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Summary. We examine the possible use of Description Logics as a knowledge representation
and reasoning system for high-level scene interpretation. It is shown that aggregates composed
of multiple parts and constrained primarily by temporal and spatial relations can be used to
represent high-level concepts such as object configurations, occurrences, events and episodes.
Scene interpretation is modelled as a stepwise process which exploits the taxonomical and
compositional relations between aggregate concepts while incorporating visual evidence and
contextual information. It is shown that aggregates can be represented by concept expressions
of a Description Logic which provides feature chains and a concrete domain extension for
quantitative temporal and spatial constraints. Reasoning services of the DL system can be
used as building blocks for the interpretation process, but additional information is required to
generate preferred interpretations. A probabilistic model is sketched which can be integrated
with the knowledge-based framework.

1.1 Introduction

Interpreting a visual scene is a task which in general resorts to a large body of prior knowledge
and experience of the viewer. Consider an every-day street scene as illustrated in Fig. 1.1.

Based on common-sense knowledge and experiences, we recognise that two persons are
engaged with garbage collection while a third person is distributing mail. With visual evi-
dence as sparse as a single snapshot, we obtain an interpretation which extends over time,
supplements invisible objects outside the field of view, ignores uninteresting details, provides
an estimate of daytime and season, and may even include assumptions about the intentions
and emotions of the people in the scene. It is evident that scene interpretation is a knowledge-
intensive process which is decisively shaped by the way common-sense knowledge and expe-
riences are brought to bear.

While people seem to perform scene interpretations without effort, this is a formidable
and as yet unsolved task for artificial vision systems. One reason is the often still unsatis-
factory performance of low-level vision, in particular segmentation, tracking, 3D analysis,
object recognition and categorisation. Often it is argued that the problem of complex scene
interpretation cannot be tackled before reliable low-level results are available. However, low-
level vision is not always the bottleneck. As the above example suggests, an even more im-
portant role may be played by high-level knowledge and experiences. Given suitable high-



Fig. 1.1. Street Scene for Scene Interpretation

level knowledge structures, far-reaching interpretations may be obtained including proposi-
tions about parts of the scene for which there is no direct evidence at all.

Furthermore, high-level knowledge may provide top-down guidance to facilitate and im-
prove low-level processes. This has been known for a long time (e.g. [25]), but there are few
examples (e.g. [2]) where vision systems exploit high-level knowledge - beyond single-object
descriptions - for low-level processing and decisions.

In view of the importance of knowledge for scene interpretation, it is useful to be aware of
the rich body of research on knowledge representation and knowledge-based system method-
ology when designing a scene interpretation system. For an overview see the corresponding
sections in AI textbooks such as [38, 32, 43]. Out of the many aspects of past and ongoing
developments in knowledge representation, the following seem to be particularly significant
for scene interpretation.

• Knowledge representation needs a sound formal basis when the body of knowledge be-
comes large and diverse. Many of the early representation formalisms such as semantic
networks, early frame languages and rule systems suffer from the lack of precise seman-
tics in the sense that the correct use of represented knowledge is partly based on intuitive
notions which do not necessarily provide a consistent basis for large-scale knowledge
processing.

• Knowledge representation systems may provide standardised inference services, which
can be used (and reused) for application development. Typical inference services are con-
sistency checking, inheritance, instance classification and model construction, but many
more have been proposed and investigated, for example pattern matching services [6].
Inference services are interesting for scene interpretation as they may provide important
functionality for the interpretation process in terms of existing software with well-defined
properties.

• There is a growing body of research about spatial and temporal knowledge and related
reasoning services [46, 44, 13]. Space and time play a dominant role in visual scenes,
and one may hope that spatial and temporal reasoning services provide useful support
for scene interpretation. However, it is conspicuous that so far only few examples exist
where spatial and temporal reasoning services have been integrated into a vision system
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[18, 29, 14]. One of the problems seems to be the mismatch between the quantitative
spatial and temporal information arising from low-level vision and the mostly qualitative
nature of spatial and temporal reasoning services.

• Description Logics (DLs) constitute a family of knowledge representation formalisms
which have obtained much attention in the last decade. DLs provide object-oriented
knowledge representation similar to frame systems used in many knowledge-based ap-
plication systems, but based on formal semantics. DLs realise a subset of First Order
Predicate Calculus. The subset is generally chosen as to guarantee the decidability of con-
sistency checking and other key inference services. Furthermore, recent developments of
sophisticated optimisation techniques have led to implemented DL systems which com-
bine an expressive representation language with highly efficient services. [3] provides an
excellent overview of the state-of-the-art of DL methodology.

In this contribution we report about an approach to using a DL for high-level scene inter-
pretation. The insights and results are primarily based on long-standing work both on high-
level vision and on formal knowledge representation in the Cognitive Systems Laboratory at
Hamburg University, but certainly also try to reflect the development of the two fields in their
respective research communities. The organisation of the following sections roughly mirrors
the corresponding research history.

In Section 1.2 we examine the conceptual structures which are needed to represent knowl-
edge for high-level vision. The guiding scenario is a living room, observed by a stationary
smart-room camera. A typical scene is table-laying, when one or more human agents place
dishes onto the table and the system has the task to recognise table-laying occurrences. Laying
a table is, of course, only an exemplary task, and the goal is to develop a methodology which is
applicable to high-level scene interpretation in greater generality. For example, based on this
methodology, it should also be possible to recognise interesting occurrences in traffic scenes
(as a possible task of a driver assistance system), team behaviour in soccer (or robocup) games,
criminal acts in monitoring tasks, etc. Occurrences, object configurations and other high-level
structures can be represented by aggregates which are introduced informally as representa-
tional units. Compositional and taxonomical hierarchies of aggregate concepts are proposed
as the main structures of a high-level conceptual knowledge base. The aggregate structure
represents the representational requirements which must be met by a DL system.

In Section 1.3 we discuss requirements for the interpretation process within the concep-
tual framework introduced before. In high-level vision, interpretation tasks may be highly
context-dependent, involving prior information from diverse sources. Scene evidence may be
incomplete, in particular in evolving time-varying scenes. Hence hypothesis generation and
prediction become important issues. However, it is known that in the end, a valid scene inter-
pretation must be a ”model” (in the logical sense) of the conceptual knowledge and the scene
data.

After having discussed knowledge representation requirements for high-level scene inter-
pretation, we examine the potential of DL systems for this task. In Section 1.4 we give an
introduction to the family of DLs and the conceptual expressions which can be formulated.
As an extension important for scene interpretation, symbolic reasoning may be augmented by
predicates over concrete domains such as real numbers representing temporal or spatial coor-
dinates. We also introduce inference services offered by DL systems. They promise benefits
both for knowledge-base maintenance and application development.

In Section 1.5 we examine the use of DL knowledge representation and inference services
for scene interpretation. It is shown that the representational requirements for high-level vision
aggregates can in fact be met by a particular DL called ALCF(D) (for the DL nomenclature
see [3]). Regarding inference services for scene interpretation, logical model construction -

11



which is a service provided by modern DL systems such as RACER or FaCT - is in principle
a candidate. However, scene interpretation requires that the logical models not only satisfy all
constraints expressed by conceptual knowledge and visual evidence, but also be most “plausi-
ble” or “preferred” with respect to a measure. Furthermore, the interpretation process must be
flexible to adapt to a given focus of attention and other situational context. While this poses
requirements which cannot be met by existing DL systems, such an interpretation process
appears to be realisable in principle.

In Section 1.6 we shortly describe ongoing work towards an interpretation system where
probabilistic information guides the interpretation process within the conceptual framework
of a formal knowledge representation system.

Section 1.7, finally, summarises our findings and suggests directions for further research.
One of the major impediments for decisive progress appears to be the prevailing segregation
of the respective research communities of Computer Vision and Knowledge Representation.
So far, the Computer Vision community has not succeeded in attracting significant attention
of the Knowledge Representation community for research into high-level vision. But this is
not really surprising in view of the enduring predominance of lower-level vision research.

1.2 Conceptual Structures for High-level Scene Interpretation

In this section we first explain what we mean by “high-level interpretation”. We then propose
conceptual structures which can describe such “interpretations”. We introduce “aggregates”
as representational units for object configurations, occurrences, episodes and other concepts
which occur in high-level interpretations. We also discuss the interface between conceptual
high-level descriptions and the data provided by lower-level processes.

1.2.1 High-level Interpretations

We define high-level scene interpretation as the task of “understanding” a scene beyond single-
object recognition. In a knowledge-based framework, a high-level interpretation is determined
by constructing a description of the scene in terms of concepts provided in a conceptual knowl-
edge base (Fig.1.2). A scene is assumed to be a connected region of the 4-dimensional space-
time continuum. Our guiding example is a table-laying scene in a living-room where table-
laying actions are observed over a certain time interval. We do not commit ourselves to a
particular camera setup but simply assume that visual evidence is associated with the scene.

Fig. 1.2. Knowledge-based Framework for High-level Scene Interpretation
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In order to be able to focus on high-level interpretation we will bypass lower-level image
analysis issues and assume that a partial geometrical reconstruction of the scene in terms of
objects and their properties is available which will constitute the input to high-level interpreta-
tion. This intermediate representation, called Geometrical Scene Description (GSD), has been
introduced in earlier work [30] as a convenient separation between high-level and lower-level
processes. In this work, however, we assume that high-level and lower-level processes will
be able to interact. In fact, it is one of the goals of high-level processes to provide expecta-
tions and support for lower-level processes. Hence a GSD is not assumed to be complete and
correct in any sense. In particular, objects in the GSD need not be fully classified, may be
missing or may represent multiple scene objects. Imperfections at the level of the GSD will be
a touchstone for robust high-level interpretion.

What are the requirements for describing scenes at a “high” conceptual level? From the
examples given earlier we gather several characteristics. High-level scene interpretations typ-
ically

• involve several objects and occurrences;
• depend on the temporal and spatial relations between parts of the scene;
• describe scenes in qualitative terms, omitting geometrical detail;
• exploit contextual information;
• include inferred facts, unobservable in the scene;
• are based on conceptual knowledge and experiences about the world.

Consider, for example, the table-laying scene with a snapshot shown in Fig. 1.3. A high-
level interpretation would express that a person is placing a cover onto a table. This is a
qualitative summary of several individual occurrences involving different objects. The scene
has a characteristic spatio-temporal structure. The final spatial configuration is described by
the term “cover” referring to a priori knowledge about dish arrangements. Similarly, there
is a typical temporal structure of the scene. For example, usually we would expect that the
plate is placed before the saucer and the cup. Further expectations may arise from context
information. If we know that it is early in the morning, we might infer that a breakfast table is
laid and someone may intend to have breakfast soon.

Fig. 1.3. Snapshot of a Table-laying Scene

From the example it is apparent that a scene interpretation may involve many concep-
tual levels above the level of single-object recognition, corresponding to different degrees of
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abstraction. At a low abstraction level we may talk about placing a fork beside a plate. At a
higher level we may say that the table is laid for breakfast. It will be the task of the conceptual
knowledge base to provide the corresponing conceptual structures.

Intuitively we may think of the elements of a high-level scene interpretation as “occur-
rences”. The term emphasises the general case of a time-varying scene (ranging from simple
object motions to large-scale episodes), but is not meant to exclude concepts for stationary
situations such as a cover configuration on a table.

It has been mentioned that an interpretation should exploit contextual information. As
“context” of a scene we denote any information at any abstraction level which is relevant for
the interpretation of that scene but not observable. For vision, spatial and temporal context
are particularly important. Spatial context is understood to influence the interpretation of a
scene via spatial constraints. For example, context information about the location of the table
border will constrain expected cover locations. Similarly, temporal context provides tempo-
ral constraints, for example, knowing the daytime may exclude certain interpretations such
as ”breakfast-table”. The example suggests that it may be more appropriate to change cer-
tainty values rather than exclude an interpretation alltogether. Uncertainty management as an
extension of a logic-based framework will be addressed in Section 1.6.

In general, context may be provided in terms of diverse kinds of information. For exam-
ple, it may be known by verbal communication that the table is being laid. This top-down
information may facilitate a detailed scene analysis and interpretation. Context may also be
given in terms of known intentions of agents. For example, if it is known that an agent intends
to have breakfast, but the table is covered with other items, say books, then it may be expected
that the agent will clear the table and then place dishes.

Another kind of context may be given by focussed attention. In the smart-room setting of
our example scenario, for example, attention may be directed by queries of a human user such
as “Is there a plate on the table?”. The query will restrict the space of interesting interpretations
to those which include a plate.

1.2.2 Aggregates

We turn now to the task of describing occurrence concepts in a knowledge-representation
framework. This will be done initially in a frame-based notation. In Section 1.5, we will
rephrase the frame-based models as conceptual expressions of a Description Logic.

The main conceptual entities are called aggregates. An aggregate consists of a set of parts
tied together to form a concept and satisfying certain constraints. There are no a priori assump-
tions about dependencies between parts or specific reasons to combine them in an aggregate.
We simply assume that one is interested to recognise an aggregate as a whole.

As an example, consider the occurrence of placing a cover on a table. Fig. 1.4 shows
the corresponding conceptual model. It is a crude conceptual description of a scene where
a plate, a saucer and a cup are placed onto a table to form a cover. The place-cover aggre-
gate includes a table top, three transport occurrences and a cover configuration as parts (the
spatial constraints expressed by cover are not shown here). Parts are assumed to be existen-
tially quantified. Furthermore, there are time marks which refer to the beginning and ending
of the place-cover occurrence. In the constraints section, there are identity constraints, such
as pc-tp1.tp-ob = pc-cv.cv-pl, which relate constituents of different parts to each other (the
plate of the transport sub-occurrence is identical with the plate in the cover), and qualitative
constraints on the time marks associated with sub-occurrences. For example, pc-tp3.tp-te >=
pc-tp2.tp-te denotes that the cup transport should end after the saucer transport. Aggregates
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involving mobile objects typically require that the objects fulfill certain temporal and spatial
constraints.

name: place-cover
parents: :is-a agent-activity
parts: pc-tt :is-a table-top

pc-tp1 :is-a transport with (tp-obj :is-a plate)
pc-tp2 :is-a transport with (tp-obj :is-a saucer)
pc-tp3 :is-a transport with (tp-obj :is-a cup)
pc-cv :is-a cover

time marks: pc-tb, pc-te :is-a timepoint
constraints: pc-tp1.tp-ob = pc-cv.cv-pl

pc-tp2.tp-ob = pc-cv.cv-sc
pc-tp3.tp-ob = pc-cv.cv-cp

...
pc-tp3.tp-te >= pc-tp2.tp-te
pc-tb <= pc-tp3.tb
pc-te >= pc-cv.cv-tb

Fig. 1.4. Conceptual Model of a Place-cover Scene

The example shows that an aggregate may have other aggregates as parts. Hence a com-
positional hierarchy is induced. The hierachy is built on top of primitive occurrences which
are generated as part of the GSD which will be discussed futher down.

As indicated by the “parents” slot, aggregates are also embedded in a taxonomical hierar-
chy which is the usual organisational form for concepts at different abstraction levels.

Note that scene objects such as plate, saucer etc. are considered as aggregates composed
of (i) a physical object or “body” in the 3D world and (ii) a “view” which is the visual evidence
of the object in the camera view. As an example, Fig. 1.5 shows the conceptual model of a
plate in a scene, where plate body and plate view are combined as an aggregate.

name: plate
parents: :is-a scene-object
parts: pl-body :is-a body with pl-body-preds

pl-view :is-a view with pl-view-preds
constraints: (constraints between pl-body-preds

and pl-view-preds)

Fig. 1.5. Conceptual Model of a Plate in a Scene

The constraints section contains constraints which relate the parts to each other, e.g. ensur-
ing that the view is compatible with the 3D shape of the physical object (which is, of course,
not trivial). Note that the aggregate and its parts are embedded in distinct taxonomical hier-
archies: scene-objects, bodies, and views. Only physically coherent objects will be modelled
with a view, for example a candlestick. Aggregates with mobile parts, such as a cover, will in
general not be described by views at the aggregate level.
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The main motivating criterion for defining an aggregate is to provide a coherent descrip-
tion of entities which tend to co-occur in a scene. This is regardless of whether the entities are
visible or not. In fact, aggregates provide the means to hypothesise parts without evidence. As
an extreme example, aggregates may include mental states of agents along with occurrences
in a scene, in particular desires or emotional states. The aggregate in Fig. 1.6 is a sketch of
an “intended place-cover”, specifying an agent along with the place-cover occurrence and a
desired cover configuration as the mental state of the agent. Relational descriptions including
mental states have also been used in [7] as a basis for situation semantics.

name: intended-place-cover
parents: :is-a intended-action
parts: ipc-pc :is-a place-cover

ipc-ag :is-a agent
ipc-cv :is-a cover

constraints: ipc-ag.desire = ipc-cv
(and other constraints)

Fig. 1.6. Conceptual Model of an Intended Action

The view concepts associated with physical object concepts refer to the interface between
high-level and lower-level vision, as instances of view concepts are provided by lower-level
processes. The next subsection deals with this interface.

1.2.3 Interfacing High-level and Lower-level Representations

The main task of the interface between high-level and lower-level vision is to ground symbols
of symbolic descriptions in data structures provided by lower-level vision processes. It is as-
sumed that, from below, the scene is described in terms of segments or blobs, each endowed
with a rich quantitative description. As mentioned before, a similar scene description, denoted
Geometrical Scene Description (GSD), has been introduced in earlier work [30]. Here, we
do not require that objects of the GSD have been preclassified, but only postulate that view
classes can be distinguished, e.g. “disk-shaped”. A single view instance may be related to
several object concepts, hence unambiguous recognition solely based on views may not be
possible.

Blobs are mapped into instances of object views which are associated with object concepts
of the conceptual knowledge base as described above. Basically, this mapping assigns symbols
for qualitative subspaces of the quantitative blob descriptions. For example, a subspace of
shape descriptions could be classified as “disk-shaped”.

In addition to instances of object views, qualitative relations between object views are
computed, for example topological relations such as “touch”. There is a large set of relations
which can in principle be computed from the GSD. From a cognitive perspective, qualitative
predicates over distances and angles between suitable reference features, as well as temporal
derivatives of distances and angles, are of primary importance. For example, qualitative spatial
relations such as “right-of” or “parallel-to” are of this kind.

In general, it may not be feasible to compute distances and angles beween all pairs of
objects. Utility measures and focus of attention come into play as well as verification requests
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of higher-level interpretation processes. It is therefore useful to think of instances of qualitative
relations in terms of information which can be provided on demand.

In dynamic scenes, object motion and time-dependency of relations play an important part.
The interface provides instances of views of primitive occurrences which are the basic building
blocks for occurrences such as “place-cover” and other higher-level concepts. A primitive
occurrence is defined as a conceptual entity where a qualitative relation is true over a time
interval. Typical primitive occurrences are:

• object motion,
• straight object motion,
• approach or depart segment of an object motion relative to a second object,
• turning object motion,
• upward or downward motion.

If a predicate over a perceptual primitive is true throughout a scene, one usually does not
talk about an occurrence. We will use the term primitive relationship instead, well aware that
there is no inherent representational difference between a constancy which happens to change
within the duration of a scene and one which does not.

1.3 Requirements for the High-level Scene Interpretation Process

In this section we identify requirements which must be met by a high-level scene interpretation
process. Further down, these requirements will be compared with existing inference services
of DL systems.

1.3.1 Context-based Interpretation

An interpretation of a scene is a partial description in terms of instances of concepts of the
conceptual knowledge base. It is partial because only parts of the scene and a subset of the
concepts are interesting in general, depending on the pragmatic context. This principle is well-
known from work on Active Vision [9] and knowledge-based attention mechanisms [23]. In
our knowledge-based framework, we allow an interpretation to be incomplete in three respects:

1. Objects need not be identified as parts of an aggregate. In particular, view objects may
remain “unrecognized”, i.e. not assigned to a scene-object aggregate.

2. An object which is an instance of a certain concept C need not necessarily be specialized
to a known subconcept of C

3. Aggregates need not be instantiated at the parts level.

Context information can enter the interpretation process in terms of instantiated aggregates
which constrain other possible scene objects. For example, if the context of a breakfast scene is
given, it is assumed that a corresponding aggregate is instantiated and possible parts - such as
the occurrence “laying-the-breakfast-table” - are expected as constituents of the interpretation.
Context-based instances are often not fully specified, with properties left open or partially
constrained. For example, the begin and end times of an instance of “laying-the-breakfast-
table” may initially be loosely constrained to the typical morning hours, e.g. to times between
6 and 11 a.m.

Spatial and temporal context play a special part in scene interpretation, since spatial and
temporal constraints provide important coherence in visual aggregates. The constraints section
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in aggregates will contain predominantly spatial and temporal constraints. In view of interpre-
tation tasks under varying contextual conditions it is highly desirable that temporal and spatial
constraints can be propagated between all constraint variables. For example, if a plate is inter-
preted as part of a cover, the plate location constrains other part locations, restricting possible
choices and possibly even causing top-down guided image analysis in restricted areas.

As a consequence of context information, scene interpretation may be performed under
diverse boundary conditions and the interpretation process must be influenced accordingly,
in particular regarding the order in which possible hypotheses are tested. Hence one of the
requirements for interpretation services must be flexibility to adjust to varying contexts.

1.3.2 Navigating in Hallucination Space

An interpretation may reach far beyond visual evidence, for example by including predictions
about the temporal development of a dynamic scene or expectations about unvisible objects.
Hence instantiations with incomplete or no visual evidence are more the rule than the excep-
tion. This is aptly expressed by the sentence “Vision is controlled hallucination” attributed to
Max Clowes (1971).

Considering the potentially large space of possible hallucinations and the flexibility re-
quired for varying contexts, it is useful to model the interpretation process as an incremental
construction process with the goal to create and verify any instance which may be useful for
the overall goals of the vision system. We know that logically, an instance of an aggregate C
can only be verified if it is asserted by context information or its parts can be verified under
the constraints specified in the concept definition of C. This recursive definition may eventu-
ally bring scene objects and hence visual evidence of the GSD into play. But scene objects
cannot be verified - logically - from visual evidence alone as shown in Fig. 1.5, but would
require assertions about the corresponding physical object. Hence logical verifiability cannot
be a criterion for accepting an instance in an interpretation. However, it can be assured that in-
terpretations are consistent with evidence and conceptual knowledge. Unfortunately, the space
of consistent interpretations may be huge and the knowledge-representation framework does
not offer a suitable criterion for preferring one consistent interpretation over the other. Hence
additional information is required, for example in terms of likelihoods of interpretations. We
will discuss preference measures for guiding the interpretation process in Section 6.

In [31] a repertoire of three basic interpretation steps has been identified: aggregate instan-
tiation, instance refinement and instance merging. For clarity, it is useful to further distinguish
two variants of instance refinement: instance specialisation and instance expansion. The in-
terpretation steps are designed to move around freely in hallucination space, i.e. to allow the
construction of any consistent interpretation. In the following, the four kinds of interpretation
steps will be described.

Aggregate instantiation is the act of inferring an aggregate from parts, also known as part-
whole reasoning. Given instances of (not necessarily all) parts of an aggregate and satisfied
constraints, we want to establish an instance of the aggregate. The question when evidence in
terms of parts justifies aggregate instantiation is, of course, related to the verification question
raised above, and we note that aggregate instantiation requires guiding information.

The second kind of interpretation step is instance specialisation. Specialisation means
tightening properties and constraints, either along the specialisation hierarchy or by checking
objects for possible roles in aggregates. Hence instance specialisation steps are predetermined
by the structure of the specialisation hierarchy and the aggregate definitions. As above, it
must be noted that the conceptual structures do not specify preferred choices if alternative
specialisations are possible.
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The degree to which instances should be specialised depends on the overall task of the
vision system, and no generally valid rule can be given. On the other hand, we know from
Cognitive Science that “natural kinds” play an important role in human thinking and commu-
nication. Roughly, a natural kind is a concept which describes essential visual properties of
its instances [24]. In our domain, “plate” is a natural kind whereas “dish” is not. Asserting
natural kinds could be a useful guiding goal for specialisation steps.

Instance expansion is the step of instantiating the parts of an aggregate if the aggregate
itself is already instantiated. Logically, asserting an aggregate instance would generally imply
the assertion of part instances. But for a task-oriented and context-dependent interpretation it
is useful to be able to suppress details. Hence it will not be required that parts are instantiated
if an aggregate is instantiated. A typical reason for instance expansion is the need to connect
higher-level aggregates to visual evidence.

The fourth kind of interpretation step, instance merging, is required because of the dis-
tributed nature of interpretation activities. New instances may be generated at any level and in
any branch of the compositional hierarchy depending on visual evidence, context information
and current interpretation state. Hence different sequences of interpretation steps may lead to
identical instances which must be merged. This will happen in particular when instantiations
are initiated both bottom-up and top-down, for example caused by visual evidence on one side
and strong context-based expectations on the other. In our domain, context information such
as “the table is laid” may have led to the top-down instantiation of a cover and its parts. Visual
evidence about a plate and other items must then be merged with these instances. Again, we
note that there may be many choices, and guiding information is needed.

1.3.3 Scene Interpretation as Model Construction

As shown by [35] and further elaborated in [27, 42, 41], image interpretation can be formally
described as constructing a partial model. “Model” is used here in the logical sense and means
a mapping from the symbols of logical formulae into a domain such that the formulae are true.

Applied to scene interpretation, there are three sets of formulae, (i) generic knowledge
about the world, (ii) knowledge about a specific scene in terms of visual evidence and con-
text, and (iii) propositions which are generated as the scene interpretation. Model construction
means connecting constant, predicate and function symbols of the formulae with correspond-
ing individuals, predicates and functions of a real world domain. The fact that the third set
of formulae, the scene interpretation, is not given but incrementally constructed, is one of the
differences to the notion of interpretation as used in formal knowledge representation.

The constructed model is “partial” in that neither all possible nor all implied conceptuali-
sations of the scene must be expressed as formulae, and in particular that image analysis must
not be perfect.

In addition to these general properties of a model, Schröder postulates that two require-
ments must be fulfilled. First, it must be possible to extend the partial model to a complete
model. This ensures consistency of any scene interpretation since it is always part of a model.
Second, disjunctions must be resolved. This ensures completeness with respect to specialisa-
tion.

It is interesting to transfer Schröder’s criteria for scene interpretation [41] into the con-
ceptual framework introduced above, although this is not (yet) formulated in a precise logical
language. Scene interpretation as outlined in Subsections 1.3.1 and 1.3.2 is an interpretation
in the logical sense, i.e. the scene interpretation process determines a mapping from sym-
bolic expressions into the real world, by connecting symbolic constants to individual enti-
ties in the scene via sensory input and computational procedures. For example, instantiating
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a place-cover aggregate connects the corresponding formula with the real-world scene via
spatio-temporal constraints and whatever visual evidence is related to the occurrence.

The mapping is a model, if it causes all symbolic expressions of the conceptual knowledge
and the scene-specific knowledge to become true. For example, if a plate is on the table in the
scene, then a corresponding symbolic relation ON should hold for symbolic tokens PLATE1
and TABLE1 assigned to the scene objects. This is the case if the real-world meaning is cor-
rectly represented by the computational procedure which determines the ON-relation for the
scene object.

Sometimes, our intuitive notions may differ from what is being computed and one might
argue that in those cases a vision system does not compute a model. Discrepancies may range
from obvious mistakes (e.g. interpreting a shadow as a physical object) to disputable propo-
sitions where even people might disagree (e.g. calling a spatial relation “near”). For a formal
analysis, it is therefore useful to avoid references to intuition and accept the operational seman-
tics realised by the conceptual models and computational procedures. In this sense consistent
scene interpretations always correspond to logical models.

Schröder´s consistency requirement makes sure that a partial model is always the kernel
of a potentially complete model. In our framework, requirements for scene interpretations
have been introduced without this condition, and it is not apparent at this stage how one could
ensure that a partial scene interpretation remains consistent if it is completed by further image
analysis. As an example, imagine a scene where a plate is placed onto an empty table. The
vision system may come up with the interpretation of “table-laying” including predictions
about future actions. The continuation of the scene, however, may show that the plate is picked
up again and put elsewhere. Hence the premature interpretation cannot be completed to be
consistent with the scene.

In view of the fact that visual evidence is ambiguous as a rule (and not as an exception),
we expect that Schröder´s consistency requirement cannot be met in practice. Rather, we must
be prepared to (i) withdraw an interpretation if it becomes inconsistent with additional infor-
mation, and (ii) provide guiding information which helps to select between multiple possible
models.

Let us now consider Schröder´s specialisation requirement which calls for interpreta-
tions without unresolved disjunctions. Disjunctions occur naturally in conceptual descriptions
where choices are left open, for example, when a concept may be specialised further accord-
ing to the taxonomy, or when a property may have several values. Requiring interpretations
without disjunctions is equivalent to enforcing interpretations at the lowest possible abstrac-
tion level. This is clearly not the right answer for all vision tasks and pragmatic contexts which
one can think of. For example, in an obstacle avoidance task the vision system could well do
without the most specific classification of obstacles as long as their geometry is recognised
properly.

In summary, we see that model construction, although the right logical framework for
scene interpretation, leaves several questions unanswered regarding a practically useful inter-
pretation process. These questions will be brought up again when we examine DLs for possible
interpretation services, and will also be addressed in Section 1.6.

1.4 Knowledge Representation and Reasoning with Description
Logics
Description Logics (DLs), also called terminological logics, originated from the work of sev-
eral researchers who tried to replace the intuitive semantics of semantic networks and frame
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systems by a formal logic-based semantics [47, 10, 21, 48]. It was soon realised that semantic
networks and frames do not require full first-order logic, but fragments suffice for typical rep-
resentation and reasoning tasks. Moreover, since inference problems are found to be decidable
in these fragments, reasoning can be operationalised by sound, complete, and terminating al-
gorithms. This is a clear advantage compared to theorem provers for full first-order logic or
theorem provers for Horn clauses with function symbols (e.g., PROLOG).

DLs have taken a remarkable development as both solid theoretical foundations and suc-
cessful operational systems have been achieved. The interest of using DL systems for practical
applications is due to several attractive aspects.

• The family of DLs comprises a variety of representation languages ranging from lan-
guages with polynomial complexity such as CLASSIC [11] to highly expressive languages
which - in the worst case - are no longer polynomial, such as SHIQ(Dn)− [22, 20].

• DL systems offer various kinds of inference services which can be used for application
development. Systems are available off the shelf and are based on international standards
for web based system development (e.g., OWL [45]). An excellent presentation of the
history and current state of DL technology is offered in [3]. One example for a current DL
system is RACER [19]. RACER supports the logic SHIQ(Dn)− and provides extensive
support OWL.

• The representation language is object-based and supports frame-like representations.

For the purpose of this contribution it is useful to introduce DLs in terms of a reper-
toire of language features which are potentially important for scene interpretation, rather than
focussing on particular DLs. In Section 1.5, we will then examine how to meet the knowl-
edge representation requirements for scene interpretation. Unfortunately, not all features of
the repertoire can be combined in a single language without losing decidability, so a careful
analysis is necessary and a restricted use may be imposed. Note that decidability was not an
issue in related work such as [37].

1.4.1 Syntax and Semantics of Description Logics

Knowledge representation in DLs is based on unary predicates called concepts (or concept
terms), binary predicates called roles (or role terms), and so-called individuals. A concept is
interpreted in a Tarski-style set-theoretical semantics as a set of elements from a domain of
discourse (also called universe), a role is interpreted as a set of pairs of elements from the
domain, and an individual denotes an element of the domain. The elements in the second
position of a role pair are called role fillers. Functional roles which map each first argument
into at most one role filler are called features.

Building Blocks:

For each application one has to fix a set of concept names (so-called atomic concepts), a
set of role names (also called atomic roles), and a set of individuals. Names can be used
to build complex concept and role terms. This is accomplished with the help of operators
whose meaning is precisely defined in terms of the set-theoretical semantics. Below we present
the language for building complex concept terms. We rely on a notation with the following
abbreviations (possibly used with index):
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C concept term CN concept name
R role term RN role name
F feature n natural number
I individual

Concept terms may be formed as follows:

C −→ CN concept name
*top* universal concept (containing all other concepts)
*bottom* empty concept
(not C) negation of a concept
(and C1 ...Cn) intersection of concepts
(or C1 ...Cn) union of concepts
(some R C) existential quantification
(all R C) value restriction
(at-least n R C) qualified at-least number restriction
(at-most n R C) qualified at-most number restriction
(exactly n R C) qualified exact number restriction
(same-as F1 F2) feature (chain) agreement
(subset R1 R2 ) role-value map
(one-of I1 ...In) singleton set

For the roles used in qualified number restrictions addtional restrictions apply: They must be
neither transitive nor must there exist a transitive subrole (see below). Role terms may be
formed as follows:

R −→ RN role name
**top** universal role (containing all other roles)
**bottom** empty role
(inverse R) inverse role
(and R1 ...Rn) intersection of roles
(or R1 ...Rn) union of roles
(compose F1 ...Fn) feature chain
(compose R1 ...Rn) role composition

The concept expressions involving roles may require some explanations. The value restric-
tion (all R C) denotes a class of objects where all role fillers of R, if there are any, be-
long to the concept C. Hence (and plate (all has-shape oval)) describes plates
whose shapes are oval (but specific instances of oval shapes are not necessarily known). To
express that a candlestick must have at least one candle, one can use the existential role restric-
tion (and candlestick (some has-candle candle)). Several forms of num-
ber restrictions can be used to further restrict the role-fillers for a class of objects. For ex-
ample, (and candlestick (at-least 2 has-candle candle)(at-most 2
has-candle candle)) describes the candlesticks with exactly two candles.

With so-called feature (chain) agreements one can describe elements of the domain which
possess the same fillers for (possibly different) feature chains. Consider the definition of a
cover which requires that plate and saucer have the same colour. This restriction could be
expressed as

(same-as (compose has-plate has-colour)
(compose has-saucer has-colour))
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For (compose R1 R2) we also write R1 o R2 in the sequel. Feature chain agree-
ment is one of those constructs which cannot be combined with other critical constructs with-
out jeopardizing decidability. In particular, feature chain agreement is part of the CLASSIC
language, however it cannot be used in a language as expressive as SHIQ(Dn)− [5]. An-
other critical construct not supported in SHIQ(Dn)− is the role-value map (subset with role
chains). In general, this construct cannot be integrated even into the (less expressive) CLAS-
SIC language without losing decidability [39]. But as can be seen from the previous example
and some other examples shown below, both constructs appear to play a natural role in human
concept formation.

SHIQ(Dn)− is an example of a DL language that does not only support the descrip-
tion of abstract objects (in the universe) but also supports additional domains with objects
for which, for instance, an order is defined and certain algebraic operators (functions) such as
addition and multiplication are specified. An additional domain plus a set of predicates syntac-
tically constructed with reference to a set of predefined operators is called a concrete domain.

Concrete domains were introduced with the language ALC(D) [4]. The (D) part stands
for concrete domains. The language ALC [40] comprises the first eight concept constructors
from the grammar shown above. Another important extension of DLs in terms of predicates
over concrete domains was established by [4] with the languageALCFP(D) (i.e.,ALC with
feature agreements (same-as), feature composition, and concrete domains). The integration
of concrete domain predicates allows to include predicates which are evaluated outside the
Description Logic reasoner. Examples of concrete domain predicates interesting for scene
interpretation are inequalities over real numbers, Allen’s interval calculus [1], or the RCC-8
calculus about spatial regions [34].

At the time of this writing RACER is the only optimized DL system which supports con-
crete domains with the language SHIQ(Dn)−. In particular, the concept language offers op-
erators for forming concepts based on predicates involving (in)equalities over the integers and
the reals. The following shows the syntax for concrete domain concept expressions (CDCs)
which extend the list of concept terms presented earlier. AN denotes an attribute name which
specifies an integer- or real-valued variable.

CDC −→ (a AN) (an AN) attribute filler exists restriction
(no AN) no attribute filler exists restriction
(min AN integer) integer predicate exists restriction
(max AN integer)
(equal AN integer)
(> aexpr aexpr) real predicate exists restriction
(>= aexpr aexpr)
(< aexpr aexpr)
(<= aexpr aexpr)
(= aexpr aexpr)

aexpr −→ AN
real
(+ aexpr1 aexpr1 ∗)
aexpr1

aexpr1 −→ AN
real
(* real AN)
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It can be seen that concrete domain predicates offer an interesting way to integrate quanti-
tative data from low-level vision with symbolic reasoning in high-level vision. As an example,
we could define an integer-valued attribute size for the number of pixels of a plate-view
and express a conceptual restriction on the size of the plate-view by means of the concept
expression:

(and (min size 13) (max size 20))

Conceptual Knowledge:

The language for building concept terms as introduced above can be used to describe subsets
of the universe. Concept definitions and logical relationships between concepts are introduced
by so-called terminological axioms. The general forms of terminological axioms are given as
follows (for definitions, C1 is a concept name):
(equivalent C1 C2) (identity relationship between sets associated with C1 and C2)
(implies C1 C2) (subset relationship between the sets associated with C1 and C2)
(disjointC1 ...Cn) (the sets associated with C1 and C2 are disjoint)

Similar to concept definitions, relationships between roles can be enforced:

(equivalent R1 R2)
(implies R1 R2)

In addition, in the language SHIQ(Dn)− roles may be declared to be functional or have
other properties such as transitivity or symmetry. For historical reasons, a set of axioms is
referred to as a TBox (terminological box).

It is apparent that n-ary predicates (or in set terminology: n-ary relations) cannot be di-
rectly represented. However, there is a well-known way around by reifying n-tuples. Let

R ⊆ C1 x C2 x . . . x Cn

be an n-ary relation. Define C as the set of all n-tuples of R and Ri as the binary relation
between an n-tuple and its ith component.

Ri ⊆ C x Ci , i = 1...n

The concepts C and C1 . . . Cn together with the roles R1 . . . Rn represent the n-ary re-
lation R. Reification will be used extensively for defining concepts for high-level scene inter-
pretation which typically relate many components to each other.

Assertional Knowledge:

So far, we have presented constructs for representing conceptual knowledge in a TBox. DL
syntax also includes constructs for representing factual (assertional) knowledge about individ-
uals. This body of knowledge is called an ABox. Let IN, IN1 and IN2 be individual names,
then the following constructs express concept membership and role membership, respectively:

(instance IN C) IN is instance of C
(related IN1 IN2 R) IN1 is related to IN2 via role R

The following ABox constructs are provided for concrete domain extensions:
(constrained IN ON AN)

A concrete domain object ON is the filler for an attribute AN with respect to an individual IN.
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(constraints constraint-expr1 ... constraint-exprN)
Constraint expressions describe relationships between objects of a concrete domain.

A knowledge base is a pair of TBox and ABox. Practical systems such as RACER support
multiple knowledge bases. In particular, one TBox can be referred to by multiple ABoxes.

1.4.2 Reasoning Services of Description Logics

In addition to providing the framework for knowledge bases, a DL system offers specific kinds
of reasoning services. They are logical inferences based on the formal semantics, similar to
inferences in first-order predicate logic. From an application-oriented point of view, the rea-
soning services are useful for two main purposes, (i) organizing and maintaining a potentially
large knowledge base, and (ii) providing complete and correct procedures as building blocks
for application systems. Typical reasoning services of a DL system determine

• whether a concept is consistent (i.e., satisfiable),
• whether a concept is subsumed by another concept,
• whether two concepts are disjoint,
• whether a TBox is coherent (i.e. contains no inconsistent concept names),
• what are the parents (children) of a concept,
• whether an ABox is consistent w.r.t. a TBox,
• whether an individual is an instance of a certain concept,
• what are the most-specific concept names of which an individual is an instance,
• what are the instances of a given concept,
• what are the individuals filling a role for a specified individual,
• general queries for tuples of individuals mentioned in ABoxes that satisfy certain predi-

cates (so-called conjunctive queries).

It can be shown that, in general, all of these services can be reduced to consistency check-
ing of an ABox w.r.t. a TBox. Hence, in implemented DL systems, a premium is on efficient
and optimised algorithms for consistency checking. One way to do this is by model construc-
tion as this is an elegant way to define an algorithm for proving satisfiability. Many DL systems
are based on model construction techniques (they use so-called tableau provers). This is in-
teresting because model construction has been shown to be one of the building blocks for the
logical paraphrase of scene interpretation (Section 1.3.3).

Usually, inference services of most DL systems are based on the open-world assumption
(OWA) as opposed to the closed-world assumption (CWA). Employing the CWA means that
if a fact does not follow from a knowledge base, then the negation is assumed to hold. As a
consequence of the OWA, in DL systems, inferences are drawn to the extent that they are not
affected by additional information. This precludes intuitive inferences which might be useful
for scene interpretation. For example, if there is evidence for two dinner covers on a table,
the interpretation of a “dinner-for-two” cannot be logically inferred as additional covers may
be added to the knowledge base. Note however, that the DL system RACER supports a very
expressive query language for ABoxes (conjunctive queries) that also allows for CWA-based
inferences (see below).

In the DL literature, there are also so-called non-standard inference services investigated,
which have been introduced mainly in support of knowledge engineering, for example provid-
ing normalised forms for concept definitions. Some of the non-standard inferences may also
be interesting for scene interpretation, for example, the generalisation operation LCS which
computes the most specific concept subsuming several specified concepts [12]. However, due
to space restrictions we cannot report on details here.

25



1.5 Scene Interpretation with Description Logics

We now examine in detail how scene interpretation - according to the ideas and requirements
put forth in the previous sections - can be supported by knowledge representation and reason-
ing with a DL system. We will first deal with representational requirements and then with the
interpretation process.

1.5.1 Representing Aggregates with DL Concepts

The main representational unit which has been identified for conceptual knowledge represen-
tation is an aggregate. An aggregate expresses the properties and constraints which make a
particular set of objects worth being recognised as a whole. As shown in Section 1.2, aggre-
gates can be described informally by frames, and it is straightforward to translate basic frame
notation into DL notation: Slot identifiers become role names, concept expressions for slot
values become role value restrictions, and the whole frame is represented as a union of role
restrictions.

The assignment of role names deserves some consideration. One might be tempted to
represent all roles connecting an aggregate to parts with a single role type “has-part” (or some
other standard name). This would ignore that, in general, parts “play different roles” in an
aggregate, and unwanted inheritance relations may result if these roles are not distinguished.
It is useful to think of an aggregate as a reified n-ary relation where the roles relate components
to corresponding positions in the n-tuples, as pointed out in Section 1.4.1. Hence role names
within an aggregate should in general be distinct.

On the other hand, there may be aggregates related to one another by specialisation, for
example “cover” and “breakfast-cover”. Here, parts in different aggregates could play identical
roles and should have identical names so that the specialisation relation between “cover” and
“breakfast-cover” can be deduced.

In order to function within a vision system, individuals in the ABox of a DL system
must interface to lower-level vision. Mechanisms to feed concrete data into the ABox are
common-place for DL applications, so this is no serious challenge. In the framework presented
in Section 1.2, lower-level processes will supply data for instances of view concepts which are
modelled as parts of scene objects. Also, context information may be entered into the ABox
in terms of instantiated aggregates.

Representing the constraints section of aggregates is a more difficult issue. In the follow-
ing simple example a DL concept is defined for a cover consisting of a plate, a saucer near the
plate, and a cup on the saucer.

(equivalent cover
(and configuration

(exactly 1 cv-pl plate)
(exactly 1 cv-sc (and saucer (some near plate)))
(exactly 1 cv-cp (and cup (some on saucer)))
(subset cv-pl (compose cv-sc near))
(subset cv-sc (compose cv-cp on))))

Fig. 1.7. DL Concept for a Simple Cover
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The requirement that the saucer is located near the same plate as referred to by the role
cv-pl is expressed by the subset construct which relates the filler of the role cv-pl and the filler
of the role chain (compose cv-sc near). The requirement that the cup is located on the same
saucer as referred to by the role cv-sc is expressed in a similar way. Concept terms involving
the subset and same-as operator as well as role and feature chains often seem to be appropriate
representation means in aggregates for scene interpretation.

A special task of the constraint section of an aggregate is to express spatial and temporal
constraints. In principle, this could be done in a manner similar to the example in Fig. 1.7
where the symbolic roles “near” and “on” do the job. For example, in a (simplified) place-
cover aggregate one could express the temporal “before” relation between the place-saucer
and the place-cup occurrences as follows:

(equivalent place-cover
(and agent-activity

(exactly 1 pc-tp1 (and transport (some tp-obj plate))
(exactly 1 pc-tp2
(and transport
(some tp-obj saucer)
(some before (and transport (some tp-obj cup)))
(exactly 1 pc-tp3 (and transport (some tp-obj cup)))))

(subset pc-tp3 (compose pc-tp2 before)))))

Fig. 1.8. Simplified DL Concept for Place-cover

This would require that qualitative temporal and spatial relations needed for conceptual
modelling (such as “on” or “before”) must be instantiated bottom-up by processes outside of
the DL system. Assuming separate control structures of high-level and low-level processes,
this would lead to bottom-up computation of a potentially very large number of pairwise spa-
tial and temporal relations, from which only a small number may play a part in a high-level
interpretation.

By integrating quantitative computations into the high-level concepts, a more efficient
and also more transparent solution may be achieved. This can be made possible by concrete-
domain concept terms as introduced in Section 1.4.1. As a convenient shorthand for feature
composition we now use the concatenation operator o (see Fig. 1.9).

Four temporal constraints are specified:

1. The end of the place-saucer occurrence must be before the end of the place-cup
occurrence.

2. The begin of the place-cover occurrence is the minimum of the begins of its con-
stituent occurrences.

3. The end of the place-cover occurrence is the maximum of the ends of its constituent
occurrences.

4. The overall duration must not exceed a given maximal duration.

The constraints involve attributes relating an occurrence to its begin and end time, ex-
pressed in terms of values of the concrete domain of integers. Different from the first formu-
lation with qualitative roles, the content of the constraints is now part of high-level concepts.
This opens up the way for flexible interpretation strategies where constraints are propagated in

27



(equivalent place-cover
(and agent-activity

(exactly 1 pc-tp1 (and transport (some tp-obj plate))
(exactly 1 pc-tp2 (and transport (some tp-obj saucer))
(exactly 1 pc-tp3 (and transport (some tp-obj cup))
(<= pc-tp2 o tp-end pc-tp3 o tp-end)
(= pc-beg (minim pc-tp1 o tp-beg

pc-tp2 o tp-beg
pc-tp3 o tp-beg))

(= pc-end (maxim pc-tp1 o tp-end
pc-tp2 o tp-end
pc-tp3 o tp-end))

(<= (- pc-end pc-beg) max-duration))))))

Fig. 1.9. DL Concept of Place-cover with Temporal Constraints

order to restrict possible instantiations at choice points. In particular, constraints pertaining to
hypothesised objects without visual evidence can be used to constrain lower-level processes.
For example, if evidence for a plate has led to instantiating a cover, spatial constraints between
plate and missing cover parts, such as cup and saucer, can be exploited for top-down guided
image analysis at the constrained locations. Our approach differs from temporal or spatial
logic approaches in that it does not attempt to integrate inherent properties of space and time
into the symbolic realm, but rather exploits the computational facilities of a metric space. The
need for a metric space between signal and symbol processing has also been pointed out in
[15].

Note that the minim and maxim operators are not part of a regular DL syntax. But the
intended semantics can also be expressed by a disjunction of inequalities between pairs of
variables.

In summary, we have shown that the basic structure of an aggregate as introduced in
Section 1.2 can be modelled by a DL system using the following scheme:

(equivalent <concept-name>
(and <parent-concept1> ... <parent-conceptN>

(<number-restriction1> <role-name1> <part-concept1>)
. . .

(<number-restrictionK> <role-nameK> <part-conceptK>)
<constraints between parts>))

Currently, at the TBox level, the expressivity of RACER is not sufficiently developed
to allow for concise and intuitive formulations. The problems are mainly due to decidability
problems in the general case. Note that for special cases of representations problems, such as
the ones discussed above, usually, developing decidability proofs and developing optimized
implementations is too much work. So if a general inference system such as RACER is to
be used, TBox axioms must be “too weak” in a sense. In subsequent sections we will explain
how the expressive RACER query language allows us to cope with this situation appropriately.
Before this can be explained, however, we consider how scene interpretation processes can be
modeled using standard inference services as explained above.
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1.5.2 Supporting the Scene Interpretation Process with a DL System

Support of the interpretation process has already been an important aspect for choosing partic-
ular constraint representations in the previous subsection. We now examine in more generality
how the interpretation process can be supported by reasoning services of a DL system. As
pointed out earlier, the use of DL reasoning services would offer two main advantages:

1. The formal semantics of a DL language helps to avoid misunderstandings which often
arise if knowledge bases and inference procedures are constructed intuitively.

2. Correct inference procedures may obviate the need for developing parts of application-
specific programs.

Looking at the list of services presented in Section 1.4.2 we see that the first group deals
with concept terms only and is mainly useful for the construction and maintenance of a
knowledge base. The key inference service of this group is a satisfiability test from which
all other concept-related services can be derived, for example concept subsumption, which
tests whether one concept is more general than another, and concept classification, which de-
termines the parent concepts for a given concept term.

The second group deals with ABoxes and TBoxes together and hence is more directly
relevant for scene interpretation. It should be clear from the preceding that the TBox of a DL
takes the role of the conceptual knowledge base and the ABox of a container for concrete scene
data. Referring to Fig. 1.2, the ABox contains (i) visual evidence in terms of the GSD, (ii) con-
text information in terms of partially specified concept instances, and (iii) the high-level scene
description generated by the interpretation process. A DL system always checks consistency
of the ABox w.r.t. the TBox, hence the ABox formally corresponds to a (partial) model of
the TBox and - given its role in the scene interpretation framework - is a (partial) scene inter-
pretation. We conclude that DL consistency checking can be used to ensure consistent scene
interpretations.

Another key inference service is the instance check, which determines whether an individ-
ual is an instance of a given concept w.r.t. the current ABox and the TBox. The most-specific
atomic concepts of which an individual is an instance can be derived by instance classifica-
tion (which, internally, is based on instance checks). The set of most-specific atomic concepts
computed by instance classification is also known as the set of direct types. If the direct types
are computed for all individuals in advance, this is known as ABox realization. All inference
services require deduction, i.e., multiple models have to be considered.

At first glance, instance classification appears to be an inference service which is immedi-
ately applicable for scene interpretation. Given an image segment represented as an individual
in an ABox, this service would deliver the most specific concept applicable to this individual.
But this will not work in general because of two main reasons:

(i) Scene interpretation (and image interpretation in general) cannot be solely modelled
as deduction. It is well-known that image evidence is generally not conclusive regarding a
classification because of the many-to-one nature of the imaging process. Hence an inference
service which infers a class membership cannot solve the full interpretation problem. As elab-
orated earlier, it appears to be more adequate to model image interpretation as a (logical)
model-construction task.

(ii) Individuals do not yet exist for aggregates which must be discovered. Hence instance
checking cannot be applied. As a work-around, random aggregate individuals could be created,
but this would turn interpretation into a top-down trial-and-error procedure which cannot be
efficient in general. However, if aggregate individuals are determined by part-whole reasoning
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as described below, they are educated guesses based on parts, and a classification step could
become obsolete in many cases.

We now turn to the interpretation steps identified in Section 1.3. The first kind is aggregate
instantiation, also known as part-whole reasoning. Given an individual in an ABox, what are
the possible aggregates supported by this individual, and which aggregate should be chosen
first? Assuming that aggregates are modelled by DL concepts as explicated above, we can
exploit the special syntax of aggregate concept definitions which allows to identify parts by
specific roles. The idea behind this syntactic construction is to provide a way for distinguishing
roles which model spatio-temporal co-occurrence which are typical for the parts of an aggre-
gate. This way we can identify the concept terms which describe the respective role fillers,
and what remains to be done for part-whole reasoning is instance checking of the individ-
ual against each concept terms. This can be done with a readily available reasoning service. A
concrete solution for part-whole reasoning in RACER will be presented in the next subsection.

However, no support can be given for the strategic decision which aggregate - out of
possibly many candidates - should be tried first. This requires a preference measure which is
outside the scope of current DL systems. It must be expected that uneducated choices will
lead to backtracking and hence inefficiency of the interpretation process. The development
of a preference measure for part-whole reasoning must be considered a prerequisite for the
employment of DL systems in practical scene interpretation applications.

The second kind of interpretation step required for scene interpretation is instance special-
isation. One of the main advantages of a DL system is the specialisation network automatically
generated for all concept definitions. Hence all specialisations of a given (atomic) concept can
be efficiently retrieved. To compute the possible specialisations of an individual, the most spe-
cific atomic concepts of which an individual is an instance (i.e., the so-called direct types)
can be determined by a service called instance classification, and then more specific concepts
can be found by consulting the specialisation hierarchy. In general, there will be alternative
choices, and it is useful to have guidance for a “best” choice. As with part-whole reasoning,
such guidance is outside the sope of current DL systems.

Instance expansion is a step applied to instantiated aggregates and causing its parts to
be instantiated. This operation is completely determined by the concept definition of the ag-
gregate, and extending an existing DL system to include this new service should be possible
without serious problems.

The fourth kind of interpretation step needed for scene interpretation is instance merging.
As pointed out earlier, this step is typically required when a top-down generated hypothet-
ical instance has to be connected with bottom-up evidence. Formally, the reasoning service
required here is to determine whether it is consistent with the TBox and the current ABox to
unify the descriptions of two individuals. Unification requires specialising the role fillers of
the individuals until the most general common representation is found. This must be applied
recursively to the instances of parts of aggregates and terminates at the level of instances of
primitive concepts.

As observed for other kinds of interpretation steps, DL systems do not offer guidance
when alternative choices are possible and an order of preference becomes important.

In summary, the logical structure of DL concepts can be exploited for constraining possi-
ble choices of interpretation steps to those which lead to a logical model, i.e. to a description
consistent with visual evidence, context and conceptual knowledge. But in general, there are
many models, and degrees of freedom are left open regarding choices among alternatives. The
decisive question is which model to prefer in the face of several possiblities. From an answer
to this question one can expect criteria regarding the preferred order for interpretation steps
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and other choices. Our understanding of vision suggests that these choices are critical for the
practically useful performance of a vision system.

1.5.3 Scene Interpretation Using RACER’s Query Language

In previous sections we have discussed how necessary scene interpretation knowledge could
be modelled using Description Logics in terms of TBoxes and ABoxes. One important insight
was that the TBox language provided by current DL systems such as RACER appears to
be “too weak”. In this section we show how we can compensate for the deficiencies using
a sophisticated query language for ABox individuals. Recently, the RACER query language
nRQL (new RACER Query Lanuguage) has been developed [19]. It provides an extension to
existing ABox query services in terms of query expressions with variables. In the following
we will show how nRQL can be conveniently used to support the scene interpretation process.

The retrieval operator of nRQL has the general format
(retrieve <list-of-objects> <query-body>)

where the list-of-objects may contain variables (beginning with “?”) and individuals.
The query-body is essentially a boolean combination of ABox assertions (see above) with
individuals (possibly) replaced by variables. Actually, nRQL is very expressive (non-recursive
datalog with negation) and cannot be explained in detail here. A query can be seen as a tem-
plate which is applied to the ABox and delivers all variable bindings satisfying the template.
RACER provides for an optimized implementation of nRQL.

As an example for the use of nRQL in our image interpretation scenario, let us assume that
the current ABox contains various plates, cups and saucers. The following query will retrieve
all combinations of parts which satisfy the aggregate definition of a cover given in Fig. 1.7.

(retrieve (?x ?y ?z) (and (?x plate)
(?y saucer)
(?z cup)
(?x ?y near)
(?z ?y on)))

Note that the same-as relation can be expressed by using the same variable name. The
result of the query is a list of all possible bindings of the variables to individuals of the ABox.
For the fictitious ABox of this example, the result could be

(((?x plate1) (?y saucer3) (?z cup2))
((?x plate4) (?y saucer2) (?z cup4)))

indicating two combinations of plate, saucer and cup which satisfy the constraints of the cover
definition.

This opens up an interesting way to support part-whole reasoning for scene interpretation.
The query mechanism can be used to efficiently retrieve combinations of ABox individuals
which justify the assertion of an aggregate instance. Furthermore, such queries can be auto-
matically generated from the aggregate definitions. To establish an aggregate for each set of
bindings retrieved by the query, a new individual must be entered into the ABox as an instance
of the aggregate concept and related to the retrieved individuals via the roles of the aggregate
concept. For the first set of bindings shown above, the new ABox entries would be:

(instance cover1 cover)
(related cover1 plate1 cv-pl)
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(related cover1 saucer3 cv-sc)
(related cover1 cup2 cv-cp)

As a convenient service of the DL system, the new individual cover1 will be automati-
cally classified w.r.t. all TBox concepts and implicit subsumption by other concepts - e.g. by
specialisations of cover - will be discovered.

In order to be able to assert aggregate instances also in cases of partial evidence, it is nec-
essary to provide “partial” queries for subsets of parts, in addition to the “complete” query for
all parts of the aggregate. For the cover in our example, one could generate queries involving
any two of the three parts of a cover. For aggregates with many parts, the number of possible
queries could become very large, however, and additional considerations are required to con-
trol query invocation. This points to the need of a preference measure based on the expected
success of a query. This is the subject of the next section.

1.6 Preferred Models for Scene Interpretation

It has been shown at several points in the previous sections that stepwise interpretation needs
guidance for selecting the most “plausible” or preferred partial interpretation among alter-
natives. In AI, various approaches have been developed to augment a knowledge base with
preference rules of some sort [38]. In earlier work we have explored extensions of DLs using
default rules [28]. The main drawback of rule-based approaches is the need to handcraft the
rules, so it is worthwhile to look for preference measures which can possibly be learnt. This
has led us to investigate probabilistic approaches and ways to combine probabilistic informa-
tion with a structured knowledge base. The basic idea is to compare alternative interpretation
steps by the probabilities of the resulting (partial) interpretations given current evidence, and
to choose the interpretation step which maximises this probability.

Intuitively, the probability of a particular scene follows from statistics about scenes in a
given domain, and it is not implausible to assume that such statistics can be obtained, at least
qualitatively. For example, the statistics would tell that in a table-laying scene a saucer is more
likely to be part of a cover than part of a candlestick. Similarly, typical locations of cutlery
relative to a plate could be distinguished from less typical locations.

Let us go one step further and assume that the cases giving rise to the statistics are avail-
able in a case-base. Then a partial interpretation can be viewed as a set of assertions which
matches a subset of the cases in the case-base. Turned into a query of the RACER query lan-
guage nRQL, the partial interpretation would retrieve this subset from the case-base. Hence,
the probability of a partial interpretation can be viewed as the fraction of cases matching the
interpretation. Furthermore, preferring an interpretation step which leads to a most probable
interpretation means preferring the interpretation which is least restrictive regarding the num-
ber of remaining cases. Note that this is a strategy of least commitment.

Different from approaches which try to model the space of interpretations by a Bayesian
Net [8, 36] with aggregate nodes “causing” part nodes, we model a scene probabilistically at
the level of primitive visual events provided by the GSD. Descriptions at higher abstraction
levels are assigned probabilities according to the constituting primitive events. This motivates
the following probabilistic structure for aggregates.

Each aggregate is described probabilistically in terms of a joint probability distribution
(JPD) over part features (“import features”) and a JPD over aggregate features (“export fea-
tures”) which are derived from the part features (Fig. 1.10). For example, the aggregate ”cover”
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Fig. 1.10. Probabilistic Structure of an Aggregate (The upper node, described by a JPD P (B),
represents export features. The lower nodes, described by a JPD P (A1 A2 . . . An), represent
import features of the parts. f is a deterministic mapping between import and export features.)

is described probabilistically by a JPD over part features such as location, size, colour, and a
JPD over the export features of a cover, e.g. size and location of a enclosing rectangle.

The JPDs are fragments as each JPD only represents probabilities for the subspace of
features for positive occurrences. So if the aggregate in Fig. 1.10 describes a cover, then P (B)
is actually the fragment describing P (B, cover = yes). This is equivalent to specifying the
prior P (cover = yes) and the conditional P (B|cover = yes). Similar structures have been
proposed in [26] and [17].

There are no particular independency assumptions about part features within a single ag-
gregate. However it is assumed that dependencies between different aggregates can be mod-
elled exclusively with export features which then describe the aggregates as parts in a higher-
level aggregate. For example, a “romantic-cover” could be defined as an aggregate consisting
of a cover and a candlestick. Then it is assumed that the export features of cover suffice to
model dependencies between the candlestick and all parts of the cover.

As a consequence, the probabilistic dependencies between aggregates remain tree-shaped
when partial interpretations are constructed from several aggregates. Within an aggregate, the
JPD may not always be representable by a tree-shaped Bayes Net, as typical dependencies in
our table-setting scenario show. But the computational complexity is limited by the number of
parts and features combined in one aggregate.

To compute a measure of preference for an interpretation decision, for example of a part-
whole reasoning step, the probabilities of competing choices given evidence and context are
computed by a propagation algorithm similar to inferencing in a tree-shaped Bayesian Net-
work [33] except of the structures within aggregates. It is beyond the scope of this contribution
to present the inferencing procedure in detail. Instead, we will illustrate a typical preference
computation by an example.

Consider a scene with a plate and a saucer as visual evidence and context knowledge to
the effect that a lonely-dinner table has been laid (Fig. 1.11). Let us assume that the current
interpretation step is to assign the saucer either to the aggregate “cover” or the aggregate
“candlestick”. Hence the probabilities of the two alternatives must be compared:

P (alt1) = P (cv -saucer = saucer |lonely-dinner = yes, plate-view , saucer -view)
P (alt2) = P (cs-saucer = saucer |lonely-dinner = yes, plate-view , saucer -view)
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Depending on the visual evidence, in particular on the locations of plate and saucer, and the
JPD relating cover and candlestick in the aggregate cover, one alternative will be more likely
than the other and determine the interpretation step (see Fig. 1.11).

Fig. 1.11. Partial Interpretation with two Choices for Assigning the Saucer to an Aggregate
(dotted lines denote specialisations, solid lines parts)

Summarising this section, we have sketched a probabilistic inference scheme which pro-
vides preferences for choices left open by consistency-based interpretation. While probabilis-
tic inferencing for scene interpretation has been proposed before, the new aspect in this re-
search is the combination of probabilistic information with logic-based knowledge represen-
tation.

1.7 Conclusions and Future Research

We have presented a conceptual framework for knowledge-based scene interpretation and
examined how it could be realised with a DL system. It has been shown that the concep-
tual structure of multiple-object occurrences, in particular temporal and spatial relations, can
be expressed in a DL which meets specific representational requirements, including feature
chains, the same-as construct, and a concrete domain extension for the representation of tem-
poral and spatial constraints. Currently, there is no operational DL system which offers all of
these langiuage features. For a possible extension of an existing language such as RACER,
decidability. would need to be examined carefully. Instead of extending the expressivity of a
DL language for the sake of more expressive TBox definitions, another approach would be
to use a more expressive query language as a tool for scene interpretation. As the example
of RACER’s query language nRQL shows, feature chaining and other requirements for scene
interpretation can be expressed intuitively and operationalised efficiently by a query system
with capabilities beyond the concept declarations in the TBox. This opens up a way for accom-
plishing scene interpretation with the combined power of concept definitions and queries. It
is interesting to note that this is in accord with the active vision paradigm where task-oriented
approaches have been proposed rather than completely generic mechanisms.
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It has also been shown that the knowledge-based framework leaves several degrees of
freedom regarding the selection of possible interpretations. A probabilistic approach has been
sketched which provides guidance by preferring the most probable interpretation at choice
points in the interpretation process. Further research on combining the probabilistic informa-
tion with the conceptual units of the knowledge representation system is in progress.
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