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Abstract. The design of comprehensive ontologies is a serious chal-
lenge. Therefore, it is necessary to support the ontology designer by pro-
viding him with design methodologies, ontology editors, and automated
reasoning tools that explicate the consequences of his design decisions.
Currently, reasoning tools are largely limited to the reasoning services
(i) computing the subsumption hierarchy of the classes in an ontology
and (ii) determining the consistency of these classes. In this paper, we
survey the most important tasks that arise in ontology design and discuss
how they can be supported by automated reasoning tools. In particular,
we show that it is beneficial to go beyond the usual reasoning services
(i) and (ii).

1 Introduction

The purpose of an ontology in computer science is to formally and unambigu-
ously describe the relevant notions of a domain. This formalization of the do-
main’s terminology then constitutes the basis for a shared and generally accepted
understanding of the domain. Ontologies are used by humans to support com-
munication among peers, as they make the notions used in such communication
precise. They are used in information technology to facilitate content-based ac-
cess and integration of information systems by assigning a precise meaning to
the data stored in such systems. For successfully playing this important and crit-
ical role in communication and information provision, it is of utmost importance
that an ontology is well-designed, clearly structured, and easily understandable
to all relevant parties.

It is uncontroversial that the design of comprehensive ontologies in expressive
ontology languages such as OWL is a challenging task [27]. The encountered
problems include (but are not limited to) the following:
– Just like software design, ontology design involves a huge number of design
decisions which range from fundamental ones such as “how to structure the
modelled domain into subdomains?” to very concrete ones such as “should the
color red be represented as a class, an individual, or a datatype”? Anticipating
the consequences of such design decisions requires very firm knowledge of the
application domain and ontology language.
– In expressive ontology languages such as OWL, there can be complex inter-
actions between different class definitions or even between different parts of the
same class definition. Due to the declarative style of class definitions in ontol-
ogy languages, the ontology designer cannot rely on some execution model as in
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software programming to guide his intuition about the effects of his definitions.
Consequently, subtle interactions between class definitions can be difficult to
notice.
These problems are aggravated by the fact that large ontologies are often de-
signed by a group of interacting designers that have to establish common knowl-
edge of the design decisions and intended structure of the ontology.

To master the complexities of ontology design, the ontology designer should
be supported by ontology design methodologies, ontology editors, and automated
reasoning tools. In this paper, we focus on the latter. Compared to software
design, the use of automated reasoning tools plays a more important role in on-
tology design. The reason for this is two-fold. First, automated reasoning should
be used: in software engineering, it is possible to run systematic tests to evaluate
the correctness of a newly designed program. Since the possible ways in which
an ontology will be used are often unknown at ontology design time, systematic
test suits are usually much more difficult to attain in ontology design than in
software design. Automated reasoning can be used to make the consequences of
a certain ontology design explicit, and thus allows to evaluate the ontology’s cor-
rectness without depending on concrete test cases. Second, automated reasoning
can be used. A distinguishing feature of ontology languages such as OWL and
description logic (DL) is that they have been carefully designed so that auto-
mated reasoning about ontologies is feasible in practice. In particular, ontology
languages from this class are usually not Turing complete like programming
languages, and many of the relevant reasoning tasks are decidable.

Traditionally, reasoning support for ontology design is largely limited to
checking the consistency of classes (i.e., determining whether a class can have
any instances) and to computing the subsumption hierarchy (a hierarchy which
arranges the classes according to the subclass relationship). While these reason-
ing services are very helpful in particular for making implicit consequences of an
ontology design explicit, we believe that reasoning support can go much further.
The purpose of the current paper is to survey important tasks that frequently
occur during ontology design and that can be supported by automated reasoning
tools. For each task, we provide a general description, discuss how automated
reasoning tools can support the designer, and provide references to the litera-
ture. The material presented in this paper has been developed within tones
(“Thinking ONtologiES”), an Information Societies Technology 3-year STREP
FET project financed within the European Union 6th Framework Programme.
The tones project aims at enhancing and developing novel reasoning services
for ontology design, maintenance, usage, and interoperation.

2 Authoring Class Definitions

One of the most central activities during ontology design is the formulation
of the class definitions that constitute the ontology. Intuitively, authoring class
definitions in ontology design is comparable to writing program code in software
development.
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Task Description Experience in ontology design shows that even users who
are experts in both the ontology language and the domain to be formalized often
find it challenging to formulate adequate and correct class definitions. The main
reason for this difficulty is that class definitions are specified in a declarative
way using an ontology language with a rich semantics such as OWL. Due to
the declarative style of class definitions, the ontology designer cannot use some
execution model to guide his intuition about the effects of design decisions. Due
to the rich semantics, it can be far from obvious to the author of a class definition
which implicit consequences are resulting from the explicit definition that he has
produced.

The most dramatic such consequence is that the designed ontology is incon-
sistent, which means that there is no model (i.e., possible state of the world) that
matches the class definitions contained in the ontology. Often, an inconsistent
ontology is the result of adding a new class definition that interacts with the
existing ones in an unintended way. An inconsistent ontology always indicates a
serious modelling flaw and should be automatically detected and then reported
to the ontology designer for resolution.

Another common and undesired consequence of an ontology is that a single
class becomes inconsistent, i.e., this class cannot have any instances. Note that all
classes contained in an inconsistent ontology are inconsistent w.r.t. this ontology,
but there may be inconsistent classes in an otherwise consistent ontology. In this
sense, inconsistent classes are a less severe problem than an inconsistent ontology.
Nevertheless, they usually indicate a modelling mistake that requires inspection
by the ontology designer.

A third kind of implicit consequence that can arise is that some class turns
out to be a subclass of another class. Such implicit subclass relationships may or
may not be intended. In any case, implicit such relationships should be detected
and reported to the designer for inspection.

It is important to observe that the problem of implicit consequences becomes
even more serious due to the fact that the class definitions contained in an on-
tology can interact in a serious, yet subtle way. For example, when authoring a
definition for the class Heart, the author will refer to many other classes such
as Vessel, Tissue, and Blood. The class definitions of the referred concepts usu-
ally interact with one another and with the class definition currently devised.
Understanding such interactions often turns out to be the most time-consuming
task when authoring class definitions.

Reasoning Support The automated detection of implicit consequences of an
ontology is a key research issue in the field of description logic [2]. DL is one
of the main roots of ontology languages such as OWL and in fact, one of the
major design criteria of OWL was to control the expressive power of the language
such that automated reasoning about the implicit consequences of an ontology
is possible in practice [11]. Therefore, it is hardly surprising that reasoning tools
for computing the consequences of ontologies formulated in OWL and other DLs
are readily available. Well-known examples include RACER [10], FaCT++ [25],
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and Pellet [23]. Such reasoners usually concentrate on detecting the three kinds
of consequence discussed above: inconsistent ontologies, inconsistent classes, and
subclass relationships.

The detection of implicit subclass relationships is closely related to classifica-
tion, which is one of the most important reasoning services for ontology design.
The purpose of classification is to compute the subsumption hierarchy, i.e., to
arrange all the classes of the ontology in a hierarchy w.r.t. the subclass relation-
ship. It is not hard to see that classification can be implemented by carrying
out multiple subclass checks. The computed subsumption hierarchy can be dis-
played to the user, e.g. by an ontology editor such as Protégé [8]. It provides the
user with a visualization of the ontology’s structure and is the premier way to
navigate and access the ontology.

The literature on the computational properties and implementation of rea-
soning services based on consistency and the subclass relationship is vast and a
comprehensive overview is out of the scope of this paper. Therefore, we confine
ourselves with a reference to the Description Logic handbook and the references
therein [2].

3 Error Management

The purpose of the reasoning services described in Section 2 is to inform the
ontology designer about ramifications of his modelling. Obviously, this is most
useful when the reasoner finds ramifications that were not intended by the de-
signer. However, understanding why such unintended ramifications hold can be
a rather difficult task itself, in particular if the ontology is of large size and
intricate structure.

Task Description This observation suggests that automated reasoning sup-
port should go one step further: additionally to reporting ramifications, it should
assist the ontology designer in understanding and resolving them. Basically, sup-
port of the latter kind can take three different forms:

Pinpointing. To pinpoint an unintended ramification means to identify those
parts of an ontology that are the source of this ramification. For example, a
problem in an ontology that is caused by only two or three interacting class
definitions may result in hundreds or even thousands of classes becoming incon-
sistent [22]. In such a case, it can be very difficult to identify the class definitions
that actually cause the problem. Clearly, automatically pinpointing those defi-
nitions is a tremendous aid to the ontology designer for removing the problem.
Still, pinpointing is only the weakest form of support.

Explanation. Explaining an unintended ramification means to provide a convinc-
ing argument that is understandable to the ontology designer and shows why
the unintended ramification holds. Note that this is more than just identifying
the concept descriptions that participate in the ramification since it also in-
volves explaining the interplay between these descriptions and why they imply
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the ramification at hand. Usually, explanation is much a more difficult task than
pinpointing because for complex ontology languages such as OWL, automati-
cally generating explanations that are of an acceptable length turns out to be
diffcult.

Automatic Revision. Here, the idea is not only to explain the reasons for the
unintended ramification to the designer, but also to make concrete suggestions for
how to resolve the problem. This is a challenging problem because there are often
a lot of options to resolve an inconsistency or undesired subclass relationship, but
usually only very few of these options are intuitively acceptable. The suggestion
for problem resolution can again be explained in an understandable way to the
ontology designer.

Reasoning Support Pinpointing was first taken serious as a reasoning prob-
lem in DL-like languages in [22], which introduces “minimal unsatisfiability-
preserving sub-ontologies (MUPS)”. Intuitively, if a class C is inconsistent w.r.t.
an ontology O, then a MUPS for C and O is a minimal subset O′ of the class
definitions in O such that C is inconsistent w.r.t. O′. Thus, a MUPS pinpoints
the concept descriptions in O that are the source of the inconsistency of C.
The related notion of MIPS identifies a minimal subset of an ontology in which
some class is inconsistent. This can be useful if inconsistency of one class leads
to inconsistency of many other classes, and it is unclear which class definition
to correct when looking at MUPS. The approach of MUPS is further extended
into the direction of automatic revision in [21], where it is shown how to convert
MUPS into minimal sets of class descriptions that can be removed to make an
inconsistent class in an ontology consistent. The approach of MUPS and auto-
matic revision based on MUPS has been further developed and extended to more
expressive logics in [12, 13]. It has been implemented in the SWOOP ontology
editor.

Results on explanation and revision are much more sparse. Explanation has
first been considered for relatively small fragments of OWL that admit so-called
structural subsumption algorithms, which decide the subclass relationship be-
tween classes by normalizing and comparing the class definitions [17, 16]. Ex-
plaining the results returned by modern tableau-based reasoners for expressive
DLs such as RACER and FaCT is a much more difficult task. To the best of
our knowledge, the only available technique is the one presented in [5], where
explanation is based on deductions in a sequent calculus that “follows” the com-
putation performed by the tableau algorithm. Apart from the not very sophis-
ticated technique based on MUPS, there seem to be hardly any approaches for
addressing the automatic revision of ontologies. An exception is [18], where be-
lief revision techniques are applied to description logic. However, that approach
considers a scenario that is quite different from ontology design.
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4 Stepwise Extension and Refinement

Ontologies show their full potential when being used to describe broad appli-
cation domains such as medicine [20, 6, 24] and biology [26]. The terminology
of such broad domains is usually structured into a number of subdomains, i.e.,
sets of notions that are closely interrelated, but not very closely related to most
other notions in the domain. Of course, subdomains can again be structured
into subdomains, etc. This structure of the terminology is reflected by the class
definitions in the ontology. For example, the SNOMED medical ontology [24]
includes subdomains for anatomy, diseases, and treatments. Another structure
that can often be found in ontologies is the division into a foundational part that
describes notions of a general nature and a domain part that describes notions
specific for the modelled domain [19]. In the following discussion, we will treat
the foundational part of an ontology in the same way as a subdomain.

Task Description A typical pattern in ontology design is to first concentrate
on the class descriptions for one subdomain, then extend the ontology to an
additional subdomain, and so on. Thus, the designer constantly extends the
ontology with new subdomains and the overall ontology is built by stepwise
extension. It is worth noting that this stepwise extension pattern can usually not
be followed in a strict way. In particular, it is often not possible to describe the
terminology of a subdomain without referring to other subdomains at all. Thus,
it frequently happens that during the modelling of one subdomain, initial and
usually very coarse class definitions for other subdomains are introduced. When
these other subdomains are modelled in full detail, the initial class definitions
need to be refined. Thus, stepwise extension and refinement are among the core
tasks of ontology design.

When the ontology designer adds a new subdomain to the ontology or re-
fines an existing one, he wants to be sure that the existing class descriptions of
other subdomains are not compromised. This is particularly desirable because
establishing the correctness of a (subdomain of an) ontology is a difficult and
time-consuming process, and the designer should not be forced to repeat this
process after each extension/refinement. This indicates the high benefit that can
be expected from automated reasoning tools that are capable of detecting the
consequences that the addition or refinement of a new subdomain has on other
subdomains.

Reasoning Support For providing automated reasoning support, the intuitive
notion of a subdomain “being compromised” by the addition of another sub-
domain has to be made precise. A weak interpretation is that a subdomain is
compromised if there is a change in the subsumption hierarchy of the classes that
are defined in this subdomain. This can clearly be detected using the reasoning
tools mentioned in Section 2, which are capable of (re)computing the subsump-
tion hierarchy. A stronger interpretation has been proposed in [1, 9], where the
notion of a conservative extension is used.
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The central idea of using conservative extensions for detecting harmful on-
tology extensions and refinements is to partition the vocabulary of the ontology
according to the subdomains, i.e., each class, property, etc is associated with the
subdomain to which it belongs. In the case of very general classes and proper-
ties such as “has-part”, the corresponding subdomain may be the foundational
part of the ontology. Let O be an ontology and let O′ be obtained from O by
adding the class descriptions for an additional subdomain. Moreover, let V be
the vocabulary of a subdomain S in O. Then the extension of O to O′ does not
compromise S if O′ is a conservative extension of O w.r.t. the vocabulary V, i.e.,
if there are no class descriptions C1 and C2 formulated using the vocabulary V
such that C1 is subsumed by C2 w.r.t. the ontology O′, but not w.r.t. O. Observe
that the class descriptions C1 and C2 need not occur in O and O′, and thus this
interpretation of being compromised is stronger than the weak interpretation
proposed above.

A first investigation of reasoning procedures for conservative extensions in
OWL-like languages has been carried out in [9, 14]. It turns out that the com-
putational complexity of deciding conservativeness is much higher than that of
the standard reasoning services from Section 2. In fact, conservativeness is still
decidable for non-trivial fragments of OWL such as SHIQ, but undecidable
for full OWL-DL [14]. To the best of our knowledge, implemented reasoning
tools for deciding conservativeness in OWL-like languages are not (yet) avail-
able. As an alternative to deciding conservativeness, it has been proposed in [7]
to impose certain syntactic restrictions on well-designed ontologies. These re-
strictions would ensure that the extension or refinement of an ontology is always
a conservative extension. In such a normative approach, a reasoner for deciding
conservativeness is not required.

In mathematical logic and software there exists also a second notion of con-
servative extensions. While the conservative extensions introduced above can be
described as proof-theoretic, the second variant is model-theoretic and defined in
terms of model extensions [15]. However, it is shown in [14] that model-theoretic
conservative extensions are undecidable even for quite small fragments of OWL-
DL.

5 Generating Class Definitions

In Section 2, we have assumed that the ontology designer comes up with a
definition of the class that he wants to add to the ontology, and then uses au-
tomated reasoning services to verify that the class definition does not interact
in unexpected ways with the existing class definitions in the ontology. However,
there are several situations in which it is desirable to generate a class definition
automatically in order to support the ontology designer.

Task Description There are at least two reasons for why an ontology designer
may find it difficult to produce an appropriate definition for a new class that
is to be added to the ontology. The first reason is lack of knowledge about the
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application domain. If this is the case, the ontology designer may have only a
vague idea about the new class to be defined. In particular, it may not be clear
which properties of the instances of the class are characteristic and should be
included in the class definition. And second, the ontology designer may lack
proficiency in the ontology language. In this case, despite having a clear idea of
the class to be defined, he may not be able to come up with an adequate class
definition.

In the described situations, an automated reasoning tool can assist the on-
tology designer by automatically generating an initial candidate class definition
that can then be reviewed and manually refined be the ontology designer. There
are mainly two sources of information about the new class that can be used as
an input to the automated generation of the class description:

1. It is often the case that the ontology designer knows the place in the sub-
sumption hierarchy where the additional class is supposed to appear. In this
case, information about the new class can be deduced from intended position
in the hierarchy.

2. The ontology designer usually knows a number of typical instances of the
class to be defined. If this is the case, he can describe these instances in
an appropriate language (e.g. using OWL individuals), and the resulting
descriptions can be used to deduce information about the new class.

A particular advantage of the automatic generation of class definitions is that the
generated definition will reflect the modelling decisions that have already been
made in other parts of the ontology and that are relevant for the description of
the new class. Hence, starting with an automatically generated class definition
decreases the risk that the designer makes incoherent modelling decisions.

When deriving information about the new class using the intended position
in the subsumption hierarchy, the intended subclasses are particularly valuable.
Exploiting a known superclass usually boils down to simply stating the superclass
relationship. In contrast, the definitions of the subclasses provide us with much
more information because a description of the commonalities of all subclasses
can be viewed as a candidate definition for the new class.

For this reason, the automatic generation of class definitions is particularly
appropriate when the ontology is designed in a bottom-up fashion, i.e., by start-
ing with the most specific classes of the application domain and working towards
the more general classes. In this case, the subclasses of a new class have already
been defined and can be used to generate the new class definition.

Reasoning Support The description logic reasoning problems least common
subsumer (LCS) and most specific concept (MSC) can be used to autmatically
generate class definitions in the described way. More precisely, the LCS operation
is used to compute the definition of a class that is a superclass of a set of given
subclasses, and that is the least general class with this property. Intuitively,
such a class represents the commonalities among the classes in the set to which
the LCS operation was applied. The MSC operation can be used to convert the
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description of a single instance into a class definition. The LCS operation can
then extract the commonalities of the resulting class definitions into a single
class definition.

The literature on LCS and MSC is too large to be reviewed here in de-
tail. Therefore, we refer only to the recent handbook article [3]. Currently, the
main limitation regarding LCS and MSC is that they are usually considered
in the context of relatively weak ontology languages. For example, the LCS is
only meaningful in ontology language that do not provide for disjunction, and
the MSC need not exist in most ontology languages. Thus, the prime future re-
search issue is to extend LCS and MSC to more powerful languages and ontology
formalisms. The work in [4] gives first ideas about how to employ the LCS in the
context of ontologies that are formulated in ontology languages which include
disjunction.

6 Discussion

We have identified important tasks that play a fundamental role in ontology
design and can be supported by automated reasoning tools. Instead of trying to
establish an exhaustive list of tasks, we have focussed on a number of selected
tasks that we consider most relevant and general. Other important tasks arise
when an ontology is designed with a specific application in mind. For example, if
the ontology is constructed with the aim of providing a global, unifying view on
the data in enterprise information integration, then existing conceptual database
schemas should be linked against the ontology, and this connection can fruitfully
be exploited for ontology design. Also, typical queries can be evaluated against
the ontology already at design time to detect possible modelling problems. More
details on these issues can be found in [28].
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