Experiences with Load Balancing and Caching for
Semantic Web Applications

Alissa Kaplunova, Atila Kaya, Ralf Moller
Hamburg University of Technology (TUHH)
al.kaplunovalat.kayal|r.f.moeller@tu-harburg.de

1 Introduction

In our work we consider applications which generate queries w.r.t. many different
knowledge bases. We presuppose that for a particular KB there exists many possible
query servers. In order to successfully build applications that exploit these KB servers,
an appropriate middleware is required. In particular, if there are many servers for a
specific KB, the middleware is responsible for managing request dispatching and load
balancing. Load balancing must be accompanied by middleware-side caching in order
to reduce network latency.

In our view the KB servers we consider are managed by different organizations.
Therefore, DL applications used in some company need some gateway inference server
that provides local caching (in the intranet) to: (i) reduce external communication
and (ii) avoid repetitive external server access operations in case multiple intranet
applications pose the same queries.

In our case study we investigate a server for answering OWL-QL™ queries!. This
server (called RacerManager) acts as a proxy that delegates queries to back-end DL
reasoners (RacerPro servers) that manage the KB mentioned in the query and load
KBs on demand. Compared to previous versions, the functionality of RacerManager
has been substantially enhanced. We address the problems of load balancing and
caching strategies in order to exploit previous query results (possibly produced by dif-
ferent users of the local site). Caching is investigated in the presence of incrementally
answered OWL-QL™ queries. In addition, the effects of concurrent query executions
on multiple (external) inference servers and corresponding transmissions of multiple
partial result sets for queries are studied.

2 OWL-QL™ Server as a Middleware

Reasoning over ontologies with a large number of individuals in ABoxes is a big chal-
lenge for existing reasoners. To deal with this problem, RacerPro supports iterative
query answering, where clients may request partial result sets in the form of tuples.
For iterative query answering, RacerPro can be configured to compute the next tu-
ples on demand (lazy mode). Moreover, it can be instructed to return cheap (easily
inferable) tuples first.

Although these configuration options enable the reasoner to achieve significant
performance improvements for a single client, this effect decreases in scenarios where
multiple clients pose queries concurrently. In fact, a single RacerPro instance cannot
process several client requests in parallel. Thus, as long as RacerPro is processing a
clients request, which usually includes activities such as parsing the query, reading
the corresponding knowledge base, classifying it, finding requested number of answer
tuples and returning them, all other clients have to wait in a queue.

'OWL-QL™ stands for OWL-QL with distinguished variables only.



Motivated by the concurrency problem, our OWL-QL™ server is implemented to
act as a load-balancing middleware between clients and multiple RacerPro instances.
We chose a common n-tier architecture as the base layout. RacerManager can initialize
and manage an array of RacerPro instances. Multiple clients can use the web service
offered by RacerManager to send their OWL-QL™ queries concurrently. With respect
to the states of the managed RacerPro instances and a naive load-balancing strategy
(similar to round-robin), RacerManager dispatches the queries to RacerPro instances.
More precisely, given a query, which requires some ontology, RacerManager prefers
RacerPro instances, which already worked on this ontology. Before a OWL-QL™
query is send to a reasoner instance, it is translated to the new Racer Query Language
(nRQL) by the translator module. Preliminary test results showed that, the proposed
architecture prevents clients from blocking each other, as it is the case if multiple
clients interact with a single reasoner.

Additionally, irrespective of load balancing and query dispatching, a client may
benefit from the caching mechanism offered by RacerManager. In case he sends a
query, which has been posed before, answer tuples are delivered directly from the
cache. If the client requires more tuples than available in the cache, only the missing
number of tuples are requested from an appropriate RacerPro instance. The cache
expiration can be set to an arbitrary duration or turned off. In the latter case, the
cache will never be cleared.

3 Features and Limitations

When developing the OWL-QL™ server, our main goal was to ensure scalability and
high performance. Therefore we only take into account OWL-QL features, that could
be efficiently implemented in the middleware tier. In fact, some features such as
may-bind variables implemented by the middleware using rolling-up techniques and
disjunctive queries would result in excessive computing and increased communication
with reasoners. In our opinion, they should be supported by reasoners directly.

We presuppose that for many Semantic Web applications, conjunctive queries with
must-bind (distinguished) variables will be enough. Therefore, our current implemen-
tation supports such queries. Furthermore, it handles queries that include a premise
(if-then queries). The server does not support scenarios where multiple knowledge
bases are to be used to answer a query or where a knowledge base is not specified by
the client. Furthermore, RacerManager does not provide proofs about the reasoning
made.

4 Future Work

In our future work we will conduct comprehensive experiments in order to empirically
evaluate RacerManager. Moreover, we will compare alternative strategies to determine
more efficient load balancing and cache usage algorithms.

It is obvious, that in some situations the single RacerManager server may itself
become a bottleneck. One possible solution is to replicate it and to set up a HTTP
or hardware dispatcher in front of RacerManager instances.

From our point of view, there are some open questions regarding the implemen-
tation of the OWL-QL standard which we will address in the future, e.g.: (i) How
should queries without a KB reference be handled in different scenarios? (ii) In which
scenarios should clients share results obtained by other clients? (iii) Is expiration of
query results important for applications? (iv) Are subscription services required?



