknown MLC. In this case, background
knowledge is not enough to even assign an MLC to all extracted elements of a multimedia
document, thus leaving extracted modality descriptors not associated with a MLC.

• The BOEMIE semantic model that contains the domain ontology together with related mul-
timedia knowledge modules. In the initial cycle of the bootstrapping process, the domain
ontology is manually defined and it could contain a low level of detail in the description
of the domain. Through evolution a new model is produced which is used as input in the
subsequent cycle.

• External knowledge sources (e.g., other domain ontology, taxonomies of web directories,
lexical systems) that are aligned with the BOEMIE ontology during the versioning and
change auditing phase of the evolution. In the initial cycle of the bootstrapping process, these
resources are manually identified and provided to the system. In the subsequent cycles of the
bootstrapping, new external sources are automatically considered in the coordination activity.
Together with the external knowledge sources, the evolution methodology input is constituted
also by the mapping knowledge that provides the mappings stored between the domain
ontology and the external knowledge sources in the previous cycles of the bootstrapping
process.

3.4 Output

The output of the evolution process is:

• The new evolved version of the semantic model that can contain new instances (population)
and/or new concepts (enrichment).

• The mapping knowledge, which contains information about the mappings defined between
the concepts in the BOEMIE domain ontology and the concepts in the external knowledge
sources.

• A change log, which provides information about the operations that have been executed on
the previous version of the ontology in order to define the new evolved version.

3.5 Evolution patterns

The evolution methodology aims to address the typical situations that can take place in evolving
the ontology knowledge in BOEMIE, based on new information extracted from multimedia content.
This activity is called interpretation. In particular, interpretation associates the contents of the
resources with the concepts contained in the ontology. In other terms, the ontology is the back-
ground knowledge that we use to explain the resources. The expected result of the interpretation
is to find a single explanation for a resource, but, if the background knowledge is not sufficient
to explain a resource, it could happen that more than one possible explanation is found, or that
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no explanations at all are produced. Finally, it is also possible that neither the explanation of
the identified media objects can be produced. These different results of the interpretation process
lead to different situations in ontology evolution. These situations are managed by means of four
evolution patterns. The interpretation outcomes and the patterns are summarized in Table 2.

Number of HLC explaining the multimedia resource 1 >1 0
MLC explanation available P1 P2 P3

MLC explanation not available P4 P4 P4

Table 2: Typical situations that occur in ontology evolution

Patterns P1 and P2 describe the situation where the interpretation has found one or more
HLCs explaining the resources and, thus, the ontology population activity is performed. Patterns
P3 and P4 describe the situation where no HLC explaining the resources is retrieved, triggering
enrichment. The difference between P3 and P4 is that, in P4, we have also to deal with missing
MLCis for some extracted media object. In case of missing explanations of MLCis, pattern P4
is always enforced to evolve the ontology in order to provide an interpretation of unknown media
objects. Then, in the subsequent cycle of the bootstrapping, the most suitable pattern will be
chosen for handling the new situation.

P1: Single concept explanation. In pattern P1, a single HLC explains the resource. As an
example, consider an image of a pole vault, where all the required information to conclude that it
is a pole vault (e.g., the athlete jumping over a horizontal bar, together with a pole) is specified
in the ontology. In populating the ontology with the new pole vault scene, possible inconsistencies
with the instances already contained in the ontology must be checked.

P2: Multiple concept explanation. In pattern P2, more than one HLC could explain the
resource. As an example, consider an image of an athlete jumping over a horizontal bar. Such
an image could describe a pole vault or high jump event. In this case, we find a HLCi in the
ontology for each possible explanation of the resource. Moreover, we analyze the instances already
contained in the ontology in order to find other information about the depicted event. The idea
is that, if we find other assertions about the same fact, already classified with respect to a given
HLC, we can exploit this information to select the right HLCi out of all HLCis.

P3: Missing concept with metadata explanation. In pattern P3, the background knowledge
does not contain any HLC suitable for explaining the resources, but all the multimedia objects
described in the resources have been extracted and interpreted. As an example, suppose to have
an image of a triple jump event but a HLC Triple Jump is not defined in the ontology. In this
case, the multimedia objects extracted from the resources (i.e., the resources metadata) are used
to support learning and definition of a new HLC to be used to explain the incoming resources in
subsequent bootstrapping cycles.

P4: Missing concept without metadata explanation. In pattern P4, HLCs explaining the
resources are not available in the ontology and the resources contain one or more media objects that
have not been associated with any MLC during the extraction process. As an example, suppose
to have again a pole vault image, where the pole is not recognized as a pole because the MLC
Pole is not present in the ontology. In this situation, an important component of the resource
is missing and we have to enrich the ontology by introducing this new MLC concept in order to
correctly explain the resource in the subsequent bootstrapping cycle. In other words, we consider
the detection of the missing MLC to have priority over the identification of the missing HLC,
because knowing about the new MLC could lead to different interpretation results about the same
resources. The new interpretation will thus be performed in the next bootstrapping cycle.
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3.6 Activities and tasks

The activities and the tasks involved in the ontology evolution methodology are defined as follows.

Pattern selection. The goal of the pattern selection activity is to analyze the input information
in order to understand which pattern has to be triggered. This is done by considering the results of
the interpretation process and by verifying how many explanations are available for the incoming
resource as well as the presence of unexplained media objects. The ontology evolution process works
on top of the results of the interpretation activity performed on multimedia documents during the
extraction process. For the purposes of pattern selection, only on the ABox produced as a result of
the interpretation is considered, while the documents from which the ABox description has been
derived are no more considered. An example could clarify this situation. If in the same HTML
document describes both a High Jump and a Pole Vault event, the interpretation activity will
recognize two different events (i.e., HLC) in the document and the evolution process will receive
an ABox containing two instances of the two different HLCs, thus leading to the activation of
pattern P1 for each of them.

Population. Ontology population is the activity of adding new concept instances into the on-
tology. Ontology population is triggered by P1 and P2 evolution patterns, meaning that either a
single (P1) or more (P2) explanations (HLCis) have been found during the interpretation activity
to explain the extraction results for a single multimedia resource. The tasks of the population
activity are the following:

• Instance matching: the goal of instance matching is the identification of similar instances in
the domain ontology for each HLCi in the set of explanations. Having a single HLCi as input,
instance matching returns a set of instances (ABoxes) that are similar to the incoming ABox,
together with a measure of their similarity. The idea behind instance matching is to identify
instances that represent the same real object or event and possibly help in disambiguating
multiple explanations in the case of evolution pattern P2 (ABox refinement).

• Instance grouping: instance grouping has the goal of defining a group of instances that
contains all the instances that represent the same real object or event (exploiting the results
of the instance matching task).

• ABox refinement (evolution pattern P2 only): in case of multiple explanations, the most
suitable explanation is selected by exploiting the results of the instance grouping task. As-
sertions related to the rest of the explanations are removed from the ABox, thus leading to
a refined version of it.

• ABox validation: the goal of ABox validation is to detect possible inconsistencies among
the instances that are assimilated in the ontology. ABox validation is performed through
standard inference services (see Section 4).

• ABox assimilation: ABox assimilation has the goal of adding the ABox into the ontology, by
creating all other needed instances/relations with reference to the other ontological modules
of the semantic model.

Enrichment. Ontology enrichment is the activity of extending an ontology, through the addi-
tion of new concepts and relations. Ontology enrichment is performed every time the background
knowledge is not sufficient to explain the extracted information from the processed multimedia doc-
uments. Thus, the ontology enrichment activity is expected to extend this background knowledge
through the addition of new concepts/relations, in order to better explain extracted information
in subsequent cycles of the bootstrapping process.

The ontology enrichment activity is triggered by either P3 or P4 and is articulated in the
following tasks:

• Concept learning: concept learning has the goal of identifying possible new elements (either
HLCs, relations, or MLCs) by exploiting similarities found through clustering, either in
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unexplained documents (evolution pattern P3) or in unknown media objects recognized by
the information extraction toolkit (evolution pattern P4). It can be decomposed into two
main tasks:

– Clustering: the goal of clustering is to support the creation of new concepts or relations.

– Concept formation: Exploiting the results of clustering, concept formation examines
the ABoxes of the clustered elements in order to extract common information (e.g.,
properties, concepts, relations) and use it to form the new concept.

• Concept enhancement: the goal of concept enhancement is to extend the knowledge about a
learned concept, with knowledge about concept name and possible definition acquired from
external sources, such as other domain ontologies or taxonomies.

• Concept definition: in this task, information about the new concept that has been produced
by the previous tasks is shown to the ontology expert. The ontology expert is required to fix
the definition of the new concept in order to assimilate it into the ontology. The ontology
expert can interactively revise the new concept definition before its assimilation.

• Concept validation: this task performs consistency checking, by trying to detect possible
inconsistencies due to the addition of the new concept in the ontology.

• Concept assimilation: finally, the needed changes in the ontology are performed in order to
incorporate the new concept into the domain ontology.

Unlike the population activity, ontology enrichment changes the TBox of the ontology and thus the
background knowledge contained in the domain ontology. BOEMIE subsystems that rely on this
background knowledge (such as the information extraction toolkit) must be notified about TBox
changes, as they need to adapt to the modified background knowledge (e.g., a re-training of the
extractors could be required).

Coordination. Coordination is the activity of producing a log of the changes introduced into
the new evolved version of the ontology with respect to the previous version and of defining and
updating mappings between the domain ontology and other external knowledge sources. Since this
activity is affected by the changes of the background knowledge, it is executed after patterns P3 and
P4. Ontology versioning has the aim of maintaining the new version of the ontology with respect
to the previous version by providing a log of the changes that have been implemented. Finally, the
ontology is aligned with the external knowledge sources by defining appropriate mappings. When
a concept is modified during the enrichment activity, its existing mappings have to be updated
accordingly. Coordination is executed also upon modifications that can occur in the external
knowledge sources over time. The coordination activity is articulated according to the following
tasks:

• Ontology versioning and management: the goal of the versioning task is to maintain a log of
the changes between the new version of the ontology and the previous version, by providing
details about the change operations that have been performed as well as the ontology expert
annotations on the new version.

• Ontology alignment, comprising the following operations:

– Mapping definition: the goal of mapping definition is to describe explicitly the level of
similarity between a (new) concept in the domain ontology and other concepts in the
external knowledge sources.

– Mapping maintenance: the goal of mapping maintenance is to update the existing map-
ping knowledge according to the changes over time either in the domain ontology (en-
richment) or in the external knowledge sources (changes).
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3.7 Phases

Ontology evolution is a complex process that requires to ensure the consistency of the ontology and
possible dependent artifacts after that any modification has been applied. To this end, in the state
of the art, a six-phase evolution process has been proposed in [Stojanovic et al., 2002], which is
generally recognized as a comprehensive reference methodology capable of handling the evolution
of multiple ontologies. With respect to this reference, the BOEMIE evolution methodology is
articulated in four phases, namely change analysis, change identification and validation, change
implementation, and versioning and change auditing. In the change analysis phase, the input
instances are analyzed with respect to the background knowledge, with the goal of determining
which evolution situation occurs, that is which evolution pattern has to be chosen. In the change
identification and validation phase, according to the selected pattern, the changes that are required
on the ontology are determined and, before their implementation, the possible resulting ontology is
validated in order to check its consistency with respect to the modifications. This phase is iterated
until a valid solution is detected. If it is not possible to modify the ontology by preserving its
consistency, the ontology remains unchanged. In the change implementation phase, the updating
of the ontology is enforced and an intermediate version is released. Finally, in the versioning and
change auditing phase, a log of the changes is produced and the mappings between the domain
ontology and the external knowledge sources are defined. The evolution methodology activities
that are executed in a cycle of the bootstrapping process depend on the evolution pattern which
is activated and on the current evolution phase, as shown in Table 3

Phases/Patterns Pattern 1 Pattern 2 Pattern 3 Pattern 4

Change analy-
sis

Pattern selection

Change
identification
and validation

Population
(Instance match-
ing, Instance
grouping, ABox
validation)

Population
(Instance match-
ing, Instance
grouping, ABox
refinement, ABox
validation)

Enrichment
(Concept learn-
ing, Concept
enhancement,
Concept defini-
tion)

Enrichment
(Concept defini-
tion)

Change imple-
mentation

Population
(ABox assimilation)

Enrichment
(Concept assimilation)

Versioning and
change auditing

- - Coordination
(Ontology versioning and manage-
ment,
Ontology alignment)

Table 3: Organization of the activities and tasks with respect to the evolution patterns and phases

3.8 Supporting services

The evolution methodology is based on a reasoning service and on a matching service.
The reasoning service is used to perform the ABox validation task during the population ac-

tivity, and to support the concept learning and concept validation task during enrichment.
The matching service is used to perform the instance matching task during the population

activity, the concept enhancement task during the enrichment activity, and the mapping definition
and mapping maintenance tasks during coordination.

3.9 Roles: the ontology expert

In BOEMIE, the ontology evolution process is interactive. One of the goals of the proposed
methodology is to minimize the burden on the ontology expert by providing as much automated
support as possible to the various activities and tasks. In particular, two kinds of interaction with
the expert are expected in the evolution methodology:
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• Parameter settings: the designer is required to properly set all the involved parameters (e.g.,
the matching threshold in coordination). A default value is provided and the designer can
modify it if required.

• Result inspection/validation, definition/revision: the ontology expert is asked to validate the
results of the automated population, enrichment, and coordination activities. However, the
proposed solutions can be always modified to manually enforce a specific design choice if
required.

In particular, the role of the expert per activity is as follows:

• Population

– Selection of HLCi: In the case of evolution pattern P2, if the ABox refinement activity
is not successful in choosing only one HLCi that correspond to the incoming instance,
the ontology expert intervention is needed to choose the correct HLCi or even decide
that the current instance is still unexplained, meaning that probably a new concept is
needed.

• Enrichment

– Concept (HLC) definition: The ontology expert is responsible for defining a new concept
when the evolution pattern selected is P3 or P4. Although he is supported by the results
obtained automatically from the concept enhancement activity, the ontology expert is
required to actually define the concepts.

– Concept (MLC) definition: In the case of pattern P4, when the definition of a new MLC
is needed, the ontology expert is responsible for this task.

• Coordination

– Parameter setting: the ontology expert is requested, when necessary, to set one or more
parameters to configure the matching service to perform the various ontology matchings
required in the methodology.

– Mapping validation: the ontology expert is responsible for validating and choosing the
mappings that need to be updated as a consequence of ontology enrichment activity;
this is done according to the measure of change determined in the ontology alignment
task.
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4 LOGICAL FOUNDATIONS AND REASONING SER-
VICES

Ontology languages of the OWL family, which provide the skeleton for research on ontology evo-
lution based on media interpretation, are based on description logics (DLs). In this chapter we
introduce the logical basis of several ontology languages of the OWL family, define their semantics,
and specify corresponding reasoning services. In the following subsections, we start with so-called
expressive description logics (approximately corresponding to but slightly more expressive than
OWL Lite), introduce additional constructs afterwards (corresponding to OWL DL, OWL 1.1),
and also specify other fragments of first-order logic, some of which have also been standardized by
W3C acitivities.

4.1 Expressive Description Logics: Syntax and Semantics

The DL ALCQHIR+(D)− which is also known as SHIQ is briefly introduced as follows. We
assume five disjoint sets: a set of concept names C , a set of role names R, a set of feature names
F , a set of individual names O and a set of names for (concrete) objects OC . The mutually dis-
joint subsets P and T of R denote non-transitive and transitive roles, respectively (R = P ∪ T ).
ALCQHIR+(D)− is introduced in Figure 12 using a standard Tarski-style semantics with an in-
terpretation ID = (∆I ,∆D, ·I) where ∆I ∩∆D = ∅ holds. A variable assignment α maps concrete
objects to values in ∆D.

In accordance with [Baader and Hanschke, 1991] we also define the notion of a concrete domain.
A concrete domain D is a pair (∆D,ΦD), where ∆D is a set called the domain, and ΦD is a set of
predicate names. The interpretation function maps each predicate name P from ΦD with arity n
to a subset PI of ∆n

D. Concrete objects from OC are mapped to an element of ∆D. We assume
that ⊥D is the negation of the predicate >D. A concrete domain D is called admissible iff the
set of predicate names ΦD is closed under negation and ΦD contains a name >D for ∆D, and the
satisfiability problem Pn1

1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm
m (xm1, . . . , xmnm) is decidable (m is finite, Pni

i ∈ ΦD,
ni is the arity of Pi, and xjk is a concrete object).

If R,S ∈ R are role names, then R v S is called a role inclusion axiom. A role hierarchy R is a
finite set of role inclusion axioms. Then, we define v∗ as the reflexive transitive closure of v over
such a role hierarchy R. Given v∗, the set of roles R↓ = {S ∈ R |S v∗ R} defines the sub-roles of a
role R. R is called a super-role of S if S ∈ R↓. We also define the set S := {R ∈ P |R↓ ∩ T = ∅} of
simple roles that are neither transitive nor have a transitive role as sub-role. Due to undecidability
issues number restrictions are only allowed for simple roles (see [Horrocks et al., 2000b]). In
concepts, inverse roles R−1 (or S−1) may be used instead of role names R (or S). If C and D are
concepts, then C v D is a terminological axiom (generalized concept inclusion or GCI ). A finite
set of terminological axioms TR is called a terminology or TBox w.r.t. to a given role hierarchy
R.2 An ABox A is a finite set of assertional axioms as defined in Figure 12c.

An interpretation I is a model of a concept C (or satisfies a concept C) iff CI 6= ∅ and for all
R ∈ R it holds that iff (x , y) ∈ RI then (y , x ) ∈ (R−1)I . An interpretation I is a model of a TBox
T iff it satisfies all axioms in T (see Figure 12b). An interpretation I is a model of an ABox A
w.r.t. a TBox T iff it is a model of T and satisfies all assertions in A (see Figure 12c). Different
individuals are mapped to different domain objects (unique name assumption). Note that features
are interpreted differently from features in [Baader and Hanschke, 1991].

Reasoning about objects from other domains (so-called concrete domains, e.g. for real numbers)
is very important for practical applications, in particular, in the context of the Semantic Web. For
instance, one might want to express intervals for integer values (“the price range is between 200
and 300 Euro”), state the relationship between the Fahrenheit and Celsius scales, or describe
linear inequalities (“the total price for the three goods must be below 60 Euro”). In [Baader
and Hanschke, 1991] the description logic ALC(D) is investigated and it is shown that, provided a
decision procedure for the concrete domain D exists, the logic ALC(D) is decidable. Unfortunately,
adding concrete domains to expressive description logics (DLs) such as ALCNHR+ [Haarslev and
Möller, 2000b] might lead to undecidable inference problems. In [Haarslev et al., 2001b] it has

2The reference to R is omitted in the following if we use T .
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(a)

Syntax Semantics

Concepts (R ∈ R, S ∈ S , and f, fi ∈ F )

A AI ⊆ ∆I (A is a concept name)
¬C ∆I \ CI

C u D CI ∩ DI

C t D CI ∪ DI

∃R . C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
∀R . C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S . C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≥ n}
∃≤m S . C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≤ m}
∃ f1, . . . , fn . P {a ∈ ∆I | ∃ x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I∧

(x1, . . . , xn) ∈ PI}
∀ f1, . . . , fn . P {a ∈ ∆I | ∀ x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I ⇒

(x1, . . . , xn) ∈ PI}
Roles and Features

R RI ⊆ ∆I ×∆I

f fI : ∆I → ∆D (features are partial functions)

‖ · ‖ denotes the cardinality of a set, and n, m ∈ N with n > 1, m > 0.

(b)

Axioms

Syntax Satisfied if

R ∈ T RI = (RI)
+

R v S RI ⊆ SI

C v D CI ⊆ DI

(c)

Assertions (a, b ∈ O , x, xi ∈ OC )

Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

(a, x) : f (aI , α(x)) ∈ fI

(x1, . . . , xn) :P (α(x1), . . . , α(xn)) ∈ PI

a = b aI = bI

a 6= b aI 6= bI

Figure 12: Syntax and Semantics of ALCQHIR+(D)−.

been shown that ALCNHR+ extended by a limited form of concrete domains leads to decidable
inference problems. This is achieved by disallowing so-called feature chains in ALCNHR+(D)−.
It is easy to see that the same pragmatic approach can also be applied to very expressive DLs.
By analogy to ALCNHR+(D)− the description logic (DL) ALCQHIR+(D)− extends the logic
ALCQHIR+ or SHIQ [Horrocks et al., 2000b] with concrete domains.

An important property of the language SHIQ (see above) is that the subsumption hierarchy of
the TBox part of a knowledge base (T ,A) is stable w.r.t. additions to the ABox part. Such, that
multiple knowledge bases (T ,A1),...,(T ,An) can reuse computations done so far for a TBox , for
query answering on any of the ABoxes Ai. This is due to stability on the subsumption relationships
between concepts, since they depend only on axioms in the TBox T . This property is lost when
introducing nominals, which are described in the next subsection.

4.1.1 Very Expressive Description Logics

A nominal (the letter O in a language name indicates the presence of nominals) is a singleton
concept, syntactically represented as {o} and semantically interpreted as {o}I = {oI}. Thus,
nominals stand for concepts with exactly one individual in contrast to a concept which stands
for a set of individuals. This allows the use of individuals in concept definitions such as names
for specific persons, countries, etc., leading to the situation in which there is no more difference
between TBox and ABox . OWL DL is a language that supports nominals.
SROIQ [Horrocks et al., 2006] is the most expressive language w.r.t to role statements whose

decidability has been proved. On top of SHIQ, SROIQ allows for more expressivity concerning
roles, where besides TBox and ABox , an RBox is introduced to include role statements, allowing
for:

1. Complex role inclusion axioms of the form R ◦ S v R and S ◦ R v R where R is a role and
S is a simple role.

2. Disjoint roles
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3. Reflexive, irreflexive and antisymmetric roles

4. Negated role assertions

5. Universal role

6. Local expressivity to allow concepts of the form ∃R.Self

SROIQ represents the logical basis of OWL 1.1 plus datatypes and datatypes restrictions
SROIQ(D+). In [Horrocks et al., 2006] a tableaux algorithm is presented, proving that SROIQ
is decidable, still there is no system implementation that supports all features of this language.

4.1.2 Other Decidable Fragments of First-Order Logic

The DL language EL is a tractable minimal language of special interest for existing learning
approaches (see Section 4.4). Being the counterpart of the DL language FL0, EL allows full
existential quantification (∃R.C) and overcomes the intractability of FL0 in the presence of acyclic
TBoxes. It is known since the 90s [Nebel, 1990], that even for a minimal language like FL0,
considering TBoxes turns intractable, therefore any extension on FL0 is also intractable. For
this reason EL becomes interesting, and relevant work [Baader et al., 2005] has been done in
investigating extensions of it that do not sacrifice its tractability, specially in the presence of general
concept inclusion axioms (GCI). A system for the fragment discussed above is CEL [Baader et al.,
2006]. Another tractable fragment related to EL is the DL-Lite fragement, which is implemented
in the QuOnto system [Calvanese et al., 2005].

4.1.3 Rules

As observed in previous sections, decidability is a characteristic that should be preserved by ontol-
ogy languages and which has caused expressivity restrictions. This is one of the reasons why rules
are gaining interest as an option to overcome expressivity limitations in DLs. A relevant proposal
to extend DL languages (more specifically, the syntactic variant OWL-DL) with Horn-like rules, is
the rule language called SWRL (Semantic Web Rule Language). SWRL uses OWL DL or OWL
Lite as the underlying DL language to specify a KB.

But the extension of OWL DL with rules is known to be undecidable [Motik et al., 2005], this
is due to the fact that decidability in OWL DL restricts the language to axioms that expresses only
quasi tree-like structures (we disregard transitive relations). Such a property is lost when adding
rules, therefore in order to add rules and still preserve decidability, a subset of SWRL can be used,
the so called DL-safe rules [Motik et al., 2005].

DL-safe rules are applicable only to explicitly introduced individuals and are formally defined
as follows:

Given a set of concept names Nc, a set of abstract and concrete role names NRa ∪ NRc . A
DL-atom is of the form C(x) or R(x,y), where C ⊆ NC and R ∈ NRa

∪ NRc
. A rule r is safe if

each of its variables occurs in a non-DL-atom in the rule body. In practice this means that rules
are applied to ABox individuals only.

4.2 Standard Inference Services

In the following we define standard inference services for description logics.
A concept is called consistent (w.r.t. a TBox T ) if there exists a model of C (that is also a

model of T and R). An ABox A is consistent (w.r.t. a TBox T ) if A has model I (which is also a
model of T ). A knowledge base (T ,A) is called consistent if there exists a model for A which is also
a model for T . A concept, ABox, or knowledge base that is not consistent is called inconsistent .

A concept D subsumes a concept C (w.r.t. a TBox T ) if CI ⊆ DI for all interpretations I (that
are models of T ). If D subsumes C, then C is said to be subsumed by D.

Besides these basic problems, some additional inference services are provided by description
logic systems. A basic reasoning service is to compute the subsumption relationship between
concept names (i.e. elements from C ). This inference is needed to build a hierarchy of concept
names w.r.t. specificity. The problem of computing the most-specific concept names mentioned
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in T that subsume a certain concept is known as computing the parents of a concept. The
children are the most-general concept names mentioned in T that are subsumed by a certain
concept. We use the name concept ancestors (concept descendants) for the transitive closure of
the parents (children) relation. The computation of the parents and children of every concept
name is also called classification of the TBox. Another important inference service for practical
knowledge representation is to check whether a certain concept name occcurring in a TBox is
inconsistent. Usually, inconsistent concept names are the consequence of modeling errors. Checking
the consistency of all concept names mentioned in a TBox without computing the parents and
children is called a TBox coherence check .

If the description logic supports full negation, consistency and subsumption can be mutually
reduced to each other since D subsumes C (w.r.t. a TBox T ) iff C u ¬D is inconsistent (w.r.t. T )
and C is inconsistent (w.r.t. T ) iff C is subsumed by ⊥ (w.r.t. T ). Consistency of concepts can be
reduced to ABox consistency as follows: A concept C is consistent (w.r.t. a TBox T ) iff the ABox
{a :C} is consistent (w.r.t. T ).

An individual i is an instance of a concept C (w.r.t. a TBox T and an ABox A) iff iI ∈ CI

for all models I (of T and A). For description logics that support full negation for concepts, the
instance problem can be reduced to the problem of deciding if the ABox A ∪ {i :¬C} is inconsistent
(w.r.t. T ). This test is also called instance checking . The most-specific concept names mentioned
in a TBox T that an individual is an instance of are called the direct types of the individual w.r.t. a
knowledge base (T ,A). The direct type inference problem can be reduced to subsequent instance
problems (see e.g. [Baader et al., 1994] for details).

An ABox A′ is entailed by a TBox T and an ABox A if all models of T and A are also models
of A′. For ABox entailment we write T ∪ A |= A′.

TBox inference services are provided by the systems CEL [Baader et al., 2006], Fact++
[Tsarkov and Horrocks, 2006], KAON2 [Hustadt et al., 2004], Pellet [Sirin and Parsia, 2006],
QuOnto [Calvanese et al., 2005], and RacerPro [Haarslev and Möller, 2001c]. The latter four
systems also support ABox inferences services.

4.3 Retrieval Inference Services

For practical application another set of inference services deals with finding individuals in ABoxes
that satisfy certain conditions.

The retrieval inference problem is to find all individuals mentioned in an ABox that are in-
stances of a certain concept C. The set of fillers of a role R for an individual i w.r.t. a knowledge
base (T ,A) is defined as {x | (T ,A) |= (i, x) :R} where (T ,A) |= ax means that all models of T and
A also satisfy ax. The set of roles between two individuals i and j w.r.t. a knowledge base (T ,A)
is defined as {R | (T ,A) |= (i, j) :R}.

In practical system such as RACER, there are some auxiliary queries supported: retrieval of
the concept names or individuals mentioned in a knowledge base, retrieval of the set of roles,
retrieval of the role parents and children (defined analogously to the concept parents and children,
see above), retrieval of the set of individuals in the domain and in the range of a role, etc. As a
distinguishing feature to other systems, which is important for many applications, we would like
to emphasize that RACER supports multiple TBoxes and ABoxes. Assertions can be added to
ABoxes after queries have been answered. In addition, RACER also provides support for retraction
of assertions in particular ABoxes.

In addition to the basic inference service concept-based instance retrieval in practical applica-
tions more expressive query languages are required.

A query consists of a head and a body. The head lists variables for which the user would like to
compute bindings. The body consists of query atoms (see below) in which all variables from the
head must be mentioned. If the body contains additional variables, they are seen as existentially
quantified. A query answer is a set of tuples representing bindings for variables mentioned in the
head. A query is written {(X1, . . . , Xn) | atom1, . . . , atom2}.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X, Y )), same-as query
atoms (X = Y ) as well as so-called concrete domain query atoms. The latter are introduced
to provide support for querying the concrete domain part of a knowledge base and will not be
covered in detail here. Complex queries are built from query atoms using boolean constructs for
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conjunction (indicated with comma), union (∨) and negation (¬) (note that the latter refer to
atom negation not concept negation and, for instance, negation as failure semantics is assumed in
[Wessel and Möller, 2005]). In addition, a projection operator is supported in order to reduce the
dimensionality of an intermediate tuple set. This operator is particularly important in combination
with negation (complement). For details see [Wessel and Möller, 2005].

Answering queries in DL systems goes beyond query answering in relational databases. In
databases, query answering amounts to model checking (a database instance is seen as a model
of the conceptual schema). Query answering w.r.t. TBoxes and ABoxes must take all models
into account, and thus requires deduction. The aim is to define expressive but decidable query
languages. Well known classes of queries such as conjunctive queries and unions of conjunctive
queries are topics of current investigations in this context.

In the literature (e.g., [Horrocks et al., 2000a; Glimm et al., 2007; Wessel and Möller, 2006]),
two different semantics for these kinds of queries are discussed. In standard conjunctive queries,
variables are bound to (possibly anonymous) domain objects. In so-called grounded conjunctive
queries, variables are bound to named domain objects (object constants). However, in grounded
conjunctive queries the standard semantics can be obtained for so-called tree-shape queries by
using existential restrictions in query atoms.

ABox entailment can be reduced to query answering. An ABox A′ is entailed by a TBox T
and an ABox A if for all assertions α in A′ it holds that the boolean query {() | α} returns true.

4.4 Nonstandard Inference Services

In addition to standard inference services and retrieval inference services, recently another set
of inference problems have been defined, decision problems have been shown to be decidable,
and practical inference algorithms as well as system implementations have been developed (cf.,
[Turhan and Kissig, 2004]). These services are known as non-standard inference services. Non-
standard inference services are useful for building ontologies from examples (learning or bottom-up
approach for constructing ontologies). Note that depending on the ontology language, a solution
for the problems mentioned below need not necessarily exist. Furthermore, algorithms for the
problems are known only for non-expressive description logics in most cases.

• Least-common subsumers (LCS) [Baader and Küsters, 1998; Baader et al., 1999b, 2004]
A least-common subsumer represents the commonalities between a set of concepts. For a
given set of concepts C1,...,Cn their least-common subsumer E is defined as follows:

1. Ci v E for all i = 1,...,n and

2. If E′ is a concept satisfying Ci v E′ for all i = 1,...,n then E v E′.

• Most-specific concept (MSC) [Borgida and Küsters, 1999]
Given a finite set of assertions in ABox A of the form C(a) or r(a, b), where C is a concept
and r is a role name, the concept E represents the most-specific concept of the individual a
in ABox A if it satisfies:

1. A |= E(a), and

2. If E′ is a concept satisfying A |= E′(a) then E v E′.

• Rewriting w.r.t. terminologies [Baader et al., 2000]
The aim is to rewrite a given concept definition C w.r.t. to a terminology T into an equivalent
concept C ′, such that redundancies are removed and its length is reduced. The resulting
concept definition C ′ is easier to understand by humans than the previous definition C.
In an ideal world the objective is a minimal rewriting, such that given an ordering � on
concept definitions, a rewriting C ′ is minimal iff there does not exist a rewriting C ′′ such
that C ′′ � C ′. Obtaining the minimal concept rewriting is computationally non-trivial,
therefore it is sufficient to compute a small but not minimal definition.

• Approximation [Brandt et al., 2001, 2002]
Given a concept description written in a more expressive DL, the aim is to translate the
concept into a less expressive DL with minimal loss of information. Thus, given two DL
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languages, e.g. L1 = ALC and L2 = ALE an approximation of a concept description C in
L1 to a concept description in L2 is a concept description D, such that C v D and D is
minimal w.r.t. subsumption.

• Difference [Brandt et al., 2002]
The difference E of two concepts C and D is defined as follows: E uD ≡ C.

• Matching [Baader et al., 1999a; Baader and Küsters, 1999a,b, 2000, 2001; Baader et al.,
2001]
The aim is to locate similar concepts in one terminology to find redundancies, or similar
concepts in different ontologies to help in their integration. Matching is based on concept
patterns. A pattern substitutes the concept terms that appear in a concept description with
concept variables, such concept variables can represent any arbitrary concept description.
Thus, matching is based on finding concepts that have similar patterns. This is formally
defined as follows: given a concept pattern C and a concept term D, find a substitution σ of
the concept variables in C with concept terms such that σ(C) ≡ D.

• Explanation (axiom pinpointing) [Kalyanpur et al., 2006b,a]
To support ontology engineers in finding the causes of errors or inconsistencies in an ontol-
ogy, axiom pinpointing aims to identify those parts of the ontology causing an unintended
ramification (e.g., an ABox inconsistency). In this context, the explanation service should
provide arguments that prove why the previously pinpointed axioms hold for the unintended
ramification.

• Similarity [Lutz et al., 2003; Borgida et al., 2005]
Similarity of concepts and individuals has been the subject of recent investigations, in par-
ticular for learning applications. The ideas is that individuals are similar if they have similar
direct types and similar role fillers. The problem is, however, that similarity measures must
be based on the models of concepts or ABoxes rather than on the syntactic structure of
concept terms or ABox assertions. For instance, the TBox and ABox shown below enforces
some constrains that will have to be considered for similarity assessment, but which are not
syntactically apparent.

X ≡ (∀r.¬C) t (∃≤1r)
(i, j) : r

j : C
i : X

(i, k) : r
(k, l) : r

k : D
l : E

It can be seen that j is not only an instance of C but also an instance of D, and j has two
role fillers, namely k and l.

Different notions of similarity are defined in the literature and different measures have been
proposed [Linckels and Meinel, 2005; Janowicz, 2005; d’Amato et al., 2006].

• Abduction [Elsenbroich et al., 2006]
Abduction aims to derive a set of explanations ∆ for a given set of assertions Γ such that ∆
is consistent w.r.t. to the ontology (T ,A) and satisfies:

1. T ∪ A ∪∆ |= Γ and

2. If ∆′ is an ABox satisfying T ∪ A ∪∆′ |= Γ, then ∆′ |= ∆ (∆ is least specific)

4.5 Examples of interpretation in BOEMIE

Ontologies in a description logic framework are seen as a tuple consisting of a TBox and an ABox.
In order to populate an ontology, in technical terms the ABox part of the ontology is extended



Methodology and Architecture for Multimedia Ontology Evolution 31

with some new assertions describing individuals and their relations. These descriptions are derived
by media interpretation processes using the ontology (we assume the ontology axioms are denoted
in a set Σ and we do not distinguish between TBox and ABox).

Interpretation processes are set up for different modalities, still images, videos, audio data,
and texts. Using an example interpretation for still images, in this section we discuss the assumed
output of the interpretation process. The output is a symbolic description represented as an ABox.
This ABox is the result of an abduction process (see [Shanahan, 2005] for a general introduction).
In this process a solution for the following equation is computed: Σ∪∆ |= Γ. The solution ∆ must
satisfy certain side conditions (see Section 4.4).

Figure 13: Still image displaying a pole vault event.

In Figure 13 an example from the athletic domain is presented. Assuming it is possible to
detect a horizontal bar bar1, a jumper jumper1, and a pole pole1 by image analysis processes the
output of the analysis phase is represented as an ABox Γ. Assertions for the individuals and (some
of) their relations detected by analyzing Figure 13 are shown in Figure 14.

pole1 : Pole
jumper1 : Jumper

bar1 : Horizontal Bar
(bar1, jumper1) : near

(jumper1, pole1) : touches

Figure 14: An ABox Γ representing the result of the image analysis phase.

In order to continue the interpretation example, we assume that the ontology contains the
axioms shown in Figure 15 (the ABox of the ontology is assumed to be empty). For some purposes,
description logics are not expressive enough. Thus, we assume the ontology is extended with so-
called DL-safe rules (rules that are applied to ABox individuals only, see Section 4.1.3). In Figure 16
a set of rules for the athletics example is specified. Note that the spatial constraints touches and
near for the parts of a Pole V ault event (or a High Jump event) are not imposed by the TBox
in Figure 15. Thus, rules are used to represent this additional knowledge. Since spatial relations
depend on the specific “subphases” of the events, corresponding clauses are included on the right-
hand sides of the rules (being aware of the possibility to model phases explicitly as individuals,
here we use phase predicates for brevity). In the following we assume that the rules are part of
the TBox Σ.

We assume that the agent interpreting the image decides that spatial relations between certain
objects are not arbitrary, i.e., the agent would like to have an explanation about why is it the case
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Man v Person
Woman v Person

Man v ¬Woman
Athlete ≡ Person u ∃hasProfession.Sport

Foam Mat v SportEquipment
Pole v SportEquipment

Javelin v SportEquipment
Horizontal bar v SportEquipment

Jumping Event v Event u ∃hasPart.Jumper
Pole V ault v Jumping Eventu

∃hasPart.Poleu
∃hasPart.Horizontal Baru
∃hasPart.Foam Mat

High Jump v Jumping Eventu
∃hasPart.Horizontal Baru
∃hasPart.Foam Mat

PV StartPhase v >
PV EndStartPhase v >

HJJumpPhase v >
. . .

Figure 15: An tiny example TBox Σ for the athletics domain

touches(Y, Z) ← Pole V ault(X),
PV StartPhase(X),
hasPart(X, Y ), Jumper(Y ),
hasPart(X, Z), Pole(Z).

near(Y, Z) ← Pole V ault(X),
PV EndStartPhase(X),
hasPart(X, Y ),Horizontal Bar(Y ),
hasPart(X, Z), Jumper(Z).

near(Y, Z) ← High Jump(X),
HJJumpPhase(X),
hasPart(X, Y ),Horizontal Bar(Y ),
hasPart(X, Z), Jumper(Z).

. . .

Figure 16: Additional restrictions for Pole V ault and High Jump in the form of rules.

that a jumper touches a pole and is near a horizontal bar. Explanations can be seen as the result
of the image interpretation process. As mentioned above the idea is to use the abduction inference
service for deriving these kinds of explanations (in the sense of interpretations). In our scenario we
slightly modify the abduction equation by taking into consideration that initially the ABox does
not need to be empty. Thus, we divide Γ (see Figure 14) into a part Γ2 that the agent would like
to have explained, and a part that the interpretation agent takes for granted (Γ1). In our case
Γ2 is {(bar1, jumper1) : near, (jumper1, pole1) : touches} and Γ1 is {pole1 : Pole, jumper1 :
Jumper, bar1 : Horizontal Bar}.

Coming back to the abduction problem specified above, we need solution(s) for the equation
Σ ∪∆ ∪ Γ1 |= Γ2. In other words, given the background ontology Σ from Figures 15 and 16, the
query as derived from Γ2 should return true:

Q1 := {() | near(bar1, jumper1),
touches(jumper1, pole1)}

Obviously, this is not the case if ∆ is empty (note that the ABox part of the ontology Σ is also
empty). In order to see how an appropriate ∆ could be derived, let us have a look at the rules in
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Figure 16. In particular, let us focus on the rules for Pole V ault first. If we apply the rules to
the query in a backward chaining way (i.e., from left to right) and unify corresponding terms we
get corresponding variable bindings for Y and Z. The “unbound” variable X of the corresponding
rules are instantiated with fresh individuals (e.g., pv1 and pv2). For some reason the agent might
assume, only one event is involved (i.e., only pv1 is used). Then, a possible solution ∆ for the
abduction equation can be derived. ∆ is shown in Figure 17.

pv1 : Pole V ault
pv1 : PV StartPhase
pv1 : PV EndStartPhase

(pv1, jumper1) : hasPart
(pv1, bar1) : hasPart

(pv1, pole1) : hasPart

Figure 17: One possible solution of the abduction equation.

Considering the GCIs involving Pole V ault in the TBox shown in Figure 15 it becomes apparent
that for a pole vault there also exists a foam mat which is not found by the image analysis module:
Maybe it is not visible or the analysis just could not detect it. In the latter situation, one could
somehow adapt the image analysis processes and start a feedback loop. This feedback from the
image interpretation module (high level) to the image analysis module (low-level) is subject to
ongoing research and will be covered elsewhere. The assertions concerning the relation hasPart
and the phases derived by the rule are included in the interpretation result. Thus, the output of
the interpretation phase in our example is the ABox shown in Figure 18.

pole1 : Pole
jumper1 : Jumper

bar1 : Horizontal Bar
(bar1, jumper1) : near

(jumper1, pole1) : touches
pv1 : Pole V ault
pv1 : PV StartPhase
pv1 : PV EndStartPhase

(pv1, jumper1) : hasPart
(pv1, bar1) : hasPart

(pv1, pole1) : hasPart

Figure 18: An ABox representing the result of the image interpretation phase.

The example discussed in this document covers the interpretation of still images. It is necessary,
however, to keep in mind that each media object might consist of multiple modalities, each of which
will be the basis of modality-specific interpretation results (ABoxes). In order to provide for an
integrated representation of the interpretation of media objects as a whole, these modality-specific
interpretation results must be appropriately integrated. A cornerstone of this integration process
will be to determine which modality-specific names refer to the same domain object. This will
be discussed in the following sections. In the following, both modality-specific and media-specific
ABoxes will be called interpretation ABoxes. Due to the context, ambiguities should not arise.

So far we have discussed an example where there is one unique explanation (and, hence, one
unique interpretation). However, this need not necessarily be the case. In Figure 19 an example is
presented that might lead to two different interpretations. For the example we assume the ABox
in Figure 20 is produced by the image analysis component.

For the interpretation process we assume the same ontology as above. It is easy to see that
we get two explanations by the abduction process (see Figures 21 and 22). Note that each in-
terpretation process will generate new names which might refer to the same domain object. For
query answering we assume that each individual is somehow associated with its ABox and each
ABox is associated with its media objects (the techniques used to implement these associations are
described elsewhere). A query {x | Pole V ault(x)} applied to the ABoxes in Figures 21 and 22
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Figure 19: Image displaying a snapshot of a high jump or pole vault (where the pole it outside the
image).

bar2 : Horizontal Bar
jumper2 : Jumper

(bar2, jumper2) : near

Figure 20: An ABox Γ representing the result of the analysis of the image in Figure 19.

returns {(pv2)}. From this solution the corresponding ABox and, in turn, the media object is
derived. Similar results are obtained for High Jump queries.

Continuing the example it might be the case that for some images the ontology does not
contain relevant axioms or rules. In this case, the interpretation result, i.e., the result of solving
the abduction problem Σ ∪ ∆ ∪ Γ1 |= Γ2 will be degenerated because, due to missing axioms or
rules in Σ, ∆ must necessarily be equal to Γ2 in order to solve the equation. As an example of such
a situation we can discuss an interpretation of Figures 13 or 19 without the rules from Figure 16
and the GCIs for Pole V ault and High Jump in Figure 15. The degenerated interpretation result
is shown (as Γ) in Figure 14. If a query such as {(x) | Pole V ault(x)∨High Jump(x)} is specified,
the corresponding image will not be found.

jumper2 : Jumper
bar2 : Horizontal Bar

(bar2, jumper2) : near
hj2 : High jump
hj2 : HJJumpPhase

(hj2, jumper2) : hasPart
(hj2, bar2) : hasPart

Figure 21: An ABox representing the first result of the image interpretation process.

In the following chapter we will discuss how, for instance, the GCIs in Figure 15 can be derived.
Then we will investigate how an abstraction of the rules in form of GCIs are computed. Note that
rules are applied to ABox individuals only (which no problem for the abduction process). For a
more general use of the ontologies it is beneficial to approximate the rules also as GCIs which
impose restrictions on all domain objects.
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jumper2 : Jumper
bar2 : Horizontal Bar

(bar2, jumper2) : near
pv2 : Pole V ault
pv2 : PV EndStartPhase

(pv2, jumper2) : hasPart
(pv2, bar2) : hasPart

Figure 22: An ABox representing the second result of the image interpretation process.

5 ONTOLOGY POPULATION

Ontology population is the process of inserting concept instances into an existing ontology. The
first activity of ontology evolution, which leads to either population or enrichment, is evolution
pattern selection. Evolution pattern selection is responsible for selecting which evolution pattern
(one of P1 – P4) will be followed, based mainly on the number of explanations (or their lack of)
produced for the incoming ABox. Ontology population is triggered through the selection of either
P1 or P2 evolution patterns, meaning that either a single (evolution pattern P1) or more (evolution
pattern P2) explanations (HLCis) have been found during the interpretation activity to explain
the extraction results for a single multimedia document. Having as input a single HLCi or a set of
HLCis, the population activity is responsible for performing the following tasks:

• Instance matching: The first task of the population activity is the identification of similar
instances from the domain ontology for each HLCi in the set of explanations. Having a single
HLCi as input, instance matching is expected to return a set of instances (ABoxes) that
populate the HLC and are similar to the incoming ABox. Each returned matching instance
is also expected to have a similarity figure, which measures the similarity of the two ABoxes
(HLCis). The results of instance matching can be used to group instances that represent
the same real object or event (as ABoxes that are similar are assumed to represent the same
real object or event) and possibly help in disambiguating multiple explanations in the case
of evolution pattern P2 (ABox refinement).

• Instance grouping: This task is responsible for grouping all the instances that represent the
same real object or event (exploiting the results of the instance matching task). Every in-
coming HLCi has been matched with a set of other instances that populate this HLC through
instance matching. Instance grouping is responsible to decide which of these matching in-
stances will be kept and grouped together with the original incoming ABox to form a group
that represents the same real object or event.

• ABox refinement (evolution pattern P2 only): In case of multiple explanations (evolution
pattern P2), the most suitable explanation is selected by exploiting the results of the instance
grouping task. Assertions related to the rest of the explanations are removed from the ABox,
thus leading to a refined version of it.

• ABox validation: This task performs consistency checking, to detect possible inconsistencies
due to the additions that will be performed to the ontology. Two tasks must be validated:
the addition of the incoming ABox (i.e., the one that originally triggered the population
activity) into the ontology and the addition of a new instance of a grouping concept or the
modification of an existing one. Both type of validation can be performed through standard
inference services (see Section 4).

• ABox assimilation: The final task is responsible for performing the needed changes in the on-
tology (by creating all instances/relations in all ontological modules), in order to incorporate
the information in the new ABox into the ontology.

The input to the population activity for a single multimedia document is:

• The ABox that the information extraction toolkit produced for the multimedia document.
This ABox is expected to contain:
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– A set of mid-level concept instances (MLCis).

– A set of relations between the various MLCis.

– A set of HLCis.

• The evolution pattern (P1 or P2), selected by the interpretation activity.

In the following sections, the various tasks of the population activity will be described, along with
a complete example showing the various tasks performed in the evolution patterns P1 and P2,
respectively.

5.1 Single concept explanation

This section explains the tasks involved when evolution pattern P1 has been selected during the
evolution pattern selection activity. The selection of evolution pattern P1 occurs when the ABox
of a multimedia document contains a unique HLCi that explains the document. This explanation
HLCi will not be the only HLCi in the ABox but will be the only HLCi that explains the document
as a whole, possibly involving other HLCis in this explanation. Having identified this HLCi in the
ABox, the following tasks must be performed.

5.1.1 Instance matching

The goal of instance matching (or individual matching) is to evaluate the degree of similarity among
different individuals for which assertions provide restrictions in one or more ABoxes defined with
respect to the same TBox. For matching, the similarity of role filler values as well as the similarity
of their direct types (or MSCs) will have to be considered. In Section 4.4 similarity has been
introduced as a non-standard inference service, and with some examples we have demonstrated
the role of reasoning for determining role fillers and, e.g., direct types of individuals. In order to
simplify the discussion, here we only consider “structural” matching, i.e., we consider cases where
similarity can be defined with respect to the structure of Abox assertions. The measures defined
will have to be extended to semantics-based matching.

In order to perform the matching we distinguish among instances of high-level aggregate con-
cepts (HLCi) and instances of mid-level simple concepts (MLCi). A HLCi description is a portion
of an ABox that contains all the assertions involving at least one individual of an aggregate concept
(HLC), while MLCi is a portion of an ABox that contains all the assertions involving only individ-
uals of simple concepts (MLC). With respect to the example of Figure 18, we have three mid-level
concepts (i.e., Pole, Horizontal Bar, and Jumper) and one high-level concept (i.e., Pole V ault) 3.
According to this, we distinguish three MLCis and one HLCi in the ABox of Figure 18, as shown
in Figure 23.

MLCipole1

pole1 : Pole
(jumper1, pole1) : touches

MLCijumper1

jumper1 : Jumper
(bar1, jumper1) : near

(jumper1, pole1) : touches

MLCibar1

bar1 : Horizontal Bar
(bar1, jumper1) : near

HLCipv1

pv1 : Pole V ault
(pv1, jumper1) : hasPart

(pv1, bar1) : hasPart
(pv1, pole1) : hasPart

Figure 23: Example of mid-level concept instances and a high-level concept instance.

3Note that, in the example, Jumper is considered as a simple component of the image (i.e., only low-level
features are provided for it). If the extraction provides more information about the jumper as an athlete (e.g.,
name, nationality), it is considered an HLCi in the instance matching process
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In order to illustrate the instance matching procedure, we introduce a second example ABox
which describes a similar image where the jumper does not touch the pole. The corresponding
instances are shown in Figure 24. The idea behind instance matching is that the similarity between

MLCipole2

pole2 : Pole

MLCijumper2

jumper2 : Jumper
(bar2, jumper2) : near

MLCibar2

bar2 : Horizontal Bar
(bar2, jumper2) : near

HLCipv2

pv2 : Pole V ault
(pv2, jumper2) : hasPart

(pv2, bar2) : hasPart
(pv2, pole2) : hasPart

Figure 24: Example of instances extracted from another ABox.

the two ABoxes depends on the similarity among the instances that comprise them. Instance
similarity is evaluated by taking into account the objects that are mentioned in the assertions that
compose each instance.

Matching of MLCi. Given two MLC instances MLCi1 and MLCi2, we evaluate their degree
of similarity on the basis of the number of matching assertions that compose the two instances.
Given two assertions of the form a : A and a′ : A′, they match if:

1. A ≡ A′

2. d(a, a′) ≥ t

where, d(a, a′) denotes the measure of data similarity between a and a′, while t denotes a threshold
that is used in order to discard data with a low level of similarity. In case of role assertions of the
form (a, b) : A and (a′, b′) : A′, they match if:

1. A ≡ A′

2. d(a, a′) ≥ t ∧ d(b, b′) ≥ t

The data similarity value d(a, a′) is a value in the range [0, 1], and is evaluated by exploiting
specific matching functionalities depending on the datatype associated with a and a′. When data
represent low level features (e.g., image sections, audio stream), specific matching functions [Farag
and Abdel-Wahab, 2003; Ding et al., 2004] have been proposed and can be used in order to evaluate
d(a, a′). When data are strings, string matching facilities [Stoilos et al., 2005; Cohen et al., 2003]
are used. For other basic datatypes (e.g., numbers, dates), specific operators [Qiang et al., 2003]
can be defined. Moreover, instance matching relies on lookup tables containing pre-defined rules for
data compatibility, that can be defined and maintained by the ontology expert, in order to control
the kind of data values that should be considered equivalent in the instance matching process.

Finally, the comprehensive instance similarity I(MLCi1,MLCi2) between two mid-level in-
stances MLCi1 and MLCi2 featuring the same mid-level concept is evaluated by means of a
comprehensive matching measure. An example 4 of such a measure is given by the following
formula [Castano et al., 1998].

I(MLCi1,MLCi2) =
| a ∈ {A ∩A′} |
| a ∈ {A ∪A′} |

(1)

where | a ∈ {A∩A′} | denotes the number of matching assertions in A and A′, while | a ∈ {A∪A′} |
denotes the total number of assertions in A and A′.

4The matching service in BOEMIE provides also other metrics that can be used to evaluate the comprehensive
instance matching value.
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With respect to the example, we assume that:

d(pole1, pole2) ≥ t

d(jumper1, jumper2) ≥ t

d(bar1, bar2) ≥ t

Thus, by applying (1), we obtain the following values of matching:

I(MLCipole1 ,MLCipole2) = 0.67

I(MLCijumper1 ,MLCijumper2) = 0.8

I(MLCibar1 ,MLCibar2) = 1.0

Note the different MLCis of the example, even if they refers to matching objects, state different
facts about these objects. For example, MLCipole1 states that there is a pole which is touched by
a jumper, while MLCipole2 states only that there is a pole in the image. For this reason, even if
the two poles are considered to be similar, the two MLCis are not.

Matching of HLCi. When two aggregate concept instances HLCi1 and HLCi2 are matched,
we evaluate their similarity on the bases of the similarity among their components. In other terms,
the matching procedure is the same as in the case of MLCi but we do not consider the objects that
are classified as HLCis. With respect to the example, we do not have a matching value between
pv1 and pv2, because they are instances of the high-level concept Pole V ault. When we match
role assertions of the form (h, b) : A and (h′, b′) : A′, where h and h′ are objects classified as high
level concept instances, they match if:

1. A ≡ A′

2. d(b, b′) ≥ t

Finally, we use (1) in order to evaluate the comprehensive value of matching between HLCi1 and
HLCi2, that is:

I(HLCipv1 ,HLCipv2) = 1.0

Coming back to the ABoxes of the example, we can conclude that the two resources describe the
same (or very similar) pole vault event, that is a pole vault event composed by the same (or very
similar) objects (i.e., pole1/pole2, jumper1/jumper2, bar1/bar2). Moreover, also the horizontal
bars in the resources are the same one (or very similar). In contrast, even if the poles and the
jumpers in the two resources are similar, the assertions about them are different, because jumper1

touches pole1, while there is no relation between jumper2 and pole2. A degree of similarity between
the two ABoxes can be evaluated by setting a threshold t and by applying (1) to the two ABoxes,
as follows:

I(ABox1, ABox2) =
| x ∈ {ABox1 ∩ABox2} |
| x ∈ {ABox1 ∪ABox2} |

where | x ∈ {ABox1 ∩ ABox2} | denotes the number of matching instances in the two ABoxes,
while | x ∈ {ABox1 ∪ ABox2} | denotes the total number of instances in the two ABoxes. In the
case of the example, by setting a threshold t = 0.8, we obtain:

I(ABox1, ABox2) =
6
8

= 0.75

The similarity value calculated between the two ABoxes is due to the fact that the two images
represent the same (or similar) objects but two different situations. For instance it could be the
case of two images of the same jumping event, but taken of two different moments. In fact, in the
first image, the jumper touches the pole, while in the second there is no relation between the same
(or similar) jumper and the same (or similar) pole.
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5.1.2 Instance grouping

The instance matching task receives a single HLCi explaining the document, and returns a set of
ABoxes (already in the ontology as instances of the HLCi). If this returned set is empty (i.e., no
matching instances have been found), then instance grouping creates a new group, that contains
the ABox description of the HLCi. In the case that the returned set has one or more elements, then
instance grouping must decide which of these instances will form a group with the ABox instance,
meaning that they refer to the same real object or event.

The instance among similar instances returned by the matching process can exploit either
intrinsic information (such as the similarity measure, which must exceed a threshold) or contextual
evidence (such as the presence of other unexplained HLCis/MLCis/relations in the two involved
documents). All instances that have been selected as representing the same object or event will
populate the ontology by remaining as separate instances (i.e., they are not merged into a single
instance). In addition, an instance of a concept that can group/index all these instances that
represent the same object or event is added to the domain ontology, which allows the easy retrieval
of all instances in the group.

5.1.3 ABox validation

This task performs consistency checking, by trying to detect possible inconsistencies among in-
stances that represent the same real objects or events. In order to perform consistency checking,
an ABox corresponding to all instances of a formed cluster is constructed and its consistency with
respect to the domain ontology is examined through the standard inference services (Section 4).

5.1.4 ABox assimilation

This task is responsible for integrating the ABox and the grouping information in the ontology. All
elements that comprise the ABox are inserted to the corresponding ontological modules. For exam-
ple, MLCis/low-level features populate the multimedia content and descriptor ontology, relations
involving only MLCis populate the spatiotemporal ontology, modality-specific HLCis populate
the modality elements ontology and finally the remaining HLCis populate the domain ontology.
For HLCis that populate the domain ontology, if grouping information has been generated and
the group contains two or more elements, then an instance of a grouping concept is additionally
inserted into the ontology.

5.2 Multiple concept explanation

This section explains the tasks involved when evolution pattern P2 has been selected during the
evolution pattern selection activity. The selection of P2 occurs when two or more HLCis that ex-
plain the document have been found through interpretation. The tasks performed during evolution
pattern P2 are the same as in evolution pattern P1, with the addition of the ABox refinement task
after the instance grouping task.

For each HLCi explaining the document, instance matching and instance grouping are applied,
as in P1. Once instance matching and instances grouping have been performed on all HLCis
explaining the instance, then ABox refinement is invoked in order to select the HLCi that better
explains the instance. If ABox refinement succeeds in selecting a single HLCi, then all other
HLCis are rejected. In case ABox refinement is unable to select a single HLCi, then a single HLCi
is selected with the help of the ontology expert. Once a single HLCi has been selected (either
automatically or with the help of the ontology expert) then population proceeds as as in evolution
pattern P1: the other HLCis are rejected (leading to a refined version of the ABox) and the ABox
validation and assimilation tasks are invoked to process the selected HLCi.

5.2.1 Instance matching and ABox refinement

As described above, in the evolution pattern P2, we have multiple explanations of the same re-
source. This means that we have more than one ABox describing a resource, as seen in the example.
The ABox refinement task is responsible for selecting a single HLCi that better describes the in-
coming instance out of the set of possible explanations. The input to the ABox refinement task
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is a set of HLCis, each of them associated with a group of similar instances, acquired through the
instance matching and instances grouping tasks. In order to select a single HLCi, the instances
group of an HLCi is compared with all other groups of all remaining HLCis. Intrinsic information of
a group is primarily used for comparisons, such as the number of similar instances that participate
in a group or its coherence expressed through the similarity values among the group instances. If
these criteria can lead to the selection of a single HLCi, then non-selected HLCis are automatically
discarded, otherwise, the incoming instances are presented to the ontology expert. The ontology
expert can select a single HLCi as explaining better the document, or discard all HLCis, leaving
the document unexplained. If the ontology expert selects a single HLCi, then all remaining HLCis
are discarded. If no HLCi is selected by the ontology expert, then all explanations are discarded,
making the document an unexplained one. The population activity stops processing the document
and this unexplained document is returned to the evolution pattern selection activity, which in
turn will lead the unexplained document to the ontology enrichment activity, through the selection
of evolution pattern P3.

In other words, the idea behind ABox refinement is that, it is possible to exploit the ABoxes
already in the ontology with are unambiguously annotated with a single aggregate concept. In
particular, we exploit instance matching to evaluate the degree of affinity between the new ABoxes
and the ABoxes in the ontology. In particular, given multimedia resource r and a set A =
{a1, a2, . . . , an} of ABoxes that potentially describe r, we match each ai ∈ A against the ABoxes
in the ontology, by selecting the ABox ak in the ontology that best matches ai, that is, the most
similar one. The idea is to find resources similar to r already described in the ontology in order to
exploit them for choosing the best description of r among the ones provided in A. As an example
of this task, consider the ABoxes described in Figures 21 (referred as a1) and 22 (referred as a2),
and suppose that the ontology ABox constrains the set of instances a3 described in Figure 25.

jumper2 : Jumper
bar3 : Horizontal Bar

(bar3, jumper2) : near
hj3 : High jump

(hj3, jumper2) : hasPart
(hj3, bar3) : hasPart

Figure 25: An Abox already stored in the ontology.

We execute instance matching (with a threshold of 0.5) between a1 and a3 and between a2 and
a3, respectively. Since the jumper is the same in the three ABoxes, but only a1 and a3 describe
high jump events, we obtain:

I(a1, a3) = 0.67

I(a2, a3) = 0.34

where the second result is discarded because it is lower than the threshold. The instance similarity
between a1 and a3 is then submitted to the ontology expert, since it suggest that the resource
could be a description of an high jump event more than a pole vault event. On the basis of the
suggestion, the ontology expert can chose to refine the ABoxes produced by the interpretation
activity. In particular, a2 is eliminated while a1 in maintained as the correct description of the
resource r.

5.2.2 Example: pole vault or high jump

For the purposes of this example, let’s assume that the information extraction toolkit has processed
a multimedia document, containing text and still images, originating from the URL http://www.iaaf.org/-
news/Kind=2/newsId=33486.html. An overview of this multimedia document is presented in Fig-
ure 26:

Let’s also assume that the information extraction toolkit was able to analyze the first image
at the top of the news item, and the textual passage of the main column. The still image analysis
toolkit managed to identify a jumper, an horizontal bar and a pole. In addition, the fact that the
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Figure 26: Example of a multimedia document
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jumper touches the pole and that she is near the horizontal bar was identified and stated through
proper relations, shown in Figures 27. and 28.

MLCs
jumper
pole
horizontal bar
foam mat
. . .
Relations
near(horizontal bar, jumper)
touches(jumper, pole)
. . .

Figure 27: Information extracted from an image

Surekha edges closer to 4m - Indian Grand
Prix, 1st leg
Thursday 16 February 2006
New Delhi, India - Vazhipali Suresh Surekha re-
gained the national mark for womens pole vault
from Chetna Solani scaling 3.90m braving the af-
ternoon temperature in the first leg of Indian GP
circuit meet at Jawaharlal Nehru Stadium here.
Surekha, with roots from Kerala but opting to
participate for her domicile state of Tamil Nadu,
however failed to accomplish her dream of sailing
over 4m on Wednesday (15 Feb).
Women:
Pole Vault: 1. V.S. Surekha (TN) 3.90 [Na-
tional Record]; 2. Geetanjali Bora (Asm) 3.75;
3. Chetna Solanki (UP) 3.60;

Athlete name Vazhipali Suresh Sureka
Geetanjali Bora
Chetna Solani

Nationality -
Age -
Sport women’s pole vault
Ranking 1, 2, 3
Performance 3.90m, 3.75m, 3.60m
Location New Delhi, India
Event Indian Grand Prix, 1st leg
Date Thursday 16 February 2006

Figure 28: Information extracted from a text

Provided that concepts similar to the TBox in Figure 15 exist in the ontology, the interpretation
activity of the information extraction toolkit may produce the following explanation (ABox):

pole1 : Pole
jumper1 : Jumper

horizontal bar1 : HorizontalBar
(horizontal bar1, jumper1) : near

(jumper1, pole1) : touches
name1 : Name
name2 : Name
name3 : Name

ranking1 : Ranking
ranking2 : Ranking
ranking3 : Ranking

performance1 : Performance
performance2 : Performance
performance3 : Performance
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jumper2 : Jumper
jumper3 : Jumper

sport1 : Sport
location1 : Location

athletic event1 : AthleticEvent
date1 : Date

(jumper1, name1) : hasName
(jumper1, ranking1) : hasRanking

(jumper1, performance1) : hasPerformance
(jumper1, sport1) : hasSport
(jumper2, name2) : hasName

(jumper2, ranking2) : hasRanking
(jumper2, performance2) : hasPerformance

(jumper2, sport2) : hasSport
(jumper3, name3) : hasName

(jumper3, ranking3) : hasRanking
(jumper3, performance3) : hasPerformance

(jumper3, sport3) : hasSport
(sport1, location1) : hasLocation

(sport1, date1) : hasDate
(sport1, jumper1) : hasParticipant
(sport1, jumper2) : hasParticipant
(sport1, jumper3) : hasParticipant

(athletic event1, sport1) : hasSport
pole vault1 : PoleVault

(pole vault1, jumper1) : hasPart
(pole vault2, jumper2) : hasPart
(pole vault1, jumper1) : hasPart

(pole vault1, horizontal bar1) : hasPart
(pole vault1, pole1) : hasPart

(athletic event1, pole vault1) : hasPart

The above ABox constitutes the input to the ontology evolution process and according to
it, the multimedia document describes a pole vault event (i.e., the HLC Pole V ault has been
found through interpretation) performed in the context of an athletic event, in which details about
three jumpers (their ranking/performance) are presented. As this is a case of a single concept
explanation, the evolution pattern P1 is selected leading to a population activity. In order to
perform the first task (instance matching), the HLC of the incoming ABox must be identified.
Since we are interested only in HLCis at this stage, we use the retrieval inference services offered
by the ontology reasoning services (Section 4) to find all individuals of the ABox that are instances
of HLCi concepts like Athlete, Sport and Athletic Event. The results of instance retrieval can be:

jumper1 : Athlete
jumper2 : Athlete
jumper3 : Athlete

sport1 : Sport
athletic event1 : AthleticEvent

Once the HLCis contained in the ABox have been identified, they are passed to the instance
matching task, with the goal of identifying other instances contained in the ontology that are
similar to the HLCis retrieved from the ABox. For the purposes of this example, we suppose
that the instance matching task has returned 2 similar instances for instance jumper1 that are
additionally grouped together representing the same real object or event by the instance grouping
task, 1 similar instance for jumper2 and no similar instances for jumper3. In addition, several
instances similar to the sport and athletic event instances were found, all grouped as representing
the same real entities. However, for reasons related to the simplicity and ease of understanding of
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this example, we will focus primarily on the returned athlete instances, as the same process can
be repeated for instances of every other concept, such as sport and athletic event. The athlete
instances from the ABox as well as their similar instances from the ontology are shown in Table 6
and in Figure 29.

ABox instances Similar instances from the ontology

jumper1
name name1
ranking ranking1
performance performance1
round sport1
age -
gender -
nationality -
. . .

jumper1520
name name1520
ranking ranking1520
performance perfromance1520
round sport1520
age 24
gender woman
nationality Indian
. . .
jumper1580
name name1580
ranking ranking1580
performance perfromance1580
round sport1580
age 23
gender woman
nationality -
. . .

AthleteParticipations2
group: jumper1520,jumper1580

jumper2
name name2
ranking ranking2
performance perfromance2
round sport1
age -
gender -
nationality -
. . .

jumper2650
name name2650
ranking ranking2650
performance perfromance2650
round sport2650
age -
gender woman
nationality -
. . .

jumper3
name name3
ranking ranking3
performance perfromance3
round sport1
age -
gender -
nationality -
. . .

Table 6: Similar instances retrieved in the ontology

Once groups of similar instances have been identified, these groups must be validated. An
ABox corresponding to all instances of an instance group is constructed (by refining the original
ABox) and its consistency with respect to the domain ontology is checked through the standard
inference services. It is worth noting that consistency checking verifies compatibility of instances
with respect to the ontology (which is a standard ABox validation process), but can additionally
check compatibility with respect to the values of the various instance properties. For example,
two instances of the same athlete can have different values for the nationality property. This
could be an error (e.g., because the information extraction toolkit has made a mistake or the
original multimedia document was wrong) or could not be correct (e.g., the same athlete chose
to participate in a specific athletic event under a different nationality). A quick analysis of the
athletics domain reveals several properties that can have incompatible values, such as age (which
is different according to the event date), sport (as an athlete can participate in two or even more
sports). Deciding whether a different property value is an error or not is almost impossible in
an evolving infrastructure such as the BOEMIE approach, which assumes an open world where
new information is used to expand its knowledge base. As a result, property value compatibility
checks are performed only in some properties that cannot change dramatically, such as an athlete’s
surname. Based on the results of each validation stage, instances that fail the ABox validation are
discarded and are not considered for ontology population, while instances that fail the property
value validation are excluded from the group and are placed in a new group. Continuing our
example, we assume that all considered instances in all groups passed the validation checks. Thus,
population continues by performing ABox assimilation, considering the groups shown in Figure 30.

During the ABox assimilation task, all the required changes are performed in the ontology
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Figure 29: Graphical representation of similar instances of the example

(by creating all instances/relations in all involved ontological modules), in order to incorporate
the information from the ABox into the ontology. ABox assimilation is responsible for inserting
the extracted MLCis, their relations and the HLCis that explain these MLCis into the ontology.
The ABox assimilation process follows a bottom-up approach, by choosing to populate first the
multimedia content ontological module. The modality element that describes an MLCi in the still
images modality is a still region, while a textual MLCi is represented by a phrase. As a result, all
needed instances that represent all MLCis in the ABox populate the TBox, as shown in Figure 31:

After populating the multimedia content ontology module, the population proceeds with the
modality elements ontology module (Figure 32).

The third ontology module populated is the relation ontological module, where spatiotemporal
(for audio, video and still image modalities) and other relations (for the text modality) are stored.
An example of such a population is provided in Figure 33

Once the multimedia content, the modality elements, and the relation ontology modules have
been populated, the domain ontology is finally populated. In the Figure 34, an example of popu-
lation of the domain ontology with an instance of a jumper (jumper1) is presented. The process
for populating with instances of any other concept is the same.

5.3 Measurable objectives

Measurable objectives for the population activity are the performance of the instance matching
and instance grouping tasks. There are two scenarios for evaluating these two tasks.

The first evaluation scenario uses as input the manually annotated corpus (this is the ideal
input expected from the information extraction toolkit; no ambiguous interpretations – evolution
pattern P1 case is only covered) to measure the performance of instance matching and instance
grouping tasks. A target of 90% or more may be set for this evaluation scenario.

The second scenario takes as input the system annotated corpus (covers both P1 and P2
evolution patterns). The performance of the information extraction toolkit is known from WP2
evaluation, meaning that it is known which of the interpretations are correct, erroneous, etc.
The measuring objective of this scenario is how well the population activity manages to populate
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Figure 30: Groups selected for population
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Figure 31: Population of the multimedia content ontology module

Figure 32: Population of modality elements

Figure 33: Population of relation ontology module
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Figure 34: Population of the domain ontology

the ontology without loss of extracted information and at the same time solving the ambiguous
interpretations (evolution pattern P2).
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6 ONTOLOGY ENRICHMENT

Ontology enrichment is the activity of extending an ontology, through the addition of new concepts
and relations. Ontology enrichment is performed every time the background knowledge is not
sufficient to explain the extracted information from the processed multimedia documents. Thus,
the ontology enrichment activity is expected to extend this background knowledge through the
addition of new concepts/relations, in order to better explain extracted information in subsequent
cycles of the bootstrapping process.

The ontology enrichment activity is triggered by either P3 or P4 evolution patterns. Evolution
pattern P3 is selected when no explanation (i.e., an HLC) has be found for a given ABox, and can
lead to the insertion of a new HLC or a new relation into the ontology, or in the accumulation of the
ABox in a “waiting” queue if available evidence cannot justify the addition of a new concept. On
the other hand, evolution pattern P4 is selected when the background knowledge is not sufficient to
even assign MLCs to all of the extracted elements of a multimedia resource, thus leaving extracted
modality descriptors not associated with a MLC in the ABox. In this case, pattern P4 can result in
the addition of a new MLC in the ontology. In fact, we consider the detection of the missing MLC
to have priority over the identification of the missing HLC, because knowing about the new MLC
could lead to different interpretation results about the same resources. The new interpretation will
thus be performed in the next bootstrapping cycle. Ontology enrichment is decomposed into the
following tasks:

• Concept learning: The goal of this task is to propose new concepts (either HLCs or MLCs) and
relation by exploiting similarities found through clustering, either in unexplained documents
(evolution pattern P3) or in unknown objects recognized by the information extraction toolkit
(evolution pattern P4). It can be decomposed into two main tasks, clustering and concept
formation.

– Clustering: The main objective of the clustering task is to provide evidence that can
support the creation of new concepts or relations.

– Concept formation: This task is applicable only if a new HLC has been proposed by
clustering. Exploiting the results of clustering, concept formation examines the ABoxes
of the clustered elements in order to extract common information (such as concepts and
relations) and use this common information to form the new concept through a new
ABox, which is the result of this task.

• Concept enhancement: This task is responsible for improving a concept identified by con-
cept learning, through knowledge acquired from external sources, such as external domain
ontologies or taxonomies.

• Concept definition: This task receives the new concept (either a new MLC or HLC) and rela-
tion as defined through the previous tasks, and shows the concept definition to the ontology
expert. The ontology expert must approve the new concept in order to be assimilated into
the ontology and additionally can revise the definition of the new concept.

• Concept validation: This task performs consistency checking, by trying to detect possible
inconsistencies due to the addition of the new concept relation to the ontology.

• Concept assimilation: The last task of ontology enrichment is responsible for performing the
needed changes in the ontology in order to incorporate the newly formed concept into the
domain ontology TBox.

Unlike the population activity, ontology enrichment changes the TBox of the ontology and thus
the background knowledge contained in the ontology. BOEMIE subsystems that rely on this
background knowledge (such as the information extraction toolkit) must be notified about TBox
changes, as they need to adapt to the modified background knowledge. For example, MLC rec-
ognizers of the information extraction toolkit must be adapted to recognize new MLC concepts
that have been added into the TBox. As a result, when an enrichment activity is applied to the
ontology (through actions taken during the P3 and P4 evolution patterns), the bootstrapper must
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be notified about all the changes occurred, in order to provide the correct feedback to the BOEMIE
components affected, such as the information extraction toolkit.

In the following two subsections, the tasks performed for both P3 and P4 evolution patterns
will be described in detail, along with a complete example showing the various tasks performed in
the cases of evolution patterns P3 and P4 trigger an enrichment activity.

6.1 Missing concept with metadata explanation

This section describes the tasks performed when evolution pattern P3 has been selected by the
evolution pattern selection activity. Evolution pattern P3 is selected when a multimedia document
cannot be explained by the semantic interpretation. When a document triggers pattern P3 no tasks
are performed: the ABox of the document is simply placed in a “waiting” queue, where ABoxes
related to unexplained documents are accumulated. This waiting queue can have unexplained
ABoxes from other documents of this bootstrapping cycle, but also from earlier bootstrapping
invocations.

Thus, the selection of evolution pattern P3 simply leads to the addition of the document’s
ABox in a set of unexplained ABoxes. When all multimedia documents given as input to the
evolution toolkit for this bootstrapping cycle have been examined, then the enrichment process that
corresponds to evolution pattern P3 is triggered. As a result, enrichment tasks related to pattern
P3 are activated only after all documents associated with pattern P3 have been accumulated in
the “waiting” area.

The goal of the enrichment task associated with evolution pattern P3 is to define new HLCs
and relations, and present these (along with the evidence supporting their creation) to the ontology
expert. In order to support this goal, enrichment tries to exploit commonalities that may exist
among the unexplained ABoxes (for creating new HLCs) or among ABoxes with unexplained MLCs
through clustering. The tasks that support this goal, are shown in the following table:

HLC Learning Relation Learning

• Concept learning

– Clustering

– Concept formation

• Concept enhancement

• Concept definition

• Concept validation

• Concept assimilation

• Concept learning

– Clustering

• Concept definition

• Concept validation

• Concept assimilation

6.1.1 Concept learning

The concept learning task in the context of evolution pattern P3 is responsible for proposing either
a new HLC or a new relation to be added in the ontology TBox, based on similarity evidence
among unexplained ABoxes (for learning new HLCs) or unexplained MLCs (for learning relations)
through clustering. As a result, concept learning involves two types of clustering that have different
goals and operate upon different input.

Clustering for HLC learning. Clustering for HLC learning aims to propose new HLCs by
exploiting similarities in the ABoxes that have been accumulated in the “waiting” queue. Clustering
will try to cluster the ABoxes found by using information relative to the MLCIs, HLCIs, relations
among them, but also the terms identified by the text modality of the extraction toolkit. Despite
of the fact that terms are in essence unknown objects and also modality specific objects of the text
modality, we believe that the clustering task for HLC learning can exploit them not only because
they can provide important evidence for clustering, but also because it is easy to use them: they
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can be used directly as symbolic values, without the need to resort to any other low level features
– a unique property of the unknown objects of the text modality.

The result of this clustering task is a set of clusters, each cluster containing a set of ABoxes
that are similar to each other, but unexplained. Such a cluster is assumed to contain evidence
about a real object or event that cannot be explained by the current TBox and thus a new HLC
is required to explain all ABoxes in the cluster.

Clustering for relation learning. Clustering for relation learning tries to propose new relations
among concepts (either HLCs or MLCs), by examining the unexplained concepts in ABoxes that
have been explained and thus have populated the ontology. When the ABox of a multimedia
document contains an explanation, this does not necessarily mean that all instances (either MLCIs
or HLCIs) are related to this explanation. It is possible that some (known to the ontology)
MLCIs/HLCIs may still be unexplained (unrelated to the explanation) despite the fact that an
explanation exists for the ABox. The idea behind relation learning is that the frequent existence
of an unrelated instance in ABoxes that share the same explanation may be an indication that this
instance can be part of the explanation, but was left unexplained due to a missing relation. Thus,
clustering for relation learning tries to identify these situations in order to propose a new relation
among an unexplained concept and concepts that participate in the explanation.

The input to the clustering for relation learning is a set of instances (ABoxes) that populate a
specific HLC, and the ABox of the document containing a set of unexplained instances. The result
of this clustering task is a set of clusters, where each cluster contains a set of ABoxes sharing the
same unexplained concept instance. Each cluster is assumed to contain evidence about a possible
relation between the unexplained concept and the explained ones. However, no attempt is made
to explicitly define the relation. Instead, the evidence is shown to the ontology expert (during
concept definition), which is responsible to define the relation if he decides that there is enough
evidence to justify the addition of a new relation.

Concept formation. If for many interpretation tasks the abduction process described in Sec-
tion 5 results in degenerated results, the Γ ABoxes provide the basis of a concept definition process.
For this purpose, a bottom-up construction approach through the use of non-standard reasoning
services (see Section 4.4) represents a good option to learn new concept definitions (see [Baader
et al., 2003, P. 250 ff] for an overview). Figure 35 illustrates a general approach in which from the
discovery of most specific concepts (MSC), their least common subsumer (LCS) is computed and
finally minimal rewriting is applied on the LCS to produce a new concept C ′. Afterwards the new
concept C ′ can be used in order to discover new concepts to be added in the Tbox part of the KB.

Figure 35: Bottom-up approach to learn new concept definitions

To illustrate such a process in the context of BOEMIE, let us consider the ABoxes in Figure 36
as Γs that after abduction represent only degenerated interpretation results. Each Γ corresponds
to a different media object (note that for this example no spatial or topological relations are
considered). These Γis represent the basis to learn new concept definitions, thus following the
bottom-up approach, each Γ is considered for the creation of a MSC. For this purpose we consider
the ABox individuals as parts of some anonymous aggregate instance named with a fresh individual,
e.g, xi : C11Y and finally create has Part relations among the individuals and the new aggregate
individual (see Figure 36) in order to obtain the augmented ABoxes Γ′i (C11Y is some arbitrary
aggregate concept).
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Figure 36: Γ ABoxes as basis for learning new concept definitions

From the Γ′is the specification of MSCs is observed in Figure 37 from which the LCS is obtained.

Figure 37: Obtaining the LCS from MSC

The LCS concept can be possibly rewritten using the terminology to make it more succinct. If
no rewriting is possible then the new concept definition (GCI), e.g.,

C13X v ∃has Part.Horizontal Bar u ∃has Part.Jumper

could be added to the TBox part of the KB. However, in order to frame the new concept in the
ontology, it is desirable to discover a meaningful name and other possible features of it.

6.1.2 Concept enhancement

The idea of concept enhancement is that, after learning the LCS C ′, we have a definition of the
components required in the new concept, but not a definition of a specific event or object to be
used in order to explain the ABoxes. More information to support the ontology expert in enriching
the ontology is needed. To this end, a concept enhancement activity is triggered. The goal of
concept enhancement is to find elsewhere, by probing other external knowledge sources, definitions
of concepts similar to the anonymous concept whose existence has been learned in the previous
phase. Such discovered concept definitions are then used as the starting basis by the ontology
expert for interactively defining the new concept to be inserted into the domain ontology. Concept
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enhancement is performed through probe queries. A probe query is a description of the properties,
the constraints, and the semantic relations that should be exhibited by the (actually anonymous)
new concept in order to consider it as a suitable candidate for ontology enrichment. The probe
query is defined by taking into account both the properties and relations of the anonymous concept
and the current version of the ontology. Furthermore, in order to reduce the involvement of the
ontology expert as much as possible, in probe query formulation, an internal concept discovery
process can be triggered which explores the background ontology knowledge with the goal of
collecting all the knowledge available in the ontology regarding C ′. In particular, we look for one
or more concepts already present in the ontology that are featured by the same or similar properties
of C ′. This internal concept discovery is performed by means of ontology matching techniques.
In BOEMIE, we adopt a matching service [Castano et al., 2006] capable of determining the level
of matching of two different concepts by evaluating, separately or in combination, their linguistic
affinity and contextual affinity, respectively. Linguistic affinity provides a measure of similarity
between two ontology concepts C and C ′ computed on the basis of their linguistic features (i.e.,
concept names). Contextual affinity provides a measure of similarity by taking into account the
contextual features of the ontology concepts C and C ′. The context of a concept can include
properties, semantic relations with other concepts as well as property restrictions. Given the
features of the anonymous concept C ′, ontology matching is performed by taking into account
only the contextual affinity and by using a threshold t in order to discard the concepts with a low
similarity with C ′. This matching process produces as a result a set MC of matching concepts
with C ′, such that, MC = {Ci ∈ O | SA(Ci, C

′) = CA(Ci, C
′) ≥ t}, where SA(Ci, C

′) denotes
the semantic affinity between Ci and C ′, and CA(mci, C

′) denotes the contextual affinity between
Ci and C ′. With respect to the example, for internal discovery we match the concept

C13X v ∃hasPart.Horizontal Bar u ∃hasPart.Jumper

against the TBox shown in Figure 15, by supposing that the concepts High Jump and Pole V ault
are missing. We use the matching service default threshold (i.e., 0.5). Since the ontology of the
example is very poor, we obtain only a matching concept for C13X, that is:

CA(C13X, Jumping Event) = 0.75.

The result of the internal discovery step, is then used as starting basis for formulating probe queries
to enable concept enhancement over external knowledge sources. For each retrieved matching
concept Ci in the ontology a probe query is created. A probe query is basically a set of axioms
that describes the target of concept enhancement, that is a description of the properties, the
constraints, and the semantic relations that should be exhibited by the (actually missing) new
concept in order to consider it as a candidate for ontology enrichment. In particular, we define
a probe query containing the definition of C ′ and a probe query PQi for each matching concept
Ci ∈ MC retrieved through the internal discovery process. Each PQi contains all the properties,
restrictions and relations featuring the corresponding concept Ci. Referring to the example, we
define two probe queries, as shown in Figure 38.

PQ1 : [Jumping Event v Event u ∃hasPart.Jumper]

PQ2 : [C13X v ∃hasPart.Horizontal Bar u ∃hasPart.Jumper]

Figure 38: Example of probe queries

Each probe query is then matched against one or more external knowledge sources. The goal
of this phase is to discover some external concepts that could be useful to define the new candidate
concept to be inserted in the ontology. The different probe queries can be matched by exploiting
different configurations of the matching service, depending on the probe query contents. The probe
query containing the definition of C ′ is always matched by evaluating contextual affinity, since we
do not have a meaningful name for C ′, while probe queries composed by using ontology concepts
are executed evaluating a comprehensive measure of semantic affinity SA, which takes into account
also the linguistic affinity features. In particular, the semantic affinity value is evaluated as a linear
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combination of linguistic affinity and contextual affinity, by using a threshold-based mechanism
for matching concept selection, such that, the lower the threshold t, the higher the number of
concepts that are retrieved as candidates for ontology enrichment. The execution of a probe query
PQi against an external knowledge source KS produces a (possibly empty) set of mappings mi,
of the form mi〈Ci, C

′, SA(Ci, C
′)〉, where Ci denotes a probe query concept in PQi, C ′ denotes a

concept in the external source KS, and SA(Ci, C
′) denotes the semantic affinity between Ci and

C ′, respectively 5. Finally, for each mapping mi, the corresponding external concept C ′ is returned
to the ontology expert as a candidate for ontology enrichment.

With respect to the example, we match the probe queries shown in Figure 38 against a taxonomy
of concepts in the athletics domain extracted from Wikipedia 6, which is shown in Figure 39. In

Events in Athletics v Athletics
All round athletics v Events in Athletics

Decathlon v Events in Athletics
Discus Throw v Events in Athletics

Half Marathon v Events in Athletics
Hammer Throw v Events in Athletics

Heptathlon v Events in Athletics
High Jump v Events in Athletics

Hurdling v Events in Athletics
Javelin Throw v Events in Athletics

Long Distance Track Event v Events in Athletics
Long Jump v Events in Athletics
Marathon v Events in Athletics

Middle Distance Track Event v Events in Athletics
Penthatlon v Events in Athletics
Pole V ault v Events in Athletics

Race Walking v Events in Athletics
Running v Events in Athletics
Shot Put v Events in Athletics

Spring v Events in Athletics
Standing High Jump v Events in Athletics
Standing Long Jump v Events in Athletics

Standing Triple Jump v Events in Athletics
Steplechase v Events in Athletics

Triple Jump v Events in Athletics
Ultramarathon v Events in Athletics

Womens Penthatlon v Events in Athletics

Figure 39: Example of an external knowledge source (OWL representation of a Wikipedia portion)

the example, we use a low threshold value of 0.3, in order to obtain a high number of candidate
concepts for ontology enrichment. The evaluation of PQ1 and PQ2 of Figure 38 against the source
taxonomy of Figure 39, returns the mappings shown in Figure 40. According to the results shown
in Figure 40, the following concept names are returned to the ontology expert as candidates for
ontology enrichment.

Athletics, Events in athletics, High Jump, Long Jump, Pole V ault,
Standing High Jump, Standing Long Jump, Standing Triple Jump,
Triple Jump

The ontology expert evaluates the candidates in order to define the most appropriate concept
definition for the anonymous concept to be added in the ontology.

5In case of contextual affinity evaluation, SA(Ci, C
′) is equal to CA(Ci, C

′)
6http://en.wikipedia.org/wiki/Category:Events in athletics
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PQ1

m1 = 〈Jumping Event, High Jump, 0.4〉
m2 = 〈Jumping Event, Long Jump, 0.4〉
m3 = 〈Jumping Event, Triple Jump, 0.4〉
m4 = 〈Jumping Event, Athletics, 0.32〉
m5 = 〈Jumping Event, Pole V ault, 0.32〉
m6 = 〈Jumping Event, Standing High Jump, 0.32〉
m7 = 〈Jumping Event, Standing Long Jump, 0.32〉
m8 = 〈Jumping Event, Standing Triple Jump, 0.32〉

PQ2

m9 = 〈C13X, Events in athletics, 0.45〉

Figure 40: Result of the evaluation of PQ1 and PQ2

6.1.3 Concept definition and validation

The concept definition task aims to present to the ontology expert the definition of a new concept
along with the evidence supporting its creation, or the evidence supporting the creation of a new
relation, in order to finally decide the addition of a concept/relation to the ontology. In the case
of a new concept, the formation of the new concept (as formed by the concept learning, concept
definition and concept enhancement tasks) is presented to the ontology expert. In addition, the
cluster of ABoxes that lead to the initial definition of the concept is presented to the ontology expert
as the evidence justifying the addition of the new concept. The ontology expert must decide if the
concept should be inserted into the ontology and, if necessary, he can revise the concept definition.
If the decision to add the new concept into the ontology is taken, the ontology expert is expected
to select which ABoxes/documents from the ones presented can be explained by the new concept
(i.e., which ones become instances of the new concept in the ontology).

When the ontology expert is required to analyze a set of possible candidates for ontology
enrichment, he chooses the concept names that provide the best description of the new resources,
according to his understanding of the domain. Note that, since the candidates are extracted
from external knowledge sources (e.g., web directory taxonomies), the expert can also examine
the external source in order to increase his understanding of the domain, if necessary. However,
the name selection and the features of the anonymous concept C’ are not sufficient for concept
definition. In fact, the ontology expert is required also to define other axioms concerning the new
concept, in order to use it for population. In the case of the example shown in Figure 37, we have
two arbitrary aggregate concepts C11Y and C12X, that are defined as follows:

C11Y v ∃hasPart.Horizontal Bar u ∃hasPart.Jumper u ∃hasPart.Pole

C12X v ∃hasPart.Horizontal Bar u ∃hasPart.Jumper u ∃hasPart.Mats

respectively. The ontology expert choses, among the candidate concept names, the candidates
Pole V ault for C11Y and High Jump for C12X, and obtains the following definitions:

Pole V ault v ∃hasPart.Horizontal Bar ∩ ∃hasPart.Jumper ∩ ∃hasPart.Pole

High Jump v ∃hasPart.Horizontal Bar ∩ ∃hasPart.Jumper ∩ ∃hasPart.Mats

The two concept definitions have then to be framed into the current version of the ontology, that
is shown in Figure 41.

In order to find a suitable location for the new concepts in the ontology, the ontology expert
can use again the matching service, by matching the new concept definitions against the current
version of the ontology of Figure 41. In the example, the matching results are the following:

SA(High Jump, Jumping Event, 0.6)

SA(Pole V ault, Jumping Event, 0.56)
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Man v Person
Woman v Person

Man v ¬Woman
Athlete ≡ Person u ∃hasProfession.Sport

Foam Mat v SportEquipment
Pole v SportEquipment

Javelin v SportEquipment
Horizontal bar v SportEquipment

Jumping Event v Event u ∃hasPart.Jumper

Figure 41: Current version of the ontology

by using both linguistic and contextual affinity evaluation. Moreover, the ontology expert can use
the matching service also in order to evaluate the similarity between the components of the two
aggregate concepts (i.e., Horizontal Bar, Jumper, Pole, Mats) and the concepts already present
in the ontology. By using this facility, the expert retrieves the following results:

SA(Horizontal Bar,Horizontal Bar, 1.0)

SA(Jumper, Jumper, 1.0)

SA(Mats, Foam Mat, 0.8)

The semantic affinity values obtained are intended to support the ontology expert in refining
the concept definitions and to frame them in the ontology. To this end, the interpretation
of the affinity values in terms of relations among the ontology concepts is left to the expert.
In the case of the example, the high affinity between Foam Mat and Mats can lead the ex-
pert to the decision of substituting the restriction ∃hasPart.Mats with ∃hasPart.Foam Mat.
Moreover, according to his understanding of the domain, the expert can also choose to add
∃hasPart.Foam Mat also in the definition of Pole V ault. Finally, the ontology expert ana-
lyzes the affinity measured among Pole V ault, High Jump and Jumping Event. A possible
interpretation of this affinity is to consider Pole V ault and High Jump as to jumping events,
since the definition of the concept Jumping Event subsumes the definition of Pole V ault and
High Jump. According to this interpretation, the two concepts are refined by inserting the
axioms Pole V ault v Jumping Event and High Jump v Jumping Event and by deleting
Pole V ault v ∃hasPart.Jumper and High Jump v ∃hasPart.Jumper, respectively. The final
definition of the new concepts is shown in Figure 42.

Pole V ault v Jumping Eventu
∃hasPart.Poleu
∃hasPart.Horizontal Baru
∃hasPart.Foam Mat

High Jump v Jumping Eventu
∃hasPart.Horizontal Baru
∃hasPart.Foam Mat

Figure 42: The new concepts Pole V ault and High Jump

When the two concepts are added to the Tbox, it makes sense to check whether some concept
name becomes inconsistent (coherence check, see Section 4.2). For rules however, this kind of
service can not be applied because rules must be DL-safe and, therefore, are applied to Abox
individuals only. If a GCI is derived as an approximation of the rule and the GCI causes some
concept names to become inconsistent when the GCI is added to the Tbox, then the rule will also
cause this effect, of course. In general, the consistency of rules must be checked w.r.t. example
ABoxes (see the ABox consistency check described in Section 4.2).

In the previous example no spatial or topological relations where considered for the learning pro-
cess, since the previous bottom-up approach does not take into consideration the existence of rules.
Rules are especially useful in this project for the modeling of such spatial/topological relations.
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Approaches for learning rules are presented in [Muggleton, 1999] (Inductive Logic Programming,
ILP).

6.1.4 Concept assimilation

This task is responsible for integrating the validated new concept/relation with the ontology,
leading to an enriched version of the ontology, which, in the case of the example, is shown in
Figure 43.

Man v Person
Woman v Person

Man v ¬Woman
Athlete ≡ Person u ∃hasProfession.Sport

Foam Mat v SportEquipment
Pole v SportEquipment

Javelin v SportEquipment
Horizontal bar v SportEquipment

Jumping Event v Event u ∃hasPart.Jumper
Pole V ault v Jumping Eventu

∃hasPart.Poleu
∃hasPart.Horizontal Baru
∃hasPart.Foam Mat

High Jump v Jumping Eventu
∃hasPart.Horizontal Baru
∃hasPart.Foam Mat

Figure 43: Example of the enriched intermediate version of the ontology

6.2 Missing concept without metadata explanation

This section describes the tasks performed when evolution pattern P4 has been selected by the
evolution pattern selection activity. Evolution pattern P4 operates in a similar manner to evolution
pattern P3, as multimedia documents triggering evolution pattern P4 are accumulated, and tasks
related to pattern P4 are activated when all documents have been examined in the extraction
phase. Evolution pattern P4 is selected by the evolution pattern selection in the presence of a
document ABox that contains at least one unknown MLCI. Unknown MLCIs are instances of real
objects that have been recognized by the information extraction toolkit, but no information about
them exists in the ontology. Thus, the information extraction toolkit cannot associate a known
MLC to them, classifying them as unknown. Every unknown MLCI encountered is stored as an
instance of the “unknown” MLC of the ontology along with the low level features associated with
it, effectively placing the unknown MLCI in the “waiting” area.

The goal of the enrichment tasks associated with evolution pattern P4 is to decide upon the
correlation of these unknown MLCIs with the application domain and to define a new MLC to
describe the significant ones. Both actions are performed with the aid of the ontology expert. The
tasks related to evolution pattern P4 are the following:

• Concept learning

• Concept definition

• Concept validation

• Concept assimilation
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6.2.1 Concept learning

The concept learning task in the context of evolution pattern P4 is responsible for proposing a
new MLC to be added in the ontology TBox, based on similarity evidence found among instances
of unknown MLCs through clustering. The input to this clustering action is all unknown MLCIs
placed in a “waiting” stage by the P4 pattern, along with the low-level features associated with
each unknown MLCI. Clustering is expected to decide which of these instances refer to the same
real object or event by exploiting similarities found mainly in the low-level features. Thus, this
clustering action is modality-specific and as such cannot be performed at the level of semantics.
Thus, this clustering is performed through the exploitation of the clustering service offered by
the information extraction. The set of unknown MLCIs and their low-level features are provided
to the clustering service of the extraction toolkit. The result of this clustering service is a set
of clusters, with each cluster containing instances that refer to the same real object or event.
Instances contained in such a cluster constitute the supporting evidence that will be shown to the
ontology expert as justification for the creation of a new MLC.

6.2.2 Concept definition

The concept definition task is responsible for showing each cluster formed during the concept
learning task to the ontology expert. The low-level features associated with all instances in a
cluster must be presented to the ontology expert in a suitable, easy understandable format that
will help the visualization of the instances and will allow the expert to decide whether the instances
describe a relevant MLC for the application domain. For example, low-level features from the text
modality may be presented as colored text portions in the document’s text, whether low-level
features from the image modality can be presented as colored regions on an image. Having all this
information as input, the ontology expert must decide whether the displayed MLC instances are
important or not. In case the addition of a new MLC has been decided, the ontology expert must
provide a name for it, and select which low-level features are associated with it.

6.2.3 Concept validation

This task performs consistency checking using standard inference services (Section 4), in order to
ensure that the new MLC is consistent with the ontology.

6.2.4 Concept assimilation

This task is responsible for integrating the validated new MLC with the ontology, leading to an
enriched version of the ontology. When a new concept is inserted in the ontology, the links among
it and the other modules of the semantic model have to be defined. This activity may require to
add new elements in the ontology modules corresponding to the new MLC.

As an example, a MLC has to be linked with a concept that generalizes its visual representation,
i.e., a MLC in the domain ontology should have a corresponding concept in the modality elements
ontology. If this concept does not exist it is created during the concept assimilation by exploiting
functionalities of the coordination tool. In particular, given a new MLC C that represents for
example a media object extracted from an image, a new concept C visual featuring the visual
representation of C is created in the modality elements ontology as a subclass of the concept
V isual Representation. Then, C is linked to C visual by means of the hasV isualRepresentation
relation. This link may be represented as shown in Figure 44.

6.3 Example: learning a new concept

As an example of the ontology enrichment activity, the case of learning a new HLC will be de-
scribed, as it involves all tasks described in this section. For the purposes of this example, we
assume to have processed a set of HTML pages from an image gallery of a web site related to
the Athletics domain. Each HTML page is assumed to contain only an image and sometimes
a legend. A second assumption is that our ontology miss concepts for pole vault or high jump,
but the information extraction toolkit is able to recognize MLCs like athlete, pole and horizontal
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Modality_Representation

Visual_Representation

C_visual

C

hasVisualRepresentation

Modality Elements Ontology Domain Ontology

Figure 44: Definition and linking of a new visual element

bar. Under such assumptions, an explanation is not found for images involving pole vault events
during the interpretation phase performed by the extraction toolkit. Thus, the evolution process
will receive an input similar to the one shown in Table 8. None of the those ABoxes contains an
explanation. All ABoxes contain some MLCIs and a few relations, mainly provided by the image
analysis. The three incoming ABoxes are analyzed by the evolution pattern selection activity,
and, due to the absence of an explanation, the evolution pattern P3 is selected. The ABoxes are
then placed in a “waiting” area where they remain until all documents provided as input to the
evolution process have been processed. Once all input documents have been processed, the three
unexplained ABoxes in the “waiting” area are processed according to the following tasks of the
evolution pattern P3:

• Concept learning

– Clustering

– Concept formation

• Concept enhancement

• Concept definition

• Concept validation

• Concept assimilation

The first task performed is concept learning, involving two tasks, namely clustering and concept
formation. In our example, the clustering task produces a cluster containing the three ABoxes
shown in Table 8, by exploiting the similarities among the ABoxes, such as the existence of the
same MLCIs possibly related through the same relations. Out of this cluster, a concept is formed
by calculating the least common subsumer of the three ABoxes (concept formation task) as follows:

C13 v ∃has Part.HorizontalBar u ∃has Part.Jumper

Such a new formed concept (C13) has only two properties (i.e., horizontal bar and jumper), because
other properties or relations (e.g., the athlete name, the pole ) are not common to all the three
considered ABoxes. Once the concept C13 has been formed, we perform the concept enhancement
via external knowledge sources. The goal of this task is to probe external knowledge sources in
order to find definitions of concepts similar to the unnamed concept just formed (C13). First, C13
is matched against the domain ontology TBox, in order to find similar concepts already included in
the ontology, if any. As a result, the JumpingEvent concept is found, which is the closest matching
concept due to absence of a more specific concept for pole vault or high jump. Subsequently, probe
queries are specified using the knowledge in C13 and in the JumpingEvent concept, in order to
collect back a set of names and, possibly definitions, of external concepts matching C13. In our
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Document ABox

Vazhipali Suresh Surekha (India) in ac-
tion (Rahul Pawar)

pole1 : Pole
jumper1 : Jumper
horizontal bar1 : HorizontalBar
athlete name1 : AthleteName
(horizontal bar1, jumper1) : near
(jumper1, pole1) : touches

Svetlana Feofanova (RUS) (Serafim
Tracharis)

jumper2 : Jumper
horizontal bar2 : HorizontalBar
athlete name2 : AthleteName
(horizontal bar2, jumper2) : near

pole3 : Pole
jumper3 : Jumper
horizontal bar3 : HorizontalBar
(horizontal bar3, jumper3) : near
(jumper3, pole3) : touches

Table 8: Input of the enrichment activity

case, by probing the Yahoo and or Wikipedia directory taxonomies looking for Jumping Event
matching concepts, the following candidate concept names are retrieved:

Athletics,High Jump, Long Jump, Pole V ault, T riple Jump

Passing to concept definition, the formed concept C13, the set of retrieved candidate concepts
listed above as well as the three images and the ABoxes of Table 8 that triggered concept learning
are displayed to the ontology expert. The ontology expert, through a provided graphical interface,
is able to interactively define the new concept and revise it. The ontology expert is not only able
to perform changes, but experiment with them. In our example, suppose that the ontology expert
has decided (by looking at the three images) that the new concept must describe a pole vault event.
Possible actions that the ontology expert can perform for defining this new concept are:
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1. To add a relation to the C13 concept, stating that the pole is a component of the new pole
vault concept under definition, by exploiting information in the considered ABoxes. This
action will produce a new concept, C14 with the following definition:
C14 v ∃has Part.HorizontalBar u ∃has Part.Jumper u ∃has Part.Pole

2. To find matching concepts for C14 in the ontology.

3. To discovery other candidate concepts by probing external sources for C14, if required.

As Jumping Event is still the most similar concept retrieved in the actual ontology for C14, no
further probing of external sources is performed. The ontology expert decides to name the new
concept Pole V ault; moreover, he decides to specify that it as a subclass of the Jumping Event
concept in the ontology. Once the ontology expert has defined the new concept and has selected
the location of the new concept in the ontology, validation is performed. If the new concept is
consistent with the ontology, then it is assimilated in order to become part of the ontology TBox.
When the new concept becomes part of the TBox, the corresponding ABoxes will populate the
ontology. This population occurs by sending these ABoxes back to the interpretation phase for a
new evolution pattern selection (i.e., P1 or P2).

6.4 Measurable objectives

Measurable objectives for the ontology enrichment activity concern the ability of the enrichment
activity to learn a new MLCs, HLCs and relations. In order to perform such an evaluation, the
following scenario is proposed: starting from a “complete” version of the domain ontology, 20%
of the concepts are hidden, i.e., removed from the ontology. These hidden concepts must contain
concepts that are HLCs, MLCs and relations (33% from each). Using as input the manually
annotated corpus (which constitutes the ideal input expected from the information extraction
toolkit), documents whose explanations involve hidden concepts are selected. Explanations are
removed from these documents and the documents are processed by the evolution toolkit. Each of
these documents will trigger the selection of evolution patterns P3 and P4, leading to an enrichment
task. At the end, the performance will be measured according to the percentage of the concepts
recovered by the evolution toolkit.
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7 ONTOLOGY COORDINATION

Coordination is the activity of producing a log of the changes introduced into the new evolved
version of the ontology with respect to the input ontology and of defining and updating mappings
between the evolved ontology and other relevant external knowledge sources. The first goal is
achieved by means of the ontology versioning and management task, which has the aim of producing
both a new version of the ontology storing the results of the enrichment activity on the previous
version and a log of the changes that have been implemented during the enrichment activity. The
input of the ontology versioning is constituted by:

• the ontology used as input of the evolution process (in the following referred to as Oinput)
together with its associated mapping knowledge;

• the intermediate ontology, i.e., the working copy of the ontology produced by the enrichment
activity;

• the change log, i.e, a document containing the registration of all the operations executed on
the ontology during the enrichment activity.

The output of the ontology versioning and management task is constituted by

• the new evolved ontology (in the following Ooutput);

• an optimized copy of the change log.

Finally, the evolved ontology is aligned with the external knowledge sources by defining appropriate
mappings. When a concept is modified during the enrichment activity, possibly existing mappings
for it have to be updated appropriately to reflect the modifications applied. The coordination
activity is articulated in the following tasks:

• Ontology versioning and management. Ontology versioning and management has the goal
of producing the new evolved ontology Ooutput (starting from the intermediate ontology) to-
gether with the optimized change log, that is the log containing the minimal set of operations
required to obtain Ooutput starting from Oinput.

• Ontology alignment. The goal of ontology alignment is to produce mapping knowledge re-
ferred to the concepts of Ooutput. This requires the definition of new mappings for the new
concepts inserted into Ooutput as well as the maintenance of already existing mappings in-
volving modified concepts or other concepts that are either directly or indirectly related to
a modified/inserted concept in the intermediate ontology.

7.1 Ontology versioning and management

Ontology versioning is the activity of releasing a new version V1 of an ontology starting from a
previous version V0, by keeping track of the modifications of V1 with respect to V0. In BOEMIE,
ontology versioning works on the input ontology Oinput and releases the evolved ontology Ooutput.
The changes in Ooutput with respect to Oinput are stored in a change log during the ontology
enrichment activity. In particular, the change log is a sequential file that contains a record for
every operation performed on the intermediate ontology during the enrichment activity and that
constitutes a input for ontology versioning. The change log is optimized during the versioning task
to obtain an optimized change log as a transformation set. As described in [Noy and Klein, 2004],
a transformation set provides a minimal set of operations to transform a version of an ontology
into a new version. A transformation set differs from a simple log of changes because i) it does not
contains all the operations performed to transform the old into the new version of the ontology, but
only a minimal subset; ii) it requires only a partial ordering in which all the operations of concept
creation are performed before all the other operations. Starting from a change log is possible to
extract an optimized change log as a transformation set, by identifying all basic changes and thus
by finding and discarding all redundant changes. By storing an optimized version of the change log,
the recovery of the new version of the ontology starting from the old one, when required, can be
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executed in an efficient way. The task of ontology management constitutes the “glue” for turning
the activities of population, enrichment, and coordination, as well as the corresponding tools, into
the desired evolution toolkit. In addition, ontology management control also ontology versioning,
by maintaining the different versions of the ontology throughout the evolution process. The decision
about which and how many versions of the ontology should be kept in the ontology repository has
to be taken at the bootstrapper level, where a complete view of the whole bootstrapping process
cycles is possible. For example, the previous version (i.e., Oinput) could be maintained as the
reference version until re-annotation of the resources has been completely executed, and then it
could be discarded. On the other hand, one could decide to keep a history of the ontology, by
keeping the various versions in the repository. As noted before, during ontology evolution, changes
may generate inconsistencies in the already annotated resources. This generally requires the re-
annotation of certain resources at the meta-data level exploiting the changes as these are recorded
in the ontology versioning task.

7.2 Ontology alignment

The goal of aligning the BOEMIE ontology with the external knowledge sources is to maintain over
time a correspondence among the concepts in the BOEMIE domain ontology and other semantically
related concepts in the external sources. These correspondences are called mappings and are used in
order to support the process of concept discovery in the enrichment activity of ontology evolution.
Moreover, mappings provide useful external information semantically related to the concepts of
the BOEMIE ontology. As an example, if the concept Pole V ault of the BOEMIE ontology has
a mapping with the concept Pole V ault of the Google web directory system 7, we can exploit
the documents in the corresponding Google directory to retrieve new resources about pole vault
events.

7.2.1 Definition of new mappings

In this section, we examine the case of new mappings definition, for new concepts that have been
inserted in Ooutput. Establishing mappings between two ontologies means that for each entity
(e.g., concept, property) in one ontology we try to find a corresponding entity in the second
ontology, with the same or the closest intended meaning; usually this correspondence is expressed
by one to one functions. Mappings can be established after an analysis of the similarity of the
entities in the compared ontologies, according to a certain metric. It is important to note that
the mapping process does not modify the involved ontologies but produces, as the output, a set
of correspondences on top of the involved ontologies [Interop, 2004; Ehrig, 2004]. The focus of
this definition is on the notion of similarity between the meanings of different ontology elements
expressed by a value in the range [0,1]. Another interesting note is that some systems provides
one-to-one mappings between ontologies, while some other provide also one-to-many mappings.
These latter approaches address the fact that an element in an ontology may have more than one
similar element in another ontology.

More formally, given two ontologies O and O′ and two concepts C ∈ O and C ′ ∈ O′, the
mapping mC,C′ between C and C ′ is defined as a 4-tuple of the form:

mC,C′ = 〈C,C ′, R, V 〉

where R denotes the semantic relation holding between C and C ′, while V denotes the confidence
value associated with R. In most cases, the notion of similarity between two concepts is interpreted
as a degree of confidence about the equivalence of the two concepts. Thus, it is often the case that
mappings represent equivalence relations among the concepts (i.e., R is ≡) with an associated
degree of confidence V in the range [0,1].

The process of discovering mappings between two or more heterogeneous ontologies, by exploit-
ing automatic or semi-automatic methods and techniques is referred to as ontology matching. The
process of ontology matching can be summarized in three main steps, as shown in Figure 45.

The first step is the acquisition of the ontologies to be matched that are represented by means
of an internal model for the matching purposes. The second step concerns the analysis of the

7http://www.google.com/Top/Sports/Track and Field/Pole Vault/
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Figure 45: High-level representation of the matching process

ontologies and by the execution of the matching procedures. This step is different depending on
the algorithm that is adopted. In general, several matching techniques can be adopted for ontology
matching. For this reason, this step is often iterated several times in order to refine the results
obtained in the previous executions. In the third step, the mappings among ontology elements
are determined. Here we can have different tasks depending on the type of matching process
that has been performed. In the case of the matching techniques that produce a similarity value
between the ontology elements, such as the approaches based on heuristic rules or probabilistic
reasoning [Kalfoglou and Schorlemmer, 2003; Doan et al., 2002], the different similarity measures
are combined into a comprehensive value of similarity for the ontology elements and the results
that are not considered to be relevant are cut off. In the case of the matching techniques that
produce a semantic relation between the ontology elements, such as the approaches based on logical
reasoning, a reasoning task is performed for inferring new relations out of the matching results and
for checking the consistency of the mappings [Giunchiglia et al., 2004; Giunchiglia and Shvaiko,
2003]. Finally, a set mappings are determined between the input ontology elements.

In the state of the art, many ontology matching systems have been developed and there are
complete and detailed surveys on ontology matching approaches and tools. For example, in [Shvaiko
and Euzenat, 2005; Ferrara, 2005] a classification of different tools is proposed. In [Noy, 2004;
Kalfoglou and Schorlemmer, 2003] the authors describe a large number of different tools that are
presented by taking into account different sets of requirements and different points of view. The
matching service in BOEMIE will provide a wide spectrum of functionalities and techniques for
ontology matching that can be used for the purpose of aligning the BOEMIE ontology with external
knowledge sources. In the examples of the present section, we describe the matching activities by
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referring to one specific set of techniques that can be used to address the alignment goal.
In BOEMIE, the new concepts inserted in Ooutput are matched against the external knowledge

sources by means of the matching service. The configuration of the matching procedure depends
on the features of the concept to be matched as well as on the features of the external sources. In
particular, the matching parameters are affected by the semantic complexity of the concepts that
are matched. The notion of semantic complexity has been introduced in [Ehrig and Sure, 2004], to
describe different levels of complexity at which an ontology can be examined for matching purposes.
Semantic complexity depends on the number and type of constructs that are used in a concept
definition. If we match two concepts featured only by a name and a small set of taxonomic relations
the semantic complexity of the matching process is lower than the case of concepts described by
properties and a high number of property constraints. The matching service of BOEMIE, which
support four different matching models to cope with increasing levels of semantic complexity in
concept description. The configuration of the matching service is usually a manual activity, but
there are several heuristics that have been proposed to automatically configure the matcher that
can be used to reduce the manual effort required in the coordination process [Mochol et al., 2006].

Given a set N = {C1, C2, . . . , Cn} of new concepts inserted in Ooutput during the ontology
enrichment activity, we build a target ontology Otarget that contains each concept Ci ∈ N and
all the concepts of Ooutput that are have a semantic relation with a concept in N . By concept
context we define the set of properties, constraints, and semantic relations featuring a concept.
Once Otarget is defined, it is matched against each external knowledge source K of interest. To
this end, wrapping techniques can be used to acquire the external sources metadata and translate
them into the internal representation format required by the matching service. This acquisition
process corresponds to the first step of the matching process shown in Figure 45. Passing from
first to second step, the two ontologies are analyzed in order to determine their respective level of
semantic complexity and, thus, configuring accordingly the matching service. In the second step
of the matching process, the matching activity is executed to find a set of candidate mappings
between the concepts in Otarget and the concepts in the external sources. Then, in the third step,
mappings are validated, in order to cut-off those mappings that are not considered to be correct
and/or relevant. In order to perform such an activity, it is possible to use an heuristic approach,
such as a threshold-based mechanism [Castano et al., 2006; Doan et al., 2002], or a reasoning-based
mechanism [Meilicke et al., 2006]. Mappings that pass the validation check are finally inserted in
the mapping knowledge repository.

7.2.2 Maintenance of existing mappings

In this section, we discuss the maintenance of existing mappings to reflect the modifications applied
to existing concepts. In particular, a mapping maintenance activity is required on existing map-
pings that involve concepts included in the context of a modified/inserted concept. To clarify this,
consider the case of a new concept C inserted in the ontology during the enrichment activity. As a
consequence of this, also new relations could have been inserted between C and other concepts of
the ontology (e.g., suppose to add, for the new concept C, the axiom C v C ′, where C ′ is a concept
already present in the ontology). The context of C ′ has changed, since we now know that there is a
subclass C of C ′. This change in the context configuration requires to update, as an indirect effect,
also the mappings already stored for C ′. A strategy that is adopted to reduce the number of map-
pings that need to be updated is to evaluate a measure of change of a concept C when passing from
Oinput to Ooutput. After the enrichment activity, Ooutput may contain new or modified concepts,
properties, constraints or semantic relations. If at least one of the modifications involves a concept
for which mappings already exist in the mapping knowledge, these mappings have to be updated
as well. However, the entity of the modification on the existing mappings could be considered not
relevant in many cases. In general, a potentially high number of mappings could be involved in
the maintenance, and a strategy is required to evaluate if all mappings really need to be updated.
The idea is to update the mappings only in the case of “relevant modifications” produced by the
enrichment activity. In order to evaluate the relevance of modifications, we introduce the notion
of measure of change MCh(C) of a concept C when passing from the definition of C in Oinput to
the modified definition C in Ooutput. The measure of change of a concept C is defined in terms of
the level of matching of the two definitions of C in Oinput and Ooutput, respectively. In particular,
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the measure of change of a concept C is calculated as MCh(C) = 1 − SA(C,C), where SA(C,C)
denotes the semantic affinity of C and C. A threshold mechanism can be used to automatically
select those mappings that need to be updated. We note also that the information about the
measure of change can be exploited also to choose when the concepts used by the annotation tools
need to be updated.

7.3 Example: ontology versioning and alignment

In this section, we provide a comprehensive example of the ontology coordination activity, by
considering the ontology versioning task as well as the alignment of the ontology with respect to
the external knowledge sources. In our example, we suppose that two new concepts Pole V ault
and High Jump have been inserted in the intermediate ontology (see Section 6).

In order to show an example of transformation set applied to the insertion of Pole V ault
and High Jump in the ontology, suppose that the ontology expert actions during the concept
definition task of ontology enrichment are the following. He first defines High Jump as a subclass of
Jumping Event and Pole V ault as a subclass of High Jump. Then, he realizes that this is wrong
and he changes the definition of Pole V ault by asserting that it is a subclass of Jumping Event.
In such a case, the change log of this operations contains the following records:

1) Add (High_Jump subclass Jumping_Event)
2) Add (Pole_Vault subclass High_Jump)
3) Delete (Pole_Vault subclass High_Jump)
4) Add (Pole_Vault subclass Jumping_Event)

The role of transformation set is to identify all superfluous operations in the change log and to
provide a minimal set of operations to be performed in order to obtain the final ontology version
starting from the initial one. Back to the example, operation 2 and operation 3 are superfluous,
since the same axiom is first added and then deleted in the ontology. Thus, by applying the
transformation set, the optimized change log becomes as follows:

1) Add (High_Jump subclass Jumping_Event)
2) Add (Pole_Vault subclass Jumping_Event)

When the number of modifications to the ontology is high, the transformation set is useful to
reduce the number of operations to be executed in order to recover Ooutput starting from Oinput,
when required.

For the purpose of the alignment of the ontology with the external knowledge sources, the
target ontology Otarget is defined as shown in Figure 46. The target ontology contains the con-

Pole v SportEquipment
Foam Mat v SportEquipment

Horizontal bar v SportEquipment
Jumping Event v Event u ∃hasPart.Jumper

Pole V ault v Jumping Eventu
∃hasPart.Poleu
∃hasPart.Horizontal Baru
∃hasPart.Foam Mat

High Jump v Jumping Eventu
∃hasPart.Horizontal Baru
∃hasPart.Foam Mat

Figure 46: The target ontology

cepts High Jump and Pole V ault, together with all the concepts that are related to them. Each
concept in the target ontology is provided with its context (i.e., the set of axioms in which it is
involved) 8. As an example of external knowledge sources, we use the OWL representation of two

8The context of a concept in the target ontology contains also the axioms that implicitly affects the concepts in
the ontology (e.g., the axioms that are inherited from taxonomic relations). This information can be easily acquired
by means of standard reasoning services.
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web directory taxonomies and two web sites. The graphical representations of these resources is
shown in Figures 47 and 48, respectively.

Google Yahoo
http://www.google.com/Top/Sports/Track and Field/ http://dir.yahoo.com/Recreation/Sports/Track and Field/
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Figure 47: Graphical representation of the external knowledge sources (1)

The concepts provided by the external sources are featured only by taxonomic relations. Ac-
cording to this analysis, we configure the matching service for the example to consider only the
affinity among the concept names and the taxonomic relations in the concept contexts. Then, we
adopt a threshold-based mechanism (e.g., threshold equal to 0.5) to validate the mappings. The
final results of the matching procedure are shown in Table 9

Target ontology Google Semantic Affinity
Pole Vault Pole Vault 1.0
High Jump Jump 0.8

Jumping Event Jump 0.6
Target ontology Yahoo Semantic Affinity

Pole Vault Pole Vault 1.0
High Jump High Jump 1.0

Target ontology Wikipedia Semantic Affinity
Pole Vault Pole Vault 1.0
High Jump High Jump 1.0

Target ontology Encyclopedia Britannica Semantic Affinity
Pole Vault Pole Vault 1.0
High Jump High Jump 1.0

Jumping Event Jumping Event 1.0

Table 9: Results of matching the target ontology against external sources

According to these results, the following mappings are defined, by considering the semantic
affinity value as a measure of confidence associated with the equivalence relation of corresponding
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Wikipedia Encyclopaedia Britannica
http://en.wikipedia.org/wiki/Category:Events in athletics http://www.britannica.com/eb/subject?idxStructId=40966
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Figure 48: Graphical representation of the external knowledge sources (2)

concepts.

M01 = 〈Pole V ault, google#Pole V ault,≡, 1.0〉

M02 = 〈High Jump, google#Jump,≡, 0.8〉

M03 = 〈Jumping Event, google#Jump,≡, 0.6〉

M04 = 〈Pole V ault, yahoo#Pole V ault,≡, 1.0〉

M05 = 〈High Jump, yahoo#High Jump,≡, 1.0〉

M06 = 〈Pole V ault, wikipedia#Pole V ault,≡, 1.0〉

M07 = 〈High Jump, wikipedia#High Jump,≡, 1.0〉

M08 = 〈Pole V ault, britannica#Pole V ault,≡, 1.0〉

M09 = 〈High Jump, britannica#High Jump,≡, 1.0〉
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M10 = 〈Jumping Event, britannica#Jumping Event,≡, 1.0〉

The concept Jumping Event, which was already present in the ontology, is involved in map-
pings M03 and M10. These new mappings are used to update the mappings eventually stored in
the mapping knowledge repository between Jumping Event and the concepts of Google (M02)
and Encyclopedia Britannica M10.

As an example of a possible optimization of mapping maintenance, we consider the concept
Jumping Event. This concept was already present in Oinput, but, in Ooutput we have inserted two
more subclasses of it, namely High Jump and Pole V ault. This modification affects the mapping
maintenance as shown above. In this case, we are interested in evaluating the measure of the
change of Jumping Event over time, in oder to understand if the mappings in which it is involved
have to be updated. The semantic affinity between the new and the old version of Jumping Event
is 0.84. Thus, the measure of change of the two concepts is evaluated as:

MCh(Jumping Event) = 1− 0.84 = 0.16

Through a threshold-based mechanism, the system automatically can exploit the calculated mea-
sure of change in order to determine if the mappings associated with changed concepts (in our case,
Jumping Event) need to be updated. In the case of the example, the change value is low and
mappings will not be updated. In general, high values of the change measure suggest to update
mappings, while for low values of change mappings are kept unaltered.

7.4 Measurable objectives

Measurable objectives for the ontology coordination activity provide an evaluation of the coordina-
tion techniques with respect to the quality of the ontology alignment and ontology versioning. For
what concerns ontology alignment, several evaluation strategies have been proposed to measure
the quality of ontology matching techniques [Euzenat et al., 2006]. These techniques are based
on the idea of evaluating the precision and recall of the mappings automatically retrieved by a
matching system with respect to a set of expected mappings. More in detail, precision is defined
as the ratio of the number of matching concepts automatically found by the matching system
considered as relevant to the total number of matching concepts found. Recall is defined as the
ratio of the number of relevant matching concepts automatically found by the system to the total
number of matching concepts (i.e., mappings) expected. In order to use these metrics in BOEMIE,
we need to define a set of mappings that are expected. To this end, we hide more than 20% of the
mappings retrieved automatically by the system. Then, we manually define mappings among the
concepts involved in the hidden mappings and the external knowledge sources. These manually
defined mappings will be the set of expected mappings. The target of the evaluation is to execute
the alignment on the concepts involved in order to achieve more than 70% of precision and recall
with respect to this set of expected mappings. Ontology versioning will be evaluated by recovering
different versions of the ontology starting from the previous ones and the change logs, in controlled
experiments.
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8 ARCHITECTURE FOR ONTOLOGY EVOLUTION

The proposed methodology is realized as an open architecture and implemented through an evolu-
tion toolkit comprising two evolution tools, namely, the population and enrichment tool, and the
coordination tool, as well as two support services, namely, the reasoning service and the matching
service. The open architecture of the methodology evolution toolkit is shown in Figure 49.

Figure 49: Evolution toolkit component and interactions diagram

8.1 Evolution tools and interactions

The evolution toolkit is conceived to support all the phases of the ontology evolution methodology.
The ontology expert will be provided with immediate access to the domain ontology, through a
user-friendly interface which provide him with the tools needed to correctly evolve the ontology.
The ontology evolution toolkit is developed to provide an interface for managing the ontology.
The interface of the tool is based on the existing ontology editors that are extended with new
functionalities in order to not only visualize and edit the ontology elements, but also to enrich
and coordinate independent and heterogeneous ontologies. The idea is to support the ontology
expert in maintaining an ontology during the entire bootstrapping process in the context of an
interactive environment. The designer will be able to acquire previously defined ontologies and
align them with the current ontology. He will also be supported in performing the population based
on the information extracted from the resources. The evolution toolkit constitutes the “glue” for
turning the individual components into a comprehensive architecture. In this section, the BOEMIE
evolution tools that compose the toolkit are described, together with their interactions.

8.1.1 Population and enrichment tool

The population and enrichment tool is responsible for the activities of population (patterns P1
and P2) and enrichment (patterns P3 and P4). The diagram of the tasks executed by the tool is
shown in Figure 50. In order to perform the required tasks, the population and enrichment tool
interacts with the extraction tool, the ontology expert and the evolution services. In particular,
the population and enrichment tool interacts with the extraction tool (interaction 1) in order to
acquire the input for the evolution process, i.e., the extracted instances and low-level features, and
to provide to the extraction the feedback information concerning the enrichments of the ontology
(patterns P3 and P4). Once the input is acquired, the population and enrichment tool performs
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Population tasks Enrichment tasks

Figure 50: Population and enrichment tasks

pattern selection. According to the selected pattern, the population tasks (P1 and P2) or the
enrichment tasks (P3 and P4) are activated. In case of population, the tool interacts with the
instance matching component of the matching service (interaction 9) in order to perform instance
matching. To this end, the matching service can exploit the reasoning service in order to support
the instance matching by nonstandard reasoning (interaction 12). Given the results of instance
matching, the population and enrichment tool executes instance grouping. In case of pattern P2
only, also ABox refinement is executed. During this activity, if the instance matching result is
not sufficient to automatically refine the ABox, the tool interacts with the ontology expert in
order to refine the ABox (interaction 2). Finally, the resulting ABox is validated and assimilated
into the ontology by interacting with the standard reasoning service (interaction 3). In case
of enrichment, the population and enrichment tool performs concept learning by means of the
clustering and concept formation tasks. This last task is executed with the support of nonstandard
reasoning (interaction 6). The subsequent activity is concept enhancement, which is executed by
interacting with the concept matching component of the matching service (interaction 10). Again,
the matching service interacts with the standard reasoning service in order to acquire the concept
definitions to be matched. The new concept is then defined by interacting with the ontology expert
(interaction 2), by inspecting and interactively working on the output produced by the previous
tasks. The new concept is then validated and inserted into the domain ontology by interacting with
the standard reasoning (interaction 4). Moreover, the support of the coordination tool (interaction
7) is exploited in order to align the new concept with the other modules of the semantic model.

8.1.2 Coordination tool

The coordination tool is responsible for the alignment of the new evolved ontology with the external
knowledge sources and for ontology versioning. The diagram of the tasks executed by the tool is
shown in Figure 51. The coordination activity is triggered by the results of the enrichment activity
(interaction 7). The coordination tool interacts with the reasoning service in order to acquire the
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Figure 51: Coordination tasks

definition of the new concept inserted in the intermediate ontology (interaction 5). First, ontology
versioning is executed in order to optimize the change log that describes the operations that have
been executed during the enrichment activity in order to enrich the ontology. Then, ontology
alignment is executed. Both mapping definition and update need an interaction with the ontology
expert (interaction 15) in order to set the parameters used for ontology matching as well as for the
validation and refinement of the matching process. A measure of change of the new version of the
ontology with respect to the old one is calculated to choose which mappings already existing in the
mapping knowledge need to be updated, to avoid a complete update of the mappings every time.
The ontology alignment is executed in order to define new mappings and/or update existing ones,
by exploiting the results provided by the matching service (interaction 11). In order to invoke
the matching service, the coordination tool determines the target ontology and interacts with the
external knowledge sources in order to choose the sources to be probed (interaction 14). Finally,
the new version of the ontology and the optimized log of changes are released and the coordination
tool interacts with the mapping knowledge in order to store the new mappings (interaction 8).

8.2 Evolution services

8.2.1 Reasoning service

The standard reasoning services required for the tasks mentioned in previous sections are provided
by the description logic system RacerPro (Renamed ABox and Concept Expression Reasoner
PROfessional). RacerPro implements a TBox and ABox reasoner for the logic SHIQ (see above)
[Haarslev and Möller, 2003a,b]. RacerPro was the first full-fledged ABox description logic system
for a very expressive logic and is based on optimized sound and complete algorithms. RacerPro
also implements a decision procedure for modal logic satisfiability problems (possibly with global
axioms).

The description logic (DL) SHIQ [Horrocks et al., 2000b] extends the logicALCNHR+ [Haarslev
and Möller, 2000b] by additionally providing qualified number restrictions and inverse roles. Using
the ALCNHR+ naming scheme, SHIQ could be called ALCQHIR+ (pronunciation: ALC-choir).

The ABox consistency algorithm implemented in the RacerPro system is based on the tableau
calculus presented in [Haarslev and Möller, 2000b]. For dealing with qualified number restrictions
and inverse roles, the techniques introduced in the tableau calculus for SHIQ [Horrocks et al.,
2000b] are employed. Nominals are currently approximated using concept names.

For practical systems, optimized search techniques are required in order to guarantee good
average-case performance. The RacerPro architecture incorporates the following standard opti-
mization techniques: dependency-directed backtracking [Stallman and Sussman, 1977] and DPLL-
style semantic branching (see [Freeman, 1995] for an overview of the literature). Among a set of
new optimization techniques, the integration of these techniques into DL reasoners for concept
consistency has been described in [Horrocks, 1997]. The implementation of these techniques in
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the ABox reasoner RacerPro differs from the implementation of predecessor systems such as
FaCT, which provide TBox reasoning only. The latter systems have to consider only so-called
“labels” (sets of concepts) whereas an ABox prover such as RacerPro has to explicitly deal with
individuals. ABox optimizations are also explained in [Haarslev and Möller, 2004; Möller et al.,
2006].

The integration of techniques for representing “concrete domains” (e.g. linear inequalities
between real numbers) on the role fillers of an individual has been investigated in [Haarslev
et al., 2001b]. In addition, optimization techniques for dealing with qualified number restrictions
[Haarslev and Möller, 2001a] are integrated into RacerPro.

The techniques for TBox reasoning described in [Haarslev et al., 2001b] (marking and prop-
agation as well as lazy unfolding) are also supported by RacerPro. As indicated in [Haarslev
and Möller, 2004], the architecture of RacerPro is inspired by recent results on optimization
techniques for TBox reasoning [Horrocks and Patel-Schneider, 1998], namely transformations of
axioms (GCIs) [Horrocks and Tobies, 2000], model caching [Haarslev and Möller, 2000a] and model
merging [Horrocks, 1997] (including so-called deep model merging and model merging for ABoxes
[Haarslev et al., 2001a]). RacerPro also provides additional support for very large TBoxes (see
[Haarslev and Möller, 2001b]).

RacerPro is implemented in Common Lisp and is available for research purposes as a server
program which can be installed under Mac OS, Linux and Windows (http://www.racer-systems.com).
Client programs can connect to the RacerPro DL server via a TCP/IP interface based on sockets.
Client-side interfaces for Java, Common Lisp, and C/C++ are available. For communication via
HTTP RacerPro supports the OWL and DIG standards. As a query language, RacerPro sup-
ports nRQL [Haarslev et al., 2004; Wessel and Möller, 2005, 2006] and OWL-QL (with grounded
semantics [Galinski et al., 2005; Kaplunova et al., 2006]). In addition to terminological reasoning,
RacerPro also provides support for qualitative spatial reasoning [Wessel and Möller, 2006].

8.2.2 Standards for ontology specification

Current standards for ontology specification include the OWL Web Ontology Language and its
three sublanguages, namely OWL Lite, OWL DL and OWL Full. OWL Lite represents the least
expressive variant of OWL, it supports cardinality constraints with values 0 or 1 and does not allow
to use negation and union for the definition of concepts. OWL DL represents a syntactic variant of
the DL language SHOIN (D). OWL Full is the most expressive variant of OWL, with the special
feature that it provides meta-modelling. OWL has been extended to OWL 1.1 to support the DL
language SROIQ(Dn)− allowing for more expressivity w.r.t. roles, and is the language supported
by the DIG 2.0 interface (see also below). Another standard for the specification of ontologies
is the Semantic Web Rule Language SWRL (see Section 4.1.3), which allows to add rules, more
specifically DL-safe rules, on top of OWL DL or OWL Lite.

8.2.3 Standards for Invoking Reasoning Services

The continous standardization efforts by the DL Implementation Group (DIG), have the objective
of specifying an interface (also known as DIG) such that access to the functionality of Description
Logic reasoners is available through implementation-neutral mechanisms. The latest version (DIG
2.0) supports OWL 1.1 based on the DL language SROIQ(Dn)−.

• DIG and standard inference services: The standard inference services (see above) offered
by a reasoner are accessible in DIG through TELL and ASK statements. Moreover exten-
sions in DIG 2.0 allow for the retrieval of information about axioms or assertions that have
been explicitly given through a TELL statement and retraction of information to withdraw
previously added axioms or assertions.

• DIG and non-standard inference services: The supported non-standard inferences comprise
approximation, LCS, GCS (Good Common Subsumer, which is a variant of LCS where the
common subsumer for a set of concept does not need to be the least one), find matching
concepts, find matcher and minimal rewriting.
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• DIG and query answering: The ABox query language of DIG 2.0, makes no commitment
to a certain semantics. The semantics depend on the reasoner. The standard semantics is
implemented in the system QuOnto [Calvanese et al., 2005] (for a description logic of the
DL-Lite family) whereas the grounded semantics is implemented in RacerPro [Wessel and
Möller, 2005] and also Pellet [Sirin and Parsia, 2006] or KAON2 [Hustadt et al., 2004]. For all
systems, an interface corresponding to the DIG 2.0 standard will be developed. A possibility
to identify the fragment of the query language supported by a reasoner is foreseen in the DIG
2.0 protocol.

In case a reasoner has to deal large result sets for queries, iterative query answering can
help to improve performance. Therefore, in DIG 2.0, result sets can be retrieved iteratively
using small chunks of tuples. A reasoner can indicate if resource consumption is likely to
increase if further tuples are retrieved. In addition, DIG 2.0 supports instructions to let a
query answering engine compute results proactively to support faster retrieval of subsequent
chunks of triples.

8.2.4 Matching service

For the sake of ontology matching, we rely on the HMatch (http://islab.dico.unimi.it/hmatch)
semantic matchmaker [Castano et al., 2006]. HMatch takes a target concept description c and an
ontology O as input and returns the concepts in O which match c, namely the concepts with the
same or the closest intended meaning of c. In HMatch, we perform concept matching through
affinity metrics by determining a measure of semantic affinity in the range [0, 1]. A threshold-
based mechanism is enforced to set the minimum level of semantic affinity required to consider two
concepts as matching concepts. Given two concepts c and c′, HMatch calculates a semantic affinity
value SA(c, c′) as the linear combination of a linguistic affinity value LA(c, c′) and a contextual
affinity value CA(c, c′). The linguistic affinity function of HMatch provides a measure of similarity
between two ontology concepts c and c′ computed on the basis of their linguistic features (i.e.,
concept names). For the linguistic affinity evaluation, HMatch relies on a thesaurus of terms
and terminological relationships automatically extracted from the WordNet lexical system [Miller,
1995]. The contextual affinity function of HMatch provides a measure of similarity by taking into
account the contextual features of the ontology concepts c and c′. The context of a concept can
include properties, semantic relations with other concepts, and property values. The context can be
differently composed to consider different levels of semantic complexity, and four matching models,
namely, surface, shallow, deep, and intensive, are defined to this end. In the surface matching,
only the linguistic affinity between the concept names of c and c′ is considered to determine
concept similarity. In the shallow, deep, and intensive matching, also contextual affinity is taken
into account to determine concept similarity. In particular, the shallow matching computes the
contextual affinity by considering the context of c and c′ as composed only by their properties. Deep
and intensive matching extend the depth of concept context for the contextual affinity evaluation of
c and c′, by considering also semantic relations with other concepts (deep matching model) as well
as property values (intensive matching model), respectively. The comprehensive semantic affinity
SA(c, c′) is evaluated as the weighted sum of the Linguistic Affinity value and the Contextual
Affinity value, that is:

SA(c, c′) = WLA · LA(c, c′) + (1−WLA) · CA(c, c′)

where WLA is a weight expressing the relevance to be given for the linguistic affinity in the semantic
affinity evaluation process. A detailed description of HMatch and related matching models is
provided in [Castano et al., 2006]. HMatch implements two different metrics for linguistic matching
and two different metrics for contextual matching. For linguistic matching WordNet interaction is
available [Castano et al., 2001] as well as edit-distance string similarity measures [Stoilos et al., 2005;
Cohen et al., 2003]. For contextual similarity, we provide default asymmetric measure [Ferrara,
2005] as well as a symmetric measure based on Dice coefficient [Ferrara, 2005]. HMatch is compliant
with the Ontology Alignment Format for mapping representation [Euzenat et al., 2006]. HMatch
is implemented in Java and released as a plugin of the Protègè ontology editor 9. Currently it

9http://protege.stanford.edu
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supports the interaction with reasoning services (in particular with RacerPro) through the DIG
support provided by the Protègè OWL API for the sake of acquiring a complete definition of
the concepts to be matched. The implementation of new matching techniques for structural and
logic matching will be investigated in the project [Ferrara, 2005; Zhang and Shasha, 1997; Resnik,
1995; Borgida et al., 2005] as well as the support and integration of instance matching within the
system [Linckels and Meinel, 2005; Janowicz, 2005; d’Amato et al., 2006].
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9 INNOVATION

The evolution methodology of BOEMIE presents an innovative approach to the problem of on-
tology evolution [Maedche et al., 2003; Stojanovic et al., 2002] both per se and with respect to
the methods and techniques adopted for the methodology activities. In fact, ontology evolution
becomes even more complex in the context of BOEMIE, due to the management of multimedia
resources and ontologies and to the multi-modal semantic information extraction to be enabled.
In order to deal with these challenges, the BOEMIE evolution methodology proposes a novel
combination of several techniques (e.g., advanced clustering, standard and non-standard reason-
ing, instance and concept matching), with the goal of providing a comprehensive and coherent
system capable of supporting the whole evolution process. The methodology proposes a new con-
ceptualization of the problem of evolving multimedia ontologies, by presenting a pattern-driven
evolution approach, where different evolution patterns are identified, each one dealing with each
specific evolution scenario that can occur, automatically identified on the basis of the results of
the instance interpretation activity against the background knowledge. Moreover, we deal with
multi-knowledge spaces, both internal and external to the ontology framework of BOEMIE. This
requires to develop an evolution methodology capable of managing the coordinated evolution of
such interlinked ontology knowledge spaces, by which the modification applied to a part of the on-
tology will be automatically and consistently propagated to other interlinked knowledge spaces, to
keep the multiple knowledge spaces aligned and consistent each other. In particular, the use of ex-
ternal knowledge sources enforces an open system approach. In BOEMIE, we support a knowledge
discovery approach typical of open networked systems for enriching the local knowledge of a given
node. Thus, we design the evolution methodology to provide a concept discovery functionality
which comes into play for acquiring new knowledge by probing external knowledge sources for the
same domain, looking for candidate concepts semantically matching the incoming instance. This
way, the ontology knowledge space is open towards external knowledge sources, which can provide
useful knowledge for evolving the ontology adequately. Finally, the BOEMIE methodology as a
whole proposes also a solution to the problem of minimizing the human involvement. To this end,
we design a methodology providing a set of learning, matching, and reasoning techniques that offer
support in the various evolution activities, to allow the ontology expert to refine proposed working
knowledge (e.g., discovered candidate concepts) and/or to validate/choose among proposed alter-
native choices, thus limiting the human involvement as much as possible to expected interactions
with support tools.

In the following, the more specific contributions of the various activities are discussed.

9.1 Population and enrichment

The methodology for the population activity uses an innovative approach for the detection of
instances which refer to the same real object or event. The contribution with respect to this
problem is summarized as follows:

• Operating on the results of semantic interpretation, the population activity performs instance
matching by utilizing the similarities found among MLCIs, HLCIs, and also relations. Thus,
instance matching has the potential to compare not only instances of a specific concept, but
ontology fragments and provide a figure for their similarity. The measurement of similarities
among MLCIs is a challenging research issue, due to the various modalities involved. Modal-
ities such as text are easier to handle (as MLCIs are character strings) than image, audio
or video modalities, where MLCIs can be complex structures like image regions or audio
segments. In addition, similarity figures are used to “group” the instances that represent the
same real object or event.

• Use of instance grouping information to disambiguate cases where there are two or more
explanations for the same resource.

The ontology enrichment methodology involves the introduction of new concepts/relations, by
detecting when such additions are required. This detection is performed by exploiting the results
of a clustering task, which is performed on unexplained ABoxes. These unexplained ABoxes can
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contain instances of MLCs, relations among these instances but also instances of HLCs and possibly
relations among these HLCIs. This leads to the investigation of the following innovative techniques:

• Non-standard clustering service, seeking to cluster ontology fragments which involve concept
instances, properties and relations.

• When the clustering phase detects enough information to support the introduction of a new
concept/relation, this supporting information is enhanced though information retrieved from
external knowledge sources. Thus, the involvement of the ontology expert is reduced, as
the expert is required to revise an already formed concept/relation than define this con-
cept/relation from scratch.

9.2 Coordination and matching

The goal of coordination activity is to maintain the alignment of the ontology with the external
knowledge sources over time. This requires the investigation of the following novel contributions:

• External information provided by other external knowledge sources is part of the evolution
process in the BOEMIE methodology. The idea is that the knowledge provided by other
ontologies, web directories, and, in general, knowledge repositories can be used to support
the ontology expert by increasing his knowledge of the domain and, at the same time, can
be used to enrich the information available about the concepts described in the BOEMIE
ontology.

• The alignment of the ontology with the external knowledge sources is maintained over time.
This means that we investigate methods and techniques to update existing mappings by
exploiting a measure of change of a concept in different versions of the same ontology.

Matching techniques are used in BOEMIE both for supporting population and enrichment and for
the goal of ontology alignment. With respect to these goals, the main contributions are summarized
as follows:

• Ontology population requires instance matching. The problem of instance matching is inves-
tigated in the project on the basis of available matching measures for data. The combination
of these measures as well as the problem of exploiting semantic techniques for instance match-
ing is a research contribution in the field of ontology matching in the project, leading to the
development of new instance matching techniques.

• Matching techniques are used in BOEMIE in combination with reasoning and clustering
techniques, thus leading to the development of more flexible and comprehensive approaches
to the problem of ontology matching, both with respect to the structural matching techniques
and with respect to semantic matching techniques.

9.3 Reasoning

With respect to the state of the art in the field of knowledge representation and reasoning, the
novel contribution of the evolution methodology is summarized as follows:

• Formalization of high-level multimedia interpretation as a logical decision problem and its
implementation as a non-standard inference service, namely abduction.

• Extension of the knowledge representation formalism (SWRL) in order to support adequate
knowledge representation for abduction tasks.

• Development of new optimization techniques for ABox consistency checking and query an-
swering and its integration into a state-of-the art DL reasoner.

• First approach for using non-standard description logic inference problems for formalizing
the learning problem in BOEMIE (LCS, MSC, rewriting, etc.).
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• Distinction of structural matching and semantic matching (matching w.r.t. models rather
than surface structures).

• Participation in the standardization efforts of the DL Implementation Group (DIG) interface
for description logic reasoners in order to provide for standard interfaces for interactions with
reasoners. In particular, development of concrete domain and ABox query interfaces, which
will become an integral part of the upcoming version of DIG 2.0.
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10 EVALUATION

The particular application scenario that will be used for the evaluation of BOEMIE concerns the
collection of information about sport events in a number of major European cities. The results of
the evolution process, i.e., evolved semantic model, will be also used to train the extraction tool
and also to augment the coverage capability of the system to represent the domain information.
The evaluation criteria described hereafter for the various activities are expected to flow into a
comprehensive evaluation scenario leading to a definition of shared test cases for the ontology
evolution toolkit. This will be done in the further stages of the project, in accordance with the
requirements and the objectives described in the project deliverable “D5.2 Evaluation Strategy”.
The quantitative measures used for evaluating ontology evolution are given in Table 10. Here
the overall goal is to measure the capability of the evolution to identify and correctly add new
concepts, both MLCs and HLCs to the ontology, as well as the precision of the mapping definition
with external knowledge sources.

Objective Evaluation Target
Ontology pop-
ulation

Hide part (up to 50%) of the instance
set of the ontology and attempt to re-
construct it semi-automatically.

Target: to be able to identify a
large part (> 70%) of the hidden
instances.

Ontology
enrichment

Hide part (up to 20%) of the con-
cepts and relations of the ontology
and attempt to reconstruct it semi-
automatically.

Target: to be able to identify a
large part (> 70%) of the hidden
concepts and relations.

Ontology
coordination

Hide part (up to 20%) of the map-
pings between concepts of the ontology
and concepts if the external knowledge
sources.

Target: to be able to identify a
large part (> 70%) of the hidden
mappings.

Semantic con-
sistency

Reasoning efficiency. To be able to check consistency
for a Horn-SHIQ Abox from up to
10000 individuals in less than 10
seconds.

Implementation
of open archi-
tecture

Integrate different tools and examine
their effect in the system performance,
in controlled experiments.

Table 10: Evaluation for ontology evolution

10.1 Measurable objectives

In this section, we report the measurable objects defined for the main activities of ontology evolu-
tion, namely population, enrichment, and coordination.

10.1.1 Population

Measurable objectives for the population activity are the performance of the instance matching
and instances grouping operations. There are two scenarios for evaluating these two operations.

The first evaluation scenario uses as input the manually annotated corpus (this is the ideal
input expected from the information extraction toolkit; no ambiguous interpretations – evolution
pattern P1 case is only covered) to measure the performance of instance matching and instances
grouping tasks. A target of 90% or more may be set for this evaluation scenario.

The second scenario takes as input the system annotated corpus (covers both P1 and P2
evolution patterns). The performance of the information extraction toolkit is known from WP2
evaluation, meaning that it is known which of the interpretations are correct, erroneous, etc.
The measuring objective of this scenario is how well the population activity manages to populate
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the ontology without loss of extracted information and at the same time solving the ambiguous
interpretations (evolution pattern P2).

10.1.2 Enrichment

Measurable objectives for the ontology enrichment activity constitute the performance measure-
ments of the ability of the enrichment activity to learn a new MLC, HLC and relation concept. In
order to perform such an evaluation, the following scenario is proposed: starting from a “complete”
version of the domain ontology, 20% of the concepts are hidden, i.e., removed from the ontology.
These hidden concepts must contain concepts that are HLCs, MLCs and relations (33% from
each). Using as input the manual annotated corpus (which constitutes the ideal input expected
from the information extraction toolkit), documents whose explanations involve hidden concepts
are selected. Explanations are removed from these documents and the documents are processed
by the evolution toolkit. Each of these documents will trigger the selection of evolution patterns
P3 and P4, leading to an enrichment operation. At the end, the performance will be measured
according to the percentage of the concepts learned by the evolution toolkit.

10.1.3 Coordination

Measurable objectives for the ontology coordination activity provide an evaluation of the coordina-
tion techniques with respect to the quality of the ontology alignment and ontology versioning. For
what concerns ontology alignment, several evaluation strategies have been proposed to measure the
quality of ontology matching techniques [Euzenat et al., 2006]. These techniques are based on the
idea of evaluating the precision and recall of the mappings automatically retrieved by a matching
system with respect to a set of expected mappings. More in detail, precision is defined as the ratio
of the number of matching concepts automatically found by the matching system considered as rel-
evant to the total number of matching concepts found. Recall is defined as the ratio of the number
of relevant matching concepts automatically found by the system to the total number of matching
concepts (i.e., mappings) expected. In order to use these metrics in BOEMIE, we need to define a
set of mappings that are expected. To this end, we hide more than 20% of the mappings retrieved
automatically by the system. Then, we manually define mappings among the concepts involved in
the hidden mappings and the external knowledge sources. These manually defined mappings will
be the set of expected mappings. The target of the evaluation is to execute the alignment on the
concepts involved in order to achieve more than 70% of precision and recall with respect to these
mapping set. Ontology versioning will be evaluated by recovering different versions of the ontology
starting from the previous ones and the change logs, in controlled experiments.
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11 RISK ANALYSIS

In this section, we discuss the main risk factors in the BOEMIE ontology evolution together with
possible solutions that can be adopted in order to handle them.

11.1 Risk factors

Risk factors in ontology evolution can be summarized as follows:

1. Input for WP4 is not precise enough. As a result, ontology evolution cannot deliver satisfac-
tory results.

2. The performance of ABox consistency checks is not sufficient to deal with the huge amount
of requests.

3. Risk related to instance matching for population. If only structural techniques are employed
for instance matching, the results may not be satisfactory for the purpose of population.

4. In instance grouping and validation it is difficult to disambiguate whether a different property
value in instances involved in the same group is erroneous or correct.

5. Very few/none results are returned after concept enhancement, during ontology enrichment.

11.2 Risk handling

With respect to the risk factors, we provide the following possible solutions:

1. The problem may arise from: i) performance of semantics extraction ii) the ontologies being
too general to represent the extraction results and/or to enable high-level multimedia in-
terpretation iii) high-level multimedia interpretation cannot deliver any satisfactory results.
Consequently, WP2 and WP3 activities should be optimized with regard to WP4 require-
ments.

2. The ontology evolution methodology will continuously modify ABoxes and check their con-
sistency. Therefore the reasoning methodology should be improved such that it can exploit
existing structures, in case axioms are added to or retracted from an ABox. This will improve
the performance of ABox consistency checks.

3. Usually, ontology matching tools working at the schema level implementing a structural
matching approach produce satisfactory results, as proven also by international benchmarks [Eu-
zenat et al., 2006]. In the methodology, structural instance matching extends techniques
implemented by the schema-based matchmakers to the problem of instance matching. This
should guarantee some level of accuracy in the results, which will be also tested through
experiments. However, working at the instance level, also semantics-based similarity tech-
niques could be investigated to improve the quality of results by taking into account not only
structure but also semantics.

4. Property value compatibility checks are limited to the properties that cannot have values
which change dramatically, such as, in the athletic domain, the athlete surname.

5. The problem may arise from: i) the selected external sources not being rich enough for the
new concept under construction; in this case new external sources can be identified and
probed to extend the search; ii) the matching service not being suitably configured; different
configurations can be experimented with different matching models to analyze produced
results.
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12 CONCLUDING REMARKS

In this document we have defined a methodology for multimedia ontology evolution. We have
specified how information from the multimedia semantic model and from the semantics extraction
process can be used to achieve the coordinated and consistent evolution of the ontology, both
against the internal multi-knowledge organization of the semantic model and against other external
knowledge sources used to discover new, relevant knowledge. Additionally, we have introduced
four evolution patterns to consider each particular evolution situation that can occur as either a
population or enrichment activity over the ontology.

For the methodology we have defined:

• required input and expected output to other modules;

• overview of the internal organization into activities, tasks and operations featuring each
evolution pattern;

• evaluation framework.

Moreover, for evolution patterns, we have defined:

• specific support for ontology evolution (i.e., population, enrichment, coordination)

• description concerning MLC detection and low level descriptors for those situations where
no information about MLCs is acquired from the information extraction process

• comprehensive example of pattern application in the Athletics domain, considering jumping
events in particular.

The outcome of the proposed methodology is an open architecture, which will communicate with
the information extraction modules in WP2, accessing existing semantic information model and
providing back newly evolved ontology knowledge. The architecture also specifies the interface
for the population, enrichment, and coordination tools as well as for the reasoning and matching
services defined in WP4.
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