
State of the Art Survey

Deliverable D01

A. Cal̀ı1, D. Calvanese1, B. Cuenca Grau3, G. De Giacomo2, D. Lembo2,
M. Lenzerini2, C. Lutz4, D. Milano2, R. Möller5, A. Poggi2, U. Sattler3

1 Free University of Bozen-Bolzano
2 Università di Roma “La Sapienza”

3 The University of Manchester
4 Technische Universität Dresden

5 Technische Universität Hamburg-Harburg

Project: FP6-7603 – Thinking ONtolgiES (TONES)

Workpackage: WP1– Assessment of Fundamental Ontology Based Tasks

Lead Participant: Free University of Bozen-Bolzano

Reviewer: F. Baader

Document Type: Deliverable

Classification: Public

Distribution: TONES Consortium

Status: Final

Document file: D01 StateOfArt.pdf

Version: 2.2

Date: Dec. 29, 2005

Number of pages: 81

FP6-7603 – TONES Thinking ONtologiES WP1

Abstract

Ontologies are formalism whose purpose is to support humans or machines to
share some common knowledge in a structured way. They allow the concepts and
terms relevant to a given domain to be identified and defined in an unambiguous
way. As such, ontologies are seen as the key technology used to describe the se-
mantics of information at various sites, overcoming the problem of implicit and
hidden knowledge and thus enabling exchange of semantic contents. In this report
we survey the work on ontologies that has been carried out in recent years. In
particular, we first overview the languages that have been proposed for representing
ontologies, and present the work on reasoning over ontologies. We then overview the
work on ontologies from four different points of view: (i) We survey methodologies
for designing and maintaining ontologies, presenting automated tools suitable for
such tasks. (ii) We present languages and architectures for accessing, processing
and in general making use of ontologies. (iii) We presents several approaches for
integrating and merging ontologies by detecting correspondences among them. (iv)
Finally, we present different approaches for making heterogeneous and autonomous
ontologies interoperate, in the sense that the various ontologies are not modified as
an effect of interoperating with the others.

c©2005/TONES – Dec. 29, 2005 1/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Document Change Record

Version Date Reason for Change

v.1.0 Oct 15, 2005 First draft distributed to partners

v.2.0 Nov 20, 2005 Integration of contributions by partners

v.2.1 Dec 9, 2005 Refinement of section on representation and reasoning

v.2.2 Dec 29, 2005 Final version

c©2005/TONES – Dec. 29, 2005 2/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Contents

1 Introduction 4

2 Ontologies: Representation and Reasoning 6
2.1 Reasoning on Ontologies . 6
2.2 Ontology Languages . 14

3 Ontology Design and Maintenance 24
3.1 Design of Concrete Ontologies . 24
3.2 General Methodologies . 25
3.3 Tools for Ontology Design and Maintenance 29

4 Ontology Access, Processing, and Usage 32
4.1 Explanation of Nomenclature . 32
4.2 Usage Scenarios . 33
4.3 Access Languages and Protocols . 35
4.4 Archictectures for Efficient Ontology Processing 36

5 Ontology Integration and Merging 39
5.1 Methods and Tools for Detecting Correspondences between Ontologies . . 40
5.2 Frameworks for Representing Connections and Correspondences Between

Ontologies . 42
5.3 Methods for Assessing the Consequences of the Integration 43
5.4 Open Problems and Future Directions . 44

6 Ontology Interoperation 44
6.1 Data management . 45
6.2 Mediator-based Semantic Interoperability 45
6.3 Peer-to-Peer Semantic Interoperability . 50
6.4 Semantic Grid Infrastructure . 53
6.5 Semantic Service Interoperability . 54
6.6 Open Problems and Future Research Directions 56

Bibliography 58

c©2005/TONES – Dec. 29, 2005 3/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

1 Introduction

An ontology is a formalism whose purpose is to support humans or machines to share
some common knowledge in a structured way. Guarino [Gua98] distinguishes Ontology,
the discipline that studies the nature of being, from ontologies (written with lowercase
initial), the ontologies we deal with in the TONES project, that are systems of categories
that account for a certain view or aspect of the world. Such ontologies act as standardized
reference models to support knowledge sharing and integration, and with respect to this
their role is twofold: (i) they support human understanding and communication, (ii) they
facilitate content-based access, communication and integration across different informa-
tion systems; to this aim, it is important that the language used to express ontologies is
formal and machine-processable. To accomplish such tasks, an ontology must focus on
the explication and formalization of the semantics of enterprise application information
resources and of the relationships among them. According to Gruber [Gru93b, Gru95],
an ontology is a formal, explicit specification of a shared conceptualization. A concep-
tualization is an abstract representation of some aspect of the world (or of a fictitious
environment) which is of interest to the users of the ontology. The term explicit in the
definition refers to the fact that constructs used in the specification must be explicitly
defined and the users of the ontology, who share the information of interest and the on-
tology itself, must agree on them. Formal means that the specification is encoded in a
precisely defined language whose properties are well known and understood; usally this
means that the languages used for the specification of an ontology is logic-based, such
as the languages used in the Knowledge Representation and Artificial Intelligence com-
munities. Shared means that the ontology is meant to be shared across several people,
applications, communities and organizations. According to the W3C Ontology Working
Group1, an ontology defines a set of representational terms used to describe and repre-
sent an area of knowledge. The ontology of can be described by giving the semantics such
terms [Gru93b]. More specifically, such terms, also called lexical references, are associated
with (i.e., mapped to) entities in the domain of interest; formal axioms are introduced
to precisely state such mappings, which are in fact the statements of a logical theory.
In other words, an ontology is an explicit representation of the semantics of the domain
data [Mae03]. To sum up, though there is no precise common agreement on what an
ontology is, there is a common core that underlies nearly all approaches [UG04]:

• a vocabulary of terms that refer to the things in the domain of interest;

• a specification of the meaning (semantics) of the terms, given (ideally) in some sort
of formal logics.

Some simple ontologies consist only of a mere taxonomy of terms; however, usually on-
tologies are based on rigorous logical theories, equipped with reasoning algorithms and
services. According to Gruber [Gru93b, Gru95], knowledge in ontologies is mainly for-
malized using five kinds of components:

1. concepts (or classes), which represent sets of objects with common properties within
the domain of interest;

1http://www.w3c.org/2001/sw/WebOnt/

c©2005/TONES – Dec. 29, 2005 4/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

2. relations, which represent relationships among concepts by means of the notion of
mathematical relation;

3. functions, which are functional relations;

4. axioms (or assertions), which are sentences that are always true and are used in
general to enforce suitable properties of classes, relations, and individuals;

5. individuals (or instances), which are individual objects in the domain of interest.

According to [Fen01], the goal of having an ontology is “a shared and common understand-
ing that can be communicated between people and application systems”. Ontologies allow
the key concepts and terms relevant to a given domain to be identified and defined in an
unambiguous way. Moreover, ontologies facilitate the integration of different perspectives,
while capturing key distinctions in a given perspective; this improves the cooperations of
people or services both within a single organization and across several organizations. We
identify four main categories of application of ontologies [JU99]:

• Neutral authoring: a given company can develop its own neutral ontology for au-
thoring, developing translators from the main ontology to the different terminologies
required by the target systems. For example, an organization that needs to inte-
grate multiple software applications can perform enterprise modeling by using an
ontology that represents a uniform semantic core.

• Common access to information: when legacy software systems need to interoperate,
the ontology provides a support for the bidirectional translation from different, au-
tonomously evolved formats to the main (neutral) ontology and vice-versa. This sce-
nario is very similar to neutral authoring, bidirectionality being the main difference
between the two. The main advantage here is the reduction of maintainance cost,
which is a major fraction of the cost of enterprise information integration [Pol02].

• Ontology-based specification: an ontology is used for the specification of the require-
ments of a software system. Having a common ontology as a basis for the develop-
ment helps to improve the interoperability among systems that have relationships
among them that would be implicit without the common ontology.

• Ontology-based search: an ontology is used as a semantic structure for a repository
of information (web pages, documents, generic data, etc.), in order to achieve a high
level of abstraction. This allows users to ask high-level queries to the repository, and
possibly to get answers from multiple repositories in a uniform way. This scenario
is captured on the one hand by Data Integration [Ull00, Len02, Noy04], where users
gain access to a set of information sources, abstracting away from where the data is
actually located and how it can be accessed and retrieved to satisfy a certain request.
On the other hand, this scenario is at the basis of the Semantic Web [BLHL01], where
a request from the user trigger the discovery and execution of services (in general
not only queries to information sources, but also operations with side-effects) that
are suitably composed to satisfy the request. To capture the dynamic aspect of the
interaction among web services, sophisticated formalisms are needed.

c©2005/TONES – Dec. 29, 2005 5/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

The task of building and using ontologies raises a number of issues that embrace dif-
ferent fields of computer science and related disciplines. In this document we first provide,
in Section 2, an overview on ontology representation languages and discuss reasoning over
ontologies. Then, in Section 3, we survey methodologies for designing and maintaining
ontologies, presenting automated tools suitable for such tasks. In Section 4, we present
languages and architectures for accessing, processing and in general making use of on-
tologies. Section 5 presents several approaches for integrating and merging ontologies by
detecting correspondences among them. Finally, in Section 6, we present different ap-
proaches for making heterogeneous and autonomous ontologies interoperate, in the sense
that the various ontologies are not modified as an effect of interoperating with the others.

2 Ontologies: Representation and Reasoning

An ontology, as a conceptualization of a domain of interest, provides the mechanisms
for modeling the domain and reasoning upon it, and has to be represented in terms of
a well-defined language. Given such a representation, and ontology-based system should
provide well-founded methods for reasoning upon it, i.e., for analyzing the representation,
and drawing interesting conclusions about it. In this section we overview several languages
proposed for representing ontologies, and discuss the reasoning methods associated to such
languages. When talking about representation languages, it is useful distinguish between
different abstraction levels used to structure the representation itself. We essentially refer
to three levels, called extensional, intensional, and meta, respectively.

1. The extensional level is the level where the basic objects of the domain of interest
are described, together with their relevant properties.

2. The intensional level is the level where objects with common properties are grouped
together to form concepts, and relationships between concepts are established. At
this level, the properties of concepts and relationships are specified.

3. The meta-level is the level where concepts singled out in the intensional level are
abstracted, and new, higher level concepts are specified and described, in such a way
that the concepts of the previous level are seen as instances of these new concepts.

We mainly concentrate on the extensional and the intensional level, since our primary
goal is to provide an account for the basic mechanisms for representing ontologies and for
reasoning about them. Categories used in the meta-level of ontologies are mainly related
to specific applications where ontology languages are used.

2.1 Reasoning on Ontologies

By “reasoning over an ontology” we mean any mechanism or procedure that makes explicit
facts that are represented implicitly in an ontology. Well-founded methods for reason-
ing about ontologies are required and of interest for several reasons. Here, we would
concentrate on two important purposes of reasoning:

c©2005/TONES – Dec. 29, 2005 6/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

• Validation. Validating an ontology means ensuring that the ontology is a good
representation of the domain of discourse that it is supposed to model. Reasoning
is at the basis of validation done automatically (or at least supported by automated
tools).

• Analysis. Based on the assumption that the ontology correctly represents the do-
main of interest, the analysis aims at inferring new facts about the domain that are
implicitly represented. Again, reasoning plays a crucial role, since it constitutes the
primary mechanism through which to exploit the ontology in order to make implic-
itly represented information explicit. The collected information can then be used in
the same way as the one that originally was explicitly present in the ontology, and
thus can, e.g., be used also for the purpose of validation.

The basic problem to address when talking about reasoning is to establish which
is a “correct” way to single out what is implicit in an ontology. But what is implicit
in an ontology strongly depends on the semantics of the language used to express the
ontology itself. It follows that it makes no sense to talk about reasoning without referring
to the formal semantics of the language used to express the ontology. We will discuss in
Subsection 2.2 various ontology languages, classifying them according to different criteria.
One criterion we will consider concerns the fact of whether the ontology language provides
or not the possibility of dealing with incompleteness in the description of the domain of
interest. The presence of incomplete information has as consequence that one has to deal
with multiple models. In this context, reasoning is used in the proper sense of the term,
namely as the task of deriving those facts that hold in all possible models of the ontology.
On the other hand, when dealing with ontologies interpreted in a single model, deriving
implicit information is a form of computation over that model.

We discuss in more detail below the relevant aspects of deriving implicit information.
We concentrate first on logical reasoning, and discuss specifically deduction, concentrating
on reasoning in Description Logics, which are the most relevant cases for ontologies. We
conclude by some observations on the issue of computation.

2.1.1 Forms of logical reasoning

We address the issue of logical reasoning, i.e., the issue of deriving implicit information
in the case where the ontology language has the expressive power to state incomplete
information over the domain. Logical reasoning has been the subject of intensive research
work in the last decades. Here, we are especially interested in automated reasoning,
investigated primarily in Knowledge Representation in Artificial Intelligence. The basic
kinds of reasoning that are relevant in the context of ontologies can be considered as forms
of theorem proving in First-Order Logic. This amounts to checking whether a certain fact
is true in every model of a First-Order theory. We can classify reasoning based on the
type of desired conclusions. According to this classification, we distinguish among the
following:

• Deduction. A fact is a deductive conclusion from an ontology if it holds in every
situation (extensional level) coherent with the ontology. Deduction is the most

c©2005/TONES – Dec. 29, 2005 7/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

important and well-investigated form of reasoning considered in the context of on-
tologies, and we discuss it in more detail below.

• Induction. Consider a set of observations at the extensional level done wrt an
ontology. We say that an intensional level property is an inductive conclusion with
respect to the observations and the ontology if (i) the ontology itself does not imply
the observations, (ii) the inductive conclusion is consistent with the ontology and the
observations, and (iii) the ontology together with the inductive conclusion implies
the observations. Induction can be used, for example, to single out new important
concepts in an ontology, or to come up with new axioms regarding such concepts,
based on observations on individuals. In this sense, induction is the basic form of
reasoning for learning [CH94, MS01, Mae03].

• Abduction. Consider again a set of observations at the extensional level done wrt
an ontology. We say that an extensional level property is an abductive conclusion
with respect to the observations and the ontology if (i) the ontology itself does not
imply the observations, (ii) the abductive conclusion is consistent with the ontology
and the observations, and (iii) the ontology together with the abductive conclusion
implies the observations. Abduction can be used, for example, to derive explanations
of certain facts at the extensional level.

2.1.2 Forms of deductive reasoning

We overview now the most prominent forms of classical deductive reasoning that are of
importance both in analysis and in validation of ontologies. We point out that all these
forms of reasoning can be applied for basically all specific ontology languages and settings
in use, and that, in all cases, reasoning support by automated tools is highly desirable for
these activities.

• Consistency of the whole ontology. An ontology is consistent, if it admits at least
one model (possibly more, in the case where the ontology specifies some form of
incompleteness), i.e., if its concepts can be populated without violating any of the
requirements or constraints asserted in the ontology. When an ontology is inconsis-
tent, its statements altogether are contradictory, and the usefulness of the ontology
itself becomes dubious. In fact, an inconsistent theory cannot be a good represen-
tation of a domain of discourse. Hence, consistency checking is at the basis of the
task of validating an ontology. Note that certain ontology languages are of limited
expressive power, and do not even allow for expressing inconsistent ontologies.

• Consistency of single concepts/relations. A concept (similar considerations hold
for a relation) is consistent, if the ontology admits at least one model in which
the concept can be populated without violating the requirements imposed by the
ontology. The inconsistency of a concept (resp., relation) may be due to a design
error or due to over-constraining. In any case, the understandability of the ontology
is weakened, since the inconsistent concept stands for the empty concept, and thus,
at the very least, it is inappropriately named. Also, an inconsistent concept in
an ontology cannot correctly represent any meaningful concept of the domain of

c©2005/TONES – Dec. 29, 2005 8/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

interest. To increase the quality of the ontology, one may remove the inconsistency
by relaxing some constraints (possibly by correcting errors), or by deleting the
concept, thus removing redundancy and increasing understandability.

• Equivalence of concepts/relations. Two concepts (similar considerations hold for
two relations) are equivalent if they denote the same set of instances whenever the
requirements imposed by the ontology are satisfied: in this case one of them is typ-
ically considered redundant. Determining equivalence of two concepts allows, e.g.,
for their merging, thus reducing the complexity of the ontology. Moreover, knowing
about the equivalence of two concepts is essential to avoid misunderstanding among
different users.

• Subsumption between concepts/relations. A concept C1 subsumes a concept C2 (sim-
ilarly of relations), if in every model of the ontology, the extension of C1 is a superset
of the extension of C2. Such a subsumption allows one to deduce that properties for
C1 hold also for C2. This suggests the possible omission of an explicit generalization.
Alternatively, if all instances of the more specific concept are not supposed to be
instances of the more general one, then something is wrong with the ontology, since
it is forcing an undesired conclusion. Concept subsumption is also the basis for a
classification of all the concepts of an ontology.

• Membership of individuals in concepts. An individual is an instance of a concept, if
it belongs to its extension in all the models of the ontology. Determining the (most
specific) concept of which an individual is an instance allows for establishing the
properties of that individual that logically follow from the knowledge in the ontol-
ogy, in particular how the individual relates to other individuals in the ontology.
Notice that this kind of inference is only of interest in the case where the ontology
language, besides the intentional component, foresees also an extensional compo-
nent allowing for stating properties of single individuals. Also, in the case where
a meta-level is present, the concepts or relations of the ontology are considered as
individuals wrt the meta-level, and meta-level properties of concepts and relations
can be determined by establishing membership of such individuals in the meta-level
concepts.

• Implicit consequences. A property is an (implicit) consequence of an ontology if
it holds whenever all requirements imposed by the ontology are satisfied, i.e., the
property holds in every model of the ontology. Determining implicit consequences is
useful on the one hand to reduce the complexity of the ontology by removing those
parts that implicitly follow from other ones, and on the other hand it can be used
to make certain properties explicit, thus enhancing understandability.

2.1.3 Deductive reasoning in Description Logics

We discuss now in more detail the work done on deductive reasoning, and we concentrate
mainly on what we consider to the most interesting one from the point of view of ontology
representation and reasoning, namely the work carried out in the context of Description

c©2005/TONES – Dec. 29, 2005 9/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Logics (DLs) [BCM+03]. DLs are logics specifically suited for the representation of struc-
tured knowledge, and they provide the formal foundation for the ontology languages that
are now becoming standard. Indeed, OWL, and more specifically its less expressive vari-
ants OWL-DL and OWL-Lite [BvHH+04, PSHH04, SWM04] can be seen as syntactic
variants respectively of SHIF and SHOIN , two DLs of the SH family.

Description Logics have been devised as formalizations of Frame-based systems [FK85]
and Semantic Networks [Qui68, Bra79, AF82], to overcome the problems of these for-
malisms related to the lack of a clear formal semantics. In DLs, the domain of interest
is structured through concepts, denoting sets of objects, and roles, denoting binary rela-
tions over the domain. Complex concept and role expressions are formed using specific
constructs, and it is the set of allowed constructs that characterize a certain DL. DL
knowledge bases are typically constituted by an intensional component (called TBox),
asserting inclusions between concepts (and possibly roles), and an extensional component
(called ABox), asserting membership of individuals in concepts and of pairs of individuals
in roles.

It would be impossible to overview here all the work done on extensions of DLs and
reasoning in DLs in recent years. For an in depth treatment we refer to [BCM+03] and
the extensive bibliography therein, and specifically to Chapters 2 to 6 [BN03, Don03,
SCM03, CDG03, BKW03]. Here, we mention only the work that is fundamental for
historical reasons, and the one that is most relevant to ontologies.

Structural subsumption. Techniques for reasoning in DLs have been developed start-
ing with severe restrictions on expressiveness and have subsequently have evolved over
time, from specialized, ad-hoc methods to fully general ones. The first approaches were
developed under the assumption that one can embody the knowledge represented in the
terminology directly into complex concept expressions, rather than assertions (i.e., ax-
ioms) in a knowledge base. Therefore, subsumption on concept expressions was regarded
as the basic reasoning task. The first algorithms for subsumption between concept ex-
pressions were based on what is called structural subsumption, i.e., a comparison of the
syntactic structure of concept expressions (put into a normalized forms), to detect whether
one could be embedded in the other one [BPS94]. This method, while effective (i.e., sound,
complete, and polynomial) for less expressive languages, becomes incomplete when addi-
tional constructs are present, e.g., disjunction or full negation.

Tableaux algorithms. The studies on the trade-off between the expressiveness of a
representation language and the difficulty of reasoning on the representations built us-
ing that language [LB87] lead to the idea of carefully analyzing the various constructs
of DLs, with the goal of characterizing the computational complexity of the reason-
ing tasks. This kind of research pointed out the need of a general approach to rea-
soning in DLs. [SSS91] propose the notion of constraint system as a general technique
to meet this need. Subsequent investigations showed that constraint systems can be
seen as specialized forms of tableaux. Many results on algorithms for reasoning on
concept expressions, and their complexity were then derived using tableau-based tech-
niques [DLNS96, DLNN97]. Such techniques, besides being intuitively appealing, pro-
vided a useful framework for modularizing the problem of designing reasoning algorithms

c©2005/TONES – Dec. 29, 2005 10/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

for languages formed by different sets on constructs. In fact, a tableau-based algorithm
essentially amounts to providing an expansion rule for each of the constructs in the lan-
guage, and then show the correctness of each rule and the termination of the expansion
process. Tableaux-based algorithms were then extended by means of suitable termination
strategies (essentially based on sophisticated forms of loop detection) to deal also with
assertions in (cyclic) knowledge bases, while staying sound and complete wrt the seman-
tics [Baa91, BDS93, HS99, HST99, BS01, HS05]. The algorithms for reasoning in DLs
obtained in this way have also lead to actual implementations by application of clever
control strategies and optimization techniques [BH91b, BFH+94, HPS99, Hor03, MH03].

Techniques based on PDL based and on automata. For reasoning over DL
knowledge bases and also for reasoning over concept expressions in expressive vari-
ants of DLs (in which the knowledge base can be internalized into a concept expres-
sion), tableau-based techniques, while effective in practice (see for example the first
comparisons of implemented systems in [BHN+92, HPS98]), in general do not pro-
vide optimal complexity bounds. Indeed, while reasoning in such DLs turns out to
be EXPTIME-complete in most cases, devising tableaux algorithms that work in ex-
ponential time turned out to be surprisingly difficult [DGM00, DM00], and such com-
putationally optimal tableaux algorithms have actually not found their way into im-
plemented systems. Such difficulties have shifted the attention to other techniques for
reasoning in expressive DLs. In particular, the correspondence between DLs and Propo-
sitional Dynamic Logics (PDLs) [FL79] has motivated the research on reasoning tech-
niques for expressive DLs that are based on the translation into reasoning problems in
Propositional Dynamic Logics [Sch91, DG95, CDGLN01, CDG03], and therefore rely
on the associated automata-based methods [VW84, Var85, VW86]. Recently, in partic-
ular for expressive variants of DLs (in particular those including fixpoint constructs),
automata-based decision procedures that are computationally optimal have been directly
devised [SV01, KSV02, Tob01, CDGL02a]. Indeed, despite the apparent differences,
there is a tight connection between automata and tableaux based reasoning algorithm
for DLs [BHLW03].

Relationship to data models. The work on conceptual modeling formalisms and
tools (see also Subsection 2.2) is relevant to ontologies, due to the many similarities
shared by conceptual and semantic data models and ontologies representation formalism.
Indeed, there are recent proposals to adopt methodologies for conceptual modeling for
ontology building [JDM03]. The tight connection between DLs, conceptual data models
used in databases (such as the Entity-Relationship Model [Che76]), and representation
formalisms used in information systems (such as UML class diagrams [RJB98, UML05]),
has been explored in [CLN99, BCDG05a]. In particular, UML class diagrams are widely
adopted as the standard formalisms for modeling the static aspects of software appli-
cations. [BCDG05a] shows the surprising results that reasoning on such diagrams is
EXPTIME-hard, i.e., as hard as reasoning in very expressive variants of DLs [CDG03],
such as those underlying the current standard ontology languages [HST00, HS01].

c©2005/TONES – Dec. 29, 2005 11/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Concrete domains. An extension of DLs that is highly significant for practical appli-
cations is the one with concrete domains [BH91a, Lut03], i.e., domains of pre-interpreted
objects such as numbers or strings, for which specialized inference systems are available,
which should be integrated with the DL reasoner. Reasoning with concrete domains has
recently been addressed using automata-based approaches [Lut03], which however do not
easily lead to implementations such as those based on tableaux [LM05]. Unfortunately,
the extension with concrete domains proves to be rather fragile wrt the addition of other
useful modeling features [LAHS05].

Hybrid languages. Hybrid languages are constituted by two (or even more) compo-
nents, equipped with different knowledge representation capabilities and different rea-
soning procedures, whose aim is to overcome limitations inherent in each of the two
subsystems considered separately. DLs, while quite expressive in representing and struc-
turing the domain of interest, are rather weak as query languages (e.g., the only possible
form of join is chaining). On the other hand, query languages as those typically used in
databases lack the possibility of fully exploiting a complex structured domain. Hence,
different proposals have been made to combine the structuring ability of DLs with the
querying ability of Datalog rules. AL-Log [DLNS91] is the first such hybrid language
that has been studied from a formal point of view. In AL-Log the combination of the two
components is achieved by allowing for the use of DL concepts to express constraints in
Datalog clauses, and adopting a form of constrained resolution for inference. AL-Log has
further been extended in [Ros99] to more expressive DLs and to negation in the Datalog
clauses. Also in CARIN [DLNS91, LR98, Ros99], more expressive variants of DLs are
considered, and it is investigated how the presence of roles (i.e., binary predicates of the
DL knowledge base) in the Datalog rules impacts decidability of inference. Specifically, it
is shown that inference becomes undecidable already for rather weak DLs, and restrictions
that ensure decidability are presented.

Access to large data repositories. The idea of using ontologies as a conceptual
view over data repositories is becoming more and more popular, and recently efficient
management of large amounts of data has become a primary concern in ontology reasoning
systems [HLTB04, CHW05]. In this context, it becomes important to single out the
contribution of the data to the overall complexity of reasoning, i.e., to determine data
complexity of reasoning [Var82]. A second important requirement is the possibility to
answer queries over an ontology that are more complex than the simple queries usually
considered in Description Logics research allowing only for retrieving the instances of a
concept [DLNS94, Sch93].

Traditionally, research carried out in DLs has paid only a limited attention to data
complexity. Data complexity of instance checking was studied in [DLNS94, Sch93], where
it was shown to be intractable (more precisely, coNP-hard) already for rather weak DLs.
More recently, DLs have been proposed in which suitable restrictions ensure that con-
junctive query answering is polynomial in data complexity [CDGL+05b, CDGL+05a].
In [CDGL+05a], also more precise complexity bounds within the polynomial class are
investigated, and the tractability boundary for conjunctive query answering under data
complexity is determined.

c©2005/TONES – Dec. 29, 2005 12/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

In [LR98], a hybrid system integrating a DL knowledge base with Datalog rules is
studied. Specifically, a tight coNP upper bound for conjunctive query answering under
data complexity is shown in a rather expressive DL is shown. However, the considered
DL still lacks the necessary constructs to capture semantic data models or UML class
diagrams.

An EXPTIME upper bound under data complexity of CQ answering in the very
expressive DL DLR directly follows from the results on containment of conjunctive queries
and on view-based query answering in [CDGL98a, CDGL00]. These results are based
on a reduction to reasoning in PDL, which prevents to single out the contribution to
the complexity coming from the data. In [HMS05], a different technique, based on a
reduction to Disjunctive Datalog, allows to single out the contribution of the data, and
provides tight upper bounds under data complexity for instance checking (though not for
answering conjunctive queries).

Non-monotonic reasoning. Finally, we observe that classical First-Order reasoning
is not the only form of reasoning that could be of interest when dealing with ontologies.
Indeed, non-monotonic reasoning (see, e.g., [Gin87, CS93]), which allows for the situation
where new facts may invalidate old conclusions, goes beyond what can be accomplished
in classical logic, which is monotone. Here we have concentrated mainly on research
on classical reasoning, which constitutes the vast majority of work on reasoning that is
relevant for ontologies. As for non-monotonic reasoning, we only mention [BH95a, BH95b],
which investigate the use of defaults (a form of non-monotonic specification) in the context
of Description Logics.

2.1.4 Computation

While logical reasoning aims at characterizing the conclusions that one can draw from an
ontology in the case where the language used to express the ontology allows for multiple
models, computation is the kind of reasoning we perform when the ontology is character-
ized by a single model.

We mention two types of computation that can be performed over an ontology.
In the first case, computation is performed at the intensional/extensional level of the

representation. This kind of reasoning aims at capturing the kind of conclusions we want
to draw by looking at a single model, and by eliciting properties that are implicit in
this model. A typical setting where it is of relevance to compute extensional properties
that hold in an ontology characterized by a single model, is the following: the ontology
is expressed in the form of a database, and one wants to compute the result of a query
over such a database. Notice that a database can also be considered as a logical theory
having a single model, namely the database itself [Rei84]. Every query expressed over
the database computes a set of tuples, according to the property expressed by the query.
Such tuples can be seen as a kind of knowledge that is implicit in the database. However,
their elicitation is not obtained by means of a process looking at several models of the
ontology. Rather, the tuples are made explicit by means of a computation over the
ontology, in particular the one that governs the evaluation of the query over the single
model and derives the result.

c©2005/TONES – Dec. 29, 2005 13/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

In the second case, computation is performed at the meta-level. This is an interest-
ing form of reasoning that aims at capturing the process of coming up with interesting
conclusions by looking at the meta-level. Here, we talk about computation because the
meta-level of an ontology is usually kept sufficiently simple to be characterized by a single
model (although at the meta-level, instead of the object-level). As an example, consider
the task of computing the so-called Most Specific Concept (MSC) of an individual in an
ontology [BK98, KM01, BKW03]. A concept C is called a most specific concept for an
individual if the individual is an instance of the concept, and moreover, for every other
concept C ′ of which the individual is an instance, we have that, C is subsumed by C ′

in the ontology. Note that this notion can help in abstracting a given portion of the
extensional level of the ontology, or in defining concepts by examples.

2.2 Ontology Languages

We present now a schematic comparison of the most important ontology representation
languages that have been proposed in recent years. We concentrate our analysis on those
languages that allow for the specification of the intensional and the extensional levels of
a domain of interest. The comparison is done by analyzing and putting the ontology
languages into relation according to three main classification criteria:

• How to express. This criterion takes into account the basic formal nature of the
ontology languages. Under this criterion, we will consider the following classes of lan-
guages: languages based on Logic Programming, frame-based languages, conceptual
and semantic data models, information system and software engineering formalisms,
graph-based formalisms, logic-based languages, XML-related formalisms, temporal
languages.

• What to express. This criterion takes into account that ontology is a generic term
for denoting domain representation, but specific ontology languages may concentrate
on representing certain aspects of the domain. In this paper, we concentrate our
attention on classes of languages whose primary goal is to focus on:

– Class/relation. We use this class for referring to languages aiming at repre-
senting objects/classes/relations.

– Action/process. We use this class for referring to languages that provide spe-
cialized representation structures for describing dynamic characteristics of the
domain, such as actions, processes, and workflows. These languages may also
incorporate mechanisms for the representation of the static aspects of the do-
main (e.g., objects and classes), but they usually provide only elementary
mechanisms for this purpose, whereas they are much more sophisticated in
the representation of the dynamic aspects.

– Everything. We use this class for referring to languages that do not make any
specific choice in the aspects of the domain to represent, and, therefore, may
be in principle used for any kind of contexts and applications.

c©2005/TONES – Dec. 29, 2005 14/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

• How to interpret the expression. This criterion takes into account the degree at
which the various languages deal with the representation of incomplete information
in the description of the domain. Under this criterion, we consider the following
classes of languages:

– Single model. Languages of this class represent a domain without the possibility
of representing incomplete information. An ontology expressed in this kind
of languages should be interpreted as an “exact” description of the domain,
and not as a description of what we know about the domain. In terms of
logic, this means that the ontology should be interpreted in such a way that
only one model of the corresponding logical theory is a good interpretation
of the formal description. This assumption is at the basis of simple ontology
languages: for example, if we view the relational model as an ontology language
(where concepts of the domain are represented as relations), then this language
is surely a “single model”-ontology language according to our classification.

– Multiple models. Languages of this class represent a domain allowing for the
possibility of representing incomplete information. An ontology expressed in
this kind of languages should be interpreted as specifying what we know about
the domain, with the proviso that the amount of knowledge we have about
the domain may be incomplete. This point of view is at the basis of sophisti-
cated ontology languages: for example, languages based on First-Order Logic
represent a domain as a logical theory. This theory may allow for different
legal interpretations, and such interpretations correspond exactly to several
models. Thus, languages based on First-Order Logic are classified as “multiple
models”-ontology languages.

We discuss now various languages proposed in the literature that have been used for
or are directly related to the representation of ontologies. We group the various languages
according to the first classification criterion mentioned above, namely the one regarding
“how to express”. We refer to several classes of languages, and within a single class, we
refer to various languages of that class.

2.2.1 Languages based on Logic Programming

Languages like Prolog and LISP have always been advocated as languages suited for
knowledge representation, and recently they have also been deployed as ontology repre-
sentation languages. In particular, a syntax based on a mix of first order logic and LISP
is at the base of various ontology representation languages like Ontolingua [Gru93b] and
OCML [Mot98]. The Ontolingua Framework has the ability to translate ontologies into
Prolog syntax, to allow importing the contents of Ontolingua ontologies into Prolog-based
representation systems. XSB inc.2 offers a suite of ontology tools based on extensional
CDF, a formalism in which ontologies can be defined using Prolog-style facts.

After the emerging of the object-oriented paradigm, several attempts have been made
to bring this philosophy into functional and even logic-programming languages. An exam-
ple is F-logic [KLW95], considered particularly suited to represent ontologies and used, for

2http://www.xsb.com/

c©2005/TONES – Dec. 29, 2005 15/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

instance, as an internal representation model in the OntoEdit tool (see Subsection 3.3).
F-logic’s syntactical framework is similar to that of First-Order Logics, since the most
basic constructs of the language are terms (composed of function symbols, constants and
variables), and formulas are constructed from terms with a variety of connectives. In
general, elements of the language are intended to represent properties of objects and re-
lations among objects. Semantics is given in terms of F-structures and satisfaction of
F-formulas by F-structures, and based on a notion of logical entailment. In [KLW95], a
resolution-based proof theory for F-logic is provided. Anyway, F-logics intended use is as
a logic programming language, to be used both as a computational formalism and as a
data specification language.

2.2.2 Frame-based languages

Frame-based languages are based on the notion of frame, introduced by Minsky [Min75]
with the aim of explaining mental activities. In the context of knowledge representation,
it assumed a more specific meaning, representing either an object or a class of object
(a concept). When a frame represents a concept, associated attributes represent the
properties shared by all instances of the class. An attribute is specified through the
definition of a slot, which contains all information relevant to the attribute: restrictions
on the number of possible values (called slot fillers), a default value, which is the one to
take for the attribute if more specific information is missing, procedures for calculating
the value when it is requested but not yet available, or procedures that are activated if the
value is modified or deleted. Additionally, each slot has an associated domain for its fillers.
Such domain can either be a concrete domain, such as strings or integers, or another frame
specified through its identifier. Moreover it is possible to specify that a frame is a sub-
frame of another one and therefore should inherit all of its properties, i.e., all of its slots.
A frame can also represent a single object of the domain, in which case it has a special
attribute that relates it to the frame representing the class of which it is an instance. The
slots of a frame representing an object are inherited by the frame representing its class,
and to each slot a concrete value taken from its definition domain is associated. If not
explicitly overridden, the value taken is the default value for the slot. Reasoning in frame
systems involves usually both the intensional and the extensional knowledge contained
in the frame knowledge base. At the intensional level, the deduction process leads to
the construction of a frame taxonomy, using both the explicit inclusion assertions in the
knowledge base, and the structural information associated to the frames by virtue of their
slots. The taxonomy induces a modification of properties at the extensional level, by
assigning values to slots and by propagating the effects caused by the activation of the
procedures associated to the slots.

Among the currently used frame-based languages/systems, we mention the following:

• Ontolingua [Gru93b, FFR96] denotes both a system for the management of portable
ontology definitions and the language therein used. The Ontolingua tool, rather
than a knowledge representation system, is a tool to translate ontologies from a
common, shared language, based on of KIF (the Knowledge Interchange Format) to
the languages or specification formalisms used in various knowledge representation
systems.

c©2005/TONES – Dec. 29, 2005 16/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

• OCML [Mot98] is a knowledge modeling language aimed at providing a framework
to support development of knowledge-based systems over their whole life cycle. Its
main purpose is to support modeling at the knowledge level, and thus it focuses more
on logical than on implementation level primitives. Though the main modeling fa-
cilities of OCML closely resemble those of Ontolingua, differently from Ontolingua
OCML is directly aimed at prototyping KB applications, and thus has operational
semantics and provides interactive facilities for theorem proving, constraint check-
ing, function evaluation, evaluation of forward and backward rules, and also non-
logical facilities such as procedural attachments. Apart from its operational nature,
another difference is that OCML is not only aimed at representing terminological
knowledge, but also behavior, which is supported by primitives that allow to specify
control structures.

• GFP (Generic Frame Protocol) [KMG95] and its successor OKBC (Open Knowl-
edge Base Connectivity) [CFFK98, CFF+98] rather than knowledge representation
languages, are APIs and reference implementations that allow to access and interact
in a uniform way with knowledge bases stored in different knowledge representation
systems. They allow to write tools that interact with knowledge representation
systems (e.g., graphical browsers, frame editors, analysis tools, inference tools) in
a system-independent (and thus interoperable) fashion. GFP was primarily aimed
at systems that can be viewed as frame representation systems, while OKBC has
been extended to general knowledge representation systems, providing a uniform
knowledge model based on a common conceptualization of knowledge bases, classes,
individuals, slots, facets, and inheritance. Such a knowledge model is an implicit
representation formalism that underlies all the operations provided by OKBC. It
serves as an implicit interlingua for knowledge that is being communicated using
OKBC, and systems that use OKBC translate knowledge into and out of that in-
terlingua as needed.

• XOL [KCT99] is a language inspired by Ontolingua, designed as an intermediate
language for transferring ontologies among ontology-based tools. Its syntax is based
on XML, and its semantics is defined as a subset of the OKBC knowledge model
called OKBC-Lite. OKBC-Lite preserves most of the essential features of OKBC,
while not including some of its complex aspects. The design of XOL uses what its
authors call a “generic approach” to defining ontologies, meaning that a single set
of XML tags (described by a single XML DTD) defined for XOL can describe any
and every ontology. This approach contrasts with the approaches taken by other
XML schema languages, in which typically a generic set of tags is used to define the
schema portion of the ontology, and the schema itself is used to generate a second
set of application-specific tags (and an application-specific DTD) that in turn are
used to encode a separate XML file that contains the data portion of the ontology.

2.2.3 Conceptual and semantic data models

In parallel to the work done in knowledge representation, also in databases formalisms
for the representation of complex data relationships have been studied. Together with

c©2005/TONES – Dec. 29, 2005 17/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

the relational model [Cod70], in the ’70s so called semantic data models have been in-
troduced [KKT76, HK87]. While the relational model allows the database designer to
separate the logical design of a database from its implementation, conceptual and seman-
tic data models were initially developed to be used in the design phase of database ap-
plications as a tool for conceptual modeling. Hence, they offer sophisticated structuring
primitives, which allow the designer to represent the data in a form that is conceptu-
ally similar to the way in which this data is effectively used. The first semantic data
model was proposed by Abrial [Abr74]. Successive research has led to the development
of a great variety of semantic data models with different characteristics [HK87]. Among
them, the most prominent are the Entity-Relationship (ER) model [Che76], the extended
Entity Relationship model [BCN92], the Functional Data Model [Shi81], SDM [HM81],
and IFO [AH87].

A major difficulty to the widespread use of semantic data models as a front end to
existing database management systems has been their lack of a formal semantics and the
ability to reason on conceptual schemas. This difficulty has been overcome only recently,
by resorting to variants of expressive Description Logics [CLN99].

Conceptual data schemes and ontologies share many similarities, and there are pro-
posals of using conceptual methodologies and tools for ontology modeling. For exam-
ple, [JDM03] proposes a methodology for ontology building with semantic models and a
markup language to exchange conceptual diagrams at run-time. The proposed method-
ology is applied to the ORM (Object-Role Modeling) semantic model, but it may be
extended to other semantic models as well.

2.2.4 Information systems and software engineering formalisms

Starting from the mid ’70s, several formalisms to be used in the design of software and
information systems have been developed, and among these, the most influential became
those based on the object-oriented paradigm, such as the Conceptual Modeling Language
(CML) [Sta96], Telos [MBW80, MBJK90], and the Object Modeling Technique OMT. By
the mid ’90s, new versions of these methods began to incorporate each other’s techniques,
and a few clearly prominent methods emerged. This culminated when in 1995 Grady
Booch, Jim Rumbaugh, and Ivar Jacobson merged the three most prominent approaches,
leading to the development of the Unified Modeling Language (UML) [RJB98, UML05],
which is now one of the most widely used formalisms for Information Systems design.
UML comprises different parts for modeling different aspects, both static and dynamic
ones, of an information system. The primary drawback of UML is definitely the lack of
a formal semantics, especially regarding the modeling of dynamic information. For mod-
eling the static aspects of an information system, accomplished primarily through UML
class diagrams, recent proposals based on Description Logics [BCDG05a] have established
a solid basis, providing also support by automated reasoning tools. The relationship be-
tween UML and ontologies based formalisms is further explored in [B+01, GWGvS04].

2.2.5 Graph-based models

In knowledge representation, graph-based formalisms have historically played an impor-
tant role due to their intuitive nature. Among the most influential ones, we find Semantic

c©2005/TONES – Dec. 29, 2005 18/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Networks [Qui68, Bra79, AF82, Bra83, BL01a], the early precursors of Description Log-
ics, and Conceptual Graphs [Sow84, CM92], which are still used nowadays and have
had a direct impact on the Resource Description Framework [KC04, Hay04, BG04] (see
also [BL01a]). We further mention the Conceptual Markup Language (CKML) [Ken99,
Ken00], and its subset Ontology Markup Language (OML)3, an XML-based markup
language for knowledge and ontology representation that incorporates the principles
of Conceptual Graphs. Finally, Topic Maps are a recent proposal, standardized by
ISO [Top02], defining a knowledge interchange format based on XML. A strong draw-
back is their lack of formal semantics, although recent proposals aim at overcoming this
limitation [AdMRV02].

2.2.6 Logic-based languages

The distinguishing feature of knowledge representation languages based on logic is that
they are equipped with a well-defined formal semantics based on logic. The domain of
interest is typically represented in terms of the classes of objects that are of interest
and relationships among such objects. The logic-based semantics allows to derive the
meaning of arbitrary sentences of the language from the interpretation of the symbols in
the alphabet of the language.

Considering the tradeoff between expressive power and effectiveness/efficiency of rea-
soning, we distinguish between languages based on First-Order Logic, and those based on
Description Logics, which are subsets of First-Order Logic that are well-behaved from the
computational complexity point of view.

Languages based on First-Order Logic. The languages we present, namely KIF
and CycL allow for the possibility, through reification, of stating properties of the terms
of the language itself, i.e., they allow for meta-level statements. Notice that, since such
languages are based on First-Order Logic, logical inference for them is undecidable.

Knowledge Interchange Format (KIF) [GF92] is a language for the interchange
of knowledge among programs, intended to facilitate the independent development of
knowledge-manipulation programs. When a program needs to communicate with another
program, it does so by mapping its internal data structures, which can be arbitrary, into
KIF.

Started as a research project in 1984, the purpose of Cyc4 [LG90, Len95] was to specify
the largest common-sense ontology aimed at providing Artificial Intelligence to computers.
Such a knowledge base would contain general facts and heuristics, and a wide sample of
specific facts and heuristics for reasoning by analogy, and would have to span human
consensus reality knowledge. Far from having attained its initial goals, Cyc is now a
working technology with applications to real-world business problems. Its vast knowledge
base enables it to perform well at tasks that are beyond the capabilities of other software
technologies. At the present time, the Cyc knowledge base contains nearly 200 000 terms,
and for each of it several dozen hand-entered assertions. CycL is the language in which the

3http://www.ontologos.org/
4http://www.cyc.com/

c©2005/TONES – Dec. 29, 2005 19/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Cyc knowledge base is encoded. It is a formal language whose syntax derives from First-
Order predicate calculus and from Lisp. In order to express common sense knowledge,
however, it extends First-Order Logic to handle equality, default reasoning, skolemization,
and some second-order features. For example, quantification over predicates is allowed
in some circumstances, and complete assertions can appear as intensional components of
other assertions. Moreover, CycL functions and predicates are typed.

We further discuss action specification languages on the example of PSL. A fundamen-
tal problem in Knowledge Representation is the design of a logical language to express
theories about actions and change [Rei01]. One of the most prominent proposals for such
a language is John McCarthy’s situation calculus [MH69], a formalism which views situa-
tions as branching towards the future. Several specification and programming languages
have also been proposed, based on the situation calculus. GOLOG [LRL+97] maintains an
explicit representation of the dynamic world being modeled, on the basis of user supplied
axioms about the preconditions and effects of actions and the initial state of the world.
This allows programs to reason about the state of the world and consider the effects of
various possible courses of action before committing to a particular behavior. Process
Specification Language (PSL) [Grü03, GM03] is a First-Order Logic ontology explicitly
designed for allowing correct interoperability among heterogeneous software applications,
which exchange information as First-Order sentences. It has undergone years of develop-
ment in the business process-modeling arena, by defining concepts specifically regarding
manufacturing processes and business process. Recently, PSL has become an international
standard (ISO 18629). PSL can model both “black box” processes, i.e., activities, and
“white box” processes, i.e., complex activities, and allows formulae that explicitly quan-
tify over and specify properties about complex activities. The latter aspect, not shared
by several other formalisms, makes it possible to express in an explicit manner a broad
variety of properties and constraints on composite activities.

Languages based on Description Logics. Description Logics (DLs) are a family
of logic-based formalisms for the structured representation of knowledge about a certain
domain of interest. For a presentation of Description Logics and a discussion of rea-
soning, both in pure DL based languages and in hybrid systems integrating DLs with
rule-based formalisms, we refer to Subsection 2.1. Here we discuss only the OWL lan-
guage [BvHH+04, PSHH04, SWM04], which is considered the standard language for the
representation of ontologies on the Semantic Web. Its less expressive variants, OWL-DL
and OWL-Lite, in fact are syntactic variants of two DLs of the SH family.

OWL is a rather expressive language that was strongly influenced by Description Log-
ics, but has its roots also in the frames paradigm and the Semantic Web vision of a stack
of languages including XML and RDF. On the one hand, OWL semantics is formalized
by means of a DL style model theory. In particular, OWL is based on the SH family
of Description Logics [HST00, HS05], which besides the traditional boolean constructs
and quantification, allows for enforcing roles (i.e., binary predicates) to be transitive, and
for forming role hierarchies. Such a family of languages provides a reasonable tradeoff
between expressiveness and computational complexity of inference. Moreover, practical,
tableaux-based decision procedures for reasoning on them are available [HST00, HS05],

c©2005/TONES – Dec. 29, 2005 20/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

as well as implemented systems such as such as Fact5, Racer6, and Pellet7. The OWL
formal specification is given by an abstract syntax that has been heavily influenced by
frames and constitutes the surface structure of the language. Moreover, axioms can be
directly translated into Description Logics axioms and they can be easily expressed by
means of a set of RDF triples [KC04, Hay04]. This property is essential, since OWL was
also required to have RDF/XML exchange syntax, because of its connections with the
Semantic Web.

2.2.7 XML-related formalisms

XML [BPSM98] is a tag-based language for describing tree-shaped structures in textual
form. It has been developed by the W3C XML Working Group8 and has become the
standard de-facto language for exchange of information in the Web. It is self-describing,
since by introducing tags and attribute names on documents, it defines their structure
while providing semantic information about their content. Given the popularity of XML
in exchange of information, XML-related languages have been considered as suitable for
ontology representation (and exchange). Similar to logic-based languages, a domain on-
tology expressed in XML-related languages describes the domain of interest in terms of
classes of objects and relationships between them.

Languages for XML document validation. Document Type Definitions (DTDs),
which are defined as part of the XML language standard [BPSM98], provide a means to
enforce structure on XML documents, and as such can be considered a form of ontology
specification mechanisms. However, being designed with the primary aim of enforcing
structure on textual documents, they are not well suited for knowledge representation
purposes. For instance, they lack primitive data types and typing or inheritance mecha-
nisms, order of elements is relevant. XML-Schema [FW04] tries to overcome some of these
limitations by introducing data types, inheritance mechanisms, more flexible nesting rules,
and more expressive forms of constraints. For a detailed study of the relationship between
ontologies and XML-Schema, we refer to [KBF+03, KBF+03].

As the Web is huge and is growing at a healthy pace, there is the need to describe Web
resources, by means of metadata that applications may exchange and process. The Re-
source Description Framework (RDF) and its ontology-style specialization, the Resource
Description Framework Schema (RDFS), have both the purpose to provide a foundation
for representing and processing metadata about Web documents. This would lead to a
characterization of the information in the Web that would let reason on top of the largest
body of information accessible to any individual in the history of the humanity.

Languages for representing information in the Web. Due to the fast growth
of the Web, there is a clear need to describe Web resources, by means of metadata
that applications may exchange and process. The Resource Description Framework

5http://www.cs.man.ac.uk/~horrocks/FaCT/
6http://www.sts.tu-harburg.de/~r.f.moeller/racer/
7http://www.mindswap.org/2003/pellet/
8http://www.w3.org/XML/

c©2005/TONES – Dec. 29, 2005 21/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

(RDF) [KC04, Hay04] and its ontology-style specialization, the Resource Description
Framework Schema (RDFS) [BG04], have both the purpose to provide a foundation for
representing and processing metadata about Web documents.

Specifically, RDF allows one to add semantics to a document without making any
assumptions about the structure of the document. It is particularly intended for repre-
senting metadata about Web resources, such as the title, author, etc.. Thus, it enables the
encoding, exchange and reuse of structured metadata, by providing a common framework
for expressing this information so it can be exchanged between applications without loss
of meaning. RDF represents all information in terms of subject-predicate-object triples,
and is equipped with a formal model-theoretic semantics [Hay04], which provides a de-
pendable basis for reasoning about the meaning of an RDF expression. However, RDF
does not impose any interpretation on the kinds of resources involved in a statement be-
yond the roles of subject, predicate, and object. It has no way of imposing some sort of
agreed meaning on the roles, or the relationships between them. Therefore, in order to
use RDF as a means of representing knowledge it is necessary to enrich the language in
ways that fixes the interpretation of parts of the language.

RDF Schema (RDFS) [BG04] enriches the basic RDF model, by providing a pre-
interpreted vocabulary for RDF. Predefined properties can be used to model instance-of
and subclass-of relationships as well as domain and range restrictions of attributes. In-
deed, the RDF schema provides modeling primitives that can be used to capture basic
semantics in a domain neutral way. That is, RDFS specifies metadata that is applicable
to the entities and their properties in all domains. The metadata then serves as a stan-
dard model by which RDF tools can operate on specific domain models, since the RDFS
metamodel elements will have a fixed semantics in all domain models. However, due to its
limited expressive power, RDFS has been extended to more powerful ontology modeling
languages, such as OWL.

Summary

We now schematically represent, in the form of a table, the classes to which the languages
presented above belong, according to the three classification criteria mentioned above.
Moreover, for each language we provide in the table also the main literature references
where the language has been proposed and/or its specific characteristics and features have
been studied and discussed.

Language References What to ex-
press

Single/multiple
models

Languages based on Logic Programming

F-logic [KLW95] Everything Single model

Frame-based languages

Ontolingua [Gru93b, FFR96] Class/relation Multiple models

OCML [Mot98] Everything Single model

c©2005/TONES – Dec. 29, 2005 22/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

GFP, OKBC [KMG95, CFFK98,
CFF+98]

Class/relation Single model

XOL [KCT99] Class/relation Single model

Conceptual and semantic data models

Entity-Relationship
model

[Che76, HK87] Class/relation Single model

ORM [JDM03] Class/relation Single model

Information systems and software engineering formalisms

UML [RJB98, UML05] Everything Single model

Graph based models

Semantic Networks [Qui68, Bra79, AF82,
Bra83, BL01a]

Class/relation Single model

Conceptual Graphs [Sow84, CM92] Class/relation Single model

OML, CKML [Ken99, Ken00] Everything Single model

Topic Maps [Top02, AdMRV02] Class/relation N.A. (no formal
semantics)

Logic-based languages – based on First-Order Logic

KIF [GF92] Class/relation Multiple models

CycL [LG90, Len95] Class/relation Multiple models

Process Specification
Language (PSL)

[Grü03, GM03] Process/Action Multiple models

Logic-based languages – based on Description Logics

Pure DL languages (AL
and SH families)

[SSS91, BN03, BS01] Class/relation Multiple models

Hybrid languages (AL-
Log, CARIN)

[DLNS91, LR98,
Ros99]

Class/relation Multiple models

OWL [HPSvH03, PSHH04] Class/relation Multiple models

XML-related formalisms

Languages for XML doc-
ument validation (DTDs,
XML-Schema)

[BPSM98, FW04,
SW03]

Everything Single model

RDF, RDFS [KC04, Hay04, BG04] Class/relation Multiple models

Temporal languages

Temporal ER model [KC04, Hay04, BG04] Class/relation Single model

c©2005/TONES – Dec. 29, 2005 23/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

3 Ontology Design and Maintenance

We present an overview of the methodologies and tools that have been proposed in the
literature for supporting the design and maintenance of ontologies. These methodolo-
gies mainly aim at providing guiding principles for ontology design that, if applied in a
systematic and disciplined way, facilitate the construction of structured, understandable,
and therefore also maintainable ontologies. The available methodologies are concerned
with the following issues:

• how to build an ontology from scratch;

• how to support the creation of large ontologies as a collaborative effort of a group
of communicating ontology designers;

• how to extract a special purpose ontology from a general purpose one, and how to
design a general ontology from multiple special purpose knowledge bases;

• how to support the evolution of an ontology;

• how to debug an ontology.

In our overview, we focus on general methodological aspects instead of delving into the
details of concrete ontology languages (which are discussed in Section 2) and their impact
on ontology design. We mention support by automated reasoning techniques whenever
available, but refer to Section 2 for details.

3.1 Design of Concrete Ontologies

The developers of large and influential ontologies have often published the principles on
which their design was based and the methodology that they have followed in order to
obtain a structured ontology of high quality. In this section, we survey such individual
experience reports, concentrating on well-known ontologies that had a visible impact on
subsequent research.

Lenat and Guha published the general methodologies followed during the construction
of the massive-scale CYC ontology [LG90]. Their methodology consists of two phases. In
the first phase, common sense knowledge that is implicit in the various sources underlying
the ontology construction is manually extracted. In the second phase, based on the already
constructed ontology new knowledge is acquired using a plethora of natural language
processing and machine learning techniqes. The use of machine learning techniques is
discussed in a more general setting in the following section.

Uschold and King [UK95] published the main steps followed in the development of
the Enterprise Ontology. The method proposes some general steps to develop ontologies,
which are (i) to identify the purpose; (ii) to capture the concepts, the relationships among
these concepts, and the terms used to denote both of them; and (iii) to codify the ontology.
This approach has later been refined into a more subtle and general methodology which
is discussed in the subsequent section.

c©2005/TONES – Dec. 29, 2005 24/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

SNOMED CT (Systematized Nomenclature of Medicine, Clinical Terms) is a large-
scale ontology for medical terms [SCC97]. SNOMED’s main application is to define a
medical reference terminology that is used widely in the health system of the united states.
SNOMED was originally constructed as a traditional multi-axial coding system. Due to
its sheer size (nowadays ∼400.000 concepts), it was later found difficult to continue with
such a largely informal approach. Since then, SNOMED is constructed in a lightweight
description logic using the Apelon TDE environment and methodology. Of particular
importance is the reasoning-based automated ontology classification offered by this system
(see “tools” section later on).

Gruninger and Fox reported the methodology used for building the TOVE (TOronto
Virtual Enterprise) ontology in the domain of enterprise modelling [GF95]. As the pre-
vious ones, their approach consists of several steps. First, the designer has to determine
the queries that the ontology has to be able to answer. Second, the objects, attributes,
and relations (called terminology in TOVE) that are relevant for answering these queries
can be determined. Third, constraints on the elements of the terminology are identified.
The resulting specification is represented in first-order logic and implemented in Prolog.

Other methodologies for ontology design can, for example, be found in [Gru93a,
GPJP95] and the survey [NH97].

3.2 General Methodologies

We review general methodologies that have been proposed for the design and maintenance
of ontologies. Since design and maintenace phases are often not cleanly separated in the
literature, we will make an explicit distinction only when appropriate. The methodologies
proposed in the literature focus on different aspects of working with ontologies. For
example, some approaches propose a general schema to be followed when constructing
ontologies, some have an emphasis on the cooperative ontology construction by a group
of knowledge engineers, and others concentrate on the automated learning of ontologies.
In the following, we group the various approaches in different subsections according to
their focus.

3.2.1 General Schemas

We describe some general schemas for ontology construction that have been proposed in
the literature. Such a general schema usually consists of a sequence of steps that are to be
followed during ontology construction. If necessary, some of the steps have to be repeated
until a satisfactory result is achieved. Sometimes, the individual steps are supported by
automated reasoning techniques.

Uschold and Gruninger [UG96] propose some methodological approaches for building
ontologies. First, they propose to identify the main scenarios in which the ontology will be
used. Later, a set of natural language questions, called competency questions, are used to
determine the scope of the ontology, that is, the questions that have to be answered using
the ontology. These questions are used to extract the main concepts, their properties,
relationships and axioms, which are formally defined in Prolog. The main purpuse of
this approach is to guide the transformation of an informal scenario into formal models.

c©2005/TONES – Dec. 29, 2005 25/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Observe that there is a close connection to the TOVE methodology described above.
Methontology [FGPJ97] appeared at the same time and was extended a few years

later. It is a methodology that aims at enabling ontology building by people that are
non-experts in ontologies and ontology languages. The main feature of methontology is
a set of intermediate representations that are half-way beween how people think about
a domain and the languages in which ontologies are formalized. The ontology designer
first acquires knowledge about the domain in an informal way, and then organizes and
structures this knowledge by phrasing it in the intermediate representations. Then, the
real ontology is automatically generated using translators. The whole process is guided
by a structured ontology development process and an ontology life cycle model.

The OntoClean methodology was developed by Guarino and Welty since 2001 [GW04].
Its aim is to provide guidance for ontology design based on highly general ontological
notions drawn from philosophical ontology. These notions are used to define a set of
metaproperties that characterize relevant properties of the classes and relations in an
ontology. The idea is to assign the metaproperties to the entities of an ontology in a
principled way. Then, the backbone taxonomy of the ontology can be identified and it is
possible to discover inconsistent and inappropriate uses of the subsumption relationship.
OntoClean is independent of ontology languages and application domains and has been
used in several large scale ontology projects.

3.2.2 Construction by Abstraction

In the work by Baader et al. [BK98, BKM99], a bottom-up methodology for constructing
ontologies formulated in description logics is described. There are two main ingredients
to this methodology that both assist the ontology designer in the formulation of new
concepts: first, the designer can describe a set of protoypical instances of a new concept.
Then, automated reasoning techniques are used to compute the most specific concept
description that captures all these instances. Second, the designer can specify a set
of existing concepts for which he wants to introduce a common super-concept. Such a
super-concept is then automatically generated and presented to the designer for inspection
and modification. Note that the introduction of additional such super-concepts can be
used to add more structure to ontologies that lack structure, i.e., whose subsumption
hierarchy is broad and shallow. Additional reasoning techniques to support ontology
maintenance are also available. For example, it is possible to use the reasoning services
matching [BKBM99, BK00, BBK01] and unification [BN01, BK01] to identify concepts
that intuitively have the same meaning (i.e., should be unified), but are not logically
equivalent.

As part of the Esprit KACTUS project, Bernaras at al. [BLC96] present a method
for constructing general ontologies out of special purpose knowledge bases. Based on
existing knowledge bases that have been constructed for and are tailored towards concrete
applications, an abstraction process is used to generate a general purpose ontology of the
domain under consideration. Applying this method allows to capture in the ontology the
consensual knowledge needed by all the applications. This methodology has been used in
the domain of electrical networks.

c©2005/TONES – Dec. 29, 2005 26/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

3.2.3 Construction by Specialization

Swartout et al. [SPKR97] propose a methodology for building special purpose ontologies
based on the Sensus ontology. The proposed method is a top-down approach for deriving
domain specific ontologies from huge ones. The authors propose to identify a set of terms
that are central to a particular domain. Such terms are linked manually to a broad-
coverage ontology (in that case, the Sensus ontology, which contains more than 50,000
concepts). Then the relevant terms for describing the domain are selected automatically,
and the Sensus ontology is pruned accordingly. The algorithm delivers the hierarchically
structured set of terms for describing a domain that can be used as a skeletal foundation
for a special purpose ontology.

3.2.4 Cooperative Ontology Design

Comprehensive ontologies for broad domains are usually constructed by a collaborating
group of designers. Often, these designers are geographically distributed. To guarantee
the construction of high-quality ontologies in such an environment, methodologies for
supporting cooperative design are required. In [Euz95, Euz96], the following problems
of cooperative ontology design are identified: management of the interaction and com-
munication among people, data access control, recognition of a moral right about the
knowledge (attribution), error detection and management, concurrency management.

Euzenat [Euz96] proposes a protocol that can be used to reach consensus among
distributed ontology designers. It is based on the idea that the ontology is split into parts
organized in a tree. The designers can discuss and commit about the parts of the ontology
separately. The leaves of the tree are called user knowledge bases, and the intermediate
nodes are called group knowledge bases. The user KBs are maintained by single designers
and there is no need to achieve consensus for them. On the other hand, there must
be consensus about the group KBs. Intuitively, a group KB represents the consensual
knowledge of its sons.

In the knowledge annotation initiative of the knowledge acquisition community de-
scribed by Decker et al. [DEFS99], ontologies are developed in a joint effort by a group
of designers at different locations. To make the process of ontology building easier, tem-
plates for ontology construction are generated and distributed to all ontology designers.
It is also assumed that all assigners use the same language. The filled-in templates are
sent to coordinating agents, which are experts in the different topics represented in the
ontology. Once the ontology coordinating agents have all the portions of the ontology,
they integrate them in a principled way. This integration rests on the common pattern
enforced by the template.

3.2.5 Automated Learning of Ontologies

Automated learning provides a fundamentally different approach to ontology creation
than manual construction by a designer. Though ontology learning is not in the primary
focus of the TONES project, we will discuss some relevant references. The majority of
papers in this area propose methods to extend an existing ontology with new concepts,
using natural language processing, statistical, and machine learning techniques. Concepts

c©2005/TONES – Dec. 29, 2005 27/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

are often understood in a syntactic sense (i.e., as words found in some corpus), and se-
mantic disambiguation is a major research issue. For example, [AAHM00, AM02] use
learning to extend the WordNet ontology with new words. Berland and Charniak [BC99]
show how to learn part-whole relations in ontologies and Cimiano et al. [CHS05] address
the learning of taxonomic relations. An integrated ontology management and learning
architecture is proposed by Missikoff et al. [MNV02]. The architecture consists of a soft-
ware environment centered around the OntoLearn tool that can build and assess a domain
ontology for intelligent information integration within a virtual community. Maedche and
Staab [MS01, MS00] present an architecture to help ontology engineers in creating an
ontology. In this approach, machine learning and manual construction of the ontology are
used in an integrated way.

3.2.6 Ontology Evolution

In most applications, ontologies are not static. Instead, they have to be adapted to
changing application domains, extensions of their scope, and evolving applications using
them. Therefore, ontology evolution is one of the main aspects of ontology maintenance.
Noy and Klein [NK04] argue that ontology evoluation is closely related to schema evolution
in databases, but that ontology evolution has certain peculiarities. Most notably, these
are a different semantics and different usage paradigms. Klein et al. [KFKO02] distinguish
conceptual changes (the way a domain is understood) from explication changes (the way
how concepts are specified).

In [KN03], changes to an ontology are seen as sequences of individual update operations
like a log file of a database system. They discuss minimal transformations between two
given ontology states, i.e., how to go from one state to the other with the smallest set
of individual updates and how to construct complex update operators from sequences of
individual updates (represented as minimal transformations). These update operations
can themselves be organized as an ontology and offered to the user in a menu.

3.2.7 Ontology Debugging

During the design and maintenance phase of the ontology lifecycle, it frequently happens
that inconsistencies and unwanted (non)-subsumptions are inadvertedly introduced by the
ontology engineer. Therefore, debugging of ontologies is a central issue in both phases. As
observed for example in [SC03], debugging consists primarily of two subtasks: explaining
the problem and correcting it. Since correction is a strongly domain-dependant task,
research has focussed on explanation.

Most work for explaining logical reasoning that is relevant for ontology engineering
has been carried out in the context of description logics. Early approaches concentrate
on explaining reasoning with isolated concepts (i.e., classes) rather than with whole on-
tologies. For example, [McG96, BFH+99] are concerned with explaining subsumption in
inexpressive and expressive description logics, respectively. Later, Schlobach and Cor-
net [SC03] address the explanation of inconsistencies in ontologies. The basic idea is to
identify minimal inconsistent fragments of an ontology (so-called MUPS) to single out
the source of an inconsistency. The techniques used for this purpose can be viewed as a
re-invention of similar techniques from [BH92]. A further development of the techniques

c©2005/TONES – Dec. 29, 2005 28/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

of Schlobach and an integration with the ontology editor Swoop [KPS+05] can be found
in [KPSH05].

Meyer et al. [MLB05] propose a related but more proactive approach: instead of only
pinpointing the inconsistency and leaving the corrections to the knowledge engineer, a
proposal for weakening the ontology is made such that consistency is achieved. The
approach is based on computing maximal consistent fragments of an ontology and borrows
techniques from inconsistency management in propositional logic and from non-monotonic
reasoning.

3.3 Tools for Ontology Design and Maintenance

We provide an overview of the available tools and software environments that can be
used for building and maintaining ontologies. Since the recent interest in ontologies has
resulted in a proliferation of such tools, the overview presented here cannot be a complete
one. Instead, we attempt to select those tools that dominate in the practice of ontology
design or that support ontology design and maintenance in a particularly original and
constructive way. The discussed tools usually provide a frame-like graphical user interface
for creating ontologies without using a formal specification language. Many of them
additionally offer graphical display modes for visualizing the structure of the ontology.
Concerning reasoning, we can distinguish between three kinds of software environments:
(i) Tools that are special purpose w.r.t. the supported language and/or the addressed
design methodology sometimes include reasoning capabilities. Frequently, the reasoning
capabilities offered by such tools is rather ad hoc, i.e., not based on a formal semantics
and on provably sound and complete algorithms. (ii) General-purpose tools often allow
to plug in external reasoning backends to support the ontology construction process. In
such a case, the quality of reasoning depends both on the backend that is plugged in and
on the interplay between the ontology tool and the reasoner. (iii) Finally, many of the
available tools simply do not support reasoning at all.

1. Apelon TDE. The Terminology Development Environment (TDE) of Apelon Corp.
is a commercial suite of software components for the creation, maintenance, and de-
ployment of large ontologies. It offers a frame-like interface and is tailored towards
the construction of massive-scale ontologies that are constructed by a large group of
designers which are geographically distributed. TDE supports the detection of con-
flicts originating from contradictory modelling decisions among developers. Based
on a very simply description logic, an automated classification of the ontology (i.e.,
a computation of the subconcept-superconcept hierarchy) is possible. The empolyed
DL is not powerful enough to describe or detect inconsistent classes. Notably, the
Convergent Medical Terminology (CMT) and SNOMED CT have been developed
using the Apelon TDE.

2. Apollo is a language independent ontology editor that was developed at open uni-
versity, UK, and offers a frame-like user interface. It allows to export the constructed
ontology in the RDF, XML, Meta, and OCML formats. A basic compatibility check
of slot types, values, and cardinalities is done, but no real reasoning is offered. This

c©2005/TONES – Dec. 29, 2005 29/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

editor is a prototypical example for one of the many available editors that offer a
frame-based interface, but provide no user support in the form reasoning.

3. ICOM is a tool supporting the conceptual design phase of information sys-
tems [FN00]. The conceptual models that can be designed using ICOM are closely
related to description logic ontologies, and therefore ICOM can be conceived (and
has been used) as a tool for ontology design. ICOM is an evolution of part of the
conceptual modelling demonstrators suite [JQC+00] developed within the European
ESPRIT Long Term Research Data Warehouse Quality (DWQ) project [JLVV99].
It adopts an extended Entity-Relationship (EER) conceptual data model, enriched
with multidimensional aggregations and interschema constraints. ICOM is inte-
grated with reasoners for expressive description logics such as FaCT and RACER.
This integration allows to explicate ramifications of the modelling and present them
to the designer for inspection. Theoretical results from the DWQ project guarantee
the correctness and the completeness of the reasoning process: the system uses the
SHIQ description logic, as a mean to provide the core expressivity of the DLR De-
scription Logic [CDGL98a]. In contrast to ontology editors, ICOM uses a graphical
layout of the conceptual model as its main interface rather than working with a
frame-like representation.

4. OntoEdit [SEA+02] is an ontology engineering environment developed at the
Knowledge Management Group (AIFB) of Karlsruhe University. It is a stand-alone
application that provides a graphical ontology editing environment (which enables
inspecting, browsing, codifying, and modifying ontologies, supporting in this way
ontology development and maintenance) and an extensible architecture for adding
plug-ins. The conceptual model of an ontology is internally stored using a flexible
ontology model that can be mapped onto different concrete representation languages
such as XML, F-logic, RDF(S), and OWL. An interface to an F-logic inference en-
gine is provided, and F-logic reasoning [KLW95] is used to assist the modelling
process. An interface to description logic reasoners such as FaCT is planned with
the goal of supporting OWL reasoning.

5. Protégé-2000 is a powerful graphical and interactive ontology-design and
knowledge-acquisition environment that is being developed by the Stanford Medical
Informatics group (SMI) at Stanford University [GMF+03]. It is an open source,
highly configurable application that provides a frame-like interface, a graphical on-
tology editing environment, and an extensible architecture for the creation of cus-
tomized knowledge-based tools. Its component-based architecture allows to add
new functionalities by creating appropriate plug-ins. For example, the Protégé
plug-in library contains plug-ins for graphical visualisation of knowledge bases, semi-
automatic ontology merging, and for the interaction with automated reasoning sys-
tems. Concerning the latter, Protégé can interact with inference engines for the
verification of first-order logic constraints and with reasoners for expressive descrip-
tion logics such as FaCT and RACER. Protégé also provides translators to F-logic,
OWL, Ontolingua, and RDF(S).

c©2005/TONES – Dec. 29, 2005 30/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

6. OILEd is a graphical ontology editor that has been developed at the University of
Manchester [BHGS01]. This editor, which is based on a frame-like user interface,
focusses on the OWL ontology language and related description logics. A main
emphasis is on providing an interface to reasoners for expressive description logics
such as FaCT and RACER. The main aim of this coupling is to automatically
compute a classification of the ontology and to detect inconsistent concepts that
indicate modelling mistakes. The feedback returned by the reasoner is presented in
graphical form to the user of the ontology editor. The user can then review this
feedback and modify his modelling in case that undesired consequences have been
computed.

7. SONIC is a reasoning backend for ontology editors such as OILEd and
Protégé [TK04]. Its aim is to support the bottom-up construction of ontologies for-
mulated in description logics as described in Subsection 3.2.2. In particular, SONIC
allows to automatically generate a super-concept for a set of concepts selected by
the user. This concept is then rewritten into a short form and presented to the user
for inspection through the used ontology editor, i.e., OILEd or Protégé. SONIC
delegates subtasks to reasoners for expressive description logics such as FaCT and
RACER.

8. SWOOP is an ontology editor for OWL ontologies developed at Maryland Univer-
sity [KPS+05, KPH05]. It aims at providing a web browser like look & feel instead of
offering the standard frame-like interface. For example, SWOOP includes hyperlink
based navigation across ontological entities, history buttons (back, next), etc. The
choice for this editing paradigm is based on the widely-held opinion that ontologies
will play a central role in the upcoming Semantic Web, which is a second-generation
web in which web pages are annotated with a machine-understandable description
of their content. From the Semantic Web perspective, the marriage of web browsers
and ontology editors is obviously rather natural. SWOOP also provides an interface
to description logic reasoners. The feedback provided by such reasoners is used in a
similar way as in OILEd. To support the collaborative design of ontologies, SWOOP
allows the annotation of the entities contained in an ontology.

9. SymOntoX [MT03] is an ontology management system that makes use of a
web-based interface and targets specifically the management of ontologies for the
eletronic business domain. SymOntoX allows the management for multipole on-
tologies, supports access rights for different user profiles, and supports multiple
languages. It provides for a set of feature types to decribe concepts: similar con-
cepts, narrower concepts, part-of concepts, and attributes of concepts. By means of
access rights, certain roles can be defined for the creation of ontologies. For exam-
ple, only a super user can propose new terms while ordinary users are restricted to
browsing.

For convenience, we provide the webpages of the various reasoners and tools presented
above:

c©2005/TONES – Dec. 29, 2005 31/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Apelon TDE http://www.apelon.com/products/tde.htm

Apollo http://appollo.open.ac.uk/

ICOM http://www.inf.unibz.it/~franconi/icom/

OntoEdit http://www.ontoknowledge.org/tools/ontoedit.shtml

Protégé http://protege.stanford.edu/

OilEd http://oiled.man.ac.uk/

SONIC http://wwwtcs.inf.tu-dresden.de/~sonic/

SWOOP http://www.mindswap.org/2004/SWOOP/

Apart from a convenient user interface and mechanisms to support and systematize
the communication between collaborating designers, the main aid for ontology design
and maintenance provided by current tools is an interface to reasoning systems. These
reasoning systems are most often OWL/description logic reasoners, but sometimes also
first-order theorem provers and reasoners for RDF. With the notable exception of SONIC,
the main purpose of using reasoners is to automatically classify the concept of the ontology
into a subclass-superclass relationship, and to detect logical errors that indicate modelling
flaws. Although powerful reasoning systems are around, currently the actual use of rea-
soning to assist the design and maintenance of ontologies is thus relatively limited, and
will be subject of investigation within the TONES project.

4 Ontology Access, Processing, and Usage

While in the previous section we have discussed ontology design and management tools,
we now consider how ontologies are accessed, processed, and used by humans or machines
(i.e., agents, programs, applications, etc.). In the following, we use the term “reasoning
services” in a broad sense, i.e., with reasoning services all kinds of services are addressed,
even if the services just return information that is apparent from the syntactic specification
of an ontology. Since query answering with reference to ontologies involves reasoning, with
“reasoning services” we also refer to query processing. We first give explanations for the
terms ontology access, processing, and usage.

4.1 Explanation of Nomenclature

Ontology access. With ontology access we mean the way a human user or an ap-
plication program invokes reasoning facilities provided by an ontology inference system.
Different architectures are possible. Usually, ontology reasoning services are provided by
a server whereas application programs or graphical interfaces are client systems. Ontol-
ogy management and reasoning systems are usually built as server systems because, at
the current state of the art, even in the average case, reasoning about reasonably large
ontologies requires quite substantial computational resources in terms of time and space.
Thus, it is advantageous to exploit computational results from previous service invoca-
tions for many client processes. For smaller ontologies, it is also possible to include the
reasoner in the application. Ontology accesss also refers to how access rights are granted
to query or reasoning services, and, maybe in the near future, how payment for accessing
ontology reasoning services might be organized. Ontologies are seen as resources that are

c©2005/TONES – Dec. 29, 2005 32/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

either stored in files, are managed in databases (e.g., in the form of RDF triples), or are
retrieved from remote web servers. In the latter case, access is usually implemented using
Internet technology (e.g., HTTP). APIs and languages for ontology access are discussed
below.

Ontology processing. The term ontology processing describes the way an ontology is
handled internally by a reasoning engine in order to implement reasoning services. In
this context, facilities are required that can be used to declare which classes of services
are required by a client such that heuristics and index structures can be adapted to
the needs of the usage scenario. Thus, it would be advantageous if human users or
application programs could control ontology processing. Ontology processing also refers to
automatic syntactic conversion and transformation steps (preprocessing) that are required
if ontologies are accessed that are available in various languages with differing concrete
syntaxes. Preprocessing involves ontology translation tasks in order to achieve syntactic
interoperability. In order to provide fast access at usage time, preprocessing and setup
times comparable to databases (maybe larger by one order of magnitude) have to be taken
into consideration. In addition, concurrent service invocations, transactional processing,
and load balancing are concerned by the notion of ontology processing. At the current
state of the art, research has just begun to explore the latter notions w.r.t. ontologies.

Ontology usage. Ontologies can be used by humans or machines. For instance, humans
can inspect ontologies via graphical interfaces (or portal systems) to get an understand-
ing of a specific problem domain (ontology-based learning). Application programs use
ontologies as part of the implementation of the program specification. For instance, an
enterprise information system might use ontologies for answering queries with respect to
different kinds of vocabularies. With ontology usage we refer to the purpose of ontology
either for a human or for an application. Note that ontology use by humans usally also
involves reasoning services whose invocations are hidden behind the interface. Ontology
usage patterns are very important for optimizing the performance of handling multiple
service invocations, and, in addition, usage patterns allow for the adequate design of rea-
soning services at the right level of abstraction such that optimized processing is possible
(see above).

4.2 Usage Scenarios

For what purposes are ontologies used? We see two main kinds of scenarios: On the
one hand, ontologies are used for conceptual domain modeling for data being stored, for
instance, in databases. On the other hand, with the expressivity of current ontology
languages, it is very well possible to also represent data (and not only conceptual data
models). Ontologies provide for indefinite descriptions, i.e., in constrast to data represen-
tations in databases one can also use an ontology language to describe data in a detailed
way in some respects while leaving open certain alternatives in others (i.e., one only re-
stricts possible values of, for instance, an associated object, but does not directly state
a particular associated object). In the logical view, a database instance corresponds to
a (logical) model. With indefinite data descriptions, multiple models are possible (and,

c©2005/TONES – Dec. 29, 2005 33/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

hence, with ontologies, usually, multiple database instances are described). However, all
models share a common part. For instance, in classical description logics, the concep-
tual modeling part is done with a so-called T-box (terminological box) whereas the data
description part is done with an A-box (assertional box). However, in newer description
logic languages with increased expressivity, the distinction is blurred, i.e., restrictions
for single domain objects can also be part of the T-box. For instance, the W3C stan-
dard OWL (Web Ontology Language [SWM04, PSHH04, BvHH+04]) includes so-called
nominals as part of the ontology language (for defining the T-box). If the ontology con-
tains restrictions about domain objects, descriptions for data have an influence on the
answer to ontology queries (e.g., w.r.t. subsumption), and, hence, processing ontological
information can hardly be used for different sets of data descriptions. Nevertheless there
still exists a W3C language standard for data descriptions (RDF, Resource Description
Format [KC04, FW04]) that corresponds to an A-box if considered from a logical perspec-
tive [PH03]. In practice, reusing an ontology w.r.t. different sets of data restrictions is a
very common usage scenario in many application contexts. From a practical perspective,
a useful restriction would be that data descriptions (i.e., A-boxes, possibly defined in
RDF) cannot be given for nominals used at the ontology level (see also the subsection on
ontology processing below).

Ontologies are used for mutiple purposes at design-time and at runtime of an applica-
tion. Common usage scenarios are:

• evaluation of conceptual data models w.r.t. “upper ontologies” (checking satisfiabil-
ity of named concepts, finding unwanted subsumption relations etc.);

• optimization of database queries (exploit implicit subsumption relations to rewrite
queries);

• matching of service descriptions (checking what terms must be added or removed
to achieve subsumption);

• query answering w.r.t. data descriptions and w.r.t. to conceptual data models with
expressive axioms in contrast to query answering in databases where axioms from
the conceptual data model are not taken into consideration;

• query answering w.r.t. to “foreign” data models (query rewriting) in an information
retrieval context;

• situation recognition (concept-based: classification, instance-based: direct types
inference service);

• extracting commonnalities of data w.r.t. ontologies (e.g., least-common subsumer
w.r.t. T-boxes);

• providing descriptions of data w.r.t. an ontology (e.g., computing the most-specific
concept, rewriting of concepts w.r.t. a T-box).

Almost all high-level reasoning services are reduced to standard reasoning services
(low-level services) such as satisfiability checking, subsumption checking etc. however, it

c©2005/TONES – Dec. 29, 2005 34/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

is a non-trivial task to implement high-level services in a layered, server-based architecture.
Usually, imlementations for high-level services require a vast amount of low-level service
calls, and if high-level services are not implemented in the server itself, communication
costs are tremendous.

Recent research efforts investigate “ambient” ontology use (see research on the Seman-
tic Web). The idea is to seemlessly integrate a reference ontology of the environment with
the user’s ontology, for adapting to the situational context, the location of ontology use,
and the interface device. This involves ontology integration and ontology-based query
rewriting and is discussed in the respective sections.

4.3 Access Languages and Protocols

For an ontology interface, various different access languages corresponding to different
views on how to specify ontologies have been proposed. Predominant views are the frame-
based view (GFP [KMG95], OKBC [CFF+98]), the logic-based view (e.g., DIG [BMC03],
Common Logic [CLS05]), and the agent-communication-based view (KQML [FFMM94]).
At the current state of the art, there is no commonly agreed on definition of explicitly
given information (told information) and information that is entailed due to the semantics
of the representation formalism (inferred information). For some applications, however,
in particular for user interfaces, the distinction definitely makes sense.

At the architectural level, various protocols for client-server-based ontology architec-
tures have been investigated in the literature. From a technical point of view, there is
nothing particular to accessing ontologies, i.e., standard Internet technology is employed,
and many concrete syntaxes are based on XML and are defined with XML schemata.
In most cases, nowadays, ontologies are available as XML-based web resources. A lurk-
ing danger for ontology languages, however, is the inclusion of representation constructs
that have been developed for programming languages (e.g., short unsigned integer) rather
than semantically well-founded representation constructs that are based on mathematical
theory.

In the following we distinguish between functional interfaces and query interfaces.

Functional access. With functional interfaces one can incrementally specify ontology
statements (tell interface) and one can invoke functions that implement standard reason-
ing services for ontologies (ask interface for told and inferred information). In contrast to
other modeling approaches, ontology interfaces do not offer access to internal data struc-
tures (e.g., a graph structure of related domain objects) but separate a client application
from the reasoning systems using a functional interface (see [BPGL85] for one of the first
accounts on this topic).

Query-based access. For some tasks, retrieving information using a functional in-
terface results in too many (possibly naive) function invocations, which is particularly
problematic in a client-server-based setting (see the discussion above). Declarative query
languages are used to overcome the problems in this case. In the context of ontologies,
query languages are not only used for retrieving data objects. Rather, query languages
can also used to find certain elements of the ontology itself (e.g., names for concepts,

c©2005/TONES – Dec. 29, 2005 35/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

relations, nominals etc.). Examples for query languages that allow for the retrieval not
only of data but also of ontological structures are OWL-QL [FHH04] or nRQL [WM05],
both with slightly different expressivity. Both languages provide for incremental access
to the result set of submitted queries (set-at-a-time vs. tuple-at-a-time retrieval mode).
Query-based access is usually characterized by a small number of rather complex queries.

Subscription-based access to ontology servers and data descriptions. The ac-
cess to ontologies can also be organized by managing a set of subscriptions. In this
context, the access pattern is usally characterized by a very large number of clients with
rather simple queries. Subscription-based access to ontologies is particularly important
if incremental changes are handled by an ontology server. In this case a subscription
causes notifications about changes of query result sets to be sent to the subscribers in an
asynchronous way.

Ontology portals. Portals for ontology repositories have been investigated recently.
In particular, a query approach for finding ontologies is based on (sub)string search and
link-based reference counting (Swoogle [FJDP05]). Some authors also propose portals
that support manual ontology reviews and public discussions about ontology quality. At
the current state of the art, there is no reward system for making ontologies available that
are useful for many application scenarios. However, one can imagine systems that provide
a ranking for ontologies (and ontology authors) based on “citations”, i.e., references in
articles and system implementations (see what the system CiteSeer does for standard
publications). Such an “OntoSeer” system might provide the basis for application-oriented
scientific work in many scientific fields (e.g., medical ontologies, ontologies for e-commerce,
ontologies for natural language processing or image understanding, etc.).

4.4 Archictectures for Efficient Ontology Processing

Ontology languages for different purposes have different expressivity. In many cases expo-
nential worst-case algorithms are required. Some prefer even undecidable languages (e.g.,
first-order logic or higher-order-logic) and are willing to sacrifice completeness of reasoning
services. Usually, however, decidable languages are used and ontology processing relies
on average-case efficient algorithms (e.g., this holds for description logics, (disjunctive)
datalog, rule languages with answer-set semantics, etc.).

4.4.1 Control strategies, configuration of reasoning services

According to usage and access patterns (see above) current ontology processing systems
can be instructed to employ appropriate control strategies for inference. In addition, the
computation of index structures can be done in a preparation phase. However, there are
no standards available for languages for controlling the behavior of reasoning systems,
and, in fact, a standard will be rather hard to define due to different processing strategies
employed in practical systems. Todays ontology systems use a mixture of, e.g., tableau-
based, resolution-based, or datalog-based techniques, and use top-down or bottom-up

c©2005/TONES – Dec. 29, 2005 36/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

inference algorithms. Developing a standard for specifying control strategies seems a
long-term goal that can hardly be reached in the near future.

4.4.2 Optimization techniques

For different inference algorithms various kinds of optimization techniques have been de-
veloped (see, e.,g., [HM01, Hor03, MH03, HM04]. Explaining all of them is impossible
in this overview. Major systems use a combination of techniques: rewriting (e.g., normal
forms), separation of unrelated ontology parts, caching, binary constraint propagation
(e.g., forward checking), dependency-directed backtracking (e.g., backjumping), semantic
branching, optimized blocking, model-merging, taxonomy traversal optimization, average-
case-efficient encoding techniques (e.g., with specific kinds of binary decision diagrams),
indexing, subgoal ordering, topological sorting of classification steps, automata-based
techniques for regular expressions to name just a few. At the current state of the art, new
optimization techniques for huge amounts of data descriptions as well as for new repre-
sentation constructs in expressive ontology languages have to be developed. Furthermore,
not only huge amounts of data descriptions have to be handled (e.g., in the A-box part in
term of description logics), but also very large amounts of terminology statements (e.g.,
in T-boxes) are required for practical applications. In addition, ontology-based access to
(possibly existing) database instances (single-model reasoning) is a fruitful research topic.
High-level reasoning problems as discussed above also require sophisticated optimization
techniques. In general, it is a long way from a decision procedure developed to investigate
formal properties such as decidability and complexity to a system implementation that
is stable w.r.t. real-world input sizes. Even management of told information and answer-
ing of queries w.r.t. told information is a non-trivial task, and some framework provide
optimizations for this (e.g., Jena).

4.4.3 Incremental processing of queries (or ask statements)

A common problem is that, except for subscription-based access, an ontology system sees
only one query at a time. For instance, in some usage scenarios, queries will be refined,
i.e., the next query will return a subset of the instance of a previous query, but this is not
known to the ontology system. Optimized processing would be possible, if this knowledge
were exploited. However, determining query subsumption and managing required caches
pays only back if the resources are actually exploited. At the current state of the art,
strategies for dynamic adaption to automatically detected query patterns have not been
investigated. This might be interesting, however, since standards for control languages
for ontology processing are hard to achieve (see the arguments discussed above).

In some usage scenarios, not all results of a query will probably be exloited (e.g., in
an information retrieval scenario). Ontology processing servers must provide for means to
incrementally compute results that are transferred to the client on request (computation
on demand if there is a high load on the ontology server or eager compuation if no further
queries are to be answered). In addition to client-side caching, ontology processing in-
volves managing server-side caches and index structure computation. In the incremental
result set computation mode, it is advantageous if the ontology processing engine can give

c©2005/TONES – Dec. 29, 2005 37/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

a hint to the application if, for computing further elements, there is a jump in computa-
tional complexity expected. In other words, ontology processing strategies should provide
for means to retrieve “easy answers” first. Newer ontology systems provide these facilities,
however, the separation between “easy” and “hard” answers is technology-driven (oppor-
tunistic) and not semantically well-founded. It would be better, if processing behavior
were determined by semantics- and complexity-theoretic insights.

4.4.4 Incremental processing of tell statements

Incremental changes and updates to ontologies have been supported by some system
implementations, implemented reasoning algorithms are known to be incomplete. Al-
though theoretical investigations show that, even for languages with limited expressive
power, coping with new axioms added to ontologies is of the same worst-case complexity
than computing results from scratch [Neb90, 158ff.], in the average-case, quite substantial
speedups might be expected by new optimizations for complete techniques for incremen-
tally handling additional axioms by exploiting previously computed results. Note that it
is not only the set of data descriptions (A-box in description logic ontologies) but also the
part of the ontology that corresponds to the terminological part (T-box) that must sup-
port for incremental updates for incorporating new representational primitives in order
to support practical requirements.

4.4.5 Multi-client access to multi-processor ontology servers

As has been argued above, ontology servers can be used by multiple clients. In a standard
scenario, one can assume rather few clients which specify complex queries. At the current
state of the art, ontology servers support locking and support for multiple contexts that
can be referred to in ask expressions as well as queries (e.g., multiple T-boxes and A-boxes
if ontology servers based on description logic are considered). In the near future, ontology
servers will support multi-processor computer architectures and will include proxies sup-
porting load balancing with replicated ontologies. Load balancing with replicated services
for a particular ontology is also required if a single application uses multiple threads. De-
pending on the scenario, one can envision client-side proxies with local caching in order to
reduce network resource consumption for synchronous query answering via Internet tech-
nology (i.e., via TCP, HTTP, and the like). In addition, access to distributed ontologies
has been investigated recently [BS03].

4.4.6 Stability of terminological reasoning results

From a practical perspective, it is advantageous to achieve the decoupling of reasoning
about the conceptual level from reasoning about data descriptions (see the discussion
above). It is a valid assumption that ontologies change rather rarely on the conceptual
level where for the data description level, in the near future, transactional processing
systems must be developed for multi-client scenarios. With restrictions about data objects
at the conceptual level, for instance, new subsumption relations might emerge if new data
descripton are added. In this case, for instance, the taxonomy might change due to
new information about data objects. In this case, terminological reasoning results are

c©2005/TONES – Dec. 29, 2005 38/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

not stable. New optimization strategies must be developed to cope with these effects
efficiently. In addition, the effects must be carefully considered if ontologies are used in
applications.

4.4.7 Benchmarking

Benchmarking ontology processing is a research field that will become more and more
important as ontologies are processed as part of more and more applications. Although,
some progress has been made about methodological generation strategies for artificial
benchmarks, due to the nature of ontology processing w.r.t. average-case behavior, ad-
ditional research is still necessary to allow for the assessment of different techniques and
architectural compromises that underly new-generation ontology processing systems with
multi-processor architectures as well as multi-client asynchronous access as usually em-
ployed in loosely coupled systems of the future.

5 Ontology Integration and Merging

The acceptance of the Web Ontology Language (OWL) [PSHH04, SWM04] as a standard
will facilitate the proliferation of independently developed ontologies. In this scenario,
different ontologies need to be confronted and related to each other, either to produce
a single integrated and reconciled ontology that deals with a larger domain of interest
or to establish a connection, with a precise semantics, between the different ontologies,
which remain distinct. Often, ontologies to be integrated have been developed by different
groups of experts and may present mismatches that need to be reconciled. Thus, their
integration may require a previous reconciliation of the terms they contain.

In the last few years a rapidly growing body of work has been developed under the
names of Ontology Mapping and Alignment, Ontology Merging and Ontology Integra-
tion [KS03b, Noy04]. This work is very diverse and has been originated from different
communities. Given this diversity, it is difficult to identify and formalize the problems
to be solved and to comprehensively integrate the various approaches into a common
framework.

However, a bold divide into the different approaches available in the literature could
be presented as follows:

1. methods for (semi-automatically) detecting correspondences between terms in the
signatures of the ontologies to be integrated;

2. frameworks and formalisms for representing connections and correspondences be-
tween ontologies;

3. methods for assessing the consequences of the integration.

We briefly survey these different categories

c©2005/TONES – Dec. 29, 2005 39/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

5.1 Methods and Tools for Detecting Correspondences between
Ontologies

Many researchers in the Semantic Web and Knowledge Engineering communities agree
that discovering correspondences between terms in different ontologies is a crucial prob-
lem. Sometimes two ontologies refer to similar or related topics but do not have a common
vocabulary, although many terms they contain are related. Often, ontologies are too large
and complex for humans to manually establish these correspondences.

Current practices for discovering correspondences (or mappings) between ontologies
comprise a large number of techniques developed by various communities, such as Machine
Learning and Linguistics. These methods are based on different heuristics and highly
overlap with the techniques traditionally used by the database community for integrating
database schemas [RB01, DH05].

In general, the existing methodologies for (semi)automatic mapping discovery accept
as input a set of ontologies to be integrated and return a set of correspondences between
the entities in their respective signatures. Most of the existing approaches proposed in the
literature rely on some notion of similarity and consist of roughly 4 stages, as identified
by Ehrig and Staab [ES04]:

1. Transformation of the initial representation of the input into an adequate format.

2. Identification of the search space.

3. Computation of the similarity values between candidate mappings.

4. If several similarity values are obtained (typically using different heuristics) for a
candidate mapping, aggregation of the different values into a single similarity value.

5. Computation of the mappings from the obtained similarity values.

Some algorithms perform several iterations of the steps 1)–5) in order to refine the
results.

In what follows, we survey the different techniques proposed in the literature. For
more details, we refer the interested reader to [KS03b, Noy04].

1. The PROMPT and ANCHORPROMPT algorithms [NM03] were originally de-
signed for assisting knowledge engineers in the process of merging and aligning on-
tologies. The system provides different heuristics for suggesting mappings to the
users and identifying the concepts and roles to be merged. The heuristic techniques
used to provide the suggestions range from string matching methods to algorithms
that try to find structural similarities in the definitions of concepts. The system also
takes into consideration the manual correspondences potentially identified by the
users. The main limitation of both PROMPT and ANCHORPROMPT is that the
heuristics used do not take into consideration most of the expressive power provided
by modern ontology languages, such as OWL-DL.

c©2005/TONES – Dec. 29, 2005 40/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

2. The FCA-Merge [SM01] method for ontology merging is based on Formal Con-
cept Analysis techniques. The approach taken by the authors is “extensional”, in
the sense that it is based on objects/individuals which appear in both ontologies.
Concepts having the same individuals are then supposed to be merged. Thus, the
method heavily relies on the availability of instances in the ontologies to be merged.
The Formal Concept Analysis techniques employed by the system allow to derive
conceptual hierarchies from data tables. The ontology concepts are then clustered
and the concept lattice is pruned accordingly. Concepts generating the same cluster
are suggested to be merged. The generation of the merged ontology from the pruned
concept lattice is semi-automatic and requires human interaction. The knowledge
engineer is responsible for resolving possible conflicts and duplicates. A number of
heuristics are used for assisting such a process.

3. The GLUE [DMDH02] system uses machine learning techniques for discovering
mappings. Given two ontologies to be merged, for each concept in one ontology
GLUE finds the most similar concept in the other ontology. GLUE uses multiple
learning techniques for establishing concept similarity that exploit the information
stored in both the TBox and the data. The similarity measures that can be employed
are definable solely on the joint probability distribution of the concepts involved.

4. The IF-MAP technique, presented in [KS03a], is an automatic method for discov-
ering mappings between ontologies. The IF-MAP algorithms are grounded on the
theory of information flow. The mappings are formalized in terms of logic infomor-
phisms. The IF-MAP tool works in four main steps: 1) Ontology harvesting; 2)
Translation; 3) Infomorphism generation and 4) Display of results. In the ontol-
ogy harvesting step, ontologies are collected across the Web. These ontologies can
be represented in different formats and thus the need for an ontology translation
step. The algorithm then tries to establish logic informorphisms between two on-
tologies and the results are stored in an RDF knowledge base for future reference
and maintenance reasons.

5. The ONION system [MW02] provides a generator of mapping (articulation) rules
between ontologies. These rules are established manually with the help of a library of
heuristic matchers. A human expert is in charge of validating the matches between
concepts in the ontologies to be integrated and a learning algorithm is introduced
that takes advantage of user’s feedback in order to generate better mappings in
future integrations.

6. Ehrig and Staab [ES04] present QOM, a mapping generation algorithm, and argue
its computational efficiency and the substantial quality of the obtained mappings
evaluated upon expert validation. The QOM algorithm runs in O(n log n) in the
worst-case, with n being the size of the signature of the ontologies to be inte-
grated. The ontologies accepted as an input are constrained to be represented in
RDF-Schema and thus are pretty light-weight. Mappings are defined in terms of
a correspondence partial function between the signatures (atomic concepts, roles,
and individuals) of the input ontologies. The mappings are established between en-
tities with the same ontological status (i.e., concepts to concepts, roles to roles, and

c©2005/TONES – Dec. 29, 2005 41/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

individuals to individuals). The authors propose a similarity measure between enti-
ties, based on different heuristics. In order to optimize the process, QOM avoids a
complete pair-wise comparison of class hierarchies and uses an incomplete top-down
strategy. Bijection is always enforced to the mapping function.

7. Finally, in [PDYP05] the authors present a methodology for ontology mapping based
on BayesOWL, a probabilistic framework for handling uncertainty on the Semantic
Web. The ontologies to be integrated are translated into Bayesian Networks. A
concept mapping module takes a set of learned similarities between concepts as
input and computes the mappings as a result of reasoning across the Bayesian
Networks.

5.2 Frameworks for Representing Connections and Correspon-
dences Between Ontologies

Once a set of mappings have been obtained, the ontologies to be integrated typically con-
tain a common signature. In some frameworks, the terms in the common signature of the
input ontologies are given a special semantics. In this section, we develop a comprehensive
review of the different semantics proposed in the literature.

5.2.1 Distributed Description Logics

Borgida and Serafini [BS03] propose the Distributed Description Logics (DDL) formal-
ism for representing the mappings between expressive DL ontologies. The particular-
ization of DDLs to OWL resulted in an extension of Web Ontology Language, called
C-OWL [BGvHS03].

Distributed Description Logics were devised for combining different DL knowledge
bases in a loosely coupled information system. The idea of the combination is to preserve
the “identity” and independence of each local ontology. The coupling is established by
allowing a new set of inter-ontology axioms, called bridge rules. From the modeling point
of view, bridge rules have been conceived for establishing directional (“view dependent”)
subsumption relationships between classes and correspondences between individuals in
different ontologies.

5.2.2 E-Connections

Cuenca Grau et al. [CG05, CGPS05] propose the E-Connections framework for integrating
ontologies that deal with largely different subject matters. The E-Connections framework
is a technique for combining logical formalisms, first presented in [KLWZ04, Kut04]. E-
Connections have many desirable properties and, in particular, they are characterized by
a very robust computational behavior.

The general idea behind E-Connections is that the interpretation domains of the con-
nected knowledge bases (which are possibly written in different logical languages) are kept
disjoint and interconnected by means of link relations. The language of the E-Connection
incorporates a set of operators associated to the link relations, which talk about the
relationships between the connected knowledge bases.

c©2005/TONES – Dec. 29, 2005 42/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

From the modeling perspective, each of the connected ontologies in an E-Connection
is modeling a different application domain, while the E-Connection itself is the union
of all these domains. For example, an E-Connection could be used to model all the
relevant information referred to a certain university, and each of its component ontologies
could model, respectively, the domain of people involved in the university, the domain
of schools and departments, the domain of courses, etc. Support for E-Connections has
been provided in major Semantic Web tools, such as Manchester’s OWL-API [BLV03],
the OWL-DL reasoner Pellet [SPCG+05] and the ontology editor SWOOP [KPS+05,
KPH05] (see Section 3.3). An extension of the Web Ontology Language for supporting
E-Connections has also been proposed. In [KLWZ04] DDLs have been proven to be
subformalisms of E-Connections, yet they have pursued an independent development.

5.2.3 Further approaches

Madhavan et al. [MBDH02] propose a language, with a formal semantics, for representing
mappings. Based on the semantics, the authors identify a set of reasoning services asso-
ciated with the mappings. In the context of the proposed framework, the mappings are
understood as formulae that provide a semantic relationship between the concepts in the
ontologies to be integrated. The authors claim that the proposed framework enables map-
pings between ontologies represented in vastly different representation languages, without
first translating the models into a common language. The paper identifies a core set of
reasoning services that can be used to determine whether a mapping is adequate for a par-
ticular context, namely: 1) query answerability, 2) mapping equivalence and 3) mapping
composition.

5.3 Methods for Assessing the Consequences of the Integration

Once the correspondences between the ontologies under consideration have been found and
represented, it is of prime importance for the ontology modelers to predict, understand
and control the consequences of the integration. In particular, it often happens that,
due to the interaction between the integrated ontologies, unintended consequences are
introduced, which are often undesirable and hard to keep track of.

Therefore, there is a need to define suitable reasoning services to verify whether the
integrated ontologies behave as expected. It is also of the utmost importance to describe
the most common ontology integration scenarios for applications and identify which kinds
of consequences are desirable/undesirable in each case.

Surprisingly, as opposed to the problems of mapping discovery and mapping represen-
tation, the problem of predicting and controlling the consequences of ontology integration
has been largely overlooked by the Ontology Engineering and Semantic Web communities.

To the best of our knowledge, the problem has only been tackled, very recently,
in [GLW05]. The authors propose a set of reasoning services based on the notion of
a conservative extension of an ontology and assume that two ontologies with overlapping
signature are to be merged into a single, reconciled ontology. The authors also provide
decidability and complexity results for the proposed services, assuming that the ontologies
to be integrated are represented in the basic description logic ALC.

c©2005/TONES – Dec. 29, 2005 43/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

5.4 Open Problems and Future Directions

We have seen that the ontology integration problem can be focused from three com-
plementary perspectives, namely (i) the problem of discovering likely correspondences
between the vocabularies of the given ontologies, (ii) the problem of representing these
correspondences in a logically principled way and finally, (iii) the problem of controlling
and predicting the impact of the integration on the component ontologies.

From this problems, we believe that the latter remains mostly unexplored and requires
a thorough investigation.

On the other hand, we believe that the problem of ontology integration is strongly
dependent on the modeling paradigm adopted for the integration. Thus, for example,
different assumptions and goals may be appropriate from a modeling perspective, different
application scenarios require different kinds of coupling between the integrated ontologies.
We identify two basic ways of integrating ontologies:

1. An ontology (or set of ontologies) dealing with a certain subject matter are inte-
grated with an upper ontology, that describes more general terms, that are often
domain-independent. Several well-known ontologies have already been developed
specifically to be used as formal upper ontologies. Prominent examples are the
Suggested Upper Merged Ontology (SUMO) [NP01] and DOLCE [GGMO03]. The
IEEE Standard Upper Ontology Working Group is in the process of developing a
standard upper ontology to be used in a wide variety of applications.

2. Different ontologies describing largely different subject matters are integrated to
describe a broader subject. The maintenance and evolution of each ontology can be
then assigned to a different group of experts. This is the case of some prominent
ontologies such as the OWL-S ontologies [The05], NASA’s SWEET Ontologies and
the National Cancer Institute (NCI) Thesaurus [GFH+03]

We believe that different assumptions on the way the shared terms are used can be
adopted depending on the integration paradigm. Also, different semantic preservation
assumptions can be defined. We aim at exploring these issues in detail in the near future.

6 Ontology Interoperation

In order to achieve full interoperability among different ontologies, not only the issue of
their integration and merging, which has been faced in Section 5, is important, but other
main problems need to be addressed, such as (i) the problem of processing users’ requests,
e.g., queries, formulated over an ontology, by exploiting the entire knowledge provided by
the set of interoperating ontologies; (ii) the problem of exchanging knowledge and data
between autonomous and independent ontologies; (iii) the problem of ontology update;
or (iv) the problem of service interoperation over the ontology-based interoperability en-
vironment. In all the above problems, the specification of how different ontologies are
connected one another plays a crucial role, i.e., any possible approach strongly depends
on the form of the mapping that specifies the semantic relationship between the ontolo-
gies. Therefore, the issues of definition, discovery, composition, and management of the

c©2005/TONES – Dec. 29, 2005 44/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

mapping, which have been faced in the section on ontology integration, are crucial for
ontology interoperability and orthogonal to the problems listed above.

In the following, we consider the research fields which constitute the scientific base
over which relies the achievement of ontologies interoperation. We introduce the main
characteristics of each of such fields, survey the state of the art, and describe the impact
of having ontologies, highlighting what have been done in the literature for such a scenario
and what still needs investigation. Before this, we start with a brief description on how
data management is evolved during the years in order to introduce the scientific contexts
which are the object of our investigation. Finally, We conclude this section by grouping
together open problems and possible research directions.

6.1 Data management

Data management systems have been continuously evolving during the years to respond
to customer demand and the new market requirements. Starting from the late 80s, cen-
tralized systems, which had often produced huge, monolithic, and generally inefficient
databases, had been replaced by decentralized systems in which data are maintained in
different sites with autonomous storage and computation capabilities. All such systems
are characterized by an architecture in which data returned to a user query might be not
physically stored at the site queried by the user. In distributed databases, decentralization
of data is generally achieved to enhance system performance, and it is precisely designed
and controlled. However, such an architecture is not able to support the integration of
previously existing systems, where data dispersed over several sources are required to be
accessed in a centralized and uniform way. Database federation tools enable data from
multiple heterogeneous data sources to appear as if it was contained in a single federated
database. Such tools provide mechanisms which mask the native characteristics of each
source and represent it in a common format, thus enabling a centralized and transparent
data access. Mediator-based data integration systems provide in addition the capabil-
ity of defining a global schema representing the unified view of the application domain,
which is related to the sources through a suitable mapping establishing a semantic rela-
tionship between them. Here, the integration can be performed in a declarative way, and
query answering is by means of powerful mechanisms and advanced techniques. Actually,
mediator-based data integration systems represent the first attempt to achieve seman-
tic interoperability among different (pre-existing) data management systems. Therefore,
they are the starting point of our investigation.

6.2 Mediator-based Semantic Interoperability

6.2.1 The problem

The goal of mediator-based data integration systems is to provide clients with the access
to data stored in heterogeneous and autonomous sources, without the need to know the
physical characteristics of such sources and the precise location of the data. Starting from
the late 90s, research in this field has mostly focused on declarative approaches [Ull97,
Len02] (as opposed to procedural approaches), where the mediator-based data integration

c©2005/TONES – Dec. 29, 2005 45/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Global schema

Sources

Query Answer(Q)

Figure 1: Mediator-based data integration system

system exports to the user a global reconciled view of the data (called global schema) in
terms of which user requests are formulated, and the system maintains a declarative
specification (i.e., a mapping) of the interrelationships between the global schema and the
data at the sources, as shown in Figure 1.

Two basic approaches for specifying the mapping have been proposed in the literature.
The first approach, called global-as-view (GAV), requires that a view, i.e., a query, over
the sources is associated with every element of the global schema, so that its meaning
is specified in terms of the data residing at the sources [GMPQ+97, TRV98, GBMS99].
Conversely, the second approach, called local-as-view (LAV), requires the sources to be
defined as views over the global schema [KLSS95, DG97, CDGL+01b]. A third approach,
which accounts for both GAV and LAV mappings, is called GLAV [FLM99]. A further
generalization of this, described in [Len02], considers mappings constituted by assertions
in which a query over the global schema is put in correspondence with a query over the
sources. Obviously, this is the most general form of mapping among the ones listed above.
However, data integration under such form of mapping is still largely unexplored.

Among the various problems related to data integration, the problem of answering
queries posed over the global schema is the one that has been addressed most intensively.
It is well known that this aspect calls for addressing the problem of query processing
using views [Ull97, Len02], which concerns the issue on how to use the information about
the global schema, the mappings, and the data stored at the sources, to answer the user
queries posed over the global schema. Often, this problem has been investigated in those
cases in which integrity constraints (ICs) are specified over the global schema. ICs allow
for enriching the representation of the integration domain, therefore constitute a powerful
tool from a modelling point of view. However, they strongly affect the query answering
process, since data stored at the sources may be in general incomplete or inconsistent
with respect to such constraints, and both such aspects need to be considered in order
to provide complete and consistent answers to user queries. With the term complete we
intend all those answers that are logically implied by the (first-order logic formalization)
of the data integration system and with the term consistent we intend the possibility of
obtaining meaningful answers also in the presence of data that contradict global integrity

c©2005/TONES – Dec. 29, 2005 46/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

constraints. Notice that according to classical first-order formalization of data integration
systems, in these cases, we should obtain any tuple as answer to any query, therefore
dealing with inconsistent data requires, in some sense, to go beyond first-order logic.
Notably, mediator-based data integration in the presence of global integrity constraints is
strongly related to the problem of data integration when the global schema is expressed
in terms of an ontology.

Query answering has been addressed in various settings, such as the rela-
tional setting under various assumptions on the languages for the mapping and
the queries [GM99, DGL00, Lev00], a global schema formulated in an expressive
conceptual data model [CDGL+98b, CDGL+01b], semistructured data sources and
schemas [CDGLV99a, CDGLV99b, CDGLV00, CDGLV02, CDGLV05], and is still the
subject of intensive investigations. In the following, we briefly describe some of the main
proposals in the field.

6.2.2 State of the art

Despite the accurate work done for precisely formalizing the problem of data integration,
first systems (developed in the middle 90s) can not be always framed in terms of the
formal framework described above.

Systems like TSIMMIS (The Stanford-IBM Manager of Multiple Information
Sources) [CGMH+94], or Garlic [CHS+95] can be essentially considered as (simple) hier-
archies of wrappers and mediators. Wrappers are modules that hide the real nature of
a data source, and present it and its data in a suitable format adopted within the sys-
tem. Each wrapper manages the access to a single source and is in charge of translating
queries over such a source in the specific language it uses, taking the answer the source
returns, and providing them to the mediators. Each mediator is in charge of perform-
ing actual integration, by triggering the wrappers in order to provide the answers to the
users’ queries, putting together data returned by the wrappers, and providing answers
to users (or feeding in turn other mediators). It has to be stressed that in TSIMMIS no
global integration is ever performed, and each mediator works in an independent manner.
As a result, for example, a certain concept may be seen in completely different and even
inconsistent ways by different mediators. This form of integration (which can be classified
within the GAV approach) can be called query-based, since each mediator supports a cer-
tain set of queries, i.e., those related to the view it provides, and is clearly characterized
by a procedural approach.

Conversely, systems like Information Manifold (IM) [LRO96, LSK95], or INFOMAS-
TER [GKD97, DGL00] follow a more declarative approach, according to which query
answering in data integration is actually considered a form of reasoning in the presence of
incomplete information. Such systems allow for the declarative specification of a global
schema, a source schema (both schemas are assumed to be relational), and a mapping
between them, which for both systems is specified according the LAV approach (queries in
the mapping are conjunctive queries). With respect to the problem of query processing,
IM adopts an algorithm for the processing of conjunctive queries, called the bucket algo-
rithm [LRO96], which suitably rewrites a user query into a union of conjunctive queries
specified over the source schema, whose evaluation over the source extension returns the

c©2005/TONES – Dec. 29, 2005 47/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

answers to the user query. Such an algorithm is proved to be sound and complete with
respect to the problem of answering user queries (under a first-order logic formalization
of the system), only in the absence of integrity constraints on the global schema, but it is
in general not complete when integrity constraints are issued on it. The procedure at the
basis of query processing in INFOMASTER is called inverse rules algorithm [DGL00].
Developed originally for user queries expressed as conjunctive queries, the inverse rules
algorithm has been then extended in INFOMASTER to handle also recursive Datalog
queries, the presence of functional dependencies over the global schema, or the presence
of limitations in accessing the sources (binding patterns). In all such cases the algorithm
is shown to be sound and complete (assuming that data at the sources are not inconsistent
with respect to global integrity constraints).

As for the GAV approach, an in-depth analysis on data integration in the presence
of integrity constraints has been carried out in IBIS (Internet-Based Information Sys-
tem) [CCDG+03]. In such a system, cases are considered (and solutions are provided)
where the global schema is relational and present key and foreign key dependencies. How-
ever, analogously to all the other systems mentioned so far, IBIS does not allow for the
integration of inconsistent data (but according to the first-order based semantics adopted
in the system, it allows for integration of only incomplete data).

In this respect, we can say that data integration systems have rarely faced the problem
of inconsistency of data in a formal and declarative way. Often, the approach adopted
to remedy to this problem has been through data cleaning [BL01b]. This approach is
procedural in nature, and is based on domain-specific transformation mechanisms applied
to the data retrieved from the sources. Only very recently first academic prototype im-
plementations have appeared, which provide declarative approaches to the treatment of
inconsistency of data, in the line of the studies on consistent query answering [ABC99].
Among the most interesting proposals, we mention the INFOMIX system heterogeneous
data sources (e.g., relational, XML, HTML) accessed through relational global schemas
over which powerful forms of integrity constraints can be issued (e.g., key, inclusion, and
exclusion dependencies), and user queries are specified in a pawerful query language (e.g.,
Datalog). Even if also the LAV approach has been studied in the INFOMIX project, the
INFOMIX prototype currently supports only GAV data integration. The query answering
technique proposed in such a system is based on query rewriting in Datalog enriched with
negation and disjunction, under stable model semantics [CLR03, GLRR05]. A setting
similar to the one considered in INFOMIX is the one at the basis of the DIS@DIS sys-
tem [CLRR04]. Even if limited in its capability of integrating sources with different data
formats (the system actually considers only relational data sources), DIS@DIS however
provides mechanisms also for integration of inconsistent data in LAV.

Among the studies on consistent query answering in data integration systems, we
also cite [BB05, BB03], where an approach similar to the one followed in INFOMIX is
adopted. However, the repair semantics considered in that papers is different from the
one adopted in INFOMIX, and, to some extent, it seems not adequate to capture also
incomplete data. A prototype system implementing the above techniques is currently
under development [BB04], but no details on implementation are available at the present
time.

Other interesting proposals on consistent query answering are the Hippo sys-

c©2005/TONES – Dec. 29, 2005 48/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

tem [CMS04b, CMS04a], and the ConQuer system [FFM05, FM05]. However, such
proposals have been essentially developed in the context of a single database system,
and therefore do not deal with all aspects of a complex data integration environment,
including source wrapping, global schema and mapping definition, data alignment and
transformation. Furthermore, w.r.t. classes of constraints and query language considered,
the Hippo and the ConQuer systems are to some extent orthogonal to the INFOMIX and
the DIS@DIS systems. They are geared towards highly efficient query answering for spe-
cific, polynomial-time classes of queries, whereas INFOMIX and DIS@DIS, instead, aim
at supporting more general, highly expressive classes of queries (including also queries
intractable under worst case complexity).

A different approach in mediator-based semantic interoperability looks at data man-
agement under the perspective of exchanging data between the sources and the global
schema. Sources are again connected by means of mappings to the global schema, but
in this case, the focus is on materializing the data flowing from the sources to the global
schema. This problem is addressed in particular by the studies on Data Exchange. In
short, Data Exchange is the problem of taking data structured under a source schema and
creating an instance of a target schema that reflects the source data as accurately as pos-
sible. Since there may be many solutions to the data exchange problem for a given source
instance, identifying universal solutions which are homomorphic to every possible solu-
tion is a crucial issue in Data Exchange. Furthermore, in order to materialize databases
which are as small as possible, ”smallest” universal solutions need to be identified. Among
several papers produced in the field, we mention [FKMP03, FKP03, ABFL04].

6.2.3 The role of ontologies

Notably, the framework at the basis of mediator-based data integration systems can be
generalized in order to deal with situation in which each source to be integrated in a
unified system presents its local ontology, and semantic integration and reconciliation of
source ontologies is required, in order to extract information from such sources. This is
the setting considered for example in [CDGL02b], where the authors propose a formal
framework for Ontology Integration Systems (OISs). Their view of a formal framework
deals with a situation where there are various local ontologies, developed independently
from each other, assisting the task to build an integrated, global ontology as a means for
extracting information from the local ones. Ontologies in their framework are expressed as
Description Logic (DL) knowledge bases, and mappings between ontologies are expressed
through suitable mechanisms based on queries, which actually correspond to the GAV
and LAV approaches adopted in data integration.

We point out that most of the work carried out so far on ontology is on which language
or which method to use to build a global ontology on the basis of the local ones [BKFH00,
DFvH+00], whereas the problem of querying an integrated ontology, i.e., a global schema
expressed in terms of an ontology, needs still further investigation. Among the first
attempts we mention [CDGL+98b, CCDGL01, CDGL+01b].

c©2005/TONES – Dec. 29, 2005 49/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

6.3 Peer-to-Peer Semantic Interoperability

6.3.1 The problem

More recently, the issue of data integration, has been investigated in the more dynamic
context of Peer-to-Peer (P2P) data computing [HIST03]. In short, a P2P system is
characterized by an architecture constituted by various autonomous nodes that hold data
and that are linked to other nodes by means of mappings. In a P2P system, each peer
provides part of the overall information available from a distributed environment, without
relying on a single global view, and acts both as a client and as a server in the system.
Moreover, the various nodes adopt a suitable infrastructure for managing information.

In recent years, the P2P paradigm has been imposing in different contexts where
the issue of cooperation, integration, and coordination between information nodes in a
networked environment assumes a crucial role, including the Semantic Web [HH01], Grid
computing, service oriented computing and distributed agent systems [PKY03, HBCS03].
In all these systems, the problem of interoperability still needs deep investigation, and
the role of ontologies and the contribution to semantic integration that they can provide
have still to be addressed.

6.3.2 State of the art

P2P systems have recently become popular for content sharing, and a number of different
approaches have been studied to perform content retrieval in such networks (e.g., adapta-
tion, deterministic placement of contents) [CMH+00, WDKF02]. In particular, the P2P
paradigm was made popular by Napster, which employed a centralized database with
references to the information items (files) on the peers. Gnutella, another well-known
P2P system, has no central database, and is based on a communication-intensive search
mechanism. More recently, a Gnutella-compatible P2P system, called Gridella [APHS02],
has been proposed, which follows the so-called Peer-Grid (P-Grid) approach. A P-Grid
is a virtual binary tree that distributes replication over community of peers and supports
efficient search. P-Grid’s search structure is completely decentralized, supports local in-
teractions between peers, uses randomized algorithms for access and search, and ensures
robustness of search against node failures.

As pointed out in [GHI+01], current P2P systems focus strictly on handling semantic-
free, large-granularity requests for objects by identifier, which both limits their utility
and restricts the techniques that might be employed to distribute the data. These cur-
rent sharing systems are largely limited to applications in which objects are described by
their name, and exhibit strong limitations in establishing complex links between peers.
To overcome these limitations, data-oriented approaches to P2P have been proposed re-
cently [HIST03, BGK+02, GHI+01]. For example, in the Piazza system [GHI+01], data
origins serve original content, peer nodes cooperate to store materialized views and an-
swer queries, nodes are connected by bandwidth-constrained links and advertise their
materialized views to share resources with other peers.

Differently from the traditional mediator-based setting, integration in data-oriented
P2P systems is not based on a global schema. Instead, each peer represents an au-
tonomous information system, and information integration is achieved by establishing

c©2005/TONES – Dec. 29, 2005 50/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

P1

Local mapping

P2

P5

P3

P4

Peer schema

Local source P2P mapping

Peer

Figure 2: P2P data integration system

P2P mappings, i.e., mappings among the various peers. Queries are posed to one peer,
and the role of query processing is to exploit both the data that are internal to the peer,
and the mappings with other peers in the system.

More formally, in a P2P data integration system [HIST03] each peer is essentially
a mediator-based data integration system, i.e., it manages a set of local data sources
semantically connected, via a local mapping, to a (virtual) global schema called the peer
schema. In addition, the specification of a peer includes a set of P2P mappings that
specify the relationships with the data exported by other peers (as shown in Figure 2).
Information in such systems can be either queried to a peer (by external users or other
peers), or exchanged between peers. In the former case, the queried peer, by exploiting
its P2P mappings, can make use of the data in the other peers for providing the answer,
whereas in the latter case, the issue emerges of materializing in a peer data retrieved by
other peers.

While in the traditional setting where a global schema is present, techniques for query
answering and data exchange have been studied and developed extensively, there is still a
fundamental lack of understanding behind the basic issues of data integration in P2P sys-
tems. Indeed, since no single actor is in charge of the whole system, it is unrealistic to as-
sume restrictions on the overall topology of the P2P mappings [HIST03, Koc02, FKMP03].
Hence, one has to take into account that the mappings may have an arbitrary structure,
possibly involving cycles among various nodes. This needs to be addressed both from the
point of view of modeling the system and characterizing its semantics, and from the point
of view of computing answers to queries posed to a peer. As for the modeling problem,
it needs to be investigated whether the usual approach of resorting to a first-order logic

c©2005/TONES – Dec. 29, 2005 51/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

interpretation of P2P mappings (followed, e.g., by [CL93, HIST03, BGK+02]), is still
appropriate in the presence of possibly cyclic mappings, or whether alternative semantic
characterizations should be adopted [CDDG+03]. As for the computational perspective,
the basic task of computing query answers in P2P systems is still largely uninvestigated.
Difficulties arise from the necessity of distributing the overall computation to the sin-
gle nodes, exploiting their local processing capabilities and the underlying technological
framework.

Although correct from a formal point of view, the usual approach of resorting to a
first-order logic interpretation of P2P mappings, has several drawbacks, both from the
modeling and from the computational perspective. Consider, for example, three central
desirable properties of P2P systems:

• Modularity : i.e., how autonomous are the various peers in a P2P system with re-
spect to the semantics. Indeed, since each peer is autonomously built and managed,
it should be clearly interpretable both alone and when involved in interconnections
with other peers. In particular, interconnections with other peers should not radi-
cally change the interpretation of the concepts expressed in the peer.

• Generality : i.e., how free we are in placing connections (P2P mappings) between
peers. This is a fundamental property, since actual interconnections among peers
are not under the control of any actor in the system.

• Decidability : i.e., are sound, complete and terminating query answering mechanisms
available? If not, it becomes critical to establish basic quality assurance of the
answers returned by the system.

Actually, these desirable properties are weakly supported by approaches based di-
rectly on FOL semantics. Indeed, such approaches essentially consider the P2P system
as a single flat logical theory. As a result, the structure of the system in terms of peers
is lost and remote interconnections may propagate constraints that have a deep impact
on the semantics of a peer. Moreover, under arbitrary P2P interconnections, query an-
swering under the first-order semantics is undecidable, even when the single peers have
an extremely restricted structure. Motivated by these observations, several authors pro-
posed suitable limitations to the form of P2P mappings, such as acyclicity, thus giving
up generality to retain decidability [HIST03, Koc02, FKMP03]. A different approach,
which does not impose limitation on the topology of the P2P system, and which aims at
guaranteeing modularity and generality of the system and at the same time decidability
of query answering is the one followed in [CDGLR04, CDGL+05b, FKLS03]. In all such
papers, an epistemic-logic interpretation of the P2P mappings, as opposed to the first-
order interpretation discussed above, is proposed, and algorithms for query processing in
P2P system (also in the presence of inconsistent data [CDGL+05b]) are given.

Analogously to the case of mediator-based data integration, in the P2P architecture
a different approach to achieve cooperation between different peers can be the one of
exchanging data between peers. Peers are again interconnected by means of mappings,
but in this case, the focus is on materializing the data flowing from one peer to another.
Whereas traditional Data Exchange has been the subject of several recent investigations,

c©2005/TONES – Dec. 29, 2005 52/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

P2P Data Exchange has so far received little attention. In [FKMT05] the problem of
deciding the existence of a solution and establishing computational complexity of such a
decision process is addressed in Peer Data Exchange, a setting in which only two peers
interact that have different roles and capabilities. However, Data Exchange in a full-
fledged P2P setting remains still unexplored.

6.3.3 The role of Ontologies

When Peers export an ontology (rather than a simple relational schema), they are also
called knowledge-based peers [SG00, CDGL+04a]. In knowledge-based peers the problem
of how to exploit the mappings between peers in order to answer queries posed to one peer
is in general a complex issue, even in very simple setting (e.g., when the whole system
is constituted by two interoperating peers). Indeed, such a problem is in general related
to the problem of finding a way to answer queries relying only on the query answering
services available at the peers. Each peer of the P2P system provides the service of
answering queries expressed over its exported schema, and in general such services are
the only basic services that we can rely upon in order to answer queries.

Consider, for example, a music sharing system, and assume that the peer SongUniverse
exports both actual songs and knowledge about various types of music, e.g., the fact that
live rock songs are live performance songs. Assume now that SongUniverse stores live
songs and also knows that other live rock songs can be retrieved from the remote peer
RockPlanet. Now, when Carol visits SongUniverse to get live songs of U.K. artists, what
this peer can do is: (i) directly provide her with the live songs of U.K. artists that it
stores locally, and (ii) deduce that also live rock songs suit Carol’s needs, and reformulate
Carol’s request by asking RockPlanet about live rock songs of U.K. artists.

The above example shows that query answering on knowledge-based peers is a complex
form of query reformulation. This problem is crucial in several contexts, as, for example
data integration, in particular in the case where the global schema is expressed as an on-
tology. Recent studies on query rewriting under integrity constraints [CLR03, CCDGL04]
are strictly related to the problem of query reformulation above mentioned. Then, this
problem is of clear relevance for the Semantic Web, even if research on the Semantic Web
has focused more on the problem of ontology matching (i.e., finding the mapping be-
tween peers). The problem of reformulating queries over ontologies has been investigated
in [CDGL01a, TCS01], whereas, the problem of query reformulation over ontology-based
peers has been discussed and analyzed in [CDGL+04a].

6.4 Semantic Grid Infrastructure

Let us now turn our attention to the architectures realizing the P2P paradigm. In this re-
spect, we point out the growing importance of the notion of Grid. Grids aim at providing
a suitable infrastructure for Virtual Organizations, based on standardized services that
implement well-established and largely supported patterns, which hides the complexity
of heterogeneous data sources and handles the dynamics of the networking environment.
This motivates the current trend of modelling complex business infrastructures as Grids,
and this is why Grid technologies attract so much interest in the industry. In fact, the

c©2005/TONES – Dec. 29, 2005 53/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

Open Grid Services Architecture (OGSA) is the foundational layer for developing inte-
grated and virtualized (i.e. ”On Demand”) operating environments at IBM. In particular,
Data Grids allow seeing heterogeneous, distributed, and dynamic informational resources
as they were a single, uniform, stable, secure, and reliable database, with the aim of fa-
cilitating the application development, speed up business integration, and ultimately for
the users’ sake. Grid-based Virtual Databases are essentially loosely-coupled database
federations, which integrate heterogeneous sources, with the purpose of responding to
business demands in a flexible manner. However, as the integration logic is generally
deemed as an ”ad hoc” application, they achieve integration at a merely ”functional”
level. In other words, as they can’t rely on any sort of integrated view of source’s meta-
data (e.g. ontologies, metadata mappings), the best they can do is integrating sources
case-by-case. Virtual Organizations urge therefore on the next fundamental step, namely
Semantic Data Integration. It follows that results on P2P data integration will enable the
adoption of the Grid architecture in open and dynamic distributed systems.

Current proposals for semantic integration on Grids adopt a hierarchical and cen-
tralized architecture based on the notion of global schema built over a collection of au-
tonomous information sources, whereas no attempts to perform P2P data integration on
a Grid infrastructure exist. As far as we know, the only exception is represented by Hy-
per [CDGL+04b], a joint research initiative of University of Rome “La Sapienza” and IBM
Italia, which aims at developing principles and techniques for P2P data integration on a
Grids. In the Hyper framework each peer represents an autonomous information system,
and information integration is achieved by establishing mappings among the various peers
without resorting to any hierarchical structure. Queries are posed to one peer, and the
role of query processing is to exploit both the data that are internal to the peer, and the
mappings with other peers in the system. In the Hyper framework, the semantics of a P2P
data integration system is given in terms of epistemic logic, in the line of [CDGLR04],
and a query answering algorithm is provided which is coherent with both the semantics
and the Grid infrastructure over which the Hyper P2P framework is deployed.

6.5 Semantic Service Interoperability

6.5.1 The problem

Service Oriented Computing (SOC) is the computing paradigm that utilizes services as
fundamental elements for realizing distributed applications/solutions. Services are self-
describing, platform-agnostic computational elements that support rapid, low-cost and
easy composition of loosely coupled distributed applications. From a technical standpoint
services are modular applications that can be described, published, located and invoked
over a network: any piece of code and any application component deployed on a system
can be wrapped and transformed into a network-available service. The SOC paradigm
allows organizations to expose their core competencies declaratively, over the a variety of
networks (including the Internet), using standard (XML-based) languages and protocols,
and is facilitated by open standards.

c©2005/TONES – Dec. 29, 2005 54/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

6.5.2 State of the art

Service Oriented Computing [PG03, CLM03, ACKM04] promises to give rise to new
opportunities in developing and deploying distributed software applications, by suitably
assembling services offered by different organizations. This is facilitated by the use of
open (XML-based) standard languages (e.g., WSDL, WS-BPEL - formerly known as
BPEL4WS, WS-CDL) and protocols (such as SOAP and XML Protocol), which provide
a basic substrate for wiring together the different services constituting the distributed
application.

Supported by such a technological layer, research on service oriented computing has
mainly concentrated on (i) service description and modeling (i.e., what properties of a
service should be described, and at which abstraction level)), (ii) service discovery (i.e.,
how to efficiently query against service descriptions), (iii) service composition (i.e., how to
specify goals and constraints of a composition, how to build a composition, how to analyze
a composition), and (iv) orchestration and choreography (i.e., invocation, enactment and
monitoring of both simple and composite services) [PG03, CLM03, ACKM04].

Existing web services today support operations, which are limited to independent calls
over a network, hard-wired collaboration or predefined integration scenarios. Built on ex-
isting paradigms from distributed artificial intelligence and object-oriented approaches,
Service Oriented Architectures (SOA) are being promoted in the industry as the next
evolutionary step in software architectures [B+03]. In general, SOA is an application
architecture in which functions are defined as independent services with well-defined in-
vocable interfaces that can be called in sequences to form business processes. Built on SOA
concepts, the Semantic Web as well as Web Services technologies, Semantic Web Services
(SWS) is the most recent approach to semantic-enabled system integration [C+04]. SWS
identifies concepts, architectures and technologies to facilitate a process of intelligent
services discovery, selection, composition and invocation in a distributed environment.
Nowadays, SWS are subject of extensible research. Among several proposals, the most
interesting are WSMO [dB+04], OWL-S [The05], IRS [M+03], and METEOR-S [SMV04].

6.5.3 The role of Ontologies

In SWS, ontologies are well suited for the description of the web services provided by each
node in a networking environment and for the conceptualization of a shared understanding
of the underlying SOA. Therefore, reasoning over ontologies in order to achieve service
discovery, selection, composition and invocation in a distributed environment turns out
to be a crucial and challenging issue. In this respect, for example, query reformulation
techniques over ontologies in the P2P scenario mentioned in the above subsection, can
be also seen as providing a service-oriented architecture, where the algorithms aim at
computing the “composition” of the query answering services provided by the peers.
This problem is tackled in [TAK03]. However, a deep investigation on this matter is
still missing. Furthermore, in spite of the notion of service is considered crucial in the
Semantic Web community, there is still a fundamental lack of understanding on how
to integrating ontologies that describe static information (possibly by means of a rich
DL) with dynamic processes as described by services. First results in this directions are
reported in [BCDG+05b, BLM+05, PMBT05].

c©2005/TONES – Dec. 29, 2005 55/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

6.6 Open Problems and Future Research Directions

Many research problems related to the achievement ontology interoperation still need a
deep investigation and a clear understanding, as well as proper and effective solutions.
Below we list some of those that we consider more crucial and challenging:

• The studies on query answering, in both (mediator-based) ontology integration sys-
tems, i.e., mediator-based systems characterized by a global schema expressed in
terms of an ontology, and in ontology-based P2P systems, i.e., P2P systems in which
each peer exports an ontology to its clients. Both semantic and computational prob-
lems related to query answering need to be addressed, in order to establish which
is the more appropriate semantic characterization of the problem, provide query
answering techniques (sound and complete with respect to such characterization),
and establish computational complexity of the problem. In this respect, a desirable
property of query answering is that it is solvable in efficient, also in those cases
in which the extension of the ontology is constituted by a large amount of data.
Therefore, cases for which query answering stays polynomial with respect to data
complexity, i.e., complexity computed with respect to the size of the data (e.g.,
the size of the ABox in those cases in which the ontology is specified in terms of
a Description Logic) assume particular relevance. On the other hand, since both
queries and data schemas (TBoxes in the case of DLs ontologies) are in general
not huge, query answering procedures which are exponential w.r.t. the size of the
schema and/or the query are in general acceptable [CDGL+05b].

• The problem of ontology update, which presents semantic and computational com-
plexity problems similar to the ones described for query answering. Ontology up-
date is largely uninvestigated also for the setting of a single ontology. In the case of
multiple interoperating ontologies, however, a further difficulty is deciding how to
propagate an update among the different ontologies (e.g., from the one with which
the user interacts to the other interconnected ontologies).

• The problem of inconsistency, i.e., dealing with situations in which interoperating
ontologies are mutually inconsistent. In particular, in the context of P2P seman-
tic interoperability, inconsistency between interoperating ontology-based peers may
arise for different reasons: an ontology may result locally inconsistent because its
data (possibly coming from local sources) violate assertions specified at intensional
level (e.g., a TBox for a DL ontology); data (and knowledge) coming into a peer
from other peers may contradict assertions when combined with data locally man-
aged by the peer; data coming into a peer from different peers may result mutually
inconsistent, i.e., combined together may violate integrity constraints of the peer
schema. It is immediate to verify that inconsistency dramatically affects the ability
of the system of providing meaningful answers to queries.

• The problem of information hiding or authorization, i.e., controlling the accessibility
of the data and the knowledge of an ontology. Control on how to access data
has been recently studied under a logical perspective in the context of a single
database [ZM05]. The proposed method is based on the idea of specifying, for each

c©2005/TONES – Dec. 29, 2005 56/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

user, a set of authorized views, representing the information that the user is allowed
to access. Users still express their queries in terms of the whole database schema
(and not of the views), but only queries that can be completely rewritten using
such views are answered by the system. We think that this idea nicely captures the
logical essence of access control, and should be somehow transferred in the context
of ontology interoperation (e.g., in semantic P2P setting, where it is crucial that
each peer is able to specify data privacy policy in a declarative way).

• The problem of coordination between dynamic and static behavior in Semantic Web
Services. In spite of the notion of service is considered crucial in the Semantic Web
community, there is still a fundamental lack of understanding on how to integrat-
ing ontologies that describe static information (possibly by means of a rich DL)
with dynamic processes as described by services. First results in this directions are
reported in [BCDG+05b, BLM+05, PMBT05].

c©2005/TONES – Dec. 29, 2005 57/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

References

[AAHM00] E. Agirre, O. Ansa, E. H. Hovy, and D. Mart́ınez. Enriching very large
ontologies using the WWW. In Proc. of ECAI 2000 Workshop on Ontology
Learning, 2000.

[ABC99] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers
in inconsistent databases. In Proc. of the 18th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’99), pages 68–
79, 1999.

[ABFL04] M. Arenas, P. Barcelo, R. Fagin, and L. Libkin. Locally consistent trans-
formations and query answering in data exchange. In Proc. of the 23rd
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Sys-
tems (PODS 2004), pages 229–240, 2004.

[Abr74] J. R. Abrial. Data semantics. In J. W. Klimbie and K. L. Koffeman, editors,
Data Base Management, pages 1–59. North-Holland Publ. Co., 1974.

[ACKM04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts,
Architectures and Applications. Springer, 2004.

[AdMRV02] P. Auillans, P. O. de Mendez, P. Rosenstiehl, and B. Vatant. A formal model
for Topic Maps. In Proc. of the 1st Int. Semantic Web Conf. (ISWC 2002),
volume 2342 of Lecture Notes in Computer Science, pages 69–83. Springer,
2002.

[AF82] J. F. Allen and A. M. Frisch. What’s in a Semantic Network? In Proc.
of the 20th Conf. of the Association for Computational Linguistics, pages
19–27, Toronto (Canada), 1982.

[AH87] S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACM
Trans. on Database Systems, 12(4):297–314, 1987.

[AM02] E. Alfonseca and S. Manandhar. Extending a lexical ontology by a combi-
nation of distributional semantics signatures. In Proc. of the 13th Int. Conf.
on Knowledge Engineering and Knowledge Management – Ontologies and
the Semantic Web (EKAW 2002), pages 1–7, 2002.

[APHS02] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Improving data
access in P2P systems. IEEE Internet Computing, 2002.

[B+01] K. Baclawski et al. Extending UML to support ontology engineering for
the Semantic Web. In Proc. of the 4th Int. Conf. on the Unified Modeling
Language (UML 2001), pages 342–360, 2001.

[B+03] K. Brown et al. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison Wesley Publ. Co., 2003.

c©2005/TONES – Dec. 29, 2005 58/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[Baa91] F. Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Proc. of the 12th Int. Joint Conf.
on Artificial Intelligence (IJCAI’91), 1991.

[BB03] L. Bravo and L. Bertossi. Logic programming for consistently querying
data integration systems. In Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2003), pages 10–15, 2003.

[BB04] L. Bertossi and L. Bravo. Consistent query answering under inclusion de-
pendencies. In Proc. of the Annual IBM Center for Advanced Studies Cofer-
ence (CASCON 2004), 2004.

[BB05] L. Bravo and L. Bertossi. Disjunctive deductive databases for computing
certain and consistent answers to queries from mediated data integration
systems. J. of Applied Logic – Special Issue on Logic-based Methods for
Information Integration, 3(2):329–367, 2005.

[BBK01] F. Baader, S. Brandt, and R. Küsters. Matching under side conditions
in description logics. In Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001), pages 213–218, 2001.

[BC99] M. Berland and E. Charniak. Finding parts in very large corpora. In Proc. of
the 37th Annual Meeting of the Association for Computational Linguistics
(ACL’99), pages 57–64, 1999.

[BCDG05a] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class
diagrams. Artificial Intelligence, 168(1–2):70–118, 2005.

[BCDG+05b] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Auto-
matic composition of transition-based Semantic Web services with messag-
ing. In Proc. of the 31st Int. Conf. on Very Large Data Bases (VLDB 2005),
pages 613–624, 2005.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion and Applications. Cambridge University Press, 2003.

[BCN92] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design, an
Entity-Relationship Approach. Benjamin and Cummings Publ. Co., 1992.

[BDS93] M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in ter-
minological knowledge representation systems. J. of Artificial Intelligence
Research, 1:109–138, 1993.

[BFH+94] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An em-
pirical analysis of optimization techniques for terminological representation
systems or: Making KRIS get a move on. Applied Artificial Intelligence.
Special Issue on Knowledge Base Management, 4:109–132, 1994.

c©2005/TONES – Dec. 29, 2005 59/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[BFH+99] A. Borgida, E. Franconi, I. Horrocks, D. L. McGuinness, and P. F. Patel-
Schneider. Explaining ALC subsumption. In Proc. of the 1999 Description
Logic Workshop (DL’99). CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/Vol-22/, 1999.

[BG04] D. Brickley and R. V. Guha. RDF vocabulary description language
1.0: RDF Schema – W3C recommendation. Technical report, World
Wide Web Consortium, Feb. 2004. Available at http://www.w3.org/TR/

rdf-schema/.

[BGK+02] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Ser-
afini, and I. Zaihrayeu. Data management for peer-to-peer computing:
A vision. In Proc. of the 5th Int. Workshop on the Web and Databases
(WebDB 2002), 2002.

[BGvHS03] P. Bouquet, F. Giunchiglia, F. van Harmelen, and L. Serafini. C-OWL:
Contextualizing ontologies. In Proc. of the 2nd Int. Semantic Web Conf.
(ISWC 2003), 2003.

[BH91a] F. Baader and P. Hanschke. A schema for integrating concrete domains
into concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI’91), pages 452–457, 1991.

[BH91b] F. Baader and B. Hollunder. KRIS: Knowledge Representation and
Inference System. SIGART Bull., 2(3):8–14, 1991.

[BH92] F. Baader and B. Hollunder. Embedding defaults into terminological knowl-
edge representation formalisms. In Proc. of the 3rd Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning (KR’92), pages 306–317.
Morgan Kaufmann, 1992.

[BH95a] F. Baader and B. Hollunder. Embedding defaults into terminological knowl-
edge representation formalisms. J. of Automated Reasoning, 14:149–180,
1995.

[BH95b] F. Baader and B. Hollunder. Priorities on defaults with prerequisites and
their application in treating specificity in terminological default logic. J. of
Automated Reasoning, 14:41–68, 1995.

[BHGS01] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A Reason-
able ontology editor for the semantic web. In Proc. of the Joint Ger-
man/Austrian Conf. on Artificial Intelligence (KI 2001), number 2174 in
Lecture Notes in Artificial Intelligence, pages 396–408. Springer, 2001. Ap-
peared also in Proc. of the 2001 Description Logic Workshop (DL 2001).

[BHLW03] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to automata
for description logics. Fundamenta Informaticae, 57:1–33, 2003.

c©2005/TONES – Dec. 29, 2005 60/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[BHN+92] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. An
empirical analysis of optimization techniques for terminological representa-
tion systems. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’92), pages 270–281. Morgan Kaufmann,
1992.

[BK98] F. Baader and R. Küsters. Computing the least common subsumer and
the most specific concept in the presence of cyclic ALN -concept descrip-
tions. In Proc. of the 22nd German Annual Conf. on Artificial Intelligence
(KI’98), volume 1504 of Lecture Notes in Computer Science, pages 129–140.
Springer, 1998.

[BK00] F. Baader and R. Küsters. Matching in description logics with existential
restrictions. In Proc. of the 7th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2000), pages 261–272, 2000.

[BK01] F. Baader and R. Küsters. Unification in a description logic with transitive
closure of roles. In R. Nieuwenhuis and A. Voronkov, editors, Proc. of the 8th
Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 2001), volume 2250 of Lecture Notes in Computer Science, pages
217–232. Springer, 2001.

[BKBM99] F. Baader, R. Küsters, A. Borgida, and D. L. McGuinness. Matching in
description logics. J. of Logic and Computation, 9(3):411–447, 1999.

[BKFH00] J. Broekstra, M. Klein, D. Fensel, and I. Horrocks. Adding formal semantics
to the Web: building on top of RDF Schema. In Proc. of the ECDL 2000
Workshop on the Semantic Web, 2000.

[BKM99] F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers
in description logics with existential restrictions. In Proc. of the 16th Int.
Joint Conf. on Artificial Intelligence (IJCAI’99), pages 96–101, 1999.

[BKW03] F. Baader, R. Küsters, and F. Wolter. Extensions to description logics. In
Baader et al. [BCM+03], chapter 6, pages 219–261.

[BL85] R. J. Brachman and H. J. Levesque, editors. Readings in Knowledge Rep-
resentation. Morgan Kaufmann, 1985.

[BL01a] T. Berners Lee. Conceptual Graphs and the Semantic Web. Available at
http://www.w3.org/DesignIssues/CG.html, 2001.

[BL01b] M. Bouzeghoub and M. Lenzerini. Introduction to the special issue on data
extraction, cleaning, and reconciliation. Information Systems, 26(8):535–
536, 2001.

[BLC96] A. Bernaras, I. Laresgoiti, and J. M. Corera. Building and reusing ontologies
for electrical network applications. In Proc. of the 12th Eur. Conf. on
Artificial Intelligence (ECAI’96), pages 298–302, 1996.

c©2005/TONES – Dec. 29, 2005 61/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[BLHL01] T. Berners Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, May 2001.

[BLM+05] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating
description logics and action formalisms: First results. In Proc. of the 20th
Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 572–577, 2005.

[BLV03] S. Bechhofer, P. Lord, and R. Volz. Cooking the Semantic Web with the
OWL API. In Proc. of the 2nd Int. Semantic Web Conf. (ISWC 2003),
2003.

[BMC03] S. Bechhofer, R. Möller, and P. Crowther. The DIG description logic inter-
face. In Proc. of the 2003 Description Logic Workshop (DL 2003), 2003.

[BN01] F. Baader and P. Narendran. Unification of concepts terms in description
logics. J. of Symbolic Computation, 31(3):277–305, 2001.

[BN03] F. Baader and W. Nutt. Basic description logics. In Baader et al. [BCM+03],
chapter 2, pages 43–95.

[BPGL85] R. J. Brachman, V. Pigman Gilbert, and H. J. Levesque. An essential hybrid
reasoning system: Knowledge and symbol level accounts in KRYPTON. In
Proc. of the 9th Int. Joint Conf. on Artificial Intelligence (IJCAI’85), pages
532–539, 1985.

[BPS94] A. Borgida and P. F. Patel-Schneider. A semantics and complete algo-
rithm for subsumption in the CLASSIC description logic. J. of Artificial
Intelligence Research, 1:277–308, 1994.

[BPSM98] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0 — W3C recommendation. Technical report, World
Wide Web Consortium, 1998. Available at http://www.w3.org/TR/1998/
REC-xml-19980210.

[Bra79] R. J. Brachman. On the epistemological status of semantic networks. In
N. V. Findler, editor, Associative Networks, pages 3–50. Academic Press,
1979. Republished in [BL85].

[Bra83] R. J. Brachman. What IS-A is and isn’t. IEEE Computer, 16(10):30–36,
1983.

[BS01] F. Baader and U. Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69(1):5–40, 2001.

[BS03] A. Borgida and L. Serafini. Distributed description logics: Assimilating
information from peer sources. J. on Data Semantics, 1:153–184, 2003.

c©2005/TONES – Dec. 29, 2005 62/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[BvHH+04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language
reference – W3C recommendation. Technical report, World Wide Web
Consortium, Feb. 2004. Available at http://www.w3.org/TR/owl-ref/.

[C+04] L. Cabral et al. Approaches to Semantic Web services: An overview
and comparisons. In Proc. of the European Semantic Web Symposium
(ESWS 2004), 2004.

[CCDG+03] A. Cal̀ı, D. Calvanese, G. De Giacomo, M. Lenzerini, P. Naggar, and F. Ver-
nacotola. IBIS: Semantic data integration at work. In Proc. of the 15th Int.
Conf. on Advanced Information Systems Engineering (CAiSE 2003), pages
79–94, 2003.

[CCDGL01] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Accessing data
integration systems through conceptual schemas. In Proc. of the 20th Int.
Conf. on Conceptual Modeling (ER 2001), pages 270–284, 2001.

[CCDGL04] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration
under integrity constraints. Information Systems, 29:147–163, 2004.

[CDDG+03] D. Calvanese, E. Damaggio, G. De Giacomo, M. Lenzerini, and R. Rosati.
Semantic data integration in P2P systems. In Proc. of the Int. Work-
shop on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P 2003), 2003.

[CDG03] D. Calvanese and G. De Giacomo. Expressive description logics. In Baader
et al. [BCM+03], chapter 5, pages 178–218.

[CDGL98a] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of
query containment under constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98),
pages 149–158, 1998.

[CDGL+98b] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.
Description logic framework for information integration. In Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 2–13, 1998.

[CDGL00] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using
views over description logics knowledge bases. In Proc. of the 17th Nat.
Conf. on Artificial Intelligence (AAAI 2000), pages 386–391, 2000.

[CDGL01a] D. Calvanese, G. De Giacomo, and M. Lenzerini. A framework for on-
tology integration. In Proc. of the 2001 Int. Semantic Web Working
Symposium (SWWS 2001), pages 303–316, 2001. Available at http:

//www.semanticweb.org/SWWS/program/full/SWWSProceedings.pdf.

c©2005/TONES – Dec. 29, 2005 63/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[CDGL+01b] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.
Data integration in data warehousing. Int. J. of Cooperative Information
Systems, 10(3):237–271, 2001.

[CDGL02a] D. Calvanese, G. De Giacomo, and M. Lenzerini. 2ATAs make DLs easy. In
Proc. of the 2002 Description Logic Workshop (DL 2002), pages 107–118.
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-53/,
2002.

[CDGL02b] D. Calvanese, G. De Giacomo, and M. Lenzerini. A framework for ontology
integration. In I. Cruz, S. Decker, J. Euzenat, and D. McGuinness, editors,
The Emerging Semantic Web — Selected Papers from the First Semantic
Web Working Symposium, pages 201–214. IOS Press, 2002.

[CDGL+04a] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
What to ask to a peer: Ontology-based query reformulation. In Proc. of the
9th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2004), pages 469–478, 2004.

[CDGL+04b] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and G. Vetere.
DL-Lite: Practical reasoning for rich DLs. In Proc. of the 2004 Descrip-
tion Logic Workshop (DL 2004). CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-104/, 2004.

[CDGL+05a] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Data complexity of query answering in description logics. In Proc. of the
2005 Description Logic Workshop (DL 2005). CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-147/, 2005.

[CDGL+05b] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
DL-Lite: Tractable description logics for ontologies. In Proc. of the 20th
Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

[CDGLN01] D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning
in expressive description logics. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume II, chapter 23, pages 1581–1634.
Elsevier Science Publishers, 2001.

[CDGLR04] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical founda-
tions of peer-to-peer data integration. In Proc. of the 23rd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2004),
pages 241–251, 2004.

[CDGLV99a] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Query answering
using views for data integration over the web. In Proc. of the 2nd Int.
Workshop on the Web and Databases (WebDB’99), pages 73–78, 1999.

c©2005/TONES – Dec. 29, 2005 64/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[CDGLV99b] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewrit-
ing of regular expressions and regular path queries. In Proc. of the 18th
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Sys-
tems (PODS’99), pages 194–204, 1999.

[CDGLV00] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Query
processing using views for regular path queries with inverse. In Proc. of the
19th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2000), pages 58–66, 2000.

[CDGLV02] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting of
regular expressions and regular path queries. J. of Computer and System
Sciences, 64(3):443–465, 2002.

[CDGLV05] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-
based query processing: On the relationship between rewriting, answer-
ing and losslessness. In Proc. of the 10th Int. Conf. on Database Theory
(ICDT 2005), volume 3363 of Lecture Notes in Computer Science, pages
321–336. Springer, 2005.

[CFF+98] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. Rice. OKBC:
A programmatic foundation for knowledge base interoperability. In Proc.
of the 15th Nat. Conf. on Artificial Intelligence (AAAI’98), pages 600–607,
1998.

[CFFK98] V. K. Chaudhri, A. Farquhar, R. Fikes, and P. D. Karp. Open Knowledge
Base Connectivity 2.0. Technical Report KSL-09-06, Stanford University
Knowledge Systems Laboratory, 1998.

[CG05] B. Cuenca Grau. Combination and Integration of Ontologies on the Seman-
tic Web. PhD thesis, Universidad de Valencia, 2005.

[CGMH+94] S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-
stantinou, J. D. Ullman, and J. Widom. The TSIMMIS project: Integra-
tion of heterogeneous information sources. In Proc. of the 10th Meeting of
the Information Processing Society of Japan (IPSJ’94), pages 7–18, 1994.

[CGPS05] B. Cuenca Grau, B. Parsia, and E. Sirin. Combining OWL ontologies using
E-connections. J. of Web Semantics, 2005. In Press.

[CH94] W. W. Cohen and H. Hirsh. Learning the CLASSIC description logics:
Theorethical and experimental results. In Proc. of the 4th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR’94), pages
121–133, 1994.

[Che76] P. P. Chen. The Entity-Relationship model: Toward a unified view of data.
ACM Trans. on Database Systems, 1(1):9–36, Mar. 1976.

c©2005/TONES – Dec. 29, 2005 65/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[CHS+95] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fa-
gin, M. Flickner, A. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H.
Williams, and E. L. Wimmers. Towards heterogeneous multimedia infor-
mation systems: The Garlic approach. In Proc. of the 5th Int. Workshop
on Research Issues in Data Engineering – Distributed Object Management
(RIDE-DOM’95), pages 124–131. IEEE Computer Society Press, 1995.

[CHS05] P. Cimiano, A. Hotho, and S. Staab. Learning concept hierarchies from text
corpora using formal concept analysis. J. of Artificial Intelligence Research,
24:305–339, 2005.

[CHW05] C. Chen, V. Haarslev, and J. Wang. LAS: Extending Racer by a Large ABox
Store. In Proc. of the 2005 Description Logic Workshop (DL 2005). CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/Vol-147/, 2005.

[CL93] T. Catarci and M. Lenzerini. Representing and using interschema knowl-
edge in cooperative information systems. J. of Intelligent and Cooperative
Information Systems, 2(4):375–398, 1993.

[CLM03] J. Chung, K. Lin, and R. Mathieu. Introduction to the special issue on web
service computing. IEEE Computer, 36(10), 2003.

[CLN99] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based represen-
tation formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

[CLR03] A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under
constraints in data integration systems. In Proc. of the 18th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2003), pages 16–21, 2003.

[CLRR04] A. Cal̀ı, D. Lembo, R. Rosati, and M. Ruzzi. Experimenting data integra-
tion with DIS@DIS. In Proc. of the 16th Int. Conf. on Advanced Informa-
tion Systems Engineering (CAiSE 2004), volume 3084 of Lecture Notes in
Computer Science, pages 51–56. Springer, 2004.

[CLS05] Common Logic Standard, 2005. Official ISO FCD draft available at http:
//philebus.tamu.edu/cl/.

[CM92] M. Chein and M.-L. Mugnier. Conceptual graphs: Fundamental notions.
Revue d’Intelligence Artificielle, 6(4):365–406, 1992.

[CMH+00] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley. Freenet: A
distributed anonymous information storage and retrieval system. In Proc.
of the Int. Workshop on Design Issues in Anonymity and Unobservability
(DIAU 2000), 2000.

[CMS04a] J. Chomicki, J. Marcinkowski, and S. Staworko. Computing consistent
query answers using conflict hypergraphs. In Proc. of the 13th Int. Conf.
on Information and Knowledge Management (CIKM 2004), pages 417–426,
2004.

c©2005/TONES – Dec. 29, 2005 66/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[CMS04b] J. Chomicki, J. Marcinkowski, and S. Staworko. Hippo: a system for com-
puting consistent query answers to a class of SQL queries. In Proc. of
the 9th Int. Conf. on Extending Database Technology (EDBT 2004), pages
841–844. Springer, 2004.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Com-
munications of the ACM, 13(6):377–387, 1970.

[CS93] M. Cadoli and M. Schaerf. A survey of complexity results for non-monotonic
logics. J. of Logic Programming, 17:127–160, 1993.

[dB+04] J. de Bruijn et al. D2V1.1. Web Service Modeling Ontology (WSMO).
Available at http://www.wsmo.org/2004/d2/v1.1/20041126/, 2004.

[DEFS99] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontol-
ogy Based Access to Distributed and Semi-Structured Information. Kluwer
Academic Publisher, 1999.

[DFvH+00] S. Decker, D. Fensel, F. van Harmelen, I. Horrocks, S. Melnik, M. Klein, and
J. Broekstra. Knowledge representation on the web. In Proc. of the 2000
Description Logic Workshop (DL 2000), pages 89–97. CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-33/, 2000.

[DG95] G. De Giacomo. Decidability of Class-Based Knowledge Representation
Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Uni-
versità di Roma “La Sapienza”, 1995.

[DG97] O. M. Duschka and M. R. Genesereth. Answering recursive queries using
views. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’97), pages 109–116, 1997.

[DGL00] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive query plans
for data integration. J. of Logic Programming, 43(1):49–73, 2000.

[DGM00] G. De Giacomo and F. Massacci. Combining deduction and model checking
into tableaux and algorithms for converse-PDL. Information and Compu-
tation, 160(1–2):117–137, 2000.

[DH05] A. Doan and A. Halevy. Semantic integration research in the database
community: A brief survey. AI Magazine, 26(1):83–94, 2005.

[DLNN97] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of
concept languages. Information and Computation, 134:1–58, 1997.

[DLNS91] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. A hybrid system
integrating Datalog and concept languages. In Proc. of the 2nd Conf. of
the Ital. Assoc. for Artificial Intelligence (AI*IA’91), volume 549 of Lec-
ture Notes in Artificial Intelligence. Springer, 1991. An extended version
appeared also in the Working Notes of the AAAI Fall Symposium on “Prin-
ciples of Hybrid Reasoning”.

c©2005/TONES – Dec. 29, 2005 67/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[DLNS94] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in con-
cept languages: From subsumption to instance checking. J. of Logic and
Computation, 4(4):423–452, 1994.

[DLNS96] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in descrip-
tion logics. In G. Brewka, editor, Principles of Knowledge Representation,
Studies in Logic, Language and Information, pages 193–238. CSLI Publi-
cations, 1996.

[DM00] F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial
Intelligence, 124(1):87–138, 2000.

[DMDH02] A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy. Learning to map
between ontologies on the Semantic Web. In Proc. of the 11th Int. World
Wide Web Conf. (WWW 2002), pages 662–673, 2002.

[Don03] F. M. Donini. Complexity of reasoning. In Baader et al. [BCM+03], chap-
ter 3, pages 96–136.

[ES04] M. Ehrig and S. Staab. QOM - Quick Ontology Mapping. In Proc. of the
3rd Int. Semantic Web Conf. (ISWC 2004), volume 3298 of Lecture Notes
in Computer Science. Springer, 2004.

[Euz95] J. Euzenat. Building consensual knowledge bases: Context and architec-
ture. In Building and Sharing Large Knowledge Bases, pages 143–155. IOP
Press, 1995.

[Euz96] J. Euzenat. Cooperative memory through cooperative creation of knowledge
bases and hyper-documents. In Proc. of 10th KAW, 1996.

[Fen01] D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce. Springer, 2001.

[FFM05] A. Fuxman, E. Fazli, and R. J. Miller. ConQuer: Efficient management
of inconsistent databases. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 155–166, 2005.

[FFMM94] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent
communication language. In N. Adam, B. Bhargava, and Y. Yesha, editors,
Proc. of the 3rd Int. Conf. on Information and Knowledge Management
(CIKM’94), pages 456–463, 1994.

[FFR96] A. Farquhar, R. Fikes, and J. Rice. The Ontolingua server: A tool for
collaborative ontology construction. Technical Report KSL-96-26, Stanford
University Knowledge Systems Laboratory, 1996.

[FGPJ97] M. Fernandez, A. Gomez-Perez, and N. Juristo. METHONTOLOGY: From
ontological art towards ontological engineering. In Proc. of the AAAI Sym-
posium on Ontological Engineering, pages 33–40, 1997.

c©2005/TONES – Dec. 29, 2005 68/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[FHH04] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL – a language for deductive
query answering on the Semantic Web. J. of Web Semantics, 2(1):19–29,
2004.

[FJDP05] T. Finin, A. Joshi, L. Ding, and R. Pan. Swoogle manual, 2005. Avail-
able at http://swoogle.umbc.edu/modules.php?name=Documents&file=
manual.

[FK85] R. Fikes and T. Kehler. The role of frame-based representation in reasoning.
Communications of the ACM, 28(9):904–920, 1985.

[FKLS03] E. Franconi, G. Kuper, A. Lopatenko, and L. Serafini. A robust logical and
computational characterisation of peer-to-peer database systems. In Proc.
of the VLDB International Workshop On Databases, Information Systems
and Peer-to-Peer Computing (DBISP2P 2003), 2003.

[FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Se-
mantics and query answering. In Proc. of the 9th Int. Conf. on Database
Theory (ICDT 2003), pages 207–224, 2003.

[FKMT05] A. Fuxman, P. G. Kolaitis, R. Miller, and W. C. Tan. Peer data exchange.
In Proc. of the 24rd ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 2005), pages 160–171, 2005.

[FKP03] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: Getting to the
core. In Proc. of the 22nd ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS 2003), pages 90–101, 2003.

[FL79] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. J. of Computer and System Sciences, 18:194–211, 1979.

[FLM99] M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integra-
tion. In Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99),
pages 67–73. AAAI Press/The MIT Press, 1999.

[FM05] A. Fuxman and R. J. Miller. First-order query rewriting for inconsistent
databases. In Proc. of the 10th Int. Conf. on Database Theory (ICDT 2005),
volume 3363 of LNCS, pages 337–351. Springer, 2005.

[FN00] E. Franconi and G. Ng. The i.com tool for intelligent conceptual model-
ing. In Proc. of the 7th Int. Workshop on Knowledge Representation meets
Databases (KRDB 2000), pages 45–53. CEUR Electronic Workshop Pro-
ceedings, http://ceur-ws.org/Vol-29/, 2000.

[FW04] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer sec-
ond edition — W3C recommendation. Technical report, World Wide
Web Consortium, 2004. Available at http://www.w3.org/TR/2004/

REC-xmlschema-0-20041028/.

c©2005/TONES – Dec. 29, 2005 69/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[GBMS99] C. H. Goh, S. Bressan, S. E. Madnick, and M. D. Siegel. Context in-
terchange: New features and formalisms for the intelligent integration of
information. ACM Trans. on Information Systems, 17(3):270–293, 1999.

[GF92] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, ver-
sion 3.0 reference manual. Technical Report Logic-92-1, Stanford University,
1992. Available at http://www.cs.umbc.edu/kse/.

[GF95] M. Grüninger and M. S. Fox. Methodology for the design and evaluation of
ontologies. In Proc. of the IJCAI’95 Workshop on Basic Ontological Issues
in Knowledge Sharing, 1995.

[GFH+03] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, and J. Oberthaler.
The National Cancer Institute’s thesaurus and ontology. J. of Web Seman-
tics, 1(1), 2003.

[GGMO03] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening Word-
Net with DOLCE. AI Magazine, 24(3):13–24, 2003.

[GHI+01] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases
do for peer-to-peer? In Proc. of the 4th Int. Workshop on the Web and
Databases (WebDB 2001), 2001.

[Gin87] M. L. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan
Kaufmann, 1987.

[GKD97] M. R. Genereseth, A. M. Keller, and O. M. Duschka. Infomaster: An
information integration system. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, pages 539–542, 1997.

[GLRR05] L. Grieco, D. Lembo, M. Ruzzi, and R. Rosati. Consistent query answering
under key and exclusion dependencies: Algorithms and experiments. In
Proc. of the 14th Int. Conf. on Information and Knowledge Management
(CIKM 2005), pages 792–799, 2005.

[GLW05] S. Ghilardi, C. Lutz, and F. Wolter. Did i damage my ontology? A case for
conservative extensions in description logics. Technical report, Institute for
Theoretical Computer Science. Dresden University of Technology, 2005.

[GM99] G. Grahne and A. O. Mendelzon. Tableau techniques for querying infor-
mation sources through global schemas. In Proc. of the 7th Int. Conf. on
Database Theory (ICDT’99), volume 1540 of Lecture Notes in Computer
Science, pages 332–347. Springer, 1999.

[GM03] M. Grüninger and C. Menzel. Process Specification Language: Theory and
applications. AI Magazine, 24:63–74, 2003.

c©2005/TONES – Dec. 29, 2005 70/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[GMF+03] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubezy,
H. Eriksson, N. F. Noy, and S. W. Tu. The evolution of Protege: an
environment for knowledge-based systems development. Int. J. of Human-
Computer Studies, 58(1):89–123, 2003.

[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-
giv, J. D. Ullman, V. Vassalos, and J. Widom. The TSIMMIS approach
to mediation: Data models and languages. J. of Intelligent Information
Systems, 8(2):117–132, 1997.

[GPJP95] A. Gomez-Perez, N. Juristo, and J. Pazos. Evaluation and assessment of
knowledge sharing technology. In N. Mars, editor, Towards Very Large
Knowledge Bases. Knowledge Building and Knowledge Sharing 1995, pages
289–296. IOS Press, 1995.

[Gru93a] T. R. Gruber. Towards principles for the design of ontologies used for
knowledge sharing. In N. Guarino and R. Poli, editors, Formal Ontology
in Conceptual Analysis and Knowledge Representation. Kluwer Academic
Publisher, 1993.

[Gru93b] T. R. Gruber. A translation approach to portable ontology specification.
Knowledge Acquisition, 5(2):199–220, 1993.

[Gru95] T. Gruber. Towards principles for the design of ontologies used for knowl-
edge sharing. Int. J. of Human and Computer Studies, 43(5/6):907–928,
1995.

[Grü03] M. Grüninger. Guide to the ontology of the Process Specification Language.
In S. Staab and R. Studer, editors, Handbook of Ontologies, pages 575–592.
Springer, 2003.

[Gua98] N. Guarino. Formal ontology in information systems. In Proc. of the Int.
Conf. on Formal Ontology in Information Systems (FOIS’98), Frontiers in
Artificial Intelligence, pages 3–15. IOS Press, 1998.

[GW04] N. Guarino and C. A. Welty. An overview of OntoClean. In S. Staab and
R. Studer, editors, Handbook on Ontologies. Springer, 2004.

[GWGvS04] G. Guizzardi, G. Wagner, N. Guarino, and M. van Sinderen. An ontologi-
cally well-founded profile for UML conceptual models. In Proc. of the 16th
Int. Conf. on Advanced Information Systems Engineering (CAiSE 2004),
pages 112–126, 2004.

[Hay04] P. Hayes. RDF semantics – W3C recommendation. Technical report, World
Wide Web Consortium, Feb. 2004. Available at http://www.w3.org/TR/

rdf-mt/.

c©2005/TONES – Dec. 29, 2005 71/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[HBCS03] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: a look behind
the curtain. In Proc. of the 22nd ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS 2003), pages 1–14. ACM Press
and Addison Wesley, 2003.

[HH01] J. Heflin and J. Hendler. A portrait of the Semantic Web in action. IEEE
Intelligent Systems, 16(2):54–59, 2001.

[HIST03] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer
data management systems. In Proc. of the 19th IEEE Int. Conf. on Data
Engineering (ICDE 2003), pages 505–516, 2003.

[HK87] R. B. Hull and R. King. Semantic database modelling: Survey, applications
and research issues. ACM Computing Surveys, 19(3):201–260, Sept. 1987.

[HLTB04] I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The Instance Store: DL
reasoning with large numbers of individuals. In Proc. of the 2004 Descrip-
tion Logic Workshop (DL 2004). CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-104/, 2004.

[HM81] M. Hammer and D. McLeod. Database description with SDM: A semantic
database model. ACM Trans. on Database Systems, 6(3):351–386, 1981.

[HM01] V. Haarslev and R. Möller. High performance reasoning with very large
knowledge bases: A practical case study. In Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2001), pages 161–168, 2001.

[HM04] V. Haarslev and R. Möller. Optimization techniques for retrieving re-
sources described in OWL/RDF documents: First results. In Proc. of the
9th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2004), 2004.

[HMS05] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in
very expressive description logics. In Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), pages 466–471, 2005.

[Hor03] I. Horrocks. Implementation and optimisation techniques. In Baader et al.
[BCM+03], chapter 9, pages 306–346.

[HPS98] I. Horrocks and P. F. Patel-Schneider. DL systems comparison. In Proc. of
the 1998 Description Logic Workshop (DL’98), pages 55–57. CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.

[HPS99] I. Horrocks and P. F. Patel-Schneider. Optimizing description logic sub-
sumption. J. of Logic and Computation, 9(3):267–293, 1999.

[HPSvH03] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. J. of Web Seman-
tics, 1(1):7–26, 2003.

c©2005/TONES – Dec. 29, 2005 72/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[HS99] I. Horrocks and U. Sattler. A description logic with transitive and inverse
roles and role hierarchies. J. of Logic and Computation, 9(3):385–410, 1999.

[HS01] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) descrip-
tion logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001), pages 199–204, 2001.

[HS05] I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
2005.

[HST99] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive de-
scription logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors,
Proc. of the 6th Int. Conf. on Logic for Programming and Automated Rea-
soning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence,
pages 161–180. Springer, 1999.

[HST00] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the
description logic SHIQ. In D. McAllester, editor, Proc. of the 17th Int.
Conf. on Automated Deduction (CADE 2000), volume 1831 of Lecture Notes
in Computer Science, pages 482–496. Springer, 2000.

[JDM03] M. Jarrar, J. Demey, and R. Meersman. On using conceptual data modeling
for ontology engineering. J. on Data Semantics, 1:185–207, 2003.

[JLVV99] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis, editors. Funda-
mentals of Data Warehouses. Springer, 1999.

[JQC+00] M. Jarke, C. Quix, D. Calvanese, M. Lenzerini, E. Franconi, S. Ligoudis-
tianos, P. Vassiliadis, and Y. Vassiliou. Metadata-driven management of
data warehouses: The DWQ demonstrators. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, page 591, 2000.

[JU99] R. Jasper and M. Uschold. A framework for understanding and classify-
ing ontology applications. In Proc. of the 12th Workshop on Knowledge
Acquisition Modeling and Management (KAW’99), 1999.

[KBF+03] M. Klein, J. Broekstra, D. Fensel, F. van Harmelen, and I. Horrocks. On-
tologies and schema languages on the web. In D. Fensel, J. Hendler, and
H. Lieberman, editors, Spinning the Semantic Web. The MIT Press, 2003.

[KC04] G. Klyne and J. J. Carroll. Resource description framework (RDF): Con-
cepts and abstract syntax – W3C recommendation. Technical report, World
Wide Web Consortium, Feb. 2004. Available at http://www.w3.org/TR/

rdf-concepts/.

[KCT99] P. D. Karp, V. K. Chaudhri, and J. Thomere. XOL: An XML-based ontol-
ogy exchange language. Technical Report SRI AI Technical Note 559, SRI
International, Menlo Park (CA, USA), 1999.

c©2005/TONES – Dec. 29, 2005 73/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[Ken99] R. E. Kent. Conceptual Knowledge Markup Language: The central core. In
Electronic Proc. of the 12th Workshop on Knowledge Acquisition, Modeling
and Management (KAW’99), 1999.

[Ken00] R. E. Kent. The information flow foundation for conceptual knowledge
organization. In Proc. of the 6th Int. ISKO Conference on Advances in
Knowledge Organization 7, pages 111–117. Ergon Verlag, 2000.

[KFKO02] M. C. A. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology ver-
sioning and change detection on the web. In Proc. of the 13th Int. Conf. on
Knowledge Engineering and Knowledge Management – Ontologies and the
Semantic Web (EKAW 2002), volume 2473 of Lecture Notes in Computer
Science, pages 197–212. Springer, 2002.

[KKT76] L. Kerschberg, A. Klug, and D. Tsichritzis. A taxonomy of data models.
In Systems for Large Data Bases, pages 43–64. North-Holland Publ. Co.,
1976.

[KLSS95] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold.
In Proceedings of the AAAI 1995 Spring Symp. on Information Gathering
from Heterogeneous, Distributed Enviroments, pages 85–91, 1995.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical foundations of Object-Oriented
and frame-based languages. J. of the ACM, 42(4):741–843, 1995.

[KLWZ04] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-Connections of
Abstract Description Systems. Artificial Intelligence, 156(1):1–73, 2004.

[KM01] R. Küsters and R. Molitor. Approximating most specific concepts in de-
scription logics with existential restrictions. In F. Baader, G. Brewka, and
T. Eiter, editors, Proc. of the Joint German/Austrian Conf. on Artificial
Intelligence (KI 2001), volume 2174 of Lecture Notes in Artificial Intelli-
gence, pages 33–47. Springer, 2001.

[KMG95] P. D. Karp, K. L. Myers, and T. Gruber. The Generic Frame Protocol.
In Proc. of the 14th Int. Joint Conf. on Artificial Intelligence (IJCAI’95),
pages 768–774, 1995.

[KN03] M. Klein and N. F. Noy. A component-based framework for ontology evo-
lution. In Proc. of IJCAI 2003 Workshop on Ontologies and Distributed
Systems, 2003.

[Koc02] C. Koch. Query rewriting with symmetric constraints. In Proc. of the
2nd Int. Symp. on Foundations of Information and Knowledge Systems
(FoIKS 2002), volume 2284 of Lecture Notes in Computer Science, pages
130–147. Springer, 2002.

c©2005/TONES – Dec. 29, 2005 74/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[KPH05] A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web
ontologies. Int. J. on Semantic Web and Information Systems, 1(1):36–49,
2005.

[KPS+05] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, and J. Hendler.
SWOOP - a web ontology editing browser. J. of Web Semantics, 1(4),
2005.

[KPSH05] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging unsatisfiable
classes in OWL ontologies. J. of Web Semantics – Special Issue on the
Semantic Web Track of WWW 2005, 3(4), 2005.

[KS03a] Y. Kalfoglou and M. Schorlemmer. IF-Map: an ontology mapping method
based on information flow theory. J. on Data Semantics, 1:98–127, 2003.

[KS03b] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: The state of the
art. The Knowledge Engineering Review, 18:1–31, 2003.

[KSV02] O. Kupferman, U. Sattler, and M. Y. Vardi. The complexity of the graded
mu-calculus. In Proc. of the 18th Int. Conf. on Automated Deduction
(CADE 2002), 2002.

[Kut04] O. Kutz. E-Connections and Logics of Distance. PhD thesis, University of
Liverpool, 2004.

[LAHS05] C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and con-
crete domains. J. of Artificial Intelligence Research, 23:667–726, 2005.

[LB87] H. J. Levesque and R. J. Brachman. Expressiveness and tractability in
knowledge representation and reasoning. Computational Intelligence, 3:78–
93, 1987.

[Len95] D. B. Lenat. Cyc: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 38(11):32–38, 1995.

[Len02] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2002), pages 233–246, 2002.

[Lev00] A. Y. Levy. Logic-based techniques in data integration. In J. Minker, editor,
Logic Based Artificial Intelligence. Kluwer Academic Publisher, 2000.

[LG90] D. B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project. Addison Wesley Publ.
Co., 1990.

[LM05] C. Lutz and M. Milicic. A tableaux algorithm for description log-
ics with concrete domains and gcis. In Proc. of the 14th Int. Conf.
on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2005), pages 201–216, 2005.

c©2005/TONES – Dec. 29, 2005 75/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[LR98] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics
in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[LRL+97] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG:
A logic programming language for dynamic domains. J. of Logic Program-
ming, 31:59–84, 1997.

[LRO96] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogenous infor-
mation sources using source descriptions. In Proc. of the 22nd Int. Conf.
on Very Large Data Bases (VLDB’96), 1996.

[LSK95] A. Y. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation
in global information systems. J. of Intelligent Information Systems, 5:121–
143, 1995.

[Lut03] C. Lutz. Description logics with concrete domains: A survey. In P. Balbiani,
N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev, editors, Advances in Modal
Logics, volume 4. King’s College Publications, 2003.

[M+03] E. Motta et al. IRS II: A framework and infrastructure for Semantic Web
services. In Proc. of the 2nd Int. Semantic Web Conf. (ISWC 2003), 2003.

[Mae03] A. Maedche. Ontology learning for the Semantic Web. Kluwer Academic
Publisher, 2003.

[MBDH02] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y. Halevy. Representing
and reasoning about mappings between domain models. In Proc. of the 18th
Nat. Conf. on Artificial Intelligence (AAAI 2002), pages 80–86, 2002.

[MBJK90] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Repre-
senting knowledge about information systems. ACM Trans. on Information
Systems, 8(4):325–362, 1990.

[MBW80] J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong. A language facility
for designing database-intensive applications. ACM Trans. on Database
Systems, 5(2):185–207, 1980.

[McG96] D. L. McGuinness. Explaining Reasoning in Description Logics. PhD thesis,
Department of Computer Science, Rutgers University, Oct. 1996. Also
available as Rutgers Technical Report Number LCSR-TR-277.

[MH69] J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of aritificial intelligence. Machine Intelligence, 4:463–502, 1969.

[MH03] R. Möller and V. Haarslev. Description logic systems. In Baader et al.
[BCM+03], chapter 8, pages 282–305.

[Min75] M. Minsky. A framework for representing knowledge. In P. Winston, editor,
The Psychology of Computer Vision. McGraw-Hill, 1975.

c©2005/TONES – Dec. 29, 2005 76/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[MLB05] T. Meyer, K. Lee, and R. Booth. Knowledge integration for description log-
ics. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005),
pages 645–650, 2005.

[MNV02] M. Missikoff, R. Navigli, and P. Velardi. Integrated approach to web ontol-
ogy learning and engineering. IEEE Computer, 35(11):60–63, 2002.

[Mot98] E. Motta. An overview of the OCML modelling language. In Proc. of the 8th
Workshop on Knowledge Engineering Methods and Languages (KEML’98),
1998.

[MS00] A. Maedche and S. Staab. Semi-automatic engineering of ontologies from
text. In Proc. of the 12th Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE 2000), 2000.

[MS01] A. Maedche and S. Staab. Ontology learning for the Semantic Web. IEEE
Intelligent Systems, 2(16), 2001.

[MT03] M. Missikoff and F. Taglino. SymOntoX: A web-ontology tool for eBusi-
ness domains. In Proc. of the 4th Int. Conf. on Web Information Systems
Engineering (WISE 2003), pages 343–346, 2003.

[MW02] P. Mitra and G. Wiederhold. Resolving terminological heterogeneity in on-
tologies. In Proc. of the ECAI 2002 Workshop on Ontologies and Semantic
Interoperability, 2002.

[Neb90] B. Nebel. Reasoning and Revision in Hybrid Representation Systems, vol-
ume 422 of Lecture Notes in Artificial Intelligence. Springer, 1990.

[NH97] N. Noy and C. Hafner. The state of the art in ontology design. A survey
and comparative review. AI Magazine, 18(3):53–74, 1997.

[NK04] N. F. Noy and M. C. A. Klein. Ontology evolution: Not the same as schema
evolution. Knowledge and Information Systems, 6(4):428–440, 2004.

[NM03] N. Noy and M. Musen. The PROMPT suite: Interactive tools for ontology
mapping and merging. Int. J. of Human-Computer Studies, 59:983–1024,
2003.

[Noy04] N. Noy. Semantic integration: A survey on ontology-based approaches.
SIGMOD Record, 33(4):65–70, 2004.

[NP01] I. Niles and A. Pease. Towards a standard upper ontology. In Proc. of the
2nd Int. Conf. on Formal Ontology in Information Systems (FOIS 2001),
2001.

[PDYP05] R. Pan, Z. Ding, Y. Yu, and Y. Peng. A Bayesian Network approach
to ontology mapping. In Proc. of the 4th Int. Semantic Web Conf.
(ISWC 2005n), 2005.

c©2005/TONES – Dec. 29, 2005 77/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[PG03] M. Papazoglou and D. Georgakopoulos. Introduction to the special issue
on service oriented computing. Communications of the ACM, 46(10):24–28,
2003.

[PH03] J. Pan and I. Horrocks. RDFS(FA) and RDF MT: Two semantics for RDFS.
In Proc. of the 2nd Int. Semantic Web Conf. (ISWC 2003), volume 2870
of Lecture Notes in Computer Science, pages 30–46. Springer, 2003.

[PKY03] M. P. Papazoglou, B. J. Kramer, and J. Yang. Leveraging Web-services
and peer-to-peer networks. In Proc. of the 15th Int. Conf. on Advanced
Information Systems Engineering (CAiSE 2003), pages 485–501, 2003.

[PMBT05] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated composi-
tion of web services by planning at the knowledge level. In Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 1252–1259,
2005.

[Pol02] J. Pollock. Integration dirty little secret: It’s a matter of semantics.
Whitepaper, Modulant, the Interoperability Company, Feb. 2002.

[PSHH04] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Lan-
guage semantics and abstract syntax – W3C recommendation. Techni-
cal report, World Wide Web Consortium, Feb. 2004. Available at http:

//www.w3.org/TR/owl-semantics/.

[Qui68] M. R. Quillian. Semantic memory. In M. Minsky, editor, Semantic Infor-
mation Processing, pages 216–270. The MIT Press, 1968.

[RB01] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. Very Large Database J., 10(4):334–350, 2001.

[Rei84] R. Reiter. Towards a logical reconstruction of relational database theory.
In M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, editors, On Conceptual
Modeling: Perspectives from Artificial Intelligence Databases and Program-
ming Languages. Springer, 1984.

[Rei01] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. The MIT Press, 2001.

[RJB98] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison Wesley Publ. Co., 1998.

[Ros99] R. Rosati. Towards expressive KR systems integrating Datalog and de-
scription logics: Preliminary report. In Proc. of the 1999 Description Logic
Workshop (DL’99), pages 160–164. CEUR Electronic Workshop Proceed-
ings, http://ceur-ws.org/Vol-22/, 1999.

[SC03] S. Schlobach and R. Cornet. Non-standard reasoning services for the de-
bugging of description logic terminologies (extended abstract). In Proc. of
the 15th Belgium-Netherlands Conf. on Artificial Intelligence, 2003.

c©2005/TONES – Dec. 29, 2005 78/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[SCC97] K. A. Spackman, K. E. Campbell, and R. A. Cote. SNOMED RT: A refer-
ence terminology for health care. J. of the American Medical Informatics
Association, pages 640–644, 1997. Fall Symposium Supplement.

[Sch91] K. Schild. A correspondence theory for terminological logics: Preliminary
report. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI’91), pages 466–471, 1991.

[Sch93] A. Schaerf. On the complexity of the instance checking problem in con-
cept languages with existential quantification. J. of Intelligent Information
Systems, 2:265–278, 1993.

[SCM03] U. Sattler, D. Calvanese, and R. Molitor. Relationship with other for-
malisms. In Baader et al. [BCM+03], chapter 4, pages 137–177.

[SEA+02] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke.
OntoEdit: Collaborative ontology development for the Semantic Web. In
Proc. of the 1st Int. Semantic Web Conf. (ISWC 2002), volume 2342 of
Lecture Notes in Computer Science, pages 221–235. Springer, 2002.

[SG00] L. Serafini and C. Ghidini. Using wrapper agents to answer queries in
distributed information systems. In Proc. of the 1st Int. Conf. on Advances
in Information Systems (ADVIS-2000), volume 1909 of Lecture Notes in
Computer Science. Springer, 2000.

[Shi81] D. W. Shipman. The functional data model and the data language
DAPLEX. ACM Trans. on Database Systems, 6(1):140–173, 1981.

[SM01] G. Stumme and A. Maedche. FCA-Merge: Bottom-up merging of ontolo-
gies. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2001), pages 225–234, 2001.

[SMV04] A. Sheth, J. Miller, and K. Verma. METEOR-S: Semantic Web services and
processes. Available at http://lsdis.cs.uga.edu/Projects/METEOR-S/,
2004.

[Sow84] J. F. Sowa. Conceptuals Structures: Information Processing in Mind and
Machine. Addison Wesley Publ. Co., 1984.

[SPCG+05] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet:
A practical OWL-DL reasoner. Technical report, University of Maryland
Institute for Advanced Computer Studies (UMIACS), 2005.

[SPKR97] B. Swartout, R. Patil, K. Knight, and T. Russ. Towards distributed use
of large-scale ontologies. In Proc. of the AAAI Symposium on Ontological
Engineering, 1997.

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1–26, 1991.

c©2005/TONES – Dec. 29, 2005 79/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[Sta96] M. Stanley. CML: A knowledge representation language with applications
to requirements modeling. Master’s thesis, Dept. of Computer Science,
University of Toronto, 1996.

[SV01] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), pages 76–91, 2001.

[SW03] J. Siméon and P. Wadler. The essence of XML. In Proc. of the 30th
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL 2003), pages 1–13, 2003.

[SWM04] M. K. Smith, C. Welty, and D. L. McGuiness. OWL Web Ontology Lan-
guage guide – W3C recommendation. Technical report, World Wide Web
Consortium, Feb. 2004. Available at http://www.w3.org/TR/owl-guide/.

[TAK03] S. Thakkar, J.-L. Ambite, and C. A. Knoblock. A view integration approach
to dynamic composition of Web services. In Proc. of 2003 ICAPS Workshop
on Planning for Web Services, 2003.

[TCS01] Y. Tzitzikas, P. Constantopoulos, and N. Spyratos. Mediators over
ontology-based information sources. In Proc. of the 2nd Int. Conf. on Web
Information Systems Engineering (WISE 2001), pages 31–40, 2001.

[The05] The OWL Services Coalition. OWL-S: Semantic markup for web services,
2005. Available at http://www.daml.org/services/owl-s/.

[TK04] A.-Y. Turhan and C. Kissig. Sonic—Non-standard inferences go OilEd. In
Proc. of the 2nd Int. Joint Conf. on Automated Reasoning (IJCAR 2004),
volume 3097 of Lecture Notes in Computer Science, pages 321–325.
Springer, 2004.

[Tob01] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, LuFG Theoretical Computer Science,
RWTH-Aachen, Germany, 2001.

[Top02] ISO/IEC 13250, Topic Maps, 2nd edition. Available at http://www.y12.

doe.gov/sgml/sc34/document/0322_files/iso13250-2%nd-ed-v2.pdf,
2002.

[TRV98] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous
data sources with DISCO. IEEE Trans. on Knowledge and Data Engineer-
ing, 10(5):808–823, 1998.

[UG96] M. Uschold and M. Grüninger. Ontologies: Principles, methods and appli-
cations. Knowledge Sharing and Review, 11(2):93–155, 1996.

[UG04] M. Uschold and M. Grüninger. Ontologies and semantics for seamless con-
nectivity. SIGMOD Record, 33(4):58–64, 2004.

c©2005/TONES – Dec. 29, 2005 80/81 D01– v.2.2

FP6-7603 – TONES Thinking ONtologiES WP1

[UK95] M. Uschold and M. King. Towards a methodology for building ontologies. In
Proc. of the IJCAI’95 Workshop on Basic Ontological Issues in Knowledge
Sharing, 1995.

[Ull97] J. D. Ullman. Information integration using logical views. In Proc. of
the 6th Int. Conf. on Database Theory (ICDT’97), volume 1186 of Lecture
Notes in Computer Science, pages 19–40. Springer, 1997.

[Ull00] J. D. Ullman. Information integration using logical views. Theoretical
Computer Science, 239(2):189–210, 2000.

[UML05] Unified Modeling Language (UML) superstructure, version 2.0. Available
at http://www.uml.org/, Aug. 2005.

[Var82] M. Y. Vardi. The complexity of relational query languages. In Proc. of
the 14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pages
137–146, 1982.

[Var85] M. Y. Vardi. The taming of converse: Reasoning about two-way compu-
tations. In R. Parikh, editor, Proc. of the 4th Workshop on Logics of Pro-
grams, volume 193 of Lecture Notes in Computer Science, pages 413–424.
Springer, 1985.

[VW84] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. In Proc. of the 16th ACM SIGACT Symp. on Theory of
Computing (STOC’84), pages 446–455, 1984.

[VW86] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. J. of Computer and System Sciences, 32:183–221, 1986.

[WDKF02] S. R. Waterhouse, D. M. Doolin, G. Kan, and Y. Faybishenko. Distributed
search in P2P networks. IEEE Internet Computing, 6(1):68–72, 2002.

[WM05] M. Wessel and R. Möller. A high performance Semantic Web query
answering engine. In Proc. of the 2005 Description Logic Workshop
(DL 2005). CEUR Electronic Workshop Proceedings, http://ceur-ws.

org/Vol-147/, 2005.

[ZM05] Z. Zhang and A. Mendelzon. Authorization views and conditional query
containment. In Proc. of the 10th Int. Conf. on Database Theory
(ICDT 2005), 2005. To appear.

c©2005/TONES – Dec. 29, 2005 81/81 D01– v.2.2

