
Tasks for Ontology Access, Processing, and
Usage

Deliverable TONES-D10

Diego Calvanese1, Enrico Franconi1, Birte Glimm3, Bernardo Cuenca Grau3,

Ian Horrocks3, Alissa Kaplunova5, Domenico Lembo2, Maurizio Lenzerini2,
Carsten Lutz4, Ralf Möller5, Riccardo Rosati2, Ulrike Sattler3,

Sergio Tessaris1, Anni-Yasmin Turhan4

1 Free University of Bozen-Bolzano, 2 Università di Roma “La Sapienza”,
3 The University of Manchester, 4 Technische Universität Dresden,

5 Technische Universität Hamburg-Harburg

Project: FP6-7603 – Thinking ONtolgiES (TONES)

Workpackage: WP4– Ontology access, processing, and usage

Lead Participant: Hamburg University of Technology

Reviewer: Giuseppe de Giacomo

Document Type: Deliverable

Classification: Public

Distribution: TONES Consortium

Status: Final

Document file: D10 TasksAcessProcessingUsage.pdf

Version: 1.1

Date: August 31, 2006

Number of pages: 80

FP6-7603 – TONES Thinking ONtologiES WP4

c©2006/TONES – August 31, 2006 1/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Abstract

Research about ontology access, processing, and usage paves the way for realizing
important tasks in future applications requiring well-understood formal representa-
tion formalisms as well as efficient and industrial-strength implementations. In this
report, we summarize the state of the art for most important application tasks of
this kind that use ontologies as their backbone. In addition to a formalization of the
tasks for some of the most important application scenarios, we also report on recent
theoretical and practical advances for their realization that have been achieved as
part of our work in the TONES project.

c©2006/TONES – August 31, 2006 2/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Document Change Record

Version Date Reason for Change

v.1.0 August 10, 2006 First draft

v.1.1 August 31, 2006 Final version

c©2006/TONES – August 31, 2006 3/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Contents

I Ontology-based Information Access and Manipulation 7

1 Query Answering 7
1.1 Practical Query Answering in DL Systems 8

1.1.1 Motivation of the nRQL Language 9
1.1.2 Syntax and Semantics of nRQL . 12
1.1.3 The nRQL Engine . 16
1.1.4 Meta Level Querying . 17
1.1.5 Access to Told Information . 18
1.1.6 Load Balancing and Caching . 18
1.1.7 Related Work and Future Challenges 19

1.2 Expressive DLs and Conjunctive Queries 20
1.2.1 Syntax and Semantics of SHIQ . 21
1.2.2 Conjunctive Queries Tasks . 22
1.2.3 Forests and Trees . 24
1.2.4 The Decision Procedure . 29
1.2.5 Challenges . 32

1.3 Less Expressive DLs and Hardness Results 32
1.3.1 Formal Definitions . 34
1.3.2 NLogSpace-hard DLs . 36
1.3.3 PTime-hard DLs . 39
1.3.4 coNP-hard DLs . 43
1.3.5 Related Work . 45
1.3.6 Summary of Results . 46
1.3.7 Discussion . 47

2 Query Formulation Support 47
2.1 Query Building . 49
2.2 Reasoning Services and Query Interface . 50
2.3 Requirements for Ontologies . 52
2.4 Beyond Binary Predicates . 52
2.5 Using a Description Logics Reasoner . 53

3 Information Extraction 55
3.1 Formalizing the Information Extraction Problem 55
3.2 Challenges for Ontology Access, Processing, and Usage 57

4 Updating ABoxes 58
4.1 Motivation . 58
4.2 Syntactic Updates . 58
4.3 Semantic Updates . 59

c©2006/TONES – August 31, 2006 4/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

II Using Ontologies for Specific Tasks in Applications 61

5 Semantic Service Discovery and Selection 61
5.1 The Formalism . 62
5.2 Service Descriptions . 63
5.3 Reasoning about Services . 65
5.4 Deciding Executability and Projection . 66
5.5 Related Work . 68
5.6 Discussion . 70

6 Configuration of Technical Devices 70
6.1 Formalizations of the Configuration Task 71
6.2 Challenges for Ontology Processing . 71

c©2006/TONES – August 31, 2006 5/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Preface

For building applications, ontologies can be used for various purposes. On the one hand,
they can be used to verify the conceptual data model (see, e.g., [13]), which then can be
used to build a standard application using well-known software-engineering techniques.
On the other hand, ontologies can also be used to actually solve (sub-)problems occurring
in application tasks if these (sub-)problems can be formalized using decision problems
defined for a certain ontology framework. In particular, in the context of the Semantic Web
one of the main tasks, information access and retrieval, can be formalized using ontologies.
In this report, we analyze tasks involving ontology access, processing, and usage in order
to demonstrate the state of the art. We also investigate remaining problems, identify
challenges, and present first results that have been achieved in the TONES project.

In the following, we focus on ontology languages that are based on description logics,
one of the major fragments of first-order logic for which decidable decision problems
related to query answering and other ontology-based tasks can be defined.

The report is subdivided into two main parts. After this introduction, we investigate
ontology-based information access as a first task in which ontologies are used to solve
application problems. Assuming that information is explicitly and declaratively speci-
fied we discuss practical ontology-based query answering systems, demonstrate ontology
and query languages tailored towards specific mass-data requirements, analyze their com-
plexity, and present query answering algorithms w.r.t. increasing expressiveness of the
ontology definition language. In addition, we analyze how an ontology system could sup-
port a user in formulating queries for certain information needs. The proposed techniques
work if information to be retrieved is explicitly represented (in terms of data descriptions
or in terms of declarative meta information already attached to information objects).
However, even in the context of the Semantic Web it might not always be the case that
meta information is available for information represented as images, videos, audio files,
or even natural language documents. We present a formalization of an information ex-
traction approach that uses ontologies to extract information from media data and makes
it automatically available as meta data for media such that the aforementioned query
languages can be used to retrieve these documents containing relevant information. We
also investigate how ontologies can be used to manipulate indefinite information appro-
priately. Starting from standard syntactic approaches we also cover “semantic updates”
of information sources. Afterwards, in the last part it is explained how ontology systems
can be used to formalize and solve other specific tasks in applications. In order to demon-
strate the main insights of how ontologies can be used to solve problems, we focus on
semantic service discovery and selection as well as on how to use ontologies to construct
or configure technical devices.

c©2006/TONES – August 31, 2006 6/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Part I

Ontology-based Information Access
and Manipulation

1 Query Answering

Ontology-based information access is the predominant example that demonstrates why
recently ontologies have become very popular in many scientific and practical fields. With
the expressive power of ontologies, queries can be posed w.r.t. the vocabulary of the user
rather than have to be specified w.r.t. the low-level vocabulary of the data model of a
particular information source. Depending on the expressiveness, we distinguish between
single- and multi-model ontologies. The latter kind can express indefinite information
and, speaking in extensional terms, we talk of data descriptions (which can have multiple
models) rather than merely data (which represent a single model). For information access
we distinguish two different scenarios:

1. Data descriptions are already available, i.e. query answering is to be defined w.r.t.
explicitly given data or data descriptions. Depending on the context, two different
aspects are important for query answering:

• Focus is on inferred information (the standard view, in which there is no dis-
tinction between explicitly given information and derived information);

• Focus is on explicitly stated information only (aka told information access, a
kind of ontology processing which is relevant, e.g., for developing ontology de-
sign tools and for using ontology processing capabilities of existing DL systems
for implementing algorithms for solving higher-level decision problems).

2. Information is implicit in media data, and logical descriptions of the content must
be derived in beforehand. This concerns, for instance, query w.r.t. media data for
which an information extraction process is required in order to make ontologies
apply to query answering.

Informally speaking, query answering with respect to an ontology means to find tuples
of individuals that satisfy certain conditions. For specifying conditions, various kinds
of query languages with different expressivity have been investigated in the literature
(e.g., first-order logic, datalog [24], etc.). In this report we focus on query languages in
the context of ontologies based on description logics. Syntax and semantics of specific
languages will be introduced in subsequent sections.

We start with practical DL systems and present the main ideas of query languages
based on so-called grounded conjunctive queries that are currently supported by system
implementations and analyze their capabilities and shortcomings. Hereafter the report
presents theoretical work on query languages supporting (full) conjunctive queries for
very expressive ontology languages, and then analyzes conjunctive queries with first-order
reducibility for less expressive ontology languages.

c©2006/TONES – August 31, 2006 7/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

1.1 Practical Query Answering in DL Systems

In many description logic application contexts (e.g., Semantic Web, natural language and
image understanding, software verification, etc.), problems are reduced to ABox inference
problems and, hence, an ABox query language is required. Concept-based retrieval of
individuals as provided by older description logic systems is often not enough in many
application scenarios.

For practical systems, standards are of utmost importance. Users will only invest in
a certain technology if they do not have to rely on proprietary languages. For research
purposes, however, standards can also be an obstacle because new features, which are
required for applications, cannot be supported easily (except with non-standard extensions
to some existing standard). While there exist standards for query languages such as OWL-
QL [28], in many application projects the expressivity offered by this language is not
enough because, for instance, negation as failure inferences are used in many applications
but are not supported in OWL-QL. In this section we study a very expressive query
language that goes beyond OWL-QL in some respects but has less expressivity in others
in order to provide for efficient implementation. The scientific problem is to specify
the semantics of such a language such that (i) it is practically useful (i.e., expressivity
meets practical requirements), (ii) language constructs can be combined in an orthogonal
way, and (iii) a coherent set of basic query atoms is provided in such a way that a
semantics can be specified in a declarative way (i.e., special-purpose language constructs
can be introduced as syntactic sugar but need not to be treated with specific techniques).
In order to support practical experiments, the language is implemented as part of the
RacerPro description logic system [39]. The language is called the new Racer Query
Language, nRQL (pronounce “nercle”), which now is an integral part of the RacerPro 1.9
engine. nRQL was designed with a focus on conceptual simplicity as well as language
orthogonality on the one hand, but also meets the requirement to offer full access to all
ABox features available in Racer, for example, it provides access to the concrete domain
part of an ABox [7]. Since its first release [42], nRQL has developed considerably. The
insights behind the language design are summarized in this section. We contribute to
further standardization efforts, which might select a specific, XML-based surface syntax
also for those features not covered by OWL-QL. For instance, in [31] we investigate how
subsets of nRQL can be used to implement an OWL-QL query answering engine for the
subset of so-called grounded conjunctive queries (see below). We use the name OWL-QL−

in order to denote OWL-QL with grounded conjunctive queries.
Since extensional information from OWL documents (OWL instances and their inter-

relationships) are represented with ABoxes (with associated TBoxes), it is apparent that
nRQL can also be understood as a Semantic Web query language. In order to support
special OWL features such as annotation and datatype properties, special OWL querying
facilities have been incorporated into nRQL.

This paper is structured as follows. First, we informally describe the main ideas behind
the language constructs of the nRQL language. Then we formally specify the syntax and
semantics of nRQL. After that, the main ideas of the nRQL query answering engine (i.e.,
the implementation of query semantics) are presented.

c©2006/TONES – August 31, 2006 8/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

1.1.1 Motivation of the nRQL Language

In the following we describe nRQL’s main language features as well as the core design
principles we have followed. We use a syntax tailored towards interactively posing queries
rather than consider a verbose XML-based syntax designed for machine processing. As
usual, a nRQL query consists of a query head and a query body. For example, the query

(retrieve (?x ?y) (and (?x woman) (?x ?y has-child)))

has the head (?x ?y) and the body (and (?x woman) (?x ?y has-child)). It returns
all mother-child individuals pairs from the ABox. In a nutshell, the nRQL language (to
be distinguished from the nRQL engine, see below) can be characterized as follows:

Variables and individuals can be used in queries. The variables range over the indi-
viduals of an ABox, and are bound to those ABox individuals which satisfy the query.
The notion of satisfiability of a query used in nRQL is defined in terms of logical entail-
ment. This means, a variable is bound to an ABox individual iff it can be proved that
this binding holds in all models of the knowledge base. Because variables are bound only
to individuals mentioned in a knowledge base (and not to individuals that might exist
due to existential restrictions), we call nRQL a grounded query language (the semantics
is also called active domain semantics [1]).

Returning to our example query body (and (?x woman) (?x ?y has-child)), ?x

is only bound to those individuals which are instances of the concept mother having a
known child ?y in all models of the KB.

nRQL distinguishes variables which must be bound to differently named individuals
(prefix ?, e.g., ?x, ?y cannot be bound to the same ABox individual) from variables
for which this does not hold (prefix $?, e.g., $?x, $?y). Individuals from an ABox are
identified by using them directly in the query, e.g. betty.

Different types of query atoms are available: these include concept query atoms,
role query atoms, constraint query atoms, and same-as query atoms. To give some
examples, the atom (?x (and woman (some has-child female))) is a concept query
atom, (?x ?y has-child) is a role query atom, (?x ?x (constraint (has-father

age) (has-mother age) =)) is a constraint query atom (asking for the persons ?x whose
parents have equal age), and (same-as ?x betty) is a same-as query atom, enforcing
the binding of ?x to betty.

As the given example concept query atom demonstrates, it is possible to use complex
concept expressions within concept query atoms. Regarding role query atoms, the set
of role expressions is more limited. However, it is possible to use inverted roles (e.g.,
role expressions such as (inv R)) as well as negated roles within role query atoms. For
example, the atom (?x ?y (not has-father)) will return those bindings for ?x, ?y for
which Racer can prove that the individual bound to ?x cannot have the individual bound
to ?y as a father. If the role has-father was defined as having the concept male as a
range, then at least all pairs of individuals in which ?y is bound to a female person are
returned, given male and female can be proved to be disjoint.

Complex queries are built from query atoms using the boolean constructors and,

union, neg. We have already seen an example: (and (?x woman) (?x ?y has-child))

is a simple conjunctive query body. These constructors can be combined in an arbitrary
way to create complex queries. This is why we call nRQL an orthogonal language.

c©2006/TONES – August 31, 2006 9/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

The neg operator implements a negation as failure semantics (NAF): (neg (?x

woman)) returns all ABox individuals for which Racer cannot prove that they are in-
stances of woman. Thus, (neg (?x woman)) returns the complement set of (?x woman)

w.r.t. the set of all ABox individuals. If used in front of a role query atom, e.g. (neg (?x

?y has-child)), this returns the two-dimensional set difference of (?x ?y has-child)

w.r.t. the Cartesian product of all ABox individuals, i.e. all pairs of individuals which are
not in the extension of has-child in all models.

The semantics of nRQL ensures that DeMorgan’s Laws hold:
(neg (and a1 . . . an)) is equivalent to (union (neg a1) . . . (neg an)), and that

the set difference using neg is well-defined for each basic query atom.
Please note that (?x (not woman)) has a different semantics from (neg (?x

woman)), since the former returns the individuals for which Racer can prove that they are
not instances of woman, whereas the latter returns all instances for which Racer cannot
prove that they are instances of woman. The same line of argumentation applies to role
and constraint query atoms, although NAF negation of constraint query atoms is more
involved in the presence of role chains.

Support for retrieving told concrete domain values from the concrete domain part of
a Racer ABox: Suppose that age is a so-called concrete domain attribute of type integer.
Thus, the age attribute fillers of a certain individual must be concrete domain values of
type integer. We can use the following query to retrieve all adults as well as their ages:
(retrieve (?x (told-value (age ?x)) (?x (min age 18)))), and a possible answer
might be (((?x michael) ((told-value (age michael)) 34))).

Since nRQL variables are bound to ABox individuals but not to concrete domain
datatype values (for reasons of safeness, see below), nRQL includes a special set of so-called
head projection operators in order to support retrieval of concrete domain datatype values.
These operators are denoted in a functional style in the head of a query - (told-value
(age ?x)) is such an operator. Moreover, a concrete domain value such as 34 can only
be retrieved if it has been told to Racer - that is, the value must be explicitly (syntacti-
cally) specified in the ABox. The rationale for this is that description logic systems do
not compute the solutions of a concrete domain constraint system, but only decide its
satisfiability. There would be no way to return these solutions as bindings to variables
in the general case. Therefore, nRQL does not offer variables which range over concrete
domain values. Allowing so would either destroy the orthogonality of nRQL, or make the
language unsafe - after all, given a query such as (retrieve (?x ?y) (and (?x ?y age)

(?y (and integer (min 18))))) would result in an infinite set of binding tuples. Note
that concrete domain attributes are not roles; thus, (?x ?y age) is syntactically invalid.
For these reasons, querying for concrete domain values is only supported by means of
concept expressions and head projection operators.

Moreover, constraint query atoms allow one to “compare” concrete domain attribute
fillers of different individuals. Consider the query

(retrieve (?x (told-value (age ?x)))

(and (?x (and woman (an age))) (?x ?y has-child)

(?y ?y (constraint (has-father age) (has-mother age)

(< (+ age-1 8) age-2)))))

c©2006/TONES – August 31, 2006 10/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

which returns the list of women and their ages. The women are required to have children
whose fathers are at least 8 years older than their mothers. Note that (has-father age)

denotes a “path expression”: starting from the individual bound to ?y we retrieve the
value of the concrete domain attribute age of the individual which is the filler of the
has-father role (feature) of this individual. In a similar way, the age of the mother of ?y
is retrieved. These concrete domain values are then used as actual arguments to evaluate
the compound concrete domain predicate (< (+ age-1 8) age-2). Here, age-1 refers
to (has-father age), and age-2 refers to (has-mother age). Note that the suffixes
-1, -2 have been added to the age attribute in order to differentiate the two values.
Obviously, this mechanism is not needed in case the two chains are ended by different
attributes.

Special support for querying OWL documents, e.g., retrieving told datatype value fillers
of OWL datatype and OWL annotation properties. Retrieval of these datatype values is
supported in a similar style as in the concrete domain case, by means of concept query
atoms and head projection operators.

Since concept expressions such as (min age 18) are useful in concept query atoms for
specifying constraints on the datatype values to be retrieved, we have extended the Racer
concept expression syntax to allow for similar concept query atoms containing datatype
properties instead of attributes. This means, the concrete domain constraint expression
language of Racer has been extended to also cover OWL datatype properties in addition
to attributes. Thus, if age is not a concrete domain attribute, but now an OWL datatype
property, then the previous query would work as well. Using concept query atoms, we can
also query for the (non)existence of fillers of annotation properties of individuals. This
means, if AP is an annotation property, then only concept query atoms such as (?x (an

AP)) and (?x (no AP)) are defined. The filler annotation values of these individuals ?x

can indeed be retrieved by means of the annotations head projection operators as well
(see syntax specification).

nRQL also offers a body projection operator. Sometimes this operator is required in
order to reduce the “dimensionality” of a tuple set, for example, before computing a set
difference with an n-dimensional set. This is exactly what happens if neg is used.

Let us motivate the necessity for such an operator: consider (retrieve (?x) (and

(?x mother) (?x ?y has-child))). This query returns all mothers having a known
child in the ABox. Now, how can we query for mothers which do not have a known child?

Our first attempt will be the query (retrieve (?x) (and (?x mother) (neg (?x

?y has-child)))). A bit of thought and recalling that (neg (?x ?y has-child))

returns the complement set of (?x ?y has-child) w.r.t. the Cartesian product of
all ABox individuals will reveal that this query doesn’t solve the task. In a second
attempt will would probably try (retrieve (?x) (neg (and (?x mother) (?x ?y

has-child)))). However, due to DeMorgan’s Law and nRQL’s semantics, this query
is equivalent to (retrieve (?x) (union (and (neg (?x mother)) (?y top)) (neg

(?x ?y has-child)))) – first the union of two two-dimensional tuple sets is constructed,
and then only the projection to the first element of these pairs (?x) is returned. Obviously,
this set contains also the instances which are not known to be mothers, what is wrong
as well. Thus, the need for the projection operator becomes apparent: (retrieve (?x)

(and (?x mother) (neg (project-to (?x) (?x ?y has-child)))))

c©2006/TONES – August 31, 2006 11/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

solves the task. This body projection operator was not present in earlier
versions of nRQL, special syntax was introduced to address these problems,
namely the unary special atoms (?x (has-known-successor has-child)),
(?x NIL has-child) and (NIL ?x child-of). These atoms (which still
work) can now be seen as “syntactic sugar” for the bodies (project-to

(?x) (?x ?y has-child)), (neg (project-to (?x) (?x ?y has-child))) and
(neg (project-to (?x) (?y ?x has-child))). The project-to operator can be
used at any position in a query body.

nRQL also offers defined queries. These can be understood as a simple macro
mechanism. For example, the form (defquery mother (?x) (and (?x woman) (?x

?y has-child))) can be used to define a query mother which can be subsequently
used in calls such as (retrieve (?x) (?x mother)) or in subsequent definitions, e.g.
(defquery married-mother (?x) (and (?x mother) (?x ?y has-spouse))). The
definitions must be acyclic.

1.1.2 Syntax and Semantics of nRQL

Definition 1 (Syntax of nRQL). A nRQL query has a head and a body . A head can
contain the following (note that {a|b} represents a or b):

head := (head entry∗)

object := variable | individual
variable := a symbol beginning with “?”

individual := a symbol
head entry := object | head projection operator

head projection operator := (cd attribute object) |
(told-value (cd attribute object)) |
(told-value (datatype property object)) |
(annotations (annotation property object))

The body is defined as follows:
body := atom | ({and | union} body∗) | (neg body) |

(project-to (object∗) body)

atom := (object concept expr) | (object object role expr) |
(object object (constraint chain chain constraint expr)) |
(same-as object object)

chain := (role expr∗ cd attribute)
The “bridge” to the Racer syntax is given by the following rules:

concept expr := a Racer concept, with some extensions for OWL
role expr := a Racer role or the special role equal |

(inv role expr) | (not role expr)
constraint expr := a (possibly compound) Racer concrete domain

predicate, e.g. (< (+ age-1 20) age-2)

cd attribute := a Racer concrete domain attribute
datatype property := a Racer role used as OWL datatype property

�

c©2006/TONES – August 31, 2006 12/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Note that nRQL allows the use of negated roles in role atoms, as well as the special role
equal. The semantics of equal is fixed: equalI =def ID2,ΔI , (see below for the definition
of ID); thus, equal is interpreted as the two-dimensional identity relationship.

Definition 2 (Semantics of nRQL). Let A be a Racer ABox, and TA denote its associated
TBox. Denote the set of individuals used in A with IndsA.

Let q be a nRQL query body. The function vars(q) is defined inductively:
vars((x concept expr)) =def {x},
vars((x1 x2 role expr)) =def {x1, x2},
vars((x1 x2 (constraint ...))) =def {x1, x2},
vars(({ and | union | neg } q1 . . . qm)) =def

⋃
1≤i≤m vars(qi), BUT

vars((project-to (x1 . . . xm) . . .)) =def {x1 . . . xm}.
Thus, vars “stops at projections”. Assume that 〈x1,q, . . . , xn,q〉 is a lexicographic enu-

meration of vars(q). Denote the ith element in this vector with xi,q, indicating its position
in the vector.

Let T be a set of n-ary tuples 〈t1, . . . , tn〉 and 〈i1, . . . , im〉 be an index vector
with 1 ≤ ij ≤ n for all 1 ≤ j ≤ m. Then we denote the set T ′ of m-ary tu-
ples with T ′ =def { 〈ti1 , . . . , tim〉 | 〈t1, . . . , tn〉 ∈ T } = π〈i1,...,im〉(T), called the projec-
tion of T to the components mentioned in the index vector 〈i1, . . . , im〉. For example,
π〈1,3〉{〈1, 2, 3〉 , 〈2, 3, 4〉} = {〈1, 3〉 , 〈2, 4〉}.
Let �b = 〈b1, . . . , bn〉 be a bit vector of length n, bi ∈ {0, 1}. Let m ≤ n. If �b is a bit
vector which contains exactly m ones, and B is a set, T is a set of m-ary tuples, then the
n-dimensional cylindrical extension T ′ of T w.r.t. B and �b is defined as

T ′ =def { 〈i1, . . . , in〉 | 〈j1, . . . , jm〉 ∈ T , 1 ≤ l ≤ m, 1 ≤ k ≤ n
with ik = jl if bk = 1,

and bk is the lth one (1) in �b,
otherwise, ik ∈ B }

and denoted by χB,〈b1,...,bn〉(T). For example,
χ{a,b},〈0,1,0,1〉({〈x, y〉}) = {〈a, x, a, y〉 , 〈a, x, b, y〉 , 〈b, x, a, y〉 , 〈b, x, b, y〉}.
We denote an n-dimensional bit vector having ones at positions specified by the index

set I ⊆ 1 . . . n as �1n,I . For example, �14,{1,3} = 〈1, 0, 1, 0〉. Moreover, with IDn,B we denote
the n-dimensional identity relation over the set B: IDn,B =def { 〈x, . . . , x〉︸ ︷︷ ︸

n

| x ∈ B }.

The semantics of a nRQL query is given by the set of tuples it returns if posed to an
ABox A. This set of answer tuples is called the extension of q and denoted by qE . We
claim that the given semantics in terms of “tuple spaces” is substantially easier to grasp
for users than the FOPL-based semantics (i.e., the one we gave for the older versions of
nRQL in [42, 43]).

In order to simplify the specification of the semantics, the query body q first undergoes
some syntactical transformations: In a first step, q is rewritten by consistently replacing all
its individuals with new representative fresh variables throughout the body. If the individ-
ual i has been replaced with the variable xi, then we also add the conjunct (same-as xi i)
to q, yielding a body of the form (and q (same-as xi i) (same-as . . .) . . .). In a second
step, the role chains possibly present in constraint query atoms are decomposed. This
means they are replaced by conjunctions of role query atoms such that only concrete

c©2006/TONES – August 31, 2006 13/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

domain attributes remain in chains of constraint query atoms. Fresh anonymous vari-
ables are used for this purpose. E.g., the atom (?x ?y (constraint (has-father age)

(has-mother age) =)) is replaced with the body

(and (?x ?ano1-x-father has-father)

(?y ?ano2-y-mother)

(?ano1-x-father ?ano2-y-mother

(constraint age age =))).

Let q′ be the transformed query.
We can now define the semantics of the different query atoms, being part of q′. Keep

in mind that 〈x1,q′ , . . . , xn,q′〉 is the variable vector of q′ and that n is the total number of
variables returned by vars(q′). For the sake of brevity we only consider variables which do
not prevent the binding of an ABox individual to multiple variables (but the semantics
can be easily extended). Thus, the semantics for the different nRQL query atoms is given
as:
(q ′

xi
concept expr)E =def χIndsA,�1n,{i}(concept instances(A, concept expr))

(q ′
xi

q ′
xj

rolen expr)E =def χIndsA,�1n,{i,j}(role pairs(A, role expr)), if i 	= j

(q ′
xi

q ′
xi

role expr)E =def χIndsA,�1n,{i}(role pairs(A, role expr) ∩ ID2,IndsA)

(same-as q ′
xi

ind)E =def χIndsA,�1n,{i}({ind})
(same-as ind q ′

xi
)E =def χIndsA,�1n,{i}({ind})

(same-as q ′
xi

q ′
xj
)E =def χIndsA,�1n,{i,j}(ID2,IndsA), if i 	= j

(same-as q ′
xi

q ′
xi
)E =def χIndsA,�1n,{i}(ID2,IndsA)

(q ′
xi

q ′
xj
(constraint attrib1 attrib2 P))E =def

χIndsA,�1n,{i,j}(predicate pairs(A, attrib1, attrib2, P)), if i 	= j

(q ′
xi

q ′
xi
(constraint attrib1 attrib2 P))E =def

χIndsA,�1n,{i}(predicate pairs(A, attrib1, attrib2, P) ∩ ID2,IndsA)

This definition uses some auxiliary functions, providing the bridge to the classical ABox
retrieval functions offered by Racer. These bridge functions have the standard DL seman-
tics in terms of logical entailment. However, as already mentioned, a nRQL role expres-
sion (role expr) can also be a negated (or inverse) role. In case of role expr = equal

we have (A, TA) |= equal(i, j) iff iI = jI in all models (ΔI , ·I) of (A, TA); in case of
role expr = ¬equal we have iI 	= jI in all models. A predicate (P) can be denoted
as a lambda expression and is made from the vocabulary which Racer offers for build-
ing linear (in)equalities. For example, (< (+ 20 age-1) age-2) can be expressed as
P = λ(age1, age2).age1 + 20 < age2:

concept instances(A, concept expr) =def

{ i | i ∈ IndsA, (A, TA) |= concept expr(i) }
role pairs(A, role expr) =def

{ 〈i, j〉 | i, j ∈ IndsA, (A, TA) |= role expr(i, j) }
predicate pairs(A, attrib1, attrib2, P) =def

{ 〈i, j〉 | i, j ∈ IndsA, (A, TA) |=
∃x, y : attrib1(i, x) ∧ attrib2(j, y) ∧ P (x, y) }

The semantics of complex nRQL bodies can be defined easily now:

c©2006/TONES – August 31, 2006 14/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

(and q1 . . . qi)
E =def

⋂
1≤j≤i q

E
j

(union q1 . . . qi)
E =def

⋃
1≤j≤i q

E
j

(neg q)E =def (IndsA)n \ qE
(project-to (xi1,q . . . xik,q) q)E =def π〈i1,...,ik〉(q

E)

So far we have specified the semantics of a query body. To get the answer of a query,
the head has to be considered. This can be seen as a further projection of qE to the
variables mentioned in the head. If the head contained an individual, then this individual
has also been replaced by the representative variable in the head (see above). In case a
head projection operator is encountered, the functional operator is applied to the binding
of the argument variable. The value is included in the query answer (producing nested
binding lists). In case of OWL datatype fillers, the projection operators will possibly
return a list of datatype values. A formal definition of this process is omitted here due to
space limitations.

�
Grounded conjunctive queries are a subset of the queries introduced above in which

only conjunction (and) is used as an operator for query atoms. Note that they have
to be distinguished from (full) conjunctive queries. The difference can be seen with the
following example. Given the following TBox :

Manager
.
= AreaManager TopManager

AreaManager � TopManager

and the following ABox:

Manager(Andrea), T opManager(Mary), AreaManager(Paul),
Supervises(John,Andrea), Supervises(John,Mary),
OfficeMate(Mary,Andrea), OfficeMate(Andrea, Paul)

Let us assume that the query below is posed:

(retrieve (?x)(?x

(some Supervises

(and TopManager (some OfficeMate AreaManager)))))

The result set of this query is {John}.
Although the only information given about Andrea is that Andrea is aManager, from

the given TBox it is clear that Andrea is either a TopManager or an AreaManager. In
both cases, John is an instance of the query concept, and hence, John is a binding for
?x. However, John is not in the result set of the following query (actually, the result set
is empty):

(retrieve (?x) (and (?x ?y Supervises)

(?y TopManager)

(?y ?z OfficeMate)

(?z AreaManager)))

c©2006/TONES – August 31, 2006 15/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

The reason is that Andrea is neither a binding for ?y nor a binding for ?z because it cannot
be proved that Andrea is an instance of TopManager nor can it be proved that Andrea
is an AreaManager, respectively. Andrea is not a TopManager (or AreaManager)
in all models. Thus, grounded conjunctive queries have a different semantics as (full)
conjunctive queries, which will be discussed below. Before we discuss conjunctive queries
in detail, some comments on query engines are appropriate.

1.1.3 The nRQL Engine

The nRQL query answering engine implements the nRQL language as part of Racer-
Pro 1.9. The engine offers different querying modes: basically, a synchronous set-at-a-
time mode and an asynchronous tuple-at-a-time mode. In the set-at-a-time mode, a call
to a querying function such as retrieve works synchronously. The client has to wait,
the whole answer set is delivered in a bunch. However, many client applications prefer
an asynchronous API, the tuple-at-a-time mode allows for incrementally loading the an-
swer tuple by tuple. Thus, a call to retrieve will return immediately with a so-called
query identifier. This identifier, say :query-123, can then be used as argument to func-
tions such as (get-next-tuple :query-123). Functions like (get-next-n-tuples 10

:query-123) are also provided. A similar way of client-server interaction is also presup-
posed in the OWL-QL query answering dialog. Thus, nRQL supports the OWL-QL query
answering dialog quite well in this respect.

The incremental tuple-at-a-time mode can be used either lazy or eager. In the lazy
mode, the next tuples will not be computed before requested by the client, unlike the
eager mode, which pre-computes the next tuple(s) and puts them into a queue for future
requests. In principle, there can be more than one running query at a time. The nRQL
engine allows for concurrent querying. When a query is executed, a thread from a pool
of threads is acquired and put to work. The engine can process up to a few hundred
queries simultaneously, and serializes and minimizes the calls to the basic Racer ABox
retrieval functions (e.g., concept-instances), by using locking techniques and dedicated
index structures. Nearly all answers from Racer are cached, but the index structures are
automatically invalidated if changes to the ABox (or TBox) occur. If a KB changes while
queries are still active, then nRQL can be advised to deliver a KB-has-changed-warning
token to the clients.

The degree of completeness of query answering in nRQL is configurable: If ABoxes
get very big, it becomes impossible to use Racer’s ABox retrieval functions for query
answering. Even the required ABox consistency check will fail. Thus, nRQL can no
longer be used in its complete mode. The incomplete modes can help, if “complete
enough” for the application. These modes can still achieve a great deal of completeness.
For example, using the incomplete nRQL mode “2”, we observed in [43] that nRQL is
still more complete than “DLDB” on the LUBM and achieves a comparable performance,
even for “ABoxes” with a few 100.000 individuals.

Having incomplete modes available gives nRQL the ability to distinguish between cheap
and expensive tuples. It is possible to advise nRQL first to deliver a set of cheap tuples,
yielding an incomplete answer (“phase one”), and then to turn on Racers expensive ABox
retrieval functions to deliver the remaining expensive tuples (“phase two”). We talk of

c©2006/TONES – August 31, 2006 16/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

two-phase query processing modes. Again, nRQL can be advised to deliver a warning
token before phase two starts, informing the client that computation of the remaining
tuples will possibly be expensive. The client can then chose to retrieve these additional
tuples or not.

The engine supports full life-cycle management for queries. Queries can be prepared,
made active, be suspended or aborted, eventually terminate, can be resurrected, etc.
Runtime resources are configurable (size of thread pool, maximum bound on the number
of answer tuples setable, timeout setable, tuple permutations can be excluded, etc.).

Another important feature of the engine is the built-in query optimizer. The basic
idea is to reorder the query atoms in a conjunctive query in such a way as to heuristi-
cally minimize the number of generators required to compute candidate bindings for the
variables. For example, for the query (and (?x ?y R) (?y D) (?x C)), the execution
plan (?x c), (?x ?y R), (?y D) is preferable over the plan (?x C), (?y D), (?x ?y

R), since the second plan has to compute a Cartesian product, whereas the first plan can,
once a binding for ?x has been established, simply enumerate the R successors of ?x for ?y
candidate generation, which is much more “local”. In order to decide whether (?y D),

(?y ?x (inv R)), (?x C) might even be better, nRQL uses ABox statistics and infor-
mation from previously evaluated queries in order to implement the “most constrained
generator first” heuristics.

1.1.4 Meta Level Querying

nRQL can also be used to search for specific superclass-class-subclass relationship patterns
in the taxonomy of a TBox. Suppose that we view the taxonomy of a TBox as a relational
structure. The taxonomy of a TBox is a so-called directed acyclic graph (DAG). A node
in this DAG represents an equivalence class of equivalent concept names, and an edge
between two nodes represents a direct-subsumer-of relationship.

Also assume that the following laws hold:

1. Assume that each node x has a name. The name of the node is the name of the
equivalence class [x]. However, the name of this node might be any element from
the equivalence class [x].

2. For each node x (representing an equivalence class [x]) and each member xi ∈ [x] in
this equivalence class, assume that the predicate xi holds - thus, xi(x) is true. Since
x ∈ [x], also x(x) holds.

3. The edges in this taxonomy representing the direct-subsumer-of relationship are
labeled with has child; that is, has child(x, y) holds iff x is a direct subsumer of y.

4. Let has parent be the inverse relationship of has child, and has descendant be
the transitive closure of has child. Let has ancestor be the inverse relationship of
has descendant.

Obviously, such a relational structure can also be seen as an ABox. A has child(x, y)
edge is represented with a role membership axiom (related x y has-child), and
for each x, the concept membership axiom (instance x x) is added, and if y is in

c©2006/TONES – August 31, 2006 17/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

(concept-synonyms x), then also (instance x y) is added, for all such y. But please
note that the name of the node x might be any element from the equivalence class of
x. We will call an ABox which is constructed according to the four laws the “taxonomy
ABox”. Note that this taxonomy ABox is not a real ABox.

It is obvious that we can now query this very specific taxonomy ABox with nRQL -
thus, the full power of nRQL can be used for TBox querying purposes. However, set of
roles that can be used in role query atoms is then limited to has-child, has-parent,

has-descendant, has-ancestor, and the the set of concept expressions available in
concept query atoms is limited to the set of concept names from the TBox (taxonomy).
Of course, querying for concrete domain attributes etc. does not make sense in this setting,
since the “taxonomy ABox” contains only information according to the given four rules
above.

1.1.5 Access to Told Information

Commonly held view on ontology systems as a source of the inferred knowledge does
not exclude the fact, that also the access to explicitly given information (so-called told
information) is required for certain reasoning tasks. The access to told axioms can be
implemented on the client-side, but then the client application has to keep and to maintain
its own copy of the statements of the ontology. Obviously, a better solution would be to
let the ontology server to manage told, pre-processed and inferred information in such a
way that clients (humans or programs) can pose queries about told information.

As is known, modern DL reasoners implement various optimization techniques to
achieve better performance. When processing ontologies, they apply a range of pre-
processing algorithms (such as normalization and absorption), which syntacticly manip-
ulate and simplify incoming KB axioms. Again, in order to provide better performance,
only transformed axioms are kept for further processing. As a result of this preprocessing,
building such server-side told information interface is far from being a trivial task.

1.1.6 Load Balancing and Caching

In our work we consider applications which generate queries w.r.t. many different knowl-
edge bases. We presuppose that for a particular KB there exists many possible query
servers. In order to successfully build applications that exploit these KB servers, an ap-
propriate middleware is required. In particular, if there are many servers for a specific KB,
the middleware is responsible for managing request dispatching and load balancing. Load
balancing must be accompanied by middleware-side caching in order to reduce network
latency.

In our view the KB servers we consider are managed by different organizations. There-
fore, DL applications used in some company need some gateway inference server that
provides local caching (in the intranet) to: (i) reduce external communication and (ii)
avoid repetitive external server access operations in case multiple intranet applications
pose the same queries.

In our case study we investigate a server for answering OWL-QL− queries1. This server

1OWL-QL− stands for OWL-QL with distinguished variables only.

c©2006/TONES – August 31, 2006 18/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

(called RacerManager) acts as a proxy that delegates queries to back-end DL reasoners
(RacerPro servers) that manage the KB mentioned in the query and load KBs on demand.
Compared to previous versions, the functionality of RacerManager has been substantially
enhanced. We address the problems of load balancing and caching strategies in order
to exploit previous query results (possibly produced by different users of the local site).
Caching is investigated in the presence of incrementally answered OWL-QL− queries. In
addition, the effects of concurrent query executions on multiple (external) inference servers
and corresponding transmissions of multiple partial result sets for queries are studied.

Reasoning over ontologies with a large number of individuals in ABoxes is a big chal-
lenge for existing reasoners. As discussed in Section 1.1.3, to deal with this problem,
RacerPro supports iterative query answering, where clients may request partial result
sets in the form of tuples. For iterative query answering, RacerPro can be configured to
compute the next tuples on demand (lazy mode). Moreover, it can be instructed to return
cheap (easily inferable) tuples first.

Although these configuration options enable the reasoner to achieve significant perfor-
mance improvements for a single client, this effect decreases in scenarios where multiple
clients pose queries concurrently. In fact, a single RacerPro instance cannot process sev-
eral client requests in parallel. Thus, as long as RacerPro is processing a clients request,
which usually includes activities such as parsing the query, reading the corresponding
knowledge base, classifying it, finding requested number of answer tuples and returning
them, all other clients have to wait in a queue.

Motivated by the concurrency problem, our OWL-QL− server is implemented to act
as a load-balancing middleware between clients and multiple RacerPro instances. We
chose a common n-tier architecture as the base layout. RacerManager can initialize and
manage an array of RacerPro instances. Multiple clients can use the web service offered by
RacerManager to send their OWL-QL− queries concurrently. With respect to the states
of the managed RacerPro instances and a naive load-balancing strategy (similar to round-
robin), RacerManager dispatches the queries to RacerPro instances. More precisely, given
a query, which requires some ontology, RacerManager prefers RacerPro instances, which
already worked on this ontology. Before a OWL-QL− query is send to a reasoner instance,
it is translated to nRQL by the translator module. Preliminary test results showed that
the proposed architecture prevents clients from blocking each other, as it is the case if
multiple clients interact with a single reasoner.

Additionally, irrespective of load balancing and query dispatching, a client may benefit
from the caching mechanism offered by RacerManager. In case he sends a query, which
has been posed before, answer tuples are delivered directly from the cache. If the client
requires more tuples than available in the cache, only the missing number of tuples is
requested from an appropriate RacerPro instance. The cache expiration can be set to an
arbitrary duration or turned off. In the latter case, the cache will never be cleared.

1.1.7 Related Work and Future Challenges

ABox retrieval languages are not new features in description logic inference systems.
In particular, the design of nRQL is influenced by the query language of LOOM [66].
However, unlike the LOOM query language, nRQL is specified in a formally rigorous way.

c©2006/TONES – August 31, 2006 19/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

For instance, the semantics offers projection operators in order to formalize predicates
such as has-known-successor, which have been used in practical applications for a long
time. In addition, the semantics for the ABox query language covers other facilities such
as a negation as failure operator, which is also often used in application projects. With
projection operators for concrete domain values, we need not impose complex safeness
conditions.

Basic conjunctive query languages for description logics less expressive than the con-
cept language of RacerPro (or OWL-DL without nominals) are formally investigated in
[53]. There, so-called distinguished as well as non-distinguished variables are introduced.
The distinguished variables correspond to nRQL’s variables. The non-distinguished vari-
ables are purely existential variables. For example, if !y denotes such a non-distinguished
variable, then the query (and (?x c) (?x !y R)) is basically equivalent to (?x (and

c (some r top))). This observation also suggests a technique for “removing” non-
distinguished variables, the so-called “rolling up” technique. However, this procedure
only works for acyclic queries, and becomes more technically involved if more than one
non-distinguished variable is present in the query. These theoretical techniques have been
used as a basis for the implementation of an experimental DQL (DAML Query Language)
server [35]. DQL is the predecessor of OWL-QL, and quite similar in many respects. How-
ever, this server can only handle acyclic conjunctive queries and does not offer negation
as failure.

In the TONES project, optimization techniques for practical answering grounded con-
junctive queries have been developed and published in [70]. While nRQL has been used in
many application projects for some time now, based on [41] and [70] additional optimiza-
tion techniques for implementing grounded conjunctive queries have been investigated
with the Pellet description logic system [83].

In the future, new standards for query languages have to be developed such that
different systems can be compared appropriately. In addition, important issues such as
incremental changes to ABoxes as well as persistency have to be dealt with in order to
support ontology-based information systems as a backbone of practical applications. Some
reasoners already support retrieval of told information in some restricted form. E.g., in
nRQL, concrete domain fillers and OWL annotations can be retrieved. But in general,
a standard mechanism for retrieving and retracting the stored information as been told
before is missing yet. This is the subject of recent efforts of the DIG 2.0 working group
[63].

1.2 Expressive DLs and Conjunctive Queries

Standard DL reasoning services include testing concepts for satisfiability or retrieving
instances of a given concept. The latter retrieves all (ABox) individuals that are an in-
stance of the given (possibly complex) concept expression in every model of the knowledge
base. The underlying reasoning problems are well-understood, and it is known that the
combined complexity of these reasoning problems is ExpTime-complete for SHIQ [84],
where SHIQ is the DL underlying DAML+OIL and OWL Lite. Despite this high worst-
case complexity, efficient implementations of decision procedures for these problems are
known. Furthermore, the TBox is usually small compared to the amount of data in the

c©2006/TONES – August 31, 2006 20/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

ABox. Therefore, the data complexity of a reasoning problem, i.e., where the complexity
is measured in the size of the ABox only, is often a more useful performance estimate.
For SHIQ, instance retrieval is known to be data complete for co-NP [55]. However,
since instance retrieval only allows for querying the relational structure of the knowledge
base in a restricted, tree-like way, it is commonly agreed that a more expressive query
language is required, and that conjunctive queries are a suitable basis for this.

In this document, we discuss conjunctive query answering in SHIQ: the presence
of transitive and inverse roles makes the problem rather tricky [36], and results are only
available for two kinds of restrictions. The first kind, grounded conjunctive queries, is
obtained by restricting the variables in queries to be bound to individual names in the
ABox only. This results in a form of closed-domain semantics which is different from
the usual open-world (and open-domain) semantics in DLs. Motik et al. [71] show that
answering grounded conjunctive queries for SHIQ is decidable, and they form the basis
for the query language nRQL [42]. In the second kind, the binary atoms in conjunctive
queries are restricted to simple roles, i.e., to those that are neither transitive nor have
transitive sub-roles. For this restriction, decision procedures for various DLs around
SHIQ are known [52, 73], and it is known that answering conjunctive queries is data
complete for co-NP [73].

We present a decision procedure for conjunctive query answering over SHIQ knowl-
edge bases without any of these restrictions. We achieve this by transforming the con-
junctive query into SHIQ�-concepts,2 and showing that conjunctive query answering can
be reduced to consistency of SHIQ-knowledge bases extended with SHIQ� assertions
and GCIs. From our decision procedure, it follows that conjunctive query entailment is
data complete for co-NP, and can be decided in time double exponential in the size of
the query and single exponential in the size of the knowledge base.

We first introduce the syntax and semantics of SHIQ and conjunctive queries.

1.2.1 Syntax and Semantics of SHIQ

Let NC, NR, and NI be sets of concept names, role names, and individual names. We
assume that the set NR or role names is partitioned into a set NtR of transitive role names
and a set NrR of normal role names, i.e., NtR ∪ NrR = NR with NtR ∩ NrR = ∅. A role is an
element of NR ∪ {r− | r ∈ NR}, where roles of the form r− are called inverse roles. A role
inclusion is of the form r � s with r and s as roles. A role hierarchy H is a finite set of
role inclusions.

An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI , the domain of I, and
a function ·I , which maps every concept name A to a subset AI ⊆ ΔI , every role name
r ∈ NrR to a binary relation rI ⊆ ΔI × ΔI , every role name r ∈ NtR to a transitive
binary relation rI ⊆ ΔI × ΔI , and every individual name a to an element aI ∈ ΔI . An
interpretation I satisfies a role inclusion r � s if rI ⊆ sI and a role hierarchy H if it
satisfies all role inclusions in H. We use the following standard notation:

1. We define a function Inv which returns the inverse of a role. More precisely, Inv(r) :=
r− if r ∈ NR and Inv(r) := s if s = r− for a role name s.

2SHIQ� is SHIQ plus role conjunction.

c©2006/TONES – August 31, 2006 21/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

2. Since set inclusion is transitive, we define, for a role hierarchy H, �∗
H as the reflexive

transitive closure of � over H ∪ {Inv(r) � Inv(s) | r � s ∈ H}. We use r ≡∗
H s as

an abbreviation for r �∗
H s and s �∗

H r.

3. For a role hierarchy H and a role s, we define the set TransH of transitive roles as
{s | there is a role r with r ≡ s and r ∈ NtR or Inv(r) ∈ NtR}.

4. A role r is called simple w.r.t. a role hierarchy H if for each role s such that s �∗
H r,

s /∈ TransH.

The subscript H of �∗
H and TransH is dropped if clear from the context.

The set of SHIQ-concepts (or concepts for short) is the smallest set built inductively
from NC using the following grammar, where A ∈ NC, n ∈ N, C,C1, C2 are concepts, r is
a role and s is a simple role:

C ::= � | ⊥ | A | ¬C | C1 � C2 | C1 C2 | ∀r.C | ∃r.C |� ns.C |� ns.C.

The semantics of SHIQ-concepts is defined as follows:

�I = ΔI (C �D)I = CI ∩DI (¬C)I = ΔI \ CI

⊥I = ∅ (C D)I = CI ∪DI

(∀r.C)I = {d ∈ ΔI | if (d, d′) ∈ rI , then d′ ∈ CI}
(∃r.C)I = {d ∈ ΔI | There is a (d, d′) ∈ rI with d′ ∈ CI}

(� ns.C)I = {d ∈ ΔI | |sI(d, C)| � n}
(� ns.C)I = {d ∈ ΔI | |sI(d, C)| � n}

where |M | denotes the cardinality of the set M and sI(d, C) is defined as

{d′ ∈ ΔI | (d, d′) ∈ sI and d′ ∈ CI}.

A general concept inclusion (GCI) is an expression C � D, where both C and D are
concepts. A finite set of GCIs is called a TBox. An interpretation I satisfies a GCI
C � D if CI ⊆ DI and a TBox T if it satisfies each GCI in T . An assertion is an
expression of the form C(a), r(a, b), ¬r(a, b), or a 	 .= b, where C is a concept, r is a role,
a, b ∈ NI. An ABox is a finite set of assertions. We use Ind(A) to denote the set of
individual names occurring in A, and if A is clear from the context, we write only Ind.
An interpretation I satisfies an assertion C(a) if aI ∈ CI , r(a, b) if (aI , bI) ∈ rI , ¬r(a, b)
if (aI , bI) /∈ rI , and a 	 .= b if aI 	= bI . An interpretation I satisfies an ABox if it satisfies
each assertion in A, which we denote with I |= A.

A knowledge base (KB) is a triple (T , H, A) with T a TBox, H a role hierarchy, and
A an ABox. Let K = (T , H, A) be a KB and I = (ΔI , ·I) an interpretation. We say
that I satisfies K if I satisfies T , H, and A. In this case, we say that I is a model of K
and write I |= K. We say that K is consistent if K has a model.

1.2.2 Conjunctive Queries Tasks

Now that we have defined the syntax and semantics of SHIQ-concepts and knowledge
bases, we are ready to introduce conjunctive queries and the reasoning tasks regarding

c©2006/TONES – August 31, 2006 22/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

conjunctive queries. Let NV be a countably infinite set of variables disjoint from NC, NR,
and NI. Moreover, let NP = NC ∪ NR be the set of predicate names.

An atom is an expression A(v) or r(v, v′), where A ∈ NC, r is a role, and v, v′ ∈ NV.
A conjunctive query q is a non-empty set of atoms. Intuitively, such a set represents the
conjunction of the atoms in the set. We use Var(q) to denote the set of variables occurring
in q and we define the size |q| of q as the number of atoms in q. Let I be an interpretation,
q a conjunctive query, and π : Var(q) → ΔI a total function. We write

• I |=π A(v) if (π(v)) ∈ AI ;

• I |=π r(v, v′) if (π(v), π(v′)) ∈ rI ;

If I |=π at for all at ∈ q, we write I |=π q. We say that I satisfies q and write I |= q if
there is a π with I |=π q.

Task 1: Query Answering One reasoning task regarding conjunctive queries is query
answering. For introducing this reasoning task, let the variables of a conjunctive query
be typed: each variable can either be non-distinguished, i.e., existentially quantified or
distinguished. We call distinguished variables also answer variables. Let q be a query in
n variables, of which v1, . . . , vm (m ≤ n) are distinguished. The answers of K to q are
those m-tuples (a1, . . . , am) ∈ NI

m such that for all models I of K, I |=π q for some π that
satisfies π(vi) = ai for all i with 1 ≤ i ≤ m. Observe that we admit only concept names
in atoms A(v), but no complex concepts. This is no restriction since an atom C(a) with
C complex can be simulated using the atom A(a) and the concept inclusion C � A.

Task 2: Query Containment Query containment is important in many areas, includ-
ing information integration, query optimization, and reasoning about Entity-Relationship
diagrams. A query q is contained in a query q′ w.r.t. a knowledge base K, if qI ⊆ q′I for
every model I of K. Although query containment is not the same as query answering, it
can be used to answer boolean queries by encoding the ABox into the less general query,
i.e., q in the given example. If the query q′ is contained in the encoded ABox, the query
answer for q′ is true. This technique is well known in the database community.

Task 3: Query Entailment A reasoning task closely related to query answering is
query entailment. Here we are given a knowledge base K and query q and asked whether
I |= q for all models I of K. If this is the case, we say that K entails q and write K |= q.

In this document, we focus on query entailment. The reasons for this are two-fold:
first, query answering can be reduced to query entailment. And second, in contrast to
query answering, query entailment is a decision problem and can be studied in terms of
classical complexity theory.

We now make the connection between query answering and query entailment more
precise. Let K = (T ,H,A) be a knowledge base, q a conjunctive query in n variables
with answer variables v1, . . . , vm, and t = (a1, . . . , am) ∈ NI

m a tuple. Our aim is to
reduce checking whether t is an answer of K to a to query entailment. To this end, let
A′ := A ∪ {Ai(ai) | 1 ≤ i ≤ m}, where A1, . . . , Am are concept names that do not occur

c©2006/TONES – August 31, 2006 23/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

in K. Moreover, let K′ := (T ,H,A′) and let q′ := q∪{Ai(vi) | 1 ≤ i ≤ m}. The following
is not difficult to prove.

Lemma 3. The tuple t is an answer of K to q iff K′ entails q′.

This technique is well known and the newly introduced concept names are often re-
ferred to as representative concepts [52] or name formulae [19]. The same technique can
be used in order to represent constants (individual names) in the query.

In what follows, we assume for convenience that conjunctive queries are closed under
inverses, i.e., if r(v, v′) ∈ q, then Inv(r)(v′, v) ∈ q and if we add or remove atoms from a
query, we implicitly assume that we do this such that the resulting query is again closed
under inverses. We will also assume that queries are connected. More precisely, let q be
a conjunctive query. We say that q is connected if for all v, v′ ∈ Var(q), there exists a
sequence v0, . . . , vn−1 such that v0 = v, vn−1 = v′, and for all i < n − 1, there exists a
role r such that r(vi, vi+1) ∈ q. A collection q1, . . . , qk of queries is a partitioning of q if
q = q1 ∪ · · · ∪ qk, Var(qi) ∩ Var(qj) = ∅ for 1 ≤ i < j ≤ k, and each qi is connected. The
next lemma says that we can restrict ourselves to the entailment of connected queries. In
what follows, we assume queries to be connected without further notice.

Lemma 4. Let K be a knowledge base, q a conjunctive query, and q1, . . . , qn a partitioning
of q. Then K |= q iff K |= qi for 1 ≤ i ≤ n.

In what follows, we use q for a connected conjunctive query and K = (T , H, A) for a
knowledge base such that, in all assertions C(a) ∈ A, C is a (possibly negated) concept
name. Moreover, for a mapping f , we use dom(f) and ran(f) to denote f ’s domain and
range, respectively.

1.2.3 Forests and Trees

We will first define canonical (forest-shaped) interpretations, and prove that we can limit
our attention to such interpretations.

Definition 5. Let �∗ be the set of all (finite) words over the alphabet �. A tree T is
a non-empty prefix-closed subset of �∗. For w,w′ ∈ T , we call w′ a successor of w if
w′ = w · c for some c ∈ �, where “·” denotes concatenation. We call w′ a neighbor of w
if w′ is a successor of w or vice versa. Let K = (T ,H,A) be a SHIQ knowledge base. A
forest base for K is an interpretation I that interpretes transitive roles in unrestricted (i.e.,
not necessarily transitive) relations and additionally satisfies the following conditions:

T1 ΔI ⊆ Ind(A) ×�∗ such that for all a ∈ Ind(A), the set {w | (a, w) ∈ ΔI} is a tree;

T2 if ((a, w), (a′, w′)) ∈ rI , then either w = w′ = ε or a = a′ and w′ is a neighbor of w;

T3 for all a ∈ Ind(A), aI = (a, ε).

Let I be an interpretation. Then I is canonical for K if there exists a forest base J for
K such that J is identical to I except that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s�∗r, s∈Trans

(sJ)+

In this case, we say that J is a forest base for I. �

c©2006/TONES – August 31, 2006 24/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Observe that if I is canonical for K, then ΔI satisfies Condition T1 and T3 above.

Lemma 6. K 	|= q iff there exists a canonical model I with I 	|= q.

In order to decide whether K |= q, our algorithm will check for the existence of a counter
model, i.e., a model I of K such that I 	|= q. Obviously, the above observation means that
it suffices to look only for canonical counter models.

Let I be a canonical model of K, and π : Var(q) → ΔI such that I |=π q. We say that
π is a forest match if for all r(v, v′) ∈ q′, we have one of the following:

• π(v) = (a, ε) and π(v′) = (b, ε) for some a, b ∈ Ind(A);

• π(v) = (a, w) and π(v′) = (a, w′) for some a ∈ Ind(A) and w,w′ ∈ �∗.

Let I be a canonical model and π a forest match. A variable v is grounded w.r.t. I
and π if π(v) = (a, ε) for some a ∈ Ind(A). A forest match π defines a “partial grounding”
for q, and allows us to view q as being split into a set of sub-queries, each of which is
mapped into a single tree of I.

We will now describe a series of transformations that we will apply to a query. The
first of these, transitive rewriting, will allow us to restrict our attention to forest matches.

Definition 7. Let K = (T , H, A) be a knowledge base and q a conjunctive query.
Then a query q′ is called a transitive rewriting of q w.r.t. K (or simply a transitive
rewriting when K is obvious from the context) if it is obtained from q by choosing atoms
r0(v0, v

′
0), . . . , rn(vn, v

′
n) ∈ q and roles s0, . . . , sn ∈ Trans such that si �∗ ri for all i ≤ n,

and then replacing ri(vi, v
′
i) with

si(vi, ui), si(ui, u
′
i), si(u

′
i, v

′
i)

or
si(vi, ui), si(ui, v

′
i)

for all i ≤ n, where ui and u′i are variables that do not occur in q. We use trK(q) to denote
the set of all transitive rewritings of q w.r.t. K. �

We assume that trK(q) contains no isomorphic queries, i.e., differences in (newly in-
troduced) variable names only are neglected.

Together with Lemma 6, the following lemma shows that in order to decide whether
K entails q, we may enumerate all transitive rewritings q′ of q and check whether there is
a canonical model I of K such that I |=π q with π a forest match.

Lemma 8. Let K = (T , H, A) be a knowledge base, q a conjunctive query, and I a
model of K. Then the following holds:

1. If I is canonical and I |= q, then there is a q′ ∈ trK(q) such that I |=π′
q′, with π′

a forest match.

2. If I |= q′ with q′ ∈ trK(q), then I |= q.

c©2006/TONES – August 31, 2006 25/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Lemma 9. Let K = (T , H, A) be a knowledge base, q a query, |q| = n, and |H| = mH.
Then there is a polynomial p such that

(a) |trK(q)| ≤ 2p(n)·log p(mH)

(b) for all q′ ∈ trK(q), |q′| ≤ p(n),

Let q be a query and I a canonical interpretation. A special case of forest matches are
tree matches, i.e., matches π : Var(q) → ΔI for which there exists an a0 ∈ Ind(A) such
that for all v ∈ Var(q), we have π(v) = (a0, w) for some w ∈ �∗. Intuitively, in this case
the whole match concerns only one of the trees in the forest ΔI , and we call π an a-tree
match if, for each v ∈ Var(q), there is some w such that π(v) = (a, w). In our algorithm,
forest matches of a query q will be broken down into tree matches of subqueries of q.

We will now show how a query can be rewritten as a tree-shaped query. This procedure,
which we call tree transformation, can be applied to the sub-queries identified by a forest
match; we can then use rolling-up to transform each sub-query into a concept.

Tree transformation of q is a three stage process. In the first stage, we derive a
collapsing q0 of q by (possibly) identifying variables in q. This allows us, e.g., to transform
atoms r(v, u), r(v, u′), r(u, w), r(u′, w) into a tree shape by identifying u and u′. In the
second stage, we derive an extension q1 of q0 by (possibly) introducing new variables and
role atoms that make redundant existing role atoms r(v, v′), where r is non-simple. In the
third stage, we derive a reduct q′ of q1 by (possibly) removing redundant role atoms, i.e.,
atoms r(v, v′) such that there exist variables v0, . . . , vn ∈ Var(q1) with v0 = v, vn = v′,
s(vi, vi+1) ∈ q1 for all i < n, s �∗ r, and s ∈ Trans. Combining the extension and reduct
steps allows us, e.g., to transform a “loop” r(v, v) into a tree shape by introducing a new
variable v′ and edges s(v, v′), s(v′, v) such that s �∗ r and s ∈ Trans, and then removing
the redundant atom r(v, v).

We will now describe this procedure more formally.

Definition 10. Let K = (T ,H,A) be a knowledge base. A conjunctive query q is tree-
shaped if there exists a bijection τ from Var(q) into a tree such that r(v, v′) ∈ q implies
that τ(v) is a neighbor of τ(v′). Then

• a collapsing of q is obtained by identifying variables in q.

• the query q′ is an extension of q w.r.t. K if the following hold:

1. q ⊆ q′;

2. A(v) ∈ q′ implies A(v) ∈ q;

3. r(v, v′) ∈ q′ \ q implies that r occurs in H;

4. |Var(q′)| ≤ 4|q|;
5. |{r(v, v′) ∈ q′ | r(v, v′) /∈ q}| ≤ 171|q|2.

• the query q′ is a reduct of q w.r.t. K if the following hold:

1. q′ ⊆ q;

2. A(v) ∈ q implies A(v) ∈ q′;

c©2006/TONES – August 31, 2006 26/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

3. if r(v, v′) ∈ q \ q′, then there is a role s such that s �∗ r, s ∈ Trans, and there
are v0, . . . , vn such that v0 = v, vn = v′, and s(vi, vi+1) ∈ q′ for all i < n.

• a tree transformations of q is a query q′ for which there are queries q0 and q1 such
that

– q0 is a collapsing of q;

– q1 is an extension of q0 w.r.t. K;

– q′ is a tree-shaped reduct of q1.

We use ttK(q) to denote the set of all tree transformations of q w.r.t. K. �

We note that Condition 5 of extensions is not strictly needed. However, without this
condition the algorithm for query entailment to be developed would require double ex-
ponential time in the size of the input knowledge base instead of only single exponential
time. As in the case of trK(q), we assume that ttK(q) does not contain any isomorphic
queries.

We now derive an upper bound on the number and size of elements in ttK(q). The size
|T | (|H|, |A|) of T (H, A) is the number of symbols needed to write it. For a knowledge
base K = (T , H, A), the size |K| of K is the number of symbols needed to write all the
components T , H, and A of K.

Lemma 11. Let K = (T , H, A) be a knowledge base, q a query, |q| = n, and |H| = mH.
Then the following hold:

(a) |ttK(q)| ≤ 2p(n)·log p(mH)

(b) for all q′ ∈ ttK(q), |q′| ≤ p(n),

where p is a polynomial.

Let K be a knowledge base, q a query, and q′ ∈ ttK(q). For each v ∈ Var(q), let σ(v)
be the variable in Var(q′) that v has been identified with (σ(v) = v if v has not been
identified with another variable). Take mappings π : Var(q) → �

∗ and π′ : Var(q′) → �
∗.

We call π and π′ ε-compatible iff, for all variables v ∈ Var(q), π(v) = ε iff π′(σ(v)) = ε.
Since q′ is tree-shaped, π′ is a tree with ε as the root and intuitively, ε-compatibility then
also guarantees us that we can use v ∈ Var(q) for which π(v) = ε as the root or starting
point in π and use the above defined transformations in order to transform q into q′.

Lemma 12. Let K = (T ,H,A) be a knowledge base, I a canonical model of K, q a
conjunctive query, and π an a-tree match. If I |=π q, then there is a q′ ∈ ttK(q) and an
a-tree match π′ such that I |=π′

q′ and π and π′ are ε-compatible.

Lemma 13. Let I be an interpretation, q a query, q′ ∈ ttK(q), and π′ a mapping such
that I |=π′

q′. Then there is a π such that I |=π q and π and π′ are ε-compatible.

c©2006/TONES – August 31, 2006 27/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Let q be a conjunctive query. It is easy to see how to produce the set S of all reducts of
extensions of collapsings of q. To select the tree-shaped queries from S, we may proceed
as follows. Let q′ ∈ S and select a vr ∈ Var(q′). Then define a mapping τ : Var(q′) → �

∗

inductively as follows:

• Initially, set τ(vr) := ε;

• if τ(v) is already defined and

V = {v′ ∈ Var(q) | r(v, v′) for some role r and τ(v′) undefined},

then fix an injection f : V → � and set τ(v′) = τ(v) · f(v′) for all v′ ∈ V .

Clearly, ran(τ) is a tree. The following is not difficult to prove.

Lemma 14. The query q′ is tree-shaped iff for all r(v, v′) ∈ q′, τ(v) is a neighbor of τ(v′).

The algorithm to be designed in the following section crucially relies on the observation
that tree-shaped queries can be converted into concepts formulated in the description
logic ELI�, which offers only the concept constructors � and ∃r0 � · · · � rn−1.C, where
r0, . . . , rn−1 are (possibly inverse or non-simple) roles. The semantics of the latter operator
is as follows:

(∃r0 � · · · � rn−1.C)I := {d ∈ ΔI | ∃e : (d, e) ∈ rIi for 0 � i < n and e ∈ CI}.

More precisely, this conversion can be done as follows. Let q be a tree-shaped query and
τ : Var(q) → �

∗ with ε ∈ ran(τ) such that r(v, v′) ∈ q iff τ(v) is a neighbor of τ(v′). Then
assign to each variable v a concept Cq(v) by proceeding in a bottom-up fashion through
the tree ran(τ):

• if τ(v) is a leaf of ran(τ), then Cq(v) := A(v)∈q A

• if τ(v) has successors τ(v0), . . . , τ(vn−1), then

Cq(v) :=
A(v)∈q

A �
0�i<n

∃
(

r(v,vi)∈q
r
)
.Cq(vi).

Then Cq is Cq(vr) for τ(vr) = ε.

Lemma 15. Let q be a tree-shaped query, I an interpretation, and vr ∈ Var(q). Then
I |= q iff Cq(vr)

I 	= ∅. In particular, d ∈ Cq(vr)
I implies that there is a π with vr �→ d

such that I |=π q.

c©2006/TONES – August 31, 2006 28/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Lemma 15 shows that for all queries q, interpretations I, and variables v, v′ ∈ Var(q), we
have Cq(v)

I 	= ∅ iff Cq(v
′)I 	= ∅. This justifies the following: given a conjunctive query q,

we use Cq to denote Cq(v) for some arbitrary (but fixed) v ∈ Var(q).
We could now apply tree transformations to the sub-queries identified by a forest

match, and use so-called representative concepts [52] or name formulae [19] to roll up
the resulting query into a concept Cq. This would allow us to straightforwardly obtain
a decision procedure: K |= q iff for every model I of K there is some C such that C
is a concept that can be obtained by rolling-up a tree transformation of the sub-queries
identified by a forest match of a transitive rewriting of q, and CI 	= ∅. If C is the set of
all such concepts, then for K = (T ,H,A), K |= q iff (T ′,H,A) is inconsistent, where

T ′ = T ∪ {� � ¬C | C ∈ C}.

By doing so, however, we would compromise the clear separation between the TBox
and the ABox, and thus we could no longer obtain tight data complexity results. We
will therefore present a decision procedure that uses extended ABoxes to check for the
existence of forest matches; this decision procedure yields the desired complexity results.

1.2.4 The Decision Procedure

In order to gain insight into the data complexity of query entailment, we devise a procedure
that uses extensions of both TBox and ABox. We proceed as follows: roughly speaking,
we look for a KB K′ such that K′ extends K (both w.r.t. TBox and Abox), and the
additional axioms and assertions prevent the existence of a transitive rewriting q′ of q, a
canonical model I of K, and a forest match π such that I |=π q′. Lemmas 6 and 8 and the
fact that K′ extends K clearly also implies K 	|= q. We consider all “relevant” extensions
of K so that, if we find no extension K′ such that K′ 	|= q, we can conclude that K |= q.

In order to define K′, we use Lemma 15, and thus K′ will not be a SHIQ knowledge
base. An extended knowledge base K′ is of the form (T ∪ Tq,H,A∪A′) with

• T , H, and A are as in a SHIQ knowledge base;

• Tq is a finite set of GCIs � � C with C a SHIQ� concept;

• A′ is an ABox such that if C(a) ∈ A′, then a ∈ Ind(A) and C is a negated SHIQ�

concept.

The extended knowledge bases K′ that we construct from K and q will be such that every
counter model against K |= q (i.e., I 	|= q) is a model of some K′ and, for each model I of
a K′, we have that I 	|= q. Thus, K |= q iff each K′ is inconsistent. From Lemmas 6 and 8,
to ensure that models of the K′ are counter models, it suffices to prevent forest matches
of transitive rewritings of q w.r.t. K in canonical models of K′—and this is the role played
by Tq and A′. We distinguish between two kinds of forest matches: a-tree matches and
true forest matches, i.e., forest matches that are not a-tree matches. To prevent a-tree
matches, it suffices to consider the tree transformations of q. Therefore, Tq is defined as
follows:

Tq = {� � ¬Cq′ | q′ ∈ ttK(q)}.

c©2006/TONES – August 31, 2006 29/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

To prevent true forest matches, we further include an ABox A′, which contains additional
information about the individuals in A. This is similar to the well-known precompletion
approach for reducing ABox consistency to concept satisfiability [48]. Each A′ represents
a model in which there is no “true forest match” of a transitive rewriting of q, i.e., it
contains, for each possible forest match, an assertion that “spoils” it.

This can consist either of an assertion which ensures that, for some grounded variable
v ∈ Var(q′) with π(v) = (a, ε), a is not an instance of any rolling-up of a tree transforma-
tion of the a-tree match containing v, or of an assertion that ensures, for some grounded
variables v, v′ ∈ Var(q′), with r(v, v′) ∈ q′, π(v) = (a, ε) and π(v′) = (b, ε), a is not
r-related to b (i.e., ¬r(a, b)).

In the following, a sub-query of q is simply a non-empty subset of q (including q itself).
Let Q be the set of all queries that are a tree transformation of a sub-query of a transitive
rewriting of q w.r.t. K, and let cl(q) be the set of all Cq′ such that q′ ∈ Q. Note that this
implies that cl(q) contains every concept name occurring in q.

An ABox A′ is called a q-completion if it contains only assertions of the form

• ¬C(a) for some C ∈ cl(q) and a ∈ Ind(A) and

• ¬r(a, b) for a role name r occurring in cl(q) and a, b ∈ Ind(A).

Let n = |q|, mH = |H|, mA = |A|, and k = |cl(q)|. By Lemmas 9 and 11 and since
the number of sub-queries of q is bounded by 2n, there is a polynomial p such that
k ≤ 2p(n)·log p(mH). Also by Lemmas 9 and 11, there is a polynomial p′ such that the size
of each concept in cl(q) is bounded by p′(n). Therefore, the number of q-completions is
bounded by 2kmA+2km2

A .
Let q′ be a transitive rewriting of q, and τ : Var(q′) → Ind(A) be a partial mapping.

For a ∈ Ind(A), we set Root(a, τ) = {v ∈ Var(q′) | τ(v) = a}, and we use Reach(a, τ)
to denote the set of variables v ∈ Var(q′) for which there exists a sequence of variables
v0, . . . , vn−1, n ≥ 1, such that

• τ(v0) = a and vn−1 = v

• {v0, . . . , vn−1} ∩ dom(τ) ⊆ Root(a, τ);

• for all i < n− 1, there is a role r s.t. r(vi, vi+1) ∈ q.

Observe that Root(a, τ) = dom(τ) ∩ Reach(a, τ).
We call τ a split mapping if dom(τ) 	= ∅ and, for all a, b ∈ Ind(A), a 	= b implies

Reach(a, τ) ∩ Reach(b, τ) = ∅. Each split mapping τ induces, for each a ∈ ran(τ), a
sub-query qa as follows:

qa = {at ∈ q | Var({at}) ⊆ Reach(a, τ)}\
{r(v, v′) ∈ q′ | v, v′ ∈ Root(a, τ)}.

An extended query is a query where disjunctions of ELI� concepts can occur in concept
atoms. From a transitive rewriting q′ ∈ trK(q) and a split mapping τ : Var(q′) → Ind(A)
we obtain a groundable rewriting q′′ of q′ as follows:

c©2006/TONES – August 31, 2006 30/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

• drop all atoms in q′ which contain a variable v 	∈ dom(τ);

• for each a ∈ ran(τ), replace all variables v ∈ Root(a, τ) with a new variable va; and

• for each a ∈ ran(τ), let qa be the sub-query of q′ induced by τ , replace all v ∈
Root(a, τ) with va and add (Cq1

a
. . .Cqm

a
)(va), where each qi

a is a tree transformation
of qa in which va was not replaced and Cqi

a
= Cqi

a
(va).

In this case, we call τ the grounding of q′′ and use τ(q′′) for the result of replacing each
va in q′′ with a.

We say that a q-completion A′ spoils τ(q′′) if there is some

• r(a, b) ∈ τ(q′′) and ¬r(a, b) ∈ A′ or

• (Cq1
a
 . . . Cqm

a
)(a) ∈ τ(q′′) and ¬Cqi

a
(a) ∈ A′ for 1 ≤ i ≤ m.

Finally, a q-completion A′ is called a counter candidate for q and K if, for all groundable
rewritings q′′ of transitive rewritings q′ of q with grounding τ , A′ spoils τ(q′′).

Let us estimate the complexity of checking whether a given q-completion is a counter
candidate. By Lemma 9, there is a polynomial p such that there are 2p(n)·log p(mH) transitive
rewritings of q and it is easily seen that all tree transformations can be computed in this
time bound as well. The number of q-completions (and therefore of counter candidates)
is bounded by 2kmA+2km2

A . Moreover, for q′ ∈ tr(q), it can be decided in time polynomial
in n and mA whether a partial mapping τ is a split mapping for q′ and A, and there are
at most (mA + 1)|q

′| such partial mappings. In order to check whether a q-completion is
a counter candidate, we have to check for the existence of certain concepts C such that
C(a) ∈ A′. Clearly, the number of concepts relevant here is bounded by the cardinality
of cl(q), which is bounded by 2p(n)·log p(mH) for a polynomial p. Together with Lemma 9,
this implies that there is a polynomial p′ such that checking whether a q-completion is a
counter candidate can be done in time 2p(n)·log p(mH)·log p(mA).

The following lemma forms the base of our decision procedure.

Lemma 16. K 	|= q iff there exists a counter candidate A′ for q and K such that the
extended knowledge base K′ = (T ∪ Tq,H,A∪A′) is consistent.

Intuitively, counter candidates are those q-completions that do not give rise to true forest
matches. Since we prevent tree matches via the TBox Tq, the knowledge bases K′ of
Lemma 16 capture exactly the counter models against K |= q.

Based on this lemma, we define two versions of our decision procedure for query
entailment in SHIQ. The first version is deterministic and provides us with an upper
bound for combined complexity, where all three components of the input knowledge base
K = (T ,H,A) and the query are considered as the input. The second version is non-
deterministic and yields a tight upper bound for data complexity, where T , H, and q are
assumed fixed, and only A is the input. For the deterministic version, we make use of the
following result.

Theorem 17. Given an extended knowledge base K′ = (T ∪ Tq,H,A ∪ A′), where
|(T ,H,A)| = r, the cardinality of Tq ∪ A′ is s, and the maximum length of concepts

in Tq and A′ is t, we can decide consistency of K in deterministic time 22p(t·log r·log s)
with

p a polynomial.

c©2006/TONES – August 31, 2006 31/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

The deterministic version of our algorithm is as follows: generate all q-completions of A
and then check whether all extended knowledge bases that are induced by the counter
candidates are inconsistent. By Lemma 16, this algorithm is correct. Observe that for
all extended knowledge bases K′ = (T ∪ Tq,H,A ∪ A′) whose inconsistency needs to
be checked, the cardinality of Tq is bounded by k, the cardinality of A′ is bounded by
kmA +2km2

A, and hence the cardinality of Tq ∪A′ is bounded by k+kmA +2km2
A (where

k = |cl(q)|), and (due to Parts (b) of Lemmas 9 and 11) the maximum length of concepts in
Tq and A′ is bounded by p(n) for some polynomial p. This together with Theorem 17, the
bound established above on the number of q-completions of A, and the fact that deciding
if a q-completion is a counter candidate can be checked in time 2p(n)·log p(mH)·log p(mA) with
p a polynomial, yields the following result.

Theorem 18. Given a SHIQ knowledge base K and a conjunctive query q with |K| = m

and |q| = n, it can be decided in deterministic time 22p(n)·log p(m)
whether K |= q, where p

is a polynomial.

Observe that this bound is single exponential in the size of the knowledge base and double
exponential in the size of the query.

The non-deterministic version of our decision procedure actually decides non-
entailment of queries: guess a q-completion of A, check whether it is a counter candidate
and consistent, return “yes” (K 	|= q) if the check succeeds and “no” (K |= q) otherwise.
Regarding the complexity of inconsistency, we make use of the following result.

Theorem 19. Let T and Tq be TBoxes and H a role hierarchy. Given ABoxes A and A′

such that K′ = (T ∪ Tq,H,A ∪ A′) is an extended knowledge base and |A ∪ A′| = r, we
can decide in non-deterministic time p(r) whether K′ is consistent.

Again, Lemma 16 yields correctness of our algorithm. Let mA = |A|. The bound estab-
lished above on the maximal size of q-completions implies that q-completions of A are
polynomial in mA. Whether a q-completion is a counter candidate can be decided in time
2p(n)·log p(mH)·log p(mA), which is also polynomial in mA. Thus, Theorem 19 implies that
the data complexity of query entailment in SHIQ is in co-NP. The lower bound easily
follows from the fact that conjunctive query entailment is already co-NP-hard regarding
data complexity in the very restricted DL AL [18].

Theorem 20. Conjunctive query entailment in SHIQ is data complete for co-NP.

1.2.5 Challenges

The main challenge is to extend the algorithms presented in this document to more
expressive logics such as SHOIQ. The aim is also to implement these algorithms and
provide suitable optimizations which make them practical.

1.3 Less Expressive DLs and Hardness Results

Querying DL knowledge bases has received great attention in the last years. Indeed, the
definition of suitable query languages, and the design of query answering algorithms is

c©2006/TONES – August 31, 2006 32/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

arguably one of the crucial issues in applying DLs to ontology management and to the
Semantic Web [28].

Answering queries in DLs must take into account the open-world semantics of such
logics, and is therefore much more difficult than in databases. For example, while first-
order logic (FOL) is the basis of any query language (e.g., relational algebra and SQL)
for relational databases [2], it is well-known that answering FOL queries posed to DL
knowledge bases is undecidable3. More precisely, to the best of our knowledge, the most
expressive class of queries that go beyond instance checking, and for which decidability of
query answering has been proved in DLs, is the class of union of conjunctive queries [19,
73, 74]. This restriction on the query language may constitute a serious limitation to the
adoption of DLs technology in information management tasks, such as those required in
Semantic Web applications.

In this section we consider queries specified over ontologies expressed in Description
Logics, i.e., knowledge bases (KBs) constituted by a TBox and an ABox, and address
the query answering problem under the open-world semantics of DLs, i.e., the problem
of computing the answers to a query that are logical consequences of the TBox and
the ABox. We consider query languages that are fragments of first-order logic, and in
particular find out results for the languages of Conjunctive Queries (CQs) and Union of
Conjunctive Queries (UCQs), i.e., the maximal fragments for which the problem is known
to be decidable. We analyze the data complexity of the problem, i.e., computational
complexity measured with respect to the size of the ABox only. Note that we borrow the
notion of data complexity from the database literature [87], on the premise that an ABox
can be naturally viewed as a relational database. Our interest in the data complexity of
the problem is motivated by the growth of applications in which ontologies are used as a
conceptual view over data repositories, and therefore the set of instances of the concepts in
the ontology are very large, actually much larger than the intensional level of the ontology,
and call for being managed in a secondary storage.

We are interested in characterizing the polynomial tractability boundaries of query
answering, depending on the expressive power of the DL used to specify the KB. Fur-
thermore, we want also to characterize the LogSpace boundary of the problem. This
boundary is particularly important from a practical view point: staying in LogSpace
actually allows us to reduce the query answering problem to evaluation of a first-order
query (i.e., a query expressible in SQL) over a database which represents the ABox of the
knowledge base (see Section 1.3.7 for more details on this aspect).

Our overall investigation on query answering is carried out within the entire Work
Package (WP) 4 (“Ontology access, processing, and usage”), and is focalized on two
main aspects: (a) establishing how difficult is the problem from a computational point
of view, in order to get hints on the practical feasibility of query answering over DLs
ontologies; (b) Defining techniques for query answering which allow for a simple and
efficient implementation.

In the present report we concentrate on the first aspect, and show that query answering
over DL knowledge bases is a hard task already for quite simple DLs. More precisely, the
contributions of the present technical report are the following.

3Indeed, validity in FOL can be reduced to query answering.

c©2006/TONES – August 31, 2006 33/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

• We show minimal DL languages for which the data complexity of query answering
(in fact, of instance checking) is NLogSpace-hard and PTime-hard in all the above
mentioned query languages. In spite of the fact that we conjecture that for such
languages query answering is polynomially tractable (in NLogSpace and PTime,
respectively), these hardness results tell us that in query answering we cannot take
advantage of state-of-the-art database query optimization strategies, and this might
hamper practical feasibility for very large ABoxes (see also Section 1.3.7).

• We then establish coNP-hardness of query answering with respect to data complexity
for surprisingly simple DLs. In particular, we show that we get intractability as soon
as the DL is able to express simple forms of union.

Once established the above complexity lower bounds, in the next months of the project,
within WP 4, we will concentrate on the development of practical query answering tech-
niques. We simply remark now that a particular interest will be posed on the definition
and the study of those DLs for which answering queries specified in expressive query lan-
guages (namely, conjunctive queries) is in LogSpace, thus allowing for the exploitation
of database technique, as mentioned above.

In the rest of this section we first introduce some formal definitions (Section 1.3.1),
then we identify DLs for which query answering is NLogSpace-hard (Section 1.3.2), and
DLs for which query answering is PTime-hard (Section 1.3.3). Finally we identify DLs
for which query answering is coNP-hard (Section 1.3.4). In the last three subsections we
overview related work, summarize presented results and discuss ongoing research on this
topic.

The material included in the present document, which is our first outcome within the
TONES project for WP 4, has been recently disseminated in international conferences
[18].

1.3.1 Formal Definitions

Description Logics are logics that represent the domain of interest in terms of concepts,
denoting sets of objects, and roles, denoting binary relations between (instances of) con-
cepts. Complex concept and role expressions are constructed starting from a set of atomic
concepts and roles by applying suitable constructs. Different DLs allow for different con-
structs. In this section, we distinguish between the constructs that are allowed in the
concepts in the left-hand side (Cl) and in the concepts in the right-hand side (Cr) of
inclusion assertions (see later).

A LDL knowledge base (KB) K = (T,A) represents the domain of interest and consists
of two parts, a TBox T, representing intensional knowledge, and an ABox A, representing
extensional knowledge, both specified according to the DL LDL. The TBox is formed by
a set of inclusion assertions of the form

Cl � Cr

where Cl and Cr are formed using the constructs allowed by LDL. Such an inclusion
assertion expresses that all instances of concept Cl are also instances of concept Cr .

c©2006/TONES – August 31, 2006 34/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Possibly, the TBox allows for the specification of functionality assertions of the form

(funct R)

where R is either a role P or its inverse P−. The ABox is formed by a set of membership
assertions on atomic concepts and on atomic roles:

A(a), P (a1, a2)

stating respectively that the object (denoted by the constant) a is an instance of A and
that the pair (a1, a2) of objects is an instance of the role P . We assume that in each DL
LDL considered in this section, membership assertions assume the above form, whereas
they differ for constructs of the TBox.

We now specify the semantics of inclusion, functional and membership assertions. An
interpretation I = (dom, ·I) is a model of an inclusion assertion Cl � Cr if ClI ⊆ CrI ,
where ClI and ClI is the standard concept interpretation in DLs [6], and depends on the
particular DL LDL adopted. Furthermore, I is a model of an assertion (funct P) if the
binary relation P I corresponding to the interpretation of the role P is a function, i.e.,
(o, o1) ∈ P I and (o, o2) ∈ P I implies o1 = o2. Analogously for (funct P−).

To specify the semantics of membership assertions, we recall that the interpretation
function assigns to each constant a a distinct object aI ∈ dom. Note that this implies
that, as usual in DLs, we enforce the unique name assumption on constants [6]. An
interpretation I is a model of a membership assertion A(a) (resp., P (a1, a2)) if aI ∈ AI

(resp., (aI1 , a
I
2) ∈ P I). A model of a KB K = (T,A) is an interpretation I that is a model

of all assertions in T and A. A KB is satisfiable if it has at least one model. A KB K
logically implies (an assertion) α, written K |= α, if all models of K are also models of α.

We can extract information from the extensional level of a KB K expressed in a DL
LDL, by using queries expressed in a query language LQ. We consider in the following
query languages which are fragments of FOL.

A query q ∈ LQ over a LDL KB K is therefore an open formula of first-order logic of
the form

{ �x | φ(�x) }
where φ(�x) is a FOL formula with free variables �x and whose atoms are specified in terms
of concepts and roles in K. We call the size of �x the arity of the query q. In the following,
we simply denote a query q with free variables �x with q[�x]. Given an interpretation I,
qI is the set of tuples �o of objects that, when assigned to the free variables, make the
formula φ true in I [2].

The reasoning service we are interested in is query answering : given a LDL knowledge
base K and a LQ query q[�x] over K, return all tuples �a of constants in K such that, when
substituted to the variables �x in q(�x), we have that K |= q(�a), i.e., such that �aI ∈ qI for
every model I of K.

We observe that query answering (properly) generalizes a well known reasoning ser-
vice in DLs, namely instance checking, i.e., logical implication of an ABox assertion. In
particular, instance checking can be expressed as the problem of answering (boolean)
conjunctive queries constituted by just one ground atom.

c©2006/TONES – August 31, 2006 35/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Finally, we refer to data complexity of query answering, which is a notion borrowed
from relational database theory [87]. First, we note that there is a recognition problem
associated with query answering, which is defined as follows. We have a fixed TBox T
expressed in a DL LDL, and a fixed query q expressed in a language LQ : the recognition
problem associated to T and q is the decision problem of checking whether, given an ABox
A, and a tuple �a of constants, we have that (T,A) |= q(�a). Note that neither the TBox
nor the query is an input to the recognition problem.

Let S be a complexity class. When we say that query answering for a certain DL
LDL is in S with respect to data complexity, we mean that the corresponding recognition
problem is in S. Similarly, when we say that query answering for a certain DL L is S-hard
with respect to data complexity, we mean that the corresponding recognition problem is
S-hard.

The importance of studying query answering and the relevance of characterizing its
data complexity is motivated by the recent growth of applications in which ontologies are
used as a conceptual view over data repositories. For example, in Enterprise Application
Integration [57], Data Integration [58], and the Semantic Web [47], the intensional level of
the application domain can be profitably represented by an ontology, so that clients can
rely on a shared conceptualization when accessing the services provided by the system.
In these contexts, the set of instances of the concepts in the ontology is to be managed
in the data layer of the system architecture (e.g., in the lowest of the three tiers of the
Enterprise Software Architecture), and, since instances correspond to the data items of
the underlying information system, such a layer constitutes a very large (much larger than
the intensional level of the ontology) repository, to be stored in secondary storage (see
[14]).

When clients access the application ontology, it is very likely that one of the main
services they need is the one of answering complex queries over the extensional level
of the ontology (obviously making use of the intensional level as well in producing the
answer). Given the size of the instance repository, when measuring the computational
complexity of query answering (and reasoning in general) the most important parameter
is the size of the data, i.e., its data complexity.

1.3.2 NLogSpace-hard DLs

We now consider basic DLs for which query answering is NLogSpace-hard. In fact we
show that already the problem of instance checking for such DLs is NLogSpace-hard. As
a consequence we get NLogSpace-hardness of query answering when LQ is the language
of conjunctive queries or union of conjunctive queries.

The first case we consider is that of a basic DL language, which allows for qualified
existential quantification in the right-hand side of inclusion assertions. The second case is
that of a basic DL language which allows for qualified universal quantification in the right-
hand side of inclusion assertions. The third case that we consider is that of a language
which allows for qualified existential quantification in the right-hand side of inclusion
assertions, together with the possibility of expressing functionality constraints. This is
formally stated in the following theorem.

c©2006/TONES – August 31, 2006 36/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Theorem 21. Instance checking is NLogSpace-hard with respect to data complexity for
the cases where

1. Cl → A | ∃R.A
Cr → A
R → P
TBox assertions: Cl � Cr

2. Cl → A
Cr → A | ∀R.A
R → P
TBox assertions: Cl � Cr

3. Cl → A
Cr → A | ∃R.A
R → P
TBox assertions: Cl � Cr , (funct R)

Proof. For Case 1, the proof is by a LogSpace reduction from reachability in directed
graphs, which is NLogSpace-complete. Let G = (N,E) be a directed graph, where N
is a set of nodes and E ⊆ N ×N is the set of edges of G, and let s, d be two nodes in N .
Reachability is the problem of checking whether there is a path in G from s to d.

We define a KB K = (T,A), where the TBox T is constituted by a single inclusion
assertion

∃P .A � A

and the ABox A has as constants the nodes of G, and is constituted by the membership
assertion A(d), and by one membership assertion P (n, n′) for each edge (n, n′) ∈ E. It
is easy to see that K can be constructed in LogSpace from G, s, and d. We show that
there is a path in G from s to d if and only if K |= A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of K such
that sI 	∈ AI . Consider the interpretation I with dom = N , nI = n for each n ∈ N ,
P I = E, and AI = {n | there is a path in G from n to d }. We show that I is a model
of K. By construction, I satisfies all membership assertions P (n, n′) and the membership
assertion A(d). Consider an object n ∈ (∃P .A)I . Then there is an object n′ ∈ AI such
that (n, n′) ∈ P I . Then, by definition of I, there is a path in G from n′ to d, and
(n, n′) ∈ E. Hence, there is also a path in G from n to d and, by definition of I, we have
that n ∈ AI . It follows that also the inclusion assertion ∃P .A � A is satisfied in I.

“⇒” Suppose there is a path in G from a node n to d. We prove by induction on
the length k of such a path that K |= A(n). Base case: k = 0, then n = d, and the claim
follows from A(d) ∈ A. Inductive case: suppose there is a path in G of length k− 1 from
n′ to d and (n, n′) ∈ E. By the inductive hypothesis, K |= A(n′), and since by definition
P (n, n′) ∈ A, we have that K |= ∃P .A(n). By the inclusion assertion in T it follows that
K |= A(n).

For Case 2, the proof follows from Case 1 and the observation that an assertion
∃P .A1 � A2 is logically equivalent to the assertion A1 � ∀P−.A2, and that we can get
rid of inverse roles by inverting the edges of the graph represented in the ABox.

c©2006/TONES – August 31, 2006 37/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

For Case 3, the proof is again by a LogSpace reduction from reachability in directed
graphs, and is based on the idea that an assertion ∃P .A1 � A2 can be simulated by the
assertions A1 � ∃P−.A2 and (funct P−). Moreover, the graph can be encoded using only
functional roles, and we can again get rid of inverse roles by inverting edges.

More precisely, let G = (N,E) be a directed graph and consider the problem of
reachability in G between nodes s and d. We define the KB K = (T,A), where the TBox
T is constituted by the inclusion assertions

A � ∃P1.B B � ∃P1.B B � ∃P2.A (funct P1) (funct P2)

and the ABox A makes use of the nodes in N and the edges in E as constants. Consider
a node n of G, and let e1, . . . , ek be all edges of G that have n as their target (i.e., such
that ei = (ni, n) for some node ni), taken in some arbitrarily chosen order. Then the
ABox A contains the following membership assertions:

• P1(n, e1), and P1(ei, ei+1) for i ∈ {1, . . . , k − 1},

• P2(ei, ni), where ei = (ni, n), for i ∈ {1, . . . , k − 1}.

Additionally, A contains the membership assertion A(d). Notice that the assertions in
the ABox do not violate the functionality assertions in the TBox. Again, it is easy to see
that K can be constructed in LogSpace from G, s, and d. We show that there is a path
in G from s to d if and only if K |= A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of K such
that sI 	∈ AI . Consider the interpretation I with dom = {o} ∪N ∪E, and in which each
constant of the ABox is interpreted as itself, P I

1 and P I
2 contain all pairs of nodes directly

required by the ABox assertions, AI contains each node n such that there is a path in G
from n to d, and BI contains all edges (i, j) such that there is a path in G from j to d. To
satisfy the assertion A � ∃P1.B for those objects n ∈ AI that have no outgoing P1 edge
forced by the ABox (i.e., that have no incoming edge in G), we set o ∈ BI , (n, o) ∈ P I

1 ,
and (o, o) ∈ P I

1 . We use o in a similar way to satisfy the assertions B � ∃P1.B and
B � ∃P1.A. Note that in this way the functionality assertions are not violated. It is easy
to see that I is a model of K, and since there is no path in G from s to d, we have that
s 	∈ AI .

“⇒” Suppose there is a path in G from a node n to d. We prove by induction on
the length � of such a path that K |= A(n). Base case: � = 0, then n = d, and the claim
follows from A(d) ∈ A. Inductive case: suppose there is a path in G of length �− 1 from
j to d and (n, j) ∈ E. Let n1, . . . , nh be the nodes of G such that (ni, j) ∈ E, up to
nh = n and in the same order used in the construction of the ABox. By the inductive
hypothesis, K |= A(j), and by the assertion A � ∃P1.B, functionality of P1, and the
ABox assertion P1(j, (n1, j)), we obtain that K |= B((n1, j)). Exploiting B � ∃P1.B,
functionality of P1, and the ABox assertion P1((ni, j), (ni+1, j)), we obtain by induction
on h that K |= B((nh, j)). Finally, by B � ∃P2.A, functionality of P2, and the ABox
assertion P2((nh, j), nh), we obtain that K |= A(nh), i.e., K |= A(n). ❏

c©2006/TONES – August 31, 2006 38/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

We remark again that all the above “negative” results hold for instance checking al-
ready, i.e., for the simplest queries possible. Also, note that in all three cases, we are con-
sidering minimal DLs (in terms of number of constructs allowed) for which NLogSpace-
hardness of query answering is reached.

1.3.3 PTime-hard DLs

Next we show that if we consider further extensions to the logics mentioned in Theo-
rem 21, we get even stronger complexity results. In particular, we consider different cases
where query answering (actually, instance checking already) becomes PTime-hard in data
complexity.

Note that the PTime-hardness result basically means that we need at least the power
of full Datalog to answer queries in these cases.

Theorem 22. Instance checking (and hence query answering) is PTime-hard with respect
to data complexity for the cases where

1. Cl → A | ∃R.A
Cr → A | ∃P
R → P | P−

TBox assertions: Cl � Cr

2. Cl → A
Cr → A | ∃R.A
R → P | P−

TBox assertions: Cl � Cr , (funct R)

3. Cl → A | ∃R.A
Cr → A | ∃R.A
R → P
TBox assertions: Cl � Cr , (funct R)

Proof. For Case 1, we reduce the emptiness problem of context-free grammars to query
answering over such DL-KBs. Let G = 〈VN ,VT , S,P〉 be a context-free grammar (the
non-terminal symbol S is the axiom of G). Without loss of generality, we can assume that
each production rule has at most two nonterminal symbols in its right-hand side, since
each rule with more than two nonterminal symbols in its right-hand side can be linearly
transformed into an equivalent set of production rules with at most two nonterminal
symbols in their right-hand side. Let L(G) be the language generated by G.

Given a production rule R, we denote by Left(R) the nonterminal symbol occurring in
the left-hand side of R, and denote by Right(R) the set of nonterminal symbols occurring
in the right-hand side of R.

We define the KB K = 〈T,A〉, where:

c©2006/TONES – August 31, 2006 39/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

• The TBox T is constituted by the following inclusion assertions:

∃L.D � D (I1)
∃R.D � A1 (I2)
∃R.A1 � A2 (I3)
∃P .A � D (I4)

∃P−.A2 � A (I5)
A1 � ∃P (I6)

• The ABox A is constructed in the following way.

begin
A := ∅;
j = 1;
for each N ∈ VN do
begin

i=1;
for each production rule PR in P such that Left(PR) = N do
begin

A := A ∪ {L(ni, ni+1)};
if Right(PR) = ∅
then A := A ∪ {D(Ni)}
else if Right(PR) = {B}
then begin A := A ∪ {A1(j), R(Ni, j), L(j, B1)}; j := j + 1 end
else if Right(PR) = {B,C}
then begin
A := A ∪ {R(Ni, j), L(j, B1), R(j, j + 1), L(j + 1, C1)};
j := j + 2

end;
i := i+ 1

end
end

end

It is immediate to see that A is constructed in time linear in the size of P. (No-
tice that for each nonterminal symbol A, the individuals a1, . . . , ak represent the k
occurrences of A in the left-hand sides of production rules in P, while there is a
distinct (new) individual j for each right-hand side occurrence of A in P).

Finally, let q be the query q :–D(S1). We prove that L(G) is empty iff K |= q. More
precisely, we prove that, for every nonterminal symbol A ∈ VN , K |= D(A) iff A generates
a non-empty language in G.

(⇐) Suppose A generates a non-empty language in G. We prove that K |= D(a1).
The proof is by induction on the structure of a derivation of s from A in G. Base
case (direct derivation): there exists a production rule such that Left(PR) = A and
Right(PR) = ∅. By the above definition of A, D(a1) ∈ A, consequently K |= D(a1).

c©2006/TONES – August 31, 2006 40/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Inductive case (indirect derivation): there exists a production rule such that Left(PR) = A
and each nonterminal symbol occurring in Right(PR) generates a non-empty language in
G. Suppose Right(PR) = {B,C} (the case when Right(PR) = {B} is analogous). By the
inductive hypothesis, it follows that K |= D(b1) and K |= D(c1). Moreover, by definition
of A, there exist individuals i and j such that R(ak, i) ∈ A for some k, R(i, j) ∈ A,
L(i, b1) ∈ A, L(j, c1) ∈ A. Since K |= D(c1), from inclusion (I1) of T it follows that
K |= D(j), consequently from inclusion (I2) it follows that K |= A1(i), and from inclusion
(I3) we have that K |= A2(ak); moreover, from K |= D(b1) and inclusion (I1) it follows
that K |= D(i), thus, from (I2) it follows that K |= A1(ak). Now, from inclusion (I6) we
have that there exists individual � such that K |= P (ak, �), thus, from K |= A2(ak) and
from inclusion (I5) it follows that K |= A(�), therefore K |= ∃P .A(ak), and by inclusion
(I4) it follows that K |= D(ak).

(⇒) Suppose that A generates a empty language in G. We prove that K 	|= D(a1). The
proof is by induction on the structure of G. The key property is that, from the definition
of A it follows that, for each (new) individual i in A corresponding to a right-hand side
occurrence of the nonterminal symbol A, K |= D(i) if and only if K |= D(a1), since the
concept D “propagates backward” only through the role L, and by definition of A, each
new individual i (representing a right-hand side occurrence of A) is connected through
role L only to the individual A.

For Case 2, the reduction (and the proof of its correctness) is the same as in Case 1,
with the exception of the TBox assertions which are the following:

D � ∃L−.D (I1)
D � ∃R−.A1 (I2)
A1 � ∃R−.A2 (I3)
A � ∃P−.D (I4)
A2 � ∃P .A (I5)
A1 � ∃P (I6)

(funct L−) (I7)
(funct R−) (I8)
(funct P) (I9)

Also for Case 3, the reduction (and the proof of its correctness) is the same as in
Case 1, with the exception of the TBox assertions which are the following:

∃L.D � D (I1)
∃R.D � A1 (I2)
∃R.A1 � A2 (I3)
∃P .A � D (I4)
A2 � ∃P .A (I5)
A1 � ∃P (I6)
(funct P) (I7)

❏

c©2006/TONES – August 31, 2006 41/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Theorem 23. Instance checking (and hence query answering) is PTime-hard with respect
to data complexity for the cases where

1. Cl → A | ∃R.A | A1 � A2

Cr → A
R → P
TBox assertions: Cl � Cr

2. Cl → A | A1 � A2

Cr → A | ∀R.A
R → P
TBox assertions: Cl � Cr

3. Cl → A | A1 � A2

Cr → A | ∃R.A
R → P
TBox assertions: Cl � Cr , (funct R)

Proof. For Case 1, the proof is by a LogSpace reduction from Path System Accessibility,
which is PTime-complete [32]. An instance of Path System Accessibility is defined as
PS = (N,E, S, t), where N is a set of nodes, E ⊆ N ×N ×N is an accessibility relation
(we call its elements edges), S ⊆ N is a set of source nodes, and t ∈ N is a terminal node.
PS consists in verifying whether t is accessible, where a node n ∈ N is accessible if n ∈ S
or if there exist accessible nodes n1 and n2 such that (n, n1, n2) ∈ E.

We define the KB K = (T,A), where the TBox T is constituted by the inclusion
assertions

∃P1.A � B1 ∃P2.A � B2 B1 �B2 � A ∃P3.A � A

and the ABox A makes use of the nodes in N and the edges in E as constants. Consider a
node n ∈ N , and let e1, . . . , ek be all edges in E that have n as their first component, taken
in some arbitrarily chosen order. Then the ABox A contains the following membership
assertions:

• P3(n, e1), and P3(ei, ei+1) for i ∈ {1, . . . , k − 1},

• P1(ei, j) and P2(ei, k), where ei = (n, j, k), for i ∈ {1, . . . , k − 1}.

Additionally, A contains one membership assertion A(n) for each node n ∈ S. Again,
it is easy to see that K can be constructed in LogSpace from PS . We show that t is
accessible in PS if and only if K |= A(t).

“⇐” Suppose that t is not accessible in PS . We construct a model I of K such that
tI 	∈ AI . Consider the interpretation I with dom = N ∪ E, and in which each constant
of the ABox is interpreted as itself, P I

1 , P I
2 , and P I

3 consist of all pairs of nodes directly
required by the ABox assertions, BI

1 consists of all edges (i, j, k) such that j is accessible
in PS , BI

2 consists of all edges (i, j, k) such that k is accessible in PS , and AI consists of
all nodes n that are accessible in PS union all edges (i, j, k) such that both j and k are

c©2006/TONES – August 31, 2006 42/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

accessible in PS . It is easy to see that I is a model of K, and since t is not accessible in
PS , we have that t 	∈ AI .

“⇒” Suppose that t is accessible in PS . We prove by induction on the structure of the
derivation of accessibility that if a node n is accessible, then K |= A(n). Base case (direct
derivation): n ∈ S, hence, by definition, A contains the assertion A(n) and K |= A(n).
Inductive case (indirect derivation): there exists an edge (n, j, k) ∈ E and both j and k
are accessible. By the inductive hypothesis, we have that K |= A(j) and K |= A(k). Let
e1, . . . , eh be the edges in E that have n as their first component, up to eh = (n, j, k) and
in the same order used in the construction of the ABox. Then, by P1(eh, j) in the ABox
and the assertions ∃P1.A � B1 we have that K |= B1(eh). Similarly, we get K |= B2(eh),
and hence K |= A(eh). By exploiting assertions P3(ei, ei+i) in the ABox, and the TBox
assertion ∃P3.A � A, we obtain by induction on h that K |= A(e1). Finally, by P3(n, e1),
we obtain that K |= A(n).

For Cases 2 and 3, the proof follows from Case 1 and observations analogous to the
ones for Theorem 21. ❏

1.3.4 coNP-hard DLs

Finally, we show three cases where the TBox language becomes so expressive that the
data complexity of query answering goes beyond PTime (assuming PTime 	= NP).

Theorem 24. Query answering is coNP-hard with respect to data complexity for the cases
where

1. Cl → A | ¬A
Cr → A
R → P
TBox assertions: Cl � Cr

2. Cl → A
Cr → A | A1 A2

R → P
TBox assertions: Cl � Cr

3. Cl → A | ∀R.A
Cr → A
R → P
TBox assertions: Cl � Cr

Proof. In all three cases, the proof is an adaptation of the proof of coNP-hardness of
instance checking for ALE presented in [25]. In the following, we first consider Case 2.

coNP-hardness of query answering is proved by a reduction from 2 + 2-CNF unsat-
isfiability (which is showed to be coNP-complete in [25]). A 2 + 2-CNF formula on an
alphabet P is a CNF formula in which each clause has exactly four literals: two positive
and two negative ones, where the propositional letters are elements of P ∪ {true , false}.
Given a 2 + 2-CNF formula F = C1 ∧ . . .∧Cn, where Ci = Li

1+ ∨Li
2+ ∨¬Li

1− ∨¬Li
2−, we

c©2006/TONES – August 31, 2006 43/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

associate with it a knowledge base KF = (TF ,AF) and a query Q as follows. KF has one
constant � for each letter L in F , one constant ci for each clause Ci, plus two constants
true and false for the corresponding propositional constants. The atomic roles of KF are
P1, P2, N1, N2 and the atomic concepts are O, At, and Af . Then, we pose

TF = {O � At ∪Af},
AF = { At(true), Af(false)

O(�11+), O(�12+), O(�11−), O(�12−),
. . .
O(�n1+), O(�n2+), O(�n1−), O(�n2−),
P1(c1, �

1
1+), P2(c1, �

1
2+), N1(c1, �

1
1−), N2(c1, �

1
2−),

. . .
P1(cn, �

n
1+), P2(cn, �

n
2+), N1(cn, �

n
1−), N2(cn, �

n
2−) }, and

Q = { | ∃ x, y, z, w1, w2.P1(x, y)Af(y)P2(x, z)Af (z)N1(x, w1)At(w1)N2(x, w2)At(w2)}.

Intuitively, the membership to the extension of Af or At corresponds to the truth
values true and false respectively and checking KF |= Q (i.e., the query evaluates to
true in KF) corresponds to checking whether in every truth assignment for the formula F
there exists a clause whose positive literals are interpreted as false, and whose negative
literals are interpreted as true, i.e., a clause that is not satisfied. Note that the ABox AF

contains the assertions At(true) and Af (false) in order to guarantee that in each model
I of KF the constants true and false are in the extension of (possibly both) AI

t and AI
f ,

respectively.
Now, it remains to prove that the formula F is unsatisfiable if and only if KF |= Q.

“⇐” Suppose that F is unsatisfiable. Consider a model I of KF (which always
exists since KF is always satisfiable), and let δI be the truth assignment for F such that
δI(�) = true iff �I ∈ AI , for every letter � in F (and corresponding constant in KF).
Since F is unsatisfiable, there exists a clause Ci that is not satisfied by δI , and therefore
δI(L

i
1+) = false, δI(L

i
2+) = false, δI(L

i
1−) = true and δI(L

i
2−) = true . It follows that in

KF the interpretation of the constants related to ci through the roles P1 and P2 is not
in AI

t , and consequently is in the AI
f , and the interpretation of constants related to ci

through the roles N1 and N2 is in AI
t . Thus, there exists a substitution σ which assigns

variables in Q to constants in KF in such a way that σ(Q) evaluates to true in I (notice
that this holds even if the propositional constants true or false occur in F). Therefore,
since this argument holds for each model I of KF , we can conclude that KF |= Q.

“⇒” Suppose that F is satisfiable, and let δ be a truth assignment satisfying F . Let
Iδ be the interpretation for KF defined as follows:

• OIδ = {�Iδ | � occurs in F},

• AIδ
t = {�Iδ | δ(�) = true} ∪ {true},

• AIδ
f = {�Iδ | δ(�) = false} ∪ {false},

• ρIδ = {(aIδ , bIδ) | ρ(a, b) ∈ AF} for ρ = P1, P2, N1, N2.

c©2006/TONES – August 31, 2006 44/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

It is easy to see that Iδ is a model of KF . On the other hand, since F is satisfiable,
for every clause in F there exists a positive literal interpreted as true or a negative literal
interpreted as false. It follows that for every constant ci, there exists either a role (P1

or P2) that relates ci to a constant whose interpretation is in AIδ
t or there exists a role

(N1 or N2) that relates ci to a constant whose interpretation is in AIδ
f . Since the query

Q is evaluated to true in Iδ only if there exists at least a constant ci in KF such that
the interpretations of the constants related to ci by roles P1 and P2 are both in AIδ

f and

the interpretations of the constants related to ci by roles N1 and N2 are both in AIδ
t , it

follows that the query Q evaluates to false in Iδ and therefore KF 	|= Q.
Proofs for Cases 1 and 3 are obtained by analogous reductions from 2 +2-CNF unsat-

isfiability. More precisely, for Case 1 the knowledge base KF = (TF ,AF) has the same
constants and the same atomic roles as for Case 2, and has only the atomic concepts At

and Af . Then, TF = {¬At � Af} and AF is as for Case 2 but without the assertions
involving the concept O. Finally, the query Q is as for Case 2. For Case 3, KF has the
same constants as for Cases 1 and 2, the same atomic roles as for Cases 1 and 2 plus the
atomic role P , and the atomic concepts A and Af . Then, TF = {∀P.A � Af} and AF

is as for Case 1 but without the assertion At(true), which is substituted by the assertion
P (true, d), where d is a new constant not occurring elsewhere in KF . Finally, the query
Q is as follows

Q = { | ∃ x, y, z, w1, w2.P1(x, y)Af(y)P2(x, z)Af (z)N1(x, w1)
P (w1, w2)N2(x, w2)P (w3, w4)}.

Soundness and completeness of the above reductions can be proved as done for the reduc-
tion of Case 2. We finally point out that the intuition behind the above results is that in
all three cases it is possible to require a reasoning by case analysis, caused by set covering
assertions. Indeed, whereas in Case 2 we have explicitly asserted O � At Af , for the
other cases this can be seen by considering that At and Af , and ∀P.A and ∃P cover the
entire domain in Case 1 and Case 3, respectively. ❏

1.3.5 Related Work

All the DLs studied in this section are fragments of expressive DLs with assertions and
inverses studied in the 90’s (see [6] for an overview), which are at the base of current
ontology languages such as OWL, and for which optimized automated reasoning systems
such as FaCT++ [86], RacerPro [39] and Pellet [83] have been developed. Indeed, one
could use, off-the-shelf, a system like RacerPro or Pellet to perform instance checking
in such DLs. Also, reasoning with conjunctive queries in these DLs has been studied
(see e.g., [19, 20]), although not yet implemented in systems. Unfortunately, the known
reasoning algorithms for these DLs are in 2ExpTime with respect to combined complexity,
and more importantly they are not tailored towards obtaining tight complexity bounds
with respect to data complexity (they are in ExpTime). Alternative reasoning procedures
that allow for clearly isolating data complexity have recently been proposed, how they will
work in practice still needs to be understood. A coNP upper bound for data complexity
of instance checking in the expressive DL SHIQ has been shown by making use of a

c©2006/TONES – August 31, 2006 45/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

reduction to Disjunctive Datalog and then exploiting resolution [54, 55]. It remains open
whether such a technique can be extended to deal efficiently with conjunctive queries. In
[60], making use of an algorithm based on tableaux, a coNP, upper-bound with respect
to data complexity is given for a DL with arbitrary inclusion assertions, but lacking
inverse roles. Recently, building on such techniques, coNP-completeness of answering
conjunctive queries for SHIQ, which includes inverse roles, and number restrictions (that
generalize functionality) has been shown [75]. It is interesting to observe that the results
in this section (Theorem 24) tell us that we get coNP-completeness already for very small
fragments of SHIQ.

In [55], a fragment of SHIQ, called Horn-SHIQ, is studied and a PTime upper
bound in data complexity for instance checking is shown. The results in this section
(Theorem 22) tell us that instance checking in Horn-SHIQ is also PTime-hard. Indeed,
Horn-SHIQ allows for qualified existential quantification ∃P .A in both sides of inclusion
assertions and (an extended form) of functionality restrictions.

Finally, since DLP [38] is a superset of the DL in Case 1 of Theorem 23, then such a
theorem shows that query answering in DLP is PTime-hard.

1.3.6 Summary of Results

Results provided in this section are summarized in the following table.

Cl Cr CQs (and therefore UCQs) FOL
A | ∃P .A A NLogSpace-hard∗ undecidable

A A | ∀P .A NLogSpace-hard∗ undecidable
A A | ∃P .A NLogSpace-hard∗ undecidable

A | ∃P .A | ∃P−.A A | ∃P PTime-hard∗ undecidable
A A | ∃P .A | ∃P−.A PTime-hard∗ undecidable

A | ∃P .A A | ∃P .A PTime-hard∗ undecidable
A | ∃P .A | A1 � A2 A PTime-hard∗ undecidable

A | A1 � A2 A | ∀P .A PTime-hard∗ undecidable
A | A1 � A2 A | ∃P .A PTime-hard∗ undecidable

A | ¬A A coNP-hard undecidable
A A | A1 A2 coNP-hard undecidable

A | ∀P .A A coNP-hard undecidable

∗ This result holds already for instance checking.

Legenda: A (possibly with subscript) = atomic concept, P = atomic role, Cl/Cr =
left/right-hand side of inclusion assertions, CQs = conjunctive queries, UCQs = union of
conjunctive queries, FOL = first-order queries

In the table we report data complexity lower bounds for query answering over knowl-
edge bases specified in the DLs studied in this section, when queries belong to expressive
query languages such as the language of conjunctive queries, and the language of union of
conjunctive queries. Undecidability of query answering for FOL follows from the fact that
validity of a FOL formula φ can trivially be reduced to query answering (φ is a boolean
query over an empty KB).

c©2006/TONES – August 31, 2006 46/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

1.3.7 Discussion

In previous sections we have presented first fundamental results on the data complexity
(complexity with respect to the size of the ABox only) of query answering in DLs. In
particular, we have concentrated on the lower bounds of the problem, and have shown
that answering expressive queries over (simple) DLs is a hard task from the computational
complexity view point, since we easily reach intractability.

We have also investigated the LogSpace boundary of the problem, and we have
singled out those DLs for which query answering becomes NLogSpace-hard and PTime-
hard respectively. This boundary is particularly interesting from a practical view point:
staying in LogSpace actually allows us to look for a way of encoding the problem by
making use of first-order logic. More precisely, such a computational characterization
allows us to reduce query answering to evaluating a first-order query over a database which
represents the ABox of the knowledge base. Such a property is called FOL-reducibility
of query answering. Since first-order queries can be expressed in SQL, the importance
of FOL-reducibility is that, when query answering enjoys this property, we can take
advantage of Data Base Management System (DBMS) techniques for both representing
data, i.e., ABox assertions, and answering queries via reformulation into SQL4.

Turning back to the showed results, we have that for DLs for which query answer-
ing is NLogSpace-hard and PTime-hard, query answering is not FOL-reducible, but
at least the power of linear recursive Datalog (NLogSpace) and general recursive Dat-
alog (PTime) are required to define a declarative specification of the problem. Note
that, although very interesting and promising Datalog engines exist, query optimization
strategies for this query language are not sufficiently mature yet to deal with complex
applications with millions of instances in the extensional level.

We are currently studying, and will keep on studying in the next months within
WP 4, cases for which query answering is FOL-reducible. A first line of research consists
in finding out DLs for which answering of expressive queries (e.g., conjunctive queries) is
FOL-reducible. A second line of research consists in considering cases which are not
FOL-reducible, since the data complexity goes beyond LogSpace or the problem is
even undecidable, and interpreting them according to an alternative semantics for query
answering, based on the use of an epistemic operator, which weakens the FOL-based
semantics of query answering presented in Section 1.3.1. Such a semantics allows us to
make use of query languages that are both close in expressive power to FOL, and for
which query answering is decidable (and, possibly, FOL-reducible).

2 Query Formulation Support

In the context of access to data sources mediated by ontologies users should be guided
towards the precise formulation of their queries, in order to obtain only relevant answers.
This process should be supported by automated reasoning tasks which make use of the
ontologies describing the data sources.

4We consider here the kernel of the SQL-92 standard, i.e., we see SQL as an implementation of
relational algebra.

c©2006/TONES – August 31, 2006 47/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Within this perspective, an “intelligent” query interface supports a user in formulating
a precise query – which best captures her/his information needs – even in the case of
complete ignorance of the vocabulary of the underlying information system holding the
data.

The intelligence of the interface is driven by an ontology describing the domain of
the data in the information system. The ontology defines a vocabulary which is richer
than the logical schema of the underlying data, and it is meant to be closer to the user’s
rich vocabulary. The user can exploit the ontology’s vocabulary to formulate the query,
and she/he is guided by such a richer vocabulary in order to understand how to express
her/his information needs more precisely, given the knowledge of the system. This latter
task – called intensional navigation – is the most innovative functional aspect of such
interface.

Intensional navigation can help a less skilled user during the initial step of query
formulation, thus overcoming problems related with the lack of schema comprehension
and so enabling her/him to easily formulate meaningful queries.

Queries can be specified through an iterative refinement process supported by the
ontology through intensional navigation. The user may specify her/his request using
generic terms, refine some terms of the query or introduce new terms, and iterate the
process. Moreover, users may explore and discover general information about the domain
without querying the information system, giving instead an explicit meaning to a query
and to its subparts through classification.

In the literature there are several approaches at providing intelligent visual query
systems for relational or object oriented databases (see [22] for an extensive survey).
However, to our knowledge, not much has been done in the context of ontology-based
query processing (see [23]).

The strength of the presented approach derives from the fact that the graphical rep-
resentation of the queries is underpinned by a formal semantics provided by an ontology
language. The use of an appropriate ontology language enables the system engineers to
precisely describe the data sources, and their implicit data constraints, by means of a sys-
tem global ontology (see [21]). The same ontology is leveraged by the query interface to
support the user in the composition of the query, rather than relying on a less expressive
logical schema. The underlying technology used by the query interface is based on the
recent work on query containment under constraints (see [19, 51]).

In the following sections we describe the underpinning technologies and techniques
enabling the query user interface. We will start by describing our assumptions on the
query language. The whole system is supported by formally defined reasoning services
which are described in Section 2.2.

Since the interface is build around the concept of classes and their properties, we
consider conjunctive queries composed by unary (classes) and binary (attribute and as-
sociations) terms.

{x1, . . . , xk | T1(y1), . . . , Tn(yn), R1(z1, w1), . . . , R�(z�, w�)}
where the letters x, y, z, w denote variables or basic data constants (numbers, strings,
etc.), T and R are unary and binary terms respectively. Unary terms represent class
membership, while binary terms connect classes or datatypes by means of attributes.

c©2006/TONES – August 31, 2006 48/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Variables x1, . . . , xk are called distinguished, and represent the values which are going
to be returned by the query. The variables in the body of the query T1(y1), . . ., Tn(yn),
R1(z1, w1), . . ., R�(z�, w�) are considered as existentially quantified. The distinguished
variables should be among the variables appearing in the body. The result of a query is
the set of k-tuples of values which, substituted to the distinguished variables, make the
body of the query satisfied in the integrated view of the data sources.

For example, a query to retrieve the suppliers selling on the Italian market would be

{x | Suppl(x), sell on(x, y), It market(y)}.

The body of a query can be considered as a graph in which variables (and constants)
are nodes, and binary terms are edges. A query is connected (or acyclic) when for the
corresponding graph the same property holds. We restrict ourselves to acyclic connected
queries. This restriction is dictated by the requirement that the casual user must be
comfortable with the language itself.5 Note that the query language restrictions do not
affect the ontology language, where the terms are defined by a different (in our case more
expressive) language. The complexity of the ontology language is left completely hidden
to the user, who doesn’t need to know anything about it. Under this assumption, we
do not need to explicitly use variable names since the paths from the root unequivocally
individuate each variable.

Let us consider for example the query “Supplier and Multinational corporation located
in Europe and selling on Italian market”. Firstly, a new variable (x1) is associated to the
top level “Supplier and Multinational corporation”. Assuming that the top level variable
is by default part of the distinguished variables, the conjunctive query becomes

{x1 | Suppl(x1),Mult corp(x1), . . .},

where the dots mean that there is still part of the query to be expanded. Then we consider
the property “selling on”, with its value restriction “Italian market”: this introduces a new
variable x1,1. The second branch is expanded in the same way generating the conjunctive
query

{x1 | Suppl(x1),Mult corp(x1), sell on(x1, x1,1),

It market(x1,1), loc in(x1, x1,2),Eur(x1,2)}.

2.1 Query Building

In this context we are not directly interested in the way the user interacts with the
system (see [23] for an example). However, to make the explanation easier to follow, we
assume that queries are represented by means of tree diagrams which can be edited by the
user. The user can select arbitrary subparts of the actual query and apply appropriate
operations which are suggested by the system (e.g. by means of pop-up menus). Query
building is performed by means of the query manipulation diagram which enables the user
to modify the selected part of the query. With the formalisms introduced in the previous

5Our technique can deal with disjunction of conjunctive queries, even with a limited form of negation
applied to single terms. See [19, 51] for the technical details.

c©2006/TONES – August 31, 2006 49/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

sections we are now able to give a precise meaning to the selection of sub-parts of the
query on the text box.

Since a query is a tree, the focus corresponds to a selected sub-tree. It is easy to
realize that each sub-tree is univocally identified by the variable corresponding to a node.
Therefore, the focus is always on variable, and moving the focus corresponds to selecting
a different variable. Modifying a query sub-part means operating on the corresponding
sub-tree modifying the corresponding query tree.

Substitution by navigation corresponds to substitute the whole sub-tree with the chosen
ontology term. The result would be a tree composed by a single node, without any branch,
whose unary term is the given ontology term.

In the refinement by compatible terms, the selected terms are simply added to the root
node as unary query terms. For the property extension, adding an attribute or associations
corresponds to the creation of a new branch. This operation introduces a new variable (i.e.
node) with the corresponding restriction. When an attribute is selected, and a constant
(or an expression) is specified, then this is added as restriction for the value of the variable.

2.2 Reasoning Services and Query Interface

Reasoning services w.r.t. the ontology are used by the system to drive the query interface.
In particular, they are used to discover the terms and properties (with their restrictions)
which are proposed to the user to manipulate the query.

Our aim is to be as less restrictive as possible on the requirements for the ontology
language. In this way, the same technology can be adopted for different frameworks, while
the user is never exposed to the complexity (and peculiarities) of a particular ontology
language.

In our context, an ontology is composed by a set of predicates (unary, binary), together
with a set of constraints restricting the set of valid interpretations (i.e. databases) for the
predicates. The kind of constraints which can be expressed defines the expressiveness of
the ontology language. Note that these assumptions are general enough to take account
of widely used modeling formalisms, like UML for example.

We do not impose general restrictions on the expressiveness of the ontology language,
however, we require the availability of two decidable reasoning services: satisfiability of a
conjunctive query, and containment test of two conjunctive queries, both w.r.t. the con-
straints. If the query language includes the empty query (i.e. a query whose extension
is always empty), then query containment is enough (a query is satisfiable iff it is not
contained in the empty query). The query building interface represents the available op-
erations on the query w.r.t. the current focus, i.e. the variable which is currently selected.
Therefore, we need a way of describing a conjunctive query from the point of view of a
single variable. The expression describing such a viewpoint is still a conjunctive query,
which we call focused. This new query is equal to the original one, with the exception of
the distinguished (i.e. free) variables: the only distinguished variable of the focused query
is the variable representing the focus. In the following we represent as qx the query q

c©2006/TONES – August 31, 2006 50/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

focused on the variable x. For example, the query

q ≡ {x1, x1,2 |Mult corp(x1), sell on(x1, x1,1),

It market(x1,1), loc in(x1, x1,2),Eur(x1,2)},

focused in the variable x1,1 would simply be

qx1,1 ≡ {x1,1 |Mult corp(x1), sell on(x1, x1,1),

It market(x1,1), loc in(x1, x1,2),Eur(x1,2)}.

The operations on the query expression require two different types of information:
hierarchical (e.g. substitution by navigation), and on compatibility (e.g. refinement and
new properties).

The first type answers to the question “Which are the terms more general/more spe-
cific/equivalent?” w.r.t. the focused query, this question can be directly transformed into
a containment checking. The second type of information corresponds to a satisfiability
check – that is, to verify whether a given term (property) can be added to the query
without causing the unsatisfiability of the query itself.

Let us consider the substitution by navigation with the more specific terms (the cases
with more general and equivalent terms are analogous). Given the focused query qx, we
are interested in the unary atomic terms T such that the query {y | T (y)} is contained in
qx and it is most general (i.e. there is no other query of that form contained in qx, and
containing {y | T (y)}).

Refinement by compatible terms and the addition of a new property to the query
require the list of terms “compatible” with the given query. In terms of conjunctive
queries, this corresponds to add a new term to the query. The term to be added should
“join” with the query by means of the focused variable, and must be compatible in the
sense that the resulting query should be satisfiable. This leads to the use of satisfiability
reasoning service to check which predicates in the ontology are compatible with the current
focus. With unary terms this check corresponds simply to adding of the term T (x) to the
focused query qx and verifying that the resulting query is satisfiable.

The addition of a property requires the discovery of both a binary term and its re-
striction: the terms to be added are of the form {x |R(x, y), T (y)} if the focused variable
is x. As for the refinement by compatible terms, the system should check all the different
binary predicates from the ontology for their compatibility. This is practically performed
by verifying the satisfiability of the query qx �� {x |R(x, y)}, for all atomic binary pred-
icates R in the signature and where y is a variable not appearing in q.6 Once a binary
predicate R is found to be compatible with the focused query, the restriction is selected
as the most general unary predicate T such that the query qx �� {x |R(x, y), T (y)} is
satisfiable.

If such a predicate does not exist (e.g. there are two predicates incomparable w.r.t. the
constraints) then the property is not proposed to the user. The reason for this choice is
that the ontology does not provide enough specification for the restriction in this context;

6Here �� represents a natural join.

c©2006/TONES – August 31, 2006 51/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

so, if the ontology reflects the underlying data, its presence in the query would not be a
significant discrimination to find the results the user is looking for.

This choice, which can be easily relaxed, seems to provide a good heuristic for most
of the cases. However, tests with users and different ontologies are required to really
understand if such kind of restrictions are satisfactory when the framework is applied to
different domains or user typologies.

2.3 Requirements for Ontologies

The whole interface is driven by algorithms which make an extensive use of logical rea-
soning services on top of the ontology. This means that the effectiveness of the interface
depends almost entirely on the quality of the ontology (see [29]). In particular, a poor
ontology will result in the interface being cluttered by irrelevant terms and properties.
This will confuse the user, which would not receive a good support from the system in
the refinement of the query.

The appropriate use of disjointness and covering constraints in the ontology is cru-
cial for the system being able to prune insignificant terms from the query manipulation
diagram. Lacks of relevant disjointness constraints (w.r.t. the modelled domain) affects
the detection of relevant properties, and compatible terms of the selected sub-query. This
leaves the user in the position of relying only on the taxonomical structure of the ontology
terms.

To understand the reasons behind the importance of disjointness constraints, the
reader should consider that in principle any terms and property is compatible with any
other term or property unless otherwise stated in the ontology. For example, the user
would find terms like “Multinational corporation” among the terms compatible with “Stu-
dent”, or attributes like “city” applicable to “Trousers”. An ontology without disjointness
constraint would cause the interface to propose any attribute in the ontology as an ap-
plicable property to any term. This is obviously meaningless to the user, which would be
forced to guess the right properties without any support. Bear in mind, that adding a
property means restricting the result to URIs having the property, therefore, adding the
wrong attribute would return no result at all.

Although not as crucial as disjointness, covering constraints provide an extremely pow-
erful tool for discovering equivalences and properties using reasoning by cases.7 Therefore,
it enhances the user experience with the interface, as the system is able to pinpoint precise
possible refinements for the sub-query.

2.4 Beyond Binary Predicates

Up until now we considered binary predicates only, but in general an ontology may con-
tains n-ary predicates. The user should be provided with a means of querying databases
modelled by such ontologies, however, the query building interface has to present a uni-
form approach to query composition. For this reason, for the purpose of query design,
n-ary predicates are reified by using binary predicates representing the projection of the
tuples in their positional components. The user composes the queries in the same way as

7When used in conjunction with disjointness.

c©2006/TONES – August 31, 2006 52/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

described in the previous sections; at the end, before being sent to the query evaluator,
the conjunctive query is transformed by collapsing the reified binary components into the
appropriate n-ary predicates.

The reification introduces a new variable representing an n-ary tuple. This variable
can be seen as the primary key for the tuple, or as an object identifier if we refer to object
oriented data models. Note that since these variables do not appear in the query sent
to the evaluator, there are no problems concerning the same tuple appearing more than
once with different identifiers (moreover, we do not require any change in the data model
of the ontology).

For example, the ternary predicate Employee relating an employee with a company
and her/his role is reified by using the projection predicates π1, π2, π3. The query term
Employee(x, y, z) corresponds to the reified terms Employee(t), π1(t, x), π2(t, y), π3(t, z).
Since the system knows the arity of the predicates, it does not need all variables for each
tuple, which can be added if necessary. For example the terms Employee(t), π2(t, x) can
be transformed into Employee(x′, x, x′′) without the user intervention.

Given the fact that tuple-representing variables disappear at the evaluation time, the
user is not allowed to select them as distinguished variables. For this reason we pro-
vide a simplified query building mode in which the tuple-representing variables are never
exposed to the user. In this mode binary predicates corresponding to the composition
of two projections are presented to the user. For example the Works for(x, y) predicate
corresponds to the query terms Employee(t), π1(t, x), π2(t, y).

Note that, by hiding the tuple representing variables, the user has a restricted query
language expressiveness. In particular it is not possible to impose that more than two
variables participate in the same tuple. Let us consider the Employee predicate, with the
binary “shortcuts” Works for, and Has role connecting the first to the third components.
The query containing the terms Works for(x, y),Has role(x, z) does not enforce x, y, z to
belong to the same tuple.

2.5 Using a Description Logics Reasoner

Although our approach is not tight to any ontology language, in the test implementation
of our system we are using Description Logics (DLs). The reasons for this choice lie in
the facts that DLs can capture a wide range of widespread modelling frameworks, and
the availability of efficient and complete DL reasoners.

We adopted the Description Logics SHIQ (see [50]) which is expressive enough for
our purposes, and for which there are state of the art reasoners. Note that the adoption
of SHIQ allows us to use ontologies written in standard Web Ontology languages like
OWL–DL (see [49]). One of the key features of SHIQ is the possibility of expressing
the inverse of a role which is extremely useful for converting tree–shaped queries into DL
concept expressions.

Given the restriction to tree–shaped conjunctive query expressions, together with the
availability of inverse roles, a focused query (see Section 2.2) corresponds to a concept
expression (see [53]). Therefore, all the reasoning tasks described in Section 2.2 corre-
spond to standard DL reasoning services. Again, this is not a restriction imposed by
the underlying technology, since general conjunctive queries can be dealt with techniques

c©2006/TONES – August 31, 2006 53/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

described in [19, 51].
The idea behind the transformation of a query expression into a single concept de-

scription is very simple, and it is based on the fact that a concept expression can be seen
as a query with a single distinguished variable. To focus the query on a variable, we
start from the variable itself, then we traverse the query graph by encoding binary terms
into DL existential restrictions and dropping the variable names. The fact that queries
are tree–shaped ensures that variable names can be safely ignored. Let us consider for
example the query expression

{Mult corp(x1), Italian(x1), sell on(x1, x1,1), It market(x1,1)}.
The DL expression corresponding to the query focused on x1,1 is

(It market � ∃sell on−.(Mult corp � Italian))

where sell on− corresponds to the inverse of sell on role.
As explained in Section 2.2, we need two kinds of information: compatibility and

hierarchical. These, in the DL framework, are provided by the standard reasoning ser-
vices of satisfiability and taxonomy position of a concept expression respectively. The
first service verifies the satisfiability w.r.t. a knowledge base, while the second classifies a
concept expression (i.e., provides it w.r.t. the ISA taxonomy of concept names). 8 Rea-
soning tasks described in Section 2.2 can be straightforwardly mapped into satisfiability
and classification.

For example, checking the compatibility of the term Italian with the query

{Mult corp(x1), sell on(x1, x1,1), It market(x1,1)},
is performed by checking the satisfiability of the concept

Italian � Mult corp � ∃sell on.It market.

Compatibility of binary terms is performed analogously by using an existential restriction,
e.g., ∃sell on.�.9 To discover the restriction of a property we use classification instead of
repeated satisfiability. The idea is to classify the query focused on the variable introduced
by the property. For example, to discover the restriction of sell on applied to the query
expression

{x1 |Mult corp(x1), Italian(x1)},
we classify the expression ∃sell on−.(Mult corp � Italian). The DL reasoner returns the
list of concept names more general and equivalent to the range of the relation sell on,
when restricted to the domain (Mult corp � Italian). This is exactly the information we
need to discover the least general predicate(s) which can be applied to the property in
the given context.

Our implementation uses the DL reasoner Racer (see [39]) which fully supports the
SHIQ DL. The interaction with the DL reasoner is based on the DIG 1.0 interface
API (see [12]), a standard to communicate with DL reasoners developed by different DL
systems implementors. This choice makes our system independent from a particular DL
reasoner, which can be substituted with any DIG based one.

8DL systems usually provide an efficient way of obtaining the taxonomic position of a given concept
expression.

9Note the use of the � concept representing the whole domain (any possible concept).

c©2006/TONES – August 31, 2006 54/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

3 Information Extraction

Query answering w.r.t. ontologies requires that explicit descriptions are available. In one
of the standard ontology settings with description logics these explicit descriptions are
available as an ABox. However, it is not always possible to easily transform a given infor-
mation source into an ABox. In particular, if the information source contains media data
such as still images, audio and video files, or natural language text, it is an open research
problem how to automatically represent media content. Without loss of generality, in the
following, we consider only (still) images. In this case, it is assumed that information
objects, e.g., a particular image, is annotated with so-called meta data that can be seen
as (part of) an ABox. If meta data is not available, in order to support ontology-based
query answering, meta data must be derived automatically. Thus, an image interpretation
problem has to be solved. One approach is to use ontologies in general, and description
logics in particular. Examining image interpretation tasks will lead to insights about
how to organize ontology access, processing, and usage since specific patterns of inference
service calls will emerge.

3.1 Formalizing the Information Extraction Problem

A formalization of scene interpretation as abduction is presented by Shanahan in [82].
Shanahan defines scene interpretation using the entailment decision problem in an ab-
ductive context. Based on a background knowledge base Σ, the task is to compute for-
mulas Δ such that formulas Γ, which represent visual percepts of an agent, are entailed:
Σ ∪ Δ |= Γ.10 In other words: Δ is to be abductively determined such that all models
of Σ ∪ Δ are also models of Γ. The computed formulas Δ can be seen as an explanation
for the percepts Γ. Note that in this approach the formulas Γ are defined by external
processes not covered here. Δ need not be empty initially, thus Δ might contain some
facts different from Γ that are taken for granted and need not be explained but may be
used to explain Γ. In Shanahan’s approach, the scene interpretation problem is solved if
some set of formulas Δ satisfying Σ ∪ Δ |= Γ is computed. However, there are certain
characteristics that the explanation Δ should fulfill in order to give a useful explanation:

• Σ ∪ Δ must be satisfiable.

• Γ 	⊆ Δ: It is of course true that an entailment such as A |= A is true, but having
an explanation similar to the observations for the sake of fulfilling the entailment
problem, is not a solution. Having a statement such as The sky is blue because the
sky is blue is not of much help. Thus, it is important that the explanation Δ does
not (syntactically) contain the facts Γ.

• Δ should be determined such that there is no Δ′ such that also Σ ∪ Δ′ |= Γ and
Δ |= Δ′ holds, i.e., the best explanation is the one imposing as few restrictions as
possible (minimality condition).

10We slightly simplify the approach of [82] in order to emphasize the main ideas.

c©2006/TONES – August 31, 2006 55/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Depending on the application context, Shanahan also considers actions of an agent. In
order to model actions in a first-order context, he uses circumscription [80, 358ff.] to cope
with the frame problem. Circumscription introduces abnormability terms, which means
that many inferences are lost. As usual, the idea is to consider only models that minimize
the abnormability terms in the entailment relation. Thus, we have: Σ∪Δ |=min abnorm Γ.

The approach of [82] can be extended to cope with additional problems in image
interpretation. If Δ has been computed, one might extend the percept representation Γ
by another part γ which model the expected scene content not yet discovered. The γ
represents the expected scene content due to high-level reasoning based on the knowledge
base Σ: Σ∪Δ |= Γ∪γ. If Δ cannot be found, one might reduce Γ by some δ: Σ∪Δ |= Γ\δ.
In the general case something is dropped while some other parts are expected due to high-
level reasoning: Σ ∪ Δ |= (Γ\δ) ∪ γ. In all cases, some set of assertions Δ satisfying the
above-mentioned conditions has to be determined.

Before we analyze how the derivation of a suitable Δ can be supported by adequate
ontology processing technologies, let us have a look at the example shown in Figure 1.

Figure 1: What is the interpretation of this image?

We assume that the following can be detected by standard image analysis techniques:

1. A set of objects in the image, e.g., a saucer, a plate, a fork and a knife (maybe the
cup on the saucer is not recognized initially).

c©2006/TONES – August 31, 2006 56/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

2. A spatial configuration of the elements, i.e., the fork is located to the left of the
plate, the knife is located to the right and so on.

If we were to interpret this image, then a reasonable explanation of the spatial con-
figuration of the elements should be found. In other words, there is the assumption that
the spatial configuration of the objects in the image is not random, but it rather has a
purpose. Thus, the interpretation should explain such spatial configuration between the
objects. We can model the spatial configuration of the objects as a set of assertions Γ:
{left of (fork1 , plate1), right of (knife1 , plate1), . . .}.

We assume background knowledge about covers is represented as part of Σ. Thus,
we assume that Σ contains a representation about the parts of a cover, their relations,
etc. represented in an appropriate language (e.g., description logics with rules). Then,
in order to solve the equation Σ ∪ Δ |= Γ, a cover instance must be added to Δ with
fork1, plate1, . . . being the parts. Then, with an appropriate definition of the concept
Cover in Σ, Γ will be entailed. In order to keep the discussion brief, we do not present all
details about how to represent the required knowledge (see [72] for an initial approach).

In this way, we have formalized the interpretation problem as a logical decision prob-
lem, namely the entailment problem. The process for computing a suitable Δ will involve
a search process with multiple calls to standard description logic inference services. For
natural language interpretation similar insights can be gained from, e.g., [30, 15].

In this section we have considered “syntactic” additions (and implicitly retractions)
of assertions to ABoxes as part of certain incremental high-level reasoning processes. In
Section 4.3, the issue of updates to ABoxes will be discussed from a semantic point of
view.

3.2 Challenges for Ontology Access, Processing, and Usage

The formalization of the image interpretation task as a logical decision problem is an exam-
ple for the use of ontologies for information management tasks, in this case the automatic
computation of meta data for, e.g., sets of media objects. In this example scenario, the
underlying task-specific search process involves solving multiple entailment problems, and
maybe invoking several other standard inference services provided by ontology systems.

The entailment problem can be reduced to other decision problems: It holds that
Σ∪Δ |= Γ if (Σ∧Δ) → Γ is a tautology, or the negation is not satisfiable: ¬SAT (¬((Σ∧
Δ) → Γ)).

During the construction process for Δ, the set of assertions will be incrementally ex-
tended. After each extension, one of the above-mentioned entailment decision problems
is solved. In order to make the use of ontologies in image interpretation practical, on-
tology processing systems (ontology servers) must support reasoning processes that can
adequately cope with incremental changes to ABoxes that are managed by the systems.
In some DL systems, only reference implementation for changes to ABoxes managed by
ontology servers are available (e.g., in Racer) while in others (e.g., Pellet) initial experi-
ments for incremental reasoning have been carried out [46]. New research is required to
efficiently solve incremental satisfiability problems or even incrementally answer queries.

c©2006/TONES – August 31, 2006 57/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

4 Updating ABoxes

4.1 Motivation

Changes to ontologies occur at design time (offline time) as well as at usage time (online
time). Except for some online learning scenarios, if ontologies based on description logics
are considered, usually, design-time changes mostly concern changes to the intensional
part (TBox) whereas usage-time changes affect the extensional part (ABox). The grow-
ing acceptance of ontology-based methods and technologies in practical applications, in
particular in the context of Semantic Web, revealed new challenges for state-of-the-art DL
systems resulting from the fact that knowledge bases now have in general a dynamic con-
tent. There are a number of application scenarios where knowledge is frequently updated
on the conceptual level or/and on the extensional level. The task of media interpretation
discussed in the previous section is one example for such use cases. Latest investigations
on knowledge base updates pursue two different directions. While some approaches study
so-called syntactic updates and incremental reasoning (see [46, 45, 40]), others make an
attempt to define a formal update semantics based on model theory rather than told
information ([33, 64, 79, 77, 44]). In what follows, we give a short overview of research
on both update approaches, placing emphasis on updating ABoxes.

4.2 Syntactic Updates

Updating ABoxes syntactically means that just syntactic assertions (concept assertions,
role assertions, or concrete domain assertions) are explicitly added to or removed from
an ABox. Restricting updates to be only a syntactic operation implies there is no war-
ranty that the a removed assertion will not be entailed anymore. Analogously, it is not
guaranteed that after adding a new assertion to an ABox the knowledge base will be still
consistent. A syntactic update is defined in terms of set operations. Assuming S to be a
set of assertions in an initial ABox, S ′ = S ∪ α denotes the result of adding an axiom α
to S and S ′′ = S \ α denotes the result of removing an axiom α from S.

Apart from the fact that in case of a syntactic approach the above-mentioned seman-
tic side effects of updates are simply ignored, contemporary highly-optimized sound and
complete DL reasoners still show a lack of performance when dealing with incremental up-
dates. While in some former incomplete systems, the topic of incremental reasoning was
already an issue (e.g., [65]), initially, sound and complete DL systems provided support
for incremental addition and retraction of ABoxes assertions only as reference implemen-
tations (e.g., Racer [39]). The interfaces were there, but internal data structures used
for answering queries were just recomputed from scratch, i.e., nothing what has been
computed before was exploited after some assertions were added. Obviously, this caused
performance problems. Therefore, optimizing techniques for incremental reasoning and
query answering are crucial for modern sound and complete DL systems. First inves-
tigations for reasoning algorithms considering incremental ABox updates are presented
in [46]. However, since research on efficient query answering techniques w.r.t. expressive
description logics has just begun, support for syntactic updates is just in its infancy.

c©2006/TONES – August 31, 2006 58/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

4.3 Semantic Updates

Syntactically retracting an assertion does not mean that it is no longer entailed. In
other words, in order to make sure an assertion does not hold, one has to identify a
set of assertions such that if one of the assertions is retracted, a certain conclusion is
no longer valid. On the other hand, one might argue that adding an assertion to an
ABox might involve “weakening” other assertions (maybe for particular individuals) such
that an inconsistency can be avoided. In order to accomplish this, a formal approach is
required. Updates become reasoning problems.

Formal theory of ABox updates essentially utilizes a possible model approach, ini-
tially elaborated in the context of reasoning about actions [90]. In accordance with this
approach, the following view is appropriate. An ABox represents the current state-of-
affairs in the application domain. Since the description of the world provided by the
ABox is usually indefinite, an ABox has multiple models. In case of an update, it is
unknown, which of the possible models describes the actual state-of-affairs. Therefore
updates must refer to all possible models. The result is a new set of models representing
the updated state of the domain. The task is to determine minimal changes, i.e., changes
absolutely required in the actual model for the state-of-affairs. Here, the aim is to retain
all knowledge that is not affected by the change.

Actually, two recent approaches have to be developed in the context of description
logics as part of the TONES [33, 64]. Both research contributions adapt the possible
model semantics of updates (details can be found, e.g., in [34, 90]) to provide a general
notion of update in absence for description logic ABoxes. Following the definitions in [33],
we assume an (initial) knowledge base K = (T ,A) and a finite set of (new) assertions
F such that F is consistent w.r.t. T (that is Mod(T) ∩ Mod(F) 	= ∅, where Mod(T)
denotes the set of models of T and Mod(F) denotes the set of models of F). The result
of updating of A with F w.r.t T is the union of updates of models of K with F , written
as

⋃
I∈Mod(K) U

T (I,F), where UT (I,F) stands for the result of updating I with F and
is defined as follows:

UT (I,F) = {I ′ | I ′ ∈ Mod(T)∩Mod(F) and there exists no I ′′ ∈ Mod(T)∩Mod(F)
such that ((I ∪ I ′′) \ (I ∩ I ′′)) ⊂ ((I ∪ I ′) \ (I ∩ I ′))}.

In this definition, updates are based on models. Therefore, these updates are called
“semantic” updates. In [64], updating ABoxes in several expressive DLs is studied. It is
shown that, given the formal definition of semantic updates above, in many DLs, updated
ABoxes are no longer expressible in the language of the initial knowledge base even if
TBoxes are not considered. It turned out that DLs have to include nominals and the
“@” constructor of hybrid logic (or, equivalently, admit Boolean ABoxes) for updated
ABoxes to be expressible. The authors emphasize that an important issue is the size of
the updated ABoxes. Indeed, updates can lead to an exponential blowup in the size of
the original ABoxes. Although for the logic DL−Lite the result of an update is proved
to be always expressible in the logic of the initial knowledge base, and an algorithm that
computes the update over a DL−Lite knowledge base runs in polynomial time w.r.t. the
size of the original knowledge base (see [33] for details), in general, the computation of
updates is a non-trivial task.

c©2006/TONES – August 31, 2006 59/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Another challenge concerns conditional updates which are useful in some applications
(e.g., reasoning about actions [10]). Conditional updates are investigated in [64].

Up to now, updates at the instance level have been seen as the task of handling the
situations in which only extensional information changes. However, updates may be prop-
agated from the conceptual layer to the data layer or vice versa causing inconsistencies
between update information and the intensional level of the original ontology. This ob-
servation made in the literature about updates gives rise for further studies in the context
of ontologies.

c©2006/TONES – August 31, 2006 60/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Part II

Using Ontologies for Specific Tasks
in Applications

5 Semantic Service Discovery and Selection

Description logics play an important rôle in the Semantic Web since they are the basis of
the W3C-recommended Web ontology language OWL [8] ,which can be used to create se-
mantic annotations describing the content of Web pages. In addition to static information,
the Web also offers services, which allow their users to effect changes in the world, like
buying a book or opening a bank account. As in the case of static information, annota-
tions describing the semantics of the service should facilitate discovery of the right service
for a given task. Since services create changes of the world, a faithful representation of
its functionality should deal with this dynamic aspect in an appropriate way.

In AI, the notion of an action is used both in the planning and the reasoning about
action communities to denote an entity whose execution (by some agent) causes changes
of the world (see e.g. [78]). Thus, it is not surprising that theories developed in these
communities have been applied in the context of Semantic Web services. For example,
[69] use the situation calculus [78] and GOLOG [59] to formalize the dynamic aspects of
Web services and to describe their composition.

In this project the focus is on the faithful description of the changes to the world
induced by the invocation of a service. To this purpose, services are described as actions
that have pre-conditions and post-conditions (its effects). These conditions are expressed
with the help of DL assertions, and the current state of the world is (incompletely)
described using a set of such assertions (an ABox). In addition to atomic services, we also
consider simple composite services, which are sequences of atomic services. The semantics
of a service is defined using the possible models approach developed in the reasoning about
action community [90] and is fully compatible with the usual DL semantics. However,
it has been shown in [9, 11] that this semantics can be viewed as an instance of Reiter’s
approach [78] for taming the situation calculus. In particular, our semantics solves the
frame problem in precisely the same way.

We concentrate on two basic reasoning problems for (possibly composite) services:
executability and projection. Executability checks whether, given our current and possibly
incomplete knowledge of the world, we can be sure that the service is executable, i.e., all
pre-conditions are satisfied. Projection checks whether a certain condition always holds
after the successful execution of the service, given our knowledge of the current state of
the world. Both tasks are relevant for service discovery. It is obviously preferable to
choose a service that is guaranteed to be executable in the current (maybe incompletely
known) situation. In addition, we execute the service to reach some goal, and we only
want to use services that achieve this goal. Though these reasoning tasks may not solve
the discovery problem completely, they appear to be indispensable subtasks.

The main aim of this work is to show how executability and projection can be com-

c©2006/TONES – August 31, 2006 61/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Symbol Constructor ALC ALCO ALCQ ALCI ALCQO ALCIO ALCQI
Q (� n r C) x x x

(� n r C)
I r− x x x
O {a} x x x

Figure 2: Fragments of ALCQIO.

puted, and how their complexity depends on the description logic used within our frame-
work. For the DLs L considered here, which are all sublanguages of the DL ALCQIO,
the complexity of executability and projection for services expressed in this DL coincides
with the complexity of standard DL reasoning in L extended with so-called nominals (i.e.,
singleton concepts).

5.1 The Formalism

The framework for reasoning about Web services is not restricted to a particular DL, but
can be instantiated with any DL that seems appropriate for the application domain at
hand. Most complexity results were established for the DL ALCQIO and a number of
its sublanguages [11, 10, 9], which form the core of OWL-DL. The additional OWL-DL
constructors could be easily added, with the exception of transitive roles.

We recall the constructors available in ALCQIO and its fragments, which are obtained
by omitting some constructors.

Definition 25 (ALCQIO Syntax). Let NC be a set of concept names. A role is either a
role name or the inverse r− of a role name r. The set of ALCQIO-concepts is the smallest
set satisfying the following properties: (1) each concept name A ∈ NC is a concept and
(2) if C and D are concepts, r is a role, a an individual name, and n a natural number,
then the following are also concepts:

¬C (negation) {a} (nominal)

C �D (conjunction) (� n r C) (atmost number restriction)

C D (disjunction) (� n r C) (atleast number restriction)

� (top) ∃R.C (existential restriction)

⊥ (bottom) ∀R.C (universal restriction)

�

Names and concept constructors for different fragments of ALCQIO considered in our
framework are shown in Figure 2. We now define the semantics of ALCQIO concepts.

Definition 26 (ALCQIO Semantics). An interpretation I is a pair (ΔI , ·I) where ΔI is
a non-empty set and ·I is a mapping that assigns to each concept name A, a set AI ⊆ ΔI ,
to each individual name a, an element aI ∈ ΔI ; and to each role name r, a binary relation
rI ⊆ ΔI × ΔI .

c©2006/TONES – August 31, 2006 62/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

The interpretation of inverse roles and complex concepts is then defined as follows,
with #S denoting the cardinality of the set S:

({a})I = {aI} (¬C)I = ΔI \ CI

(C �D)I = CI ∩DI (� n r C)I = {d | #{e ∈ CI | (d)e ∈ rI} ≤ n}
(C D)I = CI ∪DI (� n r C)I = {d | #{e ∈ CI | (d)e ∈ rI} ≥ n}

(r−)I = {(e)d | (d)e ∈ rI}

An interpretation I is called a model of a concept C if CI 	= ∅ �

A central idea of the Semantic Web is to represent relevant terminological knowledge in
ontologies.

In the DL world, ontologies are usually called TBoxes. A TBox is a finite set of concept
definitions with unique left-hand sides. We say that a concept name A directly uses a
concept name B w.r.t. T if there is a concept definition A ≡ C ∈ T with B occurring
in C. Let uses be the transitive closure of directly uses. Then a TBox T is acyclic if no
concept name uses itself w.r.t. T .

For the remainder of this section, we will restrict ourselves to acyclic TBoxes. The
reason for this restriction is that cyclic TBoxes cause semantic problems.

To predict the outcome of applying a service, an agent usually needs to take into
account her knowledge about the current state of the world – in DLs knowledge about
the world is represented in an ABox.

Definition 27 (ABox). An assertion is of the form C(a), r(a, b) or ¬r(a, b), where a, b ∈
NI, C is a concept, and r a role. An ABox is a finite set of assertions. An interpretation I
satisfies an assertion C(a) iff aI ∈ CI ; r(a, b) iff (aI , bI) ∈ rI ; ¬r(a, b) iff (aI , bI) /∈ rI .
An interpretation I is called a model of an ABox A, written I |= A, if I satisfies all
assertions in A �

Negated role assertions are usually not considered in DL, but they are very useful as
pre- and post-conditions. As described in [11] reasoning with such assertions can easily
be reduced to reasoning without them if the DL under consideration allows for value
restriction and atomic negation. The reasoning problem ABox consequence will play an
important role in the approach.

Definition 28 (ABox consequence). Let C be a concept, A an ABox, and T a TBox.
Then an ABox assertion ϕ is a consequence of an ABox A w.r.t. a TBox T (written
A, T |= ϕ) if every model of A and T satisfies ϕ. �

It has been shown in [11] that ABox consequence with negated role assertions, i.e. as-
sertions of the form ¬r(a, b), can be polynomially reduced to ABox consistency without
negated role assertions, and vice versa.

5.2 Service Descriptions

The formalism for the representation of and reasoning about Web services concentrates on
ground services, i.e., services where the input parameters have already been instantiated

c©2006/TONES – August 31, 2006 63/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

by individual names. Parametric services, which contain variables in place of individ-
ual names, should be viewed as a compact representation of all its ground instances:
a parametric service simply represents the set of all ground services obtained from the
parametric service by replacing variables with individual names. The handling of such
parametric services takes place “outside” of this formalism and parametric services have
already been instantiated. For other tasks, such as planning, it may be more natural to
work directly with parametric services.

Definition 29 (Service). Let T be an acyclic TBox. An atomic service S =
(pre, occ, post) for an acyclic TBox T consists of

• a finite set pre of ABox assertions, the pre-conditions;

• a finite set occ of occlusions of the form A(a) or r(a, b), with A a primitive concept
name w.r.t. T , r a role name, and a, b ∈ NI;

• a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ is an ABox
assertion and ψ is a primitive literal for T , i.e., an ABox assertion A(a), ¬A(a),
s(a, b), or ¬s(a, b) with A a primitive concept name in T and s a role name.

A composite service for T is a finite sequence S1, . . . , Sk of atomic services for T . A service
is a composite or an atomic service. �

Intuitively, the pre-conditions specify under which conditions the service is applicable.
The conditional post-conditions ϕ/ψ say that, if ϕ is true before executing the service,
then ψ should be true afterwards. The rôle of occlusions is to describe those primitive
literals to which the minimization condition does not apply. By the law of inertia, only
those facts that are forced to change by the post-conditions should be changed by applying
the service.

We can define how the application of an atomic service changes the world, i.e., how
it transforms a given interpretation I into a new one I ′, following the possible models
approach (PMA) initially proposed in [90].

The idea underlying PMA is that the interpretation of atomic concepts and roles
should change as little as possible while still making the post-conditions true. Since the
interpretation of defined concepts is uniquely determined by the interpretation of primitive
concepts and role names, it is sufficient to impose this minimization of change condition
on primitive concepts and roles names. We assume that neither the interpretation domain
nor the interpretation of individual names is changed by the application of a service.

Formally, we define a precedence relation �I,S,T on interpretations, which characterizes
their “proximity” to a given interpretation I. We use M1�M2 to denote the symmetric
difference between the sets M1 and M2.

Definition 30 (Preferred Interpretations). Let T be an acyclic TBox, S = (pre, occ, post)
a service for T , and I a model of T . We define the binary relation �I,S,T on models of
T by setting I ′ �I,S,T I ′′ iff ((AI�AI′

) \ {aI | A(a) ∈ occ}) ⊆ AI�AI′′
; and ((sI�sI′

) \
{(aI , bI) | s(a, b) ∈ occ}) ⊆ sI�sI′′

. for all primitive concepts A, all role names s, and all
domain elements d, e ∈ ΔI . When T is empty, we write �I,S instead of �I,S,∅. �

c©2006/TONES – August 31, 2006 64/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Intuitively, applying the service S transforms the interpretation I into the interpretation
I ′ if I ′ satisfies the post-conditions and is closest to I (as expressed by �I,S,T) among
all interpretations satisfying the post-conditions. Since we consider conditional post-
conditions, defining when they are satisfied actually involves both I and I ′. We say that
the pair of interpretations I, I ′ satisfies the set of post-conditions post (I, I ′ |= post) iff
the following holds for all post-conditions ϕ/ψ in post: I ′ |= ψ whenever I |= ϕ.

Definition 31 (Service Application). Let T be an acyclic TBox, S = (pre, occ, post) a
service for T , and I, I ′ models of T sharing the same domain and interpretation of all
individual names. Then S may transform I to I ′ (I ⇒T

S I ′) iff (1) I, I ′ |= post, and (2)
there does not exist a model J of T such that I,J |= post, J 	= I ′, and J �I,S,T I ′.

The composite service S1 . . . , Sk may transform I to I ′ (I ⇒T
S1,...,Sk

I ′) iff there are
models I0, . . . , Ik of T with I = I0, I ′ = Ik, and Ii−1 ⇒T

Si
Ii for 1 ≤ i ≤ k. If T is

empty, we write ⇒S1,...,Sk
instead of ⇒T

S1,...,Sk
. �

Because of our restriction to acyclic TBoxes and primitive literals in the consequence
part of post-conditions, services without occlusions are deterministic, i.e., for any model
I of T there exists at most one model I ′ such that I ⇒T

S I ′. Note that there are indeed
cases where there is no successor model I ′.

5.3 Reasoning about Services

Assume that we want to apply a composite service S1, . . . , Sk for the acyclic TBox T .
Usually, we do not have complete information about the world (i.e., the model I of T is
not known completely). All we know are some facts about this world, i.e., we have an
ABox A, and all models of A together with T are considered to be possible states of the
world. Before trying to apply the service, we want to know whether it is indeed executable,
i.e., whether all necessary pre-conditions are satisfied. If the service is executable, we may
want to know whether applying it achieves the desired effect, i.e., whether an assertion
that we want to make true really holds after executing the service. These problems are
basic inference problems considered in the reasoning about action community, see e.g.
[78]. In our setting, they can formally be defined as follows:

Definition 32 (Reasoning Services). Let T be an acyclic TBox, S1, . . . , Sk a service for
T with Si = (prei, occi, posti), and A an ABox.

• Executability: S1, . . . , Sk is executable in A w.r.t. T iff the following condition is
true for all models I of A and T : (1) I |= pre1 and (2) for all i with 1 ≤ i < k and
all interpretations I ′ with I ⇒T

S1,...,Si
I ′, we have I ′ |= prei+1.

• Projection: an assertion ϕ is a consequence of applying S1, . . . , Sk in A w.r.t. T iff,
for all models I of A and T , and all I ′ with I ⇒T

S1,...,Sk
I ′, we have I ′ |= ϕ.

�

Note that executability alone does not guarantee that we cannot get stuck while executing
a composite service. This cannot happen if we additionally know that all services Si are
consistent with T in the following sense: Si is not inconsistent with any model I of T .

c©2006/TONES – August 31, 2006 65/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

The main aim of this work is to show how the two reasoning tasks executability and
projection can be computed, and how their complexity depends on the DL used within
our framework.

5.4 Deciding Executability and Projection

We develop reasoning procedures for the reasoning services introduced in and analyze
the computational complexity of executability and projection of different fragments of
ALCQIO.

It has been shown in [9, 11] that executability and projection can be reduced in PTime
to each other. Thus we can restrict the attention to the projection problem. We solve this
problem by an approach that is similar to the regression operation used in the situation
calculus approach [78]: the main idea is to reduce projection, which considers sequences
of interpretations I0, . . . , Ik obtained by service application, to standard reasoning tasks
for single interpretations I.

The theory we obtain can again be expressed by a DL TBox and ABox. This way,
projection is reduced to the inconsistency of DL ABoxes, from which we obtain decidability
results and upper complexity bounds. Interestingly, when taking this approach, we cannot
always stay within the DL we started with since we need to introduce nominals in the
reduction.

The following results are proved in [9, 11]:

Theorem 33. Executability and projection of composite services w.r.t. acyclic TBoxes
are

1. PSpace-complete for ALC, ALCO, ALCQ, and ALCQO if numbers in number
restrictions are coded in unary;

2. ExpTime-complete for ALCI and ALCIO;

3. co-NExpTime-complete for ALCQI and ALCQIO, regardless of whether numbers
in number restrictions are coded in unary or binary.

Thus, in all cases considered, the complexity of executability and projection for a DL L
coincides with the complexity of inconsistency of ABoxes in LO, the extension of L with
nominals.

Reduction to DL Reasoning

Projection in fragments L of ALCQIO can be reduced to ABox (in)consistency in the
extension LO of L with nominals as it was shown in [9]. We assume unary coding of
numbers in number restrictions.

Theorem 34. Let L ∈ {ALC, ALCI, ALCO, ALCIO, ALCQ, ALCQO, ALCQI,
ALCQIO}. Then projection of composite services formulated in L can be polynomially
reduced to ABox consequence in LO w.r.t. acyclic TBoxes.

c©2006/TONES – August 31, 2006 66/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

The main idea of the reduction is to define Ared and Tred such that each single model
of them encodes a sequence of interpretations I0, . . . , In obtained by applying S1, . . . , Sn

in A (and all such sequences are encoded by reduction models). Since the size of Ared,
Tred, and ϕred are clearly polynomial in the size of the input, for the DLs L considered
in Theorem 34, upper complexity bounds for ABox consequence in LO carry over to
projection in L. Many such upper bounds are available from the DL literature.

Lower complexity bounds carry over from ABox consequence in a DL L to projection
in the same DL: A, T |= ϕ iff ϕ is a consequence of applying the empty service (∅, ∅, ∅)
in A w.r.t. T . Thus, we obtain tight bounds for projection in those DLs L where the
addition of nominals does not increase the complexity of reasoning.

Corollary 35. Executability and projection w.r.t. acyclic TBoxes are

1. PSpace-complete for ALC, ALCO, ALCQ, and ALCQO;

2. in ExpTime for ALCI;

3. ExpTime-complete for ALCIO;

4. in co-NExpTime for ALCQI;

5. co-NExpTime-complete for ALCQIO.

Alternatively to the reduction to ABox reasoning, a reduction to reasoning in C2 can
be used to obtain these results, see [9].

Hardness Results

We have to consider cases where ABox inconsistency in LO is harder than in L: we prove
an ExpTime lower bound for projection in ALCI and a co-NExpTime lower bound
for projection in ALCQI with numbers coded in unary. These bounds carry over to exe-
cutability. The results show that the additional complexity that is obtained by introducing
nominals in the reduction of projection to ABox consequence cannot be avoided.

The idea for proving the lower bounds is to reduce, for L ∈ {ALCI,ALCQI}, unsat-
isfiability of LO concepts to projection in L. In the case of ALCQI, we can even obtain
a slightly stronger result by reducing concept unsatisfiability in ALCFIO to projection
in ALCFI, where ALCFIO is ALCQIO with numbers occurring in number restrictions
limited to {0, 1}, and ALCFI is obtained from ALCFIO by dropping nominals.

Theorem 36. There exists an ABox A and an atomic service S formulated in ALCI
(ALCFI) such that the following tasks are ExpTime-hard (co-NExpTime-hard): given
an ABox assertion ϕ,

• decide whether ϕ is a consequence of applying S in A;

• decide whether S, ({ϕ}, ∅, ∅) is executable in A.

c©2006/TONES – August 31, 2006 67/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

Note that we cannot obtain the same hardness results for executability of atomic services:
(i) executability of atomic services in any DL L can be trivially reduced to ABox (in)con-
sistency in L, and (ii) the complexity of ABox consistency is identical to the complexity
of concept satisfiability in ALCI and ALCFI.

Problematic Extensions

In the DL framework for reasoning about services proposed in this paper, we have adopted
several syntactic restrictions: (1) we do not allow for transitive roles; (2) we only allow for
acyclic TBoxes and (3) in post-conditions ϕ/C(a), we require C to be a primitive concept
or its negation.

Transitive roles introduce a kind of non-determinism, e.g. for services with an empty
set of occlusions, that non-determinism of this kind requires extra effort to obtain sensible
consequences of action/service executions. Thus, we need a mechanism for eliminating
unwanted outcomes or preferring the desired ones.

Cyclic TBoxes and GCIs admitted in the TBoxes give rise to semantic problems: for
acyclic TBoxes, the interpretation of primitive concepts uniquely determines the extension
of the defined ones, while this is not the case for cyclic ones. Together with the fact that
the preference relation between interpretations �I,S,T only takes into account primitive
concepts, this means that the minimization of changes induced by service application does
not work as expected.

However, the problems are even more serious in the case of GCIs: first, GCIs do not
allow an obvious partitioning of concept names into primitive and defined ones. Thus, in
the definition of �I,S,T , the only choice is to minimize all concept names, which corre-
sponds to the problematic minimization of complex concepts mentioned above. Second,
the missing distinction between primitive and defined concepts means that we can no
longer restrict concepts C in post-conditions ϕ/C(a) to literals over primitive concept
names. The best we can do is to restrict such concepts to literals over arbitrary concept
names.

Thus, it seems that GCIs cannot be admitted without simultaneously admitting arbi-
trarily complex concepts in post-conditions.

Complex concepts in Post-Conditions Let a generalized service be a service where
its post-condition ψ is no longer restricted to be a literal over primitive concepts.

As discussed in [9], there are both semantic and computational problems with general-
ized services: firstly, they offer an expressivity that is difficult to control and often yields
unexpected consequences. Secondly, reasoning with generalized services easily becomes
undecidable.

5.5 Related Work

Besides the above framework for matching of Web services and modeling and reasoning
for actions in DLs, there has been some work on related tasks. Most of it was done for

c©2006/TONES – August 31, 2006 68/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

planning applications, where different reasoning services were considered. Another line of
research is dedicated to the process of and the reasoning tasks for Matchmaking of the
service descriptions.

One of the early approaches to combine DLs and actions was presented in [88]. The
authors want to solve the task of plan recognition and propose means to compute sub-
sumption between plans. In their approach plans consist of complex constraint networks,
which are composed of steps, i.e., complex action concepts and sets of Allen relations to
specify the temporal relations between these steps. Their plan subsumption algorithm is
a hybrid method of computing a mapping between the graph structures of the constraint
networks and terminological reasoning w.r.t. the complex concepts in the nodes of the
constraint networks.

A quite similar formal framework that permits dealing with actions and plans in a
more uniform way was proposed in [3] and elaborated in [4]. Here actions are temporal
constraints on world states, which describe how the world is affected by the occurrence
of actions. Plans, in turn, are complex actions described as a collection of action types
constrained by interval-based temporal relations. In contrast to the approach presented in
[88], here temporal relations and temporal variables are directly part of the concept lan-
guage and ABox statements. Thus the classical DL reasoning services as subsumption and
instance checking suffice to realize plan description classification and specific plan recog-
nition. However, the concept definitions in the terminologies supported by this approach
have to be acyclic and unique. Plan subsumption can be reduced to concept subsumption
between non-temporal concepts and to subsumption between temporal constraint net-
works. The authors showed that classical DL reasoning for their interval-based temporal
DLs are decidable [4]. Furthermore they showed that for their temporal extension of ALC
subsumption is NP-complete.

The approach proposed in [62] for inferring subsumption between actions is based on
a different way of characterizing actions in DLs. Here the main ingredients are action
concepts in the terminology that are associated with pre- and post-conditions and that
do not have an explicit time representation. These conditions are expressed in a subset
of the concept language. To infer subsumption relation between action concepts they
propose a set of rules between the pre- and post-conditions.

A similar way of dealing with subsumption of action concepts is described in [56]. Here
the representation of action concepts is also based on pre- and post-conditions, expressed
in the concept language. More precisely, the pre- (and post-)conditions of an action are
sets of world states that are required (caused) by this action modeled by dynamic roles
and features. The subsumption of two action concepts is then defined as the inclusion of
pre- and post-conditions respectively.

Besides the approaches that focus on the description of actions, there are also ap-
proaches dedicated to the task of matchmaking of services. The service descriptions are
mostly simple concept descriptions in DLs that do not provide special constructs for ex-
pressing services. The reasoning algorithms are often a clever application of DL standard
reasoning services.

In [61] a framework proposed by [85] has been elaborated. In both works the tasks of
service advertisements, service discovery and matchmaking are addressed. The advertised
services as well as the service requests are written in an ontology language (DAML-S or

c©2006/TONES – August 31, 2006 69/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

DAML+Oil resp.) and matching combinations of requests and advertisements are to be
computed automatically. To this end it is proposed in [61] to describe services by service
profiles, that capture (among others) information on pre-conditions, effects and outputs of
the service. The matchmaking for a request R, i.e., the finding of the advertisements that
potentially satisfy the requirements specified in R, is realized by finding equivalent, more
general or more specific service advertisement concepts than R. Furthermore Disjointness
(Intersection) of concepts is used to detect incompatible (compatible) combinations of
requests and advertisements.

In [37] this framework was again extended. The authors concentrate on handling
variance inherent to service descriptions. Here a service description is a set of concept
axioms, where one axiom from the set defines the service concept S, which enables more
precise characterizations of services and thus probably better matching results.

5.6 Discussion

Standard problems in reasoning about action (projection, executability) become decidable
if one restricts the logic for describing pre- and post-conditions as well as the state of the
world to certain decidable DLs L. The complexity of these inferences is determined by
the complexity of standard DL reasoning in L extended by nominals.

This is only a first proposal for a formalism describing the functionality of Web services,
which must be extended in several directions. First, instead of using an approach similar
to regression to decide the projection problem, one could also try to apply progression,
i.e., to calculate a successor ABox that has, as its models, all the successors of the models
of the original ABox. Second, the expressiveness of the basic action formalism should
extended. Either one can explore how the restriction w.r.t to complex post-conditions
and general TBoxes can be relaxed, while still staying decidable. Furthermore the basic
action formalism introduced by Reiter has been extended in several directions, and we
need to check for which of these extensions our results still hold. Third, we have used only
composition to construct composite services, whereas OWL-S proposes also more complex
operators. These could, for example, be modeled by appropriate GOLOG programs.
Finally, to allow for automatic composition of services, one would need to look at how
planning can be done in our formalism.

6 Configuration of Technical Devices

As one of the first commercial applications of ontologies, configuration systems for tech-
nical devices have been designed and implemented (see, e.g., [68, 67]). The key idea is to
use an ontology (TBox) to describe the configuration space and an initial configuration
(ABox) to be automatically completed such that given constraints are met. The goal is
to derive a formalization of ontology-based configuration as a formal decision problem in
order to avoid the error-prone development of special-purpose programs. However, early
approaches were based on inexpressive ontology languages, i.e., many constraints could
not be expressed in a declarative way, and a lot of programming was still required.

With expressive ontology languages, domain-specific constraints can be declaratively

c©2006/TONES – August 31, 2006 70/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

expressed and with expressive query languages, many properties of the final configuration
can be queried, maybe resulting in further constraints being declared. The key benefit is
that a declarative specification of the configuration space provides for enhanced flexibility
if requirements change. Descriptions of the configuration space can be evaluated during
the design phase, and domain-specific vocabulary can be captured by the ontology.

6.1 Formalizations of the Configuration Task

Early approaches to formalize the configuration task with ontologies used description logic
ontologies and treated configuration as a consistency maintenance task with an expres-
sive representation language but incomplete DL reasoner [76]. Later, an approach with
a complete reasoner for a rather inexpressive language was pursued [68]. As description
logic technology matured, industrial applications were in reach. Since the reasoner was
only used for checking consistency (or satisfiability) of an ABox representing the con-
structed artifact, most of the program code for exploring the configuration space had to
be manually written. Nevertheless, the declarative ontology was used to guide the search.
However, much of configuration problem solving remained outside of the logic.

In another approach configuration was formalized using a logical decision problem,
namely satisfiability checking in general, and model generation in particular. The idea
was to define the final configuration as a model of a description of the initial configura-
tion (ABox) w.r.t. to a TBox [16, 17]. In this approach it is particularly important to
avoid unintended models of the knowledge base, and hence, an expressive languages is
required (see [5] for cardinality restrictions on concepts or [89] for a closing operator for
taxonomies).

A concrete system implementation that does not only prove that a model exists, but
can actually generate one or even multiple models is still not available. Acknowledging
the lack of this technology, a planning-based approach to configuration with description
logic was suggested in [26, 27]. Rather than using programs to explore the configuration
space, in this work a planning system is employed to enumerate possible configurations
which, then, are checked for satisfiability with a description logics system (Racer, c.f.,
[26, 27]).

Nevertheless, model generation for description logic knowledge bases would still have
important applications in industrial contexts, not only for configuration but also for other
tasks (see, e.g., [81]).

6.2 Challenges for Ontology Processing

For computing models of an ontology based on an expressive language, there are several
challenges to face:

1. Models can be infinite (e.g., this holds for SHIQ). Thus, what can be compute is
only a model description, not directly a model.

2. Models can be very large. In a server-based architecture, retrieving a complete
model can be very time-consuming.

c©2006/TONES – August 31, 2006 71/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

3. Tableau-based prover systems generate models, but only canonical models. Canon-
ical models are least-commitment models and might not necessarily correspond to
the models that users would like to have computed. It is also not trivial to enumerate
all models.

In order to solve these problems, new research is required (e.g., to define and implement
a model query and manipulation language).

c©2006/TONES – August 31, 2006 72/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

References

[1] Serge Abiteboul. Towards a Deductive Object-Oriented Database Language. Data
and Knowledge Engineering, 5:263–287, 1990.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison
Wesley Publ. Co., 1995.

[3] Alessandro Artale and Enrico Franconi. A Computational Account for a Descrip-
tion Logic of Time and Action. In Proc. of the 4th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’94), pages 3–14, 1994.

[4] Alessandro Artale and Enrico Franconi. A Temporal Description Logic for Reasoning
about Actions and Plans. J. of Artificial Intelligence Research, 9:463–506, 1998.

[5] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality Restrictions
on Concepts. Artificial Intelligence, 88(1–2):195–213, 1996.

[6] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2003.

[7] Franz Baader and Philipp Hanschke. A Schema for Integrating Concrete Domains
into Concept Languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91), pages 452–457, 1991.

[8] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics as Ontology
Languages for the Semantic Web. In Dieter Hutter and Werner Stephan, edi-
tors, Festschrift in honor of Jörg Siekmann, Lecture Notes in Artificial Intelligence.
Springer-Verlag, 2003.

[9] Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter. A
Description Logic Based Approach to Reasoning about Web Services. In Proc. of the
WWW 2005 Workshop on Web Service Semantics (WSS2005), Chiba City, Japan,
2005.

[10] Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter. Inte-
grating Description Logics and Action Formalisms: First Results. In Proc. of the
20th Nat. Conf. on Artificial Intelligence (AAAI 2005), Pittsburgh, PA, USA, 2005.

[11] Franz Baader, Maja Milicic, Carsten Lutz, Ulrike Sattler, and Frank Wolter. In-
tegrating Description Logics and Action Formalisms for Reasoning about Web Ser-
vices. LTCS-Report LTCS-05-02, Chair for Automata Theory, Institute for Theo-
retical Computer Science, Dresden University of Technology, Germany, 2005. See
http://lat.inf.tu-dresden.de/research/reports.html.

[12] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG Description Logic In-
terface. In Proceedings of the 2003 International Workshop on Description Logics
(DL2003), volume 81 of CEUR Workshop Proceedings, 2003.

c©2006/TONES – August 31, 2006 73/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

[13] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML
Class Diagrams. Artificial Intelligence, 168(1–2):70–118, 2005.

[14] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin
Resnick. CLASSIC: A Structural Data Model for Objects. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages 59–67, 1989.

[15] Kerstin Bücher, Yves Forkl, Günther Görz, Martin Klarner, and Bernd Ludwig.
Discourse and Application Modeling for Dialogue Systems. In In Proc. 2001
Workshop on Applications of Description Logics, 2001. http://ftp.informatik.

rwth-aachen.de/Publications/CEUR-WS/Vol-44/.

[16] Martin Buchheit, Rudiger Klein, and Werner Nutt. Configuration as Model Con-
struction: the Constructive Problem Solving Approach. In Proc. of the 4th Int.
Conf. on Artificial Intelligence in Design, Lausanne (Switzerland), August 1994.

[17] Martin Buchheit, Rüdiger Klein, and Werner Nutt. Constructive Problem Solving:
A Model Construction Approach towards Configuration. Technical Report DFKI
Technical Memo TM-95-01, Deutsches Forschungszentrum für Künstliche Intelligenz,
Saarbrücken, 1995.

[18] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Data Complexity of Query Answering in Description Logics. In
Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Rea-
soning (KR 2006), 2006.

[19] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the Decidability
of Query Containment under Constraints. In Proc. of the 17th ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158,
1998.

[20] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Answering Queries
Using Views over Description Logics Knowledge Bases. In Proc. of the 17th Nat.
Conf. on Artificial Intelligence (AAAI 2000), pages 386–391, 2000.

[21] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Ric-
cardo Rosati. Information Integration: Conceptual Modeling and Reasoning Support.
In Proc. of the 6th Int. Conf. on Cooperative Information Systems (CoopIS’98), pages
280–291, 1998.

[22] Tiziana Catarci, Maria Francesca Costabile, Stefano Levialdi, and Carlo Batini. Vi-
sual Query Systems for Databases: A Survey. Journal of Visual Languages and
Computing, 8(2):215–260, 1997.

[23] Tiziana Catarci, Paolo Dongilli, Tania Di Mascio, Enrico Franconi, Giuseppe San-
tucci, and Sergio Tessaris. An Ontology based Visual Tool for Query Formulation
Support. In Proc. of the 16th eur. conf. on artificial intelligence (ecai 2004), 2004.

c©2006/TONES – August 31, 2006 74/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

[24] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Springer, Berlin (Germany), 1990.

[25] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. De-
duction in Concept Languages: From Subsumption to Instance Checking. J. of Logic
and Computation, 4(4):423–452, 1994.

[26] Michael Eisfeld. Model Construction for Configuration Design. In Proceedings of
the Workshop of Applications of Description Logics, German Conference on Artifi-
cial Intelligence, 2002. http://ftp.informatik.rwth-aachen.de/Publications/

CEUR-WS/Vol-63/.

[27] Michael Eisfeld and Raimar Scherer. Assisting Conceptual Design of Building Struc-
tures by an Interactive Description Logic-based Planner. Advanced Engineering In-
formatics, 17(1):41–57, 2003.

[28] Richard Fikes, Patrick Hayes, and Ian Horrocks. OWL-QL: A Language for Deductive
Query Answering on the Semantic Web. J. of Web Semantics, 2(1), 2005.

[29] Enrico Franconi, Sergio Tessaris, Tiziana Catarci, Tania Di Mascio, Giuseppe San-
tucci, and Guido Vetere. Specification of the Ontology Design Tool. Technical Report
D6.2, SEWASIE Consortium, 2003.

[30] Malte Gabsdil, Alexander Koller, and Kristina Striegnitz. Building a Text Adventure
on Description Logic. In In Proc. 2001 Workshop on Applications of Description
Logics, 2001. http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/

Vol-44/.

[31] Jan Galinski, Atila Kaya, and R. Möller. Development of a Server to Support the
Formal Semantic Web Query Language OWL-QL. In Proc. of the Int. Workshop on
Description Logics, DL ’05, 2004.

[32] Michael R. Garey and David S. Johnson. Computers and Intractability — A guide
to NP-completeness. W. H. Freeman and Company, San Francisco (CA, USA), 1979.

[33] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
On the Update of Description Logic Ontologies at the Instance Level. In Proceedings
of the 21th National Conference on Artificial Intelligence and the 18th Innovative
Applications of Artificial Intelligence Conference, AAAI’06. AAAI Press, 2006.

[34] Matthew L. Ginsberg and David E. Smith. Reasoning About Action I: A Possible
Worlds Approach. Artif. Intell., 35(2):165–195, 1988.

[35] Birte Glimm and Ian Horrocks. Query Answering Systems in the Semantic Web. In
Proc. of the KI-04 Workshop on Applications of Description Logics 2004, ADL ’04,
2004.

c©2006/TONES – August 31, 2006 75/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

[36] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Conjunctive Query Answering for
Description Logics with Transitive Roles. In Proc. of the 2006 Description Logic
Workshop (DL 2006). CEUR Electronic Workshop Proceedings, http://ceur-ws.
org/, 2006.

[37] Stephan Grimm, Boris Motik, and Chris Preist. Variance in E-Business Service
Discovery. In Proceedings of the ISWC 2004 Workshop on Semantic Web Services,
2004.

[38] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description
Logic Programs: Combining Logic Programs with Description Logic. In Proc. of the
12th Int. World Wide Web Conf. (WWW 2003), pages 48–57, 2003.

[39] Volker Haarslev and Ralf Möller. RACER System Description. In Proc. of the
Int. Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture
Notes in Artificial Intelligence, pages 701–705. Springer, 2001. Available at http:

//www.racer-systems.com.

[40] Volker Haarslev and Ralf Möller. Incremental Query Answering for Implementing
Document Retrieval Services. In Proceedings of the International Workshop on De-
scription Logics (DL-2003), Rome, Italy, September 5-7, pages 85–94, 2003.

[41] Volker Haarslev and Ralf Möller. Optimization Techniques for Retrieving Resources
Described in OWL/RDF Documents: First Results. In Proc. of the 9th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2004), 2004.

[42] Volker Haarslev, Ralf Möller, Ragnhild Van Der Straeten, and Michael Wessel. Ex-
tended Query Facilities for Racer and an Application to Software-Engineering Prob-
lems. In Proc. of the Int. Workshop on Description Logics, DL ’04, 2004.

[43] Volker Haarslev, Ralf Möller, and Michael Wessel. Querying the Semantic Web with
Racer + nRQL. In Proc. of the KI-04 Workshop on Applications of Description
Logics 2004, ADL ’04, 2004.

[44] Peter Haase and Ljiljana Stojanovic. Consistent Evolution of OWL Ontologies. In
Asuncin Gmez-Prez and Jrme Euzenat, editors, Proceedings of the Second European
Semantic Web Conference, Heraklion, Greece, 2005, volume 3532 of Lecture Notes
in Computer Science, pages 182–197. Springer, may 2005.

[45] Christian Halaschek-Wiener, Bijan Parsia, and Evren Sirin. Description Logic Rea-
soning with Syntactic Updates. In Proceedings of the 5th Int. Conference on Ontolo-
gies, Databases, and Applications of Semantics, ODBase’06, 2006. Submitted.

[46] Christian Halaschek-Wiener, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. De-
scription Logic Reasoning for Dynamic ABoxes. In Proceedings of the Int. Work-
shop on Description Logics, DL’06. CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/, 2006.

c©2006/TONES – August 31, 2006 76/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

[47] Jeff Heflin and James Hendler. A Portrait of the Semantic Web in Action. IEEE
Intelligent Systems, 16(2):54–59, 2001.

[48] Bernhard Hollunder. Consistency Checking Reduced to Satisfiability of Concepts in
Terminological Systems. Annals of Mathematics and Artificial Intelligence, 18(2–
4):133–157, 1996.

[49] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL Entailment to Descrip-
tion Logic Satisfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, edi-
tors, Proc. of the 2003 International Semantic Web Conference (ISWC 2003), num-
ber 2870 in Lecture Notes in Computer Science, pages 17–29. Springer, 2003.

[50] Ian Horrocks and Ulrike Sattler. Optimised Reasoning for SHIQ. In Proc. of the
15th Eur. Conf. on Artificial Intelligence (ECAI 2002), pages 277–281, July 2002.

[51] Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan Tobies. How to Decide
Query Containment Under Constraints Using a Description Logic. In Logic for Pro-
gramming and Automated Reasoning (LPAR 2000), volume 1955 of Lecture Notes in
Computer Science, pages 326–343. Springer, 2000.

[52] Ian Horrocks and Sergio Tessaris. A Conjunctive Query Language for Description
Logic ABoxes. In Proceedings of the 17th National Conference on Artificial Intelli-
gence (AAAI 2000), pages 399–404, 2000.

[53] Ian Horrocks and Sergio Tessaris. Querying the Semantic Web: a Formal Approach.
In Ian Horrocks and James Hendler, editors, Proc. of the 2002 International Semantic
Web Conference (ISWC 2002), number 2342 in Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[54] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing SHIQ-Description Logic
to Disjunctive Datalog Programs. In Proc. of the 9th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2004), pages 152–162, 2004.

[55] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data Complexity of Reasoning in
Very Expressive Description Logics. In Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2005), pages 466–471, 2005.

[56] Christel Kemke. A Formal Theory for Describing Action Concepts in Terminological
Knowledge Bases. In Canadian Conference on AI (AI 2003), volume 2671 of LNCS,
pages 458–465. Springer, 2003.

[57] Jinyoul Lee, Keng Siau, and Soongoo Hong. Enterprise Integration with ERP and
EAI. Communications of the ACM, 46(2):54–60, 2003.

[58] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

c©2006/TONES – August 31, 2006 77/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

[59] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG: A Logic
Programming Language for Dynamic Domains. J. of Logic Programming, 31:59–84,
1997.

[60] Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description
logics in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[61] Lei Li and Ian Horrocks. A Software Framework for Matchmaking Based on Semantic
Web Technology. Int. J. of Electronic Commerce, 8(4):39–60, 2004.

[62] Thorsten Liebig and Dietmar Rösner. Action Hierarchies in Description Logics. In
Proc. of the 1997 Description Logic Workshop (DL’97). AAAI Press, 1997.

[63] Thorsten Liebig, Anni-Yasmin Turhan, Olaf Noppens, and Timo Weithöner. DIG 2.0
Proposal for Accessing Told Data. Available as http://www.informatik.uni-ulm.
de/ki/Liebig/told-access.html, May 2006.

[64] Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Updating Description
Logic ABoxes. In Patrick Doherty, John Mylopoulos, and Christopher Welty, editors,
Proceedings of the Tenth Int. Conference on Principles of Knowledge Representation
and Reasoning, KR’06, pages 46–56. AAAI Press, 2006.

[65] Robert MacGregor. The Evolving Technology of Classification-Based Knowledge
Representation Systems. In John F. Sowa, editor, Principles of Semantic Networks,
pages 385–400. Morgan Kaufmann, 1991.

[66] Robert M. MacGregor and David Brill. Recognition Algorithms for the Loom Clas-
sifier. In Proc. of AAAI’92, Thenth Conference on Artificial Intelligence, 1992.

[67] Deborah L. McGuinness. Configuration. In Baader et al. [6], chapter 12, pages
388–405.

[68] Deborah L. McGuinness and Jon R. Wright. An industrial-strength Description
Logic-based Configurator Platform. IEEE Intelligent Systems, 13(4):69–77, 1998.

[69] Sheila McIlraith, Tran Cao Son, and Honglei Zeng. Semantic Web Services. IEEE
Intelligent Systems. Special Issue on the Semantic Web, 16(2):46–53, 2001.

[70] Ralf Möller, Volker Haarslev, and Michael Wessel. On the Scalability of Description
Logic Instance Retrieval. In Chr. Freksa and M. Kohlhase, editors, 29. Deutsche
Jahrestagung für Künstliche Intelligenz, Lecture Notes in Artificial Intelligence.
Springer Verlag, 2006.

[71] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with
Rules. In Proceedings of the 3rd International Semantic Web Conference (ISWC
2004), Hiroshima, Japan, November 2004.

[72] Bernd Neumann and Ralf Möller. On Scene Interpretation with Description Logics.
In H.I. Christensen and H.-H. Nagel, editors, Cognitive Vision Systems: Sampling
the Spectrum of Approaches, number 3948 in LNCS, pages 247–278. Springer, 2006.

c©2006/TONES – August 31, 2006 78/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

[73] Maria Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Characterizing Data
Complexity for Conjunctive Query Answering in Expressive Description Logics. In
Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006), 2006.

[74] Maria Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data Complex-
ity of Answering Unions of Conjunctive Queries in SHIQ. In Proc. of the 2006
Description Logic Workshop (DL 2006). CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/, 2006.

[75] Maria Magdalena Ortiz de la Fuente, Diego Calvanese, Thomas Eiter, and Enrico
Franconi. Data complexity of answering conjunctive queries over SHIQ knowledge
bases. Technical report, Faculty of Computer Science, Free University of Bozen-
Bolzano, July 2005. Also available as CORR technical report at http://arxiv.

org/abs/cs.LO/0507059/.

[76] Bernd Owsnicki-Klewe. Configuration as a Consistency Maintenance Task. In Proc.
of the 12th German Workshop on Artificial Intelligence (GWAI’88), pages 77–87.
Springer, 1988.

[77] Bijan Parsia, Christian Halaschek-Wiener, and Evren Sirin. Towards Incremental
Reasoning Through Updates in OWL-DL. Available as http://www.mindswap.org/
papers/2006/incclass.pdf, 2006.

[78] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Im-
plementing Dynamical Systems. The MIT Press, 2001.

[79] Mathieu Roger, Ana Simonet, and Michel Simonet. Toward Updates in Description
Logics. In Proceedings of the Int. Workshop on Description Logics, DL’02. CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/, 2002.

[80] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2nd edition, 2003.

[81] Carsten Schröder and Bernd Neumann. On the Logics of Image Interpretation: Model
Construction in a Formal Knowledge-Representation Framework. IEEE International
Conference on Image Processing. IEEE Computer Society Press, 1996.

[82] Murray Shanahan. Perception as Abduction: Turning Sensor Data into Meaningful
Representation. Cognitive Science, 29:103–134, 2005.

[83] Evren Sirin and Bijan Parsia. Pellet System Description. In Proc. of the 2006
Description Logic Workshop (DL 2006). CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/, 2006.

[84] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001.

[85] David Trastour, Claudio Bartolini, and Javier Gonzalez-Castillo. A Semantic Web
Approach to Service Description for Matchmaking of Services. In Proceedings of the
International Semantic Web Working Symposium (SWWS), 2001.

c©2006/TONES – August 31, 2006 79/80 TONES-D10– v.1.1

FP6-7603 – TONES Thinking ONtologiES WP4

[86] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner: System
Description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
2006. To appear.

[87] Moshe Y. Vardi. The Complexity of Relational Query Languages. In Proc. of the 14th
ACM SIGACT Symp. on Theory of Computing (STOC’82), pages 137–146, 1982.

[88] Robert Weida and Diane Litman. Terminological Reasoning with Constraint Net-
works and an Application to Plan Recognition. In Proc. of the 3rd Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR’92), pages 282–293,
1992.

[89] Robert A. Weida. Closed Terminologies in Description Logics. In Proc. of the 13th
Nat. Conf. on Artificial Intelligence (AAAI’96), pages 592–599, 1996.

[90] Marianne Winslett. Reasoning About Action using a Possible Models Approach. In
AAAI, pages 89–93, Saint Paul, MN, 1988.

c©2006/TONES – August 31, 2006 80/80 TONES-D10– v.1.1

