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Abstract

In this document we provide a structured overview of formalism for the rep-
resentation of ontologies developed in Logic and Artificial Intelligence, and survey
the state of the art in methods and techniques for automated reasoning studied in
Computational Logic. Since a more general overview of such formalisms has already
been reported as part of the deliverable D01 “State of the art survey”, here we con-
centrate on a wide family of logics, called Description Logics (DLs). DLs have been
developed over the years in Artificial Intelligence and Computational Logic to rep-
resent formally knowledge about a domain of interest in terms of objects grouped
into classes and relationships between classes. Such formalisms have been often
advocated as the formal foundation of ontologies. Indeed current ontology language
standards such as RDF/RDFS and especially OWL are based on such formalisms.
In this document, we review DLs from several points of view, laying the foundation
of the research that will be developed within the TONES Project.
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1 Introduction

In this document we provide a structured overview of formalism for the representation of
ontologies developed in Logic and Artificial Intelligence, and survey the state of the art
in methods and techniques for automated reasoning studied in Computational Logic.

In fact our overview is going to be rather technical, since a more general overview to
such formalisms has already been reported as part of the deliverable D1 “State of the art
survey”. Here we concentrate to a wide family of logics, called Description Logics (DLs)
[BCM+03], that have been developed over the years in Artificial Intelligence and Com-
putational Logic to represent formally knowledge about a domain of interest in terms of
objects grouped into classes and relationships between classes. Such formalisms have been
often advocated as the formal foundation of ontologies. Indeed current ontology language
standards such as RDF/RDFS and especially OWL are based on such formalisms.

We review DLs from several point of view in this documents, laying the foundation of
the research that will be developed within TONES Project.

We start by concentrating on intensional reasoning, and in Section 2, we review the
fundamental computational characterization of the most expressive DLs studied in liter-
ature. Such DLs are based on the correspondence between highly expressive description
languages and Modal Logics of Programs, in particular Propositional Dynamic Logic
(PDL) and its variants. We review the correspondence between DLs and PDLs in details
showing how results in one of the two areas can be immediately imported in the other
one. Such a correspondence was at the base of the expressiveness leap that DLs made in
the 90’s, moving from logics for describing structural properties of objects to logics that
where able to formally capture conceptual models such as Entity Relationship Diagrams
in Databases and UML Class Diagrams in Software Engineering , and later full-fledged
ontologies as well. Such logics allow for reasoning wrt fully general DLs assertions (in-
clusion assertions) that are needed when modeling complex knowledge as in ontologies.
Also many of them include forms of fixpoint construct in the language such as transitive
closure of least fixpoint solutions. The section includes reference to the main results on
reasoning in expressive DLs, and it reports on the boundary between decidability and
undecidability, discussing language constructs combination that lead to undecidability.

Among the various DLs mentioned in the previous section there is a family of DLs
that has a particular importance: the so call SH family. Such a family is reviewed in
Section 3. The SH family keeps the ability of expressing complex intensional knowledge
by giving up fixpoints, including transitive closure, in favor of weaker transitive roles. This
simplification allow for basing reasoning on tableaux that can be highly optimized with
the inclusion of intelligent and sophisticated heuristics. Indeed such logics are at the base
of all modern automated reasoning systems for expressive DLs such as Fact, Racer, Pellet,
etc. In the section also concrete domains are looked up, as well as form of extensional
reasoning that have been developed for such logics, such has instance retrieval.

In Section 4, we move to a different kind of DLs, the tractable DLs, which can express
intensional knowledge as required in representing ontology, but with suitable limitations
so has to make reasoning tractable. In particular we look at standard DLs reasoning tasks,
but also at more complex tasks such as query answering for queries expressed in query
languages richer than DLs. Indeed, while DLs are quite well suited to formalize conceptual
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knowledge as that needed for ontologies, they are quite poor as query languages due to
their inability of using variables to construct query complex patterns (notice that the
absence of variables is more than welcome when modeling conceptual models, instead).
So for query language constructs, the DL community has looked at the work on queries
in Databases. In particular, we review current results on answering conjunctive queries in
DLs. Observe that, when it becomes of concern to perform data access through ontologies,
the computational characterization we are after needs refinement: we need to distinguish
between complexity wrt the extensional knowledge (data complexity) and complexity wrt
the intensional knowledge. While exponential bounds can be acceptable wrt latter, it
is much more critic to accept them for the former, since typically we will have a large
quantity of data to access analogously to what happens in databases. So the section looks
at reasoning from the data complexity point of view as well.

In Section 5 and 6, we look at forms of reasoning that go beyond classical logical
reasoning, that is, forms of reasoning that still have a well specified formal semantics,
which make use classical logical reasoning as part of a more complex computation. In
particular in Section 5, we review the work done on defining rules over a DL knowledge
base, and use them for several forms of computations. In Section 6, we look at various
forms of on non-standard inference, such as finding the most specific concept an object is
an instance of, or finding the most general subsumer of two concepts, i.e., the “minimal”
concept that subsume both of them.

Section 7 ends the document by reviewing current ontology standard languages. In
particular, we review OWL (version 1.1) and its fragments and extension, including OWL-
DL, OWL-lite, and also RDF and RDFS. The relationships between such languages and
DLs presented in the previous sections is spelled out, as well as the forms of reasoning
currently implemented in the reasoning systems for them.

In the following we assume the reader to have already some basic knowledge on DLs,
which can be acquired, e.g., by looking at the first three chapters of [BCM+03].

2 Expressive Description Logics

Description logics have been introduced with the goal of providing a formal reconstruction
of frame systems and semantic networks. Initially, the research has concentrated on
subsumption of concept expressions. However, for certain applications, and in particular
when representing ontologies, it turns out that it is necessary to assert knowledge by
means of inclusion axioms of the most general form (without limitation on cycles) in
the TBox. Therefore, there has been a strong interest in the problem of reasoning over
knowledge bases of such a general form [BCM+03].

When reasoning over general knowledge bases, it is not possible to gain tractability
by limiting the expressive power of the description logic, because the power of arbitrary
inclusion axioms in the TBox alone leads to high complexity in the inference mecha-
nisms. Indeed, logical implication is ExpTime-hard even for the very simple language
AL [BCM+03] or even FL0 [BBL05]. This has lead to investigating very powerful lan-
guages for expressing concepts and roles, for which the property of interest is no longer
tractability of reasoning, but rather decidability. Such logics, called here expressive de-
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scription logics, have the following characteristics:

1. The language used for building concepts and roles comprises all classical concept
forming constructs, plus several role forming constructs such as inverse roles, and
reflexive-transitive closure.

2. No restriction is posed on the axioms in the TBox.

The goal of this section is to provide an overview on the results and techniques for rea-
soning in expressive description logics.

2.1 Correspondence between Description Logics and Proposi-
tional Dynamic Logics

Here, we focus on expressive description logics that, besides the standard ALC constructs,
include regular expression over roles and possibly inverse roles [Baa91, Sch91]. It turns out
that such description logics correspond directly to Propositional Dynamic Logics, which
are modal logics used to express properties of programs. We first introduce syntax and
semantics of the description logics we consider, then introduce Propositional Dynamic
Logics, and finally discuss the correspondence between the two formalisms.

2.2 Description Logics

We consider the description logic ALCIreg , in which concepts and roles are formed ac-
cording to the following syntax:

C, C ′ −→ A | ¬C | C ⊓ C ′ | C ⊔ C ′ | ∀R.C | ∃R.C

R, R′ −→ P | R ⊔ R′ | R ◦R′ | R∗ | id(C) | R−

where A and P denote respectively atomic concepts and atomic roles, and C and R denote
respectively arbitrary concepts and roles.

In addition to the usual concept forming constructs, ALCIreg provides constructs to
form regular expressions over roles. Such constructs include role union, role composition,
reflexive-transitive closure, and role identity. Their meaning is straightforward, except for
role identity id(C) which, given a concept C, allows one to build a role which connects
each instance of C to itself. As we shall see below, there is a tight correspondence between
these constructs and the operators on programs in Propositional Dynamic Logics. The
presence in the language of the constructs for regular expressions is specified by the
subscript “reg” in the name.
ALCIreg includes also the inverse role construct, which allows one to denote the inverse

of a given relation. One can, for example, state with ∃child−.Doctor that someone has a
parent who is a doctor, by making use of the inverse of role child. It is worth noticing
that, in a language without inverse of roles, in order to express such a constraint one must
use two distinct roles (e.g., child and parent) that cannot be put in the proper relation to
each other. We use the letter I in the name to specify the presence of inverse roles in a
description logic; by dropping inverse roles from ALCreg , we obtain the description logic
ALCreg .
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From the semantic point of view, given an interpretation I = (∆I , ·I), concepts are
interpreted as subsets of the domain ∆I , and roles as binary relations over ∆I , as follows1:

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C ⊓ C ′)I = CI ∩ C ′I

(C1 ⊔ C2)
I = CI

1 ∪ CI
2

(∀R.C)I = {o ∈ ∆I | ∀o′. (o, o′) ∈ RI ⊃ o′ ∈ CI}

(∃R.C)I = {o ∈ ∆I | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI}

P I ⊆ ∆I ×∆I

(R ⊔R′)I = RI ∪R′I

(R ◦R′)I = RI ◦R′I

(R∗)I = (RI)∗

id(C)I = {(o, o) ∈ ∆I ×∆I | o ∈ CI}

(R−)I = {(o, o′) ∈ ∆I ×∆I | (o′, o) ∈ RI}

We consider the most general form of TBoxes constituted by general inclusion axioms
of the form C ⊑ C ′, without any restriction on cycles. We use C ≡ C ′ as an abbreviation
for the pair of axioms C ⊑ C ′ and C ′ ⊑ C. We adopt the usual descriptive semantics for
TBoxes. An interpretation I is a model of an inclusion assertion C ⊑ C ′, if (C)I ⊆ (C ′)I .
An interpretation I is a model of a TBox T if I is a model of every assertion in T . A
TBox is satisfiable if it admits a model. A concept C is satisfiable wrt a TBox T if there
exist a model I of T such that CI 6= ∅. Also we say that a concept C is satisfiable if it
is satisfiable in an empty TBox. A TBox T logically implies an assertion C ⊑ C ′ if every
model I of T is also a model of C ⊑ C ′, if (C)I ⊆ (C ′)I .

It is well known that for most DLs (an in particular for all DLs mentioned in this
section), TBox satisfiability, concept satisfiability wrt a TBox, and logical implication are
mutually reducible to each other (in PTime or less), so in the following we will concentrate
on logical implication only. Instead concept satisfiability (in an empty TBox) is typically
much simpler than logical implication. We will see however that for most of the DLs
considered here this is not the case since one can polynomially reduce logical implication
to concept satisfiability via the so call internalization (see later.)

Example 2.1 The following ALCIreg TBox Tfile models a file-system constituted by file-
system elements (FSelem), each of which is either a Directory or a File. Each FSelem has a
name, a Directory may have children while a File may not, and Root is a special directory

1We use R∗ to denote the reflexive-transitive closure of the binary relation R, and R1 ◦R2 to denote
the chaining of the binary relations R1 and R2.
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which has no parent. The parent relationship is modeled through the inverse of role child.

FSelem ⊑ ∃name.String

FSelem ≡ Directory ⊔ File

Directory ⊑ ¬File

Directory ⊑ ∀child.FSelem

File ⊑ ∀child.⊥

Root ⊑ Directory

Root ⊑ ∀child−.⊥

The axioms in Tfile imply that in a model every object connected by a chain of role child to
an instance of Root is an instance of FSelem. Formally, Tfile |= ∃(child−)∗.Root ⊑ FSelem.
To verify that the implication holds, suppose that there exists a model in which an instance
o of ∃(child−)∗.Root is not an instance of FSelem. Then, reasoning by induction on the
length of the chain from the instance of Root to o, one can derive a contradiction. Observe
that induction is required, and hence such reasoning is not first-order.

2.3 Propositional Dynamic Logics

Propositional Dynamic Logics (PDLs) are modal logics specifically developed for reasoning
about computer programs [FL79, KT90, HKT00]. Next we provide a brief overview of
PDLs, and illustrate the correspondence between description logics and PDLs.

Syntactically, a PDL is constituted by expressions of two sorts: programs and formulae.
Programs and formulae are built by starting from atomic programs and propositional
letters, and applying suitable operators. We denote propositional letters with A, arbitrary
formulae with φ, atomic programs with P , and arbitrary programs with r, all possibly
with subscripts. We focus on converse-pdl [FL79] which, as it turns out, corresponds to
ALCIreg . The abstract syntax of converse-pdl is as follows:

φ, φ′ −→ ⊤ | ⊥ | A | φ ∧ φ′ | φ ∨ φ′ | ¬φ | 〈r〉φ | [r]φ

r, r′ −→ P | r ∪ r′ | r; r′ | r∗ | φ? | r−

The basic Propositional Dynamic Logic pdl [FL79] is obtained from converse-pdl by
dropping converse programs r−.

The semantics of PDLs is based on the notion of (Kripke) structure, defined as a
tripleM = (S, {RP}, Π), where S denotes a non-empty set of states, {RP} is a family of
binary relations over S, each of which denotes the state transitions caused by an atomic
program P , and Π is a mapping from S to propositional letters such that Π(s) determines
the letters that are true in state s. The basic semantical relation is “a formula φ holds
at a state s of a structure M”, written M, s |= φ, and is defined by induction on the
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formation of φ:

M, s |= A iff A ∈ Π(s)
M, s |= ⊤ always
M, s |= ⊥ never
M, s |= φ ∧ φ′ iff M, s |= φ and M, s |= φ′

M, s |= φ ∨ φ′ iff M, s |= φ or M, s |= φ′

M, s |= ¬φ iff M, s 6|= φ
M, s |= 〈r〉φ iff there is s′ such that (s, s′) ∈ Rr and M, s′ |= φ
M, s |= [r]φ iff for all s′, (s, s′) ∈ Rr implies M, s′ |= φ

where the family {RP} is systematically extended so as to include, for every program r,
the corresponding relation Rr defined by induction on the formation of r:

RP ⊆ S × S
Rr∪r′ = Rr ∪Rr′

Rr;r′ = Rr ◦ Rr′

Rr∗ = (Rr)
∗

Rφ? = {(s, s) ∈ S × S | M, s |= φ}
Rr− = {(s1, s2) ∈ S × S | (s2, s1) ∈ Rr}.

If, for each atomic program P , the transition relation RP is required to be a function that
assigns to each state a unique successor state, then we are dealing with the deterministic
variants of PDLs, namely dpdl and converse-dpdl [BAHP82, VW86].

A structure M = (S, {RP}, Π) is called a model of a formula φ if there exists a state
s ∈ S such thatM, s |= φ. A formula φ is satisfiable if there exists a model of φ, otherwise
the formula is unsatisfiable. A formula φ is valid in structureM if for all s ∈ S,M, s |= φ.
We call axioms formulae that are used to select the interpretations of interest. Formally,
a structure M is a model of an axiom φ, if φ is valid inM. A structureM is a model of
a finite set of axioms Γ if M is a model of all axioms in Γ. An axiom is satisfiable if it
has a model and a finite set of axioms is satisfiable if it has a model. We say that a finite
set Γ of axioms logically implies a formula φ, written Γ |= φ, if φ is valid in every model
of Γ.

It is easy to see that satisfiability of a formula φ as well as satisfiability of a finite set
of axioms Γ can be reformulated by means of logical implication, as ∅ 6|= ¬φ and Γ 6|= ⊥
respectively.

Interestingly, logical implication can, in turn, be reformulated in terms of satisfiability,
by making use of the following theorem (cf. [KT90]).

Theorem 2.2 (Internalization of axioms) Let Γ be a finite set of converse-pdl ax-
ioms, and φ a converse-pdl formula. Then Γ |= φ if and only if the formula

¬φ ∧ [(P1 ∪ · · · ∪ Pm ∪ P−
1 ∪ · · · ∪ P−

m)∗]Γ′

is unsatisfiable, where P1, . . . , Pm are all atomic programs occurring in Γ ∪ {φ} and Γ′ is
the conjunction of all axioms in Γ.
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Such a result exploits the power of program constructs (union, reflexive-transitive closure)
and the connected model property (i.e., if a formula has a model, it has a model which
is connected) of PDLs in order to represent axioms. The connected model property is
typical of modal logics and it is enjoyed by all PDLs. As a consequence, a result analogous
to Theorem 2.2 holds for virtually all PDLs.

Reasoning in PDLs has been thoroughly studied from the computational point of view,
and the results for the PDLs considered here are summarized in the following theorem
[FL79, Pra79, BAHP82, VW86]:

Theorem 2.3 Satisfiability in pdl is ExpTime-hard. Satisfiability in pdl, in converse-
pdl, and in converse-dpdl can be decided in deterministic exponential time.

2.4 The correspondence

The correspondence between description logics and PDLs was first published by in [Sch91],
where it was shown that ALCIreg can be considered a notational variant of converse-pdl.
This observation allowed for exploiting the results on converse-pdl for instantly clos-
ing long standing issues regarding the decidability and complexity of both satisfiability
and logical implication in ALCreg and ALCIreg .2 The paper was very influential for
the research in expressive description logics in the following decade, since thanks to the
correspondence between PDLs and description logics, first results but especially formal
techniques and insights could be shared by the two communities. The correspondence be-
tween PDLs and description logics has been extensively used to study reasoning methods
for expressive description logics. It has also lead to a number of interesting extensions of
PDLs in terms of those constructs that are typical of description logics and have never
been considered in PDLs. In particular, there is a tight relation between qualified number
restrictions and graded modalities in modal logics [VdH92, VdHdR95, FBDC85, Fin72].

The correspondence is based on the similarity between the interpretation structures
of the two logics: at the extensional level, individuals (members of ∆I) in description
logics correspond to states in PDLs, whereas links between two individuals correspond to
state transitions. At the intensional level, concepts correspond to propositions, and roles
correspond to programs. Formally, the correspondence is realized through a one-to-one
and onto mapping τ from ALCIreg concepts to converse-pdl formulae, and from ALCIreg

roles to converse-pdl programs. The mapping τ is defined inductively as follows:

τ(A) = A τ(P ) = P
τ(¬C) = ¬τ(C) τ(R−) = τ(R)−

τ(C ⊓ C ′) = τ(C) ∧ τ(C ′) τ(R ⊔R′) = τ(R) ∪ τ(R′)
τ(C ⊔ C ′) = τ(C) ∨ τ(C ′) τ(R ◦R′) = τ(R); τ(R′)
τ(∀R.C) = [τ(R)]τ(C) τ(R∗) = τ(R)∗

τ(∃R.C) = 〈τ(R)〉τ(C) τ(id(C)) = τ(C)?

Axioms in description logics’ TBoxes correspond in the obvious way to axioms in PDLs.
Moreover all forms of reasoning (satisfiability, logical implication, etc.) have their natural
counterpart.

2In fact, the decidability of ALCreg without the id(C) construct was independently established in
[Baa91].
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One of the most important contributions of the correspondence is obtained by rephras-
ing Theorem 2.2 in terms of description logics. It says that every TBox can be “inter-
nalized” into a single concept, i.e., it is possible to build a concept that expresses all
the axioms of the TBox. In doing so we rely on the ability to build a “universal” role,
i.e., a role linking all individuals in a (connected) model. Indeed, a universal role can be
expressed by using regular expressions over roles, and in particular the union of roles and
the reflexive-transitive closure. The possibility of internalizing the TBox when dealing
with expressive description logics tells us that for such description logics reasoning with
TBoxes, i.e., logical implication, is no harder that reasoning with a single concept.

Theorem 2.4 Concept satisfiability and logical implication in ALCreg are ExpTime-
hard. Concept satisfiability and logical implication in ALCreg and ALCIreg can be decided
in deterministic exponential time.

Observe that for description logics that do not allow for expressing a universal role,
there is a sharp difference between reasoning techniques used in the presence of TBoxes,
and techniques used to reason on concept expressions. The profound difference is reflected
by the computational properties of the associated decision problems. For example, the
logic AL admits simple structural algorithms for deciding reasoning tasks not involving
axioms, and these algorithms are sound and complete and work in PTime. However, if
general inclusion axioms are considered, then reasoning becomes ExpTime-complete, and
the decision procedures that have been developed include suitable termination strategies
[BDS93a]. Similarly, for the more expressive logic ALC, reasoning tasks not involving
a TBox are PSpace-complete [SSS91], while those that do involve it are ExpTime-
complete.

2.5 Functional restrictions

We have seen that the logics ALCreg and ALCIreg correspond to standard pdl and con-
verse-pdl respectively, which are both well studied. In fact the correspondence can be
used to deal also with constructs that are typical of description logics, namely functional
restrictions, by exploiting techniques developed for reasoning in PDLs. In particular,
we can adopt automata-based techniques, which have been very successful in studying
reasoning for expressive variants of PDL and characterizing their complexity.

Functional restrictions are the simplest form of number restrictions considered in
description logics, and allow for specifying local functionality of roles, i.e., that instances of
certain concepts have unique role-fillers for a given role. By adding functional restrictions
on atomic roles and their inverse to ALCIreg , we obtain the description logic ALCFIreg .
The PDL corresponding to ALCFIreg is a PDL that extends converse-dpdl [VW86] with
determinism of both atomic programs and their inverse, and such that determinism is no
longer a global property, but one that can be imposed locally.

Formally, ALCFIreg is obtained from ALCIreg by adding functional restrictions of
the form 6 1 Q, where Q is a basic role, i.e., either an atomic role or the inverse of an
atomic role. Such a functional restriction is interpreted as follows:

(6 1 Q)I = {o ∈ ∆I | |{o′ ∈ ∆I | (o, o′) ∈ QI}| ≤ 1}
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We show that reasoning in ALCFIreg is in ExpTime, and, since reasoning in ALCreg

is already ExpTime-hard, is in fact ExpTime-complete. Without loss of generality we
concentrate on concept satisfiability. We exploit the fact thatALCFIreg has the tree model
property, which states that if a ALCFIreg concept C is satisfiable then it is satisfied in an
interpretation which has the structure of a (possibly infinite) tree with bounded branching
degree. This allows us to make use of techniques based on automata on infinite trees. In
particular, we can make use of two-way alternating automata on infinite trees (2ATAs)
introduced in [Var98]. 2ATAs were used in [Var98] to derive a decision procedure for
modal µ-calculus with backward modalities.

Theorem 2.5 Concept satisfiability (and hence logical implication) in ALCFIreg is
ExpTime-complete.

2.6 Qualified number restrictions

The most general form of number restrictions are the so-called qualified number restric-
tions, which allow for specifying arbitrary cardinality constraints on roles with role-fillers
belonging to a certain concept. In particular we consider qualified number restrictions
on basic roles, i.e., atomic roles and their inverse. By adding such constructs to ALCIreg

we obtain the description logic ALCQIreg . The PDL corresponding to ALCQIreg is an
extension of converse-pdl with “graded modalities” [FBDC85, VdHdR95, Tob99c] on
atomic programs and their converse.

Formally, ALCQIreg is obtained from ALCIreg by adding qualified number restrictions
of the form 6n QC and >n QC, where n is a nonnegative integer, Q is a basic role, and
C is an ALCQIreg concept. Such constructs are interpreted as follows:

(6n QC)I = {o ∈ ∆I | |{o′ ∈ ∆I | (o, o′) ∈ QI ∧ o′ ∈ CI}| ≤ n}

(>n QC)I = {o ∈ ∆I | |{o′ ∈ ∆I | (o, o′) ∈ QI ∧ o′ ∈ CI}| ≥ n}

This can be shown by extending the automata theoretic techniques to deal also with
qualified number restrictions. Also, a polynomial reduction from ALCQIreg to ALCFIreg

was shown in [DGL95, DG95]. Such a reduction is based on the notion of reification,
which plays a major role also in dealing with Boolean combinations of (atomic) roles
[DGL95, DGL94b], as well as in extending expressive description logics with relation of
arbitrary arity (see subsection 2.9).

Theorem 2.6 Concept satisfiability (and hence logical implication) in ALCQIreg is
ExpTime-complete.

We remind the reader that originally the ExpTime-completeness of reasoning in
ALCQIreg was shown under the standard assumption in description logics, that num-
bers in number restrictions are represented in unary. In [Tob01] techniques for dealing
with qualified number restrictions with numbers coded in binary are presented, and are
used to show that even under this assumption reasoning over ALCQI knowledge bases
can be done in ExpTime. Such techniques extend to ALCQIreg as shown in [CDGL02].
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2.7 Objects

In this subsection, we review results involving knowledge on individuals expressed in terms
of membership assertions. Given an alphabetO of symbols for individuals, a (membership)
assertion has one of the following forms:

C(a) P (a1, a2)

where C is a concept, P is an atomic role, and a, a1, a2 belong to O. An interpretation
I is extended so as to assign to each a ∈ O an element aI ∈ ∆I in such a way that
the unique name assumption is satisfied, i.e., different elements are assigned to different
symbols in O. I satisfies C(a) if aI ∈ CI , and I satisfies P (a1, a2) if (aI

1 , aI
2 ) ∈ RI . An

ABox A is a finite set of membership assertions, and an interpretation I is called a model
of A if I satisfies every assertion in A.

A knowledge base is a pair K = (T ,A), where T is a TBox, and A is an ABox. An
interpretation I is called a model of K if it is a model of both T and A. K is satisfiable
if it has a model, and K logically implies an assertion β, denoted K |= β, where β is
either an inclusion or a membership assertion, if every model of K satisfies β. Logical
implication can be reformulated in terms of unsatisfiability: e.g., K |= C(a) iffK∪{¬C(a)}
is unsatisfiable; similarly K |= C1 ⊑ C2 iff K ∪ {(C1 ⊓ ¬C2)(a

′)} is unsatisfiable, where a′

does not occur in K. Therefore, we only need a procedure for checking satisfiability of a
knowledge base, whose complexity characterization is given below:

Theorem 2.7 Knowledge base satisfiability (and hence every standard reasoning service)
in ALCQIreg is ExpTime-complete.

The work in [DGL94a] and [DG95] extends ALCQreg and ALCIreg by adding special
atomic concepts Aa, called nominals, having exactly one single instance a, i.e., the in-
dividual they name. Nominals may occur in concepts exactly as atomic concepts, and
hence they constitute one of the most flexible ways to express knowledge about single
individuals.

By using nominals we can capture the “one-of” construct, having the form {a1, . . . , an},
denoting the concept made of exactly the enumerated individuals a1, . . . , an

3. We can also
capture the “fills” construct, having the form R : a, denoting those individuals having the
individual a as a role filler of R 4 (see [Sch94a] and references therein for further discussion
on these constructs).

Let us denote with ALCQOreg and ALCIOreg the description logics resulting by
adding nominals to ALCQreg and ALCIreg respectively. [DGL94a] and [DG95] poly-
nomially reduce satisfiability in ALCQOreg and ALCIOreg knowledge bases to satisfi-
ability of ALCQreg and ALCIreg concepts respectively, hence showing decidability and
ExpTime-completeness of reasoning in these logics. ExpTime-completeness does not
hold for ALCQIOreg , i.e., ALCQIreg extended with nominals. Indeed, a result in

3Actually, nominals and the one-of construct are essentially equivalent, since a name Aa is equivalent
to {a} and {a1, . . . , an} is equivalent to Aa1

⊔ · · · ⊔Aan
.

4The “fills” construct R : a is captured by ∃R.Aa.
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[Tob99a, Tob99b] shows that reasoning in such a logic is NExpTime-hard. Its decid-
ability still remains an open problem.

The notion of nominal introduced above has a correspondent in modal logic [Pri67,
Bul70, BS93, GG93, Bla93]. Nominals have also been studied within the setting of PDLs
[PT85, GP88, PT91]. The results for ALCQOreg and ALCIOreg are immediately appli-
cable also in the setting of PDLs. In particular, the PDL corresponding to ALCQOreg is
standard pdl augmented with nominals and graded modalities (qualified number restric-
tions). It is an extension of deterministic combinatory PDL, dcpdl, which is essentially
dpdl augmented with nominals. The decidability of dcpdl is established in [PT85], who
also prove that satisfiability can be checked in nondeterministic double exponential time.
This is tightened by the result above on ExpTime-completeness of ALCQOreg , which
says that dcpdl is in fact ExpTime-complete, thus closing the previous gap between the
upper bound and the lower bound. The PDL corresponding to ALCIOreg is converse-pdl

augmented with nominals, which is also called converse combinatory PDL, ccpdl [PT91].
Such logic was not known to be decidable [PT91]. Hence the results mentioned above allow
us to establish the decidability of ccpdl and to precisely characterize the computational
complexity of satisfiability (and hence of logical implication) as ExpTime-complete.

2.8 Fixpoint constructs

Decidable description logics equipped with explicit fixpoint constructs have been devised
in order to model inductive and coinductive data structures such as lists, streams, trees,
etc. [DGL94c, Sch94b, DGL97, CDGL99b]. Such logics correspond to extensions of the
propositional µ-calculus [Koz83, SE89, Var98], a variant of PDL with explicit fixpoints
that is used to express temporal properties of reactive and concurrent processes [Sti96,
Eme96]. Such logics can also be viewed as a well-behaved fragment of first-order logic
with fixpoints [Par70, Par76, AHV95].

Here, we concentrate on the description logic µALCQI studied in [CDGL99b]. Such
a description logic is derived from ALCQI by adding least and greatest fixpoint con-
structs. The availability of explicit fixpoint constructs allows for expressing inductive and
coinductive concepts in a natural way.

Example 2.8 Consider the concept Tree, representing trees, inductively defined as fol-
lows:

1. An individual that is an EmptyTree is a Tree.

2. If an individual is a Node, has at most one parent, has some children, and all children
are Trees, then such an individual is a Tree.

In other words, Tree is the concept with the smallest extension among those satisfying
the assertions 1 and 2. Such a concept is naturally expressed in µALCQI by making use
of the least fixpoint construct µX.C:

Tree ≡ µX.(EmptyTree ⊔ (Node ⊓6 1 child− ⊓ ∃child.⊤⊓ ∀child.X))
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Example 2.9 Consider the well-known linear data structure, called stream. Streams are
similar to lists except that, while lists can be considered as finite sequences of nodes,
streams are infinite sequences of nodes. Such a data structure is captured by the concept
Stream, coinductively defined as follows:

1. An individual that is a Stream, is a Node and has a single successor which is a
Stream.

In other words, Stream is the concept with the largest extension among those satisfying
condition 1. Such a concept is naturally expressed in µALCQI by making use of the
greatest fixpoint construct νX.C:

Stream ≡ νX.(Node ⊓6 1 succ ⊓ ∃succ.X)

Let us now introduce µALCQI formally. We make use of the standard first-order
notions of scope, bound and free occurrences of variables, closed formulae, etc., treating µ
and ν as quantifiers.

The primitive symbols in µALCQI are atomic concepts, (concept) variables, and
atomic roles. Concepts and roles are formed according to the following syntax

C −→ A | ¬C | C1 ⊓ C2 | >n R.C | µX.C | X

R −→ P | P−

where A denotes an atomic concept, P an atomic role, C an arbitrary µALCQI concept,
R an arbitrary µALCQI role (i.e., either an atomic role or the inverse of an atomic role),
n a natural number, and X a variable.

The concept C in µXC must be syntactically monotone, that is, every free occurrence
of the variable X in C must be in the scope of an even number of negations [Koz83]. This
restriction guarantees that the concept C denotes a monotonic operator and hence both
the least and the greatest fixpoints exist and are unique (see later).

In addition to the usual abbreviations used in ALCQI, we introduce the abbreviation
νX.C for ¬µX.¬C[X/¬X], where C[X/¬X] is the concept obtained by substituting all
free occurrences of X with ¬X.

The presence of free variables does not allow us to extend the interpretation function
·I directly to every concept of the logic. For this reason we introduce valuations. A
valuation ρ on an interpretation I is a mapping from variables to subsets of ∆I . Given
a valuation ρ, we denote by ρ[X/E ] the valuation identical to ρ except for the fact that
ρ[X/E ](X) = E .

Let I be an interpretation and ρ a valuation on I. We assign meaning to concepts of
the logic by associating to I and ρ an extension function ·Iρ , mapping concepts to subsets
of ∆I , as follows:
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XI
ρ = ρ(X) ⊆ ∆I

AI
ρ = AI ⊆ ∆I

(¬C)Iρ = ∆I \ CI
ρ

(C1 ⊓ C2)
I
ρ = (C1)

I
ρ ∩ (C2)

I
ρ

>n R.CI
ρ = {s ∈ ∆I | |{s′ | (s, s′) ∈ RI and s′ ∈ CI

ρ }| ≥ n}

(µX.C)Iρ =
⋂

{E ⊆ ∆I | CI
ρ[X/E] ⊆ E }

Observe that CI
ρ[X/E] can be seen as an operator from subsets E of ∆I to subsets

of ∆I , and that, by the syntactic restriction enforced on variables, such an operator is
guaranteed to be monotonic w.r.t. set inclusion. µX.C denotes the least fixpoint of the
operator. Observe also that the semantics assigned to νX.C is

(νX.C)Iρ =
⋃

{E ⊆ ∆I | E ⊆ CI
ρ[X/E] }

Hence νX.C denotes the greatest fixpoint of the operator.
In fact, we are interested in closed concepts, whose extension is independent of the

valuation. For closed concepts we do not need to consider the valuation explicitly, and
hence the notion of concept satisfiability, logical implication, etc. extend straightforwardly.

Exploiting a recent result on ExpTime decidability of modal µ-calculus with converse
[Var98], and exploiting a reduction technique for qualified number restrictions similar to
the one mentioned in subsection 2.6, [CDGL99b] has shown that the same complexity
bound holds also for reasoning in µALCQI.

Theorem 2.10 Concept satisfiability (and hence logical implication) in µALCQI is
ExpTime-complete.

For certain applications, variants of µALCQI that allow for mutual fixpoints, de-
noting least and greatest solutions of mutually recursive equations, are of interest
[Sch94b, CDGL98b, CDGL99a]. Mutual fixpoints can be re-expressed by suitably nesting
the kind of fixpoints considered here (see, for example, [dB80, Sch94b]). It is interesting
to notice that, although the resulting concept may be exponentially large in the size of
the original concept with mutual fixpoints, the number of (distinct) subconcepts of the
resulting concept is polynomially bounded by the size of the original one. By virtue of
this observation, and using the reasoning procedure in [CDGL99b], we can strengthen the
above result.

Theorem 2.11 Checking satisfiability of a closed µALCQI concept C can be done in
deterministic exponential time w.r.t. the number of (distinct) subconcepts of C.

Although µALCQI does not have the rich variety of role constructs of ALCQIreg , it
is actually an extension of ALCQIreg , since any ALCQIreg concept can be expressed in
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µALCQI using the fixpoint constructs in a suitable way. To express concepts involving
complex role expressions, it suffices to resort to the following equivalences:

∃(R1 ◦R2).C = ∃R1.∃R2.C
∃(R1 ⊔R2).C = ∃R1.C ⊔ ∃R2.C

∃R∗.C = µX.(C ⊔ ∃R.X)
∃id(D).C = C ⊓D.

Note that, according to such equivalences, we have also that

∀R∗.C = νX.(C ⊓ ∀R.X)

[CDGL95] advocate a further construct corresponding to an implicit form of fixpoint,
the so called well-founded concept construct wf (R). Such construct is used to impose
well-foundedness of chains of roles, and thus allows one to correctly capture inductive
structures. Using explicit fixpoints, wf (R) is expressed as µX.(∀R.X).

We remark that, in order to gain the ability of expressing inductively and coin-
ductively defined concepts, it has been proposed to adopt ad hoc semantics for inter-
preting knowledge bases, specifically the least fixpoint semantics for expressing induc-
tive concepts and the greatest fixpoint semantics for expressing coinductive ones (see
[BCM+03, Neb91, Baa90, Baa91, DMO92, Küs98, BDNS98]). Logics equipped with fix-
point constructs allow for mixing statements interpreted according to the least and great-
est fixpoint semantics in the same knowledge base [Sch94b, DGL97], and thus can be
viewed as a generalization of these approaches.

Recently, using techniques based on alternating two-way automata, it has been shown
that the propositional µ-calculus with converse programs remains ExpTime-decidable
when extended with nominals [SV01]. Such a logic corresponds to a description logic
which could be called µALCIO.

2.9 Relations of arbitrary arity

A limitation of traditional description logics is that only binary relationships between
instances of concepts can be represented, while in some real world situations it is required
to model relationships among more than two objects. Such relationships can be captured
by making use of relations of arbitrary arity instead of (binary) roles. Various extensions
of description logics with relations of arbitrary arity have been proposed [Sch89, CL93,
DGL94b, CDGL97, CDGL98a, LST99].

We concentrate on the description logic DLR [CDGL97, CDGL98a], which represents
a natural generalization of traditional description logics towards n-ary relations. The
basic elements of DLR are atomic relations and atomic concepts, denoted by P and
A respectively. Arbitrary relations, of given arity between 2 and nmax, and arbitrary
concepts are formed according to the following syntax

R −→ ⊤n | P | ($i/n : C) | ¬R | R1 ⊓R2

C −→ ⊤1 | A | ¬C | C1 ⊓ C2 | ∃[$i]R | 6 k [$i]R

where i and j denote components of relations, i.e., integers between 1 and nmax, n denotes
the arity of a relation, i.e., an integer between 2 and nmax, and k denotes a nonnegative
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integer. Concepts and relations must be well-typed, which means that only relations of
the same arity n can be combined to form expressions of type R1 ⊓R2 (which inherit the
arity n), and i ≤ n whenever i denotes a component of a relation of arity n.

The semantics of DLR is specified through the usual notion of interpretation I =
(∆I , ·I), where the interpretation function ·I assigns to each concept C a subset CI of
∆I , and to each relation R of arity n a subset RI of (∆I)n, such that the following
conditions are satisfied

⊤I
n ⊆ (∆I)n

PI ⊆ ⊤I
n

(¬R)I = ⊤I
n \RI

(R1 ⊓R2)
I = RI

1 ∩RI
2

($i/n : C)I = {(d1, . . . , dn) ∈ ⊤I
n | di ∈ CI}

⊤I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 ⊓ C2)
I = CI

1 ∩ CI
2

(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI . di = d}
(6 k [$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ RI

1 | di = d}| ≤ k}

where P, R, R1, and R2 have arity n. Observe that ⊤1 denotes the interpretation domain,
while ⊤n, for n > 1, does not denote the n-cartesian product of the domain, but only a
subset of it, that covers all relations of arity n that are introduced. As a consequence,
the “¬” construct on relations expresses difference of relations rather than complement.

The construct ($i/n : C) denotes all tuples in ⊤n that have an instance of concept C as
their i-th component, and therefore represents a kind of selection. Existential quantifica-
tion and number restrictions on relations are a natural generalization of the corresponding
constructs using roles. This can be seen by observing that, while for roles the “direction
of traversal” is implicit, for a relation one needs to explicitly say which component is used
to “enter” a tuple and which component is used to “exit” it.
DLR is in fact a proper generalization of ALCQI. The traditional description logic

constructs can be reexpressed in DLR as follows:

∃P.C as ∃[$1](P ⊓ ($2/2: C))
∃P−.C as ∃[$2](P ⊓ ($1/2: C))
∀P.C as ¬∃[$1](P ⊓ ($2/2: ¬C))
∀P−.C as ¬∃[$2](P ⊓ ($1/2: ¬C))
6 k P.C as 6 k [$1](P ⊓ ($2/2: C))
6 k P−.C as 6 k [$2](P ⊓ ($1/2: C))

Observe that the constructs using direct and inverse roles are represented in DLR by
using binary relations and explicitly specifying the direction of traversal.

A TBox in DLR is a finite set of inclusion axioms on both concepts and relations of
the form

C ⊑ C ′ R ⊑ R′

where R and R′ are two relations of the same arity. The notions of an interpretation
satisfying an assertion, and of model of a TBox are defined as usual.
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The basic technique used in DLR to reason on relations is reification, which allows
one to reduce logical implication in DLR to logical implication in ALCQI. Reification
for n-ary relations, which is similar to reification of roles (cf. 2.6): A relation of arity n is
reified by means of a new concept and n functional roles f1, . . . , fn. Let the ALCQI TBox
T ′ be the reified counterpart of a DLR TBox T . A tuple of a relation R in a model of T
is represented in a model of T ′ by an instance of the concept corresponding to R, which is
linked through f1, . . . , fn respectively to n individuals representing the components of the
tuple. In this case reification is further used to encode Boolean constructs on relations
into the corresponding constructs on the concepts representing relations.

Performing the reification of relations requires some attention, since the semantics of
a relation rules out that there may be two identical tuples in its extension, i.e., two tuples
constituted by the same components in the same positions. In the reified counterpart, on
the other hand, one cannot explicitly rule out (e.g., by using specific axioms) the exis-
tence of two individuals o1 and o2 “representing” the same tuple, i.e., that are connected
through f1, . . . , fn to exactly the same individuals denoting the components of the tuple.
A model of the reified counterpart T ′ of T in which this situation occurs may not corre-
spond directly to a model of T , since by collapsing the two equivalent individuals into a
tuple, axioms may be violated (e.g., cardinality constraints). However, also in this case a
result holds, ensuring that from any model of T ′ one can construct a new one in which
no two individuals represent the same tuple. Therefore one does not need to take this
constraint explicitly into account when reasoning on the reified counterpart of a knowl-
edge base with relations. Since reification is polynomial, from ExpTime decidability of
logical implication in ALCQI (and ExpTime-hardness of logical implication in ALC) we
get the following characterization of the computational complexity of reasoning in DLR
[CDGL97]

Theorem 2.12 Logical implication in DLR is ExpTime-complete.

DLR can be extended to include regular expressions built over projections of relations
on two of their components, thus obtaining DLRreg . Such a logic, which represents a gen-
eralization of ALCQIreg , allows for the internalization of a TBox. ExpTime decidability
(and hence completeness) of DLRreg can again be shown by exploiting reification of rela-
tions and reducing logical implication to concept satisfiability in ALCQIreg [CDGL98a].
Recently, DLRreg has been extended to DLRµ, which includes explicit fixpoint constructs
on concepts, as those introduced in Section 2.8. The ExpTime-decidability result extends
to DLRµ as well [CDGL99b].

Recently it has been observed that guarded fragments of first order logic [AvBN96,
Grä99], which include n-ary relations, share with description logics the “locality” of quan-
tification. This makes them of interest as extensions of description logics with n-ary
relations [Grä98, LST99]. Such description logics are incomparable in expressive power
with DLR and its extensions: On the one hand the description logics corresponding to
guarded fragments allow one to refer, by the use of explicit variables, to components of
relations in a more flexible way than what is possible in DLR. On the other hand such
description logics lack number restrictions, and extending them with number restrictions
leads to undecidability of reasoning. Also, reasoning in the guarded fragments is in general
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NExpTime-hard [Grä98, Grä99] and thus more difficult than in DLR and its extensions,
although PSpace-complete fragments have been identified [LST99].

2.10 Boolean constructs on roles and role inclusion axioms

Observe also that DLR (and DLRreg) allows for Boolean constructs on relations (with
negation interpreted as difference) as well as relation inclusion axioms R ⊑ R′. In fact,
DLR (resp. DLRreg) can be viewed as a generalization of ALCQI (resp. ALCQIreg)
extended with Boolean constructs on atomic and inverse atomic roles. Such extensions
of ALCQI were first studied in [DGL94b, DG95], where logical implication was shown
to be ExpTime-complete by a reduction to ALCQI (resp. ALCQIreg). The logics above
do not allow for combining atomic roles with inverse roles in Boolean combinations and
role inclusion axioms. [Tob01] shows that, for ALCQI extended with arbitrary Boolean
combinations of atomic and inverse atomic roles, logical implication remains in ExpTime.
Decidability of PDL with Intersection and Converse is shown in [Lut05]. Note that, in all
logics above, negation on roles is interpreted as difference. For results on the impact of
full negation on roles see [LS01, Tob01].

[HST00a] investigate reasoning in SHIQ, which is ALCQI extended with roles that
are transitive and with role inclusion axioms on arbitrary roles (direct, inverse, and tran-
sitive). SHIQ does not include reflexive-transitive closure. However, transitive roles and
role inclusions allow for expressing a universal role (in a connected model), and hence
allow for internalizing TBoxes. Satisfiability and logical implication in SHIQ are Ex-

pTime-complete [Tob01]. The importance of SHIQ lies in the fact that it is the logic
implemented by the current state-of-the-art description logic-based systems (cf. next sec-
tion).

2.11 Structured objects

An alternative way to overcome the limitations that result from the restriction to bi-
nary relationships between concepts, is to consider the interpretation domain as being
constituted by objects with a complex structure, and extend the description logics with
constructs that allow one to specify such structure [DGL95]. This approach is in the
spirit of object-oriented data models used in databases [LR89, BK89, Hul88], and has the
advantage, with respect to introducing relationships, that all aspects of the domain to be
modeled can be represented in a uniform way, as concepts whose instances have certain
structures. In particular, objects can either be unstructured or have the structure of a
set or of a tuple. For objects having the structure of a set a particular role allows one to
refer to the members of the set, and similarly each component of a tuple can be referred
to by means of the (implicitly functional) role that labels it.

In general, reasoning over structured objects can have a very high computational com-
plexity [KV93]. However, reasoning over a significant fragment of structuring properties
can be polynomial reduced to reasoning in traditional description logics, by exploiting
again reification to deal with tuples and sets. Thus, for such a fragment, reasoning can
be done in ExpTime [DGL95]. An important aspect in exploiting description logics for
reasoning over structured objects, is being able to limit the depth of the structure of an
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object to avoid infinite nesting of tuples or sets. This requires the use of a well-founded
construct, which is a restricted form of fixpoint (see Section 2.8).

2.12 Finite model reasoning

For expressive description logics, in particular for those containing inverse roles and func-
tionality, a TBox may admit only models with an infinite domain [CKV90, CLN94].
Similarly, there may be TBoxes in which a certain concept can be satisfied only in an
infinite model. This is illustrated in the following example in [Cal96c].

Example 2.13 Consider the TBox

FirstGuard ⊑ Guard ⊓ ∀shields−.⊥

Guard ⊑ ∃shields ⊓ ∀shields.Guard ⊓6 1 shields−

In a model of this TBox, an instance of FirstGuard can have no shields-predecessor, while
each instance of Guard can have at most one. Therefore, the existence of an instance
of FirstGuard implies the existence of an infinite sequence of instances of Guard, each
one connected through the role shields to the following one. This means that FirstGuard
can be satisfied in an interpretation with a domain of arbitrary cardinality, but not in
interpretations with a finite domain.

Note that the TBox above is expressed in a very simple description logic, in particular
AL extended with inverse roles and functionality.

A logic is said to have the finite model property if every satisfiable formula of the
logic admits a finite model, i.e., a model with a finite domain. The example above shows
that virtually all description logics including functionality, inverse roles, and TBox axioms
(or having the ability to internalize them) lack the finite model property. The example
shows also that to lose the finite model property, functionality in only one direction is
sufficient. In fact, it is well known that converse-dpdl, which corresponds to a fragment
of ALCFIreg , lacks the finite model property [KT90, VW86].

For all logics that lack the finite model property, reasoning with respect to unre-
stricted and finite models are fundamentally different tasks, and this needs to be taken
explicitly into account when devising reasoning procedures. Restricting reasoning to finite
domains is not common in knowledge representation. However, it is typically of interest in
databases, where one assumes that the data available are always finite [CLN94, CLN99].

When reasoning w.r.t. finite models, some properties that are essential for the tech-
niques developed for unrestricted model reasoning in expressive description logics fail. In
particular, all reductions exploiting the tree model property (or similar properties that
are based on “unraveling” structures) [Var97] cannot be applied since this property does
not hold when only finite models are considered. An intuitive justification can be given
by observing that, whenever a (finite) model contains a cycle, the unraveling of such a
model into a tree generates an infinite structure. Therefore alternative techniques have
been developed.

Next, we look at the decidability and computational complexity of finite model rea-
soning over TBoxes expressed in various sublanguages of ALCQI. Specifically, by using
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techniques based on reductions to linear programming problems, it has been shown that
finite concept satisfiability w.r.t. to ALUNI TBoxes5 constituted by inclusion axioms
only is ExpTime-complete [CLN94], and that finite model reasoning in arbitrary ALCQI
TBoxes can be done in deterministic double exponential time [Cal96a]. In [LST05] it has
been shown that finite model reasoning inALCQI is ExpTime-complete even with binary
coding of numbers.

For more expressive description logics, and in particular for all those description logics
containing the construct for reflexive-transitive closure of roles, the decidability of finite
model reasoning is still an open problem. Decidability of finite model reasoning for C2, i.e.,
first order logic with two variables and counting quantifiers was shown in [GOR97]. C2 is
a logic that is strictly more expressive than ALCQI TBoxes, since it allows, for example,
to impose cardinality restrictions on concepts [BBH96] or to use the full negation of a
role. In [PH05b] it has been shown that finite and infinite model reasoning of C2 is
NExpTime-complete even with binary coding of numbers.

Techniques for finite model reasoning have also been studied in databases. In the
relational model, the interaction between inclusion dependencies and functional depen-
dencies causes the loss of the finite model property, and finite implication of dependencies
under various assumptions has been investigated in [CKV90]. A method for finite model
reasoning has been presented in [CL94b, CL94a] in the context of a semantic and an
object-oriented database model, respectively. The reasoning procedure, which represents
a direct generalization of the one discussed above to relations of arbitrary arity, does not
exploit reification to handle relations (see Section 2.9) but encodes directly the constraints
on them into a system of linear inequalities.

2.13 Undecidability results

Several additional description logic constructs besides those discussed in the previous
subsections have been proposed in the literature. Here, we present the most important
of these extensions, discussing how they influence decidability, and what modifications to
the reasoning procedures are needed to take them into account. In particular, we discuss
Boolean constructs on roles, variants of role-value-maps or role agreements, and number
restrictions on complex roles. Most of these constructs lead to undecidability of reasoning,
if used in an unrestricted way. Roughly speaking, this is mainly due to the fact that the
tree model property is lost [Var97].

2.13.1 Boolean constructs on complex roles

In those description logics that include regular expressions over roles, such as ALCQIreg ,
since regular languages are closed under intersection and complementation, the intersec-
tion of roles and the complement of a role are already expressible, if we consider them
applied to the set of role expressions. Here we consider the more common approach in
PDLs, namely to regard Boolean operators as applied to the binary relations denoted by
complex roles. The logics thus obtained are more expressive than traditional pdl [Har84]

5ALUNI is the description logic obtained by extending ALUN (cf. [BCM+03] with inverse roles.
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and reasoning is usually harder. We notice that the semantics immediately implies that
intersection of roles can be expressed by means of union and complementation.

Satisfiability in pdl augmented with intersection of arbitrary programs is decidable in
deterministic double exponential time [Dan84], and thus is satisfiability in ALCreg aug-
mented with intersection of complex roles, even though these logics have neither the tree
nor the finite model property. On the other hand, satisfiability in pdl augmented with
complementation of programs is undecidable [Har84], and so is reasoning in ALCreg aug-
mented with complementation of complex roles. Also, dpdl augmented with intersection
of complex roles is highly undecidable [Har85, Har86], and since global functionality of
roles (which corresponds to determinism of programs) can be expressed by means of local
functionality, the undecidability carries over to ALCF reg augmented with intersection of
roles.

These proofs of undecidability make use of a general technique based on the reduction
from the unbounded tiling (or domino) problem [Ber66, Rob71], which is the problem
of checking whether a quadrant of the integer plane can be tiled using a finite set of
tile types—i.e., square tiles with a color on each side—in such a way that adjacent tiles
have the same color on the sides that touch6. We sketch the idea of the proof using the
terminology of description logics, instead of that of PDLs. The reduction uses two roles
right and up which are globally functional (i.e., 6 1 right, 6 1 up) and denote pairs of tiles
that are adjacent in the x and y directions, respectively. By means of intersection of
roles, right and up are constrained to effectively define a two-dimensional grid. This is
achieved by imposing for each point of the grid (i.e., reachable through right and up) that
by following right ◦ up one reaches a point reached also by following up ◦ right:

∀(right ⊔ up)∗.∃((right ◦ up) ⊓ (up ◦ right))

To enforce this condition, the use of intersection of compositions of atomic roles is essential.
Reflexive-transitive closure (i.e., ∀(right ⊔ up)∗.C) is then also exploited to impose the
required constraints on all tiles of the grid. Observe that, in the above reduction, one can
use TBox axioms instead of reflexive-transitive closure to enforce the necessary conditions
in every point of the grid.

The question arises if decidability can be preserved if one restricts Boolean operations
to basic roles, i.e., atomic roles and their inverse. This is indeed the case if complemen-
tation of basic roles is used only to express difference of roles, as demonstrated by the
ExpTime decidability of DLR and its extensions, in which intersection and difference of
relations are allowed (see Section 2.9).

2.13.2 Role-value-maps

Another construct, which stems from frame-systems, and which provides additional useful
means to specify structural properties of concepts, is the so called role-value-map [BS85],
which comes in two forms: An equality role-value-map, denoted R1 = R2, represents the
individuals o such that the set of individuals that are connected to o via role R1 equals
the set of individuals connected to o via role R2. The second form of role-value-map is

6In fact the reduction is from the Π1
1-complete—and thus highly undecidable—recurring tiling problem

[Har86], where one additionally requires that a certain tile occurs infinitely often on the x-axis.
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containment role-value-map, denoted R1 ⊆ R2, whose semantics is defined analogously,
using set inclusion instead of set equality. Using these constructs, one can denote, for
example, by means of owns ◦ made in ⊆ lives in the set of all persons that own only
products manufactured in the country they live in.

When role-value-maps are added, the logic loses the tree model property, and this
construct leads immediately to undecidability of reasoning when applied to role chains
(i.e., compositions of atomic roles). ForALCreg , this can be shown by a reduction from the
tiling problem in a similar way as to what is done in [Har85] for dpdl with intersection
of roles. In this case, the concept right ◦ up = up ◦ right involving role-value-map can
be used instead of role intersection to define the constraints on the grid. The proof is
slightly more involved than that for dpdl, since one needs to take into account that the
roles right and up are not functional (while in dpdl all programs/roles are functional).
However, undecidability holds already for concept subsumption (with respect to an empty
TBox) in AL (in fact FL−) augmented with role-value-maps, where the involved roles
are compositions of atomic roles [SS89].

As for role intersection, in order to show undecidability, it is necessary to apply role-
value-maps to compositions of roles. Indeed, if the application of role-value-maps is
restricted to Boolean combinations of basic roles, it can be added to ALCQIreg without
influencing decidability and worst case complexity of reasoning. This follows directly from
the decidability results for the extension with Boolean constructs on atomic and inverse
atomic roles (captured by DLR). Indeed, R1 ⊆ R2 is equivalent to ∀(R1 ⊓ ¬R2).⊥,
and thus can be expressed using difference of roles. We observe also that universal and
existential role agreements introduced in [Han92], which allow one to define concepts
by posing various types of constraints that relate the sets of fillers of two roles, can be
expressed by means of intersection and difference of roles. Thus reasoning in the presence
of role agreements is decidable, provided these constructs are applied only to basic roles.

2.13.3 Number restrictions on complex roles

In ALCFIreg , the use of (qualified) number restrictions is restricted to atomic and inverse
atomic roles, which guarantees that the logic has the tree model property. This property
is lost, together with decidability, if functional restrictions may be imposed on arbitrary
roles. The reduction to show undecidability is analogous to the one used for intersection
of roles, except that now functionality of a complex role (i.e., 6 1 (right◦up)⊔ (up◦ right))
is used instead of role intersection to define the grid.

An example of decidable logic that does not have the tree model property is obtained
by allowing the use of role composition (but not transitive closure) inside number restric-
tions. Let us denote with N (X), where X is a subset of {⊔,⊓, ◦,− }, unqualified number
restrictions on roles that are obtained by applying the role constructs in X to atomic
roles. Let us denote with ALCN (X) the description logic obtained by extending ALC
with number restrictions in N (X). As shown in [BS99], concept satisfiability is decidable
for the logic ALCN (◦), even when extended with number restrictions on union and in-
tersection of role chains of the same length. Notice that, decidability for ALCN (◦) holds
only for reasoning on concept expressions and is lost if one considers reasoning with re-
spect to a TBox (or alternatively adds transitive closure of roles) [BS99]. Reasoning even
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with respect to the empty TBox is undecidable if one adds to ALCN number restrictions
on more complex roles. In particular, this holds for ALCN (⊓, ◦) (if no constraints on the
lengths of the role chains are imposed) and for ALCN (⊔, ◦,− ) [BS99]. The reductions
exploit again the tiling problem, and make use of number restrictions on complex roles
to simulate a universal role that is used for imposing local conditions on all points of the
grid.

Summing up we can state that the borderline between decidability and undecidability
of reasoning in the presence of number restrictions on complex roles has been traced quite
precisely, although there are still some open problems. E.g., it is not known whether con-
cept satisfiability inALCN (⊔, ◦) is decidable (although logical implication is undecidable)
[BS99].

3 Expressive Description Logics: The SH Family

The SH family of description logic is inspired by demands from applications in the sense
that the language facilities of description logics of this family are designed in such a way
that (i) application requirements w.r.t. expressivity can be fulfilled and (ii) reasoners can
be built that are efficient in the average case. As we will see in this section, work on
ontology languages based on the SH family revealed that there are intricate interactions
between language constructs required for practical applications. Thus, reasoning gets
harder (from a theoretical and from a practical point of view) if the expressivity is in-
creased. We start our discussion of expressive description logics of the SH family with
the core logic ALC.

3.1 The foundation: ALC

The well-known description logic ALC [BN03] is the backbone of all logics of the SH
family. Let A be a concept name and R be a role name. Then, the set of ALC concepts
(denoted by C or D) is inductively defined as follows:

C, D → A | ¬C |C ⊓D |C ⊔D | ∀R.C | ∃R.C

The semantics is defined in the standard way: given an interpretation I = (∆I , ·I):

AI ⊆ ∆I , RI ⊆ ∆I ×∆I

(¬C)I = ∆I\CI (complement)

(C ⊓D)I = CI ∩DI (conjunction)

(C ⊔D)I = CI ∪DI (disjunction)

(∃R.C)I = {x ∈ ∆I | ∃y. (x, y) ∈ RI ∧ y ∈ CI} (existential restriction)

(∀R.C)I = {x ∈ ∆I | ∀y. (x, y) ∈ RI → y ∈ CI} (value restriction)
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As we have seen in the previous section, we say the a concept C is satisfiable if there
exists an interpretation such that CI 6= ∅. The concept satisfiability problem of the logic
ALC was shown to be PSPACE-complete in [SSS91]. For ALC the finite model property
holds.

A TBox is a set of axioms of the form C ⊑ D (also called generalized concept inclusion,
or GCI). A GCI C ⊑ D is satisfied by an interpretation I if CI ⊆ DI . An interpretation
which satisfies all axioms of a TBox is called a model of the TBox. A concept C is
satisfiable w.r.t. a TBox T if there exists a model I of T such that CI 6= ∅. A concept
D subsumes a concept C w.r.t. a TBox if for all models I of the TBox it holds that
CI ⊆ DI . D is called the subsumer, C is the subsumee. A concept name A1 mentioned
in a TBox is called a most-specific subsumer of a concept name A2 (mentioned in the
TBox and different from A1) if A1 subsumes A2 and there is no other concept name A3

(mentioned in the TBox and different from A1 and A2) such that A1 subsumes A3 and A3

subsumes A2. The least general subsumee of a concept name is defined analogously. The
classification problem for a TBox is to find the set of most-specific subsumers of every
concept name mentioned in the TBox (or knowledge base). The induced graph is called
the subsumption hierarchy of the TBox.

The problem of verifying satisfiability or checking subsumption w.r.t. generalized
TBoxes is ExpTime-hard [Neb90, Lut99a] (in fact ExpTime-complete – cf. Section 2.4).
However, this result holds for the worst case, which does not necessarily occur in practical
applications (see, e.g., [SvRvdVM95]), and practical work on reasoners for languages of
the SH family exploits this insight.

As seen in above, an ABox is a set of assertions of the form C(a), R(a, b), a = b, or
a 6= b. An ABox assertion is satisfied by an interpretation I if aI ∈ CI , (aI , bI) ∈ RI ,
aI = bI , and aI 6= bI , respectively. The ABox satisfiability problem (w.r.t. a TBox) is
to check whether there exists an interpretation (a model of the TBox) that satisfies all
ABox assertions. As usual, we define a knowledge base (KB) to be a pair (T ,A) of a
TBox T and an ABox A. A model of a KB is an interpretation that is a model of T
and A. The instance problem instance(T ,A)(i, C) w.r.t. a knowledge base (T ,A) is to
test whether iI ∈ CI for all models of the knowledge base. We say instance(T ,A)(i, C) is
entailed. The knowledge base is often omitted in the notation if clear from context. The
instance retrieval problem retrieve(T ,A)(C) w.r.t. a KB (T ,A) and a query concept C is
to determine all individuals i mentioned in the ABox for which instance(i, C) is entailed.
A role filler for a role R w.r.t. an individual i is an individual j (mentioned in the ABox)
such that for all models I it holds that (iI , jI) ∈ RI (we say related(i, j, R) is entailed).

The inference problems mentioned in this section are called standard inference prob-
lems for TBoxes and ABoxes, respectively. Reasoners of the SH family support standard
inference problems either for TBoxes and ABoxes or for TBoxes only. As we have seen,
ALC inference problems are not tractable in the worst case, and, at the beginning, in-
complete algorithms were used in concrete system implementations for expressive DLs.
However, at the end of the eighties it became clear that incomplete algorithms for expres-
sive description logics cause all kinds of problems for applications. For instance, more
often than not, the addition of an axiom or assertion to the knowledge base led to the sit-
uation that previously obtained entailments were no longer computed due to peculiarities
of the inference algorithm.
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The beginning of the SH family started with work on the system Kris [BH91b,
HLPT91, AHLM91], which provides a sound and complete reasoner based on the tableau
calculus presented in [SSS91]. Kris supports ALC plus number restrictions (plus some
additional language constructs). The Kris reasoner implements optimization techniques
for the concept and ABox satisfiability problem w.r.t. TBoxes (e.g., lazy unfolding, trace
technique). The main achievement of this work is that the architecture of Kris is tailored
towards specific services for TBoxes, namely TBox classification. Specific optimization
techniques for the classification problem developed for Kris are used by all contemporary
reasoners of the SH family (see below). The idea is to classify a TBox using a top-down
and bottom-up search phase for computing the most-specific subsumers and least-specific
subsumees based on subsumption tests. Kris avoids unnecessary subsumption tests using
marker propagation tests [BHN+92, BFH+94].

3.2 Concrete domains

Another achievement of the work on description logics that is also important for on-
tology languages is the treatment of specific domains with fixed (concrete) semantics.
Applications require constraints over the reals, the integers, or a domain of strings. A
concrete domain D is a tuple (∆D, Φ) of a non-empty set ∆D and a set of predicates Φ.
Predicates are defined in a certain language (e.g., linear inequations over polynomials or
equations over strings). The integration of concrete domains into ALC is investigated in
[BH91a, BH92]. The idea of the new language, ALC(D), is that the axioms for capturing
the concrete semantics of the objects in ∆D is not captured with description logic ax-
ioms but somehow represented separately. The tableau calculus in [BH91a, BH92] treats
the satisfiability problem w.r.t. to conjunctions of concrete domain predicates as separate
subproblems. The concrete domain satisfiability problems must be decidable (admissi-
bility criterion for concrete domains). A Tableau Algorithm for Description Logics with
Concrete Domains is also provided in [LM05].

With concrete domains, so-called attributes are introduced, which are partial functions
that map individuals of the abstract domain ∆I to elements of ∆D of the concrete domain
D. For attributes a, the interpretation is extended as follows: aI : ∆I −→ ∆D.

It is important to note that in the original approach [BH91a, BH92] it is possible
to relate (multiple) attribute values of different individuals of the domain I. One can
represent, for instance, structures such as lists of numbers with decreasing value where
each value is at most half as large as the predecessor. If the language provides concrete
domains such as, for instance, linear inequations over the reals, GCIs cannot be supported
by description logic part due to undecidability of major inference problems. This follows
from a result in [Lut04] (a direct proof was developed at the same time and is given
in [Möl00]). In a restricted form where no feature compositions can be used, it is only
possible to relate attribute values of a single element of I. We use the notation ALC(D)−

to indicate that feature chains are omitted. Concrete domains are part of many specific
description logics of the SH family that we cover below.
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3.3 Transitive roles

For many applications, part-whole relations are important. A characteristic of some part-
whole relations is that they are transitive (see, e.g., [Lam96]). In order to cope with these
modeling demands, for instance, in process engineering applications, an investigation
about an extensions of ALC with means to express transitivity was carried out [Sat96,
Sat98]. ALC was extended with a transitive closure operator, with transitive roles, and
with so-called transitive orbits. As discussed in other sections, ALC extended with a
transitive closure operator causes the concept satisfiability problem to move from PSPACE
to ExpTime.

Syntactically, transitive roles are indicated as a subset of all role names. It turned
out that ALC extended with transitive roles remains in PSPACE [Sat96]. Transitive roles
have the semantics that for all transitive roles R the models must satisfy RI = (RI)+.
Thus, transitive roles are “globally” transitive and cannot be used in a transitive way in a
local setting only (as possible with a specific operator for the transitive closure of a role).

Inspired by work on modal logics, [Sat96] introduces an elegant way to integrate rea-
soning about transitive roles into the ALC tableau calculus by a special rule for transitive
roles in value restrictions. Additionally, in order to enforce termination, blocking condi-
tions were defined such that the calculus terminates. A blocking condition involves a test
whether two sets of concepts are in a certain relation (for ALCR+ , the relation is ⊆, for
details see [Sat96]).

The logic was initially called ALCR+ . As more language constructs were added later
on, and acronyms became hard to read, ALCR+ was renamed S in [HST99].7

3.4 Role hierarchies and functional restrictions

Inspired by work on medical domains in which it became important to represent that some
relations are subrelations (subsets) of other relations, so-called role inclusions axioms of
the form R ⊑ S (with R and S being role names) were investigated in [Hor97] as an
extension to ALCR+ . A set of role inclusion axioms is called a role hierarchy. Models for
role hierarchies are restricted to satisfy RI ⊆ SI for all R ⊑ S. The description logic is
called ALCHR+ or SH.

Role hierarchies introduce explicit names for so-called subroles. In [Hor98b] it is argued
that role hierarchies provide for adequate expressivity while still allowing for efficient
practical implementations at the same time. Another possibility would have been to
consider a role-forming operator for constructing role conjunctions (R ⊓ S). However,
except for inverse roles (see below) the SH family includes no role-forming operators in
order to provide for practically efficient implementations (see also the discussion about a
transitive closure operator for roles in the previous subsection).

Additionally, in [Hor97, Hor98b] global functional restrictions on roles were investi-
gated. In the corresponding description logicALCHfR+ so-called features were introduced
as a specific subset of the role names.8 Features must not be transitive. The semantics

7The name is inspired by modal logic S4m but, obviously, it is a misnomer. However the name is kept
for historical reasons.

8Note that ALCHfR+ does not provide role-value maps as supported by ALCF [HN90, Hol94].
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of a feature f is a (single valued) partial function fI : ∆I −→ ∆I .
With several examples, the interactions of role hierarchies and functional restric-

tions on roles were demonstrated in [Hor97]. A sound and complete tableau calculus
for ALCHfR+ is described in [Hor98c]. This tableau calculus provided the basis for the
enormous success of the SH family of ontology languages. Based on an optimized im-
plementation of this calculus in the system Fact [Hor97, Hor98b] it was shown that
description logics could provide a solid basis for practical application of ontology lan-
guages. Role hierarchies and transitive roles allow one to somehow “simulate” GCIs (by
constructing an equisatisfiable knowledge base). However, the Fact system also included
full support for GCIs.

The contribution of the ALCHfR+ reasoner Fact is (atleast) threefold. First, im-
provements to propositional satisfiability search algorithms [Fre95] were incorporated
into description logic systems (backjumping, boolean constraint propagation, semantic
branching, etc.) and, second, classification operations were dramatically increased by the
invention of a so-called model merging operation [Hor97], which exploits that most sub-
sumption tests for concept names A1 and A2 used to compute the subsumption hierarchy
return false. The idea of a model merging operation is to compute (small) data structures
for concept names (and their negations) such that it is more or less directly obvious that
the conjunction A1 ⊓ ¬A2 is satisfiable (i.e., there is no subsumption relation). Third,
using algebraic transformation, Fact showed that, in many practical applications, corre-
sponding TBox axioms can be converted into a form such that lazy unfolding is maximally
exploited in the tableau calculus (GCI absorption [HT00b]). The system Fact initiated
the breakthrough of description logics as the basis for practically used ontology languages.
Fact was designed for TBoxes only.

3.5 Number restrictions and inverse roles

In particular for technical applications the need for restrictions on the number of role
fillers of an individual became apparent. Number restrictions are concept construction
operators of the form (≤ n R) or (≥ n R) (simple number restrictions, indicated with
letter N in language names) and (≤ n R.C) or (≥ n R.C) (qualified number restrictions
[HB91], indicated with letter Q in language names). For simple number restrictions,
interpretations must satisfy (≤ n R)I = {x |#{y|(x, y) ∈ RI} ≤ n} and (≥ n R)I =
{x |#{y|(x, y) ∈ RI} ≥ n}. For qualified number restrictions, interpretations must satisfy
(≤ n R.C)I = {x |#{y|(x, y) ∈ RI ∧ y ∈ CI} ≤ n} and (≥ n R.C)I = {x |#{y|(x, y) ∈
RI ∧ y ∈ CI} ≥ n}.

Kris supported simple number restrictions in a system implementation at the end of
the eighties. With only simple number restrictions and no role inclusions, it is possible
to use a single placeholder in the tableau calculus for an arbitrary large number of role
fillers required by a number restrictions. Results on the interaction of number restric-
tions and role conjunctions were developed with ALCNR [BDS93b, BDS93a]. Simple
reasoning with placeholder is no longer possible. The same holds for number restrictions
in combination with role hierarchies as used in the SH family.

In addition to problems w.r.t. placeholder reasoning in the presence of number restric-
tions, it was shown that there is a strong interaction between number restrictions and
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transitive roles (and role hierarchies). Allowing number restrictions with transitive roles
(or roles which have transitive subroles) leads to undecidability [HST99]. As a conse-
quence, so-called simple roles were introduced into the SH family. In (qualified) number
restrictions, only simple roles are allowed. With this restriction, inference problems be-
come decidable [HST99].

Another demand from practical applications was the support for inverse roles (letter I
in language names). In [HST99] the research on a corresponding role-forming operator ·−1

in the context of the SH family is summarized. Again, a subtle interaction between num-
ber restrictions (or features), inverse roles as well as transitive roles and role hierarchies
(or GCIs) was discovered. If all these constructs are used, the finite model property does
no longer hold. First, due to inverse roles, the trace technique is no longer applicable, and,
second, the application of the blocking condition introduced in the work about ALCR+

had to be made considerably more complex. Blocking must be dynamic [HST99]. This
makes the implementation of concrete reasoning systems much more difficult. An addi-
tional source of complexity is that blocking must not occur too early (thus, the blocking
condition involves a test for set equality), and, furthermore, due to infinite models, the
blocking condition involves a pair of two sets of concepts (pairwise blocking [HST99]).

Although ABoxes were also investigated in the context of ALCNR, work on the SH
family of description logic languages initially considered TBoxes only.

3.6 Number restrictions, ABoxes, and concrete domains

Inspired by work on the SH family and work on ABoxes in ALCNR as well as work
on concrete domains [BH91a], a tableau calculus for ABox reasoning in the language
ALCNHR+ was presented in [HM00] and concrete domain reasoning was investigated in
this context in [HMW01]. The insights of this work are that in the presence of ABoxes,
(i) models are no longer (quasi) trees but forests, (ii) individuals mentioned in the ABox
must not block each another, and (iii) on the concrete domain part of the language,
feature chains cannot be supported (for all kinds of concrete domains) in order to preserve
decidability. A tableau calculus for reasoning about ABoxes in the language SHIQ (aka
ALCQHIR+) with ABoxes was presented shortly afterwards in [HST00b] (but concrete
domains were not considered).

The latter work led to a new version of the Fact system (iFact) for supporting
TBoxes with inverse roles. The above-mentioned research contributions also provided the
basis for the implementation of the Racer reasoner [HM01c], a DL system for TBoxes
and ABoxes with concrete domains for linear inequations over the reals and the cardinals
as well as inequations over strings and booleans. First versions of both systems, iFact

and Racer, appeared at the end of the nineties, i.e. both systems support the language
SHIQ.9 Both Racer and Fact use the TBox classification techniques developed for
Kris [BHN+92, BFH+94].

Optimized reasoning techniques for SHIQ w.r.t. blocking [HS02] were developed for
later versions of the iFact system, and also included in Racer. The idea is to relax the

9In Racer initially the unique name assumption was always employed, in later versions the assumption
could be activated on demand.
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blocking condition for inverse roles (see above) and retain the subset tests for some parts
of the concept set involved in the blocking test (see [HS02] for details).

With Racer, optimized reasoning for qualitative number restrictions [HM01b,
HM01a] was investigated. The work is based on [OK99]. In order to classify huge termi-
nologies with Racer, a refinement of the techniques introduced in [BHN+92, BFH+94]
is presented in [HM01c]. Topological sorting of transformed GCIs to classify concepts in
definition order allows to skip the bottom-up search phase. Optimizations for concrete
domains in terms of extended model merging operations and incremental concrete domain
satisfiability testing during a tableau proof are described in [HMT01]. GCI absorption
strategies are also investigated with Racer, e.g., absorption of domain and range restric-
tions (see also [TH04] for similar techniques in Fact).

Reasoning systems for the SH family are successful because of research on average-
case behavior and appropriate optimization techniques. Systems analyze the language
of the input problem and select appropriate optimizations to answer queries as fast as
possible, moreover, they are based on sound and complete algorithms.

Optimizations for instance retrieval w.r.t. ABoxes is investigated in [HM04]. An im-
portant property of the SHIQ language is that the subsumption hierarchy of the TBox
part of a knowledge base (T ,A) is stable w.r.t. additions to the ABox part. Stability
means that the subsumption relation between concepts C and D depends only on axioms
in T . This property is exploited in practical ABox systems such as Racer (and also
older systems such as Kris). Multiple knowledge bases (T ,A1), . . . , (T ,Ak) with the
same TBox T can be efficiently supported in the sense that computations for the TBox
can be reused for answering queries on any of the ABoxes Ai. Unfortunately, the stability
property is lost with the introduction of cardinalities for concepts or with the inclusion of
so-called nominals, which became necessary in order to further increase the expressivity
of SHIQ for some applications.

3.7 Nominals

A nominal (cf. Section2.7) denotes a singleton concept. The syntax is {o} and the se-
mantics w.r.t. the interpretation is {o}I = {oI}. With nominals it is possible to relate all
individuals of a certain concept to a particular individual (e.g., all humans stem from a
particular human called Adam). The first system with support for nominals was Crack

[BFT95].
Although nominals in the context of SHIQ were proven to be decidable (see [Tob01]) it

took some time until the first tableau calculus was presented for the language SHOQ(D)
[HS01]. This work also introduced so-called datatype roles [HS01], which must not be
confused with concrete domain attributes. Datatype roles map object from the domain
to sets of objects from a concrete domain. In SHOQ(D) concrete domain predicates
apply to (multiple) datatype properties of single object of the interpretation domain ∆I .
It is not possible to enforce constraint on datatype values of multiple objects from ∆I .
The insight gives rise for corresponding optimization techniques but it should be noted
that some expressivity is lost.

The distinction between TBoxes and ABoxes is no longer required for languages with
nominals. Instead of using C(a) or R(a, b) as ABox assertion one can just write GCIs
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such as {a} ⊑ C or {a} ⊑ ∃R.{b}, respectively.10 Even if ABoxes would be supported by
practical systems, it is obvious that the subsumption relation is not stable for languages
with nominals.

Intricate interactions of nominals in SHOQ(D) with inverse roles were investigated
in SHOIQ(D) [HS05]. Indeed, it was shown that concept satisfiability in SHOIQ(D)
is NExpTime-complete.

3.8 The research frontier of the SH family

Further results on optimized classification [TH05b, TH05a] has opened up additional
application areas for ontology languages. And, although much has been achieved by dedi-
cated optimization techniques developed for the SH family of description logic languages,
still there are hard knowledge bases known (e.g., [BCG01]). New languages features with
respect to specific kinds of role axioms involving role composition have been proposed for
medical domains. A tableau calculus for the new language SROIQ(D) is presented in
[HKS06]. To the best of our knowledge, there is no system implementation at the time of
this writing, that supports all features of this language.

Concrete domain reasoning is also actively explored. Starting with investigation in-
volving new combination operators ([Lut99b]), in [Lut01a, Lut01b] it is shown that for
specific concrete domains, feature chains can indeed be allowed in the presence of GCIs
(see also [Lut03, Lut04]). The language investigated (Q-SHIQ) provides predicates for
linear inequalities between variables (but no polynoms). A more modular approach is de-
scribed in [LM05, LLMW06] where the notion of admissibility (see above) is extended to
a so-called ω-admissibility. No system implementation exists at the time of this writing.

New versions of the description logic systems discussed in the previous section have
been developed. These systems are Fact++ (for SHOIQ(D)) [TH06] and RacerPro (at
the time of this writing the latter only provides an approximation for nominals). Fact++ is
written in C++ whereas RacerPro is implemented in CommonLisp. A new Java-based
description logic system for SHOIQ(D) (and OWL DL) is Pellet. As Fact++, Pellet

is based on a tableau reasoning algorithm and integrates various optimization techniques
in order to provide for a fast and efficient practical implementation. New developments
also tackle the problem of “repairing” knowledge bases in case an inconsistency is detected
[KPSH05]. In addition, with Pellet, optimization techniques, for instance, for nominals
have been investigated [SGP06]. Other description logic systems are described in [MH03].

Compared to initial approaches for query languages (see [LS91]), recently, more
expressive languages for instance retrieval have been investigated (conjunctive queries
[CDGL98a, HT00a, GH05]). To the best of the authors’ knowledge, algorithms for an-
swering conjunctive queries for expressive description logics such as SHIQ are not known.
In practical systems such as Racer implementations for a restricted form of conjunctive
queries is available (variables are bound to individuals mentioned in the ABox only).
Database-inspired optimization techniques for this language in the context of a tableau
prover are presented in [MHW06]. In addition, Racer supports the incremental compu-
tation of result sets for restricted conjunctive queries. The demand for efficient instance

10Equality and inequality of individuals can also easily be specified using negation.
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retrieval has led to the development of new proof technique for languages of the SH
family. A transformation approach using disjunctive datalog [EGM97], resolution tech-
niques as well as magic-set transformations to support reasoning for SHIQ is described
in [HMS04, Mot06] with encouraging results. In this context, a new system, Kaon2 has
demonstrated that techniques from the database community can be successfully used also
for implementing description logic systems. Although at the time of this writing, Kaon2
is a very recent development and not quite as expressive as Fact++, Pellet, or Rac-

erPro (e.g., w.r.t. datatypes, nominals, large numbers in qualified number restrictions,
etc.).

Recent advances in the development of standards for description logic reasoning sys-
tems (such as DIG [BHMC03]) have contributed to the fact that DL systems can be
interchanged such that the strength of particular reasoning systems can be exploited for
building practical applications. Since semantic web applications have become interest-
ing from a business point of view, commercial DL systems have appeared (e.g., Cere-

braServer from Cerebra Inc.) and commercial versions of above-mentioned systems
became available (e.g., Kaon2 from Ontoprise or RacerPro from Racer-Systems and
Franz Inc.).

4 Tractable Description Logics

In this section we concentrate on those families of description logics for which the main
reasoning problems can be decided in PTime (or less – see later).

The quest for tractable (i.e., PTime decidable) description logics (DLs) started in
the 1980s after the first intractability results for DLs were shown [BL84, Neb88]. Until
recently, it was restricted to DLs that extend the basic language FL0, which comprises
the concept constructors conjunction (⊓) and value restriction (∀r.C). The main reason
for this focusing was that, when clarifying the logical status of property arcs in semantic
networks and slots in frames (which are the ancestors of modern DLs), the decision was
taken that arcs/slots should be read as value restrictions rather than existential restric-
tions (∃r.C).

In almost every application of DLs, it is crucial to reason with terminologies (also
called TBoxes or DL ontologies), rather than with isolated concept descriptions. Un-
fortunately, as soon as TBoxes were taken into consideration, tractability turned out to
be unattainable in FL0: even classifying the simplest form of TBoxes that admit only
acyclic concept definitions was shown to be coNP-hard [Neb90]. If the most general
form of TBoxes is admitted, which consists of general concept inclusion axioms (GCIs)
as supported by all modern DL systems, then classification in FL0 even becomes Exp-

Time-complete [BBL05].
For these reasons, and also because of the need for expressive DLs in applications, from

the mid 1990s on, the DL community has mainly given up on the quest of finding tractable
DLs. Instead, it investigated more and more expressive DLs, for which reasoning is worst-
case intractable. The goal was then to find practical reasoning procedures, i.e., algorithms
that are easy to implement and optimize, and which—though worst-case exponential
or even worse—behave well in practice (see, e.g., [HST00a]). This line of research has
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resulted in the availability of highly optimized DL systems for expressive DLs based
on tableau algorithms [Hor98a, HM01c], and successful applications: most notably the
recommendation by the W3C of the DL-based language OWL [HPSvH03] as the ontology
language for the Semantic Web.

Recently, the choice of value restrictions as a sine qua non of DLs has been reconsid-
ered. On the one hand, it was shown that the DL EL, which allows for conjunction (⊓)
and existential restrictions (∃r.C), has better algorithmic properties than FL0. Subsump-
tion of both acyclic and cyclic EL TBoxes is tractable [Baa03a], and this remains so even
if general TBoxes with GCIs are admitted [Bra04]. On the other hand, there are appli-
cations where value restrictions are not needed, and where the expressive power of EL or
small extensions thereof appear to be sufficient. In fact, the Systematized Nomenclature
of Medicine, employs EL with an acyclic TBox [CRP+93, Spa00]. The Gene Ontology
[The00] can be seen as an acyclic EL TBox with one transitive role. Finally, large parts of
the Galen Medical Knowledge Base can also be expressed in EL with GCIs, role hierarchy,
and transitive roles [RH97].

This characteristic of expressive description logics makes their usage particularly un-
suited in all such contexts in which Another strong reason for insisting on tractability
stems from the need of using (DLs) ontologies a conceptual view over data repositories.
This is the case, for example, of Enterprise Application Integration Systems, Data Inte-
gration Systems [Len02], or the Semantic Web [HH01], where data become instances of
concepts in ontologies. In these contexts, data are typically very large and dominate the
intentional level of the ontologies. Hence, when measuring the computational complexity
of reasoning, the most important parameter is the size of the data, i.e., one is particularly
interested in data complexity [Var82]. While in all the above mentioned contexts one
could still accept reasoning that is exponential on the intentional part, it is mandatory
that reasoning is polynomial in the data. A second fundamental requirement is the pos-
sibility to answer queries over an ontology that are more complex than the simple queries
(i.e., concepts and roles) usually considered in Description Logics (DLs) research.

Traditionally, research carried out in DLs has not paid much attention to data complex-
ity, and only recently efficient management of large amounts of data has become a primary
concern in ontology reasoning systems [HLTB04, CHW05]. Unfortunately, research on the
trade-off between expressive power and computational complexity of reasoning has shown
that many DLs with efficient, i.e., worst-case polynomial time, reasoning algorithms lack
the modeling power required for capturing conceptual models (such as UML class dia-
grams and Entity-Relationship diagrams) and basic ontology languages. On the other
hand, whenever the complexity of reasoning is exponential in the size of the instances,
there is little hope for effective instance management.

In the rest of this section we provide a specification of different families of DLs for
which the main reasoning problems can be decided in PTime.

Among DLs reasoning services, when studying such DLs we are particularly interested
in those problems for which tractability w.r.t. data complexity turns out to be crucial,
whether intractability in the size of the TBox or the query in input (e.g., for query
answering) is instead in general acceptable. Therefore, besides classical DLs reasoning
services, as logical implication or subsumption of concepts and roles, we also consider
here, instance retrieval, and query answering (formally defined below) in different families

c©2006/TONES – 31 May, 2006 36/91 TONES-D06– v.2.0



FP6-7603 – TONES Thinking ONtologiES WP2

of tractable DLs, which differ in terms of expressivity and kinds of applications towards
which they are designed. As for expressive power, a desirable property is that a tractable
DL should include the main modeling features of conceptual models, which are also at
the base of most ontology languages. These features include cyclic assertions, ISA on
concepts, inverses on roles, role typing, mandatory participation to roles, and functional
restrictions of roles. We also look at query languages that go beyond the expressive
capabilities of concept expressions in DLs, in particular we focus on conjunctive queries
(corresponding to the select-project-join fragment of SQL). Formally, a conjunctive query
(CQ) q over a knowledge base K is an expression of the form

q(~x)← ∃~y.conj (~x, ~y)

where ~x are the so-called distinguished variables, ~y are existentially quantified variables
called the non-distinguished variables, and conj (~x, ~y) is a conjunction of atoms (and pos-
sibly equalities) with free variables ~x and ~y, expressed in terms of concepts and roles of
K. A query q(~x)← ∃~y.conj (~x, ~y) is interpreted over an interpretation I = 〈∆I , ·I〉 as the
set qI of tuples ~o ∈ ∆I×· · ·×∆I such that, when we assign the objects ~o to the variables
~x, the formula ∃~y.conj (~x, ~y) evaluates to true in I.

Formally, the reasoning services we are interested in are:

• instance retrieval, i.e., given a KB K, a concept C (resp., a role R), return the set
of constants a (resp. the set of pairs 〈a, b〉 of constants) of K, such that in every
model I of K we have aI ∈ CI (resp. (aI , bI) ∈ RI).

• query answering : given a query q with distinguished variables ~x and a KB K, return
the set ans(q,K) of tuples ~c of constants of K such that in every model I of K we
have ~cI ∈ qI .

We point out that the decision problem associated to instance retrieval, is the so-called
instance checking, i.e., given a KB K, a concept C and a constant a (resp., a role R and a
pair of constants a and b), verify whether in every model I of K we have aI ∈ CI (resp.
(aI , bI) ∈ RI).

As for query answering, the associated decision problem, called recognition problem
for query answering, is as follows: given a KB K, a query q, and a tuple of constants ~c
of K, check whether ~c ∈ ans(q,K). When we talk about the computational complexity of
instance retrieval or query answering, in fact, we implicitly refer to the associated decision
problem.

Note that, query answering is a generalization of instance retrieval (actually, instance
retrieval can be seen as a query answering problem in which queries ask for the extension
of single concepts or single roles).

In the following we first present the DL DL-Lite, then we move to EL++ and extension
of EL, finally we briefly review DLP and Horn-SHIQ.

4.1 DL-Lite

DL-Lite is a description logics specifically tailored for those contexts where ontologies
are used to access large amounts of data. Informally, DL-Lite is a fragment of OWL-DL
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which allows for capturing conceptual modeling constructs, while keeping query answering
efficient. Specifically, efficiency of query answering should be achieved by delegating data
storage and query answering to an RDBMS.

The distinguishing features of DL-Lite are that the extensional component of a knowl-
edge base, the ABox, is maintained by an RDBMS in secondary storage, and that query
answering can be performed as a two step process: in the first step, a query posed over
the knowledge base is reformulated, taking into account the intensional component (the
TBox) only, obtaining a union of conjunctive queries; in the second step such a union is
directly evaluated over the ABox, and the evaluation can be carried out by an SQL engine,
taking advantage of well established query optimization strategies. Since the first step
does not depend on the data, and the second step is the evaluation of a relational query
over a databases, the whole query answering process is in LogSpace in the data [AHV95].

DL-Lite is essentially the maximal fragment exhibiting such a desirable property, and
allowing one to delegate query evaluation to a relational engine [CDGL+05b]. Indeed, even
slight extensions of DL-Lite make query answering (actually already instance checking,
i.e., answering atomic queries) at least NLogSpace in data complexity, ruling out the
possibility that query evaluation could be performed by a relational engine.

Notably, this was one of the motivations behind several research works done on CLAS-
SIC in the 80’s [BBMR89b].

The logic

As usual in DLs, DL-Lite allows for representing the domain of interest in terms of
concepts, denoting sets of objects, and roles, denoting binary relations between objects.
In DL-Lite concepts and roles are defined as follows:

B −→ A | ∃R
C −→ B | ¬B
R −→ P | P−

where A denotes an atomic concept, P an atomic role, and P− the inverse of the atomic
role P ; B denotes a basic concept that can be either an atomic concept or a concept of
the form ∃R, the standard DL construct of unqualified existential quantification on roles
(and their inverse); finally, C denotes a (general) concept, which can be a basic concept or
its negation, whereas E denotes a (general) role, which can be a basic role or its negation.

A DL knowledge base (KB) K = 〈T ,A〉 represents the domain of interest in terms of
two parts, a TBox T , specifying the intensional knowledge, and an ABox A, specifying
extensional knowledge. DL-Lite TBox assertions are of the form

B ⊑ C inclusion assertion
(funct R) functionality assertion

An inclusion assertion expresses that a basic concept B is subsumed by a general concept
C, while a functionality assertion expresses the (global) functionality of a role (atomic or
inverse).

We observe that we might include B1⊔B2 in the constructs for the left-hand side of the
inclusion assertions (where ⊔ denotes union) and C1 ⊓C2 in the constructs for the right-
hand side (where ⊓ denotes conjunction). In this way, however, we would not extend

c©2006/TONES – 31 May, 2006 38/91 TONES-D06– v.2.0



FP6-7603 – TONES Thinking ONtologiES WP2

the expressive capabilities of the language, since these constructs can be simulated by
considering that B1 ⊔B2 ⊑ C is equivalent to the pair of assertions B1 ⊑ C and B2 ⊑ C,
and that B ⊑ C1 ⊓ C2 is equivalent to B ⊑ C1 and B ⊑ C2. Similarly, we might add
⊥ (denoting the empty set) to the constructs for the left-hand side and ⊤ (denoting the
whole domain) to those for the right-hand side.

An ABox is formed by a set of membership assertions on atomic concepts and on
atomic roles, of the form

A(a), P (a, b)

stating respectively that the object denoted by the constant a is an instance of A and
that the pair of objects denoted by the pair of constants (a, b) is an instance of the role
P .

As for the ABox, DL-Lite allows for assertions of the form:

B(a), P (a, b) membership assertions

where a and b are constants. These assertions state respectively that the object denoted
by a is an instance of the basic concept B, and that the pair of objects denoted by (a, b)
is an instance of the role P .

Although DL-Lite is quite simple from the language point of view, it allows for query-
ing the extensional knowledge of a KB in a much more powerful way than usual DLs,
in which only membership to a concept or to a role can be asked. Specifically, DL-Lite
allows for using conjunctive queries of arbitrary complexity. A conjunctive query over a
DL-Lite knowledge base K is a CQ in which atoms in the body are of the form B(z), or
P (z1, z2), where B and R are respectively a basic concept and an atomic role in K, and
z, z1, z2 are constants in K or variables in ~x or ~y.

An interpretation I = (∆I , ·I) consists of a first order structure over ∆I with an
interpretation function ·I such that:

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬B)I = ∆I \BI

An interpretation I is a model of an inclusion assertion B ⊑ C if and only if BI ⊆ CI ;
I is a model of a functionality assertion (funct R) if (c, c′) ∈ RI and (c, c′′) ∈ RI implies
c′ = c′′; I is a model of a membership assertion C(a) (resp., R(a, b)) if a ∈ CI (resp.,
(a, b) ∈ RI). A model of a KB K is an interpretation I that is a model of all assertions in
K. A KB is satisfiable if it has at least one model. A KB K logically implies an assertion
α if all the models of K are also models of α.

Expressivity of DL-Lite

Although equipped with advanced reasoning services, at first sight DL-Lite might seem
rather weak in modeling intensional knowledge, and hence of limited use in practice. In
fact, this is not the case. Despite the simplicity of its language and the specific form of

c©2006/TONES – 31 May, 2006 39/91 TONES-D06– v.2.0



FP6-7603 – TONES Thinking ONtologiES WP2

inclusion assertions allowed, DL-Lite is able to capture the main notions (though not all,
obviously) of both ontologies, and of conceptual modeling formalisms used in databases
and software engineering, such as Entity-Relationship diagrams and UML class diagrams.
In particular, DL-Lite assertions allow us to specify:

- ISA, e.g., stating that a concept A1 is subsumed by a concept A2, using A1 ⊑ A2;

- disjointness, e.g., between concepts A1 and A2, using A1 ⊑ ¬A2;

- role-typing, e.g., stating that the first (resp., second) component of the role P is an
instance of A, using ∃P ⊑ A (resp., ∃P− ⊑ A);

- participation constraints, e.g., stating that all instances of a concept A participate
to a role P as the first (resp., second) component, using A ⊑ ∃P (resp., A ⊑ ∃P−);

- non-participation constraints, using A ⊑ ¬∃R;

- functionality restrictions on relations, using (funct R).

Observe that DL-Lite does allow for cyclic assertions without falling into intractability.
Indeed, we can enforce the cyclic propagation of the existence of a P -successor using the
two DL-Lite inclusion assertions A ⊑ ∃P and ∃P− ⊑ A. The constraint imposed on
a model is similar to the one imposed by the ALN cyclic assertion A ⊑ ∃P ⊓ ∀P .A,
though stronger, since it additionally enforces the second component of P to be typed
by A. In order to keep tractability even in the presence of cycles, DL-Lite imposes
restrictions on the use of the ∀R.C construct, which, if used together with inclusion
assertions, immediately would lead to intractability of TBox reasoning [Cal96b] and of
query answering.

Finally, notice that DL-Lite is a strict subset of OWL-Lite, the least expressive variant
of OWL11, which presents some constructs (e.g., forms of negation and disjunction) that
cannot be expressed in DL-Lite, and that make reasoning in OWL-Lite non-tractable in
general.

Reasoning in DL-Lite

We discuss now reasoning in DL-Lite, and concentrate on the basic reasoning task in the
context of using ontologies to access large data repositories, namely that of answering
(conjunctive) queries over a DL-Lite knowledge base. Obviously, since query answering
generalizes instance retrieval, which in turn generalizes instance checking, solving it means
solving also the other reasoning problems we are mainly interested in. Notice also that
other classical forms of reasoning can be reduced to query answering [CDGL+05b]. For
example, to check whether K is unsatisfiable, we can simply add the inclusion A1⊓A2 ⊑ ⊥
to the TBox and the assertion A1(a) to the ABox (where A1, A2 are new atomic concepts
and a is new constant), and check whether a is in the answer to the query q(x)← A2(x).
Similarly, to check whether K implies A ⊑ C, we can simply add the assertion A(a) to

11http://www.w3.org/TR/owl-features/
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Figure 1: Query answering via query evaluation

the ABox (where a is new constant), and check whether a is in the answer to the query
q(x)← C ′(x), where C ′ is the conjunction of atoms corresponding to the concept C.

Instead, in order to exploit query evaluation for query answering, and also properly
take into account that the size of the ABox (i.e., the data) largely dominates the size of
the TBox, we consider the query answering process as divided in two steps (cf. Figure 1):

1. First, considering the TBox T only, the user query q is reformulated into a new
query rq,T (expressed in a suitable query language  LQ).

2. Then, the reformulated query rq,T is evaluated over the ABox A only (consid-
ered as a first-order structure, i.e., a database), producing the requested answer
ans(q, 〈T ,A〉).

As shown in [CDGL+05b, CDGL+05a], one of the distinguishing features of DL-Lite is
that the above described two step query answering process makes sense, and allows us to
be efficient in the size of the data. Indeed, the perfect reformulation rq,T of a conjunctive
query q over a DL-Lite KB K = 〈T ,A〉 can be expressed as a union of conjunctive queries,
i.e., a set of select-project-join SQL queries, and hence the query evaluation step can be
performed in LogSpace in the size of the ABox A [AHV95]. Since the size of rq,T does
not depend on A, the data complexity (i.e., the complexity measured as a function of
the size of the ABox only) of the whole query answering algorithm is LogSpace. More
precisely, the following theorem hold:

Theorem 4.1 Answering conjunctive queries in DL-Lite is LogSpace in the size of the
ABox (data complexity), PTime in the size of the TBox, and exponential in the size of
the query .

We point out that, by storing the ABox under the control of an RDBMS, which can
manage effectively large numbers (i.e., millions) of objects in the knowledge base, we can
completely delegate the query evaluation step to an SQL engine of a Relational Data Man-
agement System (RDBMS), and to take advantage of well established query optimization
strategies. Indeed, on the one hand, the ABox A can be managed in secondary storage by
an RDBMS, since it is possible to construct a relational database DB(A) that faithfully
represents it, and on the other hand, the perfect reformulation of a select-project-join SQL
query can be expressed as a set of select-project-join SQL queries that can be directly
evaluated over DB(A).

We finally observe that DL-Lite can capture (the DL-subset of) RDFS12, except for
role hierarchies. In fact, the query answering technique for DL-Lite works also for full

12http://www.w3.org/TR/rdf-schema/
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Name Syntax Semantics

top ⊤ ∆I

bottom ⊥ ∅

nominal {a} {aI}

conjunction C ⊓D CI ∩DI

existential
restriction

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

concrete
domain

p(f1, . . . , fk)

for p ∈ PDj

{x ∈∆I | ∃y1, . . . , yk ∈ ∆Dj :
fI

i (x) = yi for 1 ≤ i ≤ k ∧ (y1, . . . , yk) ∈ pDj}

GCI C ⊑ D CI ⊆ DI

RI r1 ◦ · · · ◦ rk ⊑ r rI1 ◦ · · · ◦ rIk ⊆ rI

concept
assertion

C(a) aI ∈ CI

role
assertion

r(a, b) (aI , bI) ∈ rI

Table 1: Syntax and semantics of EL++.

RDFS extended with participation constraints (i.e., inclusion assertions with ∃R on the
right-hand side), and one can show that in this case query answering is indeed LogSpace.
However, if we further extend RDFS with functionality assertions, it can be shown that
query answering becomes NLogSpace-hard.

4.2 The Description Logic EL++

The tractability results for EL together with the bio-medical applications mentioned above
have motivated the research on extensions of EL: the leitmotif for this research was to
extend EL as far as possible by adding standard DL constructors available in ontology
languages like OWL, while still retaining PTime reasoning in the presence of GCIs. This
has resulted in the tractable DL EL++ [BBL05], which includes transitive roles, so-called
right-identities [Spa00] on roles, nominals (and thus ABoxes), and disjointness constraints
on concepts.

The logic

Like other DLs, concept descriptions are inductively defined with the help of a set of con-
structors, starting with a set NC of concept names, a set NR of role names, and (possibly)
a set NI of individual names. In this section, we introduce the extension EL++ of EL,
whose concept descriptions are formed using the constructors shown in the upper part of
Table 1. There and in general, we use a and b to denote individual names, r and s to
denote role names, and C, D to denote concept descriptions.

The concrete domain constructor provides an interface to so-called concrete domains,
which permits reference to, e.g., strings and integers. Formally, a concrete domain D is a
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pair (∆D,PD) with ∆D a set and PD a set of predicate names. Each p ∈ P is associated
with an arity n > 0 and an extension pD ⊆ (∆D)n. To provide a link between the DL
and the concrete domain, we introduce a set of feature names NF. In Table 1, p denotes
a predicate of some concrete domain D and f1, . . . , fk are feature names. The DL EL++

may be equipped with a number of concrete domains D1, . . . ,Dn such that ∆Di ∩∆Dj = ∅
for 1 ≤ i < j ≤ n. If we want to stress the use of particular concrete domains D1, . . . ,Dn,
we write EL++(D1, . . . ,Dn) instead of EL++.

An EL++ constraint box (CBox) is a finite set of general concept inclusions (GCIs)
and role inclusions (RIs), whose syntax can be found in Table 1. Note that a finite set
of GCIs would commonly be called a general TBox. We use the term CBox due to the
presence of RIs. An EL++ assertional box (ABox) is a finite set of concept assertions and
role assertions , whose syntax can also be found in Table 1. ABoxes are used to describe
a snapshot of the world.

The semantics of EL++(D1, . . . ,Dn)-concept descriptions is defined in terms of an
interpretation I = (∆I , ·I). The domain ∆I is a non-empty set of individuals and the
interpretation function ·I maps each concept name A ∈ NC to a subset AI of ∆I , each role
name r ∈ NR to a binary relation rI on ∆I , each individual name a ∈ NI to an individual
aI ∈ ∆I , and each feature name f ∈ NF to a partial function fI from ∆I to

⋃

1≤i≤n ∆Di.

The extension of ·I to arbitrary concept descriptions is inductively defined as shown in
the third column of Table 1.

An interpretation I is a model of a CBox C if, for each GCI and RI in C, the conditions
given in the third column of Table 1 are satisfied. In the definition of the semantics of
RIs, the symbol “◦” denotes composition of binary relations. An interpretation I is a
model of an ABox A if, for each concept assertion and role assertion in A, the conditions
given in the third column of Table 1 are satisfied.

Reasoning in the EL++

As already mentioned at the beginning of this section, the heart of motivation for EL++

is to extend the based concept language EL as far as possible while still retaining PTime

reasoning in the presence of GCIs. The main inference problem considered, not only in
EL but also in DLs in general, is concept subsumption. Though other inference problems
are not trivial in the presence of the bottom concept and ABoxes, it has been shown in
[BBL05] that most standard inference problems are inter-reducible.

In [Baa03a], subsumption in EL with the presence of either acyclic or cyclic TBoxes
has been shown tractable. This is achieved by characterizing the subsumption through a
proper simulation on the EL syntax graph. Later on, Brandt has shown that tractability
can still be achieved even when admitting GCIs in EL [Bra04]. In order to show this,
a new normal form of a general TBox has been introduced. This normalization can
be computed in linear time, yielding a normalized TBox of which size is linear in the
size of the original one (see, e.g. [Sun05]). A saturation-based approach, based on a
set of completion rules, has been proposed. This approach has recently been extended
to the more expressive EL++ [BBL05]. In that paper, Baader et al. have proved that
the subsumption problem remains tractable when adding the bottom concept (and thus
disjointness statements), nominals (i.e., singleton concepts), a restricted form of concrete
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domains (e.g., references to numbers and strings), and a restricted form of role-value maps
(which can express transitivity and the right-identity rule required in medical applications
[Spa00]). On the other hand, they then proved that basically, all other additions of
standard DL constructors lead to intractability of the subsumption problem, and in most
cases even to ExpTime-hardness.

Instance retrieval in EL++ is PTime. Conjunctive query answering has not been
studied yet neither in in EL nor in EL++. However the results in [CDGL+05a] show us
that such a service is PTime-hard in data complexity and hence cannot be delegated to
a relational DBMS (actually such a lower bound holds already for instance retrieval).

Discussion

To the surprise of many, EL++, which has been proposed as a lightweight ontology lan-
guage, are polytime decidable. Though this description logic can be used to completely
formulate real-world biomedical ontologies, such as the Gene Ontology and SNOMED,
it is worthwhile to note that neither of these realistic ontologies are composed of using
GCIs. For this reason, it is interesting and natural to ask the following question:

“How far can EL be extended if we restrict the ontology formulation to an acyclic
TBox, while still retaining polytime reasoning?”

Of course, one could hope for additional expressive powers that are important and
useful for formulating real-world ontologies, when the use of general TBoxes is compro-
mised.

4.3 Description Logics Programs

Description Logic Programs (DLP) [GHVD03] stem from the analysis of intersection be-
tween the Semantic Web approaches to rules (RuleML Logic Programs) and ontologies
(OWL/DAML+OIL Description Logic). The DLP approach can be seen as an approach
based on a form of safe interaction between the DL-KB and the rules: in particular, a
rule language is defined such that it is possible to encode a set of rules into a semantically
equivalent DL-KB.

DLP provides a significant degree of expressiveness, substantially greater than the
RDFSchema fragment of Description Logic. It is a subset of both OWL-DL and the Horn
fragment of First Order Logic. In fact, the standard translation of DLP axioms to First
Order Logic results in Horn clauses.

We notice that the connection between DLP and logic programs is mainly syntac-
tic. Indeed, as for the semantics, logic programming engine adopts the closed world
assumption, whereas DLP adopts classical DL semantics. As for constructs allowed in
the language, we point out that DLP allows for the specification of TBoxes containing
concept disjointness, functionality on roles and on their inverse, (limited) inclusions on
concepts, transitivity of roles, and range properties.

Logical implication in DLP is ExpTime wrt the TBox, while instance retrieval and
conjunctive query answering is ExpTime in the size of the TBox and PTime (and also
actually PTime-hard [CDGL+05a]) in the size of the ABox (data complexity).
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4.4 Horn-SHIQ

Horn-SHIQ [HMS05] is a fragment of the expressive DL SHIQ, for which reasoning,
i.e., instance checking, can be encoded in a suitable positive Datalog program, i.e., Horn
clauses.

Essentially Horn-SHIQ is obtained from SHIQ by allowing only axioms of the form
⋂

Ci ⊑ D are allowed, where each Ci has the form A or ∃R.A, and D has the form A, ⊥,
∃R.A, ∀R.A, (≥ nR.A), (≤ 1R).

Data complexity of instance retrieval in such a logic is in PTime-complete [HMS05],
while data complexity of conjunctive query answering is still open (though obviously
PTime-hard).

4.5 Discussion and related work

Languages presented in this section are different fragments of expressive DLs with as-
sertions and inverses studied in the 90’s (cf. Section 2and 3), which are at the base of
current ontology languages such as OWL, and for which optimized automated reasoning
systems have been developed. Indeed, one could use, off-the-shelf, a system like Racer to
perform KB satisfiability, instance checking, subsumption, logical implication of inclusion
assertions, in the DLs presented in this section.

Also, reasoning with conjunctive queries in these DLs has been studied (see
e.g., [CDGL00]), although not yet implemented in systems. Unfortunately, the reason-
ing procedures for these DLs are all ExpTime-hard, and more importantly they are
not tailored towards obtaining tight complexity bounds with respect to data complexity.
Conjunctive queries combined with DLs were also considered in [DLNS98], but again data
complexity was not the main concern.

Alternative reasoning procedures that allow for clearly isolating data complexity have
recently been proposed, but how they will work in practice still needs to be understood:
in [HMS05], a coNP upper bound for data complexity of instance checking in an expres-
sive DL has been shown, and a polynomial fragment has been isolated, though it is open
whether the technique can be extended to deal efficiently with conjunctive queries; build-
ing on the technique proposed in [LR98], coNP-completeness of answering conjunctive
queries for an expressive DL with assertions, inverse roles, and number restrictions (that
generalize functionality) has been shown in [OCE06].

There has been a lot of work in DLs on the boundary between polynomial and expo-
nential reasoning. Such a work first concentrated on DLs without the TBox component of
the knowledge base, and led to the development of simple DLs, such as ALN , that admit
polynomial instance checking. However, for minor variants of ALN , such as ALE (where
qualified existential is introduced and number restrictions are dropped), FLE− (where
additionally negated atomic concepts are dropped), and ALU (where union is introduced
and number restrictions are dropped), instance checking, and therefore conjunctive query
answering, is coNP-complete in data complexity [DLNS94]. We notice that, the argument
used in the proof of coNP-hardness of ALE , FLE−, and ALU in [DLNS94], immediately
implies that answering conjunctive queries is coNP-hard in data complexity, if we extend
DL-Lite with one of the following features: (1) either ∀R.A or ¬A can appear in the
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left-hand side of inclusion assertions; (2) either ∀R.A or ¬A can appear as atoms in the
query; (3) union of concepts can appear in the right-hand side of inclusion assertions. If
we allow for cyclic inclusion assertions in the TBox, then even subsumption in CLASSIC
and ALN (and in fact FL0) becomes intractable.

5 Rules in Ontologies

In this section we review the work on rules in ontology languages and in particular in
description logics. On of the main motivation for looking at rules comes from the Semantic
Web. The need for integrating rules within the Semantic Web framework was clear since
the early developments. However, up to the last few years, the research community
focused its efforts on the design of the so called Ontology Layer. Nowadays, this layer is
fairly mature in the form of Description Logics based languages such as OWL-Lite and
OWL-DL, which are now among W3C recommendations.

One of the key features of Semantic Web ontology languages development is the at-
tention to the computational properties of the main reasoning tasks. In particular, decid-
ability is seen as one of the characteristics which should be preserved by these languages.
This constraint led to the restriction of the expressivity of ontology language which can
be heavy for certain applications (e.g. Web Services, or integration of information sys-
tems). The problem increasing the expressivity of Semantic Web ontology languages over
the established Ontology Layer, together with the need of providing powerful query lan-
guages, directed the research towards the investigation of the possibility of combining
OWL languages with Rules based languages.

In recent years, more research has been devoted towards the integration of different
sorts of rule based languages on top of the ontology layer provided by the OWL languages
and in more general terms on top of a generic DL, and this work already produced some
proposals for extending OWL languages. However, these proposals comes from different
research communities, and often are difficult to compare because of the diverse underlying
semantic assumptions.

We reckon that, since the early 90s, the Description Logics community produced
several important results w.r.t. the problem of integrating DL languages and rules
[DLN+98, DNR97, DLN+98, DLNS98, DNR02, Ros98, LR98]. For this reason we do
not restrict our analysis to proposals in the context of Semantic Web. On the contrary,
we show that a careful analysis of this body of work provides a valuable reference to
explore the borders of expressivity and tractability of the combination of the two kinds
of language.

Generally speaking we can identify three different approaches, when dealing with rules:
the axiom-based approach, the logic programming approach, and the autoepistemic ap-
proach. In this section we provide a characterization of the three approaches, together
with a correspondence among relevant fragments in the three cases.
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5.1 Rule-extended knowledge bases

Let us consider a first-order function-free language with signature A, and a description
logic (DL) knowledge base Σ with signature subset of A.

We do not introduce any particular DL formalism. In our context, DL individuals
correspond to constant symbols, DL atomic concepts and roles (and features) are unary
and binary predicates in the case of a classical DL or a OWL language, and DL atomic
n-ary relations correspond to predicates of arity n in the case of a DLR-like DL. Note
that description logics with concrete data-types (such as OWL-Lite) are allowed as well.

A term is any constant in A or a variable symbol. If R is a predicate symbol of arity n
and t1, . . . , tn are terms, R(t1, . . . , tn) is an atom, and an atom R(t1, . . . , tn) or a negated
atom ¬R(t1, . . . , tn) are literals. A ground literal is a literal involving only constant terms.
A set of ground literals is consistent if it does not contain an atom and its negation. If l
is a literal, l or not l are NAF-literals (negation as failure literals). DL atoms, DL literals,
and DL NAF-literals are atoms, literals, and NAF-literals whose predicates belong to the
DL signature. A rule r may be of the forms:

h1 ∧ . . . ∧ hℓ ← b1 ∧ . . . ∧ bm (classical rule)

h1 ∨ . . . ∨ hℓ : – b1 ∧ . . . ∧ bm ∧ not bm+1 ∧ . . . ∧ not bn (lp-rule)

h1 ∧ . . . ∧ hℓ ⇐ b1 ∧ . . . ∧ bm (autoepistemic rule)

where h1, . . . , hℓ, b1, . . . , bn are literals. Given a rule r, we denote by H(r) the set
{h1, . . . , hℓ} of head literals, by B(r) the set of body literals {b1, . . . , bn}, by B+(r) the set
of NAF-free body literals {b1, . . . , bm}, and by B−(r) the set of NAF-negated body liter-
als {bm+1, . . . , bn}. We denote by vars({l1, . . . , ln}) the set of variables appearing in the
literals {l1, . . . , ln}. The distinguished variables of a rule r are the variables that appears
both in the head and in the body of the rule, i.e., D(r) = vars(H(r)) ∩ vars(B(r)). A
ground rule is a rule involving only ground literals. A rule is safe if all the variables in the
head of the rule are distinguished. A DL rule is a rule with only DL literals. A DL-safe
rule is a rule in which each variable appears in some non DL atom (i.e., positive literal) in
the body. A set of literals is tree-shaped if its co-reference graph is acyclic; a co-reference
graph includes literals and variables as nodes, and labelled edges indicate the positional
presence of a variable in a literal. An atomic rule is a rule having a single literal in the
head; a positive-atomic rule is a rule having a single atom in the head. A set of rules is
acyclic if they are atomic and no head literal transitively depends on itself; a head literal
h directly depends on a literal l if there is an atomic rule r with head h and with l part
of the body B(r). A set of rules is a view set of rules if each rule is atomic and no head
literal belongs to the DL signature. A rule-extended knowledge base 〈Σ,R〉 consists of a
DL knowledge base Σ and a finite set R of rules.

5.2 The axiom-based approach

Let us consider a rule-extended knowledge base 〈Σ,R〉 restricted to only classical rules.
Let IΣ be a model of the description logics knowledge base Σ, i.e. IΣ |= Σ. I is a

model of 〈Σ,R〉, written I |= 〈Σ,R〉, if and only if I extends IΣ with the interpretation
of the non-DL predicates, and for each rule r ∈ R then
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I |= ∀x,y.∃z.
(

∧

B(r)→
∧

H(r)
)

where x are the distinguished variables of the rule D(r), y are the non distinguished
variables of the body (vars(B(r)) \D(r)), and z are the non distinguished variables of the
head (vars(H(r)) \D(r)).

Let us define now the notion of logical implication of a ground literal l given a rule
extended knowledge base: 〈Σ,R〉 |= l if and only if I |= l whenever I |= 〈Σ,R〉. Note that
the problems of DL concept subsumption and DL instance checking, and the problem of
predicate inclusion (also called query containment) are all reducible to the problem of
logical implication of a ground literal. Logical implication in this framework is unde-
cidable, as it generalizes the so-called recursive CARIN as presented in [LR98]. Logical
implication in an axiom-based rule extended knowledge base remains undecidable even
in the case of atomic negation-free safe DL rules with a DL having just the universal
role constructor ∀R. C. Note that logical implication in an axiom-based rule extended
knowledge base even with an empty TBox in Σ is undecidable (see, e.g., [BM02]).

In order to recover decidability, we reduce the expressivity of the approach in several
ways; all the following restrictions disallow non DL predicates in the rules.

Theorem 5.1 1. If we restrict the axiom-based approach to have only DL rules with
tree shaped heads and bodies and without negated atomic roles, the problem of log-
ical implication in the rule extended knowledge base is NExpTime-complete with
ALCQI, OWL-Lite and OWL-DL as the underlying description logics knowledge
base language.

2. If in addition to the above conditions, constants are disallowed from the rules, the
problem of logical implication in the rule extended knowledge base is ExpTime-
complete with any DL in ExpTime (such as ALCQI or OWL-Lite) as the under-
lying description logics knowledge base language.

3. [LR98]: If we restrict the axiom-based approach to have only acyclic atomic
negation-free safe DL rules with the ALCNR DL as the underlying description
logics knowledge base language, the problem of logical implication is decidable in
NExpTime.

4. [MSS05, Ros05]: If we restrict the axiom-based approach to have only DL-safe
atomic rules with any decidable DL, the problem of logical implication in the rule
extended knowledge base is decidable.

The SWRL proposal [HPS04b] can be considered as a special case of the axiom-
based approach presented above. SWRL uses OWL-DL or OWL-Lite as the underlying
description logics knowledge base language (which admits data types), but it restricts the
rule language to safe rules and without negated atomic roles. From the point of view
of the syntax, SWRL rules are an extension of the abstract syntax for OWL DL and
OWL Lite; SWRL rules are given an XML syntax based on the OWL XML presentation
syntax; and a mapping from SWRL rules to RDF graphs is given based on the OWL
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RDF/XML exchange syntax. Logical implication in SWRL is still undecidable. The
complexity results listed in Theorem 5.1 are applicable to SWRL as well.

Another way to make the axiom-based approach decidable is to reduce the expressivity
of the DL, in order to disallow universal-like statements, while keeping rules cyclic.

In [LR98] it is shown that logical implication is decidable with atomic negation-free
safe DL rules with the simple DL containing conjunction, disjunction, qualified existential,
least cardinality and primitive negation.

In [CDGL+04] a proposal is made of a very simple knowledge representation lan-
guage, which captures the fundamental features of frame-based formalisms and of on-
tology languages for the semantic web; the precise definition of the language can be
found in [CDGL+04]. In this setting, it can be shown that the negation-free axiom-based
approach is decidable, and the problem of logical implication of a ground literal is in
ExpTime, and it is PTime in data complexity.

Conceptual graph rules [BM02] can be seen as a simple special case of an axiom-based
rule extended knowledge base: CG-rules are negation-free, they do not have existential
variables in the body, and Σ is TBox-free. Many decidable subclasses of CG-rules are
special cases of the decidable cases presented above (but with Σ having a TBox); in
particular, decidability of range restricted CG-rules is the TBox-free special case stated
above [LR98] of atomic negation-free safe DL rules.

Finally, we mention [MSS04] as an implementation of the axiom based approach.

5.3 The Logic Programming approach

Let us consider a rule-extended knowledge base 〈Σ,R〉 where R is restricted to be set
of lp-rules P (called program). Two different approaches have been presented in the
literature: DL-log [Ros05, Ros06] and DL-programs [ELST04]. Informally speaking, the
former defines the models of the rule-extended knowledge base 〈Σ,R〉 as being the models
of both the program R and the DL knowledge base Σ, while the latter defines the models
of the rule-extended knowledge base 〈Σ,R〉 as being the models of the program R such
that each DL literal is also a logical consequence of the DL knowledge base Σ. The DL-
Log approach was first introduced with AL-Log [DLNS98] which is in fact a restricted
case of [Ros05].

In the following we provide the semantics for two approaches as two separate defini-
tions. The DL-log approach is restricted to the case in which rules are safe and contain
only atoms instead of literals (e.g. no “classical” negation, in the LP sense). Moreover,
NAF-atoms must be non-DL.

Definition 1 (DL-log logical implication [Ros05, Ros06])
We denote with ground(P) the set of rules corresponding to the grounding of P with the

constant symbols from A. Let I be an interpretation for the signature A.
The projection of ground(P) w.r.t. I is the ground program ΠI(ground(P)) defined as

follows. For each rule r in ground(P):

• delete r if there is a DL atom b ∈ H(r) s.t. I |= b or there is a DL atom b ∈ B(r)
s.t. I 6|= b;
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• delete each DL atom b in r s.t. b ∈ H(r) and I 6|= b, or b ∈ B(r) and I |= b.

I is a model for 〈Σ,R〉 (written I |= 〈Σ,R〉) iff

• I satisfies Σ, and

• the projection of I w.r.t. the non-DL signature of A is a stable model13 of
ΠI(ground(P)).

A ground literal is logically implied by a rule extended knowledge base – written as
〈Σ,R〉 |= l – if and only if whenever I |= 〈Σ,R〉 then I |= l.

In the case of DL-programs rules should be atomic. However, the authors claim that
the approach can be easily extended to general rules.

Definition 2 (DL-programs logical implication [ELST04])
The Herbrand base of the program P– written as HBP – is the set of the groundings of

all the literals in P with all the constant symbols from A. An interpretation I wrt P is
a consistent subset of HBP . We say I is a model of a ground literal l wrt the knowledge
base Σ – written as I |=Σ l – if and only if l ∈ I and

Σ |= l if l is a DL literal.

We say that I is a model of a ground rule r – written as I |=Σ r – if and only if

• I |=Σ H(r) whenever I |=Σ b for all b ∈ B+(r), and

• I 6|=Σ b for all b ∈ B−(r).

I is a model of a rule-extended knowledge base 〈Σ,P〉 – written as I |= 〈Σ,P〉 – if
and only if I |=Σ r for all rules r ∈ ground(P), and I is a stable model of P ∪ {l | l ∈
I, l is DL literal}.

A ground literal is logically implied by a rule extended knowledge base – written as
〈Σ,P〉 |= l – if and only if whenever I |= 〈Σ,P〉 then I |=Σ l.

The consequence of the semantics as defined in [ELST04] is that in the case of a NAF-
free program, as well in the case of a program with stratified NAF, there is a unique stable
model which coincides with the (canonical) minimal model. Therefore, logical implication
can be reduced to model checking in this minimal model; this can be shown by adapting
standard results from Datalog. So, if IP

m is the minimal model of a NAF-free or stratified
program P, then 〈Σ,P〉 |= l if and only if IP

m |=Σ l. This does not hold for [Ros05].
In the case of the semantics as defined in [ELST04], it is possible to prove that the

problem of logical implication of a DL literal in a general rule extended knowledge base
is independent on the presence of the program P . This means that the DL knowledge
base is unaffected by the rule system, which can be seen as built on top of the DL
knowledge base. Note that this is not true for [Ros05]. On the other hand, the semantics
as defined in [ELST04] rules out the possibility of reasoning by cases intertwined between
the program P and the knowledge base Σ, as it will be exemplified in Subsection 5.5.

13See [GL91]
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Theorem 5.2 1. For rule extended knowledge bases as defined in [ELST04]: The com-
bined complexity of logical implication in a rule extended knowledge base with an
ExpTime-complete description logic (like, e.g., ALCQI or OWL-lite) is ExpTime-
complete in the case of NAF-free or stratified programs and it is NExpTime-
complete in the unrestricted case. In a rule extended knowledge base with a
NExpTime-complete description logic (like, e.g., ALCQIO or OWL-DL) the com-
plexity is NExpTime-complete in the case of NAF-free programs and it is NExp-

Time NP-complete in the case of stratified programs and in the unrestricted case as
well. Note that [ELST04] restricts the rule syntax to have only a non-DL literal in
the head.

2. For rule extended knowledge bases as defined in [Ros05, Ros06]: logical implica-
tion in a rule extended knowledge base is decidable if the satisfiability problem is
decidable in the description logic. The combined complexity of logical implication
in a rule extended knowledge base with an OWL-DL knowledge base is NExpTime
NP-complete; in the case of (classical) negation free program P the complexity is
NExpTime-complete.14

An alternative semantics for of DL-Log could be the one where the recursive program
is given a fixpoint semantics, which involves all individuals in the model, not only the ones
in the Herbrand universe. With this semantics, logical implication is undecidable with any
DL having the ability to state at least atomic inclusion axioms between concepts [CR03].
Note that in the case of acyclic rules, the fixpoint semantics coincides with the axiom-
based semantics.

It is worthwhile mentioning at the end of this subsection three additional recent works
that relate DLs with lp-rules: DLP [GHVD03] and [MSH04, Swi04]. In these papers it
is shown how to encode the reasoning problem of a DL into a pure logic programming
setting, i.e., into a rule extended knowledge base with a Σ without TBox. In the case of
DLP, this is accomplished by encoding a severely restricted DL into a NAF-free (classical)
negation-free DL program. In the two latter approaches, the full power of disjunctive logic
programming is needed to perform the encoding of quite expressive DLs, at the cost of
an exponential blow-up in space of the encoding.

5.4 The autoepistemic approach

Let us consider a rule-extended knowledge base restricted to autoepistemic rules.
Let IΣ be a model, over the non empty domain ∆, of the description logics knowledge

base Σ, i.e. IΣ |= Σ. Let’s define a variable assignment α in the usual way as a function
from variable symbols to elements of ∆. A model of 〈Σ,R〉 is a non empty set M of
interpretations I, each one extending a DL model IΣ with some interpretation of the non-
DL predicates, such that for each rule r and for each assignment α for the distinguished
variables of r the following holds:

14In [Ros06], it is shown that by an appropriate restriction of the DL expressiveness the data complexity
does not increase w.r.t. the data complexity of the Datalog program alone (see also [CDGL+05b]).
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(

∀I ∈ M. I, α |= ∃x.
∧

B(r)
)

→
(

∀I ∈M. I, α |= ∃y.
∧

H(r)
)

where x are the non distinguished variables of the body (vars(B(r)) \ D(r)), and y are
the non distinguished variables of the head (vars(H(r)) \D(r)).

Let us define now the notion of logical implication of a ground literal l given a rule
extended knowledge base: 〈Σ,R〉 |= l if and only if

∀M. (M |= 〈Σ,R〉)→ ∀I ∈M. (I |= l)

The autoepistemic approach was thoroughly analyzed by [DNR02], with the goal of
formalizing the constraint rules implemented in many practical DL systems. Such rules,
in fact, are simple to implement since they influence the ABox reasoning, but leave the
TBox reasoning unaffected. These rules are also the basis of the recent formalizations
of peer-to-peer systems [FKLS03]. As shown in [FKLS03], the autoepistemic semantics
as defined above is equivalent to the context-based semantics of [GS98], and to the use
of the autoepistemic operator, as defined, e.g., in [Rei92]. Using the results in [Mar99,
GKWZ03], we can show that logical implication is decidable in the case of a rule extended
knowledge base with DL rules with tree shaped body and heads, with the ALC DL; the
precise complexity bounds are still unknown.

5.5 Comparing the three approaches

We first show in this subsection the conditions under which the three approaches coincide.
This corresponds essentially to the case of negation-free view rule-extended knowledge
bases with empty TBoxes. Note that this is the case of pure Datalog without a background
knowledge base, for which it is well known that the three different semantics give rise to
the same answer set.

Theorem 5.3 [Llo87, MT91]: If we restrict a rule extended knowledge base with classical
rules to view negation-free DL rules with TBox-free Σ, a rule extended knowledge base with
lp-rules to NAF-free negation-free DL programs with TBox-free Σ, and a rule extended
knowledge base with autoepistemic rules to view negation-free DL rules with TBox-free Σ,
the semantics of the rule extended knowledge base with classical rules, with lp-rules, and
with with autoepistemic rules coincide, i.e., the logical implication problem is equivalent
in the three approaches.

Theorem 5.4 [Ros05]: If we restrict a rule extended knowledge base with classical rules
to negation-free DL safe rules with arbitrary Σ, a rule extended knowledge base with lp-
rules to NAF-free negation-free DL programs with TBox-free Σ, the semantics of the rule
extended knowledge base with classical rules, with lp-rules, and with with autoepistemic
rules coincide, i.e., the logical implication problem is equivalent in the three approaches.

The above theorem is quite strict and it fails as soon as we release some assumption.
We will show this by means of few examples. Consider the following knowledge base Σ,
common to all the examples:
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is-parent
.
= ∃is-parent-of

my-thing
.
= is-parent ⊔ ¬is-father

is-parent-of(john, mary)

is-parent(mary)

where we define, using standard DL notation, a TBox with the is-parent concept as
anybody who is parent of at least some other person, and the concept my-thing as the
union of is-parent and the negation of is-father (this should become equivalent to the
top concept as soon as is-father becomes a subconcept of is-parent); and an ABox
where we declare that John is a parent of Mary, and that Mary is parent of somebody.
Consider the following query rules, showing the effect of existentially quantified individuals
coming from some TBox definition:

Qax(x) ← is-parent-of(x,y)

Qlp(x) : – is-parent-of(x,y)

Qae(x) ⇐ is-parent-of(x,y)

The query Qax(x) returns {john, mary}; the query Qlp(x) returns {john}; the query
Qae(x) returns {john, mary}.
Consider now the query rules, which shows the impact of negation in the rules:

Qax(x,y) ← ¬is-parent-of(x,y)
Qlp(x,y) : – ¬is-parent-of(x,y)
Qae(x,y) ⇐ ¬is-parent-of(x,y)

The query Qax(mary, john) returns false; the query Qlp(mary, john) returns true; the
query Qae(mary, john) returns false.
Consider now the following alternative sets of rules, which show that autoepistemic rules,
unlike the axiom-based ones, do not influence TBox reasoning:

is-parent(x) ← is-father(x)

Qax(x) ← my-thing(x)

is-parent(x) ⇐ is-father(x)

Qae(x) ⇐ my-thing(x)

In the first axiom-based case, the query Qax(paul) returns true; in the second autoepis-
temic case the query Qae(paul) returns false (we assume that paul is an individual in
Σ).

6 Non-Standard Inferences

In this section, logical formalisms used for dealing with non-standard inferences are pre-
sented. In particular we focus on:

• least common subsumer,

• most specific concept,
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• matching,

• minimal rewriting,

• approximation, and

• debugging and explanations.

In the following we will discuss each of these in detail by giving the syntax and seman-
tics of the formalisms used. Also, we will present the relevant reasoning techniques and
existing results in the literature. Notice that, the above non-standard inferences have been
identified and motivated as relevant by the tasks for ontology design and maintenance in
the TONES Deliverable D05.

6.1 Least common subsumer

Intuitively, the least common subsumer of a given collection of concept descriptions is
a description that represents the properties that all the elements of the collection have
in common. More formally, it is the most specific concept description that subsumes
the given descriptions. What this most specific description looks like, whether it really
captures the intuition of representing the properties common to the input descriptions,
and whether it exists at all strongly depends on the DL under consideration.

Let L be a DL. A concept description E of L is a least common subsumer (lcs) of the
concept descriptions C1, . . . , Cn in L (lcsL(C1, . . . , Cn) for short) iff it satisfies

1. Ci ⊑ E for all i = 1, . . . , n, and

2. E is the least L concept description with this property, i.e., if E ′ is an L concept
description satisfying Ci ⊑ E ′ for all i = 1, . . . , n, then E ⊑ E ′.

As an easy consequence of this definition, the lcs is unique up to equivalence, which
justifies talking about the lcs. In addition, the n-ary lcs as defined above can be reduced
to the binary lcs (the case where n = 2). Indeed, it is easy to see that lcsL(C1, . . . , Cn) ≡
lcsL(C1, . . . , lcsL(Cn−1, Cn) · · · ). Thus, it is enough to devise algorithms for computing
the binary lcs.

It should be noted, however, that the lcs need not always exist. This can have different
reasons: (a) there may not exist a concept description in L satisfying (i) of the definition
(i.e., subsuming C1, . . . , Cn); (b) there may be several subsumption incomparable minimal
concept descriptions satisfying (i) of the definition; (c) there may be an infinite chain of
more and more specific descriptions satisfying (i) of the definition. Obviously, (a) cannot
occur for DLs containing the top concept. It is easy to see that, for DLs allowing for
conjunction of descriptions, (b) cannot occur. An example for a DL exhibiting behavior
(c) can be found in [Baa03b], where the lcs is defined w.r.t. a cyclic TBox.

It is also clear that in DLs allowing for disjunction, the lcs of C1, . . . , Cn is their
disjunction C1⊔ . . .⊔Cn. In this case, the lcs is not really of interest. Instead of extracting
properties common to C1, . . . , Cn, it just gives their disjunction, which does not provide
us with new information. Thus, it only makes sense to look at the lcs in sub-Boolean
DLs.

c©2006/TONES – 31 May, 2006 54/91 TONES-D06– v.2.0



FP6-7603 – TONES Thinking ONtologiES WP2

For DLs whose expressive power lies between FL0 and ALN , one can use the char-
acterization of subsumption via finite languages over the alphabet of the role names to
compute the lcs [Küs98]. For DLs with existential restrictions, the characterization of
subsumption via the existence of certain simulation relations between description trees
implies that the lcs corresponds to the product of the description trees [BKM99].

6.2 Most specific concepts

For introducing the most specific concepts, we thus need to say how individuals are de-
scribed. This is done via ABoxes. An ABox assertion is an expression C(a) or r(a, b),
where C is a concept, r is a role name, and a, b are from a set NI of individual names. An
ABox is simply a finite set of ABox assertions. In the presence of ABoxes, an interpre-
tation I is required to additionally map each individual name a to an element aI of ∆I .
Then, I satisfies an assertion C(a) if aI ∈ CI and an assertion r(a, b) iff (aI , bI) ∈ rI . It
satisfies an ABox iff it satisfies every assertion in it. We write A |= C(a) if every model
of the ABox A satisfies the assertion C(a).

Now, we come to the formal definition of the most specific concept. Let L be a DL.
The L concept description E is the most specific concept (msc) in L of the individual a
in the L ABox A (mscL(a) for short) iff

1. A |= E(a), and

2. E is the least concept satisfying (i), i.e., if E ′ is an L concept description satisfying
A |= E ′(a) then E ⊑ E ′.

As with the lcs, the msc is unique up to equivalence, if it exists. In contrast to the lcs,
which usually exists for standard DLs, the msc does not always exist in EL, ALN , and
ALE . This is due to the presence of so-called role cycles in the ABox such as {r(a, a)}. To
overcome this problem, one can either approximate the MSC by bounding its role depth
[KM01] or introduce ontologies with fixpoint semantics [BK98]. Both approaches have
not yet been studied in the presence of ontologies.

6.3 Matching

Concept patterns are concept descriptions in which concept variables (usually denoted by
X, Y , etc.) may occur in place of concept names. The main difference between concept
names and concept variables is that the latter can be replaced by concept descriptions
when applying a substitution.

For example, D := P & X & ∀r.(Y & ∀r.X) is a concept pattern containing the
concept variables X and Y . By applying the substitution σ := {X 7→ Q, Y 7→ ∀r.P} to
it, we obtain the concept description

σ(D) = P & Q & ∀r.(∀r.P & ∀r.Q).

Let L be a DL. An L unification problem is of the form

C1 ≡
? D1, . . . , Cn ≡

? Dn,
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where C1, . . . , Dn are L concept patterns. A unifier of this problem is a substitution σ
such that σ(Ci) ≡ σ(Di) for i = 1, . . . , n.

Matching was first considered in the context of the PhD thesis [McG96b], which is
concerned with explaining to an ontology designer the results that have been returned
by a reasoning system which decides satisfiability and subsumption. The main idea is
to introduce concept patterns, which extend concept terms with concept variables. These
variables stand for concept terms and can be used in the same way as concept names.
In explanation, concept patterns are used to prune away parts of large concept terms
(by replacing them with variables) in order to make an explanation more digestible to the
user. Formally, the matching problem is defined as follows: given a concept pattern C and
a concept term D, find a substitution σ of the variables in C with concept terms such that
σ(C) is equivalent to D. Apart from its use in explanation, matching can be used to find
redundancies in ontologies. More precisely, such redundancies can be found by identifying
multiple concept descriptions that match the same concept pattern [BN97]. In a similar
way, matching can help in the integration of ontologies [BK00]. In the series of papers
[BKBM99, BK99, BBK01], algorithms for matching have been developed for a number
of DLs. One major limitation of current results for matching is that they only concern
DLs that do not involve all Boolean concept constructors. Overcoming this limitation
appears to be a very hard technical problem because, if all Boolean constructors are
available, deciding concept matching becomes equivalent to deciding concept unification.
The latter problem, which is addressed in [BN97], is technically very challenging and, as
of now, only poorly understood. Another shortcoming of existing results on matching is
that they usually only concern matching of two isolated concept terms, without taking
into account the definitions from an ontology.

6.4 Minimal rewriting

In [BKM00], a very general framework for rewriting in DLs is introduced, which has
several interesting instances. In order to introduce this framework, we fix a set NR of role
names and a set NP of primitive concept names. Now, let Ls, Ld, and Lt be three DLs
(the source-, destination, and TBox-DL, respectively). A rewriting problem is given by

• an Lt TBox T containing only role names from NR and primitive concepts from
NP ; the set of defined concepts occurring in T is denoted by ND;

• an Ls concept description C using only the names from NR and NP ;

• a binary relation ρ between Ls concept descriptions and Ld concept descriptions.

An Ld rewriting of C using T is an Ld concept description E built using role names from
NR and concept names from NP ∪ND such that CρE. Given an appropriate ordering �
on Ld concept descriptions, a rewriting E is called �-minimal iff there does not exist a
rewriting E ′ such that E ′ ≺ E.

This general framework for rewriting in DLs covers at least two reasoning problems of
interest: the minimal rewriting problem and the approximation problem. Approximation
problem will be discussed in the subsequent subsection.
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Minimal rewriting is the instance of the framework where (i) all three DLs are the
same language L; (ii) the TBox T is acyclic; (iii) the binary relation ρ corresponds to
equivalence w.r.t. the TBox; and (iv) L concept descriptions are ordered by size, i.e.,
E � E ′ iff |E| ≤ |E ′|. The size |E| of a concept description E is defined to be the number
of occurrences of concept and role names in E.

Intuitively, the minimal rewriting of a concept term C with respect to an ontology O
is a concept term C ′ such that C and C ′ are equivalent w.r.t. O and each concept C ′′

that is equivalent to C ′ w.r.t. O has at least the same length as C ′. By replacing complex
concept terms with concept names defined in O, it is usually possible to rewrite concepts
into much smaller ones. It was shown in [BKM00] that, in practical applications, the
rewritten concept terms are usually relatively short and much more easily understood by
humans than before the rewriting.

6.5 Approximation

Based on the general framework introduced in the previous subsection, this is the instance
of the framework where (i) T is empty, and thus Lt is irrelevant; (ii) both ρ and � are the
subsumption relation ⊑. In this case, we talk about approximation rather than rewriting.
Given two DLs Ls and Ld, an Ld approximation of an Ls concept description C is thus
an Ld concept description D such that C ⊑ D and D is minimal (w.r.t. subsumption)
with this property.

The case where Ls = ALC and Ld = ALE is investigated in [BKT02b]. Recall that the
only difference between ALC and ALE is that disjunction is disallowed in ALE concept
descriptions.15 If C1, C2 are ALE concept descriptions, then it is easy to see that the
approximation of the ALC concept description C1 ⊔C2 by an ALE concept description is
lcsALE(C1, C2). This suggests the following approach for approximating an ALC concept
description C by an ALE concept description: just replace every disjunction in C by an
application of the lcs operation. The following example demonstrates that this approach
is too näıve: let C := (∀r.B ⊔ (∃r.B ⊓ ∀r.A)) ⊓ ∃r.A. If we replace the disjunction by an
lcs operation and then compute the lcs, we obtain the ALE concept description

lcsALE(∀r.B, (∃r.B ⊓ ∀r.A)) ⊓ ∃r.A ≡ ⊤⊓ ∃r.A ≡ ∃r.A.

However, this concept description is too general. It is easy to see that C ⊑ ∃r.(A ⊓B) ⊏

∃r.A. In fact, ∃r.(A ⊓ B) is the correct approximation.
In order to overcome this problem, the ALC concept description has to be transformed

into an appropriate normal form. Basically, this normal form is obtained by distributing
conjunctions over disjunctions, and by applying the rule ∀r.C & ∀r.D → ∀r.(C & D).
For the example from above, the normal form is

C ≡ (∀r.B & ∃r.A) ⊔ (∃r.B & ∀r.A & ∃r.A),

and lcsALE(∀r.B & ∃r.A, ∃r.B & ∀r.A & ∃r.A) = ∃r.(A ⊓ B).

15Here we assume without loss of generality that all ALC concept descriptions are in negation normal
form where negation occurs only in front of concept names.
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However, even for ALC concept descriptions in this normal form, one cannot simply
replace disjunction by the lcs operation to obtain their ALE approximation. Consider
the ALC concept description C ′ = ∃r.A ⊓ ∃r.B ⊓ ∀r.(¬A ⊔ ¬B). If we simply replace the
disjunction by the lcs, then we obtain ∃r.A ⊓ ∃r.B ⊓ ∀r.⊤ ≡ ∃r.A ⊓ ∃r.B. However, C ′ is
also subsumed by the more specific ALE concept description ∃r.(A⊓¬B)⊓∃r.(B ⊓¬A).
This problem can be overcome by also propagating value restrictions onto existential re-
strictions. An approximation algorithms based on these ideas is described in [BKT02b].
It is shown that every ALC concept description has an ALE approximation, and this
approximation is unique up to equivalence, i.e., there is always a least approximation.
However, the size of the approximation may grow exponentially with the size of the input
description. The algorithm for computing the approximation given in [BKT02b] runs in
doubly-exponential time, and it is not clear whether this time bound can be improved. In
[BKT02a], these results are extended to the approximation of ALCN concepts descrip-
tions by ALEN concept descriptions.

6.6 Debugging and explanations

Now that OWL is a W3C Recommendation, one can expect that a much wider community
of users and developers will be exposed to expressive description logics. These users and
developers are likely not to have a lot of experience with knowledge representation (KR),
much less logic-based KR. For such people, having excellent documentation, familiar
techniques, and helpful tools is a fundamental requirement.

OWL-based systems typically offer a set of standard inference services, such as con-
cept satisfiability, classification and query answering. These services typically aim at
determining whether a certain sentence logically follows from an ontology. However, most
reasoners simply report these entailments, without providing a justification for them.
Thus, the diagnosis and resolution of potential bugs is not supported.

The Ontology Engineering community widely agrees on the importance of helping
the users understand the output of a reasoner. As increasingly large number of OWL
ontologies become available on the Semantic Web, finding the cause of errors becomes an
extremely hard task, even for experts.

The first steps in this direction, in the context of Description Logics, were taken in
the early and mid nineties by the developers of the CLASSIC system [BBMR89a]. The
explanation component in CLASSIC [McG96a] generated formal proofs for an inference
using a deductive framework based on ‘natural semantics’ style proof rules that needed
to be explicitly stated for the DL.

A different view was recently explored in [SC03], where the trace of a tableau reasoner
was exploited to maintain a dependency relation between axioms in the KB and the
inferences drawn from it. The motivation was debugging unsatisfiable concepts in the
DICE terminology and the work applied to unfoldable ALC TBoxes. The paper provided
a a new service, called axiom pinpointing, which, given an unsatisfiable concept, provided
the minimal sets of axioms in the ontology sufficient for its unsatisfiability.

In [KPSH05], the authors extended this technique to the more expressive Description
Logic SHIF , provided an optimized implementation in the reasoner Pellet and a UI in
the ontology editor Swoop. A user study showed that axiom pinpointing is effective for

c©2006/TONES – 31 May, 2006 58/91 TONES-D06– v.2.0



FP6-7603 – TONES Thinking ONtologiES WP2

debugging unsatisfiable concepts.
Recently, the axiom pinpointing service has been extended in various ways:

1. to deal with arbitrary entailments , such as concept subsumption and realization. In
particular, given an ontology and one of its logical consequences (say, a subsump-
tion relation) the service exposes to the users the sets of axioms in the ontology
responsible for the entailment under consideration.

2. to provide finer grained justifications. The axiom pinpointing service suffers from a
fundamental granularity problem: since it works at the asserted axiom level, it fails
to determine which parts of the asserted axioms are irrelevant for the particular
entailment under consideration to hold. In [KPCG05] the authors have proposed a
notion of precise justifications, which provide a finer-grained explanations.

7 Standard Ontology Languages: OWL 1.1

We conclude this document by reviewing the work on standard ontology languages. In
particular, we focus on the recent variant of OWL, named OWL 1.1, and consider both
fragments of it and possible extensions.

OWL is an ontology language, or rather a family of three ontology languages, devel-
oped by the World Wide Web Consortium (W3C) as part of its Semantic Web activity
[PSHH04]. The development of OWL was motivated by the key role foreseen for ontologies
in the Semantic Web (i.e., providing precisely defined and machine processable vocabu-
laries that can be used in semantically meaningful annotations), and the recognition that
existing web languages, such as RDF and RDF Schema, were not expressive enough for
this task [HPSvH03]. The design of OWL was heavily influenced by research in descrip-
tion logics (DLs); investigations of (combinations of) DL language constructors provided
a detailed understanding of the semantics and computational properties of, and reasoning
techniques for, various ontology language designs [BCM+03, HST99, HS01, HS05]; this
understanding was used to ensure that, for two of the three OWL dialects (OWL DL
and OWL Lite), key reasoning problems would be decidable. Basing the language on a
suitable DL also allowed for the exploitation of existing DL implementations in order to
provide reasoning services for OWL applications [Hor98b, PS98, HM01c].

The standardisation of OWL has led to the development and adaption of a wide range
of tools and services. These include reasoners such as FaCT++ [TH04], Racer [HM01c]
and Pellet [SPC+05], and editing tools such as Protégé [GMF+03], Swoop [KPS+05],
Ontotrack [LN04] and OilEd [BHGS01]. Editing tools typically use a reasoner to compute
the class hierarchy, alert users to problems such as inconsistent classes, and answer queries;
several now include sophisticated debugging tools such as explanation (of inconsistency
and subsumption) [KPSH05].

Although OWL was initially designed for use in (the development of) the Semantic
Web, it has rapidly become a de facto standard for ontology development in general, see,
e.g., OBO (http://obo.sourceforge.net/) and BioPax (http://www.biopax.org/).
This is probably due to the ready availability of a wide range of OWL tools, and the
greatly increased potential for sharing and reuse provided by the adoption of a standard.
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OWL ontologies are now under development and/or in use in areas as diverse as e-Science,
medicine, biology, geography, astronomy, defence, and the automotive and aerospace in-
dustries. Although this represents a considerable success story for OWL, such widespread
use of the language has also revealed deficiencies in the original design, and led to re-
quirements for language extensions. These included increased expressivity with respect
to properties, number restrictions, and data-values, and some form of meta modelling
[Mot05].

On studying these requirements, it became clear that several of them were addressed,
at least in part, by recent developments in DL languages and reasoning techniques. This
led to the idea to develop an incremental extension of OWL, provisionally called OWL
1.1, that would exploit these recent developments in order to provide a more expressive
language, but one which retained OWL’s desirable computational properties (in particular
decidability) and which would allow for the relatively easy extension of existing reasoning
systems in order to provide support for the new language.

7.1 Overview

The initial design of the OWL was (understandably) quite conservative, and features that
did not receive widespread support within the working group were excluded from the
language. Features for which effective reasoning methods were not known (or expected
to be shortly known) were also not included.

As mentioned above, the use of OWL, particularly the OWL DL species of OWL,
has identified several important features, support for which would greatly increase the
utility of the language. Some of these, such as qualified number restrictions, were already
supported by DL systems when OWL was designed, but were excluded from the language.
Others, such as complex role inclusion axioms, could now be supported (at least in part)
as a result of recent advances in DL theory.

For these reasons, it was decided at the first OWL: Experiences and Directions work-
shop (http://www.mindswap.org/2005/OWLWorkshop/) to design an extension to the
OWL DL species of OWL, called OWL 1.1, a simple extension to OWL DL that:

1. adds language features commonly requested by users of OWL DL;

2. is known to be decidable, and for which practical decision procedures have been
designed; and

3. is likely to be implemented by the developers of OWL DL reasoners.

The user requirements that drove the extensions in OWL 1.1, and the language features
that address them, fall into five distinct categories:

Syntactic sugar: Some commonly used representations are difficult and/or cumbersome
to express in OWL. For example, it is very common to assert that a number of classes
are pairwise disjoint (this is often the default for the direct subclasses of a common
parent class). Although this can be expressed in OWL, it is necessary to assert each
pairwise disjointness separately (or to employ some representational “tricks”), which is
cumbersome when large numbers of classes are involved, and may also make it more
difficult for reasoners to optimise the way they deal with such sets of disjoint classes.
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Increased expressiveness in property constructs: Although OWL is relatively ex-
pressive, there are still many situations that are difficult or impossible to represent using
OWL. In particular, while OWL provides a wide range of constructors for building complex
classes, relatively little can be said about properties. A very common requirement is to
express the “propagation” of one property along another property [PL94, Spa00, Rec02],
e.g., it may be useful to express the fact that certain locative properties are transfered
across certain part-whole properties so that, when using a medical terminology ontology,
a trauma or lesion located in a part of a body structure is recognised as being located in
the body structure as a whole. This enables highly desirable inferences such as a fracture
of the neck of the femur being inferred to be a kind of fracture of the femur, or an ulcer
located in the gastric mucosa being inferred to be a kind of stomach ulcer.

Increased datatype expressiveness: OWL provides very limited features for describ-
ing classes whose features include concrete values such as integers and strings. It is a
common requirement, for example, to express value ranges (a Gale is a wind whose speed
is in the range 34–40 knots), or relationships between values (a carry-on bag is one where
the sum of height, width, and depth does not exceed 45 inches).

Meta-modelling: Meta-modelling, i.e., the treatment of classes, properties and other
entities as individuals, is allowed in some representation languages, including the OWL
Full species of OWL, but was forbidden in OWL DL because of the computational dif-
ficulties that it may cause. However, users often say that they want some aspects of
meta-modelling, at least the ability to associate simple information with classes such as
synonyms, names in different languages, responsible person, etc. Annotation properties
were added to OWL to partly satisfy this requirement, but the limited meta-modelling
facilities provided by annotation properties have not satisfied users, particularly as anno-
tation properties cannot be range-restricted.

Semantic-free comments: Annotations provide for the ability to include what might
otherwise be considered “comments”, such as information about the author or version
number of a class. In OWL, however, this information has semantic import, and some
counter-intuitive aspects, such as a membership in a class not being inferable simply
because the class has a different version number. This has lead to the desire to have true
comments, i.e., information associated with classes, etc., that has no semantic import at
all.

7.2 Influences

OWL 1.1 has borrowed heavily from recent research on Description Logics as well as from
recent research on the nature of the Semantic Web.

7.2.1 Description Logics

OWL DL is based on a description logic called SHOIN . Even when OWL DL was de-
signed, there were discussions as to whether it should be based on SHOIN or on SHOIQ
[HS05], the latter being the former’s extension with qualifying number restrictions. This
expressive means is rather useful for modeling [WBH+05], and is known to be no more
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problematical for a reasoner than the unqualified number restrictions in OWL DL. Inter-
estingly, an effective decision procedure for SHOIN and SHOIQ has only been designed
recently [HS05], and is already implemented in reasoners for OWL DL. Additionally, there
have recently been two streams of work on extensions to the Description Logic underlying
OWL DL.

Firstly, there has been considerable work on how best to add datatypes and relation-
ships between data values to OWL-like languages [Lut03, PH05a]. The general ideas and
requirements are basically similar, but the various proposals differ in detail: the datatypes
themselves need to be “admissible” (roughly speaking, this means that datatype predi-
cates are closed under negation and that the satisfiability of conjunctions of these predi-
cates is decidable), which ensures that we can use datatype solvers as blackboxes in OWL
reasoners.

Secondly, extensions to expressive description logics allowing more expressive property
constructs have been devised and investigated. This line of work has lead to the RIQ
[HS03], SRIQ [HKS05] and SROIQ [HKS06] description logics, and effective reasoning
processes for them.

The existence of this work in the Description Logic community has made it simple
to add qualified number restrictions, enhanced property constructs, and more expressive
datatypes. OWL 1.1 essentially takes this work in its entirely and without significant
modification.

7.2.2 OWL

OWL 1.1 and OWL DL: As OWL 1.1 is a simple extension to OWL DL, it borrows
heavily from OWL DL. To this end, OWL 1.1 uses the same basic syntax style as the
“abstract” syntax for OWL DL [PSHH04]. As well as using the same syntactic style,
OWL 1.1 incorporates the entire OWL DL syntax, only providing extensions to it. In this
way, any legal OWL DL ontology is also a legal OWL 1.1 ontology.

As well, the meaning of OWL 1.1 is compatible with the meaning of OWL DL. Instead
of providing a direct model-theoretic semantics, the meaning of OWL 1.1 is provided
by a mapping to the Description Logic SROIQ [CG05a]. This method of providing
a semantics for OWL 1.1 gives more direct access to the theoretical results concerning
SROIQ, and is foreshadowed by the work of Horrocks and Patel-Schneider reducing
OWL DL entailment to Description Logic satisfiability [HPS04a].

OWL 1.1 and OWL Full: OWL 1.1 does not provide any significant features provided
by OWL Full over OWL DL. This is largely because OWL 1.1 is essentially a Description
Logic, and the facilities provided by OWL Full over OWL DL (meta-modelling, blending
objects and datatypes, unusual syntactic forms, subverting basic constructs, etc.) are
essentially those that go outside of the Description Logic paradigm.

The only significant aspect of OWL Full that shows up in OWL 1.1 is meta-modelling.
However, OWL 1.1 provides meta-modelling facilities via punning, which is not compatible
with the meta-modelling features of OWL Full (which are the same as those provided by
RDF). See Section 7.2.3 for more on how meta-modelling distinguishes OWL 1.1 from
RDF and OWL Full.
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OWL 1.1 and OWL Lite: Expressive ontology languages, such as OWL 1.1 and OWL
DL, though decidable, have a high worst-case computational complexity16 and are hard
to use and implement efficiently. The design of simpler ontology languages with more
tractable inferences was considered of primary importance by the W3C Web Ontology
Working Group. The OWL Lite subset of OWL DL was designed as a language that is
easier to use and present to naive users, as well as easier to implement.

The Web Ontology Working Group concluded that the main complexity of OWL
DL relies on the possibility of defining complex boolean descriptions using, for exam-
ple, union and complement; as a consequence, OWL Lite explicitly prohibits unions and
complements in the definition of concepts; additionally, OWL Lite limits all descriptions
in the scope of a quantifier to concept names, does not allow individuals to show up as
concepts, and limits cardinalities to 0 and 1. The goal was to significantly reduce the
number of available modeling constructs, on the one hand, and to eliminate the major
sources of non-determinism in reasoning, on the other hand.

Although OWL Lite looks much simpler than OWL DL, it is still possible to express
more complex concept descriptions by introducing new concept names, exploiting implicit
negations and using axioms to associate multiple descriptions with a given concept name.
So, from a user perspective, OWL Lite is even harder to use than OWL DL, since the
available modeling constructs do not correspond to the actual expressivity of the language.
Also, from a computational perspective, OWL Lite is only slightly less complex than
OWL DL (namely ExpTime-complete instead of NExpTime-complete [Tob01]), and all
the important reasoning problems remain intractable.

In contrast to OWL, OWL 1.1 does not single out just one language subset. Instead,
various subsets of OWL 1.1 have been identified, each of which benefits from tractable
(i.e., polynomial time) reasoning for one or more important reasoning tasks [CG05b]. The
intention is that these subsets can be used and implemented as appropriate to a particular
application.

7.2.3 RDF

OWL 1.1 diverges from the same-syntax extension of RDF vision of the Semantic Web,
as embodied in RDFS and OWL Full. Like all species of OWL, OWL 1.1 uses URI
references for its names and thus fits well into the Semantic Web. However, OWL 1.1 is
not compatible with RDF, and thus is not compatible with OWL Full. There are two
areas of incompatibility.

OWL 1.1 includes semantic-free comments. In RDF, as in OWL Full, all information
is in the form of triples, and all triples have semantic import. This makes it impossible
to include syntactic-only comments that can survive transmission or processing.

OWL 1.1 uses a (weak) form of meta-modelling called punning. In punning, names
can be used for several purposes; for example, Person can at the same time be the name
of a class and the name of an individual. The different uses of a name are, however,
completely independent, and from a semantic point of view they can be thought of as
separate names, e.g., Person-the-Class and Person-the-Individual.

16Satisfiability and subsumption are NExpTime-complete for SHOIQ, and ExpTime-complete for SHIQ [Tob01].
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Punning is compatible with annotation properties as used in OWL DL, as annotation
properties were expressly designed so that their use would not have any effect on class level
entailments. However, punning is not compatible with the meta-modelling possibilites
inherent in the semantics of RDF [Hay04] (and thus inherent in OWL Full), precisely
because it makes the two uses of a name semantically independent.

A triple syntax is being provided for OWL 1.1, syntactically compatible with the triple
syntax for OWL DL. However, for the above reasons, this syntax could not be given a
meaning compatible with the RDF meaning for triples, at least not without some very
difficult semantic tiptoeing (such as providing comprehension principles for comments that
essentially added every possible comment to every element of the domain of discourse)
as well as some questionable encoding (such as creating fresh URI references for punning
purposes, e.g., using Person-the-Class and Person-the-Individual instead of just Person).
The appropriateness of continuing along this line with OWL 1.1 is called even more into
question by the impossibility of extending it to Semantic Web languages with expressive
power on a par with that of First-Order Logic [PS05].

7.3 Specification

OWL 1.1 is a complete logic, and thus come with a syntax and a (model-theoretic)
semantics. Actually OWL 1.1 has two different syntaxes, the one described here and
an XML syntax. We only provide here the extensions to the OWL DL abstract syntax
[PSHH04].

Syntax for OWL 1.1

The “abstract” syntax of of OWL 1.1 is an extension of the “abstract” syntax for OWL
DL. The extensions in OWL 1.1 lift its expressive power to that of SROIQ [HKS06]. This
amounts to adding qualified cardinality restrictions, as an extension to restrictions on
datatype properties and object properties; local reflexivity restrictions for simple proper-
ties, as an extension to restrictions on object properties; reflexive, irreflexive, and anti-
symmetric flags for simple properties, as an extension to the flags allowed on object prop-
erties; and disjointness of simple and datatype properties, and regular property inclusion
axioms, as new axioms.

dataRestrictionComponent ::= dataCardinality
dataCardinality ::= minCardinality( non-negative-integer dataRange )

| maxCardinality( non-negative-integer dataRange )
| cardinality( non-negative-integer dataRange )

individualRestrictionComponent ::= individualCardinality
individualCardinality ::= minCardinality( non-negative-integer description )

| maxCardinality( non-negative-integer description )
| cardinality( non-negative-integer description )

individualRestrictionComponent ::= self
individualvaluedPropertyFlags ::= Reflexive | Irreflexive

| Symmetric | AntiSymmetric
axiom ::= DisjointProperties( datavaluedPropertyID+)

c©2006/TONES – 31 May, 2006 64/91 TONES-D06– v.2.0



FP6-7603 – TONES Thinking ONtologiES WP2

| DisjointProperties( individualvaluedPropertyID+)
axiom ::= SubPropertyOf( propertyChain( individualvaluedPropertyID+)

individualvaluedPropertyID )

Only simple properties (i.e., properties that are not implied by property chains, see
[HKS06] for details) can: have the self restriction component; be specified as being Re-
flexive, Irreflexive, Symmetric, or Antisymmetric; or be used in DisjointProperties axioms for
individual-valued properties.

The SubPropertyOf axioms involving individual-valued properties must be regular.
That is, there must be a strict partial order < on individual-valued properties such that
for each SubPropertyOf axiom involving individual-valued properties, of the form SubProp-
ertyOf( S R ) S is the inverse of R, S is of the form propertyChain(R R), S is of the form
propertyChain(S1 ... Sn) and each Si < R, S is of the form propertyChain(R S1 ... Sn) and
each Si < R, or S is of the form propertyChain(S1 ... Sn R) and each Si < R.

The first couple of other additions in OWL 1.1 are simple syntactic sugar. To make the
common construct of multiple disjoint classes easier to state, OWL 1.1 provides an axiom
that directly states that a group of classes are pairwise disjoint, instead of having to use
separate disjoint axioms for each pair of classes. Similarly, OWL 1.1 provides a construct
that allows to state that an individual does not have a particular property value, instead
of, e.g., having to state that the individual is an instance of a suitable restriction class.

axiom ::= DisjointUnion( description+)
value ::= valueNot( individualvaluedPropertyID individualID )

| valueNot( individualvaluedPropertyID individual )
| valueNot( datavaluedPropertyID dataLiteral )

OWL 1.1 includes its own methods for user-defined datatypes, using a syntax similar
to the one used in Protégé. The semantics for OWL 1.1 user-defined datatypes is taken
from XML Schema Datatypes [BM01].

dataRange ::= datatype( datatypeID { datatypeRestriction } )
datatypeRestriction ::= datatypeFacet( dataLiteral )
datatypeFacet ::= length | minLength | maxLength | pattern | enumeration

| maxInclusive | maxExclusive | minInclusive | minExclusive
| totalDigits | fractionDigits

axiom ::= Datatype( datatypeID { annotation } base( datatypeID )
{ datatypeRestriction } )

Datatype facets should only by used where they would be allowed in XML Schema
Datatypes, except that the length, minLength, maxLength, and pattern facets are not al-
lowed for numeric types. Datatype facets have the same meaning as in XML Schema
Datatypes, except that they uniformly work in the value space, never the lexical space.
If a datatype facet is used in a way that has no meaning, such as (length 5∧∧xsd:string),
then the datatype extension is empty.

OWL 1.1 allows restrictions that relate values for different data-valued properties on
the same individual.
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restriction ::= holds( datatypePredicateID { argument } )
restriction ::= datatypePropertyID | dataLiteral
datatypePredicateID ::= equal | notEqual | lessThan | lessThanEqual

| greaterThan | greaterThanEqual

The syntax here allows an arbitrary number of arguments, but must be appropriate for
the predicate, and all the current predicates only allow two arguments. All invalid com-
binations are unsatisfiable (i.e., they do not signal an error). The equality and order for a
particular base type is taken from XML Schema Datatypes. If a base datatype does not
have an order then the ordering restriction is unsatisfied.

OWL 1.1 removes the limitation imposed in OWL DL that the sets of class, individual
and property names must be pairwise disjoint. The semantic change to allow this without
computational consequences is to break the RDF-inspired connection between class and
property extensions and the individual denotation of names. With this change, any name
can be made the subject of a non-annotation property, but in this (syntactic) context the
name is always (semantically) interpreted as an individual. As simple syntactic sugar,
non-annotation properties can be used where annotations are allowed in OWL DL.

annotation ::= value | type( description )

A class or property axiom with an annotation is syntactic sugar for an extra Individual
axiom relating the class or property name to the annotations.

OWL 1.1 allows arbitrary comments to be inserted in ontologies.

comment ::= Comment( { dataLiteral | URIreference } )

A comment is allowed anywhere white space is allowed. Comments have no semantic
import in OWL 1.1, but comments should survive processing and transmission by OWL
1.1 systems.

Semantics for OWL 1.1

The semantics for OWL 1.1 rely on a translation into the description logic SROIQ(D+),
which extends the logic SROIQ [HKS06] with datatypes and datatype restrictions. A
similar translation was used to define the semantics of Standard OIL in terms of the
Description Logic SHIQ(D) [FvHH+01].

Since OWL 1.1 is an extension of OWL-DL (in the same way that SROIQ(D+) is an
extension of SHOIN (D)), this document also provides a well-defined semantics for OWL-
DL documents that is equivalent to the direct model-theoretic semantics given in the OWL
documentation [PSHH04]. Although both semantics are equivalent, a translation-based
semantics has several advantages with respect to a direct semantics: a translation-based
approach results in a cleaner, simpler and more precise specification; it gives direct access
to theoretical results for the logic; and it provides a direct implementation pathway.

We will define a translation function that maps OWL 1.1 ontologies into equiv-
alent SROIQ(D+) knowledge bases. The translation function and the semantics of
SROIQ(D+) completely specify the semantics of OWL 1.1. The semantics of SROIQ,
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OWL 1.1 Abstract Syntax SROIQ(D+) Syntax
A (Class URI) Concept name A
owl:Thing ⊤
owl:Nothing ⊥
R (Object Property URI) Abstract role R
U (Datatype Prop. URI) Concrete role U
a (Individual URI) Individual a
φ (Data Value or Plain Literal) Concrete value φ
pm (Datatype Predicate ID) Concrete Predicate pm

Φ (OWL 1.1 Datatype) Supported Datatype Φ
intersectionOf(C1 ...Cn) σ(C1) ⊓ ... ⊓ σ(Cn)
unionOf(C1 ...Cn) σ(C1) ⊔ ... ⊔ σ(Cn)
complementOf(C) ¬σ(C)
oneOf(a1 .... an) {σ(a1)} ⊔ ... ⊔ {σ(an)}
oneOf(φ1...φn) {σ(φ1), ..., σ(φn)}
restriction(R X1...Xn) σ(restriction(R X1)) ⊓...

⊓ σ(restriction(R Xn))
restriction(R someValuesFrom(C)) ∃σ(R).σ(C)
restriction(R allValuesFrom(C)) ∀σ(R).σ(C)
restriction(R hasValue(a)) ∃σ(R).{σ(a)}
restriction(R self) ∃σ(R).Self
restriction(R minCardinality(n)) ≥ nσ(R).⊤
restriction(R maxCardinality(n)) ≤ nσ(R).⊤
restriction(R Cardinality(n)) = nσ(R).⊤
restriction(R minCardinality(n C)) ≥ nσ(R).σ(C)
restriction(R maxCardinality(n C)) ≤ nσ(R).σ(C)
restriction(R Cardinality(n C)) = nσ(R).σ(C)
restriction(U X1...Xn) σ(restriction(U X1)) ⊓...

⊓ σ(restriction(U Xn))
restriction(U someValuesFrom(Φ)) ∃σ(U).σ(Φ)
restriction(U allValuesFrom(Φ)) ∀σ(U).σ(Φ)
restriction(U hasValue(φ)) ∃σ(U).{σ(φ)}
restriction(U minCardinality(n)) ≥ nσ(U)
restriction(U maxCardinality(n)) ≤ nσ(U)
restriction(U Cardinality(n)) = nσ(U)
restriction(U minCardinality(n Φ)) ≥ nσ(U).σ(Φ)
restriction(U maxCardinality(n Φ)) ≤ nσ(U).σ(Φ)
restriction(U Cardinality(n Φ)) = nσ(U).σ(Φ)
restriction(holds(pm) U1...Um)) ∃σ(U1)...σ(Um).σ(pm)

OWL 1.1 Abstract Syntax SROIQ(D+) Syntax
ObjectProperty(R super(R1)...super(Rm)

Sm
i=1{σ(R) ⊑ σ(Ri)}

domain(C1)...domain(Cm)
Sm

i=1{≥ 1σ(R) ⊑ σ(Ci)}
range(C1)...range(Cm)

Sm
i=1{⊤ ⊑ ∀σ(R).σ(Ci)}

inverseOf(S) {σ(R) ≡ σ(S)−}
[Symmetric] {σ(R) ≡ σ(R)−}
[Functional] {⊤ ⊑≤ 1σ(R)}
[InverseFunctional] {⊤ ⊑≤ 1σ(R)−}
[Transitive] {Trans(σ(R))}
[Reflexive] {Ref(σ(R))}
[Irreflexive] {Irr(σ(R))}
[AntiSymmetric]) {ASymm(σ(R))}

SubPropertyOf(R1 R2) {σ(R1) ⊑ σ(R2)}
SubPropertyOf(propertyChain(R1 · · ·Rm) R) {σ(R1)...σ(Rm) ⊑ σ(R)}
DisjointProperties(R1 R2) {Dis(σ(R1), σ(R2))}

EquivalentProperties(R1 ...Rm)
Sm−1

i=1
{σ(Ri) ≡ σ(Ri+1)}

DataProperty(U super(U1)...super(Um)
Sm

i=1{σ(U) ⊑ σ(Ui)}
domain(C1)...domain(Cm)

Sm
i=1{≥ 1σ(U) ⊑ σ(Ci)}

range(Φ1)...range(Φm)
Sm

i=1{⊤ ⊑ ∀σ(U).σ(Φi)}
[Functional]) {⊤ ⊑≤ 1σ(U)}

SubPropertyOf(U1U2) {σ(U1) ⊑ σ(U2)}

EquivalentProperties(U1 ...Um)
Sm−1

i=1
{σ(Ui) ≡ σ(Ui+1)}

DisjointProperties(U1 U2) {Dis(σ(U1), σ(U2))}
Class(A partial C1...Cm) {σ(A) ⊑ σ(C1) ⊓ ... ⊓ σ(Cm)}
Class(A complete C1...Cm) {σ(A) ≡ σ(C1) ⊔ ... ⊔ σ(Cm)}
EnumeratedClass(A a1...am) {σ(A) ≡ {σ(a1)} ⊔ ... ⊔ {σ(am)}}

EquivalentClasses(C1 ...Cm)
Sm−1

i=1
{σ(Ci) ≡ σ(Ci+1)}

DisjointClasses(C1...Cm)
Sm

i,j=1;i6=j{σ(Ci) ⊑ ¬σ(Cj )}
DisjointUnion(C C1...Cm) {σ(C) ≡ σ(C1) ⊔ ... ⊔ σ(Cm)}∪

Sm
i,j=1;i6=j{σ(Ci) ⊑ ¬σ(Cj )}

Individual(a type(C1)...type(Cm)
Sm

i=1{σ(Ci)(σ(a))}
value(R1 b1)...value(Rm bm)

Sm
i=1{σ(Ri)(σ(a), σ(bi))}

value(U1 φ1)...value(Um φm)
Sm

i=1{σ(Ui)(σ(a), σ(φi))}
valueNot(R1 b1)...valueNot(Rm bm)

Sn
i=1{¬σ(Ri)(σ(a), σ(bi))}

valueNot(U1 φ1)...valueNot(Um φm) )
Sm

i=1{¬σ(Ui)(σ(a), σ(φi))}
SameIndividual(a1...am)

Sm
i,j=1;i6=j{σ(ai)=̇σ(aj )}

DifferentIndividuals(a1 ...am)
Sm

i,j=1;i6=j{σ(ai) ˙6=σ(aj )}
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along with a decision procedure for reasoning in the logic, are given in [HKS06]; the
semantics of a suitable datatype extension are given in [PH05a].

The translation of OWL 1.1 into SROIQ(D+) is quite straightforward, and follows
naturally from the syntax and semantics of OWL-DL and from the syntax and infor-
mal specification of OWL 1.1 given in Section 7.3. Let O0 be an OWL 1.1 ontology
and let {Oj}1≤j≤m be the set of ontologies imported (directly or indirectly) by O0;
let {αj

1, ..., α
j
nj
} for 0 ≤ j ≤ m be the set of axioms and facts contained in Oj . The

translation into a SROIQ knowledge base T is as follows: T =
⋃

0≤j≤m σ(Oj), where

σ(Oj) =
⋃

1≤i≤nj
σ(αj

i ). The syntactic correspondence between OWL 1.1 descriptions and

SROIQ(D+) concepts is given in Table 2 as is the correspondence between OWL 1.1 ax-
ioms and facts and SROIQ(D+) axioms. This table completely specifies the translation
function σ and should be read as follows: given a construct in OWL 1.1 abstract syntax
in the first column, its evaluation under σ is given in the second column.

7.4 Implementation

OWL 1.1 has been developed outside any formal standardization process. Instead, the
intent was to advance the state of the deployed and used art before moving to a stan-
dards body. Several of the OWL 1.1 extensions were selected because they were already
supported by some OWL tools and were deployed (or would quickly be deployed) by key
users. For example, qualified number restrictions are supported by Racer, KAON2, and
FaCT++ as well as the Protégé editor. Unfortunately, this support is primarily through
the DIG interface and obsolete exchange formats.17 Similarly, Pellet will reason with user
defined datatypes, but it will not consume the format Protégé emits. Both these features
are strongly in demand from the user community[WBH+05], but they are not used due
to the lack of interoperability. Since this interoperability was mostly a matter of agreeing
on a common syntax, it is likely that these features will be widely available after OWL
1.1 is finalized.

One radical if “surface” difference in OWL 1.1 is the change in syntax. In OWL 1.1,
there is a normative XML syntax that is described by an XML schema. The WebOnt
working group did produce a document describing a direct XML syntax for OWL, but
it is incomplete and was never significantly used. We expect that the availability of a
sensible XML schema friendly format will make it possible to build useful OWL 1.1 tools
based on the XML infrastructure. For example, schema aware editors could be fruitfully
used to edit OWL 1.1, and XPath and XSLT could be used for a variety of tasks. There
is also an RDF encoding of OWL 1.1 (thus, an RDF/XML exchange format for it), so
users can adopt the format that best suits their needs. Some future extensions, however,
may build on the XML format (see section 7.5).

Several categories of OWL 1.1 features (syntactic sugar, semantic-free comments,
meta-modelling by punning) are essentially trivial to implement, since they can be han-
dled with a transformation into the core formalism. From an implementation perspective,
the most substantial extensions in OWL 1.1 are the property constructors. In particu-
lar, the known decision procedure for SROIQ involves the use of automata to manage

17See http://www.w3.org/2001/sw/BestPractices/OEP/QCR/ for a discussion.
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the property chains. While the automata seem modular, there is only very limited ex-
perience with implementing and optimizing algorithms incorporating them [HS03]. The
other extensions with regard to properties (e.g., disjoint roles or negated property as-
sertions), while conceptually simpler (e.g., negated property roles may be encoded using
nominals), also lack implementation experience. The consensus of implementors at the
OWLED workshop was that these features were reasonable to implement, but the first
implementations are not yet available.

Significantly, at the OWLED workshop, the major OWL reasoner implementors (those
of Cerebra, RACER, FaCT++, KAON2, and Pellet) and editor implementors (Protégé
and Swoop) pledged to support OWL 1.1 in a timely manner (in particular, for preliminary
implementation within six months of reasonably firm specifications), and implementation
work is already underway.

7.5 Future Extensions

OWL 1.1 was from the start intended to be an easy, incremental improvement to OWL.
With a year and a half of experience with OWL, there was strong consensus as to the
several of the obvious holes in the language. However, OWL 1.1 was also intended to
start movement toward a larger extension of OWL, which, for the purposes of this paper,
we shall refer to as OWL 2.0. There is a wide variety of academic and industrial research
concerning expressive extensions to OWL, much of it driven by user demand, some of it
driven by standardization in related areas. While it is difficult to predict what a future
working group might find compelling, there are five obvious features which would be
sensible to consider for the next version of OWL. Syntactic extensibility: Since the

OWLED workshop, there have been a number of additional proposals for syntactic sugar
even beyond what OWL 1.1 offers. This suggests that some form of macro system would
be useful. An obvious proposal is to center the system on the new XML syntax and make
use of the extensive transformation infrastructure for XML (e.g., XPath and XSLT). Such
a proposal is likely to emerge from the next OWL workshop.

Query: There are efficient implementations of some form of conjunctive ABox querying
in Racer, Pellet, and KAON2. While the Data Access Working Group only defined the
semantics of SPARQL queries for RDF graphs [PS06], there is a hook allowing one to plug
in other semantics, for example, that of OWL. It would be straightforward to support
such in OWL 2.0.

Integration with rules: Integration of rules of various sorts and DL-based ontology
languages is not only a hot research area, but also a requirement for the new Rules
Interchange Format (RIF) Working Group. The OWL community could define some
extensions to RIF specifically designed around OWL, e.g., based on SWRL [HPS04b] or
on decidable variations of SWRL [MSS04, Ros05].

Non-monotonicity: A common request for OWL is non-montonic constructs. Unfor-
tunately, in spite of the intense interest, there is little settled consensus or practical
experience with non-monontonic features in description logic systems. It may be that in
the coming year the picture will become clearer, but there needs to be a more effective
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gathering of grounded use cases for non-monotonicity in OWL so that the appropriate
design decisions can be made.

Meta-modelling: OWL 1.1 meta-modelling does not facilitate domain modelling
[Mot05], nor does it cover some useful sorts of annotative behavior [GW04]. Although
the meta-modelling facilities of OWL Full were strongly argued for within the WebOnt
working group, actual use of those particular facilities is rare [Wan06]. So, more work
must be done to determine what additional meta-modelling capabilities are both feasi-
ble and will be actually used. Clearly the first three classes of feature are more ripe for
standardisation than the last two. Of course, there are many other features one might
hope for in the next version of OWL, for example, even more expressive datatypes, role
constructors, fixed point operators and hybrid logic constructs.

7.6 Discussion

We have presented OWL 1.1, an incremental extension to OWL DL that exploits recent
developments in DL languages and reasoning techniques in order to satisfy some common
requirements expressed by users of OWL DL. Although some of these extensions are
no more than syntactic sugar, others add real expressive power to the language, and in
particular significantly extend what can be said about properties. In spite of this increased
expressive power, OWL 1.1 retains the desirable computational properties of OWL DL:
key reasoning problems are decidable, and practical decision procedures are available for
them. Support from the implementors of prominent OWL DL reasoning and editing tools
means that OWL 1.1 compatible systems should be available in the near future.

Although OWL 1.1 is backwards compatible with OWL DL, it departs significantly
from OWL DL in some important respects: the semantics of OWL 1.1 is not given di-
rectly, but via a mapping to SROIQ(D+); OWL 1.1 uses XML Schema for its normative
exchange syntax; the RDF syntax of OWL 1.1 does not fully respect the semantics of
RDF, and so is not semantically compatible with OWL Full.

It is anticipated that OWL 1.1 will be only a first step, and that larger extensions
will follow. These could include support for, e.g., (some form of) rules, macro and query
languages. It is also anticipated that, given sufficient support from implementors and
users, it may be appropriate to initiate standardisation activities for OWL 1.1 and/or
OWL 2.0.
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[BKT02b] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan. Approxima-
tion and difference in description logics. In D. Fensel, F. Giunchiglia,
D. McGuiness, and M.-A. Williams, editors, Proceedings of the Eighth
International Conference on Principles of Knowledge Representation and
Reasoning (KR2002), pages 203–214, San Francisco, CA, 2002. Morgan
Kaufman.

[BL84] R. J. Brachman and H. J. Levesque. The tractability of subsumption
in frame-based description languages. In Proc. of the 4th Nat. Conf. on
Artificial Intelligence (AAAI’84), pages 34–37, 1984.

[Bla93] Patrick Blackburn. Nominal tense logic. Notre Dame J. of Formal Logic,
34(1):56–83, 1993.

[BM01] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes. W3C
Recommendation, May 2001.

[BM02] Jean-Francois Baget and Marie-Laure Mugnier. Extensions of simple con-
ceptual graphs: the complexity of rules and constraints. Journal of Arti-
ficial Intelligence research (JAIR), 16:425–465, 2002.

[BN97] Franz Baader and Paliath Narendran. Unification of concept terms in de-
scription logics. In Proc. of the 1997 Description Logic Workshop (DL’97),
pages 34–38, 1997.

[BN03] Franz Baader and Werner Nutt. Basic description logics. In Franz Baader,
Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors, The Description Logic Handbook: Theory, Implemen-
tation, and Applications, pages 43–95. Cambridge University Press, 2003.

[Bra04] S. Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In R. López de Mantáras
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[KM01] Ralf Küsters and Ralf Molitor. Approximating most specific concepts
in description logics with existential restrictions. In Franz Baader, Gerd
Brewka, and Thomas Eiter, editors, Proc. of the Joint German/Austrian
Conf. on Artificial Intelligence (KI 2001), volume 2174 of Lecture Notes
in Artificial Intelligence, pages 33–47. Springer, 2001.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

c©2006/TONES – 31 May, 2006 83/91 TONES-D06– v.2.0



FP6-7603 – TONES Thinking ONtologiES WP2

[KPCG05] A. Kalyanpur, B. Parsia, and B. Cuenca-Grau. Beyond asserted axioms:
Fine-grain justifications for owl-dl entailments. In Proc. of the 2005 Inter-
national Workshop on Description Logics, 2005.

[KPS+05] A. Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and
James Hendler. SWOOP: a web ontology editing browser. J. of Web
Semantics, 4(2), 2005.

[KPSH05] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. De-
bugging unsatisfiable classes in OWL ontologies. J. of Web Semantics –
Special Issue on the Semantic Web Track of WWW 2005, 3(4), 2005.

[KT90] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science — Formal Models and
Semantics, pages 789–840. Elsevier Science Publishers, 1990.
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