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Chapter 1

Introduction

The problems which application developers are facing in projects involving information technology
tend to become more and more complex. In many applications – in particular in the web context –
models based on large ontologies are more and more important. Moreover, aspects of distribution
as well as safety and verification concerns have to be considered. In order to reduce complexity,
topics such as knowledge-based systems, object-oriented frameworks, unified modeling languages,
workflow models, business (re)organization models etc. dominate the discussion about how to en-
sure that computer systems can be constructed which, on the one hand, match the requirements
and, on the other hand, are reliable, robust and adaptable. In order to fulfill these requirements
there is a huge demand for systems that automatically solve complex (sub)problems of applications
based on declarative models of the domain. In addition, the verification of models used for compu-
tational purposes is often required in some application scenarios. The formalization of subtasks of
applications as well-understood computational inference problems is a prerequisite to support the
development of more powerful systems with better quality but less development costs. It should
be emphasized, however, that a user of an application need not be aware of internal computa-
tional processes being based on formal models. For instance, users can successfully interact with
web-based information retrieval systems based on database technology without being aware of the
underlying relational calculus.

The development of formal inference systems has a long tradition. The literature contains many
contributions from different points of view and with different mathematical background. For many
problems, it is appropriate that formal modeling and inference techniques are based on a logical
approach, i.e. a logical characterization of various problem classes has already been developed in
terms of deduction, induction, abduction, synthesis etc. In this work we pursue a computational
approach combining theoretical results about the decidability of different logical representation lan-
guages with practical results concerning “efficient” proof procedures which are sound and complete
(and terminating). Efficient proof techniques, in turn, are needed for implementing, for instance,
query answering and specification checking systems based on expressive languages. The develop-
ment of efficient algorithms that do not run into combinatorial explosion in the average case is a
very active and exciting research field not only from a practical but also from a theoretical point
of view.

This report describes the results of practical and theoretical investigations for developing rep-
resentation systems which support the construction of declarative models, which can be checked
for consistency and which can be used as the basis for problem solving processes in different ap-
plication contexts. In order to support automatic processing of models, the modeling language
must be based on a clear semantics such that inference problems can be formally defined, infer-
ence algorithms can be systematically analyzed, and formal inference systems can be successfully
developed. Formal inference systems are of particular importance in safety-critical applications in
order to check system specifications before systems are actually deployed in practice. Based on a
formal model of the application domain, inference systems can also be used to directly implement
subtasks of application systems. In so-called information systems, the subtasks of applications can
be realized by specifying queries to be answered based on an explicitly given information model.
Query answering is the basic operation found in information systems – be they web-based or not.
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Usually, this scenario is the realm of information retrieval and database systems. In both research
areas more and more powerful representation and query languages are investigated. Rather than
being a mere information lookup, answering queries in information systems for complex domains
involves reasoning about implicit information, i.e. query answering systems require inference sys-
tems as subcomponents. Thus, a new generation of information systems, especially in a web-based
scenario, can be called deductive information systems.

As a challending application of ontology-based technology, we show how formal knowledge rep-
resentation and reasoning techniques can be used for the retrieval and interpretation of multimedia
data. This section explains what we mean by an “interpretation” using examples of audio and
video interpretation. Intuitively, interpretations are descriptions of media data at a high abstrac-
tion level, exposing interrelations and coherencies. We introduce description logics as the formal
basis for ontology languages of the OWL family and for the interpretation framework described in
subsequent sections.

What do we mean by “interpretation” of media objects? Consider the image shown in Fig-
ure 1.1. One can think of the image as a set of primitive objects such as persons, garbage containers,
a garbage truck, a bicycle, traffic signs, trees etc. An interpretation of the image is a description
which “makes sense” of these primitive objects. In our example, the interpretation could include
the assertions “two workers empty garbage containers into a garbage truck” and “a mailman dis-
tributes mail” expressed in some knowledge representation language.

Figure 1.1: Street scene in Hamburg.

When including the figure caption into the interpretation process, we have a multimodal inter-
pretation task which in this case involves visual and textual media objects. The result could be
a refinement of the assertions above in terms of the location “in Hamburg” or, more specifically,
“near lake Alster in Hamburg”. Note that the interpretation describes activities extending in time
although it is only based on a snapshot. Interpretations may generally include hypotheses about
things outside the temporal and spatial scope of the available media data. An interpretation is
a “high-level” description of media data in the sense that it involves terms which abstract from
details at lower representation levels. This is typical for meaningful descriptions in human language
and hence also relevant for constructing information systems. Information systems are one of the
most-prominent application scenarios of the BOEMIE project, and the automatic ontology-based
construction of high-level interpretations of media objects is one of the major tasks in this project.
In this report we describe representation formalisms suitable for representing high-level image in-
terpretation results. Based on these formalisms, inference services are described that allow for a
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scalable information system architecture to be provided for building BOEMIE-based applications.
The report is structured into four parts, each with its own set of references in order to provide

an overview on the state of the art for each of the areas covered. First, in Part 1, we describe
research results about expressive description logics, then, in Part 2, optimization techniques for
instance retrieval are discussed in the context of grounded conjunctive queries. Afterwards, in Part
3, the expressivity of the query language is enhanced in order to provide a combination of spatial
and ontological reasoning. In the last part, we focus on a middleware architecture to provide
efficient and scalable reasoning systems for large-scale applications.
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Part I

Formalisms and Inference
Problems
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Chapter 2

The SH Family

Ontology languages like OWL, which has been adopted in BOEMIE, are often based on description
logics (DLs). Since the beginning of description logic research, the tradeoff between expressivity
of the logic and complexity of decision problems has been investigated in the research community
[36; 37]. DLs are distinguished by the set of concept and role constructors they provide. The
SH family is inspired by demands from applications in the sense that the language facilities of
description logics of this family are designed in such a way that (i) application requirements w.r.t.
expressivity can be fulfilled and (ii) reasoners can be built that are efficient in the average case. As
we will see in this section, work on ontology languages based on the SH family revealed that there
are intricate interactions between language constructs required for practical applications. Thus,
reasoning gets harder (from a theoretical and from a practical point of view) if the expressivity is
increased. We start our discussion of expressive description logics of the SH family with the core
logic ALC.

2.1 The Foundation: ALC
The term “expressive description logic” is usually used for a logic that provides for full negation.
A cornerstone logic with this feature is ALC [22], which is the backbone of all logics of the SH
family. Let A be a concept name and R be a role name. Then, the set of ALC concepts (denoted
by C or D) is inductively defined as follows: C,D → A | ¬C |CuD |CtD | ∀R.C | ∃R.C. Concepts
can be written in parentheses. The semantics is defined in the standard form using a Tarskian
interpretation I = (∆I , ·I) such that

AI ⊆ ∆I , RI ⊆ ∆I ×∆I

(¬C)I = ∆I\CI (complement)

(C uD)I = CI ∩DI (conjunction)

(C tD)I = CI ∪DI (disjunction)

(∃R.C)I = {x ∈ ∆I | ∃y. (x, y) ∈ RI ∧ y ∈ CI} (existential restriction)

(∀R.C)I = {x ∈ ∆I | ∀y. (x, y) ∈ RI → y ∈ CI} (value restriction)

A concept C is satisfiable if there exists an interpretation such that CI 6= ∅. The concept
satisfiability problem of the logic ALC was shown to be PSPACE-complete in [111]. For ALC the
finite model property holds.

A (generalized) terminology (also called TBox, T ) is a set of axioms of the form C v D
(generalized concept inclusion, GCI). A GCI C v D is satisfied by an interpretation I if CI ⊆ DI .
An interpretation which satisfies all axioms of a TBox is called a model of the TBox. A concept C
is satisfiable w.r.t. a TBox if there exists a model I of T such that CI 6= ∅. A concept D subsumes
a concept C w.r.t. a TBox if for all models I of the TBox it holds that CI ⊆ DI . D is called the
subsumer, C is the subsumee. A concept name A1 mentioned in a TBox is called a most-specific
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subsumer of a concept name A2 (mentioned in the TBox and different from A1) if A1 subsumes
A2 and there is no other concept name A3 (mentioned in the TBox and different from A1 and A2)
such that A1 subsumes A3 and A3 subsumes A2. The least general subsumee of a concept name
is defined analogously. The classification problem for a TBox is to find the set of most-specific
subsumers of every concept name mentioned in the TBox (or knowledge base). The induced graph
is called the subsumption hierarchy of the TBox.

The semantics for generalized terminological axioms (which do not impose any restrictions on
the concepts on both sides of a GCI) is called descriptive semantics (see, e.g., [22] for a discus-
sion of the consequence of this semantics and for an investigation of other possible semantics for
GCIs). The problem of verifying satisfiability or checking subsumption w.r.t. generalized TBoxes is
EXPTIME-hard [99; 87]. However, this result holds for the worst case, which does not necessarily
occur in practical applications (see, e.g., [115]), and practical work on reasoners for languages of
the SH family exploits this insight.

As of now, we have covered axioms for expressing restrictions for subsets of the domain ∆I

(or subsets of ∆I ×∆I). For BOEMIE, restrictions about particular elements of the domain are
also important, since it is of interest to be able to classify the multimodal enquired information
according to a generalized terminology of the sports domain. For this task, early description logics
of the SH family provide specific assertions that are collected in a so-called ABox. An ABox is
a set of assertions of the form C(a), R(a, b), a = b, or a 6= b. An ABox assertion is satisfied by
an interpretation I if aI ∈ CI , (aI , bI) ∈ RI , aI = bI , and aI 6= bI , respectively. The ABox
satisfiability problem (w.r.t. a TBox) is to check whether there exists an interpretation (a model
of the TBox) that satisfies all ABox assertions. As usual, we define a knowledge base (KB) to
be a pair (T ,A) of a TBox T and an ABox A. A model of a KB is an interpretation that is a
model of T and A. The instance problem instance(T ,A)(i, C) w.r.t. a knowledge base (T ,A) is to
test whether iI ∈ CI holds for all models of the knowledge base. We say instance(T ,A)(i, C) is
entailed. The knowledge base is often omitted in the notation if clear from context. The instance
retrieval problem retrieve(T ,A)(C) w.r.t. a KB (T ,A) and a query concept C is to determine all
individuals i mentioned in the ABox for which instance(i, C) is entailed. A role filler for a role
R w.r.t. an individual i is an individual j (mentioned in the ABox) such that for all models I it
holds that (iI , jI) ∈ RI (we say related(i, j, R) is entailed).

The inference problems mentioned in this section are called standard inference problems for
TBoxes and ABoxes, respectively. Reasoners of the SH family support standard inference problems
either for TBoxes and ABoxes or for TBoxes only. As we have seen, ALC inference problems are
not tractable in the worst case, and, at the beginning, incomplete algorithms were used in concrete
system implementations for expressive DLs. However, at the end of the eighties it became clear that
incomplete algorithms for expressive description logics cause all kinds of problems for applications.
For instance, more often than not, the addition of an axiom or assertion to the knowledge base led
to the situation that previously obtained entailments were no longer computed due to peculiarities
of the inference algorithm.

The beginning of the SH family started with work on the system Kris [10; 57; 1], which
provides a sound and complete reasoner based on the tableau calculus presented in [111]. Kris
supports ALC plus number restrictions (plus some additional language constructs). The Kris
reasoner implements optimization techniques for the concept and ABox satisfiability problem w.r.t.
TBoxes (e.g., lazy unfolding, trace technique). The main achievement of this work is that the
architecture of Kris is tailored towards specific services for TBoxes, namely TBox classification.
Specific optimization techniques for the classification problem developed for Kris are used by all
contemporary reasoners of the SH family (see below). The idea is to classify a TBox using a top-
down and bottom-up search phase for computing the most-specific subsumers and least-specific
subsumees based on subsumption tests. Kris avoids unnecessary subsumption tests using marker
propagation tests [12; 7].

2.2 Concrete Domains

Another achievement of the work on description logics that is also important for ontology languages
is the treatment of specific domains with fixed (concrete) semantics. To denote for instance that
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Running 60 Meters is a running modality conducted on a 60 meters track (Running 60 Metersu
∃meters ≤ 60), applications require constraints over the reals, the integers, or a domain of strings.
A concrete domain D is a tuple (∆D,Φ) of a non-empty set ∆D and a set of predicates Φ. Predi-
cates are defined in a certain language (e.g., linear inequations over polynomials or equations over
strings). The integration of concrete domains into ALC is investigated in [8; 9]. The idea of the
new language, ALC(D), is that the axioms for capturing the concrete semantics of the objects
in ∆D is not captured with description logic axioms but somehow represented separately. The
tableau calculus in [8; 9] treats the satisfiability problem w.r.t. to conjunctions of concrete domain
predicates as separate subproblems. The concrete domain satisfiability problems must be decidable
(admissibility criterion for concrete domains).

With concrete domains, so-called attributes are introduced, which are partial functions that
map individuals of the abstract domain ∆I to elements of ∆D of the concrete domain D. For
attributes a, the interpretation is extended as follows: aI : ∆I −→ ∆D.

It is important to note that in the original approach [8; 9] it is possible to relate (multiple)
attribute values of different individuals of the domain I. One can represent, for instance, structures
such as lists of numbers with decreasing value where each value is at most half as large as the
predecessor. If the language provides concrete domains such as, for instance, linear inequations
over the reals, GCIs cannot be supported by a description logic of interesting expressivity part
due to undecidability of major inference problems. This follows from a result in [86] (a direct
proof was developed at the same time and is given in [94]). In a restricted form where no feature
compositions can be used, it is only possible to relate attribute values of a single element of I. We
use the notation ALC(D)− to indicate that feature chains are omitted. Concrete domains are part
of many specific description logics of the SH family that we cover in the next sections.

2.3 Transitive Roles

For many applications, part-whole relations are important. A characteristic of some part-whole
relations is that they are transitive (see, e.g., [80]). In order to cope with these modeling demands,
for instance, in process engineering applications, an investigation about an extensions of ALC with
means to express transitivity was carried out [108; 109]. ALC was extended with a transitive
closure operator, with transitive roles, and with so-called transitive orbits. As discussed in other
sections, ALC extended with a transitive closure operator causes the concept satisfiability problem
to move from PSPACE to EXPTIME.

Syntactically, transitive roles are indicated as a subset of all role names. It turned out that
ALC extended with transitive roles remains in PSPACE [108]. Transitive roles have the semantics
that for all transitive roles R the models must satisfy RI = (RI)+. Thus, transitive roles are
“globally” transitive and cannot be used in a transitive way in a local setting only (as possible
with a specific operator for the transitive closure of a role).

Inspired by work on modal logics, [108] introduces an elegant way to integrate reasoning about
transitive roles into the ALC tableau calculus by a special rule for transitive roles in value restric-
tions. Additionally, in order to enforce termination, blocking conditions were defined such that the
calculus terminates. A blocking condition involves a test whether two sets of concepts are in a
certain relation (for ALCR+ , the relation is ⊆, for details see [108]).

The logic was initially called ALCR+ . As more language constructs were added later on, and
acronyms became hard to read, ALCR+ was renamed S in [69].1

2.4 Role Hierarchies and Functional Restrictions

Inspired by work on medical domains in which it became important to represent that some relations
are subrelations (subsets) of other relations, so-called role inclusions axioms of the form R v S
(with R and S being role names) were investigated in [61] as an extension to ALCR+ . A set of
role inclusion axioms is called a role hierarchy. Models for role hierarchies are restricted to satisfy
RI ⊆ SI for all R v S. The description logic is called ALCHR+ or SH.

1The name is inspired by modal logic S4m but, obviously, it is a misnomer. However the name is kept for
historical reasons.
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Role hierarchies introduce explicit names for so-called subroles. In [62] it is argued that role
hierarchies provide for adequate expressivity while still allowing for efficient practical implementa-
tions at the same time. Another possibility would have been to consider a role-forming operator for
constructing role conjunctions (R uS). However, except for inverse roles (see below) the SH family
includes no role-forming operators in order to provide for practically efficient implementations (see
also the discussion about a transitive closure operator for roles in the previous subsection).

Additionally, in [61; 62] global functional restrictions on roles were investigated. In the corre-
sponding description logic ALCHfR+ so-called features were introduced as a specific subset of the
role names.2 Features must not be transitive. The semantics of a feature f is a (single valued)
partial function fI : ∆I −→ ∆I .

With several examples, the interactions of role hierarchies and functional restrictions on roles
were demonstrated in [61]. A sound and complete tableau calculus for ALCHfR+ is described
in [63]. This tableau calculus provided the basis for the enormous success of the SH family of
ontology languages. Based on an optimized implementation of this calculus in the system Fact
[61; 62] it was shown that description logics could provide a solid basis for practical application of
ontology languages. Role hierarchies and transitive roles allow one to somehow “simulate” GCIs
(by constructing an equisatisfiable knowledge base). However, the Fact system also included full
support for GCIs.

The contribution of the ALCHfR+ reasoner Fact is (at least) threefold. First, improvements to
propositional satisfiability search algorithms [41] were incorporated into description logic systems
(backjumping, boolean constraint propagation, semantic branching, etc.) and, second, classifica-
tion operations were dramatically increased by the invention of a so-called model merging operation
[61], which exploits that most subsumption tests for concept names A1 and A2 (used to compute
the subsumption hierarchy) return false. The idea of a model merging operation is to compute
(small) data structures for concept names (and their negations) such that it is more or less directly
obvious that the conjunction A1u¬A2 is satisfiable (i.e., there is no subsumption relation). Third,
using algebraic transformation, Fact showed that, in many practical applications, corresponding
TBox axioms can be converted into a form such that lazy unfolding is maximally exploited in the
tableau calculus (GCI absorption [72]). The system Fact initiated the breakthrough of description
logics as the basis for practically used ontology languages. Fact was designed for TBoxes only.

2.5 Number Restrictions and Inverse Roles

The need for restrictions on the number of role fillers of an individual, to express for instance
that a first place athlete is one which has at least 1 gold medal (∃≥1has medal.GoldMedal) are
also apparent. Number restrictions are concept construction operators of the form (∃≤n R) or
(∃≥n R) (simple number restrictions, indicated with letter N in language names) and (∃≤n R.C)
or (∃≥n R.C) (qualified number restrictions [59], indicated with letter Q in language names). For
simple number restrictions, interpretations must satisfy (∃≤n R)I = {x | ‖{y|(x, y) ∈ RI}‖ ≤ n}
and (∃≥n R)I = {x | ‖{y|(x, y) ∈ RI}‖ ≥ n}. For qualified number restrictions, interpretations
must satisfy (≤ n R.C)I = {x | ‖{y|(x, y) ∈ RI∧y ∈ CI}‖ ≤ n} and (≥ n R.C)I = {x | ‖{y|(x, y) ∈
RI ∧ y ∈ CI}‖ ≥ n}.

Kris supported simple number restrictions in a system implementation at the end of the eight-
ies. With only simple number restrictions and no role inclusions, it is possible to use a single
placeholder for an arbitrarily large number of role fillers whose existence required by a number
restriction (see [6] for details). Results on the interaction of number restrictions and role con-
junctions were developed with ALCNR [30; 31]. Simple reasoning with placeholders is no longer
possible with these operators being part of the language. The same holds for number restrictions
in combination with role hierarchies as used in the SH family.

In addition to problems w.r.t. placeholder reasoning in the presence of number restrictions, it
was shown that there is a strong interaction between number restrictions and transitive roles (and
role hierarchies). Allowing number restrictions with transitive roles (or roles which have transitive
subroles) leads to undecidability [69]. As a consequence, so-called simple roles were introduced

2Note that ALCHfR+ does not provide role-value maps as supported by ALCF [60; 58].
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into the SH family. In (qualified) number restrictions, only simple roles are allowed. With this
restriction, inference problems become decidable [69].

Another demand from practical applications was the support for inverse roles (letter I in
language names). In [69] the research on a corresponding role-forming operator ·−1 in the context
of the SH family is summarized. Again, a subtle interaction between number restrictions (or
features), inverse roles as well as transitive roles and role hierarchies (or GCIs) was discovered. If
all these constructs are used, the finite model property does no longer hold. First, due to inverse
roles, the trace technique is no longer applicable, and, second, the application of the blocking
condition introduced in the work about ALCR+ had to be made considerably more complex.
Blocking must be dynamic [69]. This makes the implementation of concrete reasoning systems
much more difficult. An additional source of complexity is that blocking must not occur too early
(thus, the blocking condition involves a test for set equality), and, furthermore, due to infinite
models, the blocking condition involves a pair of two sets of concepts (pairwise blocking [69]).

Although ABoxes were also investigated in the context of ALCNR, work on the SH family of
description logic languages initially considered TBoxes only.

2.6 Number Restrictions, ABoxes, and Concrete Domains

Inspired by work on the SH family and work on ABoxes in ALCNR as well as work on concrete
domains [8], a tableau calculus for ABox reasoning in the language ALCNHR+ was presented in
[47] and concrete domain reasoning was investigated in this context in [54]. The insights of this
work are that in the presence of ABoxes, (i) models are no longer (quasi) trees but forests, (ii)
individuals mentioned in the ABox must not block each another, and (iii) on the concrete domain
part of the language, feature chains cannot be supported (for all kinds of concrete domains) in order
to preserve decidability. A tableau calculus for reasoning about ABoxes in the language SHIQ
(aka ALCQHIR+) with ABoxes was presented shortly afterwards in [70] (but concrete domains
were not considered).

The latter work led to a new version of the Fact system (iFact) for supporting TBoxes
with inverse roles. The above-mentioned research contributions also provided the basis for the
implementation of the Racer reasoner [51], a DL system for TBoxes and ABoxes with concrete
domains for linear inequations over the reals and the cardinals as well as inequations over strings
and booleans. First versions of both systems, iFact and Racer, appeared at the end of the
nineties, i.e. both systems support the language SHIQ 3 (see Figure 2.1 for syntax and semantics).
Both Racer and Fact use the TBox classification techniques developed for Kris [12; 7].

Optimized reasoning techniques for SHIQ w.r.t. blocking [66] were developed for later versions
of the iFact system, and also included in Racer. The idea is to relax the blocking condition for
inverse roles (see above) and retain the subset tests for some parts of the concept set involved in
the blocking test (see [66] for details).

With Racer, optimized reasoning for qualifying number restrictions [50; 48] was investigated.
The work is based on [104].

Due to the continuous semantics extraction and ontology evolution process in BOEMIE, it
is necessary to be able to cope with huge amounts of data, which is continuously increasing,
giving rise to a large number of concept names. Thus, in order to classify huge terminologies
with Racer, a refinement of the techniques introduced in [12; 7] is presented in [49]. Topological
sorting of transformed GCIs to classify concepts in definition order allows to skip the bottom-up
search phase. Optimizations for concrete domains in terms of extended model merging operations
and incremental concrete domain satisfiability testing during a tableau proof are described in [53].
GCI absorption strategies are also investigated with Racer, e.g., absorption of domain and range
restrictions (see also [124] for similar techniques in Fact).

Concrete domain reasoning is still actively explored. Starting with investigation involving new
combination operators ([88]), in [89; 90] it is shown that for specific concrete domains, feature
chains can indeed be allowed in the presence of GCIs (see also [91; 92]). The language investigated
(Q-SHIQ) provides predicates for linear inequalities between variables (but no polynomials). A

3In Racer initially the unique name assumption was always employed, in later versions the assumption could be
activated on demand.
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(a)

Syntax Semantics

Concepts (R ∈ R, S ∈ S , and f, fi ∈ F )

A AI ⊆ ∆I (A is a concept name)
¬C ∆I \ CI

C u D CI ∩ DI

C t D CI ∪ DI

∃R . C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
∀R . C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S . C {a ∈ ∆I | ‖{x | (a, x) ∈ SI , x ∈ CI}‖ ≥ n}
∃≤m S . C {a ∈ ∆I | ‖{x | (a, x) ∈ SI , x ∈ CI}‖ ≤ m}
∃ f1, . . . , fn . P {a ∈ ∆I | ∃ x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I∧

(x1, . . . , xn) ∈ PI}
∀ f1, . . . , fn . P {a ∈ ∆I | ∀ x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I ⇒

(x1, . . . , xn) ∈ PI}
Roles and Features

R RI ⊆ ∆I ×∆I

f fI : ∆I → ∆D (features are partial functions)

‖ · ‖ denotes the cardinality of a set, and n, m ∈ N with n > 1, m > 0.

(b)

Axioms

Syntax Satisfied if

R ∈ T RI = (RI)
+

R v S RI ⊆ SI

C v D CI ⊆ DI

(c)

Assertions (a, b ∈ O , x, xi ∈ OC )

Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

(a, x) : f (aI , α(x)) ∈ fI

(x1, . . . , xn) :P (α(x1), . . . , α(xn)) ∈ PI

a = b aI = bI

a 6= b aI 6= bI

Figure 2.1: Syntax and Semantics of ALCQHIR+ .

more modular approach is described in [93; 83] where the notion of admissibility (see above) is
extended to a so-called ω-admissibility. No system implementation exists at the time of this writing.

Reasoning systems for the SH family are successful because of research on average-case behavior
and appropriate optimization techniques. These systems analyse the language of the input problem
and select appropriate optimizations to answer queries as fast as possible, moreover, they are based
on sound and complete algorithms.

Optimizations for instance retrieval w.r.t. ABoxes is investigated in [52]. An important prop-
erty of the SHIQ language is that the subsumption hierarchy of the TBox part of a knowledge
base (T ,A) is stable w.r.t. additions to the ABox part. Stability means that the subsumption
relation between concepts C and D depends only on axioms in T . This property is exploited in
practical ABox systems such as Racer (and also older systems such as Kris). Multiple knowl-
edge bases (T ,A1), . . . , (T ,Ak) with the same TBox T can be efficiently supported in the sense
that computations for the TBox can be reused for answering queries on any of the ABoxes Ai.
Unfortunately, the stability property is lost with the introduction of cardinalities for concepts or
with the inclusion of so-called nominals, which became necessary in order to further increase the
expressivity of SHIQ for some applications.

2.7 Application Example: Description of Media Objects

An application scenario for automatically derived interpretations of media objects is information
retrieval, for instance, in the semantic web. Interpretations are seen as annotations of media
objects and can be practically represented in RDF or OWL format. In our view, annotations
describe “real-world” objects and events. It is not the goal to merely “classify” images and attach
keywords but to construct a high-level interpretation of the content of a media object. The former
approach has a limited applicability if examples such as Figure 1.1 are considerd and query for,
e.g., media objects with a mailman have to be answered.

A set of media objects with annotations attached to each media object can be made available via
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a web server with standard application server technology. We assume that the web server provides
a query interface (for instance, using the XML-based DIG 2.0 or OWL-QL query language, see
Section 3.2). For readability reasons, however, here we use ABoxes for RDF descriptions, and
employ a mathematical notation for queries. Using the example from Figure 1.1 we sketch how
media interpretations are used to implement an media retrieval system.

mailman1 : Mailman
bicycle1 : Bicycle

mail deliv1 : MailDelivery
(mail deliv1,mailman1) : hasPart

(mail deliv1, bicycle1) : hasPart
(mail deliv1, url 1) : hasURL
(mailman1, url 2) : hasURL

(bicycle1, url 3) : hasURL
(url 1) : ="http://www.img.de/image-1.jpg"

(url 2) : ="http://www.img.de/image-1.jpg#(200,400)/(300/500)"

(url 3) : ="http://www.img.de/image-1.jpg#(100,400)/(150/500)"

garbageman1 : Garbageman
garbageman2 : Garbageman

garbagetruck1 : Garbage Truck
garbage coll1 : Garbage Collection

(garbage coll1, garbageman1) : hasPart
(garbage coll1, garbageman2) : hasPart

(garbage coll1, garbagetruck1) : hasPart
(garbage coll1, url 4) : hasURL

. . .

Figure 2.2: An ABox representing the annotation of the image in Figure 1.1. The predicate =string

stands for a one-place predicate p(x) which is true for x = string.

The example in Figure 2.2 illustrates the main ideas about annotations for media objects using
ABoxes (we omit the TBox for brevity). It would have been possible to more appropriately describe
the role which the parts play in the events (in the sense of case frames). We omit the discussion of
these issues here for brevity, however, and use a “generic” role hasPart. It is also possible to use
another “agggreate” street scene1 for combining the garbage collection and mail delivery events.

With axioms such as
Mailman v Postal Employee

Mailman ≡ Postman

queries can be formulated w.r.t. different vocabularies. Inference services such as query answering
are formally defined in the next chapter. Before describing details of the definition of inference
problems we shortly sketch recent work about modeling uncertainty and vagueness in a description
logic context.

2.8 Additional Representation Techniques

The operators used in the example above are provided by state-of-the-art reasoning systems (see
below for an overview on systems). Some additional operators for concept and roles as well as
additional types of axioms have been investigated in the literature.

2.8.1 Nominals

A nominal denotes a singleton concept. The syntax is {o} and the semantics w.r.t. the interpreta-
tion is {o}I = {oI}. With nominals it is possible to relate all individuals of a certain concept to a
particular individual (e.g., all athletes that come from a particular country called Italy). Nominals
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were first investigated in [110] and are related to cardinality restrictions on concepts [11; 5]. The
first system with support for nominals was Crack [29].

Although nominals in the context of SHIQ were proven to be decidable (see [122]) it took some
time until the first tableau calculus was presented for the language SHOQ(D) [65]. This work
also introduced so-called datatype roles [65], which must not be confused with concrete domain
attributes. Datatype roles map objects from the domain to sets of objects from a concrete domain.
In SHOQ(D) concrete domain predicates apply to (multiple) datatype properties of a single object
of the interpretation domain ∆I . It is not possible to enforce constraints on datatype values of
multiple objects from ∆I . This insight gives rise to corresponding optimization techniques but it
should be noted that some expressivity is lost.

The distinction between TBoxes and ABoxes is no longer required for languages with nominals.
Instead of using C(a) or R(a, b) as ABox assertion one can just write GCIs such as {a} v C or
{a} v ∃R.{b}, respectively.4 Even if ABoxes would be supported by practical systems, it is obvious
that the subsumption relation is not stable for languages with nominals.

Intricate interactions of nominals in SHOQ(D) with inverse roles were investigated in SHOIQ(D)
[67]. Indeed, it was shown that concept satisfiability in SHOIQ(D) is NEXPTIME-complete.

2.8.2 Acyclic Role Axioms

Further results on optimized classification [126; 125] has opened up additional application areas for
ontology languages. And, although much has been achieved by dedicated optimization techniques
developed for the SH family of description logic languages, still there are hard knowledge bases
known (e.g., [25]). New language features with respect to specific kinds of role axioms involving
role composition have been proposed for medical domains. A tableau calculus for the new language
SROIQ(D) is presented in [64] proving that it is decidable. To the best of our knowledge, there
is no system implementation at the time of this writing, that supports all features of this language
which is the most expressive language w.r.t to role statements. On top of SHIQ, SROIQ(D)
allows for more expressivity concerning roles, where besides TBox and ABox, an RBox is introduced
to include role statements, allowing for:

1. Complex role inclusion axioms of the form R ◦ S v R and S ◦ R v R where R is a role and
S is a simple role.

2. Disjoint roles

3. Reflexive, irreflexive and antisymmetric roles

4. Negated role assertions

5. Universal roles

6. Local expressivity to allow concepts of the form ∃R.Self

SROIQ(D) represents the logical basis of OWL 1.1 plus datatypes and datatypes restrictions.

2.8.3 Integration of DLs and rule languages

Decidability is a characteristic that should be preserved by ontology languages and which has
caused expressivity restrictions. This is one of the reasons why rules are gaining interest as an
option to overcome expressivity limitations in DLs. A relevant proposal to extend DL languages
(more specifically, the syntactic variant OWL-DL) with Horn-like rules, is the rule language called
SWRL (Semantic Web Rule Language). SWRL uses OWL DL or OWL Lite as the underlying DL
language to specify a KB.

But the extension of OWL DL with rules is known to be undecidable [98], this is due to the fact
that decidability in OWL DL restricts the language to axioms that expresses only quasi tree-like
structures (we disregard transitive relations). Such a property is lost when adding rules, therefore
in order to add rules and still preserve decidability, a subset of SWRL can be used, the so called
DL-safe rules [98].

4Equality and inequality of individuals can also easily be specified using negation.
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DL-safe rules are applicable only to explicitly introduced individuals and are formally defined
as follows:

Given a set of concept names Nc, a set of abstract and concrete role names NRa
∪ NRc

. A
DL-atom is of the form C(x) or R(x,y), where C ⊆ NC and R ∈ NRa

∪ NRc
. A rule r is safe if

each of its variables occurs in a non-DL-atom in the rule body. In practice this means that rules
are applied to ABox individuals only.

2.8.4 Modeling Uncertainty and Vagueness in a Description Logic Con-
text

Modeling uncertainty in the context of description logics (DL) has been a topic of research since
many years. An overview of such extensions to classical description logics is presented in [21].
The research is oriented to the work of modeling uncertain knowledge on the basis of first-order
structures [100; 23; 55]. The fundamental view of the approaches based on description logics, is
such that, it should also be possible to represent the degree of overlap between concepts (and not
only subsumption or disjunction) through probabilities. Furthermore it should also be possible to
formulate uncertainty about the structure of objects. Initial approaches considered primarily prob-
abilistic knowledge at the conceptual level, this means, at the level of the TBox (e.g., [56]). Also
knowledge representation for single objects and their relations from a probabilistic view were stud-
ied [74], such that structural uncertainty could potentially be modeled. Along with early research
results about decidability of very expressive logics (e.g., OWL DL), proposals for the modeling of
uncertain knowledge were given.
In [44], a probabilistic description logic language was studied, in which it is possible to formulate
in addition to probabilistic knowledge at the conceptual level (i.e., TBox), also assertional prob-
abilistic knowledge (i.e., ABbox) about concepts and role instances. In this language (P-SHOQ)
there is no more a separation between TBox and ABox for the modeling of uncertainty. Its under-
lying reasoning formalism is based on probabilistic lexicographic entailment by [81]. Lexicographic
entailment is based in default logic and makes use of model creation to look for preferred minimal
models, where the minimal verifying (resp., falsifying) model determines entailment (resp., not
entailment). In [44] the work of [81] is extended from a propositional logic to a first-order logic,
furthermore [44] generalizes classical interpretations to probabilistic interpretations by adding a
probability distribution over the abstract domain and by interpreting defaults as statements of high
conditional probability. E.g., in [81] a default like P (bird → fly) ≥ 1 − ε is in [44] a conditional
constraint like l ≤ P (fly|bird) ≤ u. The work of [44] allows to represent probabilistic knowledge
in a description logic language with high expressivity.
It is important to observe that the semantics used in the different approaches do not differ much
(for example w.r.t. [74] and [44]). An approach for the modeling of uncertain structures for a
less expressive language is presented in [38]. However, no specific inference algorithms are known
for this approach. An important step for the practical use of description logics with probabilities
occurred with the integration of Bayesian networks in P-CLASSIC [79], nevertheless very strong
disadvantages were obtained: For number restrictions the supremum limits must be known and
separate Bayesian networks are necessary to consider role fillers. Along with this problem, the
probabilistic dependencies between instances must also be modeled. This problem was overcome
in [78] - however not in the context of description logics but with a frame-based approach, in which
the treatment of default values is given without formal semantics. The main idea in [78] is the view
of considering role fillers as nodes in Bayesian networks which have CPTs (conditional probability
tables) associated to them as generalized number restrictions in the sense of description logics.
This view gives an important basis for our project. Related studies are followed in [106].

Complementary to the P-CLASSIC approach, another approach [131](PTDL) was developed
for probabilistic modeling with the use of first-order structures. In this approach the Bayesian net-
work theory is considered as basis reference for further extensions, instead of (classical) description
logics. The Bayesian network nodes represent function values and an individual is associated to
other nodes through these function values. The approach in [131] avoids some disadvantages of P-
CLASSIC, but it offers minimal expressivity on the side of description logics. In context with very
expressive description logics another approach [34; 35] was presented for the integration of Bayes
networks. Algorithms for deduction over probabilistic first-order structures was developed by Poole
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[107]. Poole observes, that the existing approaches (e.g., [78; 106]) only consider individuals that
are explicitly named. Qualitative probabilistic matching with hierarchical descriptions was also
studied [114] and allows the variation of the level of abstraction. Previous studies about the depen-
dencies between the theories used in databases relates to Datalog and description logics developed
in the artificial intelligence area (the so called description logic programs), influenced the proba-
bilistic approaches implemented for Datalog could also be transferred to probabilistic approaches
on description logics.[102; 84; 85; 103]. Approaches for information retrieval with probabilistic
Datalog are presented in [43; 42]. In this area, work on learning from Datalog-predicates with
uncertainty is also relevant [101].
Modeling vagueness to capture notions of imprecise knowledge has been intensively studied [121;
123; 132], such that existing knowledge representation formalisms like first-order logic can be ex-
tended to represent vague concepts, (e.g., hot, cold) which are not entirely true or false, but rather
have a truth value between true and false. Fuzzy Logic, with a basis in fuzzy set theory, allows
the modelling of vagueness, and its fundamental view is that the classical ideas of satisfiability and
subsumption are modified such that concepts are satisfiable to a certain degree, or two concepts
subsume to a certain degree. In [123] a tableau-like method for computing the degree of subsump-
tion between two concepts in the language ALCfm was presented. In [132] work on extending
description logics with fuzzy features is presented for the language FL−, in which it is possible
to determine subsumption, but not possible to determine whether a individual is an instance of
a concept with a certain probability. In [121], the use of fuzzy logic is highlighted in the con-
text of multimedia information retrieval, in which images are semantically annotated with fuzzy
statements.

Recently, more expressive fuzzy description logics have been investigated [118; 119; 117; 105;
120; 116].



Chapter 3

Inference Services

3.1 Standard Inference Services

In the following we define standard inference services for description logics.

A concept is called consistent (w.r.t. a TBox T ) if there exists a model of C (that is also a
model of T ). An ABox A is consistent (w.r.t. a TBox T ) if A has model I (which is also a model
of T ). A knowledge base (T ,A) is called consistent if there exists a model for A which is also a
model for T . A concept, ABox, or knowledge base that is not consistent is called inconsistent .

A concept D subsumes a concept C (w.r.t. a TBox T ) if CI ⊆ DI for all interpretations I (that
are models of T ). If D subsumes C, then C is said to be subsumed by D.

Besides these basic problems, some additional inference services are provided by description
logic systems. A basic reasoning service is to compute the subsumption relationship between
concept names. This inference is needed to build a hierarchy of concept names w.r.t. specificity.
The problem of computing the most-specific concept names mentioned in T that subsume a certain
concept is known as computing the parents of a concept. The children are the most-general concept
names mentioned in T that are subsumed by a certain concept. We use the name concept ancestors
(concept descendants) for the transitive closure of the parents (children) relation. The computation
of the parents and children of every concept name is also called classification of the TBox. Another
important inference service for practical knowledge representation is to check whether a certain
concept name occcurring in a TBox is inconsistent. Usually, inconsistent concept names are the
consequence of modeling errors. Checking the consistency of all concept names mentioned in a
TBox without computing the parents and children is called a TBox coherence check .

If the description logic supports full negation, consistency and subsumption can be mutually
reduced to each other since D subsumes C (w.r.t. a TBox T ) iff C u ¬D is inconsistent (w.r.t. T )
and C is inconsistent (w.r.t. T ) iff C is subsumed by ⊥ (w.r.t. T ). Consistency of concepts can be
reduced to ABox consistency as follows: A concept C is consistent (w.r.t. a TBox T ) iff the ABox
{a :C} is consistent (w.r.t. T ).

An individual i is an instance of a concept C (w.r.t. a TBox T and an ABox A) iff iI ∈ CI

for all models I (of T and A). For description logics that support full negation for concepts, the
instance problem can be reduced to the problem of deciding if the ABox A ∪ {i :¬C} is inconsistent
(w.r.t. T ). This test is also called instance checking . The most-specific concept names mentioned
in a TBox T that an individual is an instance of are called the direct types of the individual w.r.t. a
knowledge base (T ,A). The direct type inference problem can be reduced to subsequent instance
problems (see e.g. [7] for details).

An ABox A′ is entailed by a TBox T and an ABox A if all models of T and A are also models
of A′. For ABox entailment we write T ∪ A |= A′.

TBox inference services are provided by the systems CEL [2], Fact++
[127], KAON2 [73], Pellet [113], QuOnto [32], and RacerPro [51]. The latter four systems also
support ABox inferences services.

17



18

3.2 Retrieval Inference Services

For practical applications another set of inference services deals with finding individuals in ABoxes
that satisfy certain conditions.

The retrieval inference problem is to find all individuals mentioned in an ABox that are in-
stances of a certain concept C. The set of fillers of a role R for an individual i w.r.t. a knowledge
base (T ,A) is defined as {x | (T ,A) |= (i, x) :R} where (T ,A) |= ax means that all models of T and
A also satisfy ax. The set of roles between two individuals i and j w.r.t. a knowledge base (T ,A)
is defined as {R | (T ,A) |= (i, j) :R}.

In practical systems such as RACER, there are some auxiliary queries supported: retrieval
of all concept names or all individuals mentioned in a knowledge base, retrieval of the set of all
roles, retrieval of role parents and role children (defined analogously to the concept parents and
children, see above), retrieval of the set of individuals in the domain and in the range of a role,
etc. As a distinguishing feature to other systems, which is important for many applications, we
would like to emphasize that RACER supports multiple TBoxes and ABoxes. Assertions can be
added to ABoxes after queries have been answered. In addition, RACER also provides support for
retraction of assertions in particular ABoxes.

In addition to the basic infererence service concept-based instance retrieval, in practical appli-
cations more expressive query languages are required.

A query consists of a head and a body. The head lists variables for which the user would like to
compute bindings. The body consists of query atoms (see below) in which all variables from the
head must be mentioned. If the body contains additional variables, they are seen as existentially
quantified. A query answer is a set of tuples representing bindings for variables mentioned in the
head. A query is written {(X1, . . . , Xn) | atom1, . . . , atom2}.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X, Y )), same-as query
atoms (X = Y ) as well as so-called concrete domain query atoms. The latter are introduced
to provide support for querying the concrete domain part of a knowledge base and will not be
covered in detail here. Complex queries are built from query atoms using boolean constructs for
conjunction (indicated with comma), union (∨) and negation (¬) (note that the latter refer to
atom negation not concept negation and, for instance, negation as failure semantics is assumed
in [129]). In addition, a projection operator is supported in order to reduce the dimensionality of
an intermediate tuple set. This operator is particularly important in combination with negation
(complement). For details see [129].

Answering queries in DL systems goes beyond query answering in relational databases. In
databases, query answering amounts to model checking (a database instance is seen as a model
of the conceptual schema). Query answering w.r.t. TBoxes and ABoxes must take all models
into account, and thus requires deduction. The aim is to define expressive but decidable query
languages. Well known classes of queries such as conjunctive queries and unions of conjunctive
queries are topics of current investigations in this context.

In the literature (e.g., [68; 45; 130]), two different semantics for these kinds of queries are
discussed. In standard conjunctive queries, variables are bound to (possibly anonymous) domain
objects. In so-called grounded conjunctive queries, variables are bound to named domain ob-
jects (object constants). However, in grounded conjunctive queries the standard semantics can be
obtained for so-called tree-shaped queries by using existential restrictions in query atoms.

ABox entailment can be reduced to query answering. An ABox A′ is entailed by a TBox T
and an ABox A if for all assertions α in A′ it holds that the boolean query {() | α} returns true
(the head is empty for boolean queries since we are not interested in variable bindings).

ImageQuery1 := {(X, Y ) | MailDelivery(X), Bicycle(Y ), hasPart(X, Y )}
URLQuery1 := {(X, value(X)) | hasURL(mail deliv1, X)}
URLQuery2 := {(X, value(X)) | hasURL(bicycle1, X)}

Figure 3.1: Query for “a mail delivery with a bicycle” and subsequent queries for retrieving the
URLs w.r.t. the result for ImageQuery1.

A query which might be posed in an information system is shown in Figure 3.1. As a result, the
inference system returns the tuple (mail deliv1, bicycle1), and in order to show the image (and high-
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light the area with the bicycle), the associated URL names can be retrieved (see also Figure 3.1).
The form value(x) returns a unique binding for a variable (in this case a string) if it exists, and
∅ otherwise. In case of URLQuery1 the answer is (url1, "http://www.img.de/image-1.jpg").
The result of URLQuery1 is defined analogously. The URLs can be used to actually retrieve the
image data. Subsequent queries w.r.t. the annotation individuals mail deliv1 and bicycle1 are
certainly possible. We do not discuss details here, however. In summary, it should be clear now,
how annotations with metadata are used in an ontology-based information retrieval system.
a query for a Postal Employee or a Postman will also return the media object shown in Figure 1.1.
In general, all benefits of description logic reasoning carry over to query answering in an information
retrieval system of the kind sketched above.

It is easy to see that annotations such as the one shown in Figure 2.2 can be set up such that
the URLs are tied to the ABox individuals comprising the high-level descriptions. In particular,
one can easily imagine a situation in which there exist multiple interpretations of an image, which
results in multiple annotations being associated with an image. In addition, it is obvious that
a repository of media objects together with their annotations (metadata) gives rise to one or
more ABoxes that are managed by the ontology-based information system. Not so obvious is how
metadata can be automatically derived since manual annotation is too costly in almost all practical
scenarios. The derivation of metadata representing high-level interpretation of media content is
discussed in the next section.

3.3 Nonstandard Inference Services

In addition to standard inference services and retrieval inference services, recently another set of
inference problems have been defined, decision problems have been shown to be decidable, and
practical inference algorithms as well as system implementations have been developed (cf., [128]).
These services are known as non-standard inference services. Non-standard inference services are
useful for building ontologies from examples (learning or bottom-up approach for constructing
ontologies). Note that depending on the ontology language, a solution for the problems mentioned
below need not necessarily exist. Furthermore, algorithms for the problems are known only for
non-expressive description logics in most cases.

• Least-common subsumers (LCS)
[13; 19; 3]
A least-common subsumer represents the commonalities between a set of concepts. For a
given set of concepts C1,...,Cn their least-common subsumer E is defined as follows:

1. Ci v E for all i = 1,...,n and

2. If E′ is a concept satisfying Ci v E′ for all i = 1,...,n then E v E′.

• Most-specific concept [26]
Given a finite set of assertions in ABox A of the form C(a) or r(a, b), where C is a concept
and r is a role name, the concept E represents the most-specific concept of the individual a
in ABox A if it satifies:

1. A |= E(a), and

2. If E′ is a concept satisfying A |= E′(a) then E v E′.

• Rewriting w.r.t. terminologies [20]
The aim is to rewrite a given concept definition C w.r.t. to a terminology T into an equivalent
concept C ′, such that redundancies are removed and its length is reduced. The resulting
concept definition C ′ is easier to understand by humans than the previous definition C.
In an ideal world the objective is a minimal rewriting, such that given an ordering � on
concept definitions, a rewriting C ′ is minimal iff there does not exist a rewriting C ′′ such
that C ′′ � C ′. Obtaining the minimal concept rewriting is computationally non-trivial,
therefore it is sufficient to compute a small but not minimal definition.
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• Approximation [28; 27]
Given a concept description written in a more expressive DL, the aim is to translate the
concept into a less expressive DL with minimal loss of information. Thus, given two DL
languages, e.g. L1 = ALC and L2 = ALE an approximation of a concept description C in
L1 to a concept description in L2 is a concept description D, such that C v D and D is
minimal w.r.t. subsumption.

• Difference [27]
The difference E of two concepts C and D is defined as follows: E uD ≡ C.

• Matching [18; 14; 15; 16; 17; 4]
The aim is to locate similar concepts in one terminology in order to find redundancies,
or similar concepts in different ontologies to help in their integration. Matching is based
on concept patterns. A pattern substitutes the concept terms that appear in a concept
description with concept variables, such concept variables can represent any arbitrary concept
description. Thus, matching is based on finding concepts that have similar patterns. This
is formally defined as follows: given a concept pattern C and a concept term D, find a
substitution σ of the concept variables in C with concept terms such that σ(C) ≡ D.

• Explanation (axiom pinpointing) [77; 75]
To support ontology engineers in finding the causes of errors or inconsistencies in an ontol-
ogy, axiom pinpointing aims to identify those parts of the ontology causing an unintended
ramification (e.g., an ABox inconsistency). In this context, the explanation service should
provide arguments that prove why the previously pinpointed axioms hold for the unintended
ramification.

• Abduction [40]
Abduction aims to derive a set of explanations ∆ for a given set of assertions Γ such that ∆
is consistent w.r.t. to the ontology (T ,A) and satisfies:

1. T ∪ A ∪∆ |= Γ and

2. If ∆′ is an ABox satisfying T ∪ A ∪∆′ |= Γ, then ∆ |= ∆′.

3. Γ 6|= ∆.

3.4 Systems

New versions of the description logic systems discussed in the previous section have been developed.
These systems are Fact++ (for SHOIQ(D)) [127] and RacerPro (at the time of this writing the
latter only provides an approximation for nominals). Fact++ is written in C++ whereas RacerPro
is implemented in CommonLisp. A new Java-based description logic system for SHOIQ(D) (and
OWL DL) is Pellet. As Fact++, Pellet is based on a tableau reasoning algorithm and integrates
various optimization techniques in order to provide for a fast and efficient practical implementation.
New developments also tackle the problem of “repairing” knowledge bases in case an inconsistency
is detected [76]. In addition, with Pellet, optimization techniques, for instance, for nominals
have been investigated [112]. Other description logic systems are described in [95].

Compared to initial approaches for query languages (see [82]), recently, more expressive lan-
guages for instance retrieval have been investigated (conjunctive queries [33; 71; 46]). To the best
of the authors’ knowledge, algorithms for answering conjunctive queries for expressive description
logics such as SHIQ are not known. In practical systems such as Racer implementations for a
restricted form of conjunctive queries is available (variables are bound to individuals mentioned in
the ABox only). Database-inspired optimization techniques for this language in the context of a
tableau prover are presented in [96]. In addition, Racer supports the incremental computation
of result sets for restricted conjunctive queries. The demand for efficient instance retrieval has led
to the development of a new proof technique for languages of the SH family. A transformation
approach using disjunctive Datalog [39], resolution techniques as well as magic-set transformations
to support reasoning for SHIQ is described in [73; 97] with encouraging results. In this context,
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a new system, Kaon2 has demonstrated that techniques from the database community can be
successfully used also for implementing description logic systems although, at the time of this
writing, Kaon2 is a very recent development and not quite as expressive as Fact++, Pellet, or
RacerPro (e.g., w.r.t. datatypes, nominals, large numbers in qualified number restrictions, etc.).
A system supporting the fuzzy description logics f-SHIN [117] is called FIRE.

The synergistic approach of BOEMIE, realized by the integration of different components in
an open architecture can profit from the recent advances in the development of standards for de-
scription logic reasoning systems (such as DIG [24]). Standards have contributed to the fact that
DL systems can be interchanged such that the strength of particular reasoning systems can be ex-
ploited for building practical applications. Since semantic web applications have become interesting
from a business point of view, commercial DL systems have appeared (e.g., CerebraServer from
Cerebra Inc.) and commercial versions of above-mentioned systems became available (e.g., Kaon2
from Ontoprise or RacerPro from Racer-Systems and Franz Inc.).
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[17] Franz Baader and Ralf Küsters. Unification in a description logic with transitive closure of
roles. In Robert Nieuwenhuis and Andrei Voronkov, editors, Proc. of the 8th Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2001), volume 2250 of
Lecture Notes in Computer Science, pages 217–232. Springer, 2001.
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Chapter 4

Optimization Techniques for
Instance Retrieval

Although description logics (DLs) become more and more expressive (e.g., [10]), due to our ex-
periences only for some tasks the expressivity of description logics really comes into play whereas
for many applications, it is also necessary to be able to deal with largely deterministic knowledge
very effectively. Thus, in practice, description logic systems offering high expressivity must also
be able to handle large bulks of data descriptions (ABoxes) which are largely deterministic. Users
expect that DL systems scale w.r.t. these practical needs. In our view there are two kinds of
scalability problems: scalability w.r.t. large sets of data descriptions (data description scalability)
and scalability w.r.t. high expressivity, which might only be important for small parts of the data
descriptions (expressivity scalability).

In the literature, the data description scalability problem has been tackled from different per-
spectives. We see two main approaches, the layered approach and the integrated approach. In the
layered approach the goal is to use databases for storing and accessing data, and exploit descrip-
tion logic ontologies for convenient query formulation. The main idea is to support ontology-based
query translation to relational query languages (SQL, Datalog). See, e.g., [12, 6] (DLDB), [2]
(Instance Store), or [3] (DL-Lite). We notice that these approaches are only applicable if reduced
expressivity does not matter. Despite the most appealing argument of reusing database technol-
ogy (in particular services for persistent data), at the current state of the art it is not clear how
expressivity can be increased to, e.g., SHIQ without losing the applicability of transformation ap-
proaches. Hence, while data description scalability is achieved, it is not clear how to extend these
approaches to achieve expressivity scalability (at least for some parts of the data descriptions).

Tableau-based DL systems are now widely used in practical applications because these systems
are quite successful w.r.t. the expressivity scalability problem. Therefore, for investigating solutions
to both problems, the expressivity and the data description scalability problem, we pursue the
integrated approach that considers query answering with a tableau-based description logic system
augmented with new techniques inspired from database systems. For the time being we ignore the
persistency problem and investigate specific knowledge bases (see below).

We present and analyze the main results we have obtained on how to start solving the scalability
problem with tableau-based prover systems given large sets of data descriptions for a large number
of individuals. Note that we do not discuss query answering speed of a particular system but
investigate the effect of optimization techniques that could be exploited by any (tableau-based)
DL inference system that already exists or might be built. Since DLs are very popular now, and
tableau-based systems have been extensively studied in the literature (see [1] for references), we
assume the reader is familiar tableau-based decision procedures.

In order to investigate the data description scalability problem, we use the Lehigh University
BenchMark (LUBM, [5, 6]). LUBM queries are conjunctive queries referencing concept, role, and
individual names from the TBox. A query language tailored to description logic applications that
can express these queries is described in [11] (the language is called nRQL). Variables are bound
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to individuals mentioned in the ABox.1

Below, LUBM queries 9 and 12 are shown in order to demonstrate LUBM query answering prob-
lems – note that ′www.University0.edu′ is an individual and subOrganizationOf is a transitive
role. Please refer to [5, 6] for more information about the LUBM queries.

Q9 : ans(x, y, z)← Student(x), Faculty(y), Course(z),
advisor(x, y), takesCourse(x, z), teacherOf(y, z)

Q12 : ans(x, y)← Chair(x), Department(y),memberOf(x, y),
subOrganizationOf(y,′ www.University0.edu′)

In order to investigate the data description scalability problem, we used a TBox for LUBM with
inverse and transitive roles as well as domain and range restrictions but no number restrictions,
value restrictions, or disjunctions. Among other axioms, the LUBM TBox contains axioms that
express necessary and sufficient conditions for some concept names. For instance, there is an axiom
Chair

.= Person u ∃headOf.Department. In the evaluation of optimization techniques for query
answering, we consider runtimes for a whole query set (queries 1 to 14 in the LUBM case).

If the queries mentioned above are answered in a naive way by evaluating subqueries in the
sequence of syntactic notation, acceptable answering times can hardly be achieved. Determining all
bindings for a variable (with a so-called generator, see below) is much more costly than verifying
a particular binding (with a tester). Treating the one-place predicates Student, Faculty, and
Course as generators of bindings for corresponding variables results in combinatorial explosion
(cross product computation). Optimization techniques are required that provide for efficient query
answering in the average case.

4.1 Query Optimization

The optimization techniques that we investigated are inspired by database join optimizations,
and exploit the fact that there are few Faculties but many Students in the data descriptions.
Predicates used in queries can be used as generators and as tester. Generators are used to compute
bindings of variables (i.e., individuals that “satisfiy” the predicates) whereas testers (also called
filters) are used to test whether given bindings (i.e., individuals) satisfy the test predicates. A
binary atom can additionally also take the role of a so-called successor generator (or predecessor
generator) if only the variable on the righthand side (or lefthand side) has no binding at the
moment in which the atom is evaluated.

Testers are much more efficient that generators, and query answering times depend on the
selection of generators that produce as few bindings as possible. For instance, in case of query
Q9 from LUBM, the idea is to use Faculty as a generator of bindings for y and then generate
the bindings for z following the role teacherOf . The heuristic applied here is that the average
cardinality of a set of role fillers is rather small. For the given z bindings we apply the predicate
Course as a tester (rather than as a generator as in the naive approach). Given the remaining
bindings for z, bindings for x can be established via the inverse of takesCourse. These x bindings
are then filtered with the tester Student.

If z was not mentioned in the set of variables for which bindings are to be computed, and the
tester Course was not used, there would be no need to generate bindings for z at all. One could
just check for the existence of a takesCourse role filler for bindings w.r.t. x.

In the second example, query Q12, the constant ′www.University0.edu′ is mentioned. Starting
from this individual the inverse of subOrganizationOf is applied as a generator for bindings for y
which are filtered with the tester Department. With the inverse of memberOf , bindings for x are
computed which are then filtered with Chair. Since for the concept Chair sufficient conditions
are declared in the TBox, instance retrieval reasoning is required if Chair is a generator. Thus, it
is advantageous that Chair is applied as a tester (and only instance tests are performed).

For efficiently answering queries, a query execution plan is determined by a cost-based opti-
mization component (c.f., [4, p. 787ff.]), which orders query atoms in such a way that queries
can be answered effectively. For computing a total order relation on query atoms with respect to
a given set of data descriptions (assertions in an ABox), we need information about the number

1In the notation of conjunctive queries used in this paper we assume that different variables may have the same
bindings.
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of instances of concept and role names. An estimate for this information can be computed in a
preprocessing step by considering given data descriptions, or could be obtained by examining the
result set of previously answered queries (we assume that ABox realization is too costly, so this
alternative is ruled out).

4.2 Indexing by Exploiting Told and Taxonomical Informa-
tion

In many practical applications that we encountered, data descriptions often directly indicate of
which concept an individual is an instance. Therefore, in a preprocessing step, it is useful to
compute an index that maps concept names to sets of individuals which are their instances. In a
practical implementation this index will be realized with some form of hash table.

Classifying the TBox yields the set of ancestors for each concept name, and if an individual i
is an instance of a concept name A due to explicit data descriptions, it is also an instance of the
ancestors of A. The index is organized in such a way that retrieving the instances of a concept
A, or one of its ancestors, requires (almost) constant time. The index is particularly useful for
providing bindings of variables if, despite all optimization attemps for deriving query execution
plans, concept names must be used as generators. In addition, the index is used to estimate the
cardinality of concept extensions. The estimates are used to compute an order relation for query
atoms. The smaller the cardinality of a concept or a set of role fillers is assumed to be, the more
priority is given to the query atom. Optimizing LUBM query Q9 with the techniques discussed
above yields the following query execution plan.

Q9′ : ans(x, y, z)← Faculty(y), teacherOf(y, z), Course(z),
advisor−1(y, x), Student(x), takesCourse(x, z)

Using this kind of rewriting, queries can be answered much more efficiently.
If the TBox contains only GCIs of the form A v A1u . . .uAn, i.e., if the TBox forms a hierachy,

the index-based retrieval discussed in this section is complete (see [2]). However, this is not the
case for LUBM. In LUBM, besides domain and range restrictions, axioms are also of the form
A

.= A1 u A2 u . . . u Ak u ∃R1.B1 u . . . u ∃Rm.Bm (actually, m = 1). If sufficient conditions with
exists restrictions are specified, as in the case of Chair, optimization is much more complex. In
LUBM data descriptions, no individual is explicitly declared as a Chair and, therefore, reasoning
is required, which is known to be rather costly. If Chair is used as a generator and not as a tester
such as in the simple query ans(x) ← Chair(x), optimization is even more important. The idea
to optimize instance retrieval is to detect an additional number of obvious instances using further
incomplete tests, and, in addition, to determine obvious non-instances. We first present the latter
technique and continue with the former afterwards.

4.3 Obvious Non-Instances: Exploiting Information from
one Completion

The detection of “obvious” non-instances of a given concept C can be implemented using a model
merging operator defined for so-called individual pseudo models (aka pmodels) as defined in [7].
Since these techniques have already been published, we just sketch the main idea here for the sake
of completeness. The central idea is to compute a pmodel from a completion that is derived by
the tableau prover.

For instance, in the DL ALC a pseudo model for an individual i mentioned in a consistent
initial A-box A w.r.t. a TBox T is defined as follows. Since A is consistent, there exists a set of
completions C of A. Let A′ ∈ C. An individual pseudo model M for an individual i in A is defined
as the tuple 〈MD,M¬D,M∃,M∀〉 w.r.t. A′ and A using the following definition.
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MD = {D | i : D ∈ A′, D is a concept name}
M¬D = {D | i : ¬D ∈ A′, D is a concept name}

M∃ = {R | i : ∃R.C ∈ A′} ∪ {R | (i, j) : R ∈ A}
M∀ = {R | i : ∀R.C ∈ A′}

Note the distinction between the initial A-box A and its completion A′. It is important that all
restrictions for a certain individual are “reflected” in the pmodel. The idea of model merging is that
there is a simple sound but incomplete test for showing that adding the assertion i : ¬C to the ABox
will not lead to a clash (see [7] for details) and, hence, i is not an instance of the query concept C.
The pmodel merging test is: atoms mergable(MS)∧ roles mergable(MS) where atoms mergable
tests for a possible primitive clash between pairs of pseudo models. It is applied to a set of pseudo
models MS and returns false if there exists a pair {M1,M2} ⊆ MS with (MD

1 ∩M¬D
2 ) 6= ∅ or

(M¬D
1 ∩MD

2 ) 6= ∅. Otherwise it returns true.
The algorithm roles mergable tests for a possible role interaction between pairs of pseudo

models. It is applied to a set of pseudo models MS and returns false if there exists a pair
{M1,M2} ⊆ MS with (M∃

1 ∩ M∀
2 ) 6= ∅ or (M∀

1 ∩ M∃
2 ) 6= ∅. Otherwise it returns true. The

reader is referred to [8] for the proof of the soundness of this technique and for further details.
It should be emphasized that the complete set of data structures for a particular completion is

not maintained by a DL reasoner. The pmodels provide for an appropriate excerpt of a completion
needed to determine non-instances.

4.4 Obvious Instances: Exploiting Information from the Pre-
completion

Another central optimization technique to ensure data description scalability as it is required for
LUBM is to find “obvious” instances with minimum effort. Given an initial ABox consistency
test and a completion, one can consider all deterministic restrictions, i.e., one considers only those
completion data structures (from now on called constraints) for which there are no choice points
in the tableau proof (in other words, consider only those constraints that do not have dependency
information attached). These constraints constitute a so-called precompletion.2 Note that in a
precompletion, no restrictions are violated because we assume that the precompletion is computed
from an existing completion.

Given the precompletion constraints, an approximation of the most-specific concept (MSC) of
an individual i is computed as follows (the approximation is called MSC ′). For all constraints
representing role assertions of the form (i, j) : R (or (j, i) : R) add constraints of the form i :
∃R.> (or i : ∃R−1.>). Afterwards, constraints for a certain individual i are collected into a set
{i : C1, . . . , i : Cn}. Then, MSC ′(i) := C1 u . . . u Cn. Now, if MSC ′(i) is subsumed by the query
concept C, then i must be an instance of C. In the case of LUBM many of the assertions lead
to deterministic constraints in the tableau proof which, in turn, results in the fact that for many
instances of a query concept C (e.g., Faculty as in query Q9) the instance problem is decided with
a subsumption test based on the MSC ′ of each individual. Subsumption tests are known to be
fast due to caching and model merging [9]. The more precisely MSC ′(i) approximates MSC(i),
the more often an individual can be determined to be an obvious instance of a query concept. It
might be possible to determine obvious instances by directly considering the precompletion data
structures. However, at this implementation level a presentation would be too detailed. The main
point is that, due to our findings, the crude approximation with MSC ′ suffices to solve many
instance tests in LUBM.

If query atoms are used as testers, in LUBM it is the case that in a large number of cases the
test for obvious non-instances or the test for obvious instances determines the result. However,

2Cardinality measures for concept names, required for determining optimized query execution plans, could be
made more precise if cardinality information was computed by considering a precompletion. However, in the case
of LUBM this did not result in better query execution plans.
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for some individuals i and query concepts C both tests do not determine whether i is an instance
of C (e.g., this is the case for Chair). Since both of these “cheap” tests are incomplete, for some
individuals i a refutational ABox consistency test resulting from adding the claim i : ¬C must be
decided with a sound and complete tableau prover. For some concepts C, the set of candidates is
quite large. Considering the volume of assertions in LUBM (see below for details), it is easy to see
that the refutational ABox consistency test should not start from the initial, unprocessed ABox in
order to ensure scalability.

For large ABoxes and many repetitive instance tests it is a waste of resources to “expand” the
very same initial constraints over and over again. Therefore, the precompletion resulting from the
initial ABox consistency test is used as a starting point for refutational instance tests. The tableau
prover keeps the precompletion in memory. All deterministic constraints are expanded, so if some
constraint is added, only a limited amount of work is to be done. To understand the impact
of refutation-based instance tests on the data description scalability problem, a more low-level
analysis on tableau prover architectures is required.

4.5 Index Structures for Optimizing Tableau Provers

Tableau provers are fast w.r.t. backtracking, blocking, caching and the like. But not fast enough if
applied in a naive way. If a constraint i : ¬C is added to a precompletion, the tableau prover must
be able to very effectively determine related constraints for i that already have been processed.
Rather than using linear search through lists of constraints, index structures are required for bulk
data descriptions.

First of all, it is relatively easy to classify various types of constraints (for exists restrictions,
value restrictions, atomic restrictions, negated atomic restrictions, etc.) and access them effectively
according to their type. We call the corresponding data structure an active record of constraint
sets (one set for each kind of constraint). For implementing a tableau prover, the issue of an
appropriate data structure for these sets arises. Since ABoxes are not models, (dependency-
directed) backtracking cannot be avoided in general. In this case, indexing the set of “relevant”
constraints in order to provide algorithms for checking if an item is an element of a set or list
(element problem) is all but easy. Indexing requires hash tables (or trees), but backtracking
requires either frequent copying of index structures (i.e., hash tables) or frequent insertion and
deletion operations concerning hash tables. Both operations are known to be costly.

Practical experiments on LUBM with the DL system RacerPro (see below for a detailed eval-
uation) indicate that the following approach is advantageous in the average case. For frequent
updates of the search space structures during a tableau proof, we found that simple lists for differ-
ent kinds of constraints are most efficient. Thus, we have an active record of lists of constraints.
New constraints are added to the head of the corresponding list, which is a very fast operation.
During backtracking, the head is chopped off with minimum effort. The list representation is used
if there are few constraints, and the element problem (Is an element in a list?) can be decided
efficiently. However, if these lists of constraints get large, performance decreases due to linear
search. Therefore, if some list from the active record of constraints gets longer than a certain
threshold, the record is restructured and the list elements are entered into an appropriate index
structure (hash tables with individuals as keys). Then, the tableau prover continues with a new
record of empty lists as the active record. The record of lists and associated the hash table are
called a generation. New constraints are added to the new active record of constraints and the
list(s) of the first generation are no longer used. For the element problem the lists in the active
record are examined first (linear search over small lists) and then, in addition, the hash table from
the first generation is searched (almost linear search). If a list from the active record gets too
large again, a new generation is created. Thus, in general we have a sequence of such generations,
which are then considered for the element test in the obvious way. If backtracking occurs, the
lists of the appropriate generation are installed again as the active record of lists. This way of
dealing with the current search state allows for a functional implementation style of the tableau
prover which we prefer for debugging purposes. However, one might also use a destructive way to
manage constraints during backtracking. Obviously, all (deterministic) constraints from the initial
ABox can be stored in a hash table. In any case, the main point here is that tableau provers need
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an individual-based index to efficiently find all constraints in which an individual is involved. In
the evaluation of other optimization techniques (see below) we presuppose that a tableau prover
is equipped with this technology, and thus, we can assume that each refutational instance test is
rather fast.

However, the index structures are copied before new elements are entered because the procedure
is subject to backtracking (backjumping to be more precise). If backjumping occurs, the original
state is restored (with lists and index structures untouched). Due to space restrictions we cannot
go into detail here.

Therefore, if a list of generation n contains a number of elements above a given threshold,
generation n is restructured and represented as a hash table. The reference to the original list is
retained, and the generation counter n is increased by 1. New constraints are then added to this
new generation with empty lists.

In general, there exists a sequence of generations. The nth generation is encoded as lists
(for frequent addition and removal of constraints) whereas the other generations use hash tables
as index structures for efficiently deciding the element problem. In order to solve the element
problem, in the worst case all generations are scanned. If search continues in older generations,
for each generation the element problem can be solved in almost linear time. The deterministic
constraints of the precompletion are stored in a hash table as generation 0. Generation 0 is reused
for subsequent ABox consistency tests with some constraints added.

While generation 0 is never subject to backtracking, it may be the case that in a certain
branch of the tableau search space, many constraints are generated, causing a new generation
m to be created. If backtracking occurs, it might be the case that constraints in generation m
must be retracted. If this is the case, the hash table is no longer used and the retained list
representation is put into operation again (the hash table might be reused later on using a pool
resource). Note that tableau provers do not use chronological backtracking but, usually, some
sort of dependency-directed backtracking, namely backjumping. Thus, almost always we jump
to a state which corresponds to a list whose length is substantially smaller than the generational
threshold for hash table restructuring (see above).

Organizing search is always a tradeoff. Lists are lightweight data structures, i.e., addition of
elements and release of list elements during backtracking causes only a small amount of overhead.
Hash tables for indexing must be considered as heavyweight data structures, addition and removal
are costly operations. Addition is costly because it might involve rehashing as well as collision
avoidance operations, deletion of elements in large hash tables causes unnecessary resources to be
blocked (rehashing might be possible but would be expensive in terms of time resources). The
generational approach has proved to be a good compromise, and corresponding techniques can be
employed in different architectures. The index structures considerably speed up the initial ABox
consistency test. We now turn back to query answering.

4.6 Evaluation of Implemented Techniques

The significance of the optimization techniques introduced in this contribution is analyzed with
the system RacerPro 1.9. RacerPro is freely available for research and educational purposes
(http://www.racer-systems.com). All experiments to support the claims of this chapter can be
verified with the benchmarks found at http://www.sts.tu-harburg.de/∼r.f.moeller/racer/.
The runtimes we present in this section are used to demonstrate the order of magnitude of time
resources that are required for solving inference problems. They allow us to analyze the impact of
the proposed optimization techniques.

An overview of the size of the LUBM benchmarks is given in Figure 4.1. With an increasing
number of universities, there is a linearly increasing number of instances as well as concept and
role assertions. For instance, with 50 universities, 1.000.000 instances have to be handled.

The runtimes for answering all 14 LUBM queries are presented in Figures 4.2 and 4.3 (Sunfire,
Solaris, 32 GB). In Figure 4.2 a version of the LUBM TBox is used that does not cause backtracking
during ABox satisfiability (or consistency) tests . With this kind of benchmark, we can evaluate
storage management and indexing techniques of DL provers. In Figure 4.3 we used a variant of
the TBox that causes backtracking.
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Figure 4.1: Linearly increasing number of individuals, concept assertions and role assertions for
different numbers of universities.

Figure 4.2: Runtimes for deterministic version of LUBM

The time for loading the OWL files is indicated with the curve named “Load”. Mapping
syntactic structures from the OWL file to internal structures for compuational processes is called
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Figure 4.3: Runtimes for non-deterministic version of LUBM

“Preparation”. Times for building index structures for retrieval is indicated with the “Index”
curve. As can be seen in Figures 4.2 and 4.3 loading, preparation, and indexing can be neglected.
Before queries can be answered, the ABox is checked for consistency (see the “Consistency” curve).
As can be expected, if there is no backtracking state-of-the-art provers are very fast (Figure 4.2).
If backtracking is required (Figure 4.3) runtimes for ABox consistency checking increase. Note
that this is not due to garbage collection, as can be seen by comparing the curve named “Cons.
GC” (accumulated runtimes for garbage collection during consistency checking). ABox consistency
checking can be done offline and corresponds to computing index structures in a database system.

Comparing the runtimes for query answering in Figures 4.2 and 4.3 (see the corresponding
curves “Queries”) reveals that backtracking does not influence query answering to a large extent
(at least not in the LUBM case we investigated). The total runtime is indicated with “Total”,
garbage collection time is indicated with the curve “Total GC”. Indeed, garbage collection adds
its share to the runtime.

The results we achieve were possible with dedicated storage management techniques (e.g.,
offered by the implementation language Franz Allegro Common Lisp). With this basis it is possible
to declare that all data structures for storing the LUBM TBox, ABox, and index structures are not
examined by the garbage collector. If this is not done, garbage collection time dominate all other
runtimes to a large extent. Due to the large amount of data in LUBM runtimes being examined
over and over again by the garbage collector, and querying times increase in a superlinear way.
The declaration of data structures as persistent (in the sense of being non-garbage) is provided
after the ABox consistency check.

We take LUBM as a representative for largely deterministic data descriptions that can be found
in practical applications. The investigations reveal that description logic systems can be optimized
to also be able to deal with large bulks of logical descriptions quite effectively. LUBM is in a sense
too simple but the benchmark allows us to study the data description scalability problem.

We argue that the concept rewriting technique is advantageous not only for RacerPro but
also for other tableau-based systems. Future work will investigate optimizations on large ABoxes
and more expressive TBoxes. Our work is based on the thesis that for investigating optimization
techniques for more expressive TBoxes, we first have to ensure scalability for TBoxes such as
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those that we discussed in this chapter. We have shown that also for instance retrieval, scalability
can be achieved with tableau-based reasoners. Note that optimizations, for instance, for qualified
number restrictions are not known for other approaches to query answering (e.g., resolution-based
approaches).
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Chapter 5

Ontology-based Information

Systems

It is now widely accepted that ontologies will play an important role for the next generation
of information systems (ISs). The use of ontologies for ISs will not only enable “better” and
“smarter” retrieval facilities than current ISs based on the predominant relational data model (see
the vision of the Semantic Web, [1]), but also play a key role for achieving data and information
quality (e.g., the data model or data itself can be checked for consistency, redundancy, . . . ),
information interoperability and integration (e.g., formal definition of vocabulary and information
source mappings, . . . ) [2, 3, 4]. Ontologies can play a key role in solving problems raised by
semantic heterogeneity in ISs based on different conceptual and/or logical data models, since
ontologies inherently work on a semantic rather than on a syntactic level and thus allow to encode
and incorporate many of the conceptual domain constraints into the IS machinery [5].

In this chapter we present a formal and implemented generic framework for building Ontology-
Based Information Systems (OBISs). As such, our framework must offer means for 1. the ex-
tensional layer, 2. the intensional layer, and 3. the query component. Our framework is heavily
influenced by Description Logics (DLs), but in addition offers pragmatic solutions for certain prob-
lems we have encountered during the endeavor of realizing OBISs with standard Description Logic
Systems (DL systems). We make these problems transparent by means of a case study: Design
and implementation of an ontology-based GIS on the basis of a description logic system. The
ABox is the extensional component, representing the actual “database” or information store in
terms of so-called assertions. From a first-order logic perspective, the ABox contains closed –
and in most cases even atomic – ground formulas (also called facts). The TBox is also called the
intensional component and contains the terminology, ontology, schema, . . . . From a first-order
logic perspective, it contains closed universal first order sentences (axioms).

We discuss and present the pragmatic solutions for that IS domain in our framework. One
main focus in this case study is on ontology-based query answering. The DLMAPS system realizes
ontology-based spatio-thematic query answering (see below) for city maps [6, 7].

Most retrieval systems nowadays still use rather simple thesaurus-based retrieval models (or
statistical models, which are not considered here at all). However, since the advent of automated
theorem proving, several prototypical “intelligent” retrieval systems have been built [8, 9, 10].

Let us first provide some background. An ontology provides the vocabulary of a conceptual-
ization in a machine-processable and “-understandable” (e.g., logic-based) format such that the
inherent domain constraints and their interrelationships are not lost.1 According to Gruber [11],
an ontology is an explicit formalization of such a conceptualization; formal means that the concep-
tualization is given in a machine-processable language with formal semantics so that the semantics
of the conceptualization is available to the machine. The term semantic information processing
describes this situation quite accurately, although one can claim that information is “semantic” per
se. Ontology-based query answering then means that the (defined) vocabulary from the ontology

1Unlike in the relational model, where there is usually an information loss going from the conceptual to the
logical data model, e.g., cardinality constraints in the ER diagram are no longer found in the table declarations, etc.
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can be used in queries to retrieve the desired information (by means of query answers) from the
extensional IS component. The query answering engine is responsible for computing these answers.

DLs are nowadays an accepted standard for decidable knowledge representation. It can also
be claimed that DLs provide the theoretical foundation for (formal) ontologies, as well as for the
Semantic Web (e.g., the Ontology Web Language, OWL is inspired by DLs, and OWL DL is
somehow just another syntax for the DL called SHOIN (Dn)).

It is likely that DL systems (FaCT++, RacerPro, . . . ), and DL-based technology in general,
will play an increasingly important role for building the next generation of these deductive ontology-
based information systems (as well as for the Semantic Web). Still, the number of implemented
OBIS is rather small, so there is not much experience available. This is not surprising, since current
DL systems still have a long way to go. Let us discuss some problems with todays DL technology.

The RacerPro DL system [12] implements the very expressive DL
ALCQHIR+(D−), also known as SHIQ(D−) [13, 14], offers ABoxes as well as concrete domains
(“datatypes”). RacerPro can be called an empirically successful system, since it is widely used
and commercially distributed by the start-up company Racer Systems. In the rest of the paper we
will primarily use and consider RacerPro as our standard DL system.

5.1 Problem Identification

We have identified 7 main problems P1–P7 which contribute to the difficulties encountered re-
garding DL system usage for OBIS:

On the one hand, DLs themselves have their deficiencies and are thus not a panacea for ar-
bitrary information modeling and representation. DLs are very well suited for the representation
of (and reasoning about) semi-structured (or even unknown/indeterminate) information [15], but
things become more complicated if, say, n-ary relationships or special “non abstract” domains
such as space are considered (→ P1: “DL applicability problem”). Then, either non-standard DLs
or complicated logical encodings are needed. For these non-standard DLs, no working systems
exist, and complicated logical encodings are likely to decrease the performance and complicate the
information handling and maintenance.

Moreover, due to the the well-known “expressivity vs. complexity” tradeoff, reasoning with
expressive DLs can be intractable. Thus, data scalability is not easy to achieve for expressive DLs.
On the other hand, there exist inexpressive ontology languages like RDF(S) [16, 17, 18] which
scale well w.r.t. the data (obviously, scalability must be achieved for the Semantic Web), but these
approaches fail to scale w.r.t. expressivity. We believe that a generic framework for OBIS building
should be parameterizable in both dimensions (→ P2: “data and expressivity scalability problem”)
[19, 20, 21].

On the other hand, DL systems somehow live in their own realm and are thus not really
interoperable with the rest of the more conventional IS infrastructure, e.g., existing relational
database technology (→ P3: “interoperability and middleware problem”). However, due to the
inherent intellectual complexity and since building a DL system is a non-trivial task, existing DL
systems must be reused and exploited as componentware if possible.

Even though “semantic middleware standards” such as DIG exist [22], it can be observed that
for building practical OBIS significant API functionality is still missing, only part of which is cur-
rently about to be standardized in DIG2.0 [23], e.g., cursor-based incremental query answering as
in nRQL [24, 25], access to told information or the concrete domain.2 Compared with the APIs
found in relational database management systems (RDMSs), still whole areas of API functional-
ity are uncovered, e.g., functionality regarding the “physical schema” or storage layer of a DLs
(definition of index structures, persistency,→ P4: “missing storage layer functionality problem”).
Currently it seems unlikely that any consensus among the designers of DLs can be reached regard-
ing these issues. It is interesting to observe that DLs are currently mainly perceived as systems
on the knowledge level [26], but not so much as systems on the symbol resp. implementation level,
unlike RDMSs which provide a clear more-or-less standardized account at the symbol level. Tun-
ing RDMSs on that level is daily bread and butter for many IT professionals. We believe that

2Still, the client side DIG implementations have not reached a level of matureness as more conventional middle-
ware, e.g., Corba, which also addresses issues such as caching, load balancing, security, etc.



51

in RDMSs the distinction between symbol and knowledge level is much more blurred, since the
relational model is somehow as much a logical as a physical data model, unlike DLs.

Moreover, as for RDMSs, plug-in mechanisms or “stored procedures” would be beneficial in
order to open-up the server architectures for applications as well as to achieve high bandwidth
communication. Extensibility and Openness, especially for the storage resp. physical layer, is still
not achieved for standard DL systems (→ P5: “extensibility problem”, see also [6, 23]).

Only recently issues such as persistency and powerful query languages (QLs) have been consid-
ered and incorporated into DL systems (→ P6: “QL and persistency problem”) [27, 28, 29, 30].
However, these are indispensable for OBISs.

Even if the logic utilized for the ontology / knowledge base would in principle permit data
scalability and “good performance”, nowadays it is still sometimes the case that standard DL
systems implementing very expressive DLs don’t perform as good as dedicated provers for small
and inexpressive DLs. This is not surprising, since in specialized provers more effort can be put in
implementing highly specific optimizations. This effort would not necessarily be good invested for
provers which implement more expressive DLs, since these have to cover a much broader language
spectrum sufficiently performant. With more and more dedicated optimizations whose applicability
must be automatically detected (which can be very complicated as well), software maintenance of
the DL system becomes a serious problem.

This would imply that, for a given inference problem, not only a DL reasoner with sufficient ex-
pressivity should be selected, but moreover also a (optimized) DL reasoner whose upper complexity
bound tightly matches the required expressivity (see also [31]).

From a knowledge level perspective, most expressive DL systems only have to implement one
core inference algorithm (e.g., an ABox satisfiability checker), since the other inference problems
are reducible to that core algorithm. However, viewed from the symbol / implementation level, this
perspective is inadequate, since nowadays highly dedicated optimized inference algorithms exists,
all of which have to be implemented in order to get a working system in practice. These procedures
are sometimes even more complex than tableau calculi and thus deserve a clean separation from
other parts of the system code in order to achieve maintainability (→ P7: “Identification of main-
tainable software abstractions in order to cope with the extensibility and adaptability problem”).
A generic framework for OBIS building should account for these aspects.

Our solution for these problems is to provide many small and specific provers for specific
problems instead of one big prover. However, a big number of small provers can only be more
maintainable if appropriate software abstractions are provided. Our framework thus offers domain
specific languages (DSLs) for prover definition that also account for reuse and adaptability of prover
components, e.g. tableaux rules. These DSLs make the prover definitions nearly as concise and
comprehensible as the mathematical tableaux calculi.

To sum up, the identified problems make it nowadays still hard to use DL systems simply as a
“smarter” RDMS replacement for industrial strength ISs.3

Whereas for RDMSs, the IS design problem nowadays no more lies within the individual com-
ponents resp. layers, but solely in the combination and interoperability of the layers, it is justified
to say that for DL systems the problems still primarily reside within the layers. Thus, a broad “3
Tier Architecture” is not of much help in this setting if one considers architectures for OBIS.

5.2 Layered vs. Integrated Approaches for OBIS

Why not simply use an RDMS for the storage layer of such an OBIS? Ontology-based query answer-
ing requires inference. From the point of view of the RDMS, the inference algorithms then have
to reside in the application layer (of the “3 Tier Architecture”).4 Which parts to access from the
database can only be determined at runtime of the inference algorithm. Thus, queries over queries
would have to be posed to the RDMS; moreover, the index structures of the RDMS will probably

3Even if – in most cases – this would probably result in a miss-use of the DL system we nevertheless still think
that a DL system should perform as well as an RDMS for “dumb bulk data”, otherwise the technology will not be
commonly accepted in the long run.

4It is unrealistic to assume that a system as complex as a tableaux reasoner can be realized as a stored procedure
within a RDMS.
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not be of great help. Due to the layer separation, there is a lot of communication overhead. Obvi-
ously, it would be better if the computation and integration of required sub-results could be done
in the RDMS itself by means of a single query. However, again this is only possible for inexpressive
DLs . For example, in the QuOnto system, ontology-based query answering can be performed by
the RDMS query answering engine solely, since the inexpressivity of the exploited DL makes it
possible to expand the original query in such a way that it takes the ontology vocabulary / TBox
into account [32]. Thus, no real ABox retrieval algorithms are needed. So, this so-called layered
approach for OBIS has some drawbacks since it does not account for expressivity scalability.

We therefore pursue mainly an truly integrated approach for OBIS, although the implementation
burden is very high then. Truly integrated means that inference algorithms and query evaluation
engines are within one single component and share many data and index structures. However, our
framework also accounts for the layered approach.

As a running OBIS example domain we use the domain of digital city maps. In this IS domain
of digital city maps, we must

1. pragmatically solve the map representation problem, especially regarding the spatial and
thematic aspects of the map objects, and

2. provide an expressive spatio-thematic query language (QL) which supports ontology-based
query answering (w.r.t a “city map background ontology”). This QL must be able to address
spatial as well as thematic aspects of the map objects.

This chapter provides the following contributions:

• The main contribution of this chapter is the description of the framework and of its conceptual
and software-technical abstractions. Thus, this framework contains abstractions and working
implementations to realize 1. the extensional component, 2. the intensional component, 3.
the query language component of an OBIS. We describe how the identified problems P1–P7
are tackled.

It will become clear that for all three areas, highly flexible solutions are provided: for 1.,
the so-called substrate data model; for 2., the substrate query language (SuQL) framework ;
and for 3., the MiDeLoRa toolkit. The flexibility of these abstractions is demonstrated
empirically by means of the instantiations (DLMAPS, nRQL, SnRQL, see below).

• Due to the intellectual inherent complexity of the field, we believe that DL system use cases
/ application studies are valuable per se. In the DLMAPS domain, the situation is even
more complicated, due to the applicability problem for DLs, which mainly concerns the
representation of (and reasoning about) the spatial aspects of the maps (which we will call
the “spatial representation problem” in the following).

Spatial representations are, in principle, possible with expressive spatial concrete domains
(CDs) [33, 34] or specialized DLs [35] or spatial modal logics [36]. However, many of these
logics are either undecidable, and if they are, then no mature DL system supporting these
non-standard DLs exist. In principle, our framework allows for the definition of tableau
provers for such specialized languages.

However, in this paper we focus on more pragmatic representations (see below) which incor-
porate RacerPro. We will demonstrate various representation options for the city maps
and thus document what can be done with nowadays available standard DLs (or Semantic
Web) technology such as RacerPro in such a difficult terrain.

• Moreover, we present some important optimization techniques which are critical for ontology
query answering engines.

• Finally, as part of the overall framework, we present some details of the MiDeLoRa 5 toolkit
for DL system crafting. It provides high-level domain specific languages and employs fresh
architectural ideas.

As for the other software abstractions and techniques, we claim that these can be useful for
other developers of related systems.

5Michael’s Description Logic Reasoner
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Somehow our approach is related to JENA [37], but we have a somewhat broader scope, and
the underlying knowledge resp. data models are more general than RDF(S): In contrast to other
frameworks, we support (qualitative and quantitative) spatial representations, ABoxes, RDF(S)-
like structures, etc. The framework contains a high performance substrate query answering engine
which still has some unique features which are not found in other ontology query answering engines
(see below). Moreover, especially with MiDeLoRa, our research is also in a line of research in
software engineering on so-called (software) product families, which is currently a “hot topic”.

We first describe the overall framework and explain how the identified problems P1–P7 are
addressed. Then comes the DLMAPS case studies: We first describe the IS domain of digital
city maps, the concrete map data we use, as well as the idea of spatio-thematic ontology-based
query answering on such city maps. We discuss the “spatial representation problem” and present
4 representation options for the extensional component in our framework. Next we describe the
substrate QL framework SuQL, which plays a crucial role here. The nRQL ABox query language
is discussed as a concrete instantiation resp. SuQL specialization. Especially for the DLMAPS
system, we show how nRQL can be extended by spatial atoms so to become a spatio-thematic
QL. We then describe the core features of the SuQL query answering engine and also present
some indispensable optimizations and dicuss their effectiveness. Next we present the novel ideas
materialized in the MiDeLoRa toolkit.

5.3 An Architectural Framework for OBIS Building

Our framework for OBIS building is designed and implemented to address the problems P1 - P7
as follows:

P1, “DL applicability problem” In the DLMAPS domain, there is a need to represent the
spatial aspects of the maps, and for other IS domains, there may be other informational aspects
which cannot be represented in a single representational framework (e.g., a DL ABox). Regarding
the spatial aspects of map objects, their representation is difficult or impossible with a standard
DL ABox (see below). Thus, our framework is based on a generalized graph-based data model,
called the substrate data model. Substrates offer more flexibility, than, say RDF(S) graphs or
ABoxes, since they can also represent, for example, digital vector maps (see below). Substrates
thus provide generic extensional representation means. A DL KB (ABox+TBox) can be seen as
a substrate with an associated background theory (see below). Moreover, substrates can be hybrid
an thus allow for information resp. representation layering. A DL ABox can be layered with an
arbitrary substrate; thus, the DL applicability problem can be defused pragmatically.

A substrate is an instance of a Clos (Common Lisp Object System, [38]) class, which can
exploit inheritance. A rich set of substrate classes is already provided. On the one hand, a
substrate is a representation on the knowledge level, but also – and much more importantly in
this work – a structure on the symbol / implementation level. It can provide dedicated index
structures, etc.

P2, “Data and Expressivity Scalability Problem” DLs thenselves form a family of rep-
resentation languages. Thus, DLs themselves offer, in principle, expressivity scalability (given they
are applicable for the considered IS domain). Data scalability can nowadays be achieved for simpler
DLs (or RDF(S), . . . ). In order to achieve data scalability, not only the knowledge, but also the
symbol level must be considered, e.g., a database substrate can be used if the extensional data is
extensive. Thus, the framework accounts for data scalability.

It also accounts for expressivity scalability, since MiDeLoRa allows for the definition of spe-
cialized provers. Provers are conceived as regions in the three-dimensional so-called MiDeLoRa
space. The MiDeLoRa space has the structure S × L × T : The S axis is the substrate class for
which the prover is defined; on the L axis, the (DL) language supported by the prover is specified,
and the T coordinate specifies the task class of the prover (among others, T contains the set of
DL standard inference problems [39]). Since substrates, languages and tasks are modeled as Clos
classes and inheritance is exploited, a MiDeLoRa prover which is defined for a certain (S, L, T )
point basically covers a region in the MiDeLoRa space. This region-covering of the space can
be organized very flexible, since Clos offers so-called multi-methods which exploit late binding /
polymorphism according to all three arguments (S, L, T ). Although this is a simple idea, it still
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makes the approach unique.
P3, “Interoperability and Middleware Problem” The substrate data model can provide

an abstraction layer on top of which the OBIS can be built. This abstraction layer can for example
shield the client code of the OBIS from details in the API of, different external standard DL
systems, if such DL systems are used as componentware (see also the Design Patterns Adapter,
Bridge and Facade in [40]). Moreover, the substrate can offer caching mechanisms, abstract from
remote vs. local API procedure calls, etc. In short, a substrate can also play the role of a mediator
and/or semantic middleware.

In principle, since a substrate is a very general graph based data model, the (remote) compo-
nentware system must not even be a DL system, but could also be an RDF(S) triple store, an
RDMS on which a graph-like view is established, etc.

Since substrates are Clos classes utilizing inheritance that implement interfaces, additional
services can easily be offered by means of substrate sub-classing. For example, a “RacerPro
substrate” class will offer unique RacerPro services in addition to the more general methods /
services inherited from its more generic “DL system substrate” superclass.

P4, “Missing Storage Layer Functionality Problem” Given that a substrate is not only
a conceptual data model (an abstract data type on the knowledge level) but also implemented as
a Clos class, it is obvious that, by means of programming, the framework offers the flexibility
to address and parameterize the storage layer. For example, in the SBox substrate class we have
implemented spatial index structures. It is clear that API functions for controlling such highly
specific aspects in the physical layer will never become part of any future DIG proposal, since such
a list of “add ons” would be open ended.

P5, “Extensibility Problem” Extensibility and openness of the architecture is obviously
realized (although white box reuse – reuse in frameworks – has been identified as problematic in
some cases; however, it is also known that domain specific languages can resolve some of these
problems [41]).

P6, “QL and Persistency Problem” Obviously, a QL is needed in order to retrieve the
information back from the substrate. The framework offers a so-called substrate QL SuQL which
is as open, extensible and parameterizable as the rest of the framework, but still decidable. Basi-
cally, the QL framework offers unions of (grounded) conjunctive queries. Extensibility is granted
since specialized query atom classes can be defined for substrate classes. For example, for a map
substrate, query atoms can be defined which check whether certain qualitative spatial relationships
hold in a geometric representation of the map. We will demonstrate that the SuQL framework
is sufficiently expressive and flexible for the implementation of a pragmatic spatio-thematic QL as
well as for a pragmatic ABox query language (nRQL).

A substrate can also be made persistent in a file or a in a relational database (such as mySQL).
The required Common Lisp/Clos serializers have been implemented by the authors.

P7, “Identification of maintainable software abstractions problem” We already de-
scribed the three core notions of our OBIS framework informally: 1. the substrate data model as
a flexible extensional component, 2. the substrate QL framework, and 3. the MiDeLoRa toolkit.

But how do we define and extend these abstractions? Obviously, their implementation (as a
Clos class) can be very hard. Thus, our framework already supplies a rich set of ready-to-use
of-the-shelf classes (substrates, query language atoms, MiDeLoRa provers for standard DLs). We
claim that in many cases our framework will already provide the required software building blocks
(“components”); in many cases, only slight adjustments will be needed. Due to its openness and
adjustability this is often possible.

In case something really new must be defined, e.g. a specialized prover or substrate class,
the implementor must not start from scratch, since the framework is designed for maximal reuse.
For example, if a new tableau prover for a certain DL shall be defined, then, even if the required
prover is not already available and no existing prover can be adjusted, then possibly the required
standard tableaux rules are available. As provers, tableaux rules are provided as abstractions in
the framework, and there is a rich library defined. As already mentioned, DSLs are used for their
definition.

The overall architecture of the framework is depicted in Fig. 5.1. The depicted sub-
systems will be discussed in the following. Please note that parts of this framework (namely the
parts required for nRQL) have been moved into into the RacerPro DL system. This effectively
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Figure 5.1: Overall Architecture of the Framework

replaces the TCP/IP-based remote procedure (function) calls shown in Fig. 5.1 with local pro-
cedure (function) calls. From a software perspective, the resulting architecture is still layered.
In contrast, tight integration based on structure and software abstraction sharing is indicated by
means of non-empty subsystem boundary / region intersections in that diagram.

5.3.1 The Substrate Data Model and Substrate Query Language at a

Glance

Formally, we base our framework on the semi-structured graph-based substrate data model which
provides the required flexibility and extensibility for the extensional component. As explained, the
substrate model serves both as a mediator and abstraction layer (“semantic middle ware”), enables
us to specify and build extensional representation layers for spatial and/or hybrid representations
(e.g., for the DLMAPS system), etc. Substrates are general enough to encompass ABoxes and
RDF(S) graphs. As such, it is not surprising that a substrate is defined as a very general notion:

Definition 1 A substrate is an edge- and node-labeled directed graph
(V, E, LV , LE,LV ,LE), with V being the set of substrate nodes, and E being a set of substrate
edges. The node labeling function LV : V → LV maps nodes to descriptions in an appropriate
node description language LV , and likewise for LE : E → LE , where LE is an edge description
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language. �

The languages LV and LE are not fixed and can be seen as (variable-free denoted) subsets
of first-order predicate logic, FOPL (e.g., modal logic, description logic, propositional logic, . . . ).
Using this FOPL perspective, V is a set of constant symbols, and LV and LE are indexing functions
into sets of closed FOPL formulas.

Let us illustrate this with an example. Consider an ALC ABox A. We can consider this
ABox as a substrate S = (V, E, LV , LE,LV ,LE) if we identify V with the ABox individuals,
V = inds(A), E with the set of pairs of individuals mentioned as arguments in role assertions,
E = { (i, j) | (i, j) : R ∈ A}, with LV = ALC, and LE = (NR,⊓) would be the set of ALC role
names NR closed under conjunction, such that C ∈ LV (i) iff i : C ∈ A, and R1 ⊓ · · · ⊓ Rn =
LE((i, j)) iff {R1, . . . , Rn | Ri ∈ NR, (i, j) : Ri ∈ A}. From the FOPL perspective, this would
simply result in a set of formulas of the form {Φ(C)x←i, . . . , R1(i, j), . . . , Rn(i, j)}, where Φ(C)
returns the FOPL translation of the concept C (a first order formula with one free variable, x, e.g.
Φ(∃R.C) = ∃yR(x, y) ∧ C(y), [39]). However, for many substrates, the corresponding FOPL set
will simply contain ground atoms (facts).

An associated TBox of an ABox manifests itself in additional FOPL sentences. Formally, we
would simply define a substrate with a background theory (having an additional set of closed FOPL
axioms). This should be clear. We will give an example for such a background theory when we
discuss the RCC substrate. However, additional sets of axioms can also assumed to be intrinsically
encoded into the substrate structure as well, without explicit representation as sentences, see below.

To get spatial representations resp. substrate, we simply state that a substrate can also encode
geometric / spatial structures by FOPL means, as needed. For the DLMAPS system, we assume
that the nodes are instances of spatial datatype (polygons, points, lines, . . . ). Such a geometric
substrate is called an SBox (Space Box). We simply state here that the geometry of such spatial
nodes can be described using an appropriate (FOPL-based) geometry description language. It does
not add to the message of this chapter to go into formal definitions here.

Unlike for an ABox, it is reasonable to assume for an SBox that its logical theory is complete,
i.e., that the Closed World Assumption (CWA) is used. Then, there is neither underspecified nor
indeterminate information in an SBox; it simply represents “spatial data”. Viewed as a set of
FOPL ground atoms, the SBox is basically isomorphic to its (unique minimal) Herbrand model
then. On the declarative knowledge / sentence level we can simply assume that the well-known
Clark completion axioms are present [42], and that their impact will be “intrinsicly” encoded into
the inference procedures defined for an SBox, on the symbol level.

Note that, since we simply rely on standard FOPL semantics, everything is well defined, since
we simply inherit the standard FOPL notions of satisfiability, entailment (“|=”), etc. We need the
entailment relationship for the SuQL.

Some words in defense of the model: We do not claim that this data model is interesting
from a theoretical perspective. Its generic character is of course also its weakness. Thus, it must
be specifically instantiated (e.g., ABox or SBox). However, the given definition enables a formal
specification of the semantics of the framework, and within the framework it serves as a very useful
abstraction, as will become clear.

The data model is also somehow inspired by the work on E-Connections [43] or the tableaux
data structure [13], as well as by RDF(S). However, it would be inappropriate to claim that this
is an E-Connection application, since we are basically just using labels defined by means of first
order logic, and similar knowledge models are used in AI since the 1960s.

Note also that, from the implementation / symbol-level perspective, the substrate perspective
of an ABox can be “virtual”, i.e., the API functions of the substrate mediation layer can just pass
through to the API functions of the ABox reasoner, e.g. RacerPro, that is maintaining the ABox
physically (or an RDF(S) triple store, . . . ). In principle, such a “virtual RacerPro substrate”
would be sufficient for the nRQL implementation. However, in order to maximize parallelism of
query answering the RacerPro substrate is not completely virtual, since it implements dedicated
caches and index structures needed for performant query answering on RacerPro ABoxes (see
below).

A substrate is implemented as a Clos class. Since Clos offers multiple inheritance, it becomes
possible to define combinations of substrates. For example, MiDeLoRa offers so-called spatial
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ABoxes. This class mentions both the class ABox as well as the class SBox as superclasses. As
a result, nodes in such spatial ABoxes are, on the one hand, ABox individuals, and instances of
spatial data types on the other hand [6]. In case of MiDeLoRa, this eliminates the need for a
hybrid representation in favor of an integrated representation.

In the BOEMIE project, an information system about sports events such as, e.g., marathon
events in large cities, are considered as an example application. For such an information system
which involves queries w.r.t. spatial, temporal and terminological information it is appropriate to
provide specialized query language as well as specialized reasoners.

The SuQL framework enables the creation of specialized substrate QLs, tailored for special
substrate classes (ABoxes, SBoxes, . . . ). The SuQL framework is based on the general notion
of (ground) query atom entailment. All what matters here is that a notion of logical entailment
(|=) between a substrate S and a query atom for S is defined and decidable. Query atoms are,
conceptually slightly simplified, again FOPL formulas with one resp. two free FOPL variables (we
use x and y in the remaining paper for these). We talk of unary resp. binary query atoms. Thus,
given the unary atom P and binary atom Q, i, j ∈ V , then S |= Px←i and S |= Qx←i,y←j must be
well-defined and decidable. That’s all.

The SuQL framework provides a great deal of flexibility, extensibility and adaptability, since
specialized query atoms (resp. P and Q) can be tailored for specific substrate classes, e.g., if
S is an SBox, then P, Q can be spatial predicates (e.g., RCC predicates, see below). If only a
notion of entailment is defined and decidable for these specialized atoms, then the substrate query
answering engine immediately supports the evaluation of these atoms. Of course, in many cases
dedicated optimization and index structures are needed for efficient query evaluation. Specific
index structures must be provided by the substrate. Again, the cost-based SuQL query optimizer
is easily configurable by means of method overwriting.

Since the substrate as well as the query atoms are instances of Clos classes, the |= relation is im-
plemented as a (binary) Clos multi-method
substrate-entails-atom-p. This is a simple idea, but it demonstrates the ingenious power of
Clos which simplifies and conceptually clarifies the design of the framework tremendously. In the
definition of such a substrate-entails-atom-p method, also inherently encoded axioms can be
taken into account, simply by means of programming. For example, the Clark completion axioms
must not be explicitly present as sentences. They are only needed for a description of the seman-
tics on the knowledge level, but not on the symbol level. However, in many cases, a declarative
inference algorithm will be called, e.g. a MiDeLoRa prover or a RacerPro API function.

However, the previous statements are not meant to reopen the “declarative vs. procedural”
debate. Instead, our framework shows that both approaches can live together well, provided an
embedding into a uniform, formally profound framework such as ours can be given.

5.4 DLMAPS: Ontology-Based Queries to City Maps

We now describe the digital city maps scenario. As mentioned, we are primarily using RacerPro
as our standard DL component reasoner, but other setups are possible as well (some of these are
described in the following).

5.4.1 The DISK Data

We are using digital vector maps from the city of Hamburg provided by the land surveying office
(“Amt für Geoinformation und Vermessungswesen Hamburg”); these maps are called the DISK
(“Digitale Stadtkarte”). Part of the DISK is visualized by the Map Viewer component of our
system in Fig. 5.2. Each map object (also called geographic feature) is thematically annotated. The
basic thematic annotations (TAs) have been established by the land surveying office itself. These
TAs say something about the “theme” or semantics of the map objects. Simple concept names
such as “green area”, “meadow”, “public park”, “lake” are used. A few hundred TAs are used and
documented in a so-called thematic dictionary (TD), which is GIS-typically organized in so-called
(thematic) layers (e.g., one layer for infrastructure, one for vegetation, etc.).

Sometimes, only highly specific TAs are available, such as “Cemetery for non Christians”, and
generalizing common sense vocabulary, e.g. “Cemetery”, is missing. This is unfortunate, since it
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Figure 5.2: The Map Viewer of the DLMAPS System

prevents the intuitive usage of common sense natural language vocabulary for query formulation,
especially for non casual users. We have repaired this defect by adding a background ontology (in
the form of a TBox) providing generalizing TAs by means of taxonomic relationships.

On the other hand, defined concepts (“if and only if”) can be added and exploited to automat-
ically enrich the given basic annotations. Thus, we might define our own needed TA “public park
containing a lake” as a “park which is public which contains a lake” with a TBox axioms such as

public park containing a lake≡̇park ⊓ public⊓ ∃contains.lake

or
bird sanctuary park≡̇park ⊓ ∀contains.¬building

and we might want to retrieve all instances of these concepts. This means that such instances
must be recognized automatically, and this is what ontology-based query answering is all about.
Obviously, inference is required to obtain these instances, since there are no known instances of
public park containing a lake. For simple queries, simple instance retrieval queries might be
sufficient. However, for reasons of expressivity and because we want to retrieve constellations6 of
map objects a QL with variables is needed whose answer bindings resp. “answer tuples” can be
displayed meaningfully and visualized as in Fig. 5.3.

A definition such as public park containing a lake refers to thematic as well as to spatial
aspects of the map objects:

Thematic aspects: the name of the park, that the park is public, the amount of water contained
in the lake, etc.

Spatial aspects: the spatial attributes such as the area of the park (or lake), the concrete shape,
qualitative spatial relationship such as “contain”, quantitative (metric) spatial relationships
such as the distance between two objects, etc.

6We use the term “constellation” to stress that a certain spatial arrangement of map objects is requested with
a query.
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Figure 5.3: The Query Inspector of the DLMAPS System

We use the following terminology: a thematic concept refers only to thematic aspects, whereas
a spatial concept refers solely to spatial aspects. A spatio-thematic concept refers to both. In the
same sense we are using the terminology thematic, spatial and spatio-thematic queries. A strict
separation might be difficult sometimes.

Thus, there are different thematic and spatial aspects one would like to represent in the exten-
sional component and subsequently query with a spatial QL. Since the concrete geometry is given
in the map, the spatial aspects of the map objects are in principle intrinsically represented and
available. This mainly concerns the spatial relationships which are depicted in the map. However,
also spatial attributes such as the area or length of a map can in principle be derived ( computed
from the geometry, although this will not be very accurate. A function that exploits the map
geometry to compute or verify a certain spatial aspect (for example, if a certain qualitative re-
lationship holds between two map objects) is called an inspection method in the following. This
notion is defined sufficiently precise as follows:

Definition 2 (Inspection Method) Let S be an SBox, and P be a spatial FOPL formula with-
out free variables (for example, an RCC ground atom such as EC(a, b), where a, b ∈ V ). An
inspection method is a (geometric) algorithm which exploits the geometry of S to decide whether
S |= P holds. �

It is obvious that qualitative spatial descriptions are of great importance. On the one hand,
they are needed for the definitions of concepts in the TBox such as “public park containing a
lake”. On the other hand, they are needed in the spatio-thematic QL (“retrieve all public parks
containing a lake”). A popular and well-known set of qualitative spatial relationships is given by
the RCC8 relations [44], see Fig. 5.4.

On the other hand, since the concrete geometry is given by means of the map, in principle, no
qualitative representation is needed in the extensional component, since it can be reconstructed at
query answering time by means of inspection methods. However, if we want to use a (standard-DL)
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ABox for the extensional component, then the spatial representation options are limited, and we
must primarily resort to qualitative descriptions.

5.5 Representing and Querying the DISK

It is clear that the kind of representation we will devise for the DISK in the extensional component
also determines what and how we can query. Without doubt, the thematic aspects of the DISK
map objects can be represented satisfactory with a standard DL. To solve the spatial representa-
tion problem of the DISK in the extensional component, we consecutively consider four different
representation options and analyze their impacts.

5.5.1 Representation Option 1 – Simply Use an ABox

We can try to represent “as many spatial aspects as possible” in the ABox, given the DL supported
by the exploited DL system, e.g. ALCQHIR+(D−) in case of RacerPro. Regarding the spatial
relationships, we can only represent qualitative relationships. We can compute a so-called RCC
network from the geometry of the map and represent this by means of RCC role assertions in
the ABox, e.g. (i, j) : TPPI etc. In Fig. 5.5(a) a “geometric scene” and its corresponding RCC8
network is depicted. Such a network will always take the form of a an edge-labeled complete graph,
a so-called Kn (this is a standard notion in graph theory), due to the JEPD property of the RCC
base relations. In this case, base relations are jointly exhaustive and pairwise d isjoint). Moreover,
an RCC network derived from a geometric scene will always be RCC consistent (see below).

Selected spatial attributes such as area and length can be represented in the ABox utilizing the
concrete domain by means of concept assertions such as i : ∃(has area). =12.345.

Since the represented spatial aspects are accessible to RacerPro, this enables / supports
richer spatio-thematic concept definitions in the TBox, for example

public park containing a lake≡̇park ⊓ public⊓ ∃contains.lake

(we are using ∃contains.lake instead of (∃TPPI .lake) ⊔ (∃NTPPI .lake), the framework rec-
ognizes these qualitative spatial relationships and rewrites the query accordingly). Obviously, an
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individual i in the ABox can only be recognized as an instance of that concept if RCC appropriate
RCC role assertions are present as well.

In principle, the specific properties of qualitative spatial (RCC) relationships resp. (RCC) roles
cannot be captured completely within ALCQHIR+(D−) (we will elaborate on this point below
when we discuss qualitative spatial reasoning with the RCC substrate). This means that the
computed taxonomy of the TBox will not correctly reflect the intended subsumption relationships.
However, MiDeLoRa also supports ALCIRCC [35, 45]. Even though this DL is undecidable [36],
the prover has been successfully applied for computation of taxonomies for ALCIRCC8 TBoxes.
Moreover, the deduced implied subsumption relationships can be made syntactically explicit by
means of additional TBox implication axioms, and this augmented TBox can be used instead of
the original one in RacerPro.

Much more important in our scenario is the observation that ontology-based query answering
can still be achieved in a way that correctly reflects the semantics of the spatial (RCC) relationships
with RacerPro. Consider the instance retrieval query public park containing a lake(?x) on the
ABox

A = {i : park ⊓ public, k : lake, j : meadow, (i, j) : TPPI , (j, k) : NTPPI . . .}
Since this ABox has been computed from the concrete geometry of the map, it must also contain

(i, k) : NTPPI , because a RCC network which is computed from a spatial constellation that shows
(i, j) : TPPI and (j, k) : NTPPI must necessarily also show (i, k) : NTPPI . In order to retrieve
the instances of public park containing a lake, we consider and check each individual separately.
Let us consider i. Verifying whether i is an instance of public park containing a lake is reduced
to checking the unsatisfiability of A∪ {(i, k) : NTPPI }∪ {i : ¬public park containing a lake}, or

A ∪ {(i, k) : NTPPI } ∪
{i : (¬park ⊔ ¬public ⊔ ((∀NTPPI .¬lake) ⊓ (∀TPPI .¬lake)))}

This ABox is unsatisfiable; thus, i is a public park containing a lake.
Regarding query concepts that contain or imply a universal role or number restriction, we can

answer queries completely only if we turn on a “closed domain reasoning mode”. We must close the
ABox w.r.t. the RCC role assertions and enable the Unique Name Assumption (UNA)7 in order
to keep the semantics of the RCC roles.

To close the ABox A w.r.t. the RCC role assertions, we count the number of RCC role suc-
cessors of each individual for each RCC role: for i ∈ individuals(A) and the RCC role R, we
determine the number of R-successors n = |{ j | (i, j) : R ∈ A}| and add the so-called number
restrictions i : (≤n R)⊓ (≥n R) to A. This concept assertion is satisfied in an interpretation I iff
n = { x | (iI , x) ∈ RI }; thus, i must have exactly n R successors in every model. In combination
with the Unique Name Assumption (UNA), this turns on a closed domain reasoning on the indi-
viduals which are mentioned in the RCC role assertions and thus prevents the reasoner from the
generation of “new anonymous RCC role successors” in order to satisfy an existential restriction
such as ∃NTPPI .lake. In order to satisfy ∃NTPPI .lake, the prover must thus necessarily reuse
one of the existing RCC role fillers from the ABox [6]. Let us demonstrate this technique using
the query concept

bird sanctuary park≡̇park ⊓ ∀contains.¬building.

Assuming that both lake and meadow imply ¬building, we can show that i is an instance of a
bird sanctuary, since the ABox

A ∪ {(i, k) : NTPPI } ∪
{i : (≤1 TPPI ) ⊓ (≥1 TPPI ), i : (≤1 NTPPI ) ⊓ (≥1 NTPPI ), . . .} ∪
{i : (¬park ⊔ ((∃TPPI .building) ⊓ (∃NTPPI .building)))}

is again unsatisfiable, because the alternative i : ¬park immediately produces an inconsis-
tency. Thus, the alternative i : (∃TPPI .building) ⊓ (∃NTPPI .building) is considered. Due to
i : (≤1 TPPI ) ⊓ (≥1 TPPI ), only j can be used to satisfy ∃TPPI .building, and only k to satisfy
∃NTPPI .building. Since j : meadow and thus j : ¬building, k : lake and thus k : ¬building, the
ABox must be unsatisfiable.

7The UNA enforces that different individuals i, j are interpreted as different domain individuals in the Tarski-
interpretation: iI 6= jI .
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Thus, we have argued that spatio-thematic ontology-based query answering can be done on
such an ABox representation of the DISK, and that this is to some extent – using some logical
encoding tricks – possible even with simple instance retrieval queries.

5.5.2 Using an Expressive ABox Query Language

We now demonstrate that the RacerPro ABox query language nRQL (see below for more de-
tails) offers valuable additional query forumlation facilites in this scenario. For now, we are using
grounded conjunctive queries in mathematical (Horn-logic like) syntax and assume that the reader
has an intuitive understanding (in addition to our explanations). The semantics of SuQL resp.
nRQL will be defined formally later.

nRQL is especially useful in this scenario, since it offers expressive means for negation as failure.
This achieves a great deal of differentiation possibilities for query formulation: For example, we
can query for living areas adjacent to parks which contain a lake . . .

1. . . . which are provable not adjacent to industrial areas. Thus, all adjacent areas are provable
not industrial areas (note that adjacent is recognized as as synonym for EC):

ans(?living area, ?park, ?lake)←
living area(?living area), park(?park),
contains(?park, ?lake), adjacent(?living area, ?park),
(∀adjacent.¬industrial area)(?living area)

2. . . . for which there are no adjacent industrial areas known (NAF negation):

ans(?living area, ?park, ?lake)←
living area(?living area), park(?park),
contains(?park, ?lake), adjacent(?living area, ?park),
\(∃adjacent.industrial area(?living area))

Slightly simplified, the subquery \(∃adjacent.industrial area(?living area)) first retrieves
the instances of the concept ∃adjacent.industrial area, and then simply builds the comple-
ment set (this explains the use of “\”). Thus, a candidate binding for ?living area must be
in that complement set. Please note that the instances of ∀adjacent.¬industrial area form
a subset of this set.

3. . . . for which there are no explicitly present adjacent industrial areas known:

ans(?living area, ?park, ?lake)←
living area(?living area), park(?park),
contains(?park, ?lake), adjacent(?living area, ?park),
\(π(?living area) adjacent(?living area, ?i), industrial area(?i))

The subquery \(π(?living area)adjacent(?living area, ?i) returns the complement set of the
answer to the query
ans(?living area)← adjacent(?living area, ?i), industrial area(?i))
(π is called the projection operator, see below). So, (a binding for) ?living area is in
\(π(?living area)adjacent(?living area, ?i) iff for ?living area there is no explicit adjacent
industrial area present. However, ?living area might have an implicit adjacent industrial
area – thus, this query returns a superset of \(∃adjacent.industrial area(?living area)).

It is clear that (1) (classical negation) is a much too strong requirement in many queries, since it
is rarely the case that two concepts can be proven to be disjoint (in most cases, explicit disjointness
declarations etc. must be added to the TBox, and this does not really add to the modeling).
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5.5.3 Drawbacks of the ABox Representation

Even though ontology-based query answering is somehow possible using the just discussed ABox
representation, it nevertheless has the following drawbacks:

1. The size of the generated ABoxes is huge. Since the RCC network is explictly encoded in
the ABox, the number of required role assertions is quadratic in the number of map objects,
|V |2 (several million role membership assertions for the DISK).

2. Most spatial aspects cannot be handled that way. For example, distance relations are very
important for map queries. It is thus not possible to retrieve all subway stations within a
distance of 100 meters from a certain point.

3. Query processing will not be efficient. More efficient query processing can be done if spatial
index structures are added.

4. In the DLMAPS system, the geometric representation of the map is needed anyway, at least
for presentation purposes. Thus, from a non-logical point of view, the ABox cannot be the
only representation used in the extensional component of such a system. Thus, it seems
plausible to exploit this representation for query answering as well.

5. Most importantly, we have demonstrated that this kind of ontology-based query answering
works only if the domain is “RCC closed”. However, DL systems are not really good at
closed domain reasoning, since the Open Domain Assumption (ODA) is made in DLs. In
contrast, since the geometry of the map is completely specified, there is neither unknown nor
underspecified spatial information. This motivates the classification of such a map as spatial
data. Thus, let us switch to a hybrid representation incorporating an SBox.

5.5.4 Representation Option 2 – Use a Map Substrate:

Due to the problems with spatio-thematic concepts and since closed domain reasoning is anyway
all that we can achieve here, it seems more appropriate to represent the spatial aspects primarily
in the SBox (a kind of “spatial database”), and associate an ABox with that SBox. We already
mentioned that the geometry of the map must be represented in the extensional component anyway
(at least for presentation purposes). If we say that the spatial aspects are primarily represented
in the SBox, then this does not necessarily exclude the (additional) representation possibilities of
dedicated spatial aspects in the ABox as just discussed.

The resulting hybrid (SBox, ABox) representation is illustrated in Fig. 5.5(b), we call it a map
substrate. The Figure illustrates that some ABox individuals have corresponding instances in the
SBox, and vice versa. A partial and injective mapping function “∗” which maps nodes in the SBox
to nodes in the ABox (and vice versa, ∗−1) is used.

Thus, we first define a hybrid substrate as follows:

Definition 3 A hybrid substrate is a triple (S1, S2, ∗), with Si, i ∈ {1, 2} being substrates
(Vi, Ei, LVi

, LEi
) using LV i and LE i, ∗ being a partial and injective function ∗ : V1 7→ V2. �

A map substrate is simply a special hybrid substrate:

Definition 4 A map substrate is a hybrid substrate (S1, S2, ∗), where S1 is an SBox, and S2 is an
ABox (substrate). �

If the spatial aspects of the DISK are now primarily kept in the SBox, then they are no longer
necessarily available for ABox reasoning and retrieval. Thus, nRQL (or instance retrieval) queries
are no longer sufficient to address these spatial aspects – we will thus extend nRQL to become
a hybrid spatio-thematic QL, offering also spatial query atoms to query the SBox: SnRQL. The
SnRQL query answering engine will combine the retrieved results from the SBox with results from
the ABox. The thematic part of such a SnRQL query is given by a plain nRQL query, and the
spatial part utilizes spatial query atoms which are evaluated on the SBox by means of inspection
methods. Since the SBox represents the geometry of the map, it can evaluate the requested spatial
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aspects on the SBox “on the fly” during query evaluation by means of inspection methods. The
SBox provides a spatial index, supporting the efficient computation of spatial relationships by
means of spatial selection operations. Computed spatial aspects can also be made explicit and
“materialized” in order to avoid repeated re-computation (e.g., computed RCC relations can be
materialized as edges).

Given a hybrid substrate, a hybrid query now contains two kinds of query atoms: Those for S1,
and those for S2. In order to distinguish atoms meant for S1 from atoms meant for S2, we simply
prefix variables in query atoms for S2 with a “?∗” instead of “?”; the same applies to individuals.
Intuitively, the bindings which will be established for variables must also reflect the ∗-function: If
?x is bound to i ∈ V1, then ? ∗ x will automatically be bound to ∗(i) ∈ V2 (if defined), and vice
versa (w.r.t. ∗−1). Such a binding is called ∗-consistent. We will only consider such ∗-consistent
bindings. The notion of a ∗-consistent bindings is also depicted in Fig. 5.5(b).

Assume we use a map substrate for the DISK representation now. Let us consider the example
query given in Section 5.5.2 again. Since the RCC network is now no longer available in the ABox,
the SBox must be queried for spatial relationships. Moreover, since the SBox uses the CWA, we
can no longer answer query (1) and (2), only (3) from Section 5.5.2 has a “SnRQL equivalent”
which looks as follows. Note that nRQL query atoms now use ∗-prefixed variables, since the ABox
is S2, and the SBox is S1:

ans(?living area, ?park, ?lake)←
living area(? ∗ living area), park(? ∗ park),
contains(?park, ?lake), adjacent(?living area, ?park),
\ ( π(?living area) ( adjacent(?living area, ?industrial area),

industrial area(? ∗ industrial area)))

Thus, we do not only win, but also loose something here (queries (1) and (2) cannot be ex-
pressed). This is an important insight. On the winning side we are now able to define and evaluate
much richer spatial predicates and incorporate them in SnRQL (e.g., distance query atoms, see
below).

5.5.5 Representation Option 3 – Use a Spatial MiDeLoRa ABox

Using the MiDeLoRa toolkit, we can define provers working on specialized substrate classes. We
already mentioned in 5.3.1 that MiDeLoRa offers so-called spatial ABoxes. Then there is no
longer a need for a hybrid map representation, since ABox individuals are also instances of spatial
datatypes (like SBox nodes). From the point of view of a standard DL prover in MiDeLoRa, the
spatial aspects of these nodes are invisible. However, dedicated “spatial” MiDeLoRa provers or
query answering procedures (implementations of spatial query atoms) can be defined which access
these spatial aspects of the nodes.

But also with a standard DL a spatial ABox can offer some benefits. Consider theALCQHIR+(D−)
ABox we have generated in Section 5.5.1: RCC role assertion must be computed and added as
well as closing assertions for the RCC roles. These closing assertions force the RacerPro tableau
prover into a local closed domain reasoning w.r.t. the RCC roles in the ABox, as illustrated by the
example evaluation of the instance retrieval query on that ABox. A MiDeLoRa prover working
on a spatial ABox can, in principle, do better here, for the following reasons:

1. With a spatial ABox, the RCC role assertions must not be precomputed and added as
assertions at all. They can be computed by means of inspection methods and materialized
on the fly if needed during the tableau proof. These materialized “virtual” assertions are
then treated like ordinary ABox assertions.8 Thus, there is no need to explicitly store an
|V |2 number of RCC role assertions in the ABox, they are “intrinsically represented”.

2. As explained, the i : (≤ R n)⊓(≥ R n) number assertions force the tableaux prover to reuse
existing ABox individuals when existential (successor generating) concepts are expanded
that use an RCC role. However, this is a two-step process in the ALCQHIR+(D−) tableau

8Note that the computation and materialization of such virtual assertion is an inference / prover-specfic task
which requires meta knowledge regarding the inference problem at hand.
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calculus, since first a fresh node satisfying the existential concept is created. Then, later on
in the tableaux expansion process, it is found that this fresh node contradicts the (≤ R n)
assertion. Thus, the so-called merge rule identifies and merges the superfluous successors
with an already existing R successor (mentioned in a role assertion).

It is obvious that this behavior of the tableaux prover could also be achieved in a more
direct way if the generating rules were modified in such a way that before a fresh successor
is generated for an RCC role, it is first tried to reuse an existing successor (however, the
generating rules become non-deterministic with that modification). The tableaux rules of
MiDeLoRa can be parameterized to work in such a way.

3. Moreover, specialized DLs can be implemented for this scenario, e.g. the already mentioned
ALCIRCC prover [45, 35].

5.5.6 Representation Option 4 – Use an ABox + RCC Substrate

Finally, we can discuss a fourth option. The primary motivation for this option is to make some
spatial functionality available to other users of the RacerPro system. Thus, in order to offer a
comparable spatio-thematic query answering functionality to other users of the RacerPro system
without having to add the whole SBox functionality to RacerPro (spatial datatypes and spatial
indexes, etc.), we devise yet another kind of substrate, the RCC substrate, which captures the
semantics of the RCC relations by exploiting techniques from qualitative spatial reasoning.

Users of RacerPro can associate an ABox A with an RCC substrate RCC by means of a
hybrid substrate (A,RCC, ∗) and query this hybrid substrate with nRQL + RCC query atoms (see
below). Note that here, unlike for the map substrate, now the ABox is again S1 and the “primary”
substrate (since the RCC substrate is an “add on” from the perspective of the RacerPro user).
This technique is, on the one hand, more expressive, since it can also deal with vaguely given,
under- or even unspecified RCC relations in an RCC substrate. On the other hand, we have
the same problems as with representation Option 1, since the geometry of a map could not be
preserved.

Let us describe the RCC substrate. The RCC substrate is basically an RCC network consistency
checker which can decide (relational) consistency of RCC networks and entailment of RCC relations
resp. RCC ground query atoms:

Definition 5 An RCC substrate RCC is a substrate such that V is a set of RCC nodes with
LV = ∅, and LE = 2{EQ,DC,EC,PO,TPP,TPPI ,NTPP,NTPPI}. �

The RCC base relations have already been discussed. An edge label represents a disjunction of
RCC base relations, representing coarser or even unknown knowledge regarding the spatial relation
(in case the set is not a singleton). Disjunctions of base relations are thus RCC relations as well.
The properties of the RCC relations are captured by the so-called JEPD property (see Page 60)
as well as the so-called RCC composition table. This table is used for solving the following basic
inference problem: Given: RCC relations R(a, b) and S(b, c). Question: Which relation
T holds between a and c? The table thus lists, at column for base relation R and row for
base relation S, the RCC relation T . In general, T will not be a base relation, but a set, resp. a
disjunctive RCC relation {T1, . . . Tn}. The RCC table is given as a set RCCT of sentences of the
form {R ◦ S = {T1, . . . , Tn}, . . .}.

An RCC network resp. RCC substrateRCC containing only base relations can be viewed as a set
of FOPL ground atoms. Such a network resp. RCC substrate is said to be relationally consistent iff
RCC′ is satisfiable: RCC′ = RCC ∪ {∀x.EQ(x, x)} ∪

{∀x, y, z.R(x, y) ∧ S(y, z) → T1(x, z) ∨ · · · ∨ Tn(x, z) |
R ◦ S = {T1, . . . , Tn} ∈ RCCT } ∪

{∀x, y.
W

R∈RCC R(x, y)} ∪ {∀x, y.
W

R,S∈RCC,R 6=S
R(x, y) ∧ ¬S(x, y)}

For example, the network RCC = {NTPP(a, b),DC (b, c),PO(a, c)} is inconsistent, because if a

is contained in b (atom NTPPI (a, b)), and b is disconnected from c (atom DC (b, c)), then a must be
disconnected from c as well. The RCC8 composition table contains the axiom NTPP ◦DC = {DC}.
Thus, RCC′ |= DC(a, c), which contradicts PO(a, c), due to the JEPD property.
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Entailment of RCC relations or RCC ground query atoms can be reduced to inconsistency
checking as follows:

RCC′ |= R(a, b) iff S∪({EQ ,DC ,EC ,PO ,TPP ,TPPI ,NTPP ,NTPPI }\R) is unsatisfiable.

A (general) RCC network is relationally consistent iff at least one of its configurations is
relationally consistent.

A configuration of an RCC network is obtained by choosing (and adding) one disjunct / base
relation out of every non-base relation in that network. Thus, a configuration contains only base
relations. For example, consider RCC = {NTPP(a, b),DC (b, c)}. We have RCC′ |= DC (a, c), since
RCC′ ∪ {(EQ ∨ EC ∨ PO ∨TPP ∨TPPI ∨NTPP ∨NTPPI )(a, c)} is not relationally consistent,
because none of its configurations RCC′ ∪ {EQ(a, c)} . . .RCC′ ∪ {NTPPI (a, c)} is relationally
consistent.

Since the RCC substrate defines a notion of logical entailment, the semantics of the RCC
relations will be correctly captured for query answering.

Consider the hybrid substrate (A,RCC, ∗) with

A = {hamburg : german city, paris : french city, fr : country, ger : country}
and

RCC = {NTPP(∗hamburg , ∗ger),EC (∗ger , ∗fr),NTPP(∗paris , ∗fr)}
and with the obvious (trivial) mapping ∗

∗ ={(hamburg, ∗hamburg), (paris , ∗paris), (fr , ∗fr), (ger , ∗ger)}.
Then, the query

ans(?city1, ?city2)← city(?city1), city(?city2),DC(? ∗ city1, ? ∗ city2)

correctly returns ?city1 = hamburg , ?city2 = paris , and vice versa, even though
DC (∗paris , ∗hamburg) is not explicitly present in RCC. Thus, unlike the |= relation for the SBox
which only requires spatial model checking by means of inspections methods, “spatial inference”
by means of RCC constraint reasoning is required for query answering on the RCC substrate.

5.5.7 OWL and the RCC Substrate

RacerPro is also an OWL reasoner, therefore we have made the RCC substrate services available
to OWL users as well. The idea is that OWL object properties can be declared as synonyms of
RCC relations, e.g., the declaration

(rcc-synonym |http://...geo.owl#contains| (:ntppi :tppi))

declares the OWL object property ...#contains as a synonym for the RCC8 relation
{NTPPI ,TPPI }. If an OWL document containing an RCC synonym is read in, the associ-
ated RCC substrate is created automatically, and corresponding RCC edges are inserted for
OWL/RDF(S) fillers of RCC synonym object properties. RacerPro is the first OWL repository
which offers some non trivial spatio-thematic query answering facilities.

5.5.8 Case Study Conclusion

The client code of the DLMAPS system is designed to work on (hybrid) substrates of various
classes, it is thus a truly multi-dimensional system. A lot of effort has been put into abstraction
layers. We have demonstrated that our architectural framework accounts very well for the identified
problems P1–P7. Not a single line of code must be changed if the DLMAPS system uses a
different substrate representation for the DISK. We claim that the achieved flexibility of the
framework has been sufficiently demonstrated by means of that case study.

Moreover, by means of query rewriting and expansion, the different available representation
options can be made transparent to the users. Ideally, users can abstract from the details of the
DISK representation. Users should not need to known how and where a special aspect of the
DISK is physically represented (in the ABox or SBox) in order to be able to formulate queries.
The exploited query expansion and rewriting procedures are currently hard-coded, though.

The DLMAPS download page can be found under
http://www.sts.tu-harburg.de/~mi.wessel/dlmaps/dlmaps.html.
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5.6 SuQL- The Substrate Query Language Framework

In the following we describe the core design principles underlying the generic substrate query
language SuQL, its instantiations resp. specializations (nRQL, SnRQL, . . . ), as well as the
features and core optimizations found in the query answering engine.

Some ideas of the SuQL framework have already been sketched, as well as some examples for
queries in abstract Horn-logic syntax been given. In the following, we will use the concrete syntax
of the query language framework in order to make it “more concrete” and stress the fact that this
is implemented and working code.9 The query

ans(?x, ?y)← woman(?x), has child(?x, ?y)

takes the following form in concrete syntax:

(retrieve (?x ?y) (and (?x woman) (?x ?y has-child))).

The expression (?x ?y) is called the head, and (and (?x woman) (?x ?y has-child)) the
body of the query. SuQL only offers so-called distinguished or must-bind variables.

SuQL offers substrate specific unary and binary query atoms (whose concrete syntax may be
defined accordingly), from which complex queries can be constructed using the body constructors
and, or, neg and project-to; neg corresponds to “\”, and project-to to “π”, as already shown
and briefly discussed in the example queries in Section 5.5.2 (moreover, union is accepted for or as
well, and pi for project-to). These body constructors can be combined / nested in an arbitrary
(orthogonal) way. This is why we call SuQL an orthogonal language.

If we assume that (?x woman) is a concept query atom, – a specialized unary query atom for
substrates of class ABox –, and (?x ?y has-child) is a role query atom – a specialized binary
query atom for for substrates of class ABox –, then, if posed to a substrate of type ABox, the
query returns all mother-child pairs from that ABox.

SuQL has the following peculiarities which we want to discuss briefly before syntax and seman-
tics is specified, since this discussion will greatly enhance the comprehensibility of the algebraic
specification of the semantics:

Variables and individuals can be used in query atoms. The variables range over V , the
nodes of the query substrate (this is called the active domain semantics). Variables are bound to
nodes which satisfy the query – a variable binding satisfies a query iff the ground query – that is
obtained by replacing all variables with their bindings – is logically entailed by the substrate. For
example, the atom P (x) is satisfied in substrate S if x = i, i ∈ V and S |= P (x)x←i resp. S |= P ().
Thus, a variable is only bound to a substrate node iff it can be proven that this binding holds in
all models of the substrate.

Returning to our example query body (and (?x woman) (?x ?y has-child)), ?x is only
bound to those individuals which are instances of the concept woman having a known child ?y in
all models of the KB.

SuQL offers 4 kinds of variables: Variables which begin with $? are called injective variables,
in contrast to the ordinary non-injective variables beginning with ?. For an injective variable it is
required that it can only be bound to a substrate node that is not already bound by another injective
variable (thus, the function mapping injective variables to substrate nodes must be injective; in
the past, we have called this a “UNA for variables”). Given the availability of (negated) equality
atoms in SuQL we can neglect injective variables in the following semantics definition. By means
of query rewriting, such atoms can be added automatically. Moreover, if a hybrid substrate is
queried, then variables for S2 must start with either ?* or $?*, as discussed.

Negation as Failure (NAF) Operator: The neg operator implements a Negation as Failure
Semantics (NAF). For example, (neg (?x woman)) returns all substrate nodes for which it cannot
be proven that they are instances of woman.

Thus, (neg (?x woman)) returns the complement set of (?x woman) (w.r.t. to V , the set of all
substrate nodes). If a binary query atom is NAF negated, e.g. (neg (?x ?y has-child)), then
the complement is two-dimensional. Thus, all pairs of individuals are returned which are not in
the has-child relation.

9The prefix Lisp syntax is as clean and readable and mathematically profound as the mathematical syntax.
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Let us define the extension of a unary (binary) query atom P (?x) (Q(?x, ?y)) as the query
answer of the query ans(?x) ← P (?x) (resp. ans(?x, ?y) ← Q(?x, ?y), and denote that extension
as P (?x)E (resp. Q(?x, ?y)E ). It is obvious that the following equalities must hold, for any substrate
S with nodes V :

V = P (?x)E ∪ (\P (?x))E

V × V = V 2 = Q(?x, ?y)E ∪ (\Q(?x, ?y)).E

However, things become more tricky if individuals are used in query atoms. What should be
the extension of such an atom? For reasons of orthogonality we replace individuals (from V ) in
atoms with representative variables and add equality conjuncts, e.g., the atom Q(i, ?y) with i ∈ V

is rewritten into the conjunction Q(?xi, ?y), ?xi = i. This ensures that the extensions of the atoms
always have the same dimensionality, no matter whether the atom references 0, 1 or 2 individuals,
and that the above given equalities hold. This enables the algebraic specification of the semantics
given subsequently. For the extension of the atom \Q(?xi, ?y) we must thus necessarily get:

(\Q(i, ?y))E = V 2 \Q(i, ?y)E

= V 2 \ (Q(?xi, ?y), ?xi = i)E

= V 2 \ (Q(?xi, ?y)E ∩ (?xi = i)E)
= V 2 \ (Q(?xi, ?y)E ∩ { (x, y) | x = i, y ∈ V } )
= \Q(?xi, ?y)E ∪ { (x, y) | x 6= i, y ∈ V }.

This is surprising at a first glance but unavoidable if DeMorgan’s Law shall hold for SuQL
bodies. The validity of DeMorgan’s Law is crucial for the definition of the Disjunctive Normal
Form (DNF) for queries, which in turn is indispensable for the cost-based query optimizer (see
below).

Let us consider the ABox query language case again. We would like to emphasize that (?x

(not woman)) has a different semantics from (neg (?x woman)), since the former returns the
individuals for which the DL system can prove that they are not instances of woman, whereas
the latter returns all instances for which the DL system cannot prove that they are instances of
woman. Also note that neg and not are equivalent on substrates which employ the CWA (e.g.,
the SBox).

Different Notions of Equality are Available: Equality query atoms are added automati-
cally as soon as individuals are referenced, as just shown. The equality atoms are also explicitly
available for query formulation.

Equality atoms can either use syntactic or semantic equality predicates: “=syn” or “=sem”;
these notions coincide if the UNA is used.10

Let us illustrate the different equality predicates using the example ABox

A = {(i, j) : R, (i, k) : R, j : C, i : (≤1 R)}.
Obviously, A |= j =sem k, but A 6|= j =syn k and thus A |= j 6=syn k (and also A |= \(j =syn

k)). For C(i)E = (C(xi), xi = i)E we thus get either {i} or {i, j}, depending on whether “=syn”
or “=sem” is used. Note that the answer {i, j} is convenient and could not be delivered if the
discussed rewriting would not take place. With “=syn” we would get (\C(i))E = {j}, which might
be misleading. Of course, ∅ returned in the “=sem” case.

Alternatively, also the domain of the variables can be changed: Instead of requiring that a
variable is bound to a substrate node (resp. an ABox individual), we can also require that a
variable is bound to a “=sem” equivalence class, or, more precisely, to one representative node in
that equivalence class.

The Body Projection Operator (project-to): This operator is required in order to reduce
the “dimensionality” of the extension of a subbody in a query body, for example, before computing
the complement set of the extension of that subbody with neg.

Let us motivate the necessity for such an operator, again using the ABox case. Consider
(retrieve (?x) (and (?x mother) (?x ?y has-child))). This query returns all mothers hav-
ing a known child in the ABox. Now, how can we query for mothers who do not have a known
child? Our first attempt will be the query (retrieve (?x) (and (?x mother) (neg (?x ?y

has-child)))). A bit of thought and recalling that (neg (?x ?y has-child)) returns the com-
plement set of (?x ?y has-child) w.r.t. the Cartesian product of all ABox individuals will reveal

10The predicate =sem is the standard equality predicate in FOPL with equality. Surprisingly, =syn is indeed
definable by restricting =sem, but certain encoding tricks are needed which we do not want to discuss here.
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that this query doesn’t solve the task. In a second attempt, we will probably try (retrieve

(?x) (neg (and (?x mother) (?x ?y has-child)))). However, due to DeMorgan’s Law this
query is equivalent to (retrieve (?x) (union (and (neg (?x mother)) (?y top)) (neg (?x

?y has-child)))) – first the union of two two-dimensional tuple sets is constructed, and then
only the projection to the first element of these pairs (?x) is returned. Obviously, this set con-
tains also the instances which are not known to be mothers, which is wrong as well. Thus, the
need for the projection operator becomes apparent: (retrieve (?x) (and (?x mother) (neg

(project-to (?x) (?x ?y has-child))))) solves the task. In principle, this corresponds to the
query ans(?x)← mother(?x), \hac(?x), where hac(?x)← has child(?x, ?y).

Head Projection Operators and Query Nesting. It is often the case that some subsequent
computations based on the variable bindings of the “current” answer tuple shall be performed. For
this purpose, not only individuals and variables can appear in a query head, but also so-called
head projection operators. These are denoted in a functional style using lambda expressions. For
example, the query

(retrieve (?r ((lambda (l w) (* l w)) ?l ?w))

(and (?r rectangle) (?r ?l has-length) (?r ?w has-width)))

returns, for the actual bindings ?r = r1, ?l = 10, ?w = 20, the result tuple
((?r r1) ((lambda ...) 200)).11

Most importantly, also subqueries can be posed in lambda bodies. Thus, SuQL allows for
arbitrary query nesting. With this functionality and an extensive termination-safe expression lan-
guage for lambda bodies (which we call MiniLisp), for example, the equivalent of SQL aggregation
operators (count, sum, max, min, average, . . . ) is available in SuQL.

For specific SuQL instantiations, syntactic sugar for certain (idiomatic) lambda expressions
can be defined.

5.6.1 Syntax and Semantics

We only specify syntax and semantics for non-hybrid queries; the extension to hybrid queries is
straightforward, but does not really add to this paper:

Definition 6 (Syntax of SuQL) The head and body of a SuQL query (retrieve head body)
are defined by the following BNF grammar (note that {a|b} represents a or b):

head := (head entry∗)
object := variable | individual

variable := a symbol beginning with ?

individual := a symbol
head entry := object | lambda

lambda := ((lambda ...)variable∗)
body := atom | ( {and | union} body∗) | (neg body) |

(project-to (object∗) body)
atom := unary atom | binary atom | equality atom

unary atom := (object unary atom predicate)
binary atom := (object object binary atom predicate)

equality atom := (object object {=syn | =sem})
The predicates unary atom predicate and binary atom predicate are conceived as FOPL for-

mulas with one resp. two free variables x and y; however, the concrete syntax may offer a variable-
free syntax for them.

The function obs(q) is defined inductively as follows: obs(unary atom) =def {x1} if unary atom =
(x1 unary atom predicate), obs(binary atom) =def {x1, x2} if binary atom = (x1 x2 Q) with Q ∈
{binary atom predicate, =syn, =sem}, obs(({ and | union | neg } q1 . . . qm)) =def

⋃

1≤i≤m obs(qi),
but
obs((project-to (x1 . . . xm) . . . )) =def {x1 . . . xm}. Thus, obs “stops at projections”. �

11Note that ((lambda (l w) (* l w)) ?l ?w) denotes an application of the anonymous function (lambda (l w)

(* l w)) to the actual bindings of ?l and ?w (10 and 20); the evaluation of the lambda expression yields thus
10*20=200.
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Definition 7 (Semantics of SuQL) Let S = (V, E, LV , LE,LV ,LE) be a substrate, and q be a
body.

First we must define some auxiliary operations. Let T be a set of n-ary tuples 〈t1, . . . , tn〉
and 〈i1, . . . , im〉 be an index vector with 1 ≤ ij ≤ n for all 1 ≤ j ≤ m. Then we denote the
set T ′ of m-ary tuples with T ′ =def { 〈ti1 , . . . , tim

〉 | 〈t1, . . . , tn〉 ∈ T } = π〈i1,...,im〉(T ), called
the projection of T to the components mentioned in the index vector 〈i1, . . . , im〉. For example,
π〈1,3〉{〈1, 2, 3〉 , 〈2, 3, 4〉} = {〈1, 3〉 , 〈2, 4〉}.

Let ~b = 〈b1, . . . , bn〉 be a bit vector of length n, bi ∈ {0, 1}. Let m ≤ n. If ~b is a bit vector which
contains exactly m ones, and B is some set (“the base”), and T is a set of m-ary tuples, then the

n-dimensional cylindrical extension T ′ of T w.r.t. B and ~b is defined as
T ′ =def { 〈i1, . . . , in〉 | 〈j1, . . . , jm〉 ∈ T , 1 ≤ l ≤ m, 1 ≤ k ≤ n

and ik = jl if bk = 1 and bk is the lth “1” in ~b,
and ik ∈ B otherwise. }

and denoted by χB,〈b1,...,bn〉(T ). For example,
χ{a,b},〈0,1,0,1〉({〈x, y〉}) = {〈a, x, a, y〉 , 〈a, x, b, y〉 , 〈b, x, a, y〉 , 〈b, x, b, y〉}.
We denote an n-dimensional bit vector having ones at positions specified by the index set

I ⊆ 1 . . . n as ~1n,I . For example, ~14,{1,3} = 〈1, 0, 1, 0〉. Moreover, with IDn,B we denote the

n-dimensional identity relation over the set B: IDn,B =def {
︷ ︸︸ ︷

〈x, . . . , x〉
n

| x ∈ B }.

The semantics of a query is given by the set of tuples it returns if posed to a substrate S. This
set of answer tuples is called the extension of q and denoted by qE .

First we add the mentioned equality atoms for query atoms which reference individuals. The
query body q is thus first rewritten. We define Θ(q) for query atoms atom with obs(atom) ∩ V =
{v1, . . . , vn}, n ∈ {1, 2} as

Θ(atom) =def (and atom (xv1
v1 = ) . . . (xvn

vn = )),
(please note that = ∈ {=syn, =sem}, as previously discussed, and that xvi

is the representa-
tive variable for vi) and extended the definition of Θ in the obvious (inductive) way to complex
query bodies as well. Moreover, Θ replaces all occurrences of individuals in the projection list of
project-to and in the query head with their representative variables.

Let q′ = Θ(q) be the rewritten query. So we simply declare qE =def q′E . Let us specify q′E .
Let 〈x1,q′ , . . . , xn,q′〉 be a lexicographic enumeration of obs(q′) (so n = |obs(q′)|). Denote the ith
element in this vector with xi,q′ , indicating its position in this vector.

We define ·E inductively. We start with the query atoms:

(xi,q′ P)E =def χV,~1n,{i}
({< v > | v ∈ V, S |= Px←v } )

(xi,q′ xj ,q′ Q)E =def χV,~1n,{i,j}
({< u, v > | u, v ∈ V, S |= Qx←u,y←v } )

(please note that due Θ, all unary and binary query atoms which are not equality atoms now
have two variables as objects). The semantics of the equality predicates resp. atoms is fixed as
follows:

For =syn: S |= i =syn i and S 6|= i =syn j.

For =sem: S |= i =sem j iff for all models I of S (I |= S): iI = jI ,

Thus, we define:
(xi,q′ xj ,q′ =syn)

E =def χV,~1n,{i,j}
({< u, v > | u, v ∈ V,

if xi,q′ ∈ V , then u = xi,q′ , if xj,q′ ∈ V , then v = xj,q′ })
(xi,q′ xj ,q′ =sem)E =def χV,~1n,{i,j}

({< u, v > | u, v ∈ V, S |= u =sem v,

if xi,q′ ∈ V , then u = xi,q′ , if xj,q′ ∈ V , then v = xj,q′ }).

We extend the definition of ·E inductively for complex (sub)bodies in q′ as follows:

(and q ′1 . . . q ′i)
E =def

⋂

1≤j≤i q′j
E

(union q ′1 . . . q ′i)
E =def

⋃

1≤j≤i q′j
E

(neg q ′1)
E =def V n \ q′1

E

(project-to (xi1,q′ . . . xik,q′) q ′1)
E =def π〈i1,...,ik〉(q

′
1

E
)
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To get the final answer of a query, the head has to be considered, for a final projection.
Moreover, the lambdas must be applied to the current bindings, and the computed result included
in the answer tuple. For the sake of brevity we only consider heads without lambdas. Thus, the
result of (retrieve head body) is simply given as

(retrieve head body)
E

=def (project-to Θ(head) Θ(body))E .

�

5.6.2 nRQL is a Special SuQL

As already mentioned, nRQL is a specialized SuQL. As such, it offers dedicated query atoms
for ALCQHIR+(D−), especially also atoms concerning the concrete domain and concrete domain
constraint checking which is a unique RacerPro feature, as well as special syntactic sugar for
certain idiomatic lambda operators, again primarily for the concrete domain as well as for some
RacerPro specific OWL peculiarities.

The nRQL atoms are: (unary) concept query atoms, e.g. (?x (some has-child human));
(binary) role query atoms, e.g. (?x ?y has-child), and (binary) constraint query atoms. All but
the constraint query atoms have been discussed already. Here is a nRQL example query utilizing
all three kinds of atoms:

(retrieve (?x)

(and (?x (and woman (min age 40))) (?x ?y has-child)

(?y ?y (constraint (has-father age) (has-mother age)

(<= (+ age-2 8) age-1)))))

This query returns thus instances of the concept women which are older than 40 and which have
children whose fathers are at least 8 years older than their mothers. Note that (has-father age)

denotes a role chain ended by a so-called concrete domain attribute, a kind of “path expression”:
starting from the individual bound to ?y (the child), we retrieve “the value” of the concrete
domain attribute age of the individual which is the filler of the has-father role (feature) of
this individual. In a similar way, the age of the mother of ?y is retrieved. These concrete domain
values are then used as actual arguments to check whether the predicate (<= (+ age-2 8) age-1)

holds for them; age-2 refers to (has-mother age), and age-1 refers to (has-father age).12

However, these “values” are in fact variables in a concrete domain constraint network (which can
be left unspecified, i.e., no told value must exist). RacerPro offers this kind of concrete domain
constraint checking.

Instead of only simply role name, also more general role terms are admissible in role and
constraint query atoms; a role term is an element in the set of role names closed under the operators
{not, inv}. Thus, nRQL offers not only NAF negated roles, but also classical negated roles. For
example, the extension of (?x ?y (not has-father)) contains those pairs resp. bindings for ?x,
?y for which RacerPro can prove that the individual bound to ?x cannot have the individual
bound to ?y as a father. If the role has-father was defined as having the concept male as a range,
then at least all pairs of individuals in which ?y is bound to a female person are returned, given
male and female can be proven disjoint. Moreover, we have the NAF negation, of course, so (neg

(?x ?y has-father)) simply returns the two-dimensional complement of all entailed has-father

relationships. Even (neg (?x ?y (not has-father))) can be used.

Moreover, the concept terms resp. expressions have been extended to support OWL querying
better; the main point here is to provide more transparency and a more user friendly syntax, given
that the internal representation of OWL datatype properties in RacerPro which are mapped to
the concrete domain is rather complex (but provides much higher expressivity than alternative
approaches).

Note that the presence of role chains in constraint query atoms requires some additional rewrit-
ing from Θ. Basically, role chains in constraint query atoms are broken up into conjunctions of
simple role query atoms as well the constraint query atom referencing only the concrete domain
attributes.

12Note that the suffixes -1, -2 have been added to the age attribute in order to differentiate the two values (the
mechanism is not needed in case the two chains are ended by different attributes).
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Atoms of the syntax (same-as ?x i) are used to denote equality atoms. Whereas older nRQL
version have used =syn for same-as, it is now possible to use =sem as well. This mainly concerns
the equality atoms which are automatically added by Θ; moreover, the so-called special “nRQL
equal role” was (and still is) available which is interpreted as =sem as well.

Regarding the head projection operators, nRQL offers support for retrieving so-called told
values from the concrete domain as well as support for retrieving fillers of OWL (annotation)
datatype properties. The problem here is that variables can only be bound to ABox individuals
resp. nodes in V . Since XML datatype values (being fillers of OWL datatype properties) or
concrete domain values (e.g., Integers) are not represented as ABox individuals, no bindings can
be computed. However, retrieval conditions can be specified by means of concept and constraint
query atoms. Thus, in order to actually retrieve these datatype fillers, special head projection
operators are offered; returning to our previous example query, we can simply use the head (?x

(told-value (age ?x))) to also get the told fillers of the age attribute (given such told fillers
exist); the head operator is conceptually just syntactic sugar for a more complex lambda entry.
For OWL, special operators such as datatype-fillers, annotation-fillers etc. are offered
in addition. Please refer to [46] for more details.

Given the generic semantics definition, it should be clear how the semantics of the dedicated
nRQL atoms can be defined. Basically, we just need to define S |= Px←v as well as S |= Qx←u,y←v;
note that S is now an ABox A. However, this is easy using the standard-translation Φ of DL into
FOPL [39]; e.g., for a concept query atom predicate P = C this boils down to ordinary instance
checking resp. instance retrieval query: A |= Φ(C)x←i iff A |= i : C iff A∪{i : ¬C} is unsatisfiable
(basically, just the RacerPro API functions concept instances or individual instance? needs to be
called), and for positive roles R in role atoms we get A |= Φ(R)x←i,y←j iff A |= (i, j) : R iff
A∪{i : ∀R.M, j : ¬M} is unsatisfiable, for some fresh concept name M (again, there are standard
API functions: role fillers and individuals related?). However, for negated roles, we need to perform
an ABox satisfiability (consistency) check: A |= Φ(¬R)x←i,y←j iff A∪ {(i, j) : R} is unsatisfiable.
These “reduction tricks” are well-known [47]. RacerPro specific API functions are also called
for constraint query atoms.

5.6.3 Concrete SuQL Instantiations for the DLMAPS System

We have discussed four representation options in the DLMAPS system. Although the principle
ideas have been laid out, we briefly want to discuss the resulting spatio-thematic query languages
in the SuQL framework for the DLMAPS system. Which spatio-thematic QL is now applicable
for the different representation options (1–4) in the DLMAPS system? Again we like to stress
that the user must in principle not be bothered with the representation details, since a surface end
user syntax can be offered by means of query rewriting and expansion:

Option 1: We can only use plain nRQL, as explained.

Option 2: The resulting hybrid QL is called SnRQL. It provides the following spatial atoms in
addition to nRQL (note that is does not really add to the message of this text to define these
here formally). The extensions of the atoms are computed on the fly by means of inspections
methods. As argued, this can be understood as a kind of (spatial) model checking. The
following additional spatial atoms are currently offered:

RCC atoms: Atoms such as (?x ?y (:tppi :ntppi)); (:tppi :ntppi) denotes the dis-
junctive RCC relation {TPPI ,NTPPI }. A rich set of common sense natural lan-
guage spatial prepositions such as :contains, :adjacent, :crosses, :overlaps,

:flows-in is available. The Θ function rewrites these into (the closest possible) RCC
relation.

Distance Atoms: (?x ?y (:inside-distance <min> <max>)), where
<min>, <max specifies an interval [min; max]; NIL can be used for 0 resp. ∞ (this
applies to the subsequent interval specifications as well). For example, the extension
of (i ?x (:instance-distance nil 100)) consists of all SBox objects which are not
further away than 100 meters from i. Either the shortest distance or the distance of the
centroids of these objects can be used for distance computation.
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Epsilon Atoms: (?x ?y (:inside-epsilon <min> <max>)). With that atom, all objects
?y are retrieved, such that ?y is contained within the buffer zone of size [min; max]
around ?x. This buffer zone consists of all points (x, y) whose shortest distance to the
fringe of (the individual bound to) ?x is contained within [min; max].

Geometric Attribute Atoms: Atoms regarding geometric attributes, e.g. length and area:
The extension of (?x (:area 100 1000)) consists of all nodes of SDT type polygon in
V whose area is in [100; 1000]. Also :length is understood, but for SDTs of type line
or chain.

Moreover, simple type checking atoms such as (?x :is-polygon), (?x :is-line) etc.
are available (these are needed in order to guard the application of certain spatial
operators).

Let us give one concrete SnRQL query which selects an appropriate home for a millionaire:

(retrieve (?villa ?living-area ?golf-club ?church)

(and (?*living-area (and living-area

(or (all classification first-class-area)

(string= name "Beverley Hills"))))

(?living-area ?villa :contains)

(?*villa (and villa

(all status for-sale) (> has-price 10000000)

(some has-comfort swimming-pool)))

(?church ?living-area (:inside-epsilon nil 200))

(?living-area ?golf-club :adjacent)

(?*golf-club (and golf-club (all members millionaire)))))

Option 3: In principle like SnRQL, but no hybridness is needed. Moreover, the MiDeLoRa
prover currently does not offer concrete domains. Thus, the ABox query language part is
reduced to concept and role query atoms.

Option 4: The resulting hybrid QL is called nRQL + RCC atoms. This language can only offer
RCC atoms in addition to nRQL, since the geometry of the map is not represented. These
RCC atoms have the same syntax as the SnRQL RCC atoms, but their implementation is of
course different (since RCC constraint checking is required in the latter case, and geometric
computations in the former case). Spatial natural language prepositions are understood as
well. Note that this language is available to all RacerPro users and also works for OWL,
as described.

5.7 The SuQL Query Answering Engine

Let us briefly describe some core features of the SuQL engine which make it unique:

• The engine supports full life-cycle management for queries: A query is first parsed and
compiled (prepared). It is available as a Clos object then. The query can then be executed,
it will become active. An active query can be suspended or aborted, and will eventually
terminate. After this, the query is still not gone. It can be re-prepared, re-executed etc. as
long as it is not explicitly deleted.

• The runtime resources acquired by the engine are configurable: size of thread pool, maximum
bound on the number of answer tuples setable, timeout setable, tuple permutations can be
excluded, etc.

• Another important feature of the engine is the built-in query optimizer which uses syntactic
as well as semantic optimization techniques (see below).
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• In principle, there can be more than one query running at a time. The engine offers concur-
rent querying. When a query is executed, a thread from a thread pool is acquired and put to
work. The engine can process up to a few hundred queries simultaneously. Especially with
today’s available multi-core processors this is an attractive feature.13

• The queries can be compiled into native machine code by means of the Common Lisp
compiler if maximum performance is needed.

• The engine offers different querying modes: basically, a synchronous set-at-a-time mode as
well as an asynchronous tuple-at-a-time mode.

In the set-at-a-time mode, a call to a querying function such as retrieveworks synchronously
(blocking). The client has to wait, the whole answer set is delivered in a bunch. However,
many client applications prefer an asynchronous (non-blocking) API: the tuple-at-a-time mode
allows for an incremental, cursor-based retrieval of the answer set tuple by tuple. Thus, a call
to retrieve will return immediately with a so-called query identifier. This identifier, say
:query-123, is then used as argument to functions such as (get-next-tuple :query-123).

Functions like (get-next-n-tuples 10 :query-123) are provided as well.

Moreover, the tuple-at-a-time mode works either lazy or eager : In the lazy mode, the next
tuples will not be computed before requested by the client, unlike the eager mode, which pre-
computes the next tuple(s) and puts them into a queue for future requests. Thus, the lazy
mode only acquires as many computational resources as needed for answering the
users request. This is a very important feature, especially if the computational complexity
for query answering is high.

Especially for ABox query languages such as nRQL or the MiDeLoRa ABox query language
(which is like nRQL, but without constraint query atoms, OWL support etc.), the following
features are of importance; please note that nRQL is integrated into RacerPro, but still layered
on top of RacerPro, thus, the official API functions are used:

• Most DL system today only offer a set-based API, e.g. API functions such as concept instances

work synchronously and blocking. They can only return the complete set of answers. How-
ever, for an incremental, cursor-based ABox query language such as nRQL, also incremental,
cursor-based API functions should be present. Otherwise there is an impedance mismatch:
Consider an ABox query such as (retrieve (?x) (?x woman)). If this query is executed
in incremental mode, an API call (concept-instances woman) is generated (if the answer
is not already cached). Even if only one instance is requested by means of get-next-tuple,
the DL system has already computed and returned all instances. For very complex KBs, this
might be a bad idea (especially if the client requests only a very few tuples). Alternatively,
the query answering engine could consider the candidate individuals element-wise and use
only test functions, e.g. single individual instance? tests. Unfortunately, this likely results in
a bad performance (since the prover state resp. context is lost during the individual calls; of
course, there might be caching, but that does not really solve the overall problem).

Please note that the impedance mismatch cannot be solved by simply augmenting the set-
based API functions, e.g. concept instances, with an additional (optional) argument “number
of answers”, since also the cursor position and ideally also the internal state of the prover (e.g.,
its caches, the already performed deterministic parts of the tableaux expansions, etc.) should
be preserved during the calls. The MiDeLoRa DL system therefore offers a continuation-
based API which naturally (i.e., without caching) allows to keep the current state.

• In order to achieve maximal parallelism, all inference answers from RacerPro are cached.
The implies that calls to RacerPro can be reduced (due to cache hits), and thus, locking
of RacerPro (and therefore blocking situations which occur if two or more queries running
in parallel both require the reasoner at the same time) is minimized. These cache and
index structures are automatically invalidated if changes to the queried KB occur. If a
change occurs during incremental query execution, a “KB has changed” warning token can

13Thanks to Kay Hidde for pointing that out.
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be delivered. Such an “outdate” query can be executed again (due to the query life cycle
management).

• The degree of completeness of query answering in nRQL is configurable: On complex KBs,
complete ABox retrieval might be impossible, due to the computational complexity. This
is a pity if at least some subset of the overall answer could be delivered, especially in the
incremental modes. Thus, nRQL offers various degrees of completeness for query answering.
This is a reasonable functionality in many application scenarios, and its availability does not
state that the authors think that completeness is not important.

• Having incomplete modes available gives nRQL the ability to distinguish between cheap and
expensive tuples. It is possible to advise nRQL first to deliver a set of cheap tuples, yielding an
incomplete answer (“phase one”), and then to turn on RacerPro’s ABox retrieval functions
to deliver the remaining expensive tuples (“phase two”); these tuples are potentially called
“expensive” since inference is required to compute them. We have called this processing
pattern the two-phase query processing mode. Again, nRQL can be advised to deliver a
warning token before phase two starts, informing the client that computation of the remaining
tuples will eventually be expensive. The client can then choose to retrieve these additional
tuples or not (e.g., abort the query).

5.7.1 Mission Critical Optimizations

The SuQL engine exploits two optimization techniques: a cost-based syntactic optimizer [48] and
a semantics-based optimization, the so-called query repository [48, 46], which we do not describe in
detail here. But optimizations are generic and constitute to the basic functionality of the engine.

The cost-based optimizer first transforms the body of the query into Disjunctive Normal Form
(DNF). In the DNF, each disjunct of the DNF is either a single atom or a conjunctive query.
Each conjunctive query is optimized individually. To do so, the optimizer generates a potential n!
number of possible execution plans, if n conjuncts are present. An execution plan of a conjunctive
query determines the oder of sequence in which the atoms are about to be evaluated. In order to
determine the “costs” of an atom in a plan, a method get-score is called, which can be overwritten
for specialized atoms. A plan is thus generated successively, and given a plan (a1, . . . , an), an atom
an+1 is selected and added next to the plan which yields the maximal score: (a1, . . . , an, an+1).
In such a way, a heuristic search procedure using beam search (of sufficient breadth) searches for a
“good” plan (if n gets big, not all of the n! plans can be considered and scored).

The standard implementation of get-score simply considers the role of the atom in the cur-
rently evaluated plan and weights the atom accordingly. An atom can either play the role of
a tester or of a generator, depending on whether the variable(s) referenced in the atom will be
already bound at execution time or not.

The standard get-score implementation simply prefers testers over generators. Moreover,
successor or predecessor generators are preferred over successor generators. For example, consider
the query (and (?x ?y R) (?y D) (?x C)). Using the standard get-score implementation, of
that 3! = 6 plans, the plans (a)=(?x C), (?x ?y R), (?y D) are (b)= (?y D), (?x ?y R),

(?x D) get the highest overall score. This optimization strategy is reasonable if one assumes that
the average number of R-successors or of R-predecessors of an individual is small compared to
the number of C and/or D instances. Thus, the “navigational” approach for computing bindings
is preferable over, e.g., the cross product generation (e.g., in the plan (?x C), (?y D), (?x ?y

R)).
The get-score method is refined for nRQL. Here, also ABox statistics are taken into account.

This enables a preference selection: plan (a) will be preferred iff |(?x C)E | ≤ |(?y D)E | (and (b)
otherwise). Unfortunately, this information is not always available, and in many cases, one has to
rely on told information only. Nevertheless the refined valuation has been proven valuable.

We have performed an evaluation of the effectiveness of this optimization technique, using the
Lehigh University Benchmark (LUBM) and the LUBM Query No. 9 (Q9 in the following) [49].
For instance, Q9 is the following query:

(retrieve (?x ?y ?z)
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Figure 5.5: Execution Times of the 720 Permutation Queries for Q9

(and (?x Student) (?y Faculty) (?z Course)

(?x ?y advisor) (?x ?z takesCourse) (?y ?z teacherOf)))

Obviously, 6!=720 execution plans exist. In order to measure the effectiveness of the heuris-
tic optimizer, we switched off the optimizer and executed and measured the runtimes of all 720
permutation queries. Moreover, we executed the queries in an incomplete nRQL mode such that
no ABox reasoning is required. This is necessary in order to only measure the effectiveness of
just this single optimization technique; thus, approximately constant time is needed for each vari-
able binding test and each variable binding generation step. The size of the LUBM ABox is also
not important here, but for the sake of completeness of information we state that we have used
6 university departments (we have kept the size small, since the test takes too long otherwise).
The measured and (in ascending order) sorted runtimes are shown in Fig. 5.7.1. The fastest
permutation query needed only 0.013 seconds, and the slowest 62.723 seconds. This is a factor of
4824.846. If the optimizer is turned on, then it generates a plan which corresponds to the third
best permutation query; we measured 0.03 seconds.

However, since query answering is performed in milliseconds here, this could be noise as well
and one could claim that the optimizer selected an “optimal” query. Due to the long runtimes
required for this test we did not measure variances. The result shows that this optimization is good
enough and indispensable.

Another very important exploited optimization technique concerns the computation of the role
successors resp. predecessors. Efficient computation of these successors is very important, since
the optimizer prefers a “navigational” approach to variable binding computation (since successor
generators and predecessor generators of binary atoms are preferred over unary generators).

In principle, an ABox satisfiability check is required in order to check whether j is an R successor
of i in A, since A |= (i, j) : R iff the ABox A∪ {i : ∀R.M, j : ¬M} is unsatisfiable, for some fresh
marker concept M .

However, for simple DLs without number restrictions or features, an important optimization
can be turned on, which we found to be indispensable (e.g., not a single LUBM query can be
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answered without this optimization):

Lemma 1 (Syntactic Test for Role Filler Entailment) Let A be an
ALCHIR+ ABox, an R be a role. Then, A |= (i, j) : R iff A; (i, j) : R, where A; (i, j) : R iff

• (i, j) : S ∈ A, S ⊑ R, or

• (j, i) : S ∈ A, for S ⊑ R−1, or

• A; (i, k) : R and A; (k, j) : R, for some k ∈ inds(A), if R is a transitive role. �

Proof 1 (Sketch) The direction A; (i, j) : R implies A |= (i, j) : R is trivial (omitted).
In order to show that A |= (i, j) : R implies A; (i, j) : R one needs to take the properties of

ALCHIR+ into account. Suppose A |= (i, j) : R, but A 6; (i, j) : R. There are two cases. If R

is not a transitive role, then A |= (i, j) : R can only hold due to assertions (i, j) : S, (j, i) : S−1

with S ⊑ R, since ALCHIR+ does neither offer number restrictions nor functional roles. Thus,
also A ; (i, j) : R must hold. Contradiction. If R is a transitive role, then RI = (RI)+.
If A |= (i, j) : R, then for (iI , jI) ∈ RI there must be a path of ABox individuals k1, . . . , kn

with k1 = i and kn = j of maximum length n, such that all ki on this path are distinct, and
(kIi , kIi+1) ∈ RI holds. Since the path is maximal, also A ; (km, km+1) : R for all m ∈ 1 . . . n.
However, by definition of ;, we also have A; (kl, km) : R for all l < m and l, m ∈ 1 . . . n, as well
as A; (k1, kn) : R, so A; (i, j) : R. Contradiction. 2

Please note that this no longer holds as soon as equality statements (or owl:same-as), func-
tional roles or number restrictions are added: Consider {(i, j) : F1, i : ∃F2.C} with F1 ⊑ G,
F2 ⊑ G, such that G is a functional role (feature). Obviously, A |= (i, j) : F2, but A 6; (i, j) : F2.
Another illustrative counter example is given by the ABox {(i, j1) : R, (j1, j2) : same as, (j2, j3) :
same as, (k, j3) : R, (k, j4) : R, k :≤1 R} (note that the role same as encodes an equality assertion,
or owl:sameAs). The Lemma fails completely, but still A |= (i, jk) : R for 1 ≤ k ≤ 4.

However, for those ABoxes on which the Lemma fails, a weaker statement can be made which
states that in order for A |= (i, j) : R to hold, there must at least be some connecting path of role
assertions and/or same-as assertions in the ABox between i and j. So, this can be used as a guard
for the required ABox satisfiability tests which reduces the number of tests still tremendously.

Let us demonstrate the effectiveness of these two optimizations. Again, we have used Q9. This
time we have used MiDeLoRa on a LUBM ABox containing a single university department (it
contains 1555 individuals). Q9 returns 13 result tuples; MiDeLoRa needs 1.3 seconds to compute
these if all optimizations are turned on (the system is not yet as performant as RacerPro).
The initial ABox satisfiability check still takes 12 seconds, but the subsequent ABox satisfiability
checks run faster due to optimizations described in [50, 21]. Such a subsequent ABox test currently
needs 3.7 seconds. So, for answering Q9, not a single ABox consistency test is performed. We
have counted the number of calls to the API function roles related? initiated by the role tester,
role successor and role predecessor generator functions; roles related? was called 4133 times. So,
without the described optimization, 4133 ABox satisfiability tests would be required for answering
Q9, each one taking approx. 3.7 seconds. This means that 4133 * 3.7 = 4.25 hours would
be needed for answering Q9 with MiDeLoRa. Moreover, the number of roles related? calls is
already minimized, since i and j are only checked for relatedness if there is an appropriate path
of role assertions connecting i and j. Thus, a naive implementation would perhaps even generate
15552 = 2418025 calls resp. ABox consistency checks, thus, 103.37 days would be needed. These
numbers demonstrate the significance of the optimizations.



Chapter 6

The MiDeLoRa Description Logic

System Construction Toolkit

Due to a lack of space we can only discuss some very core design principles of MiDeLoRa.
Unfortunately, some basic knowledge on DL tableau prover is required in this section [39, 51].

MiDeLoRa is a toolkit for crafting a DL system. Provers are primarily, but not necessarily,
tableau provers. However, also dedicated specialized provers such as instance retrieval provers can
be implemented with the provided software abstractions. The central abstraction is the notion of
the three-dimensional MiDeLoRa space S×L×T , as already introduced in Section 5.3. Substrate-
specific, language-specific, and task-specific provers cover regions in this space and are provided as
ternary Clos multi-methods (thus, they are polymorphic / do late binding w.r.t. to their three
main arguments: Substrate, Language, Task). MiDeLoRa is implemented fully object-oriented.

Since an ABox is based on the object-oriented graph substrate data model (e.g., nodes, edges,
labels are instances of Clos classes), for reasons of orthogonality we have chosen to also use this
representation for the tableau representation (the tableau is the working data structure of a tableau
prover). Thus, the system uses “boxed” data structures for tableau representation. This is a high
burden, since modifying operations on the tableau as performed by the tableau rules during the
proof must be performed destructively then. If backtracking occurs during the tableau expansion,
then some of these destructive changes to the tableau must be undone, and the tableau state be
reverted. Since the used data structures are heavyweight, it is impossible to work with “copies”
here.

The system thus keeps a so-called log buffer of the operations which have been performed on
the tableau. If a clash is encountered, this log is used to “roll back” the tableau; again, to do so,
destructive operations must be performed (see also the chain of commands pattern in [40]). To the
best of our knowledge, MiDeLoRa is the first DL system which uses this technique.

This technique has some drawbacks, especially if a lot of backtracking occurs during a tableau
proof. However, our performance measurements indicate that the additional overhead is still
acceptable. Benchmarks will be published in future work. From our point of view, the advantages
of this heavy-weight explicit representation of the complete prover state as data structures outweigh
the disadvantages, since it opens up additional potentials. For example, the prover state can be
made persistent at any time.1 Thus, MiDeLoRa is the first system that can in principle be
interrupted during a proof and resume a proof later on (in principle, even on a different machine).
This would make the system truly transactional.

Tableau provers are very complex software artifacts; especially due to the exploited optimization
methods. Maintainability and reusability is thus a prime requirement, and appropriate software
abstractions are required in order to hide complexity and achieve maintainability. MiDeLoRa
offers domain specific languages (DSLs) for prover construction. The ultimate goal of these software
abstractions is to provide conciseness and comprehensibility. With MiDeLoRa it is possible to
craft tableau provers which are nearly as concise and clear as the mathematical tableau calculi.

1A Common Lisp/Clos serializer developed by the authors makes this possible; the same serializer is also used
for storing/restoring the KB images in RacerPro.
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Figure 6.1: 5-Port-Model of a MiDeLoRa Tableau Rule

Figure 6.2: MiDeLoRa Model of an ALC Prover

Thus, it provides abstractions for: tableau rules, strategies, tableau calculi (provers). Rules are
designed according to a 5-port model which can be depicted graphically, Fig. 6.1 illustrates the
5-port-model of a simple rule. The ports of rules can then be “wired” together resp. connected
to create provers, implementing certain strategies. Since the individual rules are highly optimized,
the provers created in such way exhibit a good performance (somehow comparable to state of the
art reasoners). A simple ALC prover is shown in Fig. 6.2.

Rules and provers are reusable, extensible and parameterizable software components. Common
Lisp is an ideal language for implementing such DSLs, since it offers unique language extensibility
facilities by means of macros (e.g., definition macros such as defrule, defprover are provided;
within these definitions, no Common Lisp is visible).
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Chapter 7

Semantic Middleware

One of the most exciting promises of the Semantic Web is to enable the development of software
agents that can autonomously accomplish sophisticated, user-specific tasks. In order to do this,
software agents have to execute complex queries that may require machine-based reasoning in
order to derive implicit knowledge. The information relevant for query answering in this context
is usually located in several ontologies (also known as knowledge bases, KBs) that do not share a
common vocabulary and are distributed over the Semantic Web. In the context of the BOEMIE
project, agents might ask servers for specific media objects.

From a slightly generalized point of view, in this work we consider software applications which
in parallel generate queries w.r.t. many different “external” KBs. We presuppose that each KB is
available from one or many so-called KB or ontology server(s). Furthermore, for a particular KB
there may exist many possible reasoner systems that can answer queries over it. We concentrate
on scenarios where queries are posed to a single KB and leave out other settings which are on the
focus of established research fields like ontology integration and data exchange.

In our view, the KB servers we consider are managed by different organizations and, maybe
in the near future, each transaction (or query) requires some payment in case of a commercial
environment. Therefore, Semantic Web applications used in some company need some gateway
inference server that provides local caching (in the intranet) to: (i) reduce external communication
and (ii) avoid repetitive external server access operations in case multiple intranet applications
pose the same queries.

In order to successfully build these kinds of applications, an appropriate “semantic middleware”
is required that is responsible for organizing the access to multiple reasoners working in parallel.
If there are many reasoners available for a specific KB, the task of the middleware is to manage
request dispatching and load balancing. This is particularly important if we consider scalabilitiy
issues for BOEMIE application scenarios such as information systems for media objects. Note that
in contrast to database systems, at the current state of the art, a single reasoner does not support
transaction processing. As a result, processing multiple queries at a time does not lead to reduced
answering times compared to the sequential execution of the queries.

As we will argue below, the design of a middleware architecture concerning optimization tech-
niques must be tailored toward the specific scenario sketched above. The middleware is expected to
run at the clients’ site (in the intranet), and queries are delegated to remote reasoners. Hence, load
balancing must be accompanied by middleware-side caching in order to reduce network latency.
In order to appropriately support external services such as payment gateways, the architecture
must be based on standard software components such as application servers and must provide for
standard interfaces.

The contribution of this chapter is (i) to develop a software architecture for systematically
combining multiple Semantic Web reasoning engines and (ii) to investigate associated problems
of load balancing and caching strategies (supporting multiple users of the local site). Caching is
investigated in the presence of incrementally answered queries. In addition, the effects of concur-
rent query executions on multiple (external) inference servers and corresponding transmissions of
multiple partial result sets for queries are studied.

The rest of this chapter is structured as follows. We first discuss the specific requirements
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for the middleware with regard to the issues raised in the Semantic Web context. Afterwards,
optimization criteria have to be exploited by the middleware are described. Focusing on specific
aspects of the implementation of the architecture we then introduce core algorithms that allow for
performance improvements for multiple clients. We then evaluate the proposed architecture using
practical experiments with the particular implementation. Next, we propose further substantial
enhancements for the middleware architecture. We conclude with the summary of the chapter and
discuss ideas for future work.

7.1 Requirements for the Semantic Web Middleware

In the context of Semantic Web applications, the following requirements have to be met. It should
be mentioned that some of them are similar in database systems, but with Semantic Web-specific
peculiarities.

7.1.1 Iterative Query Answering

Modern reasoners (e.g., RacerPro [4]) support iterative query answering, where clients may specify
the maximum number of answers they want to get from the server, and thus servers return partial
answer sets. For iterative query answering, the reasoner can be configured to compute the next
tuples on demand (lazy mode) or in a concurrent way (proactive mode). Moreover, it can be
instructed to return “cheap” (easily inferable from syntactic input) tuples first [5].

By using available configuration options, such as incomplete modes, that are powerful enough
for semi-structured ontologies, the reasoner achieves significant performance improvements for
handling large ontologies. However, this task still demands reasonable hardware resources and is
notably memory-intensive.

In the Semantic Web scenario, the middleware is requested to provide for efficient iterative query
answering. Thus the middleware has to exploit the corresponding functionality and configuration
options (such as cheap tuples first mode) offered by reasoners.

7.1.2 Handling of Concurrent Client Requests

Although highly-optimized reasoners can achieve significant performance improvements for a single
client, this effect decreases in scenarios where multiple clients pose queries concurrently. In fact,
a single reasoner instance cannot process several client requests in parallel (although they can
have multiple open queries for which further tuples can be retrieved in a subsequent incremental
query). Thus, as long as the reasoner is processing a query (which usually includes activities such
as parsing the query, reading the corresponding knowledge base, classifying it, as well as finding
the requested number of answer tuples and returning them). All other clients have to wait in a
queue.

Due to this observation, we claim that one of the main requirements for the Semantic Web
middleware is the ability to handle concurrent client requests. For that, the Semantic Web middle-
ware has to act as a proxy that employs sophisticated dispatching algorithms in order to delegate
queries to multiple back-end DL reasoners. In this setting, the DL reasoners work dedicatedly in
the sense that they exclusively work for the middleware. Hence the middleware can easily moni-
tor the current state of each dedicated reasoner and can decide how to dispatch concurrent client
requests optimally.

7.1.3 Scalability and Efficiency

Another key requirement for the Semantic Web middleware is the capability to scale up in order
to support scenarios that cause high query traffic. The required scalability can be achieved by
increasing the number of reasoners managed by the middleware. In situations where a single
middleware may itself become a bottleneck, one possible solution would be to replicate it and to
set up a HTTP or hardware dispatcher in front of multiple middleware instances. This way the
middleware allows for building modular and hence scalable reasoning infrastructures for Semantic
Web applications.



89

Additionally, the middleware is required to minimize the answering time of each query, which
can only be achieved by operating as efficiently as possible. It is obvious that for a single query
the middleware can not accelerate the computation of query answers. However if queries are posed
concurrently, which regularly occurs in the Semantic Web scenario, the middleware can enable
the answering of queries in parallel and hence improve the overall efficiency. Furthermore, it can
exploit several optimization criteria to reduce the number of inference service invocations and to
find the most appropriate reasoner that can answer a query in the shortest time. We discuss details
of optimization criteria in the next section.

7.1.4 Support for Standard Query Languages

The Semantic Web middleware has to implement widely used and accepted standard components
and protocols such as interfaces, query languages and communication protocols in order to enable
the interoperability of a wide range of applications. Consequently, we argue that service-oriented
architectures and web services are first class choices for Semantic Web middleware. Considering
a query language and communication protocol, we decided on the OWL Query Language (OWL-
QL), which is a candidate standard for instance retrieval [3]. OWL-QL defines a protocol for
query-answering dialogs among agents using knowledge represented in the Web Ontology Language
(OWL [9]). It facilitates the communication between querying agents (clients) and answering agents
(servers). Due to the fact that a vast amount of information will be available in many different
formats on the Semantic Web, OWL-QL also supports features known in traditional database query
languages such as SQL. For instance, OWL-QL allows clients to request partial sets of answers.

It should be mentioned that the OWL-QL standard does not specify anything about server-side
implementation details such as caching, number of reasoners used as back-end etc. However, the
OWL-QL protocol for query-answering dialogs and the heterogeneous nature of the Semantic Web
itself makes it obvious that the middleware which claims to serve as an OWL-QL server has to
manage multiple reasoners in the background.

With regard to the near future of modern DL systems, the existing standard interface for
accessing DL reasoners (DIG) will become more important not only as a communication protocol
but also as a query language. The upcoming version, namely DIG 2.0 [12], offers many essential
features such as iterative query answering and query management. Thus it is realistic to expect
that DIG 2.0 will replace OWL-QL as a standard query language.

7.1.5 Integration with Other Software Components

Another important requirement for the middleware is to provide for easy integration into existing
infrastructures such as firewalls, application servers or billing systems. This can be achieved if the
middleware offers standard interfaces and benefits from a multi-layered architecture. Consequently,
Semantic Web applications exploiting the proposed middleware can benefit from further services
such as security, trust, accounting etc.

7.2 Optimization Criteria

The primary goal of the Semantic Web middleware is to minimize the query answering time for
each client in a scenario where multiple clients pose queries concurrently. To do this, it exploits
several optimization criteria when searching for the best decision on how to answer a query as
quickly as possible. Next we discuss these optimization criteria in detail.

7.2.1 Query Classification

We start with query classification that is crucial for choosing the right optimization strategy
according to criteria, which are described next. Due to the incremental nature of queries we
suppose, queries are categorized into the following four classes:

• First query to an unknown KB: The instances of this query class reference a KB, which
is unknown to the middleware. An unknown KB is a KB that has not been loaded by any of
the reasoners managed by the middleware.
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• New query to a known KB: New queries are queries that reference a known KB and are
posed to the middleware for the first time.

• Known query to a known KB: Known queries are queries that also reference a known
KB but have been posed to the middleware before.

• Continuation query: Continuation queries are queries posed by clients to get more answers
to a query they have posed previously. This type of queries only play a role if clients want
to get additional chunks of answer tuples.

7.2.2 Cache Usage

In the Semantic Web scenario, reasoning is an expensive task that requires considerable system
resources and time. Nowadays, most reasoners already implemented some efficient caching mech-
anism. However, if a new layer is involved to build up a reasoning infrastructure, namely a
middleware that mediates between clients and reasoners, it is much more efficient to cache inferred
knowledge in this layer. In this case queries are answered from the cache whenever possible. E.g.,
if a query is classified as a known query (to a known KB), the cache must contain at least some
of the answer tuples to this query. Only if the required number of answers cannot be delivered
completely from the cache, a reasoner will be instructed to deliver the missing number of tuples.
Hence, caching in the middleware tier will avoid unnecessary communication with reasoners. Fur-
thermore, clients will benefit from knowledge gained through queries posed by other clients. The
positive effects of the cache usage will increase the more clients interact with the middleware.

7.2.3 Query Subsumption

DL reasoners like RacerPro can classify queries in a subsumption hierarchy. Given a new query
(to a known KB), the computed subsumption hierarchy w.r.t. queries, which have been answered
from the same KB previously, can be exploited to reduce the query answering time.

If the new query is subsumed by one of the previous queries, the search space for answers to the
new query can be narrowed down from the whole domain to the answer set of the previous query.
This means that the reasoning process can benefit from the subsumption hierarchy to reduce the
computation effort and hence answer the query faster. To profit from this effect, a reasoner that
already processed a query subsuming the current query becomes the preferred candidate to answer
the current query.

In the opposite case, namely if the new query subsumes a previous query, answers of the
previous query are obviously also answers for the new query. Therefore, the middleware can first
deliver answers from the cache of the previous query. In fact, if the new query requires answers
incrementally and the number of requested answers doesn’t exceed the cache size of the previous
query, the middleware can answer the query without any communication with remote reasoners.
It should be noticed that the time spent on the computation of the query subsumption hierarchy
is ignorable short compared with the time needed for query answering on large KBs.

7.2.4 Load Balancing

In some situations the middleware can uniquely determine the most appropriate reasoner to answer
a query by exploiting the criteria discussed so far. This can be the case, for example, if a query is
classified as a continuation query (and thus containing a reference to the reasoner that has already
returned some answers to it) or if a query is a new query to a known KB that has been loaded
only by a a single reasoner.

However, there are several other scenarios where more than one reasoner can answer a query
efficiently and the middleware has to make a decision. E.g., this is the case, when a query references
a known KB that has been loaded by more than one reasoners or it references an unknown KB
and several idle reasoners could first load the KB and then answer the query. In such situations,
the middleware should take into account the current load of each reasoner and try to distribute
the reasoning tasks as homogeneously as possible. The better the middleware can balance the load
among reasoners the better it will be prepared for future queries.
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7.2.5 Knowledge-Base Distribution

Considering the load balancing criteria it is desirable for the middleware to have as many as possible
candidate reasoners for answering a query. An important precondition for a reasoner to become a
candidate to answer the query is that the reasoner already has loaded the KB referenced by the
query. If a reasoner does not “know” the KB, it first has to load it which can take quite some time
depending on unknown parameters such as size of the KB and network latency. Therefore, the
performance of the middleware can be improved substantially if reasoners are prepared for query
answering in advance, namely had loaded the KBs, classified the terminologies and constructed
the index structures for query answering.

For that, the middleware can distribute known KBs to idle reasoners that have not loaded
these KBs yet. Following a naive approach the middleware could try to distribute every known
KB to every reasoner. However, a reasoner has only a finite amount of computational resources at
its disposal and moreover some KBs may be only rarely requested. Considering these aspects, it
would make more sense to let only “relevant” KBs be pre-loaded by the reasoners, where a measure
for KB “relevance” has to be defined.



Chapter 8

RacerManager: An OWL-QL
Server as Semantic Web
Middleware

In order to support the thesis that despite its highly distributed nature, reasoners in the Semantic
Web can be appropriately integrated using specific middleware, we developed an open source
system called RacerManager1, which acts as an OWL-QL server. RacerManager (henceforth called
an OWL-QL server) passes the queries to remote or local DL-based reasoners that manage the KB
referenced in the query and load KBs from ontology servers on demand. Figure 8.1 illustrates this
scenario.

Figure 8.1: OWL-QL Server in the Semantic Web Scenario

1RacerManager can be found under: http://www.racerproject.sourceforge.net
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Our OWL-QL server is implemented in Java and integrates several widely used components
and systems, such as RacerPro as DL reasoner, Tomcat as application server/servlet container
[11], Apache Axis Web Services Framework [1], XMLBeans Framework [13] and Jena Semantic
Web Framework [7].

We chose a common n-tier architecture as the base layout for the system architecture. This is
shown in Figure 8.2. This design provides a clear separation of responsibilities, easy extensibility
by modification of single elements and a defined message flow through the system.

Figure 8.2: RacerManager Architecture

RacerManager initializes and manages an array of reasoners and offers a web service interface
for communication with clients. With respect to the states of the managed RacerPro instances and
a simple load-balancing strategy (similar to round-robin), RacerManager dispatches the queries to
RacerPro instances.

Next, we discuss the central features of the algorithms implemented in RacerManager in detail.

8.1 Caching

Due to the vague nature of the OWL-QL specification, the OWL-QL server might or might not
cache query results. However, RacerManager caches each query sent by clients and each answer
to that query gained through reasoning. Furthermore, OWL-QL allows clients to specify the
maximum number of tuples they are interested in for a certain query. The retrieval of further tuples
for the same query is possible in subsequent requests (OWL-QL calls this a dialog). Whenever a
client specifies the (maximum) number of tuples for a query, the OWL-QL server returns a unique
query identifier, a so-called process handle. Afterwards the client can request more tuples by
referring to the received process handle. The handle identifies a query and a client-specific pointer
to the element in the result set (seen as a cache array) that previously was the last tuple being
returned. In other words, the middleware manages the lifecycle of query dialogs (client sessions).
Multiple sessions for the same query term refer to the same cache array. If the same query is posed
by another client, the middleware first looks up in the cache of the corresponding query-dialog to
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answer the query. Only if the required number of answers cannot be delivered completely from the
cache, the corresponding reasoner will be contacted and only the missing tuples will be requested.
Details of the cache usage for the retrieval of answer tuples are presented in Algorithm 1.

Algorithm 1 retrieve answer tuples(num req tuples, handle):

result := {}, new tuples := {}, cached tuples := {}
current cache := cache array(handle) // retrieval ops refer to current cache
if (num req tuples + ind last tuple(handle)) > ind last tuple in cache then

num new tuples := num req tuples + ind last tuple(handle) − ind last tuple in cache
new tuples := retrieve new tuples(reasoner(handle), num new tuples, current cache)
// We assume that retrieve new tuples() adds new tuples to current cache.
// retrieve new tuples() wait until the reasoner accepts requests.
cached tuples :=

retrieve cached tuples(ind last tuple in cache − ind last tuple(handle), current cache)
result := new tuples ∪ cached tuples
ind last tuple in cache := ind last tuple in cache + num new tuples

else
result :=

retrieve cached tuples(ind last tuple in cache − (num req tuples + ind last tuple(handle),current cache)
end if
ind last tuple(handle) := ind last tuple(handle) + num req tuples
return result

Caching can result in extraordinary resource consumption. Thus, intelligent cache management
strategies are required. In our experiments we used a setting, where cache expiration can be set
to a particular duration or completely turned off. In the latter case, the cache will never expire.
The described caching mechanism can reduce communication overhead with reasoners, especially
if they reside on remote servers, and therefore will improve the overall system performance. This
holds particularly if one cache array is used for multiple clients posing the same query term. The
procedure shown in Algorithm 1 can be extended to the case where the reasoner for a particular
query answering dialog is busy (answering other queries, see below). Then it is possible to acquire
another reasoner and start with a new empty cache array.

8.2 Request Dispatching and Load Balancing

On the one hand, in the context of business applications using database replication, queries are
dispatched to a database instance with respect to the chosen load balancing strategy. On the other
hand, instructions that require a change in data must be propagated to all database instances. To
enable this, some databases, transaction processing monitors, and application servers offer different
mechanisms such as distributed commit protocols.

Regarding Semantic Web applications using OWL-QL for querying, clients can merely query
KBs but cannot modify them. Despite that, iterative query answering combined with dispatching
and load balancing is more complex than it seems at first sight. We have to consider the fact that
in queries, OWL-QL clients can dynamically reference new KBs. Therefore, an OWL-QL server
has to track the state of each reasoner it manages. Using this information, the OWL-QL server
can decide where to dispatch a query and can balance the load in a better way. The middleware
can even allocate additional reasoners and instruct them to load a KB to which an incoming query
refers (load on demand).

Whenever a query arrives at the OWL-QL server, the server has to check if it already processed
this query and if some of the answers are already in the cache of the corresponding dialog. First,
the server checks its internal repository in order to find out if the knowledge base referenced by
the query is already loaded by one of the managed reasoners. This possibly means that the server
already answered some queries from this knowledge base. In this case it has to search for a dialog
associated with the same query. If such a dialog exists, the necessary answers will be taken from
the cache. See Algorithm 1 for details of cache usage. It is obvious that there is no point in
searching for existing dialogs if none of the reasoners has the required KB loaded, i.e., if a KB is
completely new to the middleware. In this case, or if there exists no dialog with the same query
(and a known KB), a new dialog will be created (see Algorithm 2).

After a new dialog is created or an existing dialog is assigned, the server has to dispatch the
query to an appropriate reasoner. The reasoner that already returned some answers to this query
or at least loaded the referenced knowledge base is preferred. If no such reasoner can be found,
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Algorithm 2 retrieve dialog(query):

dialog := null
reasoner := null
if ¬referenced KB loaded(query) then

reasoner := get next idle reasoner()
reasoner.load KB(query)
dialog := create dialog(query, reasoner)
return dialog

else
dialog := search dialog(query)
if dialog 6= null then

return dialog
else

reasoner := get reasoner with referenced KB(query)
return create dialog(query, reasoner)

end if
end if

the server has to delegate the required reasoning task to an idle reasoner with respect to some
load balancing strategy (e.g., round robin). After an idle reasoner is found, the reasoner must be
instructed to load the referenced knowledge base first, and then to reason over it in order to return
the required number of answers.

8.3 Experiments

In order to demonstrate one of the major benefits of the middleware w.r.t. large knowledge bases
and multiple clients querying the system concurrently, we carried out some experiments with
RacerManager.

In this preliminary experiment, RacerManager is configured to manage two RacerPro instances:
one on the local host and another one on a remote machine. Moreover, two clients are involved in
the experiment. Each one poses a query regarding a sample university ontology, which is generated
using the tools provided by the Lehigh University Benchmark and includes a large data repository
with more than 20000 individuals. Note that the sample university ontology has been loaded by
both RacerPro instances during startup. The clients interact with RacerManager in the following
order: At first Client 1 sends a query that requires computation-intensive inference in order to
retrieve more than 5000 answer tuples from the university ontology. Shortly after that, Client 2
sends a query that requires a very short computation time and results in a small amount of answer
tuples from the same ontology.

The debugging information shows that RacerManager dispatches the queries to different Rac-
erPro instances and hence enables the concurrent processing of the requests. Consequently, the
client with the less demanding query, in this experiment Client 2, receives his results first.

These initial test results reveal that the proposed architecture prevents clients from blocking one
another, as it is the case when multiple clients interact with a single reasoner concurrently. Indeed,
a detailed analysis which cannot be presented here due to space constraints shows encouraging
performance results and indicates that the middleware (i.e., RacerManager) is not a bottleneck.

Currently, there exist some prototypical OWL-QL server implementations, e.g., the Stanford
OWL-QL Server [10] and DQL Server developed in Manchester [2]. The Stanford OWL-QL Server
uses the first order logic theorem prover JTP [8] and the Inference Web [6] proof exchange system
to answer the queries. It supports premises and proofs. The Manchester DQL Server can handle
only tree-shaped conjunctive queries. For each new query, it requires all tuples from the reasoner
at once and caches them. In contrast to implementations mentioned above, RacerManager focuses
on techniques which allow to achieve better scalability, high efficiency and the required quality of
service. RacerManager supports a practically very relevant subset of OWL-QL (so-called grounded
conjunctive queries) and provides the expressivity of tree-shaped conjunctive queries. Furthermore,
it handles queries that include a premise (so-called if-then queries). The server does not support
scenarios where multiple knowledge bases are to be used to answer a query or where a knowledge
base is not specified by the client.
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Figure 8.3: Enhanced Architecture for Semantic Web Middleware

8.4 Further Enhancements

Based on the requirements and optimization criteria identified for the Semantic Web middleware
and the insights gained through the implementation of an OWL-QL server we propose further
enhancements for the architecture. Figure 8.3 depicts an overview of this architecture.

In this section we not only discuss enhancements for existing components of the implementation
but also introduce new modules that provide for additional functionality.

8.4.1 The Classification Module

The classification module is a new module that has the task of analyzing incoming queries in order
to categorize them into one of the following four disjoint classes: (i) first query to an unknown KB;
(ii) new query to a known KB; (iii) known query to a known KB; (iv) continuation query.

The classification of incoming queries is valuable, because each query class uniquely determines
the optimization criteria applicable to its instances. Consequently, each query can be assigned
with a workflow w.r.t. the query class it belongs to. The procedure followed by the classification
module is shown in Algorithm 3.

Algorithm 3 classify query(query):

workflow := null
dialog := null
if continuation query p(query) then

workflow := create continuationQuery workflow(query)
else if ¬referenced KB loaded(query) then

workflow := create firstQuery to unknownKB workflow(query)
else

dialog := search dialog(query)
if dialog 6= null then

workflow := create knownQuery to knownKB workflow(dialog)
else

dialog := create dialog(query)
workflow := create newQuery to knownKB workflow(dialog)

end if
end if
return workflow
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8.4.2 Subsumption Optimizer

Subsumption optimizer is another new module that enables the enhanced architecture to benefit
from the query subsumption hierarchy. It contains a reasoner that is solely responsible for com-
puting query hierarchies for each KB. This reasoner loads every KB that is known to the system.
In particular, it stores the rather small-sized terminological part of every KB and omits the asser-
tional part. It should be noticed that as part of the subsumption optimizer this reasoner runs on
the same physical machine and requires few computational resources. As a result, the time and
the resources spent for computing the query subsumption hierarchy is ignorable compared to the
time spent for the communication overhead with remote reasoners and for query answering on KBs
with a large assertional part, which is the usual case in the Semantic Web scenario.

The subsumption optimizer module can reduce answering time of any query in case this query
is in a subsumption relation with any former query. In case the new query is subsumed by a
previous query answered by some reasoner, the subsumption optimizer sends a message to the
dispatching module that this reasoner can answer the new query faster than others. If the new
query is subsumed by more than one former queries, the most specific subsumer is used to identify
the most appropriate reasoner with the smallest search space for answering the new query.

In case the new query subsumes a former query the subsumption optimizer informs the cache
optimizer to deliver the results from the corresponding cache. Details of this new kind of cache
usage will be discussed in the following. If the new query subsumes more than one former queries,
the one with the largest cache size is preferred.

8.4.3 Cache Optimizer

The existing cache optimizer module can be extended to provide for a new kind of cache usage.
The cache optimizer gets a message from the subsumption optimizer in case it has been detected
that the new query subsumes a former query. In other words, the new query is more general than
a former query and hence, the answers of the previous query are also answers of the new query.

If the number of answers in the cache of the previous query is greater than the number of answers
requested for the new query, the new query is answered completely from the cache. Otherwise the
missing number of answers is requested for the previous query first. These answers complete the
cache of the previous query. If after that answers of the previous query are still not enough for the
new query, the new query will be send to a reasoner to get more tuples.

8.4.4 Load Balancer

In the current middleware implementation, the load balancer module makes use of the round robin
strategy. In the future, it can be enhanced to take into account the current load of each reasoner in
order to distribute the inference tasks as homogeneously as possible. For each reasoner, all requests
are collected in a reasoner-specific queue. For computing the current load of a reasoner, the load
balancer monitors the state of the corresponding queue and uses several statistics to evaluate and
compare it with others (details of this procedure are omitted here due to space restrictions). Using
this information, the reasoner with the least load is chosen for the incoming task.

8.4.5 Knowledge-Base Distributor

A new module, the knowledgebase distributor, monitors the relevance of each known KB and
instructs idle reasoners to load relevant KBs such that the middleware is optimally prepared for
feature queries. The relevance of a KB at some time can be computed by the knowledgebase
distributor by taking into account the number of reasoners that already loaded this KB and the
amount of queries posed to it so far. By doing this, the module ensures that in the future more
reasoners will be available for incoming queries. Therefore the middleware can get closer to its
primary goal of minimizing the answering time for each query.
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8.4.6 Dispatcher

The existing dispatching module forwards query answering requests to the reasoners immedi-
ately. In the enhanced architecture, this module is responsible for managing the above mentioned
reasoner-specific queues and distributing requests to the queues. The queues follow a first-come,
first served (FCFS) behavior and are unbounded in size. Other modules such as the load balancer
have just read-only access to these queues.
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