
Common Framework for Representing
Ontologies

Deliverable TONES-D08

D. Calvanese1, B. Cuenca Grau3, G. De Giacomo2, E. Franconi1,
I. Horrocks3, A. Kaplunova5, D. Lembo2, M. Lenzerini2, C. Lutz4,

D. Martinenghi1, R. Möller5, R. Rosati2, S. Tessaris1, A.-Y. Turhan4

1 Free University of Bozen-Bolzano
2 Università di Roma “La Sapienza”

3 The University of Manchester
4 Technische Universität Dresden

5 Technische Universität Hamburg-Harburg

Project: FP6-7603 – Thinking ONtologiES (TONES)

Workpackage: WP2– Common Logical Framework for Representing Ontologies

Lead Participant: Free University of Bozen-Bolzano

Reviewer: Franz Baader

Document Type: Deliverable

Classification: Public

Distribution: TONES Consortium

Status: Draft

Document file: D08 CommonFramework.pdf

Version: 2.1

Date: August. 25, 2006

Number of pages: 68

FP6-7603 – TONES Thinking ONtologiES WP2

Abstract

In this document, we present the general framework for the representation of on-
tologies that has been designed within tones as a semantic infrastructure capturing
the different formalizations of ontologies as well as their services and the different
contexts in which ontologies are used. Then, we illustrate several meaningful in-
stantiations of the framework through ontology based formalisms that have been
proposed recently in the literature. Some of these instantiations constitute them-
selves significant contributions in terms of logic-based ontology formalisms that have
been developed within the tones consortium, and that have been presented recently
at high quality scientific venues.

c©2006/TONES – August. 25, 2006 1/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Document Change Record

Version Date Reason for Change

v.1.0 July 5, 2006 First draft for teleconference discussion

v.1.1 July 11, 2006 Second draft for teleconference

v.1.2 July 12, 2006 Results of teleconference discussion considered

v.2.0 August 15, 2006 First internal release

v.2.1 August 25, 2006 Final version

c©2006/TONES – August. 25, 2006 2/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Contents

1 Introduction 5

2 Ontology framework 9
2.1 Framework for stand-alone ontologies . 9

2.1.1 Ontology formalism . 9
2.1.2 Ontology . 12
2.1.3 Ontology services . 12

2.2 Situated ontologies . 13
2.2.1 Situated ontology formalism . 14
2.2.2 Situated ontology . 14
2.2.3 Services for situated ontologies . 15

2.3 Peer ontologies . 15
2.3.1 Peer ontologies formalism . 15
2.3.2 Peer ontologies . 16
2.3.3 Services for peer ontologies . 16

3 Standard description logics 17
3.1 The description logic ALC . 17
3.2 Description logics with additional constructs 19

3.2.1 Concrete domains . 19
3.2.2 Transitive roles . 21
3.2.3 Role hierarchies . 22
3.2.4 Number restrictions . 22

3.3 Ontology services . 23
3.3.1 DL inferences as instantiations of F -ontology services 24

3.4 Remark on a standard DL as situated ontology 25

4 The OWL 1.1 extension of the Web Ontology Language 25
4.1 Overview . 25

4.1.1 OWL 1.1 and description logics . 26
4.1.2 OWL 1.1 and OWL . 26

4.2 OWL 1.1 syntax . 27
4.3 OWL 1.1 as an instantiation of the tones framework for stand-alone on-

tologies . 29

5 The Semantic Web Rules Language (SWRL) 32
5.1 Overview . 32
5.2 SWRL syntax . 34
5.3 SWRL as an instantiation of the tones framework 35

6 Linking data to ontologies: The description logic DL-LiteA 37
6.1 The description logic DL-LiteFR . 38

6.1.1 Syntax . 39
6.1.2 Semantics . 40

c©2006/TONES – August. 25, 2006 3/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

6.2 DL-LiteFR as an instantiation of the tones framework for stand-alone
ontologies . 42

6.3 Realizing services in DL-LiteFR and DL-LiteA 43
6.3.1 From DL-LiteFR to DL-LiteA . 43
6.3.2 Query answering in DL-LiteA . 45

6.4 Linking data to DL-LiteA ontologies . 47
6.5 DL-LiteA as an instantiation of the tones framework for situated ontologies 50

7 Ontology based peer-to-peer data integration systems 51
7.1 Ontology based peer-to-peer data integration systems 51

7.1.1 Formal framework for ontology-based P2P data integration 52
7.1.2 Classical semantics for ontology-based P2P data integration systems 54
7.1.3 Limitations of first-order approaches 56
7.1.4 Multi-modal epistemic formalization 57

7.2 Ontology-based data integration systems as instantiations of the tones
framework for peer ontologies . 59
7.2.1 Instantiation of the framework for situated ontologies 60
7.2.2 Instantiation of mapping languages 61
7.2.3 Instantiation of the framework for peer ontologies 61

References 64

c©2006/TONES – August. 25, 2006 4/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

1 Introduction

In this document, we present the general framework for the representation of ontologies
that has been designed within tones as a semantic infrastructure capturing the different
formalizations of ontologies as well as their services and the different contexts in which
ontologies are used.

In the tones framework, there is no commitment towards a specific representation
language or family of languages, neither at the syntactic nor at the semantic level. Rather,
the framework provides the means for defining ontology formalism according to different
needs and with specific properties with respect to both syntax and semantics. This allows
one to be sufficiently general to capture virtually all ontology languages, provided that
they are equipped with a formal semantics. Indeed, a committed choice of the tones
framework is that it is based on logic, so as to capture the proposals in the literature for
formally representing ontologies that are equipped with a formal, logic-based semantics.
This choice is motivated by the commonly accepted fact that a logical underpinning
of ontologies on the one hand provides a well-defined semantics and hence a common
understanding of the meaning of an ontology, and, on the other hand, allows to re-
phrase certain useful system services of ontology editors and browsers in terms of logical
reasoning problems. This, in turn, enables one to base the above mentioned system
services on automated reasoning procedures, which is precisely the declared objective,
providing added value, of the tones project.

More specifically, the framework essentially relies on first-order logic and, consequently,
the semantics of ontologies is defined in terms of first-order models. However, the frame-
work is open towards different mechanism for selecting models.

It is worth pointing out that the tones framework has been designed for ontologies,
not just generic logic-based formalisms. As such, the ontology formalisms that can be
defined within the framework are characterized by a number of distinctive features that
we now briefly summarize:

Intensional vs. extensional level. Relying on the experience gained with the study
of logic-based formalisms for the representation of structured knowledge, the framework
makes an explicit distinction between an intensional and an extensional level. At the
intensional level, general, typically universally quantified knowledge is represented. At
the extensional level, specific facts about the modeled domain are captured. Following
the tradition of Description Logics [BCM+03], the two levels are called TBox and ABox,
respectively.

Unary vs. n-ary predicates. Practically all conceptual modeling and ontology rep-
resentation formalisms, rely on structuring the domain of interest into sets of elements
(either abstract objects or concrete values – see later) with common properties. Unary
predicates, which denote such sets of elements, play a prominent role in ontology model-
ing, and thus are represented explicitly in the tones framework. In our setting, unary
predicates are called concepts and domains – see below for the distinction between the
two (in other settings they are also called classes, entity types, or types). Additionally,
also predicates of arbitrary arity are considered, denoting relations of different kinds that

c©2006/TONES – August. 25, 2006 5/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

are used to represent the properties of objects belonging to concepts. In our setting, such
predicates are called relations, value-relations, or attributes (in other settings they are
called also as relationships or associations).

Language for representing ontologies. On the other hand, the tones framework
makes no commitment towards a specific language for representing ontologies, neither at
the intensional nor at the extensional level. The language for representing an ontology is a
specific parameter of an instantiation of the framework. Typically it will comprise at least
a TBox-language, for specifying the intensional component of an ontology, and an ABox-
language, for specifying the extensional component. Such languages will in general be
subdivided in several sub-languages for specifying different components that may appear
in an ontology.

Abstract objects vs. values. At the semantic level, there is an explicit separation
between abstract objects and values : the properties of abstract objects are specified using
the modeling constructs of the ontology representation formalism itself; values, instead,
belong to predetermined domains (such as that of strings, integers, etc.) whose properties
are given a priori, and are used for specifying properties of abstract objects.

Such a distinction is also reflected on the ontology formalisms that can be defined in
the tones framework, where we make use of different alphabets and, correspondingly, of
different categories of syntactic elements:

• object-constants and value-constants, for constants of the two forms;

• concepts and value-domains, denoting sets of elements of the two forms;

• relations and value-relations, denoting relationships among elements of the two
forms;

• attributes, denoting relationships between tuples of abstract objects and values.

Note that the distinction between abstract objects and values has often been blurred in
abstract knowledge representation formalisms, such as Description Logics, while it is typi-
cally present in practice-oriented ontology formalisms, such as OWL [BvHH+04, SWM04],
and is implicit in conceptual modeling formalism. For example, in the Entity-Relationship
model [Che76, BCN92], the instances of entities are abstract objects, whose properties are
represented within an Entity-Relationship diagram both through relationships with other
abstract objects and through attributes that have values belonging to concrete domains
such as that of strings, integers, etc..

Ontology services. The tones framework is tailored to easily describe the mechanisms
through which an ontology interacts with the external world, by providing an explicit
representation of the services that are offered by an ontology based system to everyone
who needs to interact with an ontology, including its designers, maintainers, and end
users.

In the framework, each service applied to ontologies comes with:

c©2006/TONES – August. 25, 2006 6/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• a signature, specifying the name of the service and its arguments;

• a set of preconditions, specifying the conditions that the arguments have to satisfy
in order for the service to be invoked;

• a meaning, i.e., a specification of the result of the service invocation for every possible
combination of the arguments satisfying the preconditions.

The domain of the result of a service invocation may be structured into different compo-
nents, to take into account services that return complex results. Specifically, services that
manipulate an ontology, possibly modifying it, are taken into account by including the
modified ontology itself as (part of) the result of the service invocation. In other words,
we take a purely functional view of ontology services1.

Among the services, we distinguish reasoning services, which are those services for
which the result of the invocation is independent of the syntactic representation of the
ontology to which the service is applied. In other words, a reasoning service will provide
the same results when invoked on two ontologies with different syntactic representations
but with the same sets of models. A typical example of a reasoning service is the one
that asks “Is concept C consistent in an ontology?”, which requires to check whether
there is at least one model of the ontology in which the concept C is interpreted as a
non-empty set. An example of a service that is not a reasoning service is the one that
requires to “Return the set of all concept names appearing in the ontology”. More in
general, services that involve forms of meta-querying, i.e., querying about the syntactic
structure of an ontology, are not reasoning services.

At the level of the framework, we do not distinguish between basic services, i.e.,
services that do not rely on other services, and composite services, that instead rely on
other services for their realization. However, in a specific instantiation of the tones
framework such a distinction may be made. In such a case, the choice of whether a
service is considered as basic or composite may be based purely on the specification of
the service, or may also involve considerations about efficiency in the realization of the
service.

Stand-alone ontologies vs. ontologies in a wider context. In the tones frame-
work, besides stand-alone ontologies, we take into account that ontologies may be placed
in a wider context and interact with other systems. Such systems may be either external
systems, of which we do not have or want to provide a complete specification of syntax
and semantics, or other ontologies, itself modeled in the framework. Hence, the tones
framework explicitly considers three contexts of application of ontologies:

• A stand-alone ontology, which is essentially defined as a pair 〈TBox, ABox〉, whose
semantics is specified in terms of FOL interpretations over its components, and
which offers a set of services.

• A situated ontology, i.e., an ontology interacting with an external system that is not
fully modeled within the framework. Rather, the interaction between the ontology

1Note that this concerns only the abstract representation of services within the tones framework.
Obviously, services will in general not be realized in a purely functional way.

c©2006/TONES – August. 25, 2006 7/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

and the external system is represented by a mapping, and the state of the external
system is represented only as far as it affects the mapping, and through the mapping
constrains the possible models of the ontology. Services for situated ontologies may
include, besides services that deal with the ontology itself, also services that, through
the ontology, access and possibly modify the external system.

A typical example of an external system interacting with an ontology is a database,
storing and providing (part of) the extensional information for an ontology.

• A system of peer ontologies, i.e., a set of ontologies with a set of pairwise mappings
between them. The entire network of peer ontologies and mappings is seen as a
whole system constraining the models of the ontologies. Note that, from the point
of view of a specific ontology O in the system of peer ontologies, the other ontologies
may be viewed as external systems with which O interacts and that constrain the
possible models ofO. However, in the tones framework, we have chosen to take into
account the case of peer ontologies separately from the case of situated ontologies
for various reasons, which we briefly illustrate:

– In the case of a situated ontology, the external system is modeled only as
far as it affects the mappings to the ontology, whereas in a system of peer
ontologies all ontologies are fully modeled through an ontology formalism that
is compatible with the tones framework.

– The semantics of a system of peer ontologies may be specified in a more complex
way than by a simple composition of the semantics of a single ontology and
the direct mappings such an ontology has to other ontologies. Indeed, the
semantics of an ontology O in a system of peer ontologies, and hence of the
whole system, may depend on all ontologies involved in the system rather than
only on the ones to which O is directly connected through mappings, and such
a situation could not properly be taken into account by the notion of situated
ontology.

– Each single ontology in a system of peer ontology may in fact be connected
also to another system, and hence represented as a situated ontology rather
than a stand-alone ontology.

Structure of the document

We present now, in Section 2, the tones ontology framework. Then, in the rest of
the document, we illustrate several meaningful instantiations of the framework through
ontology based formalisms that have been proposed recently in the literature. Specifically,
we provide the following instantiations of the various components of the framework:

• We provide several instantiations of the framework for stand-alone ontologies: an in-
stantiation through standard description logics (Section 3); an instantiation through
OWL 1.1, the latest version of the W3C standard Web Ontology Language (OWL),
which is currently under consideration as the next standard ontology language for

c©2006/TONES – August. 25, 2006 8/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

the W3C (Section 4; an instantiation through the rule-based language SWRL (Sec-
tion 5).

• We provide an instantiation of the framework for situated ontologies through
DL-Lite, a recent proposal for a description logic specifically tailored to provide
ontology-bases access to data stored in relational databases (Section 6).

• We provide two instantiation of the framework for peer ontologies based on different
semantic specifications for the mappings between ontologies, and hence for the whole
system.

We point out that the instantiations we provide, on the one hand, serve the purpose
to illustrate through examples how the tones ontology framework can be instantiated
to capture meaningful ontology-based formalisms. On the other hand, some of these
instantiations constitute themselves significant contributions in terms of logic-based on-
tology formalisms that have been developed within the tones consortium, and that have
been presented recently at high quality scientific venues [HKS06, HPSBT05, CDGL+06a,
CDGL+06b].

2 Ontology framework

In this section, we present the tones framework for representing ontologies. The frame-
work makes an explicit distinction between stand-alone ontologies, situated ontologies,
and peer ontologies. In each of the three cases, the framework determines the form of
an ontology formalism (respectively for stand-alone, situated, and peer ontologies), which
is itself a mechanisms for defining ontologies. Moreover, the framework determines how
services offered by (stand-alone, situated, and peer) ontologies should be specified.

We now describe separately the three cases of stand-alone ontologies (Subsection 2.1),
situated ontologies (Subsection 2.2), and peer ontologies (Subsection 2.3), and in each of
the three cases we define first the form of an ontology formalism, then we describe how
ontologies in an formalism are specified (w.r.t. both syntax and semantics), and finally
we describe ontology services.

2.1 Framework for stand-alone ontologies

We describe now the structure of a stand-alone ontology, i.e., an ontology considered as an
independent system that maintains intensional and extensional information, and provides
services to access and manipulate such information.

2.1.1 Ontology formalism

An ontology formalism provides the specification of both the syntax and the semantics
of ontologies for that formalism. Formally, an ontology formalism is a five-tuple F =
〈Σ,LC ,LT ,LA, Sem〉, where:

• Σ, LC , LT , LA, are respectively an alphabet, a concept language, a TBox language
and an ABox language, specifying the syntax of ontologies defined in F , and

c©2006/TONES – August. 25, 2006 9/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• Sem is a semantic specification, specifying the semantics of ontologies defined in F .

We describe the various elements of F , treating first the syntactic and then the semantic
aspects.

Specification of the syntax of ontologies. The first four elements Σ, LC , LT , and
LA of F , described below, provide the mechanisms for defining the syntax of ontologies
defined in F .

• Σ is a finite or countably infinite alphabet, partitioned into the following sub-
alphabets:

– Σc of concept names,

– Σr of relation names,

– Σd of value-domain names,

– Σu of value-relation names,

– Σa of attribute names,

– Σo of object-constants,

– Σv of value-constants.

Each symbol in Σr or Σu has an associated arity n ≥ 2. Each symbol in Σa has an
associated arity n ≥ 1.

• LC is a concept language, i.e., a language for expressions of concepts, relations,
domains, and attributes. We assume that expressions of such language are built
over the alphabets Σc, Σr, Σd, Σu, and Σa only, and that they do not make use of
the alphabets Σo and Σv of constants.

• LT is a TBox language, i.e., a language for expressing intensional knowledge, making
use of expressions in the language LC . An element of LT is called a TBox.

• LA is an ABox language, i.e., a language for expressing extensional knowledge,
making use of expressions in the language LC and of constants. An element of LA

is called an ABox.

Several remarks on the syntactic elements of F are in order.

• The assumption of the various sub-alphabets of Σ to be disjoint is made to simplify
the formal treatment. In concrete instantiations of the framework, from the point
of view of users, it may be possible to have non-disjoint alphabets. In this case we
would assume that, from the point of view of the ontology-based system, symbols
are prefixed with some distinguishing prefix, e.g., “concept:” for concepts, etc.

• Expressions of the concept language LC will in general be constructed by making
use of constructors that are specific of the concept language, and that allow for a
compositional syntax for the various kinds of expressions.

c©2006/TONES – August. 25, 2006 10/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• In specific cases, LC may foresee expressions that contain variables. Note, however,
that we do not include explicitly in Σ an alphabet of variables, since Σ contains only
those symbols that appear in interpretative structures (i.e., FOL structures – see
below), and in these structures we do not need to mention variables. Indeed, vari-
ables are not interpreted per see but are assigned a semantics by means of variable
assignments. Of course, for convenience, specific instantiations of the framework
may add variables to the syntax, as a new syntactic category, with a corresponding
alphabet of variables.

• In general, a TBox of LT will be constituted by a set of universally quantified as-
sertions, e.g., inclusion assertions between concepts or relations, but the framework
does not rule out other forms of intensional knowledge.

• In general, an ABox of LA will be constituted by a set of facts, expressing knowledge
about instances of concepts, relations, etc., but again the framework does not rule
out other forms of extensional knowledge, e.g., existentially quantified assertions.

Specification of the semantics of ontologies. In the tones framework, the seman-
tics of ontologies is specified in terms of FOL interpretations for the alphabet Σ. In our
setting, a FOL interpretation is a pair I = (∆I , ·I), where:

• ∆I is an interpretation domain, partitioned into a set ∆I
o of abstract objects and a

set ∆I
v of values ;

• ·I is an interpretation function that assigns

– to each concept C ∈ Σc, a set CI ⊆ ∆I
o ,

– to each relation R ∈ Σr of arity n, a set RI ⊆ (∆I
o)n,

– to each value-domain D ∈ Σd, a set DI ⊆ ∆I
v ,

– to each value-relation U ∈ Σu of arity n, a set UI ⊆ (∆I
v)n,

– to each attribute A ∈ Σa of arity n a set AI ⊆ (∆I
o)n ×∆I

v ,

– to each object-constant a ∈ Σo an element aI ∈ ∆I
o ,

– to each value-constant v ∈ Σv an element vI ∈ ∆I
v .

Note that, at the semantic level, there is an explicit separation between abstract objects
and values : the properties of abstract objects are specified using the modeling constructs
of the ontology representation formalism itself; values, instead, belong to predetermined
domains (such as that of strings, integers, etc.) whose properties are given a priori, and
are used for specifying properties of abstract objects.

In an ontology formalism F = 〈Σ,LC ,LT ,LA, Sem〉, the last component Sem is a
semantic specification, which determines how to assign semantics to ontologies defined in
F . Formally, Sem is a triple (S, δ,¯), where:

• S is a set of FOL interpretations for Σ, called admissible interpretations. Such a
set is intended to take into account semantic assumptions that may be present and
that constrain FOL interpretations (e.g., the unique-name assumption).

c©2006/TONES – August. 25, 2006 11/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• δ provides a mechanism for assigning, given an admissible FOL interpretation, a
truth value to each TBox and ABox. Formally, δ is a function, that, given a FOL
interpretation I ∈ S and a TBox or an ABox B ∈ LT ∪ LA, returns a truth value
δ(I,B) ∈ {true, false}. We also use BI to denote δ(I,B), and when δ(I,B) = true
we say that I satisfies B.

• ¯ is a binary operation on sets of FOL interpretations, typically set intersection,
that specifies how to compose the interpretations that satisfy the TBox with those
that satisfy the ABox.

2.1.2 Ontology

Given an ontology formalism F = 〈Σ,LC ,LT ,LA, Sem〉, an F-ontology (or simply ontol-
ogy, when F is clear from the context) is a pair O = 〈T ,A〉 where:

• T is a TBox, which is a sentence in the language LT ;

• A is an ABox, which is a sentence in the language LA;

Given an F -ontology O = 〈T ,A〉, the semantic specification Sem = (S, δ,¯) of
F determines the semantics of O by specifying the models of O. Intuitively, a model
of O is a FOL interpretation in S that satisfies both the TBox and the ABox of O.
Formally, the set of F-models (or simply models, when F is clear from the context) of O
is ModF(O) = ModF(T)¯ModF(A), with

ModF(T) = { I ∈ S | δ(I, T) = true }
ModF(A) = { I ∈ S | δ(I,A) = true }

As mentioned, typically, ¯ will compute just the intersection of the set of interpreta-
tions that satisfy T with the set of interpretations that satisfy A. However, the framework
allows also for the case where the two sets of interpretations need to be composed in a
more complex way. For example, in specific cases, even when the intersection of ModF(T)
and ModF(A) is empty (i.e., the TBox and the ABox are mutually inconsistent), one may
nevertheless want to consider a non-empty set of models for the ontology.

2.1.3 Ontology services

An ontology formalism F is equipped with a set of services, providing the functionalities
that F -ontologies offer to users. More precisely, given an ontology formalism F , an F-
ontology service (or simply, F -service, or service, when F is clear from the context) S is
specified as follows.

• At the syntactic level, the service has

– a signature, i.e., a name, an arity n ≥ 0 specifying the number of arguments of
S, and n domains specifying the types of the n arguments; in addition to the
n arguments of the service, there is always a distinguished argument which is
the F -ontology to which the service is applied;

c©2006/TONES – August. 25, 2006 12/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

– a set of preconditions, each of which is a subset of the cross-product of the
domains of all arguments (including the distinguished ontology argument);

– a domain for the result.

• The service is given a meaning, which is a specification of what is the result of the
service invocation for every given ontology and every possible combination of the
arguments that satisfy the preconditions.

For an F -service S, an F -ontology O, and a tuple ~p of additional arguments to S
such that O and ~p satisfy the preconditions of S, we denote with S(O, ~p) the result of the
application of S to O and ~p.

Among the services, we distinguish a particular class, called reasoning services, which
have the property of being independent of the syntactic representation of the ontology to
which they are applied. Formally, an F -service S is called a reasoning service if, for every
pair O1, O2 of F -ontologies such that ModF(O1) = ModF(O2), and for every tuple ~p of
additional arguments for S such that O1 and O2 together with ~p satisfy the preconditions
of S, we have that S(O1, ~p) = S(O2, ~p).

Notable examples of reasoning services are:

• ontology satisfiability;

• logical implication of an assertion, given an ontology;

• query answering;

• update of an ontology;

• computing the least-common subsumer;

• classification.

Examples of services that are not reasoning services are those that involve forms of
meta-querying, i.e., querying about the syntactic structure of an ontology. For example,
providing the list of concept names mentioned in the TBox, or the list of concepts of
which a given individual is an instance.

2.2 Situated ontologies

A situated ontology represents a (stand-alone) ontology situated in a more general system,
here called environment. In the tones framework, the environment itself is not modeled;
rather, the interaction between the ontology and the environment is represented by a
mapping. Hence, in defining situated ontologies for an environment E , we refer to an
alphabet ΣE of symbols, disjoint from Σ, to be used together with Σ in a language LE
of mappings between ontologies and the environment. From a semantical point of view,
the mapping constrains the possible models of the ontology according to the state of the
environment, which acts as a parameter.

c©2006/TONES – August. 25, 2006 13/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

2.2.1 Situated ontology formalism

Given an environment E , a situated ontology formalism (for E) is a tuple FE =
〈F , ΣE ,LE , SemE〉, where:

• F = 〈Σ,LC ,LT ,LA, Sem〉 is an ontology formalism;

• ΣE is an alphabet that is disjoint from Σ;

• LE is a language over Σ ∪ ΣE for the mapping between F -ontologies and the envi-
ronment in which the F -ontologies are situated; the form of such a language will
obviously depend on the environment;

• SemE is a semantic specification for the mappings, i.e., a triple (SE , δE ,¯E), where:

– SE is a set of states for the environment E ,

– δE is a function that, given an F -ontology O, a mapping M in LE , a
FOL interpretation I for O, and a state E ∈ SE , returns a truth value
δE(O,M, I, E) ∈ {true, false}. Intuitively, a FOL interpretation I such that
δE(O,M, I, E) = true is considered to be coherent (according to the mappings)
with O and with the state E of the environment;

– ¯E is a binary operation on sets of FOL interpretations, typically set intersec-
tion, that specifies how to compose the interpretations that are models of an
F -ontology (considered as a stand-alone ontology) with those that are coherent
with a mapping.

2.2.2 Situated ontology

Given a situated ontology formalism FE = 〈F , ΣE ,LE , SemE〉, an FE-situated ontology (or
simply situated ontology, when FE is clear from the context) is a pair OE = 〈O,M〉 where:

• O is an F -ontology;

• M is a mapping to the environment, specified in the language LE .
Given an FE -situated ontology OE = 〈O,M〉 and a state E of the environment, the

semantic specifications Sem for F -ontologies and SemE for the mappings determine the
semantics ofOE by specifying the models ofOE , i.e., the models ofO that are also coherent
according to M with O and E.

Formally, let the semantic specification of F be Sem = (S, δ,¯), with S the set of
admissible interpretations for F . The set of models that are coherent according to M
with O and E are

ModE(O,M, E) = { I ∈ S | δE(O,M, I, E) = true }
Then, the set of FE-models (or simply models, when FE is clear from the context) of OE
with respect to E is

ModFE (E,OE) = ModF(O)¯E ModE(O,M, E)

c©2006/TONES – August. 25, 2006 14/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

As mentioned, typically ¯E will compute just the intersection of the models of O with
the set of interpretations that are coherent according to M with O and E. However, the
framework allows for taking into account also more complex situations, e.g., the one that
would result from cleaning operations on the information retrieved through the mappings.

A prominent example for a situated ontology is an ontology that accesses an external
database to extract values for its attributes and, indirectly, also objects for its concepts
and relations.

2.2.3 Services for situated ontologies

A situated ontology exhibits the same kind of services as a stand-alone ontology. However,
the services may additionally refer with suitable parameters to the environment.

Again, we consider among the services for situated ontologies a distinguished class of
services called reasoning services, which are independent of the syntactic specification of
the ontology.

An example of a services for a situated ontology is the one where queries over an
ontology are answered by accessing an underlying database.

2.3 Peer ontologies

Peer ontologies are a set of (possibly situated) ontologies and a set of pairwise mappings
between them. We define the semantics in such a way that the entire network of peer
ontologies and mappings specified between them is seen as a whole system that constrains
again the models of the various ontologies. This choice allows our framework to be as
general as possible, and thus to capture different possible semantic interpretations of peer
ontologies.

2.3.1 Peer ontologies formalism

Formally, a peer ontologies formalism is a triple FP = 〈{F i}1≤i≤k, {Lij
M}1≤i,j≤k,i6=j, SemP 〉,

where:

• {F i}1≤i≤k is a sequence of (possibly situated) ontology formalisms with pairwise
disjoint alphabets;

• {Lij
M}1≤i,j≤k,i6=j is a sequence of mapping languages, where each Lij

M is a language
for the peer mappings from the F i-ontologies to F j-ontologies, expressed over the
alphabet Σi ∪ Σj, where Σi and Σj are respectively the alphabets of F i and F j.
Notice that we require i 6= j, since mappings have to be established only between
different ontologies. In the following, we will always assume i 6= j, even if not
specified ;

• SemP is a semantic specification for peer ontologies, which is a pair (SP , δP), where:

– SP is a set of interpretation structures for the language LP for the specification
of systems of FP -peer ontologies (formally defined below). Hence, each element

c©2006/TONES – August. 25, 2006 15/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

of LP is a specification of a system of FP -peer ontologies, which informally
consists of one ontology Oi for each i ∈ {1, . . . , k} and one peer mapping
specification for each Lij

M ;

– δP provides a mechanism for assigning, given an interpretation structure in SP ,
a truth value to each system of peer ontologies. Formally, δP is a function that,
given an interpretation structure SP ∈ SP and a system P of peer ontologies,
i.e., an element of LP , returns a truth value δP (SP ,P) ∈ {true, false}.

Note that, in specifying the semantics of a system of peer ontologies, the tones frame-
work foresees arbitrary interpretation structures, rather than restricting the possibility to
FOL structures. This provides more flexibility in the combination of the semantics for the
single ontologies that participate to a system of peer ontologies, and allows one to take
into account also situations where the overall semantics cannot be properly represented
as a flat FOL theory.

2.3.2 Peer ontologies

Consider a peer ontologies formalism FP = 〈{F i}1≤i≤k, {Lij
M}1≤i,j≤k,i 6=j, SemP 〉. A system

of FP -peer ontologies (or simply peer ontologies, when FP is clear from the context) is a
pair P = 〈{Oi}1≤i≤k, {Mij}1≤i,j≤k,i 6=j〉, where:

• each Oi is an F i-ontology;

• each Mij is a peer mapping from Oi to Oj expressed in the language Lij
M (obviously,

i 6= j for each Mij).

Given a system P = 〈{Oi}1≤i≤k, {Mij}1≤i,j≤k,i 6=j〉 of FP -peer ontologies, the semantic
specification for peer ontologies SemP determines the semantics of the system P , by
specifying the models of P : An FP -model of P is an interpretation M ∈ SP such that
δP (M,P) = true.

Prominent examples for peer ontologies are:

• an ontology importing knowledge from another one through a set of mappings;

• a peer-to-peer systems of ontologies, in which each ontology imports and exports
knowledge from the other ones through possibly cyclic mappings.

2.3.3 Services for peer ontologies

An ontology that is part of a set of peer ontologies exhibits the same kind of services as a
stand-alone (resp., situated) ontology. Additionally, a set of peer ontologies may exhibit
additional services that refer to more than one ontology.

An example of service for peer ontologies is the integration of two ontologies to produce
a new one.

c©2006/TONES – August. 25, 2006 16/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

3 Standard description logics

Description logics (DLs) provide a logic-based formalism to represent a conceptual knowl-
edge about domain of interest and to infer implicit information from explicitly made as-
sertions in the knowledge base. In the context of Semantic Web, which is a research topic
of current importance, DLs have a considerable impact on building ontologies equipped
with model-theoretic semantics and a range of tractable reasoning services. Standard on-
tology modeling languages such as OWL Lite, OWL DL [HPSvH03, BvHH+04, PSHH04,
SWM04], and OWL 1.1 (see Section 4) are based on expressive DLs (respectively SHIf ,
SHOIN and SROIQ). Therefore, in the literature, the notion of “ontology” is often
used as a synonym for a description logic knowledge base. However, in this section, we
talk about the description logics formalism as a (quite natural) instantiation of the stand-
alone ontology framework which was introduced in Section 2. We describe now in detail
how syntax and semantics of standard DLs as well as inference services correspond to the
components of this framework.

3.1 The description logic ALC
We start with a short overview of main features of description logics on the example of
ALC, the core language of the expressive DL family (for details see [BCM+03]). Then,
we dwell on some additional language constructs, available in many specific description
logics. In parallel, we present the syntax and semantics of selected DLs in terms of a
stand-alone ontology formalism.

Definition 3.1 (ALC syntax) Given finite and mutually disjoint sets A of concept
names, R of role names , and O of (abstract) individual names, the set of ALC con-
cepts is inductively defined as follows:

1. every concept name A ∈ A is a concept;

2. if C and D are concepts and R ∈ R is a role name, then the following expressions
are also concepts:

¬C (negation)

C uD (conjunction)

C tD (disjunction)

∃R.C (existential restriction)

∀R.C (value restriction)

The expressions > (universal concept) and ⊥ (unsatisfiable concept) are used as abbre-
viations for respectively A u ¬A and A t ¬A, where A is a concept name.

Definition 3.2 (GCI, TBox) If C and D are concepts, then C v D is called a termi-
nological axiom (or generalized concept inclusion, or GCI). A finite set of terminological
axioms is called a terminology, or TBox for short.

c©2006/TONES – August. 25, 2006 17/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Definition 3.3 (ABox assertion, ABox) If a, b ∈ O are individual names, C is a con-
cept and R ∈ R is a role name, then the following are assertional axioms :

C(a) (concept membership assertion)

R(a, b) (role membership assertions)

A finite set of assertional axioms is called an ABox.

Definition 3.4 (Knowledge Base) A knowledge base is a tuple (T ,A), where T is a
TBox and A is an ABox (as defined in Definitions 3.2 and 3.3 respectively).

In the ontology formalism, a DL knowledge base is seen as an instantiation of an
F-ontology, that is the pair O = 〈T ,A〉, where T is a TBox and A is an ABox.

Definition 3.5 (ALC syntax in terms of a stand-alone ontology formalism) An
ontology formalism is a five-tuple F = 〈Σ,LC ,LT ,LA, Sem〉, where Σ, LC , LT and LA

respectively are an alphabet, a concept language, a TBox language, an ABox language
and a semantic specification, as specified in Section 2.

Given prerequisites of Definition 3.1, we assume that

• every concept name A ∈ A is an element of the alphabet Σc (concept names)

• every role name R ∈ R is an element of the alphabet Σr (relation names)

• every (abstract) individual name i ∈ O is an element of the alphabet Σo (object
constants)

Summing up, an alphabet Σ of an ALC-based ontology consists of tree disjoint sets:
Σ = Σc∪Σr ∪Σo. ALC concepts (see Definition 3.1) constitute the concept language LC .

Sets of ALC general inclusion axioms, which express an intensional knowledge, are
treated as elements of the TBox language LT . In other words, all possible ALC-TBoxes
(as defined in Definition 3.2) are “words” of the language LT .

The ABox language LA contains as its “words” all possible sets of ALC assertions, or
ALC-ABoxes (see Definition 3.3).

Definition 3.6 (ALC semantics) The model-theoretic semantics of ALC is given in
the standard form using a Tarskian interpretation (∆I , ·I), where ∆I is a nonempty set,
called the interpretation domain, and ·I is the interpretation function. The interpretation
function assigns

• to each concept name A ∈ A, a set AI ⊆ ∆I ;

• to each (binary) role name R ∈ R, a set RI ⊆ ∆I ×∆I ;

• to each individual name a ∈ O, an element aI ∈ ∆I such that unique-name assump-
tion holds (i.e., different names are mapped to different elements of the domain).

For complex concepts, the semantics is defined as follows:

c©2006/TONES – August. 25, 2006 18/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

(¬C)I = ∆I \ CI (complement)

(C uD)I = CI ∩DI (conjunction)

(C tD)I = CI ∪DI (disjunction)

(∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI} (existential restriction)

(∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI → y ∈ CI} (value restriction)

A concept C is satisfiable if there exists an interpretation I such that CI 6= ∅. A GCI
C v D is satisfied by an interpretation I if CI ⊆ DI . An interpretation which satisfies
all axioms of a TBox is called a model of the TBox. A concept C is satisfiable w.r.t. a
TBox T if there exists a model I of T such that CI 6= ∅. An ABox A is satisfied by
an interpretation I if for all concept assertions C(a) ∈ A it holds that aI ∈ CI and for
all role membership assertions R(a, b) ∈ A it holds that (aI , bI) ∈ RI . A model of a
knowledge base is an interpretation that is a model of T and A.

Definition 3.7 (ALC semantics in terms of a stand-alone ontology formalism)
An ontology formalism introduces the notion of semantic specification Sem, that is a
pair (S, δ), where S is a set of admissible interpretations and δ is a function. Given an
FOL interpretation I ∈ S and a TBox or an ABox α ∈ LT ∪ LA, δ returns a boolean
value δ(I, α) ∈ {true, false}.

Each ALC interpretation (∆I , ·I) can be regarded as an FOL interpretation of an
F -ontology. If the unique name assumption is imposed, then the semantic specification
Sem must take into account this requirement. Further, we note, that

• the interpretation domain ∆I is equivalent to a set ∆I
o of abstract objects,

• the set of values ∆I
v is empty, and

• the interpretation function ·I maps

– each concept name C ∈ Σc to a set CI ⊆ ∆I
o

– each (binary) relation name R ∈ Σr into a set RI ⊆ (∆I
o)2

– each abstract individual name a ∈ Σo into an element aI ∈ ∆I
o

Each ALC model corresponds to an F-model, and the problem of satisfiability of an ALC-
knowledge base corresponds to the problem of satisfiability of an F -ontology O = 〈T ,A〉.

3.2 Description logics with additional constructs

3.2.1 Concrete domains

Support for datatypes and values is important for ontology modeling languages. There-
fore, a proposed ontology formalism foresees the mapping for concrete values and relations
on values. In this subsection, we consider DLs which integrate the ability to operate with
so-called concrete domains. Discussing the logic ALC(D) ([BH91, BH92]), we present the
next example how the instantiation of an F -ontology can be defined.

c©2006/TONES – August. 25, 2006 19/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Definition 3.8 (Concrete domain) A concrete domain D is a tuple (∆D, Φ) of a non-
empty set ∆D and a set of predicates names Φ. Predicates are defined in a certain language
(e.g., linear inequations over polynomials or equations over strings). Each predicate name
P ∈ Φ is associated with an arity n and an n-ary predicate PD ⊆ (∆D)n. Examples of
concrete domains are integers, reals, strings or a spatial domain, whereas values such as
a number “18” are interpreted as elements of ∆D.

A concrete domain D is called admissible iff the set of its predicate names is closed
under negation and contains a name for ∆D, and the satisfiability problem for D is
decidable (for details see [BCM+03]).

While ALC(D) is an extension of the basic logic ALC, we will mention further only
its additional properties. In ALC(D), individuals are separated into two disjoint sets of
abstract and concrete objects. With concrete domains, functional roles (so-called features)
are introduced, which are partial functions that map individuals of the abstract domain
to elements of the concrete domain. A composition of features is called a feature chain.
Further, sets of role and feature names must be disjoint. Relations between concrete
objects are described with help of concrete predicates. Moreover, the new concept-forming
predicate constructor is added to the set of ALC concepts.

Definition 3.9 (ALC(D) syntax) We assume disjoint sets C, R, F , Φ, OA and OD of
concept, role, feature, predicates, abstract and concrete individual names (or individuals
for short) respectively. Let P ∈ Φ be a predicate name with an arity n, let f, f1, . . . , fn ∈
F be features, and let u = f1 . . . fn be a feature chain. Then the following expression is
also a concept term:

∃u1 . . . un.P (existential predicate restriction)

If a ∈ OA is an abstract individual name and x, x1, . . . , xn ∈ OD are concrete individual
names, then an ABox may contain also the following assertional axioms:

f(a, x)

P (x1, . . . , xn)

It should be emphasized, that it is not allowed to use specific elements of ∆D (e.g.,
numbers) in the assertions. E.g., it is not permitted to write size(shoes, 36). However,
it is possible to express the fact, that the shoe size is 36, with help of a unary predicate
=36 (interpreted as a singleton set {36}) and the following two assertions: size(shoes, x)
and =36 (x).

Definition 3.10 (ALC(D) syntax in terms of a stand-alone ontology formalism)
In terms of an F -ontology formalism, additionally to Σc, Σr and Σo discussed in Defini-
tion 3.5, an alphabet Σ of ALC(D) includes a set of value-domain names Σd (that is a
set of names for concrete domains), a set of value-relation names Σu (to be interpreted
as concrete predicate names, associated with an arity n), a set of attribute-names Σa (for
feature names), a set of value-constants Σv (denotes elements of the concrete domain

c©2006/TONES – August. 25, 2006 20/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

∆D) and a set of variable names Σx, which we use for referring to concrete individuals in
an ABox. The concept language LC provides now for an additional construct for building
concepts with features and predicates (of the form ∃u1 . . . un.P). The TBox language LT

contains all possible ALC(D) TBoxes as before, whereas the ABox language LA consists
of ALC(D) ABoxes with additional assertions as introduced in Definition 3.9.

Definition 3.11 (ALC(D) semantics) An ALC(D)-interpretation I = (∆I , ∆D, ·I)
consists of a non-empty set ∆I (the abstract domain), a non-empty set ∆D (the domain
of the concrete domain D) and a function ·I . The interpretation of concrete domains and
variables is separated from interpretation of concepts and abstract individuals. Therefore,
the sets ∆I and ∆D must be disjoint. The interpretation of the assertional language is
extended by mapping every (abstract) individual name from OA to a single element of
∆I and every (concrete) individual name from OD to a single element from ∆D.

The interpretation function maps each feature name f to a partial function fI from ∆I

to ∆D. If u = f1 . . . fn is a feature chain, then uI denotes the composition fI1 ◦ . . . ◦ fIn of
the partial functions fI1 , . . . , fIn . Given feature chains u1, . . . , un, the existential predicate
restriction is interpreted as follows:

(∃(u1, . . . , un).P)I =
{a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D : (a, x1) ∈ uI1 ∧ · · · ∧ (a, xn) ∈ uIn ∧ (x1, . . . , xn) ∈ PD}

An interpretation I satisfies assertional axioms

f(a, x) iff fI(aI) = xI

P (x1, . . . , xn) iff (xI1 , . . . , xIn) ∈ PD

Definition 3.12 (ALC(D) semantics in terms of a stand-alone ontology formalism)
Analogous to Definition 3.7 we say that every ALC(D) interpretation I corresponds to
an FOL interpretation of an F -ontology. For every concrete domain ∆D, every concept
name C, every role name R, every attribute name f , every predicate name P , every
abstract object a and every concrete object x it holds that:

∆I = ∆I
o ∆D ⊆ ∆I

v CI ⊆ ∆I
o

RI ⊆ ∆I
o ×∆I

o fI ⊆ (∆I
o)n ×∆I

v

aI ∈ ∆I
o xI ∈ ∆I

v

3.2.2 Transitive roles

In the previous subsection, functional roles (features) are introduced. Besides functional-
ity, transitivity of roles is identified also as an important requirement in many practical
applications. Integration of transitive roles into the language ALC led to the language
ALCR+ (for details see [Sat96]).

c©2006/TONES – August. 25, 2006 21/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

From the syntactic point of view, the set of all role names R is divided into disjoint
sets of role names S and transitive role names R+. The semantics of transitive roles is,
that for every transitive role R ∈ R+ the interpretation I must satisfy additionally the
following restriction:

if (aI , bI) ∈ RI and (bI , cI) ∈ RI then (aI , cI) ∈ RI

If a DL with transitive roles is considered as an instantiation of an F -ontology, then the
concept language LC have to be extended in an appropriate way.

3.2.3 Role hierarchies

Another important extension of DLs are role hierarchies ([HS99]). Using this feature it is
possible to postulate that some relations are subrelations of other relations. Formally, a
role inclusion axiom is defined as an expression of the form R v S, where R and S are
roles or inverse roles. A role hierarchy Rh is a finite set of role inclusion axioms. The
relation v? is defined as reflexive and transitive closure of v over a role hierarchy Rh.
Given v?, a role R is called a sub-role of a role S if R v? S. A super-role is defined
analogously.

If a DL provides for role hierarchies, then besides GCIs the TBox contains also a finite
set of role inclusion axioms. This affects the TBox language LT in an appropriate manner.

3.2.4 Number restrictions

Number restrictions, that allow for an individual to restrict the number of its role fillers
in a certain way, are available in almost all DL systems [HN90, HB91a, Sch94]. Putting
these constructs into DLs was motivated in particular by technical applications. Number
restrictions are concept construction operators of the form (≤ n R) or (≥ nR) (simple
number restrictions) and (≤ n R.C) or (≥ nR.C) (qualified number restrictions [HB91b]).
For simple number restrictions, interpretations must satisfy

(≤ nR)I = {x | #{y|(x, y) ∈ RI} ≤ n}
(≥ nR)I = {x | #{y|(x, y) ∈ RI} ≥ n}

For qualified number restrictions, interpretations must satisfy

(≤ nR.C)I = {x | #{y|(x, y) ∈ RI ∧ y ∈ CI} ≤ n}
(≥ nR.C)I = {x | #{y|(x, y) ∈ ∫

R ∧ y ∈ ∫
C} ≥ n}

Due to requirements of decidability, in (qualified) number restrictions only simple roles
are allowed. A role is called simple if it is neither transitive nor has transitive sub-roles
(see [HST99] for details).

DLs with number restrictions can be instantiated in the proposed ontology framework
in a similar manner as ALC. Here, the concept language LC is extended by appropriate
concept building terms, which can consist of non-negative integers in a binary or unary
notation.

c©2006/TONES – August. 25, 2006 22/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

3.3 Ontology services

In the proposed ontology formalism, an F -ontology is equipped with a range of so-called
F-ontology services which can be exploited for application tasks. Among the common
services, a distinguished class of so-called reasoning services is identified, which are in-
dependent of the syntactic representation of the ontology. For both classes of services, a
syntactic level is defined in terms of a signature, a set of preconditions and a domain for
the result.

Meaningful examples for reasoning services offered by DL systems are the following
so-called standard inference problems:

Knowledge base satisfiability. This is the main inference service provided by DL-
based reasoning systems. A model of the TBox is an interpretation which satisfies all
axioms of a TBox. The ABox satisfiability problem (w.r.t. a TBox) is to check whether
there exists an interpretation (a model of the TBox) that satisfies all ABox assertions.
An interpretation which satisfies a TBox T and an ABox A, is called a model of the
knowledge base (T , A).

Concept satisfiability. A concept D subsumes a concept C w.r.t. a TBox T if for all
models I of T it holds that CI ⊆ DI . D is called the subsumer, C is the subsumee. A
concept name A1 mentioned in a TBox is called a most-specific subsumer of a concept
name A2 (mentioned in the TBox and different from A1) if A1 subsumes A2 and there is
no other concept name A3 (mentioned in the TBox and different from A1 and A2) such
that A1 subsumes A3 and A3 subsumes A2. The least general subsumee of a concept name
is defined analogously.

Classification of knowledge bases. The classification problem for a TBox is to find
the set of most-specific subsumers of every concept name mentioned in the TBox (or
knowledge base). The induced graph is called the subsumption hierarchy of the TBox.

Instance checking. The instance problem instance(T ,A)(i, C) w.r.t. a knowledge base
(T ,A) is to test whether iI ∈ CI for all models I of the knowledge base. We say that
instance(T ,A)(i, C) is entailed.

Instance retrieval. The instance retrieval problem retrieve(T ,A)(C) w.r.t. a knowledge
base (T ,A) and a query concept C is to determine all individuals i mentioned in the ABox
for which instance(i, C) is entailed.

NSI. Examples of so-called non-standard inference services are computing the least
common subsumer (LCS), computing the most specific concept (MSC), concept matching,
concept approximation etc.

Other DL services which depend on the syntactical form of an ontology (a knowledge
base) are often related to querying the knowledge base structure on the meta-level, e.g., for
obtaining a told information. For these services, the F -ontology (TBox or ABox) must

c©2006/TONES – August. 25, 2006 23/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

be always specified as an argument. Examples of such meta services are the following
retrieval problems, just to mention some of them:

• Get all concept names from the specified TBox.

• Return all individuals of the specified ABox.

• Get all concepts from the TBox, which subsume the specified concept.

• Get all roles from the TBox, that the given role subsumes.

• Get all concepts of which the individual is an instance.

3.3.1 DL inferences as instantiations of F-ontology services

In order to illustrate how an F -ontology service can be instantiated, we consider some
DL-based inferences.

Instance checking. The inference problem instance checking, as discussed above, can
be described as an F -ontology service as follows:

• The signature specifies the name of the service, e.g., instance checking.

• The signature further specifies that the service is called with 3 arguments: a knowl-
edge base K = (T ,A), an individual name i ∈ Σo, and a concept C ∈ LC .

• As precondition one can demand that i must be mentioned in the ABox A.

• The domain of the result is {true, false}.

The service instance checking(K, i, C) returns true if iI ∈ CI for all models I of the
knowledge base K and false otherwise.

Instance retrieval. The inference problem instance retrieval, as discussed above, can
be described as an F -ontology service as follows:

• The service name is, e.g., instance retrieval.

• There are 2 arguments: a knowledge base K = (T ,A) and a concept C ∈ LC .

• The domain of the result is 2Σo .

The meaning of this service is to find all individuals i mentioned in the ABox A for which
instance checking(K, i, C) is entailed.

c©2006/TONES – August. 25, 2006 24/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Meta-querying service. Finally, consider the meta-querying service “get all concept
names from the specified TBox” as an instantiation of an F -ontology service. This service
can be described as follows:

• The name of the service is, e.g., all atomic concepts.

• There is one argument: a TBox T .

• The domain of the result is 2Σc .

The service all atomic concepts(T) returns all concepts names mentioned in the TBox
T .

3.4 Remark on a standard DL as situated ontology

For practical DL applications, it is often useful to distinguish between assertions made in
an ABox of a “core” ontology and descriptions of bulk data. Although these descriptions
can be viewed theoretically just as a part of an ABox, to put they into a core ontology
does not make much sense from the practical point of view. Bulk data descriptions can
be stored, e.g., in external ABoxes and loaded on demand by a DL system. Considering
this scenario, we talk about a standard DL ontology situated in some external system
(so-called environment) which is a resource of bulk data.

4 The OWL 1.1 extension of the Web Ontology Lan-

guage

In this section, we present the OWL 1.1 extension of the W3C Web Ontology Language as
a particular instance of our ontology framework 2. In Section 4.1 we introduce OWL 1.1
and discuss the main influences in its design. In Section 4.2, we present the syntax of
OWL 1.1 and, finally, in Section 4.3 we represent OWL 1.1 as an ontology formalism.

4.1 Overview

The initial design of the OWL was quite conservative, and features that did not receive
widespread support within the working group were excluded from the language. Features
for which effective reasoning methods were not known (or expected to be shortly known)
were also not included.

OWL 1.1 is a simple extension to OWL DL species of the W3C OWL Web Ontology
Language. OWL 1.1 has been designed to provide some interesting and useful expressive
additions to OWL DL while retaining the desirable characteristics of OWL DL, including
decidability and effective implementability. In particular, OWL 1.1:

1. adds language features commonly requested by users of OWL DL;

2We refer the reader to http://owl1-1.cs.manchester.ac.uk/ for more information on OWL 1.1.

c©2006/TONES – August. 25, 2006 25/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

2. is known to be decidable, and for which practical decision procedures have been
designed; and

3. is likely to be implemented by the developers of OWL DL reasoners.

OWL 1.1 has borrowed heavily from recent research on Description Logics as well as from
recent research on the nature of the Semantic Web.

4.1.1 OWL 1.1 and description logics

OWL DL is based on a description logic called SHOIN . Even when OWL DL was de-
signed, there were discussions as to whether it should be based on SHOIN or on SHOIQ
[HS05], the latter being the former’s extension with qualifying number restrictions. This
expressive means is rather useful for modeling and is known to be no more problematical
for a reasoner than the unqualified number restrictions in OWL DL. Interestingly, an
effective decision procedure for SHOIN and SHOIQ has only been designed recently
[HS05], and is already implemented in reasoners for OWL DL. Additionally, there have
recently been two streams of work on extensions to the Description Logic underlying OWL
DL. Firstly, there has been considerable work on how best to add datatypes and relation-
ships between data values to OWL-like languages. The general ideas and requirements are
basically similar—the datatypes themselves need to be effectively representable, and the
relationships closed under boolean operations and computable—but the various proposals
differ in detail.

Secondly, extensions to expressive description logics allowing more expressive property
constructs have been devised and investigated. This line of work has lead to the RIQ
[HS03], SRIQ [HKS05] and SROIQ [HKS06] description logics, and effective reasoning
processes for them.

The existence of this work in the Description Logic community has made it simple
to add qualified number restrictions, enhanced property constructs, and more expres-
sive datatypes. OWL 1.1 essentially takes this work in entirely and without significant
modification.

4.1.2 OWL 1.1 and OWL

As OWL 1.1 is a simple extension to OWL DL, it borrows heavily from OWL DL. To
this end, OWL 1.1 uses the same basic syntax style as the “abstract” syntax for OWL
DL [PSHH04]. As well as using the same syntactic style, OWL 1.1 incorporates the entire
OWL DL syntax, only providing extensions to it. In this way, any legal OWL DL ontology
is also a legal OWL 1.1 ontology.

As well, the meaning of OWL 1.1 is compatible with the meaning of OWL DL. Instead
of providing a direct model-theoretic semantics, the meaning of OWL 1.1 is provided by
a mapping to the Description Logic SROIQ.

On the other hand, OWL 1.1 does not provide any significant features provided by
OWL Full over OWL DL. This is largely because OWL 1.1 is essentially a Description
Logic, and the facilities provided by OWL Full over OWL DL (meta-modelling, blending
objects and datatypes, unusual syntactic forms, subverting basic constructs, etc.) are
essentially those that go outside of the Description Logic paradigm.

c©2006/TONES – August. 25, 2006 26/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Expressive ontology languages, such as OWL 1.1 and OWL DL, though decidable,
have a high worst-case computational complexity3 and are hard to use and implement
efficiently. The design of simpler ontology languages with more tractable inferences was
considered of primary importance by the W3C Web Ontology Working Group. The OWL
Lite subset of OWL DL was designed as a language that is easier to use and present to
naive users, as well as easier to implement.

The Web Ontology Working Group concluded that the main complexity of OWL
DL relies on the possibility of defining complex boolean descriptions using, for exam-
ple, union and complement; as a consequence, OWL Lite explicitly prohibits unions and
complements in the definition of concepts; additionally, OWL Lite limits all descriptions
in the scope of a quantifier to concept names, does not allow individuals to show up as
concepts, and limits cardinalities to 0 and 1. The goal was to significantly reduce the
number of available modeling constructs, on the one hand, and to eliminate the major
sources of non-determinism in reasoning, on the other hand.

Although OWL Lite looks much simpler than OWL DL, it is still possible to express
more complex concept descriptions by introducing new concept names, exploiting implicit
negations and using axioms to associate multiple descriptions with a given concept name.
So, from a user perspective, OWL Lite is even harder to use than OWL DL, since the
available modeling constructs do not correspond to the actual expressivity of the language.
Also, from a computational perspective, OWL Lite is only slightly less complex than
OWL DL (namely ExpTime-complete instead of NExpTime-complete [Tob00]), and all
the important reasoning problems remain intractable. In contrast to OWL, OWL 1.1 does
not single out just one language subset. Instead, various subsets of OWL 1.1 have been
identified, each of which benefits from tractable (i.e., polynomial time) reasoning for one
or more important reasoning tasks. The intention is that these subsets can be used and
implemented as appropriate to a particular application.

4.2 OWL 1.1 syntax

The “abstract” syntax of of OWL 1.1 is an extension of the “abstract” syntax for OWL
DL. The extensions in OWL 1.1 lift its expressive power to that of SROIQ [HKS06].
This amounts to adding qualified cardinality restrictions, as an extension to restrictions
on datatype properties and object properties; local reflexivity restrictions for simple prop-
erties, as an extension to restrictions on object properties; reflexive, irreflexive, and anti-
symmetric flags for simple properties, as an extension to the flags allowed on object prop-
erties; and disjointness of simple and datatype properties, and regular property inclusion
axioms, as new axioms.

dataRestrictionComponent ::= dataCardinality
dataCardinality ::= minCardinality(non-negative-integer dataRange)

| maxCardinality(non-negative-integer dataRange)
| cardinality(non-negative-integer dataRange)

individualRestrictionComponent ::= individualCardinality

3Satisfiability and subsumption are NExpTime-complete for SHOIQ, and ExpTime-complete for
SHIQ.

c©2006/TONES – August. 25, 2006 27/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

individualCardinality ::= minCardinality(non-negative-integer description)
| maxCardinality(non-negative-integer description)
| cardinality(non-negative-integer description)

individualRestrictionComponent ::= self
individualvaluedPropertyFlags ::= Reflexive | Irreflexive

Symmetric | AntiSymmetric
axiom ::= DisjointProperties(datavaluedPropertyID)

| DisjointProperties(individualvaluedPropertyID)
axiom ::= SubPropertyOf(propertyChain(individualvaluedPropertyID)

individualvaluedPropertyID)

Only simple properties (i.e., properties that are neither transitive, nor have a transitive
subProperty [HKS06]) can: have the self restriction component; be specified as being
Reflexive, Irreflexive, Symmetric, or Antisymmetric; or be used in DisjointProperties axioms
for individual-valued properties.

The SubPropertyOf axioms involving individual-valued properties must be regular.
That is, there must be a strict partial order, <, on individual-valued properties such
that for each SubPropertyOf axiom involving individual-valued properties, of the form
SubPropertyOf(S R), S is the inverse of R, S is of the form propertyChain(R ... R), S is
of the form propertyChain(S1 ... Sn) and each Si < R, S is of the form propertyChain(R
S1 ... Sn) and each Si < R, or S is of the form propertyChain(S1 ... Sn R) and each Si <
R.

The first couple of other additions in OWL 1.1 are simple syntactic sugar. To make
the common construct of multiple disjoint classes easier to state, OWL 1.1 provides an
axiom that directly states that a group of classes are pairwise disjoint, instead of having
to use separate disjoint axioms for each pair of classes. To make the common construct of
stating that an individual does not have a particular property value, OWL 1.1 provides
a construct directly for this, instead of, e.g., having to state that the individual is an
instance of a suitable restriction class.

axiom ::= DisjointUnion(description)
value ::= valueNot(individualvaluedPropertyID individualID)

| valueNot(individualvaluedPropertyID individual)
| valueNot(datavaluedPropertyID dataLiteral)

OWL 1.1 includes its own methods for user-defined datatypes, using a syntax similar
to the one used in Protégé. The semantics for OWL 1.1 user-defined datatypes is taken
from XML Schema Datatypes [BM01].

dataRange ::= datatype(datatypeID { datatypeRestriction })
datatypeRestriction ::= datatypeFacet(dataLiteral)
datatypeFacet ::= length | minLength | maxLength | pattern | enumeration

| maxInclusive | maxExclusive | minInclusive minExclusive
| totalDigits | fractionDigits

axiom ::= Datatype(datatypeID { annotation } base(datatypeID)
{ datatypeRestriction })

c©2006/TONES – August. 25, 2006 28/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Datatype facets should only by used where they would be allowed in XML Schema
Datatypes, except that the length, minLength, maxLength, and pattern facets are not al-
lowed for numeric types. Datatype facets have the same meaning as in XML Schema
Datatypes, except that they uniformly work in the value space, never the lexical space.
If a datatype facet is used in a way that has no meaning, such as (length 5∧∧xsd:string),
then the datatype extension is empty.

OWL 1.1 allows restrictions that relate values for different data-valued properties on
the same individual.

restriction ::= holds(datatypePredicateID { argument })
restriction ::= datatypePropertyID dataLiteral
datatypePredicateID ::= equal | notEqual | lessThan | lessThanEqual

| greaterThan | greaterThanEqual

The syntax here allows an arbitrary number of arguments, but must be appropriate
for the predicate, and all the current predicates only allow two arguments. All invalid
combinations are unsatisfiable (i.e., they do not signal an error). The equality and order
for a particular base type is taken from XML Schema Datatypes. If a base datatype does
not have an order then the ordering restriction is unsatisfied.

OWL 1.1 removes the limitation imposed in OWL DL that the sets of class, individual
and property names must be pairwise disjoint. The semantic change to allow this without
computational consequences is to break the RDF-inspired connection between class and
property extensions and the individual denotation of names. With this change, any name
can be made the subject of a non-annotation property, but in this (syntactic) context the
name is always (semantically) interpreted as an individual.

4.3 OWL 1.1 as an instantiation of the tones framework for
stand-alone ontologies

In this section, we define the ontology formalism FOWL for stand-alone ontologies and
provide a mapping σ between the OWL 1.1 syntax described in the previous section into
the concept, TBox, and ABox languages of FOWL. The semantics of FOWL as given in this
section, together with the translation σ specify the semantics of OWL 1.1. The semantics
given here is equivalent to the one given in the OWL 1.1 specification 4.

We consider a finite or countably infinite alphabet Σ, partitioned into alphabets Σc

of concept names, Σr of relation names with arity 2, Σd of value-domain names, Σu of
value-relation names, Σa of attribute names, Σo of object-constants, Σv of value-constants.

Since OWL 1.1 allows punning in the signature, we will assume that the sets Σc ∪Σd,
Σr ∪ Σa and Σo are not pair-wise disjoint and thus the same name can be used in a
knowledge base to denote a concept, a relation or an attribute and an object-constant,
contrary to what was required in OWL-DL. This simple form of meta-modelling does not
provide additional expressive power, nor involves semantic consequences. The disjointness
of Σr and Σa and of Σc and Σd is still enforced. Finally, the set Σv of value-constants
is kept disjoint with all other sets in the vocabulary. We assume that Σd is given by

4http://owl1-1.cs.manchester.ac.uk/Semantics.html.

c©2006/TONES – August. 25, 2006 29/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

the set of supported datatypes ; in OWL 1.1., the set of supported datatypes is the set of
user-defined datatypes that are allowed in the XML Schema Datatype specification.

The concept language LC is given by the following grammar rules, which specify how
concepts and relations are constructed respectively:

C ::= A | ¬C | C1 u C2 | C1 t C2 | {o}
| ∃R.D | ∀R.D | ≥ nS.C | ≤ nS.C | ∃R.Self

| ∃U.Φ | ∀U.Φ | ≥ nU.Φ | ≤ nU.Φ | ∃U1 · · ·Un.pn

R ::= R−

In the grammar rules above, A ∈ Σc, Ci, D are concepts, R,S are relations, with S a
simple relation 5 n is a non-negative integer, o ∈ Σo, Φ ∈ Σd, U ∈ Σa, and pn an n-ary
relation in Σu.

Table 1 specifies the semantics for the concept language LC . In the table, we use the
symbol # to denote the cardinality of a set.

The TBox language LT is specified by the following grammar:

α ::= Trans(R) | ASymm(R) | Ref(R) | Irr(R)

| S1 · · ·Sn v R | Dis(R, S) | U v V | Dis(U, V)

| C v D

with R, S(i) ∈ Σr, U, V ∈ Σa and C,D concepts. Furthermore, all the relations in sentences
of the for Irr(R), ASymmR or Dis(R, S) must be simple.

The ABox language LA is given by the following grammar:

α ::= C(a) | a=̇b | a ˙6=b | R(a, b) | ¬R(a, b)

| U(a, φ) | ¬U(a, φ)

with a, b ∈ Σo, R ∈ Σr, U ∈ Σa and φ ∈ Σv.
Table 2 specifies the semantics of the TBox language LT and the ABox language LA.

These grammars and tables completely specify the ontology formalism FOWL associated
to OWL 1.1.

The specification of OWL 1.1 in terms of the ontology formalism FOWL is completed
with the translation from an OWL 1.1 abstract syntax as described in the previous section
into the concept, TBox and ABox languages we have just defined.

We define a translation function that maps OWL 1.1 ontologies in abstract syntax
into equivalent ontologies in our ontology formalism. The translation function and the
semantics of the ontology formalism completely specify the semantics of OWL 1.1.

5We refer interested reader to [HKS06] for the definition of a simple relation.

c©2006/TONES – August. 25, 2006 30/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Conmplex Concepts Syntax And Semantics
Conjunction (C uD)I = CI ∩DI

Disjunction (C uD)I = CI ∩DI

Negation (¬C)I = ∆I − CI

Existential Restrict. (∃R.C)I = {a ∈ ∆I | ∃b.〈a, b〉 ∈ RI and b ∈ CI}
Universal Restrict. (∀R.C)I = {a ∈ ∆I | ∀b.〈a, b〉 ∈ RI , implies b ∈ CI}

Nominals {a}I = {aI}
Qualified (≥ nR.C)I = {a ∈ ∆I | #({b | 〈a, b〉 ∈ RI and b ∈ CI}) ≥ n}

Number Restrict. (≥ nR.C)I = {a ∈ ∆I | #({b | (a, b) ∈ RI and b ∈ CI}) ≤ n}
Local Reflexivity (∃R.Self)I = {a ∈ ∆I | 〈a, a〉 ∈ RI}

Concrete Existential (∃U.Φ)I = {a ∈ ∆I | ∃φ.(a, φ) ∈ UI and φ ∈ ΦD}
Concrete Universal (∀U.Φ)I = {a ∈ ∆I | ∀φ.(a, φ) ∈ UI , implies φ ∈ ΦD}

Concrete (≥ nU.Φ)I = {a ∈ ∆I | #({φ|(a, φ) ∈ UI and φ ∈ ΦD}) ≥ n}
Number Restrict. (≤ nU.Φ)I = {a ∈ ∆I | #({φ|(a, φ) ∈ UI and φ ∈ ΦD}) ≤ n}
n-ary Existential (∃U1 . . . Un.pn)I = {a ∈ ∆I | ∃φ1 . . . φn.〈a, φ1〉 ∈ UI

1 , . . . , 〈a, φn〉 ∈ UI
n

and 〈φ1 . . . φn〉 ∈ pDn }
Complex Roles
Role Inversion (R−)I = {〈a, b〉|〈b, a〉 ∈ RI}

Table 1: Concept language and Semantics

TBox Language Syntax And Semantics
Transitivity I |= Trans(R) if 〈a, b〉 and 〈b, c〉 ∈ RI implies 〈a, c〉 ∈ RI

Antisimmetry I |= ASymm(R) if 〈a, b〉 ∈ RI and 〈b, a〉 ∈ RI implies a = b
Reflexivity I |= Ref(R) if 〈a, b〉 ∈ RI implies 〈a, a〉 ∈ RI

Irreflexivity I |= Irr(R) if 〈a, b〉 ∈ RI implies a 6= b
Role Inclusion I |= S1 · · ·Sn v R if SI1 ◦ · · · ◦ SIn ⊆ RI

Role Disjointness I |= Dis(R, S) if RI ∩ SI = ∅
Concept Inclusion I |= C v D if CI ⊆ DI

Concrete Role Inclusion I |= U v V if UI ⊆ V I

Disjoint Concrete Roles I |= Dis(U, V) if UI ∩ V I = ∅
ABox Language Syntax and Semantics

Concept Assertion I |= C(a) if aI ∈ CI

Individual equality I |= a=̇b if aI = bI

Individual inequality I |= a ˙6=b if aI 6= bI

Role Assertion I |= R(a, b) if 〈aI , bI〉 ∈ RI

Negated Role Asser. I |= ¬R(a, b) if 〈aI , bI〉 /∈ RI

Concrete Assertion I |= U(a, φ) if 〈aI , φD〉 ∈ UI

Neg. Concrete Assertion I |= ¬U(a, φ) if 〈aI , φD) /∈ UI

Table 2: TBox Language, ABox Language and their Semantics

c©2006/TONES – August. 25, 2006 31/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Let O0 be an OWL 1.1 ontology in abstract syntax and let {Oj}1≤j≤m be the set of
ontologies imported (directly or indirectly) by O0; let {αj

1, . . . , α
j
nj
} for 0 ≤ j ≤ m be the

set of axioms and facts contained in Oj. The translation into a FOWL ontology O′ is as
follows: O′ =

⋃
0≤j≤m σ(Oj), where σ(Oj) =

⋃
1≤i≤nj

σ(αj
i). names occurring in O′. The

syntactic correspondence between OWL 1.1 descriptions and the concept language LC is
given in Table 3 as is the correspondence between OWL 1.1 axioms and facts and the
TBox and ABox languages respectively. This table completely specifies the translation
function σ and should be read as follows: given a construct in OWL 1.1 abstract syntax
in the first column, its evaluation under σ is given in the second column.

5 The Semantic Web Rules Language (SWRL)

In this section, we present the Semantic Web Rules Language (SWRL) [HPSBT05] as
a particular instance of the tones framework for stand-alone ontologies. In Section 5.1
we introduce the basics of SWRL. In Section 5.2, we present the syntax of SWRL and,
finally, in Section 5.3 we represent SWRL as an ontology formalism.

5.1 Overview

SWRL extends OWL DL [PSHH04] with a form of rules while maintaining maximum
backwards compatibility with OWL’s existing syntax and semantics. For such a pur-
pose, SWRL adds a new kind of axiom to OWL DL, namely Horn clause rules, extending
the OWL abstract syntax and the direct model-theoretic semantics for OWL DL to pro-
vide a formal semantics and syntax for OWL ontologies including such rules. SWRL is
considerably more powerful than either OWL DL or Horn rules alone.

The proposed rules are of the form of an implication between an antecedent (body)
and consequent (head). The informal meaning of a rule can be read as: whenever (and
however) the conditions specified in the antecedent hold, then the conditions specified in
the consequent must also hold.

Both the antecedent (body) and consequent (head) of a rule consist of zero or more
atoms. Atoms can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where
C is an OWL DL description, P is an OWL property, and x,y are either variables, OWL
individuals or OWL data values. Atoms are satisfied in extended interpretations (to take
care of variables) in the usual model-theoretic way, i.e., the extended interpretation maps
the variables to domain elements in a way that satisfies the description, property, sameAs,
or differentFrom, just as in the regular OWL model theory.

Multiple atoms in an antecedent are treated as a conjunction. An empty antecedent
is thus treated as trivially true (i.e. satisfied by every interpretation), so the consequent
must also be satisfied by every interpretation.

Multiple atoms in a consequent are treated as separate consequences, i.e., they must
all be satisfied. In keeping with the usual treatment in rules, an empty consequent is
treated as trivially false (i.e., not satisfied by any extended interpretation). Such rules are
satisfied if and only if the antecedent is not satisfied by any extended interpretation. Note
that rules with multiple atoms in the consequent could easily be rewritten (by applying

c©2006/TONES – August. 25, 2006 32/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

O
W

L
1
.1

A
b
st

ra
ct

S
y
n
ta

x
F O

W
L

S
y
n
ta

x
A

(C
la

ss
U

R
I)

C
o
n
ce

p
t

n
a
m

e
A

o
w
l
:
T
h
i
n
g

>
o
w
l
:
N
o
t
h
i
n
g

⊥
R

(O
b
je

ct
P

ro
p
er

ty
U

R
I)

R
el

a
ti

o
n

R
∈

Σ
r

U
(D

a
ta

ty
p
e

P
ro

p
.

U
R

I)
A

tt
ri

b
u
te

U
∈

Σ
a

a
(I

n
d
iv

id
u
a
l
U

R
I)

O
b
je

ct
-c

o
n
st

a
n
t

a
∈

Σ
o

φ
(D

a
ta

V
a
lu

e
o
r

P
la

in
L
it

er
a
l)

V
a
lu

e-
co

n
st

a
n
t

φ
∈

Σ
v

p
m

(D
a
ta

ty
p
e

P
re

d
ic

a
te

ID
)

V
a
lu

e
re

la
ti

o
n

p
m
∈

Σ
u

Φ
(O

W
L

1
.1

D
a
ta

ty
p
e)

V
a
lu

e-
d
o
m

a
in

Φ
∈

Σ
d

i
n
t
e
r
s
e
c
t
i
o
n
O
f
(
C

1
··
·C

n
)

σ
(C

1
)
u
··
·u

σ
(C

n
)

u
n
i
o
n
O
f
(
C

1
··
·C

n
)

σ
(C

1
)
t
··
·t

σ
(C

n
)

c
o
m
p
l
e
m
e
n
t
O
f
(
C
)

¬σ
(C

)
o
n
e
O
f
(
a
1
··
·a

n
)

{σ
(a

1
)}
t
··
·t
{σ

(a
n
)}

o
n
e
O
f
(
φ

1
··
·φ

n
)

{σ
(φ

1
),

..
.,

σ
(φ

n
)}

r
e
s
t
r
i
c
t
i
o
n
(
R

X
1
··
·X

n
)

σ
(r
e
s
t
r
i
c
t
i
o
n
(
R

X
1
))
u
··
·

u
σ
(r
e
s
t
r
i
c
t
i
o
n
(
R

X
n
))

r
e
s
t
r
i
c
t
i
o
n
(
R

s
o
m
e
V
a
l
u
e
s
F
r
o
m
(
C
)
)

∃σ
(R

).
σ
(C

)
r
e
s
t
r
i
c
t
i
o
n
(
R

a
l
l
V
a
l
u
e
s
F
r
o
m
(
C
)
)

∀σ
(R

).
σ
(C

)
r
e
s
t
r
i
c
t
i
o
n
(
R

h
a
s
V
a
l
u
e
(
a
)
)

∃σ
(R

).
{σ

(a
)}

r
e
s
t
r
i
c
t
i
o
n
(
R

s
e
l
f
)

∃σ
(R

).
S
el

f
r
e
s
t
r
i
c
t
i
o
n
(
R

m
i
n
C
a
r
d
i
n
a
l
i
t
y
(
n
)
)

≥
n
σ
(R

).
>

r
e
s
t
r
i
c
t
i
o
n
(
R

m
a
x
C
a
r
d
i
n
a
l
i
t
y
(
n
))

≤
n
σ
(R

).
>

r
e
s
t
r
i
c
t
i
o
n
(
R

C
a
r
d
i
n
a
l
i
t
y
(
n
)
)

=
n
σ
(R

).
>

r
e
s
t
r
i
c
t
i
o
n
(
R

m
i
n
C
a
r
d
i
n
a
l
i
t
y
(
n

C
)
)

≥
n
σ
(R

).
σ
(C

)
r
e
s
t
r
i
c
t
i
o
n
(
R

m
a
x
C
a
r
d
i
n
a
l
i
t
y
(
n

C
)
)

≤
n
σ
(R

).
σ
(C

)
r
e
s
t
r
i
c
t
i
o
n
(
R

C
a
r
d
i
n
a
l
i
t
y
(
n

C
)
)

=
n
σ
(R

).
σ
(C

)
r
e
s
t
r
i
c
t
i
o
n
(
U

X
1
··
·X

n
)

σ
(r
e
s
t
r
i
c
t
i
o
n
(
U

X
1
)
)
u
··
·

u
σ
(r
e
s
t
r
i
c
t
i
o
n
(
U

X
n
))

r
e
s
t
r
i
c
t
i
o
n
(
U

s
o
m
e
V
a
l
u
e
s
F
r
o
m
(
Φ
)
)

∃σ
(U

).
σ
(Φ

)
r
e
s
t
r
i
c
t
i
o
n
(
U

a
l
l
V
a
l
u
e
s
F
r
o
m
(
Φ
)
)

∀σ
(U

).
σ
(Φ

)
r
e
s
t
r
i
c
t
i
o
n
(
U

h
a
s
V
a
l
u
e
(
φ
)
)

∃σ
(U

).
{σ

(φ
)}

r
e
s
t
r
i
c
t
i
o
n
(
U

m
i
n
C
a
r
d
i
n
a
l
i
t
y
(
n
)
)

≥
n
σ
(U

)
r
e
s
t
r
i
c
t
i
o
n
(
U

m
a
x
C
a
r
d
i
n
a
l
i
t
y
(
n
)
)

≤
n
σ
(U

)
r
e
s
t
r
i
c
t
i
o
n
(
U

C
a
r
d
i
n
a
l
i
t
y
(
n
)
)

=
n
σ
(U

)
r
e
s
t
r
i
c
t
i
o
n
(
U

m
i
n
C
a
r
d
i
n
a
l
i
t
y
(
n

Φ
)
)

≥
n
σ
(U

).
σ
(Φ

)
r
e
s
t
r
i
c
t
i
o
n
(
U

m
a
x
C
a
r
d
i
n
a
l
i
t
y
(
n

Φ
)
)

≤
n
σ
(U

).
σ
(Φ

)
r
e
s
t
r
i
c
t
i
o
n
(
U

C
a
r
d
i
n
a
l
i
t
y
(
n

Φ
)
)

=
n
σ
(U

).
σ
(Φ

)
r
e
s
t
r
i
c
t
i
o
n
(
h
o
ld

s(
p

m
)

U
1
··
·U

m
)
)

∃σ
(U

1
)
··
·σ

(U
m

).
σ
(p

m
)

O
W

L
1
.1

A
b
st

ra
ct

S
y
n
ta

x
F O

W
L

S
y
n
ta

x
O
b
j
e
c
t
P
r
o
p
e
r
t
y
(
R

s
u
p
e
r
(
R

1
)
··
·su

p
e
r
(
R

m
)

S
m i=

1
{σ

(R
)
v

σ
(R

i
)}

d
o
m
a
i
n
(
C

1
)
··
·do

m
a
i
n
(
C

m
)

S
m i=

1
{≥

1
σ
(R

)
v

σ
(C

i
)}

r
a
n
g
e
(
C

1
)
··
·ra

n
g
e
(
C

m
)

S
m i=

1
{>

v
∀σ

(R
).

σ
(C

i
)}

i
n
v
e
r
s
e
O
f
(
S
)

{σ
(R

)
≡

σ
(S

)−
}

[S
y
m
m
e
t
r
i
c
]

{σ
(R

)
≡

σ
(R

)−
}

[F
u
n
c
t
i
o
n
a
l
]

{>
v≤

1
σ
(R

)}
[I
n
v
e
r
s
e
F
u
n
c
t
i
o
n
a
l
]

{>
v≤

1
σ
(R

)−
}

[T
r
a
n
s
i
t
i
v
e
]

{T
ra

n
s(

σ
(R

))
}

[R
e
f
l
e
x
i
v
e
]

{R
ef

(σ
(R

))
}

[I
r
r
e
f
l
e
x
i
v
e
]

{Ir
r(

σ
(R

))
}

[A
n
t
i
S
y
m
m
e
t
r
i
c
])

{A
S
ym

m
(σ

(R
))
}

S
u
b
P
r
o
p
e
r
t
y
O
f
(
R

1
R

2
)

{σ
(R

1
)
v

σ
(R

2
)}

S
u
b
P
r
o
p
e
r
t
y
O
f
(
p
r
o
p
e
r
t
y
C
h
a
i
n
(
R

1
··
·R

m
)

R
)

{σ
(R

1
)
··
·σ

(R
m

)
v

σ
(R

)}
D
i
s
j
o
i
n
t
P
r
o
p
e
r
t
i
e
s
(
R

1
R

2
)

{D
is
(σ

(R
1
),

σ
(R

2
))
}

E
q
u
i
v
a
l
e
n
t
P
r
o
p
e
r
t
i
e
s
(
R

1
··
·R

m
)

S
m
−

1
i=

1
{σ

(R
i
)
≡

σ
(R

i+
1
)}

D
a
t
a
P
r
o
p
e
r
t
y
(
U

s
u
p
e
r
(
U

1
)
··
·su

p
e
r
(
U

m
)

S
m i=

1
{σ

(U
)
v

σ
(U

i
)}

d
o
m
a
i
n
(
C

1
)
··
·do

m
a
i
n
(
C

m
)

S
m i=

1
{≥

1
σ
(U

)
v

σ
(C

i
)}

r
a
n
g
e
(
Φ

1
)
··
·ra

n
g
e
(
Φ

m
)

S
m i=

1
{>

v
∀σ

(U
).

σ
(Φ

i
)}

[F
u
n
c
t
i
o
n
a
l
])

{>
v≤

1
σ
(U

)}
S
u
b
P
r
o
p
e
r
t
y
O
f
(
U

1
U

2
)

{σ
(U

1
)
v

σ
(U

2
)}

E
q
u
i
v
a
l
e
n
t
P
r
o
p
e
r
t
i
e
s
(
U

1
··
·U

m
)

S
m
−

1
i=

1
{σ

(U
i
)
≡

σ
(U

i+
1
)}

D
i
s
j
o
i
n
t
P
r
o
p
e
r
t
i
e
s
(
U

1
U

2
)

{D
is
(σ

(U
1
),

σ
(U

2
))
}

C
l
a
s
s
(
A

p
a
r
t
i
a
l

C
1
··
·C

m
)

{σ
(A

)
v

σ
(C

1
)
u
··
·u

σ
(C

m
)}

C
l
a
s
s
(
A

c
o
m
p
l
e
t
e

C
1
··
·C

m
)

{σ
(A

)
≡

σ
(C

1
)
t
··
·t

σ
(C

m
)}

E
n
u
m
e
r
a
t
e
d
C
l
a
s
s
(
A

a
1
··
·a

m
)

{σ
(A

)
≡
{σ

(a
1
)}
t
··
·t
{σ

(a
m

)}
}

E
q
u
i
v
a
l
e
n
t
C
l
a
s
s
e
s
(
C

1
··
·C

m
)

S
m
−

1
i=

1
{σ

(C
i
)
≡

σ
(C

i+
1
)}

D
i
s
j
o
i
n
t
C
l
a
s
s
e
s
(
C

1
··
·C

m
)

S
m i,

j
=

1
;i
6=

j
{σ

(C
i
)
v
¬σ

(C
j
)}

D
i
s
j
o
i
n
t
U
n
i
o
n
(
C

C
1
··
·C

m
)

{σ
(C

)
≡

σ
(C

1
)
t
··
·t

σ
(C

m
)}
∪

S
m i,

j
=

1
;i
6=

j
{σ

(C
i
)
v
¬σ

(C
j
)}

I
n
d
i
v
i
d
u
a
l
(
a
t
y
p
e
(
C

1
)
··
·ty

p
e(

C
m
)

S
m i=

1
{σ

(C
i
)(

σ
(a

))
}

v
a
l
u
e
(
R

1
b 1
)
··
·va

l
u
e
(
R

m
b m

)
S

m i=
1
{σ

(R
i
)(

σ
(a

),
σ
(b

i
))
}

v
a
l
u
e
(
U

1
φ

1
)
··
·va

l
u
e
(
U

m
φ

m
)

S
m i=

1
{σ

(U
i
)(

σ
(a

),
σ
(φ

i
))
}

v
a
l
u
e
N
o
t
(
R

1
b 1
)
··
·va

l
u
e
N
o
t
(
R

m
b m

)
S

n i=
1
{¬

σ
(R

i
)(

σ
(a

),
σ
(b

i
))
}

v
a
l
u
e
N
o
t
(
U

1
φ

1
)
··
·va

l
u
e
N
o
t
(
U

m
φ

m
)
)

S
m i=

1
{¬

σ
(U

i
)(

σ
(a

),
σ
(φ

i
))
}

S
a
m
e
I
n
d
i
v
i
d
u
a
l
(
a
1
··
·a

m
)

S
m i,

j
=

1
;i
6=

j
{σ

(a
i
)=̇

σ
(a

j
)}

D
i
f
f
e
r
e
n
t
I
n
d
i
v
i
d
u
a
l
s
(
a
1
··
·a

m
)

S
m i,

j
=

1
;i
6=

j
{σ

(a
i
)
˙ 6=σ

(a
j
)}

Table 3: Translation of OWL 1.1 abstract syntax into FOWL

c©2006/TONES – August. 25, 2006 33/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

standard rules of distributivity) into multiple rules each with an atomic consequent.
OWL DL becomes undecidable when extended in this way as rules can be used to

simulate role value maps [SS89] and make it easy to encode known undecidable problems
as a SWRL ontology consistency problem.

Adding rules to description logic based knowledge representation languages is far from
being a new idea. Several early description logic systems, e.g., Classic [PSMB+91, BPS94],
included a rule language component. In these systems, however, rules were given a weaker
semantic treatment than axioms asserting sub- and super-class relationships; they were
only applied to individuals, and did not affect class based inferences such as the computa-
tion of the class hierarchy. More recently, the CARIN system integrated rules with a de-
scription logic in such a way that sound and complete reasoning was still possible [LR98].
This could only be achieved, however, by using a rather weak description logic (much
weaker than OWL), and by placing severe syntactic restrictions on the occurrence of
description logic terms in the (heads of) rules. Similarly, the DLP language proposed
in [GHVD03] is based on the intersection of a description logic with horn clause rules; the
result is obviously a decidable language, but one that is necessarily less expressive than
either the description logic or rules language from which it is formed.

SWRL illustrates how a simple form of Horn-style rules can be added to the OWL
language in a syntactically and semantically coherent manner.

5.2 SWRL syntax

The syntax for SWRL in this section abstracts from any exchange syntax for OWL and
thus facilitates access to and evaluation of the language. This syntax extends the abstract
syntax of OWL described in the OWL Semantics and Abstract Syntax document.

Like the OWL abstract syntax, we will specify the abstract syntax for rules by means
of a version of Extended BNF, very similar to the Extended BNF notation used for XML.
In this notation, terminals are quoted; non-terminals are not quoted. Alternatives are
either separated by vertical bars (|) or are given in different productions. Components
that can occur at most once are enclosed in square brackets ([. . .]); components that can
occur any number of times (including zero) are enclosed in braces ({. . . }). Whitespace is
ignored in the productions given here.

Names in the abstract syntax are RDF URI references.
The meaning of each construct in the abstract syntax for rules is informally described

when it is introduced. The formal meaning of these constructs is given in the SWRL
specification [HPSBT05], and is also specified, coherently with the one in the SWRL
specification, in Section 5.3, when we define SWRL as an instantiation of the TONES
framework for stand-alone ontologies.

From the OWL Semantics and Abstract Syntax document, an OWL ontology in the
abstract syntax contains a sequence of annotations, axioms, and facts. Axioms may be of
various kinds, for example, subClass axioms and equivalentClass axioms. This proposal
extends axioms to also allow rule axioms, by adding the production:

axiom ::= rule

Thus a SWRL ontology could contain a mixture of rules and other OWL DL constructs,
including ontology annotations, axioms about classes and properties, and facts about

c©2006/TONES – August. 25, 2006 34/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

OWL individuals, as well as the rules themselves.
A rule axiom consists of an antecedent (body) and a consequent (head), each of which

consists of a (possibly empty) set of atoms. Just as for class and property axioms, rule
axioms can also have annotations. These annotations can be used for several purposes,
including giving a label to the rule by using the rdfs:label annotation property.

rule ::= ’Implies(’{annotation} antecedent consequent’)’
antecedent ::= ’Antecedent(’{atom}’)’
consequent ::= ’Consequent(’{atom}’)’
Informally, a rule may be read as meaning that if the antecedent holds (is “true”),

then the consequent must also hold. An empty antecedent is treated as trivially holding
(true), and an empty consequent is treated as trivially not holding (false). Non-empty
antecedents and consequents hold iff all of their constituent atoms hold. As mentioned
above, rules with multiple consequents could easily be rewritten (using standard rules of
distributivity) into multiple rules each with a single atomic consequent.

Atoms in rules can be of the form C(x), P(x,y), Q(x,z), sameAs(x,y) or different-
From(x,y), where C is an OWL DL description, P is an OWL DL individual-valued Prop-
erty, Q is an OWL DL data-valued Property, x,y are either variables or OWL individuals,
and z is either a variable or an OWL data value. In the context of OWL Lite, descriptions
in atoms of the form C(x) may be restricted to class names.

atom ::= description ’(’ i-object ’)’
| individualvaluedPropertyID ’(’ i-object i-object ’)’
| datavaluedPropertyID ’(’ i-object d-object ’)’
| sameAs ’(’ i-object i-object ’)’
| differentFrom ’(’ i-object i-object ’)’

Informally, an atom C(x) holds if x is an instance of the class description C, an atom P(x,y)
(resp. Q(x,z)) holds if x is related to y (z) by property P (Q), an atom sameAs(x,y) holds
if x is interpreted as the same object as y, and an atom differentFrom(x,y) holds if x and
y are interpreted as different objects.

Atoms may refer to individuals, data literals, individual variables or data variables.
Variables are treated as universally quantified, with their scope limited to a given rule. As
usual, only variables that occur in the antecedent of a rule may occur in the consequent
(a condition usually referred to as “safety”).

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’ URIreference ’)’
d-variable ::= ’D-variable(’ URIreference ’)’

5.3 SWRL as an instantiation of the tones framework

In this section, we define the ontology formalism FSWRL and provide a mapping the SWRL
syntax described in the previous section into the concept, TBox and ABox languages of
FSWRL. The semantics of FSWRL as given in this section, together with the mapping

c©2006/TONES – August. 25, 2006 35/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

specify the semantics of SWRL. The semantics given here is equivalent to the one given
in the SWRL specification [HPSBT05].

In SWRL, we consider a finite or countably infinite alphabet Σ, partitioned into al-
phabets Σc of concept names, Σr of relation names with arity 2, Σd of value-domain
names, Σu of value-relation names, Σa of attribute names, Σo of object-constants, Σv of
value-constants.

As in OWL 1.1, we assume that Σd is given by the set of of supported datatypes. The
set of supported datatypes is the set of user-defined datatypes that are allowed in the
XML Schema Datatype specification.

The concept language LC is exactly the same as the one defined for OWL 1.1 and its
semantics is given in the very same way.

In order to define the TBox and ABox languages, we define first the set of atoms. We
assume disjoint sets Vo and Vd of object and data variables, which are also disjoint with
Σ, and define the atoms using the following grammar:

a ::= C(x) | R(x, y) | U(x, v) | x=̇y | x ˙6=y

with x, y ∈ Vo ∪ Σo, C a concept in LC , R ∈ Σr, U ∈ Σa and v ∈ Vv ∪ Σv. An atom is
ground if it does not contain variables.

The TBox language LT is specified by the following grammar:

α ::= Trans(R) | S v R | U v V | C v D

| a1 · · · am ← b1, · · · ,bn

with R,S(i) ∈ Σr, U, V ∈ Σa and C,D concepts, and a(i),b(i) are atoms. Furthermore,
we assume that the rule a1 · · · am ← b1, · · · ,bn is safe, as given in the previous section,
and not ground. The atoms a1 · · · am constitute the consequent of the rule and the atoms
b1, · · · ,bn are the antecedent ; we assume that the antecedent may be empty.

The ABox language LA is given by the following grammar:

α ::= C(a) | a=̇b | a ˙6=b | R(a, b) | U(a, φ)

| f1 · · · fm ← g1, · · · ,gn

with a, b ∈ Σo, R ∈ Σr, U ∈ Σa and φ ∈ Σv and and f(i),g(i) ground atoms
All the sentences in LT and LA except for the rules are identical as the ones in OWL 1.1

and their semantics is given in the same way. In order to specify the ontology formalism
FSWRL associated to SWRL, it only remains to specify the semantics of atoms and rules.
A binding B(I) extends an interpretation I by additionally mapping each object variable
x to an element of ∆I

o and each value variable v to an element of ∆I
v .

An atom is satisfied by a binding B(I) under the conditions given in Table 4, where
C is a concept, R ∈ Σr, U ∈ Σa, x, y are object variables or object constants, and z is a
value variable or a value constant. Given a rule:

a1 · · · am ← b1, · · · ,bn

c©2006/TONES – August. 25, 2006 36/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Atom Condition on Interpretation
C(x) xI ∈ CI

R(x, y) 〈xI , yI〉 ∈ RI

U(x, z) 〈xI , zI〉 ∈ UI

x=̇y xI = yI

x ˙6=y xI 6= yI

Table 4: Interpretation Conditions

A binding B(I) satisfies the antecedent b1 · · ·bn iff n = 0 (i.e the antecedent is empty)
or B(I) satisfies every atom b(i). A binding B(I) satisfies the consequent a1, . . . , an iff
B(I) satisfies every atom ai. A rule is satisfied by an interpretation I iff for every binding
B such that B(I) satisfies the antecedent, B(I) also satisfies the consequent.

The syntactic correspondence between SWRL and FSWRL is obtained by simply ex-
tending the translation function σ used for OWL 1.1 in the straightforward way to deal
with atoms and rules.

6 Linking data to ontologies: The description logic

DL-LiteA

In several areas (e.g., Enterprise Application Integration, Data Integration [Len02], and
the Semantic Web [HH01]) the intensional level of the application domain can be profitably
represented by an ontology, so that clients can rely on a shared conceptualization when
accessing the services provided by the system. One of the most interesting usages of such
shared conceptualizations is ontology-based data access. That is, to the usual data layer
of an information system we superimpose a conceptual layer to be exported to the client.
Such a layer allows the client to have a conceptual view of the information in the system,
which abstracts away from how such information is maintained in the data layer of the
system itself. While ontologies are the best candidates for realizing the conceptual layer,
relational DBMSs are natural candidates for the management of the data layer, since
relational database technology is nowadays the best technology for efficient management
of very large quantities of data.

Recently, basic research has been done in understanding which fragments of OWL,
OWL-DL, or OWL-Lite would be suited to act as the formalism for representing ontologies
in this context [CDGL+06a, OCE06, HMS05]. The outcome of this work is that none of
the variants of OWL is suitable, if not restricted (they all are coNP-hard w.r.t. data
complexity). Possible restrictions that guarantee polynomial reasoning (at least, if we
concentrate on instance checking only) have been looked at, such as Horn-SHIQ [HMS05],
EL++ [BBL05], DLP [GHVD03]. Among such fragments, of particular interest are those
belonging to the DL-Lite family [CDGL+05, CDGL+06a]. These logics allow for answering
complex queries (namely, conjunctive queries, i.e., SQL select-project-join queries, and
unions of conjunctive queries) in LogSpace w.r.t. data complexity (i.e., the complexity
measured only w.r.t. the size of the data). More importantly, they allow for delegating

c©2006/TONES – August. 25, 2006 37/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

query processing, after a preprocessing phase which is independent of the data, to the
relational DBMS managing the data layer.

According to [CDGL+06a] there are two maximal languages in the DL-Lite family
that possess the above property. The first one is DL-LiteF , which allows for specifying the
main modeling features of conceptual models, including cyclic assertions, ISA on concepts,
inverses on roles, role typing, mandatory participation to roles, and functional restrictions
on roles. The second one is DL-LiteR, which is able to fully capture (the DL fragment
of) RDFS, and has in addition the ability of specifying mandatory participation on roles
and disjointness between concepts and roles. The language obtained by unrestrictedly
merging the features of DL-LiteF and DL-LiteR, while quite interesting in general, is not
in LogSpace w.r.t. data complexity anymore [CDGL+06a], and hence loses the most
interesting computational feature for ontology-based data access.

In this paper, we look in more detail at the interaction between the distinguishing
features of DL-LiteF and DL-LiteR, and we single out an extension of both DL-LiteF and
DL-LiteR that is still LogSpace w.r.t. data complexity, and allows for delegating the
data dependent part of the query answering process to to the relational DBMS managing
the data layer.

Moreover, we take seriously the distinction in OWL between objects and values (a
distinction that typically is blurred in description logics), and introduce, besides concepts
and roles, also concept-attributes and role-attributes, that describe properties of concepts
(resp., roles) represented by values rather than objects. In fact, role attributes are cur-
rently not available in OWL, but are present in most conceptual modeling formalisms
such as UML class diagrams and Entity-Relationship diagrams.

We look at the problem of accessing databases that are independent from the ontology,
and are related to the ontology through suitable mappings [Len02]. Observe, however, that
such databases, being relational, store only values (not objects), and hence objects need
to be constructed from such values, i.e., we have to deal with the so-called “impedance
mismatch”.

Finally, we show how the description logics described in this section, called DL-LiteFR

and DL-LiteA, can be regarded as an instance of the ontology framework.

6.1 The description logic DL-LiteFR

In this section we present a new logic of the DL-Lite family, called DL-LiteFR. As usual
in DLs, all logics of the DL-Lite family allow one to represent the universe of discourse in
terms of concepts, denoting sets of objects, and roles, denoting binary relations between
objects. In addition, the DLs discussed in this paper allow one to use (i) value-domains,
a.k.a. concrete domains [BH91], denoting sets of (data) values, (ii) concept attributes,
denoting binary relations between objects and values, and (iii) role attributes, denoting
binary relations between pairs of objects and values. Obviously, a role attribute can also
be seen as a ternary relation relating two objects and a value.

c©2006/TONES – August. 25, 2006 38/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

6.1.1 Syntax

We now introduce the DL DL-LiteFR, that combines the main features of two DLs pre-
sented in [CDGL+06a], called DL-LiteF and DL-LiteR, respectively, and forms the basics
of DL-LiteA, that will be defined later in Section 6.3. In providing the specification of our
logics, we use the following notation.

Definition 6.1 (DL-LiteFR notation)

• A denotes an atomic concept, B a basic concept, and C a general concept ;

• D denotes an atomic value-domain, E a basic value-domain, and F a general value-
domain;

• P denotes an atomic role, Q a basic role, and R a general role;

• UC denotes an atomic concept attribute, and VC a general concept attribute;

• UR denotes an atomic role attribute, and VR a general role attribute;

• >C denotes the universal concept, >D denotes the universal value-domain.

Given a concept attribute UC (resp. a role attribute UR), we call the domain of UC

(resp. UR), denoted by δ(UC) (resp. δ(UR)), the set of objects (resp. of pairs of objects)
that UC (resp. UR) relates to values, and we call range of UC (resp. UR), denoted by
ρ(UC) (resp. ρ(UR)), the set of values that UC (resp. UR) relates to objects (resp. pairs of
objects). Notice that the domain δ(UC) of a concept attribute UC is a concept, whereas
the domain δ(UR) of a role attribute UR is a role. Furthermore, we denote with δF (UC)
(resp. δF (UR)) the set of objects (resp. of pairs of objects) that UC (resp. UR) relates to
values in the value-domain F .

Definition 6.2 DL-LiteFR expressions are defined inductively as follows.

• Concept expressions:

B ::= A | ∃Q | δ(UC)
C ::= >C | B | ¬B | ∃Q.C | δF (UC) | ∃δF (UR) | ∃δF (UR)−

• Value-domain expressions (rdfDataType denotes predefined value-domains such as
integers, strings, etc.):

E ::= D | ρ(UC) | ρ(UR)
F ::= >D | E | ¬E | rdfDataType

• Attribute expressions:
VC ::= UC | ¬UC

VR ::= UR | ¬UR

c©2006/TONES – August. 25, 2006 39/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• Role expressions:

Q ::= P | P− | δ(UR) | δ(UR)−

R ::= Q | ¬Q | δF (UR) | δF (UR)−

A DL-LiteFR knowledge base (KB) K = 〈T ,A〉 is constituted by two components:
a TBox T , used to represent intensional knowledge, and an ABox A, used to represent
extensional knowledge.

Definition 6.3 A DL-LiteFR TBox is constituted by a set of assertions of the form:

B v C concept inclusion assertion
Q v R role inclusion assertion
E v F value-domain inclusion assertion
UC v VC concept attribute inclusion assertion
UR v VR role attribute inclusion assertion

(funct P) role functionality assertion
(funct P−) inverse role functionality assertion
(funct UC) concept attribute functionality assertion
(funct UR) role attribute functionality assertion

A concept inclusion assertion expresses that a (basic) concept B is subsumed by a (general)
concept C. Analogously for the other types of inclusion assertions. A role functionality
assertion expresses the (global) functionality of an atomic role. Analogously for the other
types of functionality assertions.

As for the ABox, we introduce two disjoint alphabets, called ΓO and ΓV , respectively.
Symbols in ΓO, called object-constants, are used to denote objects, while symbols in ΓV ,
called value-constants, are used to denote data values.

Definition 6.4 A DL-LiteFR ABox is a finite set of assertions of the form:

A(a), D(c), P (a, b), UC(a, c), UR(a, b, c) membership assertions

where a and b are constants in ΓO, and c is a constant in ΓV .

6.1.2 Semantics

The semantics of DL-LiteFR is given in terms of FOL interpretations.

Definition 6.5 An interpretation I = (∆I , ·I) consists of a first order structure over the
interpretation domain ∆I that is the disjoint union of ∆I

O and ∆I
V , with an interpretation

function ·I such that

c©2006/TONES – August. 25, 2006 40/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• for all a ∈ ΓO, we have that aI ∈ ∆I
O;

• for all a, b ∈ ΓO, we have that a 6= b implies aI 6= bI ;

• for all c ∈ ΓV , we have that cI ∈ ∆I
V ;

• for all c, d ∈ ΓV , we have that c 6= d implies cI 6= dI ;

• and the following conditions are satisfied (below, o, o′ ∈ ∆I
O, and v ∈ ∆I

V ; moreover,
we consider δ(UC) and δ(UR) as abbreviations for δ>D

(UC) and δ>D
(UR), respec-

tively):

>IC = ∆I
O

>ID = ∆I
V

AI ⊆ ∆I
O

DI ⊆ ∆I
V

P I ⊆ ∆I
O ×∆I

O

UI
C ⊆ ∆I

O ×∆I
V

UI
R ⊆ ∆I

O ×∆I
O ×∆I

V

(¬UC)I = (∆I
O ×∆I

V) \ UI
C

(¬UR)I = (∆I
O ×∆I

O ×∆I
V) \ UI

R

(ρ(UC))I = { v | ∃o. (o, v) ∈ UI
C }

(ρ(UR))I = { v | ∃o, o′. (o, o′, v) ∈ UI
R }

(P−)I = { (o, o′) | (o′, o) ∈ P I }
(δF (UC))I = { o | ∃v. (o, v) ∈ UI

C ∧ v ∈ F I }
(δF (UR))I = { (o, o′) | ∃v. (o, o′, v) ∈ UI

R ∧ v ∈ F I }
(δF (UR)−)I = { (o, o′) | ∃v. (o′, o, v) ∈ UI

R ∧ v ∈ F I }
(∃δF (UR))I = { o | ∃ o′. (o, o′) ∈ (δF (UR))I }
(∃δF (UR)−)I = { o | ∃ o′. (o, o′) ∈ (δF (UR)−)I }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI }
(∃Q.C)I = { o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI }
(¬Q)I = (∆I

O ×∆I
O) \QI

(¬B)I = ∆I
O \BI

(¬E)I = ∆I
V \EI

We define when an interpretation I satisfies an assertion (i.e., is a model of the as-
sertion) as follows (below, each e, possibly with subscript, is an element of either ∆I

O or
∆I

V , depending on the context, each t, possibly with subscript, is a constant of either ΓO

or ΓV , depending on the context, a and b are constants in ΓO, and c is a constant in ΓV).

Definition 6.6 An interpretation I satisfies :

• an inclusion assertion α v β, if αI ⊆ βI ;

• a functional assertion (funct γ), where γ is either P , P−, or UC , if, for each e1, e2, e3,
(e1, e2) ∈ γI and (e1, e3) ∈ γI implies e2 = e3;

• a functional assertion (funct UR), if for each e1, e2, e3, e4, (e1, e2, e3) ∈ UI
R and

(e1, e2, e4) ∈ UI
R implies e3 = e4;

• a membership assertion α(t), where α is either A or D, if tI ∈ αI ;

• a membership assertion β(t1, t2), where β is either P or UC , if (tI1 , tI2) ∈ βI ;

• a membership assertion UR(a, b, c), if (aI , bI , cI) ∈ UI
R.

A model of a KB K is an interpretation I that is a model of all assertions in K. A KB
is satisfiable if it has at least one model. A KB K logically implies an assertion α if all
models of K are also models of α.

c©2006/TONES – August. 25, 2006 41/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

6.2 DL-LiteFR as an instantiation of the tones framework for
stand-alone ontologies

We define now the ontology formalism FDL-LiteFR
= 〈Σ,LC ,LT ,LA, Sem〉 for stand-alone

ontologies that corresponds to DL-LiteFR. Its components are defined as follows.

• The alphabet Σ, is partitioned into the following alphabets:

– Σc of concept names, i.e., the alphabet of atomic concepts (denoted by A in
Definition 6.1) including the universal concept >C ;

– Σr of relation names, i.e., the alphabet of atomic roles (denoted by P in Defi-
nition 6.1);

– Σd of value-domain names, i.e., the alphabet of atomic value-domains (denoted
by D in Definition 6.1), including the universal value-domain >D;

– Σu of value-relation names, which is empty, since DL-LiteA does not include
explicit relations between domains;

– Σa of attribute names, which is bipartite into two sub-alphabets of atomic
concept attributes (denoted by UC in Definition 6.1) and atomic role attributes
(denoted by UR in Definition 6.1);

– Σo of object-constants is the alphabet ΓO used to denote objects;

– Σv of value-constants is the alphabet ΓV used to denote data values.

• The concept language LC is the language for expression of concepts, value-domains,
attributes, and roles, introduced in Definition 6.2.

• The TBox language LT is the language of TBox as introduced in Definition 6.3.

• The ABox language LA is the language of ABox as introduced in Definition 6.4.

• The semantic specification is a triple (S, δ, ◦), where:

– S is the set of all FOL interpretations for Σ.

– δ is a function, that, given a FOL interpretation I ∈ S and a TBox or an ABox
α ∈ LT ∪ LA, returns true if all assertions in α are satisfied according to the
semantics of Definition 6.6, false otherwise.

– ◦ is set intersection.

Some of the fundamental services for DL-LiteFR are, among others, knowledge base
satisfiability, concept satisfiability, classification of knowledge bases, instance checking,
and query answering. It has been shown in [CDGL+06c] that all such services can be
reformulated in terms of query answering. We therefore illustrate the instantiation of
DL-LiteFR services to the framework by showing how the query answering service is in-
stantiated. In order to do that, we first need to introduce a query formalism for DL-LiteFR.

A conjunctive query (CQ) q over a knowledge base K is an expression of the form
q(~x) ← ∃~y.conj (~x, ~y), where ~x are the so-called distinguished variables, ~y are existentially

c©2006/TONES – August. 25, 2006 42/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

quantified variables called the non-distinguished variables, and conj (~x, ~y) is a conjunction
of atoms of the form A(xo), P (xo, yo), D(xv), UC(xo, xv), or UR(xo, yo, xv), where xo, yo

are either variables in ~x and ~y (called object variables) or constants in ΓO, whereas xv

is either a variable in ~x and ~y (called a value variable) or a constant in ΓV . A union of
conjunctive queries (UCQ) is a query of the form q(~x) ← ∨

i ∃~yi.conj (~x, ~yi)
A query q(~x) ← ϕ(~x) is interpreted in I as the set qI of tuples ~e ∈ ∆I ×· · ·×∆I such

that, when we assign ~e to the variables ~x, the formula ϕ(~x) evaluates to true in I.
In terms of the framework for stand-alone ontologies, the query answering service has,

at the syntactic level:

• A signature specifying a name for the service, e.g., certain, and the fact that there
are two arguments: a knowledge base K and a query (CQ or UCQ) q(~x) over K.

• A precondition imposing that the knowledge base K be satisfiable.

• The domain for the result, defined as {true, false} ∪ 2D, where D is the set of all
tuples of elements of ΓV ∪ ΓO.

The meaning of this service is to return the certain answers to q(~x) over K, i.e., all tuples
~t of elements of ΓV ∪ ΓO such that, when substituted to the variables ~x in q(~x), we have
that K |= q(~t), i.e., such that ~tI ∈ qI for every model I of K.

6.3 Realizing services in DL-LiteFR and DL-LiteA

As mentioned, it has been shown that services for description logics of the DL-Lite family
can be reformulated in terms of query answering [CDGL+06c]. We therefore concentrate
now on the realization of such services.

6.3.1 From DL-LiteFR to DL-LiteA

From the results in [CDGL+06a] it follows that, in general, query answering over
DL-LiteFR KBs is PTime-hard in data complexity (i.e., the complexity measured w.r.t.
the size of the ABox only). As a consequence, to solve query answering over DL-LiteFR

KBs, we need at least the power of general recursive Datalog. Since we are interested in
DLs where query ansering can be done in LogSpace, we now introduce the DL DL-LiteA,
which differs from DL-LiteFR because it imposes a limitation on the use of the function-
ality assertions in the TBox. As we will discuss, such limitation is sufficient to guarantee
that query answering is in LogSpace w.r.t. data complexity, and thus it can be reduced
to first-order query evaluation.

Definition 6.7 A DL-LiteA knowledge base is pair 〈T ,A〉, whereA is a DL-LiteFR ABox,
and T is a DL-LiteFR TBox satisfying the following conditions:

1. for every atomic or inverse of an atomic role Q appearing in a concept of the form
∃Q.C, the assertions (funct Q) and (funct Q−) are not in T ;

2. for every role inclusion assertion Q v R in T , where R is an atomic role or the
inverse of an atomic role, the assertions (funct R) and (funct R−) are not in T ;

c©2006/TONES – August. 25, 2006 43/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

3. for every concept attribute inclusion assertion UC v VC in T , where VC is an atomic
concept attribute, the assertion (funct VC) is not in T ;

4. for every role attribute inclusion assertion UR v VR in T , where VR is an atomic
role attribute, the assertion (funct VR) is not in T .

Roughly speaking, a DL-LiteA TBox imposes the condition that every functional role
cannot be specialized by using it in the right-hand side of role inclusion assertions; the
same condition is also imposed on every functional (role or concept) attribute. It can be
shown that functionalities specified in a DL-LiteA TBox are not implicitly propagated in
the TBox, and that this guarantees membership in LogSpace for query answering.

We also observe here that the instantiation of the framework for stand-alone ontologies
to DL-LiteA is the same as the one to DL-LiteFR, with the only difference that the TBox
language LT must also satisfy the extra conditions imposed by Definition 6.7.

We now show a simple example of a DL-LiteFR TBox, with the aim of highlighting
the use of attributes (in particular, role attributes). In the following, concept names are
written capitalized, role names are written in uppercase, attribute names are written in
lowercase, and domain names are in Courier font.

Example 6.8 Let T be the TBox containing the following assertions:

TempEmp v Employee (1)

Manager v Employee (2)

Employee v ∃WORKS-FOR.Project (3)

δ(until) v WORKS-FOR (4)

(funct until) (5)

TempEmp v ∃δ(until) (6)

Manager v ∃MANAGES (7)

MANAGES v WORKS-FOR (8)

Manager v ¬∃δ(until) (9)

ρ(until) v date (10)

The above TBox T models information about employees and projects. The assertions
in T state that: (1) every temporary employee is an employee; (2) every manager is an
employee; (3) every employee works for at least one project; (4) the domain of the role
attribute until is the role WORKS-FOR; (5) the role attribute until is functional; (6) every
temporary employee must participate in a role having an associated role attribute until
(such a role, by assertion (4), is the role WORKS-FOR); (7) every manager participates
to the role MANAGES; (8) every instance of role MANAGES is an instance of the role
WORKS-FOR; (9) no manager can participate in a role having an associated attribute
until; (10) the range of the role attribute until is date, i.e., every value associated by the
attribute until to a role instance must be a value of type date.

c©2006/TONES – August. 25, 2006 44/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

6.3.2 Query answering in DL-LiteA

We discuss now reasoning in DL-LiteA, and concentrate on the basic reasoning task in the
context of using ontologies to access large data repositories, namely (conjunctive) query
answering over a DL-LiteA knowledge base. The other forms of reasoning usual in DLs
can be reduced to query answering (through reductions analogous to the ones reported
in [CDGL+05] for DL-Lite).

We now briefly sketch the technique for query answering which we have defined for
DL-LiteA. In a nutshell, the algorithm has a structure similar to the methods developed
for the logics in the DL-Lite family [CDGL+05]: in particular, query answering is basically
reduced to evaluation of a first-order query over a relational database representing the
ABox. Such first-order query is obtained by reformulating the original query based on
the TBox assertions. For DL-LiteA, this reformulation can be obtained through the query
reformulation technique for DLR-LiteR defined in [CDGL+06a]. DLR-LiteR is a logic
of the DL-Lite family which allows for expressing n-ary relations (but no functionality
assertions). The possibility of reusing the query reformulation algorithm of DLR-LiteR

is based on the fact that inclusion assertions in DL-LiteA can actually be expressed in
DLR-LiteR, as shown at steps 1 and 2 of the algorithm below.

An important aspect which such a query answering strategy relies on is a separation
property between different kinds of TBox assertions: in particular, TBox assertions are
classified into: (i) positive inclusion assertions (PIs), i.e., inclusions having a positive con-
cept/role/concept attribute/role attribute on its right-hand side, (ii) negative inclusion
assertions (NIs), i.e., inclusions having a negated concept/role/concept attribute/role at-
tribute on its right-hand side; (iii) functionality assertions, i.e., assertions of the form
(funct ϕ), where ϕ is a role/inverse of a role/atomic concept attribute/atomic role at-
tribute. Then, it can be shown that, after saturating the TBox, as described at step 3 in
the algorithm below, query answering can be done by considering in a separate way the
set of PIs and the set of NIs and functionality assertions. More precisely, NIs and func-
tionality assertions are relevant for the satisfiability of K (while PIs are not); moreover,
in a satisfiable KB K, only PIs are relevant for answering UCQs. We remark that the
above separation property holds for DL-LiteA, but it does not hold for DL-LiteFR.

Let us now briefly describe the query answering algorithm. Given a DL-LiteA KB
K = 〈T ,A〉 and a Boolean union of conjunctive queries q, our algorithm proceeds as
follows:

1. First, all qualified existential quantifications in the right-hand side of both concept
and role inclusion assertions are compiled away by rewriting them through the use
of auxiliary roles. More specifically, we modify the TBox T as follows:

• the concept inclusion assertion B v ∃R.C is replaced by the inclusion asser-
tions

B v ∃Raux (concept inclusion assertion)
∃R−

aux v C (concept inclusion assertion)
Raux v R (role inclusion assertion)

where Raux is a new role name.

c©2006/TONES – August. 25, 2006 45/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• analogously, the role inclusion assertion Q v δF (UR) is replaced by the inclusion
assertions

Q v δ(Uaux) (role inclusion assertion)
ρ(Uaux) v F (value-domain inclusion assertion)
Uaux v UR (role attribute inclusion assertion)

where Uaux is a new role attribute name.

Similar encodings allow us to compile away concept inclusion assertions of the form
B v C, where C = δF (UC) or C = ∃δF (UR) or C = ∃δF (UR)−), and role attribute
inclusion assertions of the form Q v δF (UR)−.

2. We convert the inclusion assertions in the TBox T into inclusion assertions in
DLR-LiteR. The transformation is based on considering each concept attribute as a
binary relation, and each role attribute as a ternary relation, and on the following
correspondences between the DL-LiteA notation and the DLR-LiteR notation:

δ(UC) ⇒ UC [1]
ρ(UC) ⇒ UC [2]

δ(UR) ⇒ UR[1, 2]
δ(UR)− ⇒ UR[2, 1]
ρ(UR) ⇒ UR[3]

∃δ(UR) ⇒ UR[1]
∃δ(UR)− ⇒ UR[2]

3. Then, the TBox T is saturated by adding to T all negative inclusions logically
implied by T . This saturation step corresponds to the saturation of a DLR-LiteR

knowledge base described in [CDGL+06a].

4. We now verify satisfiability of 〈T ,A〉. To do so, we simply check each functionality
assertion and each NI in A, in the following way: (i) for each functionality assertion
evaluate a Boolean conjunctive query with inequality over A, considering A as a
relational database. Such a query is false in A iff the functionality assertion is not
contradicted by the assertions in A; (ii) for each NI evaluate a Boolean conjunctive
query over A, considering A as a relational database. Such a query is false in A
iff the NI assertion is not contradicted by the assertions in A. Details on such a
satisfiability check can be found in [CDGL+05].

5. If the above satisfiability check does not succeed, then the algorithm returns true
(since there are no models for K, every query is true in K); otherwise, the query q
is taken into account, and it is reformulated based on the TBox T , according to the
query reformulation procedure for DLR-LiteR described in [CDGL+06a]. Let q′ be
the query obtained by this reformulation step.

6. Finally, the query q′ is evaluated over A, considering A as a relational database.
The algorithm returns true iff q′ is evaluated to true in A.

The above algorithm can be used to decide the recognition problem associated with
query answering in DL-LiteA, i.e., establish whether a tuple ~t of constants is a certain
answer to a UCQ q in a DL-LiteA KB K (the input to the algorithm is constituted by
the Boolean UCQ q(~t) and the KB K). Moreover, the algorithm can be immediately

c©2006/TONES – August. 25, 2006 46/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

generalized to query answering, i.e., to compute the set of all certain answers to a (non-
Boolean) UCQ. Observe that steps 1–4 above are independent of the actual query q, and
can be carried out on the knowledge base only.

Based on the above algorithm, we are able to provide an upper bound for the data
complexity of answering UCQs in DL-LiteA.

Theorem 6.9 Let K = 〈T ,A〉 be a DL-LiteA KB. Answering UCQs posed to K is in
LogSpace with respect to data complexity.

We point out that the assumption that the TBox T is expressed in DL-LiteA rather
than in DL-LiteFR is essential for the above upper bound to hold: in fact, from the
results in [CDGL+06a], it follows that, answering UCQs in DL-LiteFR is PTime-hard
with respect to data complexity. This implies that the above query answering strategy
cannot be pursued anymore, since in general there exists no FOL reformulation q′ of a
UCQ q (only depending on T) such that the certain answers to q in K correspond to the
evaluation of q′ in A.

6.4 Linking data to DL-LiteA ontologies

Most works on DLs do not deal with the problem of how to store ABox assertions, nor
do they address the issue of how to acquire ABox assertions from existing data sources.
It is our opinion that this topic is of special importance in several contexts where the use
of ontologies is advocated, especially in the case where the ontology is used to provide a
unified conceptual model of an organization (e.g., in Enterprise Application Integration).
In these contexts, the problem can be described as follows: the ontology is a virtual repre-
sentation of a universe of discourse, and the instances of concepts and roles in the ontology
are simply an abstract representation of some real data stored in existing data sources.
Therefore, the problem arises of establishing sound mechanisms for linking existing data
to the instances of the concepts and the roles in the ontology.

In this section we sketch our solution to this problem, by presenting a mapping mech-
anism that enables a designer to link data sources to an ontology expressed in DL-LiteA.

Before delving into the details of the method, a preliminary discussion on the notorious
impedence mismatch problem between data and objects is in order. When mapping
data sources to ontologies, one should take into account that sources store data, whereas
instances of concepts are objects, where each object should be denoted by an ad hoc
identifier (e.g., a constant in logic), not to be confused with any data item. In DL-LiteA,
we address this problem by keeping data value constants separate from object identifiers,
and by accepting that object identifiers be created using data values, in particular as
(logic) terms over data items. Note that this idea traces back to the work done in deductive
object-oriented databases [Hul88].

To realize this idea, we modify the set ΓO as follows. While ΓV contains data value
constants as before, ΓO is built starting from ΓV and a set Λ of function symbols of
any arity (possibly 0), as follows: If f ∈ Λ, the arity of f is n, and d1, . . . , dn ∈ ΓV ,
then f(d1, . . . , dn) is a term in ΓO, called object term. In other words, object terms are
either objects constants (i.e., function symbols of arity 0), or function symbols applied to
data value constants. In the following we call ΓT the subset of ΓO constituted by object

c©2006/TONES – August. 25, 2006 47/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

constants, i.e., object terms built with function symbols of arity 0. Also, we use ΓVT to
denote ΓV ∪ ΓT .

To define the semantics of terms in ΓO, we simply define an interpretation I = (∆I , ·I)
as before, and we observe that the interpretation function ·I now assigns a different
element of ∆I

O to every object term (not only object constant) in ΓO (i.e., we enforce the
unique name assumption also on object terms).

Let us now turn our attention to the problem of linking data in the sources to objects
in the ontology. To this end, we assume that data sources have been wrapped into a
relational database DB . Note that this assumption is indeed realistic, as many data
federation tools that provide exactly this kind of service are currently available. In this
way, we can assume that all relevant data are virtually represented and managed by a
relational data engine. In particular, one consequence is that we can query our data by
using SQL. Formally, we assume that the database DB is characterized by a relational
schema, and the corresponding extension. In particular, for each relation schema R,
DB contains a set of tuples whose values are taken from ΓVT . Note that, by virtue of
this assumption, DB may store both data value constants and object constants. The
evaluation of an SQL query ϕ over a database DB , denoted ans(ϕ,DB), returns the set
of tuples (of the arity of ϕ) of elements of ΓVT that satisfy ϕ in DB .

To realize the link, we adapt principles and techniques from the literature on data
integration [Len02]. In particular, we use the notion of mapping, which we now introduce
by means of an example.

Example 6.10 Consider a DL-LiteA TBox in which Person is a concept name,
CITY-OF-BIRTH is a role name, age and cityName are concept attributes names, and a
relational database contains the ternary relation symbols S1 and S2 and the unary relation
symbol S3. We want to model the situation where every tuple (n, s, a) ∈ S1 corresponds
to a person whose name is n, whose surname is s, and whose age is a, and we want to
denote such a person with p(n, s). Note that this implies that we know that there are
no two persons in our application that have the same pair (n, s) stored in S1. Similarly,
we want to model the fact that every tuple (n, s, cb) ∈ S2 corresponds to a person whose
name is n, whose surname is s, and whose city of birth is cb. Finally, we know that source
S3 directly stores object constants denoting instances of person. The following is the set
of mapping assertions modeling the above situation.

S1(n, s, a) ; Person(p(n, s)), age(p(n, s), a)
S2(n, s, cb) ; CITY-OF-BIRTH(p(n, s), ct(cb)), cityName(ct(cb), cb)
S3(q) ; Person(q).

Above, n, s, a, cb and q are variable symbols, p and ct are function symbols, whereas p(n, s)
and ct(n) are so-called variable object terms (see below).

The example shows that, in specifying mapping assertions, we need variable object
terms, i.e., object terms containing variables. Indeed, we extend object terms to variable
object terms by allowing also variables to appear in place of value constants.

We can now provide the definition of mapping assertions. Through a mapping we
associate a conjunctive query over atomic concepts, domains, roles, attributes, and role

c©2006/TONES – August. 25, 2006 48/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

attributes (generically referred to as predicates in the following) with a first-order (more
precisely, SQL) query of the appropriate arity over the database. The intuition is that,
by evaluating such a query, we retrieve the facts that constitute the ABox assertions for
the predicates appearing in the conjunctive query.

Definition 6.11 A mapping assertion is an assertion of the form

ϕ ; ψ

where ψ is a DL-LiteA conjunctive query without existential variables and without con-
stants, but whose atoms may contain variable object terms, and ϕ is an SQL query, i.e.,
an open first-order formula, over the database DB .

We now describe the semantics of mapping assertions. To this end, we introduce the
notion of ground instance of a formula. Let γ be a formula with free variables ~x, and
let ~s be a tuple of elements in ΓVT of the same arity as ~x. A ground instance γ[~x/~s]
of γ is obtained from γ by substituting every occurrence of xi with si. We say that
an interpretation I = (∆I , ·I) satisfies the mapping assertion ϕ ; ψ wrt DB , if for
every ground instance ϕ[~x/~s] ; ψ[~x/~s] of ϕ ; ψ, we have that ans(ϕ[~x/~s],DB) = true
implies ψ[~x/~s]I = true (where, for a ground atom p(~t), with ~t = (t1, . . . , tn) a tuple of
object-terms, we have that p(~t)I = true if (tI1 , . . . , tIn) ∈ pI).

Finally, we can summarize the semantics of a DL-LiteA ontology with mapping as-
sertions. Let DB be a database as defined above, T a DL-LiteA TBox, and M a set of
mapping assertions between DB and T . An interpretation I = (∆I , ·I) is a model of
〈T ,M,DB〉 if I is a model of T and satisfies all mapping assertions in M wrt DB . The
notion of certain answer to queries posed to 〈T ,M,DB〉 remains the same as the one
described in Section 6.1.

As we have seen in the previous section, both query answering and satisfiability in
DL-LiteA reduce to query answering over an ABox seen as a database. In fact, the
mappings define an ABox, which is the one obtained by instantiating the atoms in the
conjunctive query on the right-hand side of mapping assertions with the constants re-
trieved by the SQL query on the left-hand side. We call such an ABox the ABox induced
by the database DB and the mapping assertions M and denote it ind(DB ,M). Note that
such constants may also instantiate variables appearing in variable object terms, giving
rise to object terms in the atoms, and hence in the corresponding ABox. The object terms
would not make any difference for satisfiability and query answering, and hence the above
techniques still apply. However, we can avoid materializing such an ABox by proceeding
as follows. First, we split each mapping assertion ϕ ; ψ into several assertions of the
form ϕ ; p, one for each atom p in ψ. Then, we unify in all possible ways the atoms in
the query q to be evaluated with the right-hand side atoms of the (split) mappings, thus
obtaining a (bigger) union of conjunctive queries containing variable object terms. Then,
we unfold each atom with the corresponding left-hand side mapping query. Observe that,
after unfolding, all variable object terms disappear, except those that are returned by q
as instantiations of free variables. Hence, what we have obtained is a FOL query to the
database whose answer then has to be processed in order to generate the object terms to
be returned. Notice that no post-processing is necessary in the case where the query q
does not contain any free object variable.

c©2006/TONES – August. 25, 2006 49/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Example. Refer to the previous example, and consider now the following query over the
TBox, asking for the age of those people that are born in Rome:

q(z) ← ∃x, y. Person(x),CITY-OF-BIRTH(x, y), cityName(y, Roma), age(x, z).

Let us, for simplicity, assume that no reasoning on the TBox has to be done in order
to answer the query q, and hence let us directly evaluate such a query by exploiting the
mapping, without materializing the ABox of the KB.

We first split the mapping (left as an exercise), and then unify the atoms in the query
with the right-hand side atoms in the split mapping, thus obtaining

q(z) ← Person(p(n, s)),CITY-OF-BIRTH(p(n, s), ct(Roma)),
cityName(ct(Roma), Roma), age(p(n, s), z).

Then, we unfold each atom with the corresponding left-hand side mapping query, thus
obtaining

q(z) ← S2(n, s, Roma), S1(n, s, z),

where w is a new (existential) variable symbol. The obtained query can be then simply
evaluated over the database in order to get the certain answers to q.

6.5 DL-LiteA as an instantiation of the tones framework for
situated ontologies

Given the representation of a DL-LiteA ABox as a database DB described in the previous
section, we now define a formalism 〈F , ΣE ,LE , SemE〉 for situated ontologies (for DB)
that corresponds to DL-LiteA. Its components are defined as follows.

• F is the ontology formalism FDL-LiteFR
defined in Section 6.2.

• ΣE is the alphabet of DB relation symbols (those that may occur in the left-hand
side of mapping assertions).

• LE is a language for the mapping between ontologies and DB , where each element of
LE consists of a set of mapping assertions of the form introduced in Definition 6.11.

• SemE is a pair (SE , δE), where

– SE is the set of all database instances constructible over the relations in ΣE .

– δE is a function that, given a database DB , a DL-LiteA TBox T , a set M of
mapping assertions between DB and T , and an interpretation I, returns true
if I is a model of T and satisfies all mapping assertions in M wrt DB , false
otherwise.

In terms of the framework for situated ontologies, the query answering service has, at
the syntactic level:

• A signature specifying a name for the service, e.g., certain, and the fact that there
are 4 arguments as follows:

c©2006/TONES – August. 25, 2006 50/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

– A DL-LiteA TBox T .

– A database DB .

– A set M of mapping assertions between DB and T .

– A query (CQ or UCQ) q(~x) over T .

• A precondition imposing that the knowledge base K = 〈T ,A〉 be satisfiable, where
A = ind(DB ,M) is the ABox induced by the database DB and the mapping asser-
tions M.

• The domain for the result, defined as {true, false} ∪ 2D, where D is the set of all
tuples of elements of ΓV ∪ ΓO.

The meaning of this service is to return the certain answers to q(~x) over T and DB wrt.
M, i.e., all tuples ~t of elements of ΓV ∪ ΓO such that, when substituted to the variables
~x in q(~x), we have that 〈T , ind(DB ,M)〉 |= q(~t).

7 Ontology based peer-to-peer data integration sys-

tems

In this section, we provide possible instantiations for the tones framework considering
the setting of peer ontologies. We recall that a peer ontology formalism is a triple FP =
〈{F i}1≤i≤k, {Lij

M}1≤i,j≤k, SemP 〉, where each F i is an ontology formalism, each Lij
M is a

mapping language, and SemP is a semantic specification for peer ontologies. Our aim
here is to describe how such a formalism FP can be instantiated, i.e., we give concrete
examples for each F i, each Lij

M , and SemP .
Before showing the instantiation of the tones framework, we describe a framework for

peer-to-peer (P2P) data integration that was recently presented in [CDGL+06b], suitably
adapted to the case in which peers in the system export knowledge specified in terms of
ontologies. Specifically, we discuss two alternative approaches to interpretation of P2P
data integration systems, and compare them to each other, taking into account some
desirable properties in the context of P2P data management.

7.1 Ontology based peer-to-peer data integration systems

In a P2P data integration system [HIST03, BGK+02, FKLS03, CDGLR04], each peer is
essentially a mediator-based data integration system, i.e., it manages a set of local data
sources (whose schema is called local source schema) semantically connected, via a local
mapping, to a (virtual) global schema called the peer schema, which can be expressed in
terms of an ontology language, e.g., a DL TBox. In other words each peer in the system is
actually a situated ontology, whose environment is constitutes by the local source schema.
In addition, the specification of a peer includes a set of P2P mappings (also called peer
mappings) that specify the semantic relationships with the data exported by other peers,
as shown in Figure 1. Information in such systems can be queried to any peer (by external
users or other peers). The queried peer, by exploiting its P2P mappings, can make use of
the data in the other peers for providing the answer.

c©2006/TONES – August. 25, 2006 51/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

P5

Peer schema

Local source Local mapping

P2P mapping

1P

4P

P3

2P

Peer

Figure 1: Peer-to-Peer Data Integration System

7.1.1 Formal framework for ontology-based P2P data integration

We refer to a fixed, infinite, denumerable set Γ of constants. Such constants are shared
by all peers, and denote the data items managed by the ontoloty-based Peer-to-Peer Data
Integration System (P2PDIS). Moreover, given an alphabet A, we denote with LA the
set of function-free first-order logic (FOL) formulas whose relation symbols are in A and
whose constants are in Γ.

We also consider conjunctive queries, i.e., SQL select-project-join queries. Formally, a
conjunctive query (CQ) of arity n over A is a query written in the form

{x | ∃y.bodycq(x,y)}
where bodycq(x,y) is a conjunction of atoms of LA involving the free variables (also
called the distinguished variables of the query) x = x1, . . . , xn, the existentially quantified
variables (also called the non-distinguished variables of the query) y = y1, . . . , ym, and
constants from Γ.

An ontology-based P2P data integration system P = {P1, . . . , Pn} is constituted by a
set of n peers. Each peer Pi ∈ P (cf. [HIST03]) is defined as a tuple Pi = 〈O,S, L, M,L〉,
where:

• O is the (global) ontology of Pi, which is a finite set of formulas of LAO
(representing

the ontology language), where AO is an alphabet (disjoint from the other alphabets
in P) called the alphabet of Pi. Notice that O is expressed in some fragment of
first-order logic. Notable cases are those in which O is expressed in terms of DLs.
In these cases, since the aim of O is in general to provide an intensional view of
the information managed by the peer, global ontologies are considered that are
constituted by the TBox only.

• S is the (local) source schema of Pi, which is simply a finite relational alphabet
(again disjoint from the other alphabets in P), called the local alphabet of Pi. In-
tuitively, the source schema describes the structure of the data sources of the peer
(possibly obtained by wrapping physical sources), i.e., the sources where the real
data managed by the peer are stored.

c©2006/TONES – August. 25, 2006 52/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• L is a set of (local) mapping assertions between O and S. Each local mapping
assertion is an expression of the form

cqS ; cqO,

where cqS and cqO are two conjunctive queries of the same arity, respectively over
the source schema S and over the peer ontology O. The local mapping assertions
establish the connection between the elements of the source schema and those of
the peer ontology in Pi. In particular, an assertion of the form cqS ; cqO specifies
that all the data satisfying the query cqS over the sources also satisfy the concept
in the peer ontology represented by the query cqO. In the terminology used in data
integration, the combination of peer ontology, source schema, and local mapping
assertions constitutes a GLAV data integration system [Len02] managing a set of
sound data sources defined in terms of a (virtual) global schema, whereas in the
terminology used in the tones framework, the above combination represents a
situated ontology.

• M is a set of peer mapping assertions, which specify the semantic relationships that
the peer Pi has with the other peers. Each assertion in M is an expression of the
form

cq ′ ; cq ,

where cq , called the head of the assertion, is a conjunctive query over the (ontology
of the) peer Pi, while cq ′, called the tail of the assertion, is a conjunctive query of
the same arity as cq over (the ontology of) one of the other peers in P . A peer
mapping assertion cq ′ ; cq from peer Pj to peer Pi expresses the fact that the
Pj-concept represented by cq ′ is mapped to the Pi-concept represented by cq . From
an extensional point of view, the assertion specifies that every tuple that can be
retrieved from Pj by issuing query cq ′ satisfies cq in Pi. Observe that no limitation
is imposed on the topology of the whole set of peer mapping assertions in the system
P , and hence the set of all peer mappings may be cyclic.

• L is a relational query language specifying the class of queries that the peer Pi

can process. We assume that L is some fragment of FOL that accepts at least
conjunctive queries. We say that the queries in L are those accepted by Pi. Notice
that this implies that, for each peer mapping assertion cq ′ ; cq from another peer
Pj to peer Pi in M , we have that cq ′ is accepted by Pj.

An extension for a P2PDIS P = {P1, . . . , Pn} is a set D = {D1, . . . , Dn}, where each
Di is an extension of the predicates in the local source schema of peer Pi.

A P2PDIS, together with an extension, is intended to be queried by external users. A
user enquires the whole system by accessing any peer P of P , and by issuing a query q
to P . The query q is processed by P if and only if q is expressed over the ontology of P
and is accepted by P .

Example 7.1 Let us consider the P2PDIS in Figure 2, in which we have 4 peers P1, P2,
P3, and P4. To maintain things simple, ontologies of in this example are relational schema
with only key constraints specified over relation symbols [AHV95].

c©2006/TONES – August. 25, 2006 53/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Citizen4(name, livesIn, citizenship)

S4(name, livesIn, citizenship)

("Joe", "Rome", "Canadian")

Person3(name, livesIn, citizenship)
P1

Person1(name, livesIn, citizenship)

S1(name, livesIn)

("Joe", "Rome")

P2
Citizen2(name, birthDate, citizenship)

S2(name, birthDate, citizenship)

("Joe", "24/12/70", "Canadian")

P3

P4

Figure 2: The P2P Data Integration System of Example 7.1

The ontology of peer P1 is formed by a relation schema
Person1(name, livesIn, citizenship), where name is the key (we underline the key of a
relation). P1 contains a local source S1(name, livesIn), mapped to the global ontology by
the assertion {x, y | S1(x, y)} ; {x, y | ∃z.Person1(x, y, z)}. Moreover, it has a peer
mapping assertion {x, z | ∃y.Citizen2(x, y, z)} ; {x, z | ∃y.Person1(x, y, z)} relating
information in peer P2 to those in peer P1.

P2 has Citizen2(name, birthDate, citizenship) as global ontology, and a local source
S2(name, birthDate, citizenship) mapped to the global ontology through the local mapping
{x, y, z | S2(x, y, z)} ; {x, y, z | Citizen2(x, y, z)}. P2 has no peer mappings.

P3 has Person3(name, livesIn, citizenship) as global ontology, contains no local sources,
and has a peer mapping {x, y, z | Person1(x, y, z)} ; {x, y, z | Person3(x, y, z)} with P1,
and a peer mapping {x, y, z | Citizen4(x, y, z)} ; {x, y, z | Person3(x, y, z)} with P4.

P4 has Citizen4(name, livesIn, citizenship) as global ontology, and a local source
S4(name, livesIn, citizenship) mapped to the global ontology through the local mapping
{x, y, z | S4(x, y, z)} ; {x, y, z | Citizen4(x, y, z)}. P4 has no peer mappings.

Finally, Figure 2 shows also an extension of the system, which
includes S1("Joe", "Rome"), S2("Joe", "24/12/70", "Canadian"), and
S4("Joe", "Rome", "Canadian").

7.1.2 Classical semantics for ontology-based P2P data integration systems

In this section we present a logical formalization of ontology-based P2P data integration
systems based on classical first-order logic. Such a formalization is the first one that has
been proposed for P2P data integration [CL93, Koc02, HIST03].

We assume that the peers are interpreted over a fixed infinite domain ∆. We also fix the
interpretation of the constants in Γ (cf. previous section) so that: (i) each c ∈ Γ denotes
an element d ∈ ∆; (ii) different constants in Γ denote different elements of ∆; (iii) each
element in ∆ is denoted by a constant in Γ.6 It follows that Γ is actually isomorphic to
∆, so that we can use (with some abuse of notation) constants in Γ whenever we want to
denote domain elements.

6In other words the constants in Γ act as standard names [LL01].

c©2006/TONES – August. 25, 2006 54/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Semantics of one peer We focus first on the semantics of a single peer P =
〈O,S, L,M,L〉. Let us call peer theory of P the FOL theory TP defined as follows. The
alphabet of TP is obtained as union of the alphabet AO of O and the alphabet of the local
sources S of P . The axioms of TP are the formulas in O plus one formula of the form

∀x.(∃y.bodycqS
(x,y) ⊃ ∃z.bodycqO

(x, z))

for each local mapping assertion cqS ; cqO in L.

Observe that the peer mapping assertions of P are not considered in TP , and that TP

is an “open theory”, since for the sources in P we only have the schema, S, and not the
extension. We call local source database for P , a database D for the source schema S,
i.e., a finite relational interpretation of the relation symbols in S. An interpretation I of
TP is a model of P based on D if it is a model of the FOL theory TP such that for each
relational symbol s ∈ S, we have that sI = sD.

Finally, consider a query q of arity n, expressed in the query language L accepted by
P . Given an interpretation I of TP , we denote with qI the set of n-tuples of constants in
Γ obtained by evaluating q in I, according to the semantics of L. We define the certain
answers ANS (q, P,D) to q (accepted by P) based on a local source database D for P , as
the set of tuples t of constants in Γ such that for all models I of P based on D, we have
that t ∈ qI .

Semantics for ontology-based P2P data integration systems Based on the above
logical formalization of a peer, we now present the “classical” approach to providing
a semantics to the whole ontology-based P2P data integration system. The classical
approach is what we may call the FOL approach, followed by [CL93, Koc02, HIST03]. In
this approach, one associates to a P2PDIS P a single (open) FOL theory TP , obtained as
the disjoint union of the various peer theories (peer mappings are not considered in TP).

By following the approach used for a single peer, we consider a source database D for
P , simply as the (disjoint) union of one local source database D for each peer P in P . We
call FOL interpretation of TP based on D an interpretation I of the FOL theory TP such
that for each relational symbol s of the source schemas in the peers of P , we have that
sI = sD. Furthermore, we assume that all interpretations have the same (fixed infinite)
interpretation domain ∆, and that different constants in Σo are interpreted with the same
different objects of ∆, in each interpretation (i.e., we assume constants in Σo acting as
standard names).

Then we call FOL model of P based on D a model I of TP based on D that is also a
model of the formula

∀x.(∃y.bodycq1
(x,y) ⊃ ∃z.bodycq2

(x, z))

for each peer mapping assertion cq1 ; cq2 in the peers of P .

Finally, given a query q over the peer Pi in P and a source database D for P , we define
the certain answers ANS fol(q, Pi,P ,D) to q in P based on D under FOL semantics, as
the set of tuples t of constants in Γ such that for every FOL model I of P based on D,
we have that t ∈ qI .

c©2006/TONES – August. 25, 2006 55/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

7.1.3 Limitations of first-order approaches

Although correct from a formal point of view, the usual approach of resorting to a first-
order logic interpretation of peer mappings, which we have described in the above section,
has several drawbacks, both from the modeling and from the computational perspective.
Consider, for example, three central desirable properties of P2P systems:

• Modularity : i.e., how autonomous are the various peers in a P2P system with re-
spect to the semantics. Indeed, since each peer is autonomously built and managed,
it should be clearly interpretable both alone and when involved in interconnections
with other peers. In particular, interconnections with other peers should not radi-
cally change the interpretation of the concepts expressed in the peer.

• Generality : i.e., how free we are in placing connections (peer mappings) between
peers. This is a fundamental property, since actual interconnections among peers
are not under the control of any actor in the system.

• Decidability : i.e., are sound, complete and terminating query answering mechanisms
available? If not, it becomes critical to establish basic quality assurance of the
answers returned by the system.

Actually, these desirable properties are weakly supported by approaches based directly
on FOL semantics. Indeed, such approaches essentially consider the P2P system as a sin-
gle flat logical theory. As a result, the structure of the system in terms of peers is lost
and remote interconnections may propagate constraints that have a deep impact on the
semantics of a peer. Moreover, under arbitrary P2P interconnections, query answering un-
der the first-order semantics is undecidable, even when the single peers have an extremely
restricted structure. Motivated by these observations, several authors proposed suitable
limitations to the form of P2P mappings, such as acyclicity, thus giving up generality to
retain decidability [HIST03, Koc02, FKMP03].

To overcome the above drawbacks, we recall here the proposal of a new semantics for
P2P systems, with the following aims:

• We want to take into account that peers in our context are to be considered au-
tonomous sites that exchange information. In other words, peers are modules, and
the modular structure of the system should be explicitly reflected in the definition
of its semantics.

• We do not want to limit a-priori the topology of the mapping assertions among the
peers in the system. In particular, we do not want to impose acyclicity of assertions.

• We seek for a semantic characterization that leads to a setting where query answering
is decidable, and possibly, polynomially tractable.

We base our proposal of a new semantics for P2P systems on epistemic logic, and we show
that the new semantics is clearly superior to the usual FOL semantics with respect to all
three properties mentioned above.

c©2006/TONES – August. 25, 2006 56/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

7.1.4 Multi-modal epistemic formalization

In this section we present a logical formalization of ontology-based P2P data integration
systems based on the use of epistemic logic. Such a formalization brings several advantages
w.r.t. classical FOL formalizations, as discussed in the above subsection. In particular, we
adopt a multi-modal epistemic logic, based on the premise that each peer in the system
can be seen as a rational agent. More precisely, the formalization we provide in this
section is based on K, the multi-modal version of the modal logic S5 [Che80, LL01].

The logic K. The language L(K) of K is obtained from first-order logic by adding a
set K1, . . . ,Kn of modal operators, for the forming rule: if φ is a (possibly open) formula,
then also Kiφ is so, for 1 ≤ i ≤ n for a fixed n. In K, each modal operator is used to
formalize the epistemic state of a different agent. Informally, the formula Kiφ should be
read as “φ is known to hold by the agent i”. The semantics of K is such that what is
known by an agent must hold in the real world: in other words, the agent cannot have
inaccurate knowledge of what is true, i.e., believe something to be true although in reality
it is false. Moreover, K states that the agent has complete information on what it knows,
i.e., if agent i knows φ then it knows of knowing φ, and if agent i does not know φ, then
it knows that it does not know φ. In other words, the following assertions hold for every
K formula φ:

Kiφ ⊃ φ known as the axiom schema T
Kiφ ⊃ Ki(Kiφ) known as the axiom schema 4
¬Kiφ ⊃ Ki(¬Kiφ) known as the axiom schema 5

To define the semantics of K, we start from first-order interpretations. As done in
Section 7.1.2, we restrict our attention to first-order interpretations that share a fixed
infinite domain ∆ and assume that constants of the set Γ act as standard names for ∆.

Formulas of K are interpreted over K-structures. A K-structure is a Kripke structure
E of the form (W, {R1, . . . Rn}, V), where: W is a set whose elements are called possible
worlds ; V is a function assigning to each w ∈ W a first-order interpretation V (w); and
each Ri, called the accessibility relation for the modality Ki, is a binary relation over W ,
with the following constraints:

if w ∈ W then (w, w) ∈ Ri, i.e., Ri is reflexive
if (w1, w2) ∈ Ri and (w2, w3) ∈ Ri then (w1, w3) ∈ Ri, i.e., Ri is transitive
if (w1, w2) ∈ Ri and (w1, w3) ∈ Ri then (w2, w3) ∈ Ri, i.e., Ri is euclidean

An K-interpretation is a pair E, w, where E = (W, {R1, . . . Rn}, V) is an K-structure,
and w is a world in W . We inductively define when a sentence (i.e., a closed formula) φ
is true in an interpretation E,w (or, is true on world w ∈ W in E), written E, w |= φ, as

c©2006/TONES – August. 25, 2006 57/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

follows:7

E, w |= P (c1, . . . , cn) iff V (w) |= P (c1, . . . , cn)
E, w |= φ1 ∧ φ2 iff E, w |= φ1 and E,w |= φ2

E, w |= ¬φ iff E, w 6|= φ
E, w |= ∃x.ψ iff E, w |= ψx

c for some constant c
E, w |= Kiφ iff E, w′ |= φ for every w′ such that (w, w′) ∈ Ri

We say that a sentence φ is satisfiable if there exists an K-model for φ, i.e., an K-
interpretation E, w such that E, w |= φ, unsatisfiable otherwise. A model for a set Σ of
sentences is a model for every sentence in Σ. A sentence φ is logically implied by a set Σ
of sentences, written Σ |=K φ, if and only if in every K-model E, w of Σ, we have that
E, w |= φ.

Notice that, since each accessibility relation of a K-structure is reflexive, transitive
and Euclidean, all instances of axiom schemas T, 4 and 5 are satisfied in every K-
interpretation.

Epistemic semantics for ontology-based P2P data integration systems. Due
to the characteristics mentioned above, K is well-suited to formalize P2PDISs of the kind
presented in Section 2. Let P = {P1, . . . , Pn} be a P2PDIS in which each peer Pi has
identifier i. For each peer Pi = 〈O, S, L, M,L〉 we define the theory TK(Pi) in K as the
union of the following sentences:

• Global ontology O of Pi: for each sentence φ in O, we have

Kiφ

Observe that φ is a first-order sentence expressed in the alphabet of Pi, which is
disjoint from the alphabets of all the other peers in P .

• Local mapping assertions L between O and the local source schema S: for each
mapping assertion {x | ∃y.bodycqS

(x,y)} ; {x | ∃z.bodycqO
(x, z)} in L, we have

Ki(∀x.∃y.bodycqS
(x,y) ⊃ ∃z.bodycqO

(x, z))

• peer mapping assertions M : for each peer mapping assertion {x |
∃y.bodycqj

(x,y)} ; {x | ∃z.bodycqi
(x, z)} between the peer j and the peer i in

M , we have
∀x.Kj(∃y.bodycqj

(x,y)) ⊃ Ki(∃z.bodycqi
(x, z)) (11)

In words, this sentence specifies the following rule: for each tuple of values t, if peer j
knows the sentence ∃y.bodycqj

(t,y), then peer i knows the sentence ∃z.bodycqi
(t, z)

holds.

We denote by TK(P) the theory corresponding to the P2PDIS P , i.e., TK(P) =⋃
i=1,...,n TK(Pi).

7We have used ψx
c to denote the formula obtained from ψ by substituting each free occurrence of the

variable x with the constant c.

c©2006/TONES – August. 25, 2006 58/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

Example 7.2 We provide now the formalization of the P2PDIS of Example 7.1. The
theory TK(P1) modeling peer P1 is the conjunction of:

K1(∀x, y, y′, z, z′.Person1(x, y, z) ∧ Person1(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K1(∀x, y.S1(x, y) ⊃ ∃z.Person1(x, y, z))
∀x, z.K2(∃y.Citizen2(x, y, z)) ⊃ K1(∃y.Person1(x, y, z))

The theory TK(P2) modeling peer P2 is the conjunction of:

K2(∀x, y, y′, z, z′.Citizen2(x, y, z) ∧ Citizen2(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K2(∀x, y, z.S2(x, y, z) ⊃ Citizen2(x, y, z))

The theory TK(P3) modeling peer P3 is the conjunction of:

K3(∀x, y, y′, z, z′.Person3(x, y, z) ∧ Person3(x, y′, z′) ⊃ y = y′ ∧ z = z′)
∀x, y.K1(∃z.Person1(x, z, y)) ⊃ K3∃z.Person3(x, z, y)
∀x, y, z.K4(Citizen4(x, y, z)) ⊃ K3Person3(x, y, z)

The theory TK(P4) modeling peer P4 is the conjunction of:

K4(∀x, y, y′, z, z′.Citizen4(x, y, z) ∧ Citizen4(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K4(∀x, y, z.S4(x, y, z) ⊃ Citizen4(x, y, z))

The extension D = {D1, . . . , Dn} of a P2PDIS P is modeled as a sentence constituted
by the conjunction of all facts corresponding to the tuples stored in the sources, i.e.,
DB(D) =

∧n
i=1 DB(Di) where DB(Di) = Ki(

∧
t∈rDi r(t)).

A client of the P2PDIS interacts with one of the peers, say peer Pi, posing a query
to it. A query q is an open formula q(x) with free variables x expressed in the language
accepted by the peer Pi (we recall that such a language is a subset of first-order logic).
The semantics of a query q ∈ L posed to a peer Pi = 〈O, S, L,M,L〉 of P with respect to
an extension D is defined as the set of tuples

ANSK(q, Pi,P ,D) = {t | TK(P) ∪ DB(D) |=K Kiq(t)}

where q(t) denotes the sentence obtained from the open formula q(x) by replacing all
occurrences of the free variables in x with the corresponding constants in t.

7.2 Ontology-based data integration systems as instantiations
of the tones framework for peer ontologies

We now show how the tones framework for peer ontologies presented in Section 2.3 can
be instantiated to capture the P2P system formalizations presented above. In presenting
such an instantiation, we also assume that global ontologies are specified in a DL belonging
to the DL-Lite-family, which is particularly suited for effective ontology-based data access
(see also Section 6).

c©2006/TONES – August. 25, 2006 59/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

7.2.1 Instantiation of the framework for situated ontologies

First, we need to consider each ontology formalism in FP to be a situated ontology
formalism, i.e., F i = 〈F i,Li

E , Sem i
E〉, where (i) F i is an ontology formalism, (ii) Li

E is a
language over Σi ∪ Σi

E for the mapping between F i and the environment E i in which it
is situated, where Σi is the alphabet of F i and Σi

E is the alphabet of the environment,
and (iii) Sem i

E = 〈S i
E , δ

i
E〉 is the semantic specification for the mapping, where S i

E is a
set of states for the environment, and δi

E is a function associating a truth value to an
F i-ontology Oi, given an interpretation for Oi, and a state Ei ∈ S i

E .
We assume also that each situated ontology formalism F i is instantiated in a such a

way that:

1. The F i-ontology Oi is a DL-Lite ontology without the ABox, i.e., Oi is actually
a TBox specified in one of the DLs belonging to the DL-Lite family [CDGL+06a]
(we refer the reader to Section 6 for details on such an instantiation). We also
assume that all ontology alphabets Σi share the same countable subset Σo of object-
constants (we do not consider value-constant here), i.e., Σi

o = Σo for 1 ≤ i ≤ k
(notice that Σo corresponds to the set Γ defined in Section 7.1.2).

2. The environment E i is a relational database schema with relational alphabet Σi
E ,

(possibly) representing a set of (wrapped) data sources, and the language Li
E for the

mapping allows for constructing a mapping Mi constituted by a set of assertions,
each of the form

ϕ ; ψ

where ψ is a conjunctive query specified over the ontology Oi, and ϕ is a conjunctive
query of the same arity as that of ψ, specified over the relational database schema
constituting the environment (notice that ϕ and ψ play the same role of cqS and
cqO in local mapping assertions of a peer in a P2PDIS described in Section 7.1.2).

3. The semantic specification for the mapping Sem i
E = 〈S i

E , δ
i
E〉 is such that, the set S i

E
of states of the environment is a set of database instances for the database schema
E i, and, given a state Ei ∈ S i

E and an interpretation I i for Oi,

δi
E(Oi, I i, Ei) = true iff ϕE

i ⊆ ψI
i

for each ϕ ; ψ ∈Mi

where ϕE
i
denotes the evaluation of the query ϕ over the database instance E i, and

ψI
i
denotes the evaluation of the query ψ over the interpretation I i.

In other words, in terms of the terminology used in data integration [Len02], each
instantiation of each ontology formalism, i.e., each peer, in the system for FP -peer on-
tologies is actually a data integration system exporting a DL-Lite TBox as global rec-
onciled schema, adopting a GLAV approach to specify the mapping, according to which
queries over the global ontology are associated with queries over the sources, and using
the language of conjunctive queries to specify queries in the mapping.

We point out that also more complex instantiations of a situated ontology formalism
may be adopted for a peer, in particular those that face with the problem of the “mis-
match” existing between the objects that are instances of the global ontology and the

c©2006/TONES – August. 25, 2006 60/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

tuples of values that are instances of the relational database at the sources. For further
details on this matter, we refer the reader to Section 6, where an ontology formalism
instantiation is described, which allows for not storing object identifiers in the underlying
database (which instead is required by the present instantiation).

7.2.2 Instantiation of mapping languages

We consider now mapping languages and provide a possible instantiation for them. Our
proposal is general enough to capture the most common forms of mappings between peer
ontologies that have been proposed in the literature, and in particular those presented in
Section 7.1.

Basically, a peer mapping between ontology Oi and ontology Oj is set of assertions
between such two ontologies, each relating a view (i.e., a query) specified over Oi with a
view specified over Oj.

The semantic relationship expressed by a mapping assertion depends on the semantic
interpretation adopted for each assertion, and on the language adopted for specifying the
queries in the assertion. In general, different query languages may be adopted for querying
different ontologies.

According to the formalization for P2PDISs we intend to capture here, we assume
that the query language used for all mapping views is the language of conjunctive queries.

Then, for each i, j ∈ {1, . . . , k}, the mapping language Lij
M allows for specifying a peer

mapping Mij from the ontology Oi to the ontology Oj as a set of peer mapping assertions
of the form

cq i ; cq j,

where cq j, i.e., the head of the assertion, is a conjunctive query over the ontology Oj,
while cq i, i.e., the tail of the assertion, is a conjunctive query of the same arity as cq j

over the ontology Oi. In other words, the mapping language instantiation above allows
for precisely expressing peer mappings for P2PDISs.

7.2.3 Instantiation of the framework for peer ontologies

We finally consider instantiations of the semantic specification of peer ontologies. As al-
ready said we provide two different instantiations for capturing the two different formal-
izations discussed in Section 7.1. We first provide a first-order logic based instantiation,
then we provide an epistemic-logic based instantiation.

First-order semantics for systems of peer ontologies. Based on the instantiation
of each situated ontology formalism described above, we now instantiate the framework
to capture the “classical” approach to providing a semantics to the whole system of peer
ontologies. In this approach, one associates to a system P = 〈{Oi}1≤i≤k, {Mij}1≤i,j≤k〉
of FP -peer ontologies, a single (open) FOL theory TP , obtained as the disjoint union of
the various FOL theories corresponding to the instantiations of each situated ontology
formalism F i

P discussed above8 (peer mappings are not considered in TP).

8Notice that the instantiation of each Semi
E has been given in terms of first-order logic.

c©2006/TONES – August. 25, 2006 61/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

By following the approach used for each single situated ontology in the system, we
consider a state E for P , simply as the (disjoint) union of one local state Ei for each
ontology Oi in P . We call FOL interpretation of TP based on E an interpretation I of
the FOL theory TP such that for each relational symbol s of the environments in the
situated ontologies of P , we have that sI = sE. Then, the semantic specification for peer
ontologies SemP = 〈SP , δP 〉 is such that,

• SP is the set of FOL interpretation of TP based on E, and

• for each I ∈ SP , δP (I,P) = true iff

- each ontology Oi in P is satisfied by I, i.e., I ∈ ModF(Oi), and

- I is a model of the formula

∀x.(∃y.bodycqi
(x,y) ⊃ ∃z.bodycqj

(x, z))

for each peer mapping assertion cq i ; cq j belonging to
⋃i,j=k

i,j=1 Mij.

In other words, δP is the standard first-order logic applied to a system for peer
ontologies P .

Finally, let us consider the query answering service in a system of peer ontologies. Any
ontology of the system can be queried by external clients (both users or other ontologies).
Let us assume that queries are conjunctive queries over the TBox of the ontology. Given
a query q over one ontology Oi in P and a state (i.e., a database instance) E for the
environment (i.e., a relational database schema) E (which can be seen as the disjoint
union of all environments), we define the certain answers ANS fol(q, i,P , E) to q in P
based on E under FOL semantics, as the set of tuples t of constants in Σo such that
for every (FOL) FP -model I of P , we have that t ∈ qI (notice that this notion exactly
corresponds to the notion of certain answers given in Section 7.1.2).

Epistemic semantics for systems of peer ontologies. We give now a different
instantiation of the semantic specification of peer ontologies. Basically, such new instan-
tiation differs from the previous one for the way in which it interprets peer mapping
assertions. In particular, the semantics is not based (as in the previous case) on providing
a single FOL interpretation for the whole system: rather, an interpretation structure for
the system is now a set of FOL interpretations, which can be seen as the set of possible
states of the system. This possible worlds semantics corresponds to an epistemic inter-
pretation of the mappings [CDGLR04] (analogous to the one described in Section 7.1.4).

As a consequence of this interpretation, we consider each ontology in the system as
an independent peer, with its own set of FOL interpretations (again depending on states
assigned to the environment). This basically means that we did not provide anymore a
single FOL theory for the whole system.

More specifically, given a state E for P , such that E = {E1 ∪ . . . ∪ Ek}, where
each Ei is the state of the environment E i, the semantic specification for peer ontologies
SemP = 〈SP , δP 〉 is now such that,

c©2006/TONES – August. 25, 2006 62/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

• Sp is the set of all Sh = {S1
h, . . . ,Sk

h} such that each S i
h is a set of FOL interpre-

tations I i for the ontology Oi based on Ei, i.e., for each relational symbol s of the
environment E i, we have that sI

i
= sEi

;

• for each Sh ∈ SP we have that δP (Sh,P) = true iff

- each ontology Oi in P is satisfied by each I i ∈ S i
h, and

- for each peer mapping assertion cq i ; cq j belonging to
⋃i,j=k

i,j=1 Mij and for

each tuple ~t of constants of Σo, one of the following condition holds

- there exists I i ∈ S i
h such that cq i(~t) is not satisfied in I i;

- cq j(~t) is satisfied in Ij,for each Ij ∈ Sj
h.

It should be easy to see that the above semantics actually corresponds to the multi-
modal epistemic semantics used for the epistemic formalization of P2PDISs presented in
Section 7.1.4.

c©2006/TONES – August. 25, 2006 63/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley Publ. Co., 1995.

[BBL05] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
364–369, 2005.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation and Applications. Cambridge University Press, 2003.

[BCN92] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design, an
Entity-Relationship Approach. Benjamin and Cummings Publ. Co., 1992.

[BGK+02] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Ser-
afini, and I. Zaihrayeu. Data management for peer-to-peer computing:
A vision. In Proc. of the 5th Int. Workshop on the Web and Databases
(WebDB 2002), 2002.

[BH91] F. Baader and P. Hanschke. A schema for integrating concrete domains
into concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI’91), pages 452–457, 1991.

[BH92] F. Baader and P. Hanschke. Extensions of concept languages for a me-
chanical engineering application. In Proc. of the 16th German Workshop
on Artificial Intelligence (GWAI’92), volume 671 of Lecture Notes in Com-
puter Science, pages 132–143. Springer, 1992.

[BM01] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes – W3C
recommendation. Technical report, World Wide Web Consortium, May
2001. Available at http://www.w3.org/TR/xmlschema-2/.

[BPS94] A. Borgida and P. F. Patel-Schneider. A semantics and complete algo-
rithm for subsumption in the CLASSIC description logic. J. of Artificial
Intelligence Research, 1:277–308, 1994.

[BvHH+04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language ref-
erence – W3C recommendation. Technical report, World Wide Web Con-
sortium, Feb. 2004. Available at http://www.w3.org/TR/owl-ref/.

[CDGL+05] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
DL-Lite: Tractable description logics for ontologies. In Proc. of the 20th
Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

c©2006/TONES – August. 25, 2006 64/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

[CDGL+06a] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of the 10th
Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 2006), pages 260–270, 2006.

[CDGL+06b] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Data management in peer-to-peer data integration systems. In Global Data
Management. 2006.

[CDGL+06c] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. Submitted for publication, 2006.

[CDGLR04] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical founda-
tions of peer-to-peer data integration. In Proc. of the 23rd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2004),
pages 241–251, 2004.

[Che76] P. P. Chen. The Entity-Relationship model: Toward a unified view of data.
ACM Trans. on Database Systems, 1(1):9–36, Mar. 1976.

[Che80] B. F. Chellas. Modal Logic: An introduction. Cambridge University Press,
1980.

[CL93] T. Catarci and M. Lenzerini. Representing and using interschema knowl-
edge in cooperative information systems. J. of Intelligent and Cooperative
Information Systems, 2(4):375–398, 1993.

[FKLS03] E. Franconi, G. Kuper, A. Lopatenko, and L. Serafini. A robust logical and
computational characterisation of peer-to-peer database systems. In Proc.
of the VLDB International Workshop On Databases, Information Systems
and Peer-to-Peer Computing (DBISP2P 2003), 2003.

[FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Se-
mantics and query answering. In Proc. of the 9th Int. Conf. on Database
Theory (ICDT 2003), pages 207–224, 2003.

[GHVD03] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic pro-
grams: Combining logic programs with description logic. In Proc. of the
12th Int. World Wide Web Conf. (WWW 2003), pages 48–57, 2003.

[HB91a] B. Hollunder and F. Baader. Qualifying number restrictions in con-
cept languages. Technical Report RR-91-03, Deutsches Forschungszentrum
für Künstliche Intelligenz (DFKI), Kaiserslautern (Germany), 1991. An
abridged version appeared in Proc. of the 2nd Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’91).

c©2006/TONES – August. 25, 2006 65/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

[HB91b] B. Hollunder and F. Baader. Qualifying number restrictions in concept
languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’91), pages 335–346, 1991.

[HH01] J. Heflin and J. Hendler. A portrait of the Semantic Web in action. IEEE
Intelligent Systems, 16(2):54–59, 2001.

[HIST03] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer
data management systems. In Proc. of the 19th IEEE Int. Conf. on Data
Engineering (ICDE 2003), pages 505–516, 2003.

[HKS05] I. Horrocks, O. Kutz, and U. Sattler. The irresistible SRIQ. In Proc. of
the Workshop on OWL: Experiences and Directions (OWLED 2005), 2005.

[HKS06] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In
Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pages 57–67, 2006.

[HMS05] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in
very expressive description logics. In Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), pages 466–471, 2005.

[HN90] B. Hollunder and W. Nutt. Subsumption algorithms for concept languages.
Technical Report RR-90-04, Deutsches Forschungszentrum für Künstliche
Intelligenz (DFKI), Kaiserslautern (Germany), 1990.

[HPSBT05] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. OWL
Rules: A proposal and prototype implementation. J. of Web Semantics,
3(1):23–40, 2005.

[HPSvH03] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. J. of Web Seman-
tics, 1(1):7–26, 2003.

[HS99] I. Horrocks and U. Sattler. A description logic with transitive and inverse
roles and role hierarchies. J. of Logic and Computation, 9(3):385–410, 1999.

[HS03] I. Horrocks and U. Sattler. Decidability of SHIQ with complex role inclu-
sion axioms. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2003), 2003.

[HS05] I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
pages 448–453, 2005.

[HST99] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive de-
scription logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors,
Proc. of the 6th Int. Conf. on Logic for Programming and Automated Rea-
soning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence,
pages 161–180. Springer, 1999.

c©2006/TONES – August. 25, 2006 66/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

[Hul88] R. Hull. A survey of theoretical research on typed complex database objects.
In J. Paredaens, editor, Databases, pages 193–256. Academic Press, 1988.

[Koc02] C. Koch. Query rewriting with symmetric constraints. In Proc. of the
2nd Int. Symp. on Foundations of Information and Knowledge Systems
(FoIKS 2002), volume 2284 of Lecture Notes in Computer Science, pages
130–147. Springer, 2002.

[Len02] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2002), pages 233–246, 2002.

[LL01] H. J. Levesque and G. Lakemeyer. The Logic of Knowledge Bases. The
MIT Press, 2001.

[LR98] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics
in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[OCE06] M. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity
for conjunctive query answering in expressive description logics. In Proc. of
the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006), 2006.

[PSHH04] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Lan-
guage semantics and abstract syntax – W3C recommendation. Techni-
cal report, World Wide Web Consortium, Feb. 2004. Available at http:

//www.w3.org/TR/owl-semantics/.

[PSMB+91] P. F. Patel-Schneider, D. L. McGuinness, R. J. Brachman, L. A. Resnick,
and A. Borgida. The CLASSIC knowledge representation system: Guiding
principles and implementation rational. SIGART Bull., 2(3):108–113, 1991.

[Sat96] U. Sattler. A concept language extended with different kinds of transitive
roles. In G. Görz and S. Hölldobler, editors, Proc. of the 20th German
Annual Conf. on Artificial Intelligence (KI’96), number 1137 in Lecture
Notes in Artificial Intelligence, pages 333–345. Springer, 1996.

[Sch94] A. Schaerf. Reasoning with individuals in concept languages. Data and
Knowledge Engineering, 13(2):141–176, 1994.

[SS89] M. Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In R. J.
Brachman, H. J. Levesque, and R. Reiter, editors, Proc. of the 1st Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR’89),
pages 421–431. Morgan Kaufmann, 1989.

[SWM04] M. K. Smith, C. Welty, and D. L. McGuiness. OWL Web Ontology Lan-
guage guide – W3C recommendation. Technical report, World Wide Web
Consortium, Feb. 2004. Available at http://www.w3.org/TR/owl-guide/.

c©2006/TONES – August. 25, 2006 67/68 TONES-D08 – v.2.1

FP6-7603 – TONES Thinking ONtologiES WP2

[Tob00] S. Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. J. of Artificial Intelligence Re-
search, 12:199–217, 2000.

c©2006/TONES – August. 25, 2006 68/68 TONES-D08 – v.2.1

