First Experiences with Load Balancing
and Caching for Semantic Web
Applications

Technical Report

Alissa Kaplunova, Atila Kaya, Ralf Méller

17th July 2006

Abstract

In our case study we investigate a server for answering OWL-
QL queries with distinguished variables only (henceforth called OWL-
QL™). This server acts as a proxy that delegates queries to back-end
DL reasoners that manage the KB mentioned in the query. This report
describes load balancing and caching strategies in order to exploit pre-
vious query results (possibly produced by different users of the local
site) in the presence of incrementally answered OWL-QL queries. In
addition, the effects of concurrent query executions on multiple (ex-
ternal) inference servers and corresponding transmissions of multiple
result sets for queries are discussed.

S I S Institute for
Software, Technology & Systems

Hamburg University of Technology

1 Introduction

In our work we consider applications which generate queries w.r.t. many
different knowledge bases. We presuppose that for a particular KB there
exists many possible query servers. In order to successfully build applica-
tions that exploit these KB servers, an appropriate middleware is required.
In particular, if there are many servers for a specific KB, the middleware is
responsible for managing request dispatching and load balancing. Load bal-
ancing must be accompanied by middleware-side caching in order to reduce
network latency.

In our view the KB servers we consider are managed by different organi-
zations and, maybe in the near future, each transaction (or query) requires
some "payment” in case of a commercial environment. Therefore, DL ap-
plications used in some company need some gateway inference server that
provides local caching (in the intranet) to: (i) reduce external queries and (ii)
avoid repetitive external server access operations in case multiple intranet
applications pose the same queries.

In our case study we investigate a server for answering OWL-QL™ queries!.
This server (called RacerManager) acts as a proxy that delegates queries
to back-end DL reasoners (RacerPro servers) that manage the KB men-
tioned in the query and load KBs on demand. Figure 1 shows this scenario.
Compared to previous versions, the functionality of RacerManager has been
substantially enhanced. We address the problems of load balancing and
caching strategies in order to exploit previous query results (possibly pro-
duced by different users of the local site). Caching is investigated in the
presence of incrementally answered OWL-QL™ queries. In addition, the ef-
fects of concurrent query executions on multiple (external) inference servers
and corresponding transmissions of multiple partial result sets for queries
are studied.

2 OWL-QL™ Server as a Middleware

Reasoning over ontologies with a large number of individuals in ABoxes is
a big challenge for existing reasoners. To deal with this problem, RacerPro
supports iterative query answering, where clients may request partial result
sets in the form of tuples. For iterative query answering, RacerPro can be
configured to compute the next tuples on demand (lazy mode). Moreover,
it can be instructed to return cheap (easily inferable) tuples first.

LOWL-QL™ stands for OWL-QL with distinguished variables only.

OWL-QL Server
as Semantic Middleware

Web Services
Locale Caching
Dispatching
Load Balancing
OWL-QL"™ - Support
OWL-QL™ to nRQL Translator

Figure 1: OWL-QL Server in the Semantic Web Scenario

Although these configuration options enable the reasoner to achieve sig-
nificant performance improvements for a single client, this effect decreases in
scenarios where multiple clients pose queries concurrently. In fact, a single
RacerPro instance cannot process several client requests in parallel. Thus,
as long as RacerPro is processing a clients request, which usually includes
activities such as parsing the query, reading the corresponding knowledge
base, classifying it, finding requested number of answer tuples and returning
them, all other clients have to wait in a queue.

Motivated by the concurrency problem, our OWL-QL™ server is imple-
mented to act as a load-balancing middleware between clients and multiple
RacerPro instances. RacerManager can initialize and manage an array of
RacerPro instances. Multiple clients can use the web service offered by Rac-
erManager to send their OWL-QL™ queries concurrently. With respect to
the states of the managed RacerPro instances and a naive load-balancing

strategy (similar to round-robin), RacerManager dispatches the queries to
RacerPro instances. More precisely, given a query, which requires some on-
tology, RacerManager prefers RacerPro instances, which already worked on
this ontology. Before a OWL-QL™ query is send to a reasoner instance, it
is translated to the new Racer Query Language (nRQL) by the translator
module. Preliminary test results showed that, the proposed architecture
prevents clients from blocking each other, as it is the case if multiple clients
interact with a single reasoner.

Additionally, irrespective of load balancing and query dispatching, a
client may benefit from the caching mechanism offered by RacerManager.
In case he sends a query, which has been posed before, answer tuples are
delivered directly from the cache. If the client requires more tuples than
available in the cache, only the missing number of tuples are requested from
an appropriate RacerPro instance. The cache expiration can be set to an
arbitrary duration or turned off. In the latter case, the cache will never be
cleared.

It is self-evident that a Semantic Web middleware has to support widely
used and accepted standard components and protocols such as interfaces,
query languages and communication protocols in order to support a wide
range of applications. Consequently, we argue that service oriented archi-
tectures and web services are first class choices for a Semantic Web middle-
ware. Moreover, OWL-QL is a candidate standard language and protocol
for instance retrieval. Among other features it supports conjunctive queries.
OWL-QL also defines a protocol for query-answering dialogues among agents
using knowledge represented in the Web Ontology Language (OWL [10]).
It facilitates the communication between querying agents (clients) and an-
swering agents (servers). Due to the fact that huge amounts of information
will be available in many different formats on the Semantic Web, OWL-QL
offers features different from traditional database query languages such as
SQL. In the Semantic Web scenario the amount of time a server needs to
answer a query and the answer size may both become unpredictable. To
overcome these problems, OWL-QL allows clients to specify the maximum
number of answers they want to get from the server, and thus servers return
partial sets of answers.

There are some recent prototypical OWL-QL server implementations,
e.g., the Stanford OWL-QL Server [16] and DQL Server developed in Manchester
[12]. The Stanford OWL-QL Server uses the first order logic theorem prover
JTP [15] and the Inference Web [14] proof exchange system to answer the
queries. It supports premises and proofs. The Manchester DQL Server im-
plements the so called rolling-up technique to eliminate variables from a

query. For each new query, it requires all tuples from the reasoner at once
and caches them.

Our system focuses on techniques which allow to achieve better scala-
bility, high availability and the required quality of service. We forbear from
implementing some OWL-QL features (e.g., may-bind variables) and rolling-
up technique in the middleware tier, because we argue that only reasoners
can fulfill these features efficiently.

The OWL-QL standard does not specify anything about server-side im-
plementation details such as caching, number of reasoners used as back-end
etc. However, the OWL-QL protocol defining query-answering dialogues and
the heterogeneous nature of the Semantic Web makes it obvious that a mid-
dleware which claims to serve as an OWL-QL server has to manage multiple
reasoners in the background. Using standard interfaces and a multi-layered
architecture the middleware can be integrated with existing infrastructure
such as firewalls, application servers or billing systems. This will enable
OWL-QL servers to offer further services such as security, trust, accounting
etc.

With respect to these challenges some of the crucial issues an OWL-QL
server must support are: handling of concurrent client requests, manage-
ment of multiple reasoners, request dispatching, load balancing and, finally,
caching.

In the next sections we discuss these pivotal features of an OWL-QL
server in detail.

2.1 Caching

Scalability is a crucial requirement for applications using database technol-
ogy. Typically, database servers achieve this through replication of data-
bases at the persistence layer, request dispatching and load balancing at the
application layer or by caching at both layers.

In the Semantic Web scenario, reasoning is an expensive task that re-
quires system resources and time. Nowadays most reasoners already imple-
mented efficient caching mechanisms. However, if a new layer is involved in
the scenario, namely a middleware that mediates between clients and rea-
soners, it is much more efficient to cache inferred knowledge in this layer.
Caching in the middleware tier will avoid unnecessary communication with
reasoners. This will get more important the more clients interact with
the middleware. Furthermore, clients will benefit from knowledge gained
through queries posed by other clients.

An OWL-QL server should cache each query sent by clients and each

Cache Algorithm: getAnswerBundle(reqNumber) : tuples

reqNumber = number of tuples required by the client

last Number = number of the last tuple returned to the client
getCachedTuples(n) = procedure to get n tuples from cache
getNewTuples(n) = procedure to request n new tuples from reasoner
cacheSize = total number of tuples cached by the server for the given dialogue

if (regNumber + lastNumber) > cacheSize

then

newTuples «— get NewTuples(reqNumber + last Number — cacheSize)
cachedTuples — getCachedTuples(cacheSize — last Number)

return newTuples + cachedTuples

else

return getCachedTuples(cachedSize — (reqNumber + last Number))
endif

Table 1: Cache Usage Algorithm

answer to that query gained through reasoning. Due to the nature of the
OWL-QL specification, the middleware will probably not cache all results
to a query but only some required subset of it. OWL-QL allows clients to
specify the number of answers they want to get for their query as mentioned
above. Whenever a client specifies the maximum number of results it wants
to get, the OWL-QL server should return a process handle to the client.
Afterwards the client can require more tuples to a query by using the received
process handle. This means that the OWL-QL server must not only consider
each query and its answers but also the identity of each client and the number
of answers it already got.

The middleware should create a query-answering dialogue for each new
query and cache answer tuples to this query. The next time, when the same
query is posed by a client, the middleware will first look up in the cache of the
corresponding dialogue to answer the query. Only if the required number of
answers cannot be delivered completely from the cache, the corresponding
reasoner will be contacted and only the missing tuples will be requested.
This algorithm is presented in Table 1.

The described caching mechanism can reduce communication overhead
with reasoners, particularly if they reside on remote servers, and therefore
will improve overall system performance.

2.2 Request Dispatching and Load Balancing

On the one hand, in the context of business applications using database
replication, queries are dispatched to a database instance with respect to
the chosen load balancing strategy. On the other hand, instructions that
require a change in data must be propagated to all database instances. To
enable this, some databases, transaction processing monitors and application
servers offer different mechanisms like distributed commit protocols.

In the case of Semantic Web applications using OWL-QL for querying,
clients can only query knowledge bases but not modify them. Queries that
include a premise, which are also called if-then queries, are no exception
here, because they only require a temporary modification of the knowledge
base. At first sight it looks like as dispatching and load balancing would be
much more straight-forward for an OWL-QL server.

However, we have to consider the fact that clients can reference any
KB in a query where they want to get results from. Therefore, an OWL-
QL server has to track the state of each reasoner it manages. Using this
information, the OWL-QL server can decide where to dispatch a query and
can balance the load.

Whenever a query arrives at the OWL-QL server, the server has to check
if it already processed this query and if some of the answers are already in
the cache of the corresponding dialogue. Firstly, the server checks up its
internal repository in order to find out if the knowledge base referenced in
the query is already loaded by one of the connected reasoners. This means
that the server already answered some queries from this knowledge base. In
this case it has to inspect its state to see if a dialogue with the same query
exists. If such a dialogue exists, the necessary answers will be taken from the
cache. See Table 1 for details of cache usage. If none of the reasoners have
the required KB loaded or there exists no dialogue with the same query, a
new dialogue will be created. Details of the dialogue processing algorithm
is shown in Table 2.

After a new dialogue is created or an existing dialogue is assigned, the
server has to dispatch the query to the appropriate reasoner. The reasoner
that already returned some answers to this query or at least loaded the
referenced knowledge base is preferred. If no such reasoner can be found,
the server has to delegate the required reasoning task to an idle reasoner
with respect to some load balancing strategy (e.g., round robin). After an
idle reasoner is found, the reasoner must be instructed to load the referenced
knowledge base and then reason over it to return the required number of
answers. See Table 3 for details of dispatching.

Dialog Algoritm: getDialog(query): dialog

1: if KBRegister.referencedKBLoadedOnAResoner(query) then
2: dialog < searchDialogs(query)
3: if dialog == null then
4: return createNewDialog(query)
5: else

6: return dialog
7

8

9

1

: endif

. else

: return createNewDialog(query)
0: endif

Table 2: Dialogue Processing Algorithm

Dispatch Algorithm: getReasoner(dialog): reasoner

if dialog.hasReasonerQueryld() then

return serverController.getReasoner(dialog.getReasonerQueryld())
else

return serverController.getNextIdleReasoner()

endif

Table 3: Dispatch Algorithm

3 Test Scenario

In order to validate our approach for an OWL-QL server discussed so far,
we developed an open source system called RacerManager. Our applica-
tion is implemented in Java and integrates several widely use components
and systems, such as RacerPro as DL reasoner [6], Tomcat as applica-
tion server/servlet container [13], Apache Axis Web Services Framework
[2], XMLBeans Framework [3] and Jena Semantic Web Framework [9)].

We chose a common n-tier architecture as the base layout for the system
architecture. This is shown in Figure 2. This design provides a clear separa-
tion of responsibilities, easy extensibility by modification of single elements
and a defined message flow through the system. The translator module
converts OWL-QL queries to new Racer Query Language (nRQL) [7]. Rac-
erManager can initialize and manage an array of RacerPro instances that
are defined in a configuration file. Moreover, the cache expiration can be set
to an arbitrary duration or turned off. In the last case, the cache will never
be cleaned.

X

clients

$ OWL-QL queries via SOAP

— Racer Manager

OWLQLWebService ‘

OWLQLHandler

Translator (OWLQL -> nRQL)

RequestDispatcher

Serve rWrap

. A
. | K

/ \ nRQL via TCP
I | |

Figure 2: Architecture overview: RacerManager

Reasoning over complex ontologies or ontologies with a large number
of individuals is a big challenge for existing reasoners. By using available
configuration options, such as incomplete modes, that are powerful enough
for semi-structured ontologies, RacerPro achieves significant performance
improvements for handling large ABoxes. However, this task demands rea-
sonable hardware resources and is especially memory-intensive.

In order to present a major benefit of our architecture with respect
to large ABoxes and multiple clients querying the system concurrently, we
tested RacerManager using the scenario shown in Figure 3.

In this scenario, a client sends Query 1 that requires reasoning over

RacerServer

RacerServer
.

Figure 3: Test Scenario

an ontology with a large number of individuals. For our experiments we
used an university ontology provided by the Lehigh University Benchmark.
Query 1 results in more than 5000 individuals. RacerPro needs several
seconds to answer this query. Concurrently, another client sends Query 2
which requires reasoning over a small sized ontology and RacerPro needs
only some milliseconds to answer it. As shown in Figure 3 RacerManager is
configured to manage one RacerPro instance on the local host and another
one on a remote machine.

In this test scenario a client sends Query 1 to RacerManager first and
few seconds later another client sends Query 2. As excepted, RacerManager

dispatches Query 1 and Query 2 to separate RacerPro instances that run on
different machines. As a result the client sending Query 2 receives the desired
results in a few seconds, whereas the first client with the more reasoning-
intensive query receives its results later.

4 Features and Limitations

The target language of RacerManager is nRQL. OWL-QL and nRQL are
both expressive languages that have a common subset but are difficult to
compare. E.g., simple conjunctive ABox queries having only distinguished
variables (must-binds) can be directly expressed in both languages. How-
ever, they both have some structures that are difficult to represent in the
other one.

When developing the OWL-QL server, we not only considered the at-
tributes of nRQL, but also the question if the middleware is the right place
to implement all OWL-QL features. Some of them, such as may-bind vari-
ables or TBox related queries, could be implemented by the middleware
but would result in excessive computing and increased communication with
reasoners. Obviously, this would lead to suboptimal performance and poor
scalability.

We presuppose that a superior number of Semantic Web applications will
only require ABox reasoning through conjunctive queries with must-bind
variables. Therefore, our current implementation supports such queries.
Furthermore, it handles queries that include a premise (if-then queries).

The server does not support scenarios where multiple knowledge bases
are to be used to answer a query or where a knowledge base is not specified
by the client. Furthermore, RacerManager does not provide proofs about
the reasoning made.

The following statements can be made about the conformance level of the
server: The response collections returned by the server contain no duplicate
answers. Therefore, the implementation can be called non-repeating. In
the current version RacerManager automatically provides non-redundant
answers because of the limitation to must-bind variables. However, this may
change when the server is extended to support non-distinguished variables.

The OWL-QL specification defines a special termination token called
rejected which indicates that the server is not able to answer the query for
some reason. Our server returns a rejected token for features that are not
yet supported (e.g., may-binds or dont-binds).

10

5 Conclusion and Discussion

In this paper, we proposed caching and query dispatching algorithms for a
Semantic Web middleware. One of the instantiation of such middleware is
RacerManager acting as an OWL-QL server. Results of our experiments
show, that recent standard software engineering approaches, such as web
services and service-oriented architecture, are also applicable in the Semantic
Web domain.

It is obvious, that in some situations a single RacerManager server may
itself become a bottleneck. One possible solution is to replicate it and to set
up a HTTP or hardware dispatcher in front of RacerManager instances.

Considering the fact, that our main goal was to ensure scalability and
high performance, we only taken into account the OWL-QL features, that
could be efficiently implemented in the middleware tier. From our point of
view, there are some open questions regarding the implementation of the
OWL-QL standard which we will address in the future, e.g.: (i) How should
queries without a KB reference be handled in different scenarios? (ii) In
which scenarios should clients share results obtained by other clients? (iii) Is
expiration of query results important for applications? (iv) Are subscription
services required?

In our future work we will conduct comprehensive experiments in order
to empirically evaluate RacerManager. Moreover, we will compare alterna-
tive strategies to determine more efficient load balancing and cache usage
algorithms.

11

References

1]

R. Fikes, P. Hayes, and 1. Horrocks. OWL-QL - a language for deductive
query answering on the semantic web. Technical Report KSL-03-14,
Knowledge Systems Lab, Stanford University, CA, USA.

Apache Foundation. Apache Axis Web Services Framework. URL,
http://ws.apache.org/axis/.

Apache Foundation. XMLBeans. URL, http://xmlbeans.apache.
org/.

DL Implementation Group. DIG interface API. URL, http://dig.
sourceforge.net/.

Yuanbo Guo, Jeff Heflin, and Zhengxiang Pan. Benchmarking daml+oil
repositories. 2003.

V. Haarslev and R. Moller. Description of the racer system and its

applications. In Proceedings International Workshop on Description
Logics (DL-2001), Stanford, USA, 1.-3. August, pages 131-141, 2001.

V. Haarslev, R. Moller, and M. Wessel. Querying the semantic web with
racer + nRQL. In Workshop on Applications of Description Logics,
ADL ’04.

Volker Haarslev, Ralf Moller, Ragnhild Van Der Straeten, and Michael
Wessel. Extended Query Facilities for Racer and an Application to
Software-Engineering Problems. In Proc. of the Int. Workshop on De-
scription Logics, DL "04.

HP Labs. Jena Semantic Web Framework. URL, http://jena.
sourceforge.org/.

Deborah McGuinness and Frank van Harmelen. OWL web ontology
language - overview. W3C Recommendation, URL http://w3.org/
TR/owl-features/REC-owl-features-20040210, 2004.

Miller, Swick, and Brickley. Resource description framework specifica-
tion. URL, htpp://www.w3.org/RDF/.

University of Manchester. Manchester DQL server. URL, http://www.
cs.man.ac.uk/~glimmbx/.

12

Apache Jakarta Project. Jakarta Tomcat. URL, http://jakarta.
apache.org/tomcat/.

Stanford University. Inference Web. URL, http://iw.stanford.edu/.

Stanford University. JTP. URL, http://ksl.stanford.edu/
software/JTP/.

Stanford University. Stanford OWL-QL server. URL, http://onto.
stanford.edu:8080/owql/FrontEnd.

13

