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Executive Summary

This report describes the most important extensions to the reasoning engine RacerPro which
is used in the Boemie project. These extensions are targeted to support media interpretation,
for dealing with learning, to sustain scalability issues, and to provide an initial basis for dealing
with probabilistic knowledge in media interpretation. In particular, we describe:

• Operators for supporting abduction for interpretation of multimedia documents: Given
a knowledge base (Tbox, Abox, rules) and a formula F which should be entailed by the
knowledge base, the abduction component derives a set of hypotheses which cannot be
proven to hold, but – according to the rules – have to be assumed to be true in order to
ensure that F is entailed.

• Event recognition facilities: Based on so-called event-rules, the reasoner can detect whether
a temporal high-level event can be instantiated given a set of temporal propositions about
basic events.

• Nonstandard inferences to support learning in Boemie: Racer now supports the least-
common subsumer operator for the description logic ALE and can describe Abox individ-
uals using an approximation of the most-specific concept (approximation up to nesting
level k).

• Extensions to the RacerPro Abox query language: The query language of Racer is extended
with facilities for server-side programming to support post-processing of query results in
the description logic inference system.

• Support for reasoning with triples in secondary memory: In order to achieve scalability
in various respects, Racer now allows for queries referring to triples stored in a so-called
persistent triple-store.

• An extension to RacerPro for reasoning about probabilistic knowledge: In order to deal
with uncertainty, a new kind of Tbox axiom is supported: so-called conditional constraints.
Using this construct it is, for instance, possible to represent attribute uncertainty and
structural uncertainty.

We provide examples that demostrate how the facilities can be used in the Boemie project, and
evaluate many of the implemented techniques in the Boemie context.

Parts of this report have been published in workshops and conferences. Namely, Chapter 1 is
published in [10] and [27]. The evaluation of the abduction framework is presented in [35]. The
event recognition facility is described in [27]. The triple store reasoning facility was presented
at the industrial conference SemTech-07. The probabilistic extension to Racer is described in
detail in [28].
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Chapter 1

Introduction

The reasoning engine used in the Boemie project (RacerPro) has been significantly extended
in order to meet the requirements of the project. This report describes the most important
extensions, which are (i) targeted to support media interpretation, (ii) deal with learning re-
quirements, (iii) sustain scalability issues, and (iv) provide an initial basis for dealing with prob-
abilistic knowledge in media interpretation. The reports is subdivided into different chapters
which describe the main facilities added to RacerPro:

• Operators for supporting abduction for interpretation of multimedia documents: Abduc-
tion is based on rules, i.e., the set of rules specifies the set of abducibles. Given a knowledge
base (Tbox, Abox, rules) and a formula F which should be entailed by the knowledge base,
the abduction component derives a set of hypotheses which cannot be proven to hold, but
– according to the rules – have to be assumed to be true in order to ensure that F is
entailed. In the abduction process, rules are applied in a backward-chaining way.

• Event recognition facilities: Based on so-called event-rules, the reasoner can detect whether
a temporal high-level event can be instantiated given a set of temporal proposition about
basic events. Basic events are detected by, for instance, video analysis processes. High-level
events can be used to derive high-level interpretations of multimedia documents.

• Nonstandard inferences to support learning in Boemie: Racer now supports the least-
common subsumer operator for the description logic ALE and can describe Abox individ-
uals using an approximation of the most-specific concept (approximation up to nesting
level k).

• Extensions to the RacerPro Abox query language nRQL (new Racer Query Language:
pronounce as “niracle” and hear it as “miracle”): The query language of Racer is extended
with facilities for server-side programming to support post-processing of query results in
the description logic inference system. In addition, head-projection and aggregation oper-
ators are defined that support frequently used post-processing requirements. Furthermore,
combined Tbox and Abox queries can now be specified.

• Support for reasoning with triples in secondary memory: In order to achieve scalability
in various respects, Racer now allows for queries referring to triples stored in a so-called
persistent triple-store. Queries can be answered with and without reasoning. The latter is
possible also on secondary memory.

• An extension to RacerPro for reasoning about probabilistic knowledge: In order to deal
with uncertainty, a new kind of Tbox axiom is supported: so-called conditional constraints.
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Using this construct it is, for instance, possible to represent attribute uncertainty and
structural uncertainty. In addition, new kinds of inference services related to probabilistic
knowledge are defined: probabilistic subsumption, probabilistic instance checking.

We provide examples that demostrate how the facilities can be used in the Boemie project, and
evaluate many of the implemented techniques in the Boemie context.



Chapter 2

Abduction

Automated extraction of information from different types of multimedia documents such as
image, text, video, and audio becomes more and more relevant for intelligent retrieval systems.
An intelligent retrieval system is a system with a knowledge base and capabilities that can be used
to establish connections between a request and a set of data based on the high-level semantics of
the data (which can also be documents). Typically, nowadays, automated semantics extraction
from multimedia occurs by using low-level features and is often limited to the recognition of
isolated items if even. Examples are single objects in an image, or single words (or maybe
phrases) in a text. However, multimedia documents such as images usually present more than
objects detectable in a bottom-up fashion. For instance, an image may illustrate an abstract
concept such as an event. An event in a still image can hardly be perceived without additional
high-level knowledge.

We see multimedia interpretation as abduction (reasoning from effects to causes) in that we
reason from observations (effects) to explanations (causes). The aim of this work is to present a
novel approach for multimedia interpretation through Abox abduction, which we consider as a
new type of non-standard retrieval inference service in DLs. In particular, we focus on the use
of DL-safe-like rules for finding explanations and introduce a preference measure for selecting
‘preferred’ explanations.

2.1 Related Work on Media Interpretation and Abduction

The idea of formalizing interpretation as abduction is investigated in [16] in the context of text
interpretation. In [38], Shanahan presents a formal theory of robot perception as a form of
abduction. In this work, low-level sensor data is transformed into a symbolic representation of
the world in first-order logic and abduction is used to derive explanations. In the context of scene
interpretation, recently, in [29] the use of DLs for scene interpretation processes is described.

In this report we present a novel approach based on the combination of the works in [16, 38] and
[29], and indicate how formal representation and reasoning techniques can be used for interpreta-
tion of information extracted from multimedia documents. The approach used description logics
and rules, with abduction implemented with backward-chaining applied to the rules. In contrast
to approaches such as [18], which use abduction in the context of rules in logic programming, we
use description-logic reasoning for proving subgoals of (non-recursive) rules. Other approaches
for abduction in description logics (e.g., [4]) have dealt with concept abduction only. In [9]
among other abductive reasoning tasks in DLs also Abox abduction is discussed. A solution to
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the Abox abduction problem is formally presented, but it is not shown how to derive solutions.

Abduction is investigated for supporting information retrieval based on high-level descriptions
on media content. The approach builds on [26] and, in contrast to later related work such as [7],
the approach is integrated into a mainstream description logic system and is based on high-level
descriptions of media content.

2.2 Retrieval Inference Services

Before introducing abduction as a new inference service, we start with an overview of retrieval
inference services that are supported by state-of-the-art DL reasoners.

The retrieval inference problem w.r.t. a Tbox T is to find all individuals mentioned in an
Abox A that are instances of a certain concept C: {x mentioned in A | (T ,A) |= x : C}.
In addition to the basic retrieval inference service, expressive query languages are required in
practical applications. Well-established is the class of conjunctive queries. A conjunctive query
consists of a head and a body. The head lists variables for which the user would like to compute
bindings. The body consists of query atoms (see below) in which all variables from the head
must be mentioned. If the body contains additional variables, they are seen as existentially
quantified. A query answer is a set of tuples representing bindings for variables mentioned in
the head. A query is a structure of the form {(X1, . . . , Xn) | atom1, . . . , atomm}.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X,Y )), same-as query
atoms (X = Y ) as well as so-called concrete domain query atoms. The latter are introduced
to provide support for querying the concrete domain part of a knowledge base and will not be
covered in detail here. Complex queries are built from query atoms using boolean constructs for
conjunction (indicated with comma) or union (∨).

In standard conjunctive queries, variables (in the head and in query atoms in the body) are bound
to (possibly anonymous) domain objects. A system supporting (unions of) standard conjunctive
queries is QuOnto. In so-called grounded conjunctive queries, C(X), R(X,Y ) or X = Y are
true if, given some bindings α for mapping from variables to individuals mentioned in the Abox
A, it holds that (T ,A) |= α(X) : C, (T ,A) |= (α(X), α(Y )) : R, or (T ,A) |= α(X) = α(Y ),
respectively. In grounded conjunctive queries the standard semantics can be obtained for so-
called tree-shaped queries by using corresponding existential restrictions in query atoms.

In practical applications it is advantageous to name subqueries for later reuse, and practical
systems, such as for instance RacerPro, support this for grounded conjunctive queries with
non-recursive rules of the following form

P (X1, . . . , Xn1)← A1(Y1), . . . , Al(Yl), R1(Z1, Z2), . . . , Rh(Z2h−1, Z2h). (2.1)

The predicate term to the left of ← is called the head and the rest is called the body (a set of
atoms), which, informally speaking, is seen as a conjunction of predicate terms. All variables
in the head have to occur in the body, and rules have to be non-recursive (with the obvious
definition of non-recursivity). Since rules have to be non-recursive, the replacement of query
atoms matching a rule head is possible (unfolding, with the obvious definition of matching).
The rule body is inserted (with well-known variable substitutions and variable renamings). If
there are multiple rules (definitions) for the same predicate P , corresponding disjunctions are
generated. The unfolding process starts with the set of atoms of a query. Thus, we start with a
set of atom sets.

{{atom1, atom2, . . . atomk}}
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Each element of the outer set represents a disjunct. Now, wlog we assume that there are n
rules matching atom2. Then, the set {atom1, atom2, . . . atomk} is eliminated and replaced with
the sequence of sets {atom1} ∪ replace vars( body(rule1), head(rule1), atom2) ∪ {. . . atomk},
. . . , {atom1} ∪ replace vars(body (rulen), head(rulen), atom2) ∪ {. . . atomk}. The unfolding
process proceeds until no replacement is possible any more (no rules match). The unfold operator
is used in the abduction process, which is described in the next section.

2.3 Abduction as a Non-Standard Inference Service

In this report, we argue that abduction can be considered as a new type of non-standard retrieval
inference service. In this view, observations (or part of them) are utilized to constitute queries
that have to be answered. Contrary to existing retrieval inference services, answers to a given
query cannot be found by simply exploiting the knowledge base. In fact, the abductive retrieval
inference service has the task of acquiring what should be added to the knowledge base in order
to positively answer a query.

More formally, for a given set of Abox assertions Γ (in form of a query) and a knowledge base
Σ = (T ,A), the abductive retrieval inference service aims to derive all sets of Abox assertions
∆ (explanations) such that Σ ∪∆ |= Γ and the following conditions are satisfied:

• Σ ∪∆ is satisfiable, and

• ∆ is a minimal explanation for Γ, i.e., there exists no other explanation ∆′ in the solution
set that is not equivalent to ∆ and it holds that Σ ∪∆′ |= ∆.

In addition to minimality (simplicity), in [16] another dimension called consilience is mentioned.
An explanation should explain as many elements of Γ as possible. Both measures are contradic-
tory.

In the next section, we will focus on the use of abductive retrieval inference services for multi-
media interpretation and address two important issues, namely finding explanations that meet
the conditions listed above and selecting ‘preferred’ ones.

2.4 Interpretation of Multimedia Documents

For intelligent retrieval of multimedia documents such as images, videos, audio, and texts, infor-
mation extracted by media analysis techniques has to be enriched by applying high-level inter-
pretation techniques. The interpretation of multimedia content can be defined as the recognition
of abstract knowledge, in terms of concepts and relations, which are not directly extractable by
low-level analysis processes, but rather require additional high-level knowledge. Furthermore,
such abstract concepts are represented in the background knowledge as aggregate concepts with
constraints among its parts.

In this section, we start by specifying the requirements for the abduction approach by defining its
input and output. Then, we proceed with describing the framework for generating explanations,
and finally introduce a scenario with a particular example involving for image interpretation
where various explanations are generated and the usefulness of a preference score is demon-
strated.
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2.4.1 Requirements for Abduction

The abduction approach requires as input a knowledge base Σ consisting of a Tbox T and an
Abox A. We assume that the information extracted from a multimedia document through low-
level analysis (e.g., image analysis) is formally encoded as a set of Abox assertions (Γ). For
example, in the context of images for every object recognized in an image, a corresponding
concept assertion is found in Γ. Usually, the relations that can be extracted from an image are
spatial relations holding among the objects in the image. These relations are also represented
as role assertions in Γ. In order to construct a high-level interpretation of the content in Γ,
the abduction process will extend the Abox with new concept and role assertions describing the
content of the multimedia document at a higher level.

The output of the abduction process is formally defined as a set of assertions ∆ such that
Σ ∪ ∆ |= Γ, where Σ = (T ,A) is the knowledge base (usually the Abox A is assumed to
be empty), Γ is a given set of low-level assertions, and ∆ is an explanation, which should be
computed. The solution ∆ must satisfy certain side conditions (see Section 2.3). To compute
the explanation ∆ in our context we modify this equation into

Σ ∪ Γ1 ∪∆ |= Γ2, (2.2)

where the assertions in Γ will be split into bona fide assertions (Γ1) and assertions requiring fiats
(Γ2).1 Bona fide assertions are assumed to be true by default, whereas fiat assertions are aimed
to be explained. The abduction process tries to find explanations (∆) such that Γ2 is entailed.
This entailment decision is implemented as (boolean) query answering. The output ∆ of the
abduction process is represented as an Abox. Multiple solutions are possible.

2.4.2 The Abduction Framework

The abduction framework exploits the non-recursive rules of Σ to answer a given query in a
backward-chaining way (see Framework 1). The function compute_explanations gets Σ,Γ1,
and Γ2 as input. We assume a function transform_into_query that is applied to a set of Abox
assertions Γ2 and returns a set of corresponding query atoms. The definition is obvious and left
out for brevity. Since the rules in Σ are non-recursive, the unfolding step (see Line 2 in Frame-
work 1) in which each atom in the transformed Γ2 is replaced by the body of a corresponding
rule is well-defined. The function unfold returns a set of atom sets (each representing a disjunct
introduced by multiple matching rules, see above).

The function explain computes an explanation ∆ for each γ ∈ Γ′2. The function vars (or inds)
returns the set of all vars (or inds) mentioned in the argument structures. For each variable in
γ a new individual is generated (see the set new inds in Line 7). Besides old individuals, these
new individuals are used in a non-deterministic variable substitution. The variable substitution
σγ,new inds (line 8) is inductively extended as follows:

• σγ,new inds({a1, . . . , an}) =def {σγ,new inds(a1), . . . , σγ,new inds(an)}

• σγ,new inds(C(x)) =def C(σγ,new inds(x))

• σγ,new inds(R(x, y)) =def R(σγ,new inds(x), σγ,new inds(y))

• σγ,new inds(x) =def x if x is an individual

1With the obvious semantics we slightly abuse notation and allow a tuple of sets of assertions Σ to be unioned
with a set of assertions Γ1 ∪∆.
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The function transform maps C(i) into i : C and R(i, j) into (i, j) : R, respectively. All
satisfiable explanations ∆ derived by explain are added to the set of explanations ∆s. The
function compute-preferred-explanations transforms the ∆s into a poset according to a
preference measure and returns the maxima as a set of Aboxes. The preference score of a ∆
used for the poset order relation is: Spref (∆) := Si(∆)− Sh(∆) where Si and Sh are defined as
follows.

• Si(∆) := |{i|i ∈ inds(∆) and i ∈ inds(Σ ∪ Γ1)}|

• Sh(∆) := |{i|i ∈ inds(∆) and i ∈ new inds}|

Algorithm 1 The Abduction Framework
1: function compute explanations(Σ,Γ1,Γ2, S) : set of Aboxes
2: Γ′2 := unfold(transform into query(Γ2),Σ) // Γ′2 = {{atom1, . . . , atomm}, . . .}
3: ∆s := {∆ |∃γ ∈ Γ′2.(∆ = explain(Σ,Γ1, γ),Σ ∪ Γ1 ∪∆ 6|= ⊥)}
4: return compute preferred explanations(Σ,Γ1,∆s, S)

5: function explain(Σ,Γ1, γ) : Abox
6: n := |vars(γ)|
7: new inds := {new indi | i ∈ {1 . . . n}}, where new inds ∩ (inds(Σ) ∪ inds(Γ1)) = ∅
8: ∆ := {transform(a) | ∃σγ,new inds : vars(γ) 7→ (inds(Σ) ∪ inds(Γ1) ∪ new inds).
9: (a ∈ σγ,new inds(γ), (Σ ∪ Γ1) 6|= a)}

10: return ∆

11: function compute preferred explanations(Σ,Γ1,∆s, S) : set of Aboxes

12: return maxima(poset(∆s, λ(x, y) • S(x) < S(y)))

Depending on the preference function given as the actual parameter for the argument S, the
procedure compute_explanations can be considered as an approximation w.r.t. the minimality
and consilience condition defined in Section 2.3. It adds to the explanation those query atoms
that cannot be proven to hold.

For the abduction framework, only the rules are considered. The GCIs should be used for
abduction as well, however. We might accomplish this by approximating the Tbox with the DLP
fragment and, thereby, see the Tbox axioms from a rules perspective in order to better reflect the
Tbox in the abduction process. The procedure does not add irrelevant atoms (spurious elements
of an explanation), in case the rules are well-engineered and do not contain irrelevant ways to
derive assertions. The procedure could be slightly modified to check for those redundancies.

2.4.3 An Example for Image Interpretation as Abduction

For the image shown in Figure 2.1, we suppose the Abox in Figure 2.2 is provided by low-level
image analysis. Furthermore, a sample Tbox of the athletics domain and a small set of rules
are assumed to be provided as background knowledge Σ (see Figure 2.3). In order to keep
the example as brief as possible, only a very small fragment of the ontology developed in work
package 3 of the Boemie project is used here.

In order to find a ‘good’ high-level interpretation of this image, we divide the Abox Γ into Γ1 and
Γ2 following Equation 2.2. In this example Γ1 contains {pole1 : Pole, human1 : Human, bar1 :
Bar} and Γ2 contains {(bar1, human1) : near}. Consequently, the abductive retrieval inference
service computes the following boolean query in line 2: Q1:={() | near(bar1, human1)}. In this
report we do not elaborate on the strategy to determine which Γ2 to actually choose.



8

Figure 2.1: A pole vault event.

pole1 : Pole
human1 : Human

bar1 : Bar
(bar1, human1) : near

Figure 2.2: An Abox Γ representing the results
of low-level image analysis.

Jumper v Human
Pole v Sports Equipment
Bar v Sports Equipment

Pole uBar v ⊥
Pole u Jumper v ⊥
Jumper uBar v ⊥

Jumping Event v ∃≤1hasParticipant.Jumper
Pole V ault v Jumping Event u ∃hasPart.Pole u ∃hasPart.Bar
High Jump v Jumping Event u ∃hasPart.Bar
near(Y,Z) ← Pole V ault(X), hasPart(X,Y ), Bar(Y ),

hasPart(X,W ), Pole(W ), hasParticipant(X,Z), Jumper(Z)
near(Y,Z) ← High Jump(X), hasPart(X,Y ), Bar(Y ),

hasParticipant(X,Z), Jumper(Z)

Figure 2.3: A tiny example Σ consisting of a Tbox and DL-safe rules.

Obviously, both rules in Σ match with the ‘near’ atom in query Q1. Therefore, the abduction
framework first generates explanations by non-deterministically substituting variables in the
query body with different instances from Γ1 or with new individuals. Some intermediate ∆
results turn out to be unsatisfiable (e.g., if the bar is made into a pole by the variable subsitution
process). However, several explanations still remain as possible interpretations of the image. The
preference score is used to identify the ‘preferred’ explanations. For example, considering the
following explanations of the image

• ∆1 = {new ind1 : Pole V ault, (new ind1, bar1) : hasPart, (new ind1, new ind2) : hasPart, new ind2 :
Pole, (new ind1, human1) : hasParticipant, human1 : Jumper}

• ∆2 = {new ind1 : Pole V ault, (new ind1, bar1) : hasPart, (new ind1, pole1) : hasPart,
(new ind1, human1) : hasParticipant, human1 : Jumper}

• ∆3 = {new ind1 : High Jump, (new ind1, bar1) : hasPart, (new ind1, human1) : hasParticipant,
human1 : Jumper}

the preference measure of ∆1 is calculated as follows: ∆1 incorporates the individuals human1

and bar1 from Γ1 and therefore Si(∆1)=2. Furthermore, it hypothesizes two new individuals,
namely new ind1 and new ind2, such that Sh(∆1)=2. The preference score of ∆1 is S(∆1)=
Si(∆1)- Sh(∆1)=0. Similarly, the preference scores of the second and third explanations are
S(∆2)=2 and S(∆3)=1. After transforming the ∆s into a poset, the algorithm computes the
maxima. In our case, the resulting set of Aboxes contains only one element, ∆2, which represents
the ‘preferred’ explanation. Indeed, the result is plausible, since this image should better be
interpreted as showing a pole vault and not a high jump, due to the fact that low-level image
analysis could detect a pole, which should not be ignored as in the high-jump explanation.
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2.5 Evaluation

The overall goal of the framework is to provide high-level content descriptions of media doc-
uments for maximizing precision and recall of semantics-based information retrieval. In this
section, we provide an empirical evaluation of the results of the framework on a collection of
athletics images in order to analyze the utility of the framework.

For this purpose, we implemented the media interpretation framework discussed above. The core
component of this implementation is the DL-reasoner RacerPro that supports various inference
services. The abductive retrieval inference service, which is the key inference service for media
interpretation, is integrated into the latest version of RacerPro. The framework gets analysis
Aboxes, exploits various inference services of RacerPro, and returns interpretation Aboxes as
high-level content descriptions. For the time being, the computation of preference scores is not
implemented and, therefore, interpretation Aboxes contain all possible explanations.

To test the implementation, we used an ontology about the athletics domain and an image
corpus. The corpus consists of images showing either a pole vault or a high jump event. The
images have been manually annotated with annotation tools in order to train low-level feature
extractors for prospective athletics corpora. I.e., using the annotation tools, annotators manually
annotated regions of images (as visual representations of concepts), with corresponding concepts
from the ontology such as Pole, Bar and PersonFace. Afterwards, annotated images have been
analyzed automatically to detect relations between concept instances. Finally, for each image in
the corpus an analysis Abox with corresponding assertions has been generated.

We tested the implementation in the following setup: the aggregate concepts PoleVault and
HighJump from the domain ontology are defined as target concepts. Analysis Aboxes of pole
vault and high jump images are used as input for high-level media interpretation. The results
obtained for pole vault and high jump images are shown in Figure 2.4 and 2.5, respectively.
To analyze the usefulness of the results for information retrieval, in both figures interpretation
Aboxes are categorized w.r.t. the existence (or absence) of aggregate concept instances: A)
contains no aggregate concept instances at all B) contains an aggregate concept instance but
no target concept instance C ) contains a HighJump and a PoleVault instance D) contains a
PoleVault instance E ) contains more than one PoleVault instances and one or no HighJump
instances

At first sight, only interpretation Aboxes that fall into the category D in Figure 2.4 look like
‘good’ interpretation results for pole vault images, because the corresponding images are an-
notated with a single PoleVault instance. However, if the implementation would be enhanced
to include preference scores, as discussed in Section 2.4.2 for an example pole vault image, all
interpretation Aboxes of category C and E would include the most ‘preferred’ explanation only
(in this case a single PoleVault instance), and hence fall into the category D, too.

Both in Figure 2.4 and 2.5, category A interpretation Aboxes are identical to the corresponding
analysis Aboxes and indicate that no new knowledge could be inferred through high-level inter-
pretation. For other images (category B interpretation Aboxes) high-level interpretation infers
new knowledge (including an aggregate concept instance) but fails to derive an instance of the
target concepts.

In fact, category B interpretation Aboxes contain a Person instance to explain the existence of
PersonBody and PersonFace instances and their constellation in the image. Deeper analysis of
category A and B interpretation Aboxes showed that insufficient interpretation results are caused
by the failure of image analysis to extract some of the existing relations in the corresponding
images. Taking into account the ambiguity and uncertainty involved in the image analysis
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Figure 2.4: Results for pole vault images.

process, this information (the failure of adequate interpretation) can be used to create a valuable
feedback for the image analysis tools.
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Figure 2.5: Results for high jump images.

Figure 2.5 shows that every high jump image is interpreted as either showing a high jump or a
pole vault event (category C), besides incompletely analyzed ones, which fall into the categories
A or B. Different from pole vault images, interpretations of high jump images cannot be dis-
ambiguated through preference scores. This result indicates that necessary rules are missing in
the background knowledge due to the fact that, currently, image analysis cannot extract distinc-
tive features of high jump images. Note that appropriate fusion of information from different
modalities can help to solve this problem, even if image analysis results cannot be improved.
For example, if an image is captioned with text, text analysis can extract additional information
that can be used to disambiguate the interpretation of the image.

Our experiments showed that, if provided with an appropriate ontology and low-level anno-
tations, the existing implementation of the media interpretation framework delivers promising
results for images and can be used for maximizing precision and recall of semantics-based infor-
mation retrieval systems.
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2.6 Summary

In this chapter we presented a novel approach to interpret multimedia data using abduction with
description logics that makes use of a new type of non-standard retrieval service in DLs. We
showed that results from low-level media analysis can be enriched with high-level descriptions
using our Abox abduction approach. In this approach, backward-chained DL-safe-like rules are
exploited for generating explanations. For each explanation, a preference score is calculated in
order to implement the selection of ‘preferred’ explanations. Details of the approach have been
discussed with a particular example for image interpretation.

The idea of formalizing interpretation as abduction is investigated in [16] in the context of
text interpretation. In [38], Shanahan presents a formal theory of robot perception as a form of
abduction, where low-level sensor data is transformed into a symbolic representation of the world
in first-order logic and abduction is used to derive explanations. In [9] a detailed discussion of
abductive reasoning tasks in DLs including Abox abduction is presented. The authors consider
the development of algorithmic techniques based on semantic tableaux for employing abductive
inference in expressive DLs as the most promising approach. However, a solution to the Abox
abduction problem is formally presented, but for the time being it is not shown how to derive
solutions.

The abduction approach we follow in this report is based on the combination of the works in
[16], [38] and [29]. In contrast to approaches such as [18], which use abduction in the context
of rules in logic programming only, we combine existing DL reasoning mechanisms and rules in
a coherent framework and consider abduction as a new type of non-standard retrieval inference
service, which is integrated into existing DL reasoners.

In this report we presented a media interpretation framework that leverages low-level informa-
tion extraction to a higher level of abstraction and, therefore, enables the automatic annotation
of documents through high-level content descriptions. The availability of high-level content de-
scriptions for media documents will enable semantics-based information retrieval using more
abstract terms, which is essential for the Semantic Web. The key inference service used by this
framework is the abductive retrieval inference service that generates explanations for observa-
tions.

The empirical evaluation presented in this report indicates that a coherent framework incorporat-
ing appropriate ontology design, dedicated low-lewel IE and reasoning in DLs delivers promising
results for media interpretation. Further analysis of test results showed that the implementation
of the proposed preference score will enhance the results of media interpretation and, therefore,
contribute to the maximization of precision and recall of semantics-based information retrieval.

Currently, we are investigating fusion of information from different modalities to enhance media
interpretation results. In our future work, we will investigate inductive learning of DL-safe rules
for abduction using training data.
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Chapter 3

Event Recognition Facility

In some applications it might be interesting to state that assertions are valid only within a certain
time interval. This is not possible with standard description logic systems. There are several
research results available on qualitative temporal reasoning in the context of description logics.
RacerPro can support qualitative temporal reasonsing as part of the nRQL system (compare
the section on RCC substrates in the User’s Guide). In addition, in some cases, quantitative
information about time intervals might be available and could be relevant for query answering.
RacerPro now also supports Abox query answering w.r.t. assertions that are associated with
specifications for time intervals.

Algorithms for answering queries involving rules with time variables have been published in [31]
and [30]. In addition to the original Prolog-style approach in [30], conjunctive query atoms for
Aboxes are provided for queries with time variables in RacerPro.

3.1 Temporal Propositions:

We assume that assertions involving time variables such as, e.g. “ind1 approaching ind2 from t1
to t2” are generated by low-level image sequence analysis processes. The results are added to an
ABox as so-called temporal propositions.

A temporal proposition is a syntactic structure of the following form:

P[t1,t2](ind1, . . . , indn)

where ti denotes an element of a linear temporal structure Θ ⊆ N, indi with i ∈ {1, . . . , n}
denotes an individual, and P ∈ Preds.

The semantics for rules with time intervals is different from DL-safe rules, and formally defined
as follows. Let Θ ⊆ N be a linear temporal structure. A temporal interpretation IT is a tuple
(∆, ·I ,Θ,=) such that, in addition to the standard components of an interpretation, = is an
injective mapping from the temporal structure Θ to a set of standard Tarskian interpretation
functions as used in previous sections.

A temporal interpretation IT = (∆, ·I ,Θ,=, ) satisfies a GCI or an ABox assertion if the standard
part (∆, ·I) satisfies the GCI or the ABox assertion. The remaining components are used for
defining satisfiability of temporal propositions. A temporal interpretation IT satisfies a temporal
proposition P[t1,t2](ind1, . . . , indn) if the predicate is true for all time points in the non-empty
interval [t1, t2]. Hence, we assume that temporal propositions are durative, i.e., the proposition
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holds for all non-empty subintervals for a more detailed analysis. More formally:

IT |= P[t1,t2](ind1, . . . indn)

if for all θ ∈ Θ, |Θ| > 1, it holds that if t1 ≤ θ ≤ t2, then (ind=(θ)
1 , . . . , ind

=(θ)
n ) ∈ P=(θ).

As usual, a temporal interpretation that satisfies a temporal proposition is called a temporal
model for this term. A temporal interpretation which satisfies a GCI or an ABox assertion is
called a (temporal) model for the GCI or ABox assertion, respectively. An Abox with a set
of temporal propositions such as, e.g. {move forward[10,20](ind1),move backward[10,20](ind1)}
should be inconsistent, but this requires (TBox) knowledge about the disjointness of predicates
move forward and move backward for all time points. We ignore these issues here.

3.2 Queries w.r.t. Temporal Propositions:

In order to support event recognition in an ontology-based media interpretation system, we
introduced temporal propositions. For queries over ABoxes that also contain temporal propo-
sitions, rules with time intervals can be defined. Suppose three disjoint sets of names Preds,
TimeV ars and V ars neither of which is a subset of the names mentioned in the axioms of the
ontology. Then, a rule with time intervals has the following structure:

P[T0,T1](X1, . . . , Xn1) ← Q1[T2,T3](Y1,1, . . . , Y1,m1),
. . .
Qk [T2k,T2k+1](Yk,1, . . . , Yk,mk),
A1(Z1),
. . .
Al(Zl),
R1(W1,W2),
. . .
Rh(W2h−1,W2h).

where the Ti ∈ TimeV ars are temporal variables andXi, Yj,k, Zl,Wh ∈ V ars are (not necessarily
disjoint) variables that are bound to individuals mentioned in the ABox, P,Qi ∈ Preds, and
Aj , Rk are concept names and role names, respectively. In a similar way as for conjunctive
queries introduced above, all variables in the head must be mentioned in the body, and rules
must be non-recursive. Thus, queries w.r.t. time variables are unfolded, similar to rules for
defined queries.

A conjunctive query with time variables is an expression of the following form:

{(X1, . . . , Xn)[T1,T2] | Q1[T2,T3](Y1,1, . . . , Y1,m1),
. . .
Qk [T2k,T2k+1](Yk,1, . . . , Yk,mk),
A1(Z1),
. . .
Al(Zl),
R1(W1,W2),
. . .
Rh(W2h−1,W2h)}

Note that the variablesXi, Yi,j , Zi, andWi are not necessarily disjoint. A tuple (ind1, . . . , indn)[t1,t2]

is a potential solution of a grounded unfolded temporal conjunctive query (temporal query
for short) if the variable substitution [X1 ← ind1, . . . , Xn ← indn, T1 ← t1, T2 ← t2] can
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be extended with additional assignments for all other variables in the body such that the
resulting query atoms after applying the substitution are satisfied in all temporal models of
the ontology (TBox and ABox). The result set for a temporal query comprises all tuples
(ind1, . . . , indn)[(t1min ,t1max ),(t2min ,t2max )] such that there exists no other potential solution
(ind1, . . . , indn)[t1,t2] with t1 < t1min or t1 > t1max or t2 < t2min or t2 > t2max .

3.3 Example: Detecting High-Jump Events

Time intervals are important for recognizing events in image sequences. In contrast to still
images, events in image sequences have a temporal extension that has to be appropriately con-
sidered for constructing media interpretations. In order to detect high-level events such as
“high-jump”, event predicates are described using rules with time variables. For high-jump
events we sketch the rule design pattern in Figure 3.1. In our approach we suppose that basic
events can be detected by image analysis processes. Basic events are described with temporal
propositions (being added to an interpretation ABox by low-level processes). An example is
shown in Figure 3.2.

High Jump Event[T1,T2](X,Y ) ← accelerate horizontally[T1,T3](Y ),
vertical upward movement[T3,T4](Y ),
turn[T4,T5](Y ),
vertical downward movement[T5,T2](Y ).
Jumper(Y ),
High Jump(X),
hasPart(X,Y ),

Figure 3.1: Rule with time intervals for recognizing high jump events.

accelerate horizontally[219,224] (moving object1)
vertical upward movement[224,226] (moving object1)

turn[226,228] (moving object1)
vertical downward movement[228,230] (moving object1)

moving object1 : Jumper
event1 : High Jump

(event1,moving object1) : hasPart

Figure 3.2: Abox assertions for basic events (temporal propositions) that are detected by image
sequence analysis components. In addition, three standard assertions possibly extracted from
other sources (e.g. images and text) are added.

In order to actually recognize events for particular individuals which satisfy restrictions w.r.t.
the ontology, the query language for temporal propositions introduced in Section 2.2 is applied.
An example for a query involving events and time intervals is shown below.

{(X)[T1,T2] | High Jump Event[T1,T2](X,Y )}

To answer a query, two steps have to be carried out. First, an assignment α for query variables
(i.e. X in the query shown above) has to be found such that the body predicate terms and
atoms are satisfied. Second, the goal is to determine lower bound and upper bound values for
the temporal variables (T1, T2 in the example) such that the temporal propositions in the query
body are satisfied. The result of the example query is (event1)[(219,223),(229,230)]. Thus, for all
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T1 ∈ (219, 223) and T2 ∈ (229, 230) and for all remaining temporal variables in the body of the
rule in Figure 3.1 there exist values such that all predicate terms in the body are satisfied with
the assignment α(X)→ event1.

If a high-jump event is expected but the query for the high-jump event (see above) returns false,
then abduction can be used to determine what has to be added to the interpretation ABox.

3.4 Example in Racer Syntax

The following example shows a concrete example using the syntax supported by RacerPro (the
example is inspired by the traffic-scene domain used in the original work published in [31] and
[30]).

(in-knowledge-base traffic-analysis)

(define-primitive-role r :inverse r)

(implies car vehicle)
(implies volkswagen car)

(instance vw1 volkswagen)
(instance vw2 volkswagen)
(instance ralf pedestrian)
(related vw2 vw1 r)

(define-event-assertion ((move vw1) 7 80))
(define-event-assertion ((move vw2) 3 70))
(define-event-assertion ((move ralf) 3 70))
(define-event-assertion ((approach vw1 vw2) 10 30))
(define-event-assertion ((behind vw1 vw2) 10 30))
(define-event-assertion ((beside vw1 vw2) 30 40))
(define-event-assertion ((in-front-of vw1 vw2) 40 80))
(define-event-assertion ((recede vw1 vw2) 40 60))

(define-event-rule ((overtake ?obj1 ?obj2) ?t1 ?t2)
((?obj1 car) ?t0 ?tn)
((?obj1 ?obj2 r) ?t0 ?tn)
((move ?obj1) ?t0 ?t2)
((move ?obj2) ?t1 ?t2)
((approach ?obj1 ?obj2) ?t1 ?t3)
((behind ?obj1 ?obj2) ?t1 ?t3)
((beside ?obj1 ?obj2) ?t3 ?t4)
((in-front-of ?obj1 ?obj2) ?t4 ?t2)
((recede ?obj1 ?obj2) ?t4 ?t2))

The following query checks whether there exists an overtake event hidden in the Abox and the
event assertions.

(timenet-retrieve ((overtake ?obj1 ?obj2) ?t1 ?t2))
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The query returns a set of binding for variables if an event can be detected (and nil otherwise).
For time variables an interval for the lower-bound and upper-bound are returned. Thus, the
overtake event start at time unit 10 at the earliest and 29 at the latest. It ends at time unit
29 at the earliest and 60 at the latest. In a future version of RacerPro, redundant binding
specifications will be removed.

(((?obj1 vw1) (?obj2 vw2) (?t1 (10 29)) (?t2 (41 60)))
((?obj1 vw1) (?obj2 vw2) (?t1 (10 29)) (?t2 (41 60))))

Note that the example involves reasoning. The fact that vw1 is a car is only implicitly stated.
In addition, temporal constraints have to be checked for the time intervals.

In the previous queries, variables are used. However, one might very well use constants in event
queries as shown in the following example.

(timenet-retrieve ((overtake ?obj1 vw2) ?t1 ?t2))

Now, only bindings for the variable ?obj1 are returned.

(((?obj1 vw1) (?t1 (10 29)) (?t2 (41 60)))
((?obj1 vw1) (?t1 (10 29)) (?t2 (41 60))))

In a future version, a forward-chaining application of event rules will be supported, so there is
no need to repeatedly cycle through all known events using respective queries.
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Chapter 4

Nonstandard Inferences

RacerPro 1.9.1 provides a prototypical implementation of the LCS operator (least-common sub-
sumer) for the description logic ALE with unfoldable Tboxes. Furthermore, the MSC-k (most-
specific concept up to k levels of nested existentials) is supported. In order to demonstrate the
application of these operators, the following knowledge base is used.

4.1 Least-Common Subsumer

The least common subsumer of a given collection of concept descriptions is a description that
represents the properties that all the elements of the collection have in common. More formally,
it is the most-specific concept description that subsumes the given descriptions:

Definition: The least common subsumer of a given collection of concept descriptions is a
description that represents the properties that all the elements of the collection have in common.
More formally, it is the most-specific concept description that subsumes the given descriptions:

Definition: Let L be a description language. A concept description E of L is the least common
subsumer (lcs) of the concept descriptions C1, . . . , Cn in L (lcs(C1, . . . , Cn) for short) iff it
satisfies

1. Ci v E for all i = 1, . . . , n, and

2. E is the least L-concept description satisfying (1.), i.e., if E0 is a L-concept description
satisfying Ci v E0 for all i = 1, . . . , n, then E v E0. As an easy consequence of this
definition, the lcs is unique up to equivalence.

4.2 Most-Specific Concept up to Nesting Level k

The most-specific concept is defined as follows:

Definition: A concept description E in some description language L is the most-specific concept
(MSC) of a individual a defined in an ABox A (msc(a) for short) iff

1. A |= E(a), and

2. E is the most-specific concept satisfying (1.), i.e., if E0 is an L -concept description satis-
fying A |= E0(ai) for all i = 1, . . . , n, then E v E0.
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The description language we consider here is ALE . Usually, no finite most-specifc concept exists
even for simple Aboxes. Therefore, we consider the most-specific concept up to a maximal
nesting level k of existential restrictions (MSC-k).

4.3 Example

(in-knowledge-base test)

(equivalent x (some r (and a d)))
(equivalent y (some r b))
(implies a b)
(implies c b)

(instance j a)
(instance i (all r (and (some r b) d)))
(related i j r)
(related j k r)
(related k i r)

We now apply the LCS operator to two input concepts.

(lcs-unfold x (and (all r d) (some r c)))

The result is (some r (and d b)). If no unfolding is desired, use lcs instead of lcs-unfold.
It is possible to specify the Tbox as an optional last argument (default is the current Tbox).

For some purposes, an extract of the information contained in an Abox might be useful. RacerPro
1.9.1 provides an implementation of the MSC-k operator. MSC-k is applied to an individual and
a nesting depth. For instance, given the knowledge base above, the following form is executed.

(msc-k i 3)

The result is

(and (some r (and a
(some r (and (some r (and (all r (and (some r b) d))

(some r (and a top)))))))))

It is possible to supply an additional boolean argument which indicates whether for each indi-
vidual, the direct types are included in the MSC approximation. For instance,

(msc-k i 3 t)

returns

(and (some r
(and x
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a
(some r

(and a
d
y
(some r (and *top*

(all r (and (some r b) d))
(some r (and x a top)))))))))

The default for the third argument is nil (indicating that direct types are not to be included in
the MSC-k output). Given this boolean argument is specified, there can be a fourth argument,
the Abox (which defaults to the current Abox).
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Chapter 5

Extensions to nRQL

In this section, we describe the extension of nRQL by means of a simple expression language
called“MiniLisp”. With MiniLisp a user can write a simple, termination safe, “program”which is
executed on the RacerPro server. Such MiniLisp programs can be used to improve the flexibility
of the query answering. MiniLisp allows a restricted kind of server-side programming and can
thus be used to implement, for example

1. user-defined output formats for query results (e.g., the query results can also be written
into a file),

2. certain kinds of combined ABox/TBox queries,

3. efficient aggregation operators (e.g., sum, avg, like in SQL),

4. user-defined projection operators.

The functional lambda expressions in MiniLisp can be used in query heads and rule antecedences.

The MiniLisp extension discussed in this section is presented in the latest RacerPro users guide.

5.1 Lambda Head Operators to Evaluate Expressions

A so-called head projection operator is a function which is applied to the current binding of the
variable (the current individual), and the operator result is included in the answer tuple. The
application of a head projection operator can be understood as a function application. So-called
lambda expressions can denote (anonymous) functions. nRQL allows for the specification of
lambda expressions in the head of a query; nRQL uses a Lisp dialect which we call MiniLisp.
MiniLisp is a termination-safe expression language (not a programming language).

For example, consider an ABox representing material objects in the physical world, having width
and length, and we want to computed and return the area of these objects with a query:

? (define-concrete-domain-attribute width :type integer)
> :OKAY

? (define-concrete-domain-attribute length :type integer)
> :OKAY
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? (instance i (and (equal width 10) (equal length 20)))
> :OKAY

? (retrieve
(?x
((lambda (x y) (* (first x) (first y)))
(told-value-if-exists (width ?x))
(told-value-if-exists (length ?x))))

(?x (and (a width) (a length))))
> (((?x i)

(((:lambda (x y) (* (first x) (first y)))
(:existing-told-values (width ?x))
(:existing-told-values (length ?x)))
200)))

The function / lambda application is performed by substituting the formal parameters x, y to
the actual arguments supplied by the two told-value-if-exists projection operators. These
operators return lists of (told) values; thus, the first function is applied before * is applied to
yield the total size.

5.2 Server-Side Programming in nRQL

MiniLisp is easy to understand and use for readers which have some Common Lisp experience.
MiniLisp only supports symbols, strings, numbers, and lists. Many of the built-in operators
are inherited from CL. All RacerPro API functions can be called from within a lambda body;
RacerPro macros are treated as functions.

MiniLisp supports t’ / quote, ‘ / backquote, , / comma, and @ / bq-comma-atsign. This is
very useful if nRQL (sub)queries with variable parts shall be executed from within a lambda
body.

The lambda body is evaluated in an environment where *current-abox* is bound to the query
ABox, and *current-tbox* to the query TBox. Moreover, *output-stream* is bound to the
file output stream within the scope of with-open-output-file; this is an ordinary CL output
stream, and can thus be used as argument to standard CL functions such as format. See below
for examples for file output.

The following special forms are provided: reduce, and, or, not, if, when, unless, cond,
maptree, maplist, every, some, progn, prog1, let, let*, lambda, with-nrql-settings.
Note that functions like maptree take lambda bodies as arguments; however, lambda expressions
are not first-order in MiniLisp in order to grant termination.

These head projection operators are available as functions: describe-ind instantiators
most-specific-instantiators retrieve-individual-synonyms.

Some type conversion functions: to-number to-string to-symbol.

There are some predefined sorting functions: sort-string-greaterp sort-string-lessp
sort-string< sort-string> sort-symbol-name-greaterp sort-symbol-name-lessp sort<
sort>.

The following functions are borrowed from Common Lisp and work as expected:
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* + - / 1+ 1- < <= = > >= append asin asinh atan atanh ceiling concat cons consp
cos cosh eighth ensure-list eq eql equal equalp evenp expt fifth find first
flatten float floor format fourth intersection length list listp log max member
min minusp ninth nth nth null numberp oddp plusp position princ rationalize
remove rest reverse round search second set-difference set-equal set-subset
seventh signum sin sinh sixth sqrt string-capitalize string-downcase
string-equal string-greaterp string-lessp string-upcase string< string<= string=
string> string>= stringp symbol-name symbolp tan tanh tenth terpri third
tree-equal type-of union with-open-output-file write zerop.

5.3 Head-Projection Operators

We have already discussed the told value and attribute retrieval head-projection operators.
nRQL offers some more head projection operators which are implemented in MiniLisp. The
following head projections operators are implemented in MiniLisp and can be called MiniLisp
macro head-projection operators:

• :all-types

(also: :types :instantiators :all-instantiators),

• :all-types-flat

(also: :all-instantiators-flat,
:types-flat,
:instantiators-flat),

• :direct-types

(also: :most-specific-types,
:most-specific-instantiators,
:direct-instantiators),

• :direct-types

(also: :most-specific-types,
:most-specific-instantiators,
:direct-instantiators),

• :direct-types-flat

(also: :most-specific-types-flat ,
:most-specific-instantiators-flat,
:direct-instantiators-flat),

• :describe as well as

• :individual-synonyms.

Here are some examples illustrating these macro operators:

? (full-reset)
> :okay-full-reset

? (instance i c)
> :OKAY



26

? (implies c d)
> :OKAY

? (retrieve (?x (describe ?x)) (?x top))
> (((?x i)

(((:lambda (?x) (describe-ind ?x *current-abox*)) ?x)
(i
:assertions
((i c))
:role-fillers
NIL
:told-attribute-fillers
NIL
:told-datatype-fillers
NIL
:annotation-datatype-property-fillers
NIL
:annotation-property-fillers
NIL
:direct-types
:to-be-computed))))

? (describe-query :last)
> (:query-1

(:accurate :processed)
(retrieve
(?x ((:lambda (?x) (describe-ind ?x *current-abox*)) ?x))
(?x top)
:abox
default))

? (retrieve (?x (types ?x)) (?x top))
> (((?x i)

(((:lambda (?x) (instantiators ?x *current-abox*)) ?x)
((c) (d) (*top* top)))))

? (retrieve (?x (all-types ?x)) (?x top))
> (((?x i)

(((:lambda (?x) (instantiators ?x *current-abox*)) ?x)
((c) (d) (*top* top)))))

? (retrieve (?x (all-types-flat ?x)) (?x top))
> (((?x i)

(((:lambda
(?x)
(sort-symbol-name-lessp
(flatten (instantiators ?x *current-abox*))))

?x)
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((c d *top* top)))))

Please note that the retrieve macro can be advised not to include the lambda expression in
the query answer:

? (retrieve (?x (all-types-flat ?x)) (?x top) :dont-show-lambdas-p t)
> (((?x i) ((c d *top* top))))

It should be noted that the lambda expression can also be used in rule antecedences, as shown
below.

In the next sections we present several examples which demonstrate the usefulness of MiniLisp
for leveraging the expressivity of query languages.

5.4 Aggregation Operators

First we show how queries with aggregation operators can be implemented. Consider the follow-
ing KB which models the compositional structure of a car. A car has certain parts, and each
part has a certain weight:

(full-reset)
(define-primitive-role has-part :transitive t)
(define-concrete-domain-attribute weight :type real)

(instance car1 car)
(related car1 engine1 has-part)
(related engine1 cylinder-1-4 has-part)
(related car1 wheel-1-4 has-part)
(related car1 chassis1 has-part)
(instance engine1 (= weight 200.0))
(instance chassis1 (= weight 400.0))
(instance wheel-1-4 (= weight 30.0))

Using MiniLisp, we can compute the overall weight as well as identify its number of components:

? (retrieve1 (?car car)
(((lambda (car)

(let ((w
(reduce ’+

(flatten
(retrieve1 ‘(and (,car car)

(,car ?part has-part)
(?part (a weight)))

‘(((lambda (weight) weight)
(told-value-if-exists

(weight ?part))))))))
(parts (length (retrieve ‘(?part) ‘(,car ?part has-part)))))

‘((?car ,car) (?no-of-parts ,parts) (?total-weight ,w))))
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?car)))
> ((((?car car1) (?no-of-parts 4) (?total-weight 630.0))))

Please note that retrieve1 is like retrieve, but with head and body argument positions flipped.
The body of the query consists of the concept query atom (?x car). The lambda expression is
then applied to the current binding of ?x. So, within the lambda, car is bound to the bindings
/ value of ?x. First, the total weight is computed: for this purpose, a subquery is constructed.
If ?x = car1, then the query (retrieve1 ‘(and (car1 car) (car1 ?part has-part) (?part (a

weight))) ...) is constructed and posed, asking for the parts of car1. The head of the sub-
query consists of yet another lambda, which simply applies the told-value-if-exists head
projection operator to retrieve the told values of the weight attribute of ?part. The subquery
result is returned as a nested list; the list if then flattened, and its items are summed using
(reduce ’+ ...). The result is bound to the local variable w. Similarly, the number of parts

is computed (by posing yet another subquery). Finally, the result of the lambda expression is
constructed and returned. The constructed and returned value will become the result tuple. So,
if car is car1, and no-of-parts is 4, and w is 630.0, then the template ‘((?car ,car) (?no-of-

parts ,parts) (?total-weight ,w)) constructs the result tuple (((?car car1) (?no-of-parts

4) (?total-weight 630.0))).

5.5 Efficient Aggregation Operators using Promises

Although the previous query demonstrated the power and utility of MiniLisp, the aggregation
is not computed efficiently. The reason is that for each binding of ?car, two new subqueries are
constructed. Each query has to be parsed, compiled, and is then maintained as a query object.
Since the structure of the subqueries does not change during query execution it would be better
to construct these subqueries in advance. This can be achieved using so-called promises. During
the time of query preparation, a promise for a variable declares that this variable is treated as an
individual. Moreover, it is promised that at the time when the query is executed, that variable
is indeed bound to an individual.

Thus, a more efficient version looks as follows:

? (with-future-bindings (?car)
(delete-all-queries)
(prepare-abox-query (?part) (and (?car car) (?car ?part has-part))

:dont-show-lambdas t
:id :parts-of-car)

(prepare-abox-query (((lambda (weight) weight)
(told-value-if-exists (weight ?part))))

(and (?car car) (?car ?part has-part) (?part (a weight)))
:dont-show-lambdas t
:id :weights-of-parts-of-car))

> ...

This has defined two queries named :parts-of-car and :weights-of-parts-of-car. The query
optimizer has treated the ?car variable as an individual due to with-future-bindings. Thus, we
have promised nRQL that we will only execute these queries if we supply a binding for agg. We
can establish such a binding during query execution using with-nrql-settings as follows:
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? (retrieve1 (?car car)
( ((lambda (car)

(with-nrql-settings (:dont-show-lambdas t
:bindings ‘((?car ,car)))

(let ((w
(reduce ’+

(flatten
(execute-or-reexecute-query :weights-of-parts-of-car))))

(parts (length
(execute-or-reexecute-query :parts-of-car))))

‘((?car ,car) (?total-weight ,w)))))
?car)))

> ((((?car car1) (?no-of-parts 4) (?total-weight 630.0))))

5.6 User Defined Query Result Format

As already demonstrated, the value returned by a lambda body is included in the binding list. In
the previous query, the lambda body returns a structured list using the template ‘((?car ,car)

(?total-weight ,w)); this is equivalent to (list (list ’?car car) (list ’?total-weight w)).
It is also easy to specify natural language output; simply replace

‘((?car ,car) (?total-weight ,w))

with

(format nil "Car with name A weights A kg and has A parts." car w parts)

in the previous query, and you will get:

((Car with name car1 weights 630.0d0 kg and has 4 parts.))

as the query result.

File Output MiniLisp also offers the with-open-output-file which allows to open an output
file. Simply print to the stream *output-stream* (which is established by with-open-output-

file) to add arbitrary content to the output file.

? (retrieve1 (?car car)
(((lambda (car)

(with-open-output-file ("minilisp-output.txt")
(let ((w

(reduce ’+
(flatten
(retrieve1 ‘(and (,car car)

(,car ?part has-part)
(?part (a weight)))
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‘(((lambda (weight) weight)
(told-value-if-exists
(weight ?part))))))))

(parts
(length

(retrieve ‘(?part) ‘(,car ?part has-part)))))
(format *output-stream*

"Car with name ~A weights ~A kg and has ~A parts.~%"
car w parts)))))

?car)))
> ((NIL))

The output can be found in the file minilisp-output.txt; moreover, the result ((NIL)) is deliv-
ered because the lambda body returns (NIL). Please note that with-open-output-file only works
if RacerPro in running in unsafe mode.

5.7 Filtering Result Tuples

lambda bodies can also work as filters as follows: if the special token :reject is returned from the
lambda body, then the result is rejected, i.e., will not appear in the query answer. For example,
using :reject we can easily reject all parts which have no subparts:

? (retrieve1 (?part top)
(((lambda (part)

(let ((parts
(length
(retrieve ‘(?part) ‘(,part ?part has-part)))))

(if (zerop parts) :reject ‘(,part has ,parts parts))))
?part)))

> (((engine1 has 1 parts)) ((car1 has 4 parts)))

5.8 Combined TBox / ABox Queries

Finally, let us present an example with demonstrates how to combine TBox queries and ABox
queries. Sometimes, one wants to retrieve all and only the direct instances of a concept / OWL
class. An individual is called a direct instance of a concept / OWL class if there is no subconcept
/ subclass of which the individual is also an instance.

Let us create two concepts c and d such that d is a sub concept (child concept) of c:

? (full-reset)
> :okay-full-reset

? (define-concept c (some r top))
> :OKAY

? (define-concept d (and c e))
> :OKAY
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We can verify that d is indeed a child concept of c, using a so-called TBox query, see below:

? (tbox-retrieve (?x) (c ?x has-child))
> (((?x d)))

Let us create two individuals so that i and j are instances of c; moreover, j is also an instance
of d:

? (related i j r)
> :OKAY

? (related j k r)
> :OKAY

? (instance j e)
> :OKAY

? (retrieve (?x) (?x c))
> (((?x j)) ((?x i)))

? (retrieve (?x) (?x d))
> (((?x j)))

The previous queries demonstrated that both i as well as j are c instances. However, only i is
a direct c instance. We can retrieve these direct instances of c as follows:

? (retrieve1 (?x c)
( ((:lambda (x)

(if (some (lambda (subclass)
(retrieve () ‘(,x ,subclass)))

(flatten
(tbox-retrieve1 ‘(c ?subclass has-child)
‘( ((:lambda (subclass) subclass) ?subclass)))))

:reject
‘(?x ,x)))

?x)))
> (((?x i)))

Here are some MiniLisp examples which demonstrate the points 1. to 3. Consider the following
simple ABox:

(related i j r)
(related j k r)

Suppose you want to create a comma separated values file called test.csv which contains all
the (possible implied) R role assertions. MiniLisp allows you to do this:
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(retrieve (((:lambda (x y)
(with-open-output-file ("~/test.csv")

(format *output-stream* "~A;~A~%" x y)))
?x ?y))

(?x ?y r))

So, the query body retrieves all ?x, ?y individuals which stand in an R relationship; for each
?x, ?y tuple, one more line is attached to the file test.csv.

Regarding point 2, let us illustrate how “combined” TBox/ABox queries can be used to retrieve
the direct instances of a concept, which has been requested by many users.

Let us create two concepts c and d such that d is a sub concept (child concept) of c:

? (full-reset)
> :okay-full-reset

? (define-concept c (some r top))
> :OKAY

? (define-concept d (and c e))
> :OKAY

We can verify that d is indeed a child concept of c, using a so-called TBox query:

? (tbox-retrieve (?x) (c ?x has-child))

> (((?x d)))

Let us create two individuals so that i and j are instances of c; moreover, j is also an instance
of d:

? (related i j r)
> :OKAY

? (related j k r)
> :OKAY

? (instance j e)
> :OKAY

? (retrieve (?x) (?x c))
> (((?x j)) ((?x i)))

? (retrieve (?x) (?x d))
> (((?x j)))

Thus, both i and j are c instances. However, only i is a direct c instance. We can retrieve
these direct instances of c as follows:
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? (retrieve1 (?x c)
( ((:lambda (x)

(if (some (lambda (subclass)
(retrieve () ‘(,x ,subclass)))

(flatten
(tbox-retrieve1 ‘(c ?subclass has-child)
‘( ((:lambda (subclass) subclass) ?subclass)))))

:reject
‘(?x ,x)))

?x)))

> (((?x i)))

Basically, retrieve1 is like retrieve, but first comes the body, and then the head. Thus,
?x is bound to a c instance. Using this binding, it is checked by means of a TBox subquery
(tbox-retrieve1) whether the individual bound to ?x is also an instance of any subclass of c.
If this is the case, the result tuple (resp. the current binding of ?x) is rejected (see the special
:reject token); otherwise, the result tuple is constructed and returned. The returned result
tuples make up the final result set.

Please note that the combination of MiniLisp and :reject token gives you the ability to define
arbitrary, user-defined filter predicates which are executed efficiently since they are directly on
the RacerPro server.

Finally, let us consider how aggregation operators can be implemented in MiniLisp. Consider
the following book store scenario:

(full-reset)

(instance b1 book)
(instance b2 book)

(related b1 a1 has-author)
(related b1 a2 has-author)
(related b2 a3 has-author)

(define-concrete-domain-attribute price :type real)
(instance b1 (= price 10.0))
(instance b2 (= price 20.0))

We can now determine the number of authors of the single books with the following query:

? (retrieve (?x
((lambda (book)

(let ((authors
(retrieve ‘(?a) ‘(,book ?a has-author))))

(length authors)))
?x))

(?x book)
:dont-show-lambdas-p t)
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> (((?x b1) 2) ((?x b2) 1))

Another interesting question might be to ask for the average price of all the books. This is a
little bit more tricky, but works in nRQLas well:

? (retrieve
(((lambda nil

(let ((prices
(flatten
(retrieve ‘((told-value-if-exists (price ?x)))

‘(?x book)
:dont-show-head-projection-operators-p t))))

‘(average-book-price
,(float (/ (reduce ’+ prices) (length prices))))))))

true-query
:dont-show-lambdas-p t)

> (((average-book-price 15.0)))

The trick here is to use the always true query body true-query in order to let nRQLfirst evaluate
the lambda body (since lambda bodies are only valid in nRQLheads, but not available as “first
order statements” in RacerPro); thus, the lambda simply acquires all the prices of the individual
books and then computes and returns the average price, as expected.



Chapter 6

Support for Reasoning with Triples
in Secondary Memory

In practical applications, not all parts always require reasoning with expressive Tboxes (specified
for instance in OWL ontologies). Indeed, for some purposes, classical data retrieval is just fine.
However, in almost all practical applications there will be a large amount of data. Hence, data
access must scale at least for the standard retrieval tasks. At the same time, it must be possible
to apply expressive reasoning to (parts of) the data without producing copies of the data. For
this purpose, we propose to use a triple store for RDF.

6.1 Accessing Triple Stores

Very efficient software is available to query and manipulate RDF triple stores. RacerPro re-
lies on one of the fastest triple store for billions of triples: AllegroGraph from Franz Inc.
(www.franz.com). The AllegroGraph triple store is part of RacerPro-1.9.1-beta.

Using a triple store has several advantages. On the one hand, triples may be manipulated and
retrieved from programs (Turing-complete representations), e.g. Java programs or Common Lisp
programs, without reasoning as usual in industrial applications. On the other hand, the same
triples can be queried w.r.t. a background ontology. This involves reasoning and might result in
additional, implicit triples to be found.

RacerPro allows for accessing existing AllegroGraph triple stores as well as for the creation of
new ones. In the following example, an existing triple store is opened, and the triples are read
into the knowledge base. Afterwards three nRQL queries are answering over the knowledge base.
There is no need to write long-winded data extraction programs that move triples to OWL files
on which, in turn, reasoning is then applied.

(setf db (open-triple-store "test"))
(use-triple-store db :kb-name ’test-kb)

(retrieve (?x
(:datatype-fillers (#!name ?x))
(:datatype-fillers (#!emailAddress ?x))
(:datatype-fillers (#!telephone ?x)))

(and (?x #!Professor)

35
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(?x |http://www.Department0.University0.edu| #!worksFor)
(?x (a #!name))
(?x (a #!emailAddress))
(?x (a #!telephone))))

(retrieve (?x ?y ?z)
(and (?x ?y #!advisor)

(?x ?z #!takesCourse)
(?y ?z #!teacherOf)
(?x #!Student)
(?y #!Faculty)
(?z #!Course)))

(retrieve (?x ?y)
(and (?y |http://www.University0.edu| #!subOrganizationOf)

(?y #!Department)
(?x ?y #!memberOf)
(?x #!Chair)))

The examples should illustrate the flavor of how triples can be accessed from RacerPro. Cur-
rently, for reasoning, the triples are loaded into main memory by RacerPro. Thus, only a
limited number of triples should be in the store. In a future version, reasoning will be done also
on secondary memory.

As mentioned before, it is not always the case that reasoning is required. Therefore, one can
pose the same nRQL queries to secondary memory for very fast access (but without reasoning).
RacerPro optimizes the queries in order to provide good average-case performance.

(open-triple-store "test")

(pretrieve (?x
(:datatype-fillers (#!name ?x))
(:datatype-fillers (#!emailAddress ?x))
(:datatype-fillers (#!telephone ?x)))

(and (?x #!Professor)
(?x |http://www.Department0.University0.edu| #!worksFor)
(?x (a #!name))
(?x (a #!emailAddress))
(?x (a #!telephone))))

(pretrieve (?x ?y ?z)
(and (?x ?y #!advisor)

(?x ?z #!takesCourse)
(?y ?z #!teacherOf)
(?x #!Student)
(?y #!Faculty)
(?z #!Course)))

(pretrieve (?x ?y)
(and (?y |http://www.University0.edu| #!subOrganizationOf)
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(?y #!Department)
(?x ?y #!memberOf)
(?x #!Chair)))

In addition, it is possible to materialize in a triple store what can be computed by applying
reasoning w.r.t. a background ontology such that later on the results are available to all appli-
cations which may or may not use reasoning. It is possible to optimized index data structures
for subsequent query answering.

(setf db (open-triple-store "test"))
(use-triple-store db :kb-name ’test-kb :ignore-import t)
(materialize-inferences ’test-kb :db db :abox t :index-p t)

A triple store may be created by RacerPro as well.

(setf db (create-triple-store "test" :if-exists :supersede))
(triple-store-read-file "..." :db db)

6.2 Supporting Standards: SPARQL

Queries can also be specified in the SPARQL language and can be executed with our without
reasoning w.r.t. background ontologies.

(sparql-retrieve "
PREFIX lubm: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?x, ?y
WHERE
( ?x lubm:subOrganizationOf "http://www.University0.edu" )
( ?y rdf:type lubm:Department )
( ?x lubm:memberOf ?y )
( ?x rdf:type lubm:Chair )
")

This is the SPARQL pendant to the third query in the example above.

Note that there is no need to store the OWL ontology in the triple store. With RacerPro you
can access your existing triple store with various different OWL ontologies. An ontology can
be put into a file or can possibly be retrieved from the Web. A triple store is then opened and
queries are answered w.r.t. this triple store. The triple store corresponds to the Abox in this
case.
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Chapter 7

Representing Probabilistic
Knowledge

7.1 Preliminaries: Linear Programming

Here the foundations of the theory, presented in Chapter 7.2, are introduced. It is not intended
to do complete and comprehensive discussions of these topics.

Linear Programming in a ”mathematical nutshell” is the solution of finite systems of linear
equations and inequalities in a finite number of variables [32].

A linear program is defined as follows:

maximize
n∑
j=1

cjxj (7.1a)

subject to
n∑
j=1

aijxj ≥ bi for i = 1, . . . ,m (7.1b)

xj ≥ 0 for j = 1, . . . ,m (7.1c)

Formula 7.1a is called the objective function of the linear program. The goal is to compute its
maximum (respectively minimum) with respect to the set of linear constraints given in 7.1b.
Usually the considered variables xj have to be non-negative (7.1c).

There are three possible solutions to a linear program:

1. the solution is unfeasible, meaning the linear program has no solution at all

2. the solution is unbounded, meaning the solution goes to infinity

3. the solution is the optimal one.

Linear programs may be applied to a wide range of problems in planning and scheduling, e.g.
in business and economics.

In the late 1940’s, George B. Dantzig [5], a mathematician at the US Air Force, invented the
so called simplex method [6]. This invention started off research in linear programming and its
applications, which ignited the field of operations research. In 1972 the worst case behaviour of
the algorithm was shown by Klee and Minty to have exponential complexity. Ten years later
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Borgwardt was able to proof that its average case behaviour is of polynomial complexity [2]. In
recent years, the simplex method performance has been still a matter of research interest [39].

A new algorithm was proposed in 1979, which owns polynomial worst case behaviour [32]. It
is called the ellipsoid algorithm. However, this algorithm has convergence problems due to
numerical computation.

The interior point algorithm was devised in 1984, providing both polynominal complexity and
numerical stability. Nevertheless improved simplex algorithms remain used widely in practical
applications.

Software packages implementing algorithms to solve linear programs are called linear program
solvers. There are numerous textbooks available on linear programming [32, 2, 11].

7.2 Extensions to Description Logics

This section gives an overview over the research related and presents two theories required
for the formalization of probabilistic reasoning in description logics. The research related to
the theories under investigation may be divided into two categories: probabilistic logics on one
hand and non-monotonic logics on the other. The first category deals with the combination of
probability theory and logic, the second with exceptions in the logic.

7.2.1 Logics and Probabilities

In ”Boole’s Logic and Probability”, Halperin [15] investigates the research George Boole(1815-
1864) did on the combination of probability theory and logic. He also describes, how Boole’s
work may be applied to the subject of linear programming. Thus we may state that combining
logics and probability is rather an old field of research.

Several probabilistic reasoning methods for knowledge based systems have been discussed in
books by Pearl[33], Bacchus [1], and Russel and Norvig [37]. In the literature two approaches
can be found in order to perform inferences with probabilities. The first approach uses Bayesian
or believe networks to determine the inferred probabilities [33, 37], the second makes use of
linear programming for this task.

Both approaches previously mentioned have been tried to be combined with description logics.
The usage of Bayesian networks has been applied in [19, 8] in order to achieve the probabilistic
extension. In [17] the inference could possibly be made by linear programming. The paper under
investigation [12] and its follow up [22] are using linear programming for probabilistic inference.

7.2.2 Non-monotonic Logics

Both theories, which will be introduced in the next sections, may be categorised as non-
monotonic logics. The difference between monotonic and non-monotonic reasoning is sum-
marised below.

Reasoning in Predicate or First Order Logic is monotone with respect to the available knowledge.
More precisely adding new statements to the knowledge base ”can only increase the set of entailed
sentences” [37] or in other words ”if something is known to be true (false), it will never become
false (true)” [14]. In [37]]this is formally stated as:

If KB |= φ then KB ∧ ψ |= φ (7.2)
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By the observation of human reasoning one recognises that it is not monotone at all. This can
be informally described as ”changing one’s mind”. Humans allow exceptions in their knowledge
which can not be resembled neither in Predicate nor in First Order Logic. To address these
shortcomings several non-monotonic reasoning methods [36, 24, 25] have been developed.

Default Logic is a non-monotonic reasoning method developed by Reiter [36]. It is also discussed
in [33, 37]. In this approach one differentiates between hard facts about a world and default
rules. ”Since the set of all hard facts cannot completely specify the world, we are left with gaps
in our knowledge; the purpose of the default rules is to help fill in those gaps with plausible
conclusions” [33].

Further research in default logic developed several different kinds of entailments, e.g. 0-entailment,
1-entailment, z-entailment, lexicographic entailment and me-entailment to name a few (see [3]
for an overview).

Lexicographic entailment[20] and its probabilistic successors[23, 21, 13, 22] will be the object of
theory investigation in this section.

7.3 Lexicographic Entailment

The notion of lexicographic entailment was first proposed by Lehmann [20] for sets of defaults.
As an extension of Pearls System Z [34] it allows for inheritance to exceptional ”subclasses”.

To get a better understanding of the discussed topic let us discuss an example (called ”Winged
Penguins” in literature [20, 3]). It is also used to illustrate the terms needed. The syntax is the
one used by Lehmann.

Consider the following set of defaults D:

D = {(b : f), (b : w), (p : b), (p : ¬f)} (7.3)

This set of defaults D may be interpreted as follows:

birds(b)fly(f), birds have wings(w), penguins(p) are birds but penguins do not fly.

Defaults represent knowledge about how things generally are, i.e birds fly. Lehmann chooses
the presumptive reading of a default to give its meaning: ”Birds are presumed to fly unless
there is evidence to the contrary.” He denotes defaults as (φ : ψ) where φ and ψ are formulae in
propositional logic. The meaning of a default (φ : ψ) is closely related to the implication φ⇒ ψ,
also called the defaults material counterpart. The interpretation is given as statements of high
conditional probability P (ψ|φ) ≥ 1− ε [34].

If we would have used a propositional knowledge base in our example instead of defaults it
would be inconsistent and therefore entail anything, e.g. penguins fly and penguins don’t fly.
The goal of the definition of the lexicographic entailment is to regain a consistent knowledge
base, a knowledge base where we only are able to conclude that penguins don’t fly.

We achieve this goal by applying a lexicographic ordering onto our models in order to consider
only preferred or more natural models. We give reasons for doing so shortly, but for now let’s
return to the ”Winged Penguins” example.

In propositional logic a truth assignment to a primitive proposition is called a model (or world).
As our example shows we have four primitive propositions b, f , p and w. Because of that there
are 24 possible models denoted mi with i ∈ {1, . . . , 16}. See table 7.11 for further insight.

1In this table 0 represents false and 1 represents true; except for the columns D0 and D1, they represent the
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m b f p w b⇒ f b⇒ w p⇒ b p⇒ ¬f D0 D1 p ∧ w p ∧ ¬w
m1 0 0 0 0 1 1 1 1 2 2 0 0
m2 0 0 0 1 1 1 1 1 2 2 0 0
m3 0 0 1 0 1 1 0 1 2 1 0 1
m4 0 0 1 1 1 1 0 1 2 1 1 0
m5 0 1 0 0 1 1 1 1 2 2 0 0
m6 0 1 0 1 1 1 1 1 2 2 0 0
m7 0 1 1 0 1 1 0 0 2 0 0 1
m8 0 1 1 1 1 1 0 0 2 0 1 0
m9 1 0 0 0 0 0 1 1 0 2 0 0
m10 1 0 0 1 0 1 1 1 1 2 0 0
m11 1 0 1 0 0 0 1 1 0 2 0 1
m12 1 0 1 1 0 1 1 1 1 2 1 0
m13 1 1 0 0 1 0 1 1 1 2 0 0
m14 1 1 0 1 1 1 1 1 2 2 0 0
m15 1 1 1 0 1 0 1 0 1 1 0 1
m16 1 1 1 1 1 1 1 0 2 1 1 0

Table 7.1: Winged Penguins

A model m satisfies a propositional formula φ if and only if m(φ) = true. This is represented
by m |= φ. A default (φ : ψ) is satisfied by a model, denoted m |= (φ : ψ), if and only if
m |= φ⇒ ψ.

Further a model is said to verify (or as the opposite falsify) a default (φ : ψ) if and only if
m |= φ ∧ ψ (or m |= φ ∧ ¬ψ). One default is tolerated by a set of defaults D iff there exists
a model which verifies it and simultaneously satisfies the others. If no such model exists, the
default is said to be in conflict with the other defaults.

In the example one can see that the default (b : f) is tolerated by D. For that purpose we first
have a look at the models m13−m16 which verify the default. Afterwards m14 can be identified
to satisfy all remaining defaults. m14 also shows that the default (b : w) is tolerated by D. If
we inspect the models m11,m12,m15,m16, which are the ones verifying the default (p : b), then
none of them satisfies all other three defaults at the same time. Therefore (p : b) is in conflict
with D. Similarly the reader may show the conflict of (p : ¬f).

The z-partition of the set of defaults D is defined as the unique ordered partition (D0, . . . ,Dk)
such that each Di with i ∈ {0, . . . , k} contains the set of all defaults that are tolerated under
D \ (D0 ∪ · · · ∪Di−1).

Above we did the first step for computing the z-partition of our example. Only the defaults
(b : f) and (b : w) were tolerated by all other defaults. Thus they build D0. D0 is then removed
from D. The remaining two defaults tolerate each other. Hence they are contained in D1. We
now have the following z-partition (D0,D1) where:

D0 = {(b : f), (b : w)} and D1 = {(p : b), (p : ¬f)} (7.4)

If the unique z-partition can be build the set of defaults D is said to be consistent.

The z-partition groups the defaults by specificity. A part of the z-partition is more specific than
another if its index is higher. For example the defaults (p : b), (p : ¬f) in part D1 are the most
specific ones.

count of satisfied defaults in the subset Di of the z-partition.
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With possible conflicting defaults and the inability to find a model that tolerates all of them,
the goal is to select a preferred model to draw the conclusion from. Because of this two criteria
have to be taken into account:

1. A model is preferred to another model if it satisfies more defaults.

2. Satisfying a more specific default is preferred to a less specific one.

Both criteria allow us to order the models according to them. Both orderings should be combined
into one, in order to determine the preferred model. A lexicographic ordering provides such an
integration of orderings. The second criterion is chosen as the major criterion, since it is preferred
to satisfy a more specific default than to satisfy less specific ones.

Using the z-partition as a degree of specificity the lexicographic order for the models is defined
as follows:

A model m is called lexicographical preferred to a model m′ if and only if some i ∈ {0, . . . , k}
can be found that |{d ∈ Di | m |= d}| > |{d ∈ Di | m′ |= d}| and |{d ∈ Dj | m |= d}| = |{d ∈
Dj | m′ |= d}| for all i < j ≤ k.

Or in other words we are counting the defaults satisfied in each part of the z-partition for every
model. Then starting with the k th subset of the z-partition and comparing which model satisfies
more defaults d in that subset. If there can not be made a decision we have to look at the k− 1
subset and make the comparison and so on.

In the example we have the following lexicographic order on the models: m1,m2,m5,m6,m14 >
m10,m12,m13 > m9,m11 > m3,m4,m16 > m15 > m7,m8.

m is said to be the lexicographically minimal model if and only if no other models are lexi-
cographically preferable to m. Lexicographic entailment is defined by comparing the minimal
verifying and falsifying models of a default (φ : ψ).

In order to determine if the default (p : w), which can be interpreted as penguins have wings,
is lexicographically entailed in D, one has to look at the models that verify or falsify the default
(p : w) and therefore have to satisfy p∧w and do not satisfy p∧¬w or vice versa, here the models
m3,m4,m7,m8,m11,m12,m15,m16. The lexicographically minimal model is m12. This model
verifies the default (p : w) and therefore penguins have wings is lexicographically entailed in
D.

7.4 Probabilistic Lexicographic Entailment for Description Log-
ics

In order to extend a Description Logic for dealing with probabilistic knowledge an additional
syntactical and semantical construct is needed. This additional construct is called a conditional
constraint. It is an extension of defaults, introduced in the previous section, which represent
knowledge that is generally true.

This extension of description logics has been first formalized by Giugno and Lukasiewicz in 2002
[12, 13]. All following definitions are given in accordance to their paper.

A conditional constraint consists of a statement of conditional probability for two concepts C,D
as well as a lower bound l and an upper bound u constraint on that probability. It is written as
follows:

(D|C)[l, u] (7.5)
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Where C can be called the evidence and D the hypothesis

To gain the ability to store such statements in a knowledge base it has to be extended to a
probabilistic knowledge base PKB here named probabilistic terminology P. Additionally to
the TBox T here classical terminology Tg of a description logic knowledge base we introduce
the PTBox PT here generic probabilistic terminology Pg, which consists of Tg and a set of
conditional constraints Dg, and a PABox Po or assertional probabilistic terminology Po holding
conditional constraints for every probabilistic individual o. In [13] there is no ABox declared,
knowledge about so called classical individuals is also stored inside the TBox abusing nominals.

Dg therefore represents statistical knowledge about concepts and Po represents degrees of belief
about the individuals o.

To be able to define the semantics for a Description Logic with probabilistic extension the
interpretation I = (∆I , ·) has to be extended by a probability function µ on the domain of
interpretation ∆I . The extended interpretation is called the probabilistic interpretation Pr =
(I, µ). Each individual o in the domain ∆I is mapped by the probability function µ to a value in
the interval [0,1] and the values of all µ(o) have to sum up to 1 for any probabilistic interpretation
Pr .

With the probabilistic interpretation Pr at hand the probability of a concept C, represented by
Pr(C), is defined as sum of all µ(o) where o ∈ CI .

The probabilistic interpretation of a conditional probability Pr(D|C) is given as

Pr(C uD)
Pr(C)

(7.6)

where Pr(C) > 0.

In order to achieve a probabilistic lexicographic entailment all the terms known from the previous
section 7.3 have to be redefined for the context of Description Logics.

A conditional constraint (D|C)[l, u] is satisfied by Pr or Pr models (D|C)[l, u] if and only if
Pr(D|C) ∈ [l, u]. We will write this as Pr |= (D|C)[l, u]. A probabilistic interpretation Pr is
said to satisfy or model a terminology axiom T , written Pr |= T , if and only if I |= T . A set F
consisting of terminological axioms and conditional constraints, where F denotes the elements
of F , is satisfied or modeled by Pr if and only if Pr |= F for all F ∈ F .

The verification of a conditional constraint (D|C)[l, u] is defined as Pr(C) = 1 and Pr has to
be a model of (D|C)[l, u]. We also may say Pr verifies the conditional constraint (D|C)[l, u].
On the contrary the falsification of a conditional constraint (D|C)[l, u] is given if and only if
Pr(C) = 1 and Pr does not satisfy (D|C)[l, u]. It is also said that Pr falsifies (D|C)[l, u].

Further a conditional constraint F is said to be tolerated under a Terminology T and a set
of conditional constraints D if and only if a probabilistic interpretation Pr can be found that
verifies F and Pr |= T ∪ D.

With all these definitions at hand we are now prepared to define the z-partition of a set of
generic conditional constraints Dg. The z-partition is build as ordered partition (D0, . . . ,Dk)
of Dg, where each part Di with i ∈ {0, . . . , k} is the set of all conditional constraints F ∈
Dg\(D0∪· · ·∪Di−1), that are tolerated under the generic terminology Tg and Dg\(D0∪· · ·∪Di−1).

If the z-partition can be build from a generic probabilistic terminology Pg = (Tg,Dg), it is said
to be generically consistent or g-consistent. A probabilistic terminology P = (Pg, (Po)o∈Ip) is
consistent if and only if Pg is g-consistent and Pr |= Tg ∪To ∪Do ∪{({o}|>)[1, 1]} for all o ∈ Ip.

Once more we use the z-partition for the definition of the lexicographic order on the probabilistic
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interpretations Pr as follows:

A probabilistic interpretation Pr is called lexicographical preferred to a probabilistic interpreta-
tion Pr ′ if and only if some i ∈ {0, . . . , k} can be found, that |{F ∈ Di | Pr |= F}| > |{F ∈ Di |
Pr ′ |= F}| and |{F ∈ Dj | Pr |= F}| = |{F ∈ Dj | Pr ′ |= F}| for all i < j ≤ k.

We say a probabilistic interpretation Pr of a set F of terminological axioms and conditional
constraints is a lexicographically minimal model of F if and only if no probabilistic interpretation
Pr ′ is lexicographical preferred to Pr .

By now the meaning of lexicographic entailment for conditional constraints from a set F of
terminological axioms and conditional constraints under a generic probabilistic terminology Pg
is given as:

A conditional constraint (D|C)[l, u] is a lexicographic consequence of a set F of terminological
axioms and conditional constraints under a generic probabilistic terminology Pg, written as
F ‖∼ (D|C)[l, u] under Pg , if and only if Pr(D) ∈ [l, u] for every lexicographically minimal
model Pr of F ∪ {(C|>)[1, 1]}. Tight lexicographic consequence of F under Pg is defined as
F ‖∼tight (D|C)[l, u] if and only if l is the infimum and u is the supremum of Pr(D). We define
l = 1 and u = 0 if no such probabilistic interpretation Pr exists.

Finally we define lexicographic entailment using a probabilistic terminology P for generic and
assertional conditional constraints F .

If F is a generic conditional constraint, then it is said to be a lexicographic consequence of P,
written P ‖∼ F if and only if ∅ ‖∼ F under Pg and a tight lexicographic consequence of P,
written P ‖∼tight F if and only if ∅ ‖∼tight F under Pg.

If F is an assertional conditional constraint for o ∈ IP , then it is said to be a lexicographic
consequence of P, written P ‖∼ F , if and only if To∪Do ‖∼ F under Pg and a tight lexicographic
consequence of P, written P ‖∼tight F if and only if To ∪ Do ‖∼tight F under Pg.

7.4.1 Computing Tight Lexicographic Consequence

Now we will introduce the techniques required to compute g-consistency and tight lexicographic
consequence by means of an example. The general approach in solving these two problems is to
use standard reasoning provided by a description logic reasoner in order to build linear programs
which may be handed over to a solver in order to decide the solvability of the programs. Let us
consider the following Terminology Tg and set of conditional constraints Dg:

Tg = {P v B} Dg = {(W |B)[.95, 1]; (F |B)[.9, .95]; (F |P )[0, .05]} (7.7)

Again we may interpret the concepts as follows: P stands for penguins, B for birds, F for flying
objects and W for winged objects.

Deciding Satisfiability

The first objective is to build a set RT (F). It contains the mappings r, which map conditional
constraints Fi = (Di|Ci)[li, ui] elements of a set of conditional constraints F onto one of the
following terms DiuCi, ¬DiuCi or ¬Ci under the condition that the intersection of our mappings
r is not equal to the bottom concept given the terminology T , written T 6|= r(F1)u· · ·ur(Fn) v
⊥.
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All possible mappings of our example are displayed in Table 7.2, columns 2 to 4. In the first
column the intersection of the mappings r is build. As an abbreviation we will write ur instead
of r(F1) u · · · u r(Fn). The rows of the first column contain a bottom concept ⊥ in case the
intersections of r are empty. Also the concepts causing the bottom concept are given. In the
fifth column the ur are tested against the terminology. If the intersections of r are not the same
as the bottom concept ⊥, this is denoted by |=, else it is denoted by ⊥.

ur r((W |B)[.95, 1]) r((F |B)[.9, .95]) r((F |P )[0, .05]) T 6|= ur v ⊥
B u P uW u F W uB F uB F u P |=
B u P u ¬W u F ¬W uB F uB F u P |=
⊥,¬B uB ¬B F uB F u P
⊥,¬F u F W uB ¬F uB F u P
⊥,¬F u F ¬W uB ¬F uB F u P
⊥,¬B uB ¬B ¬F uB F u P
⊥,¬B uB W uB ¬B F u P
⊥,¬B uB ¬W uB ¬B F u P
¬B u P u F ¬B ¬B F u P ⊥
⊥,¬F u F W uB F uB ¬F u P
⊥,¬F u F ¬W uB F uB ¬F u P
⊥,¬B uB ¬B F uB ¬F u P
B u P uW u ¬F W uB ¬F uB ¬F u P |=
B u P u ¬W u ¬F ¬W uB ¬F uB ¬F u P |=
⊥,¬B uB ¬B ¬F uB ¬F u P
⊥,¬B uB W uB ¬B ¬F u P
⊥,¬B uB ¬W uB ¬B ¬F u P
¬B u P u ¬F ¬B ¬B ¬F u P
B u ¬P uW u F W uB F uB ¬P |=
B u ¬P u ¬W u F ¬W uB F uB ¬P |=
⊥,¬B uB ¬B F uB ¬P
B u ¬P uW u ¬F W uB ¬F uB ¬P |=
B u ¬P u ¬W u ¬F ¬W uB ¬F uB ¬P |=
⊥,¬B uB ¬B ¬F uB ¬P
⊥,¬B uB W uB ¬B ¬P
⊥,¬B uB ¬W uB ¬B ¬P
¬B u ¬P ¬B ¬B ¬P |=

Table 7.2: DL-Winged Penguins

Our set RT (F) contains the following nine mappings r,

RT (F) = {
{W uB,F uB,F u P}, {¬W uB,F uB,F u P},
{W uB,¬F uB,¬F u P}, {¬W uB,¬F uB,¬F u P},
{W uB,F uB,¬P}, {¬W uB,F uB,¬P},
{W uB,¬F uB,¬P}, {¬W uB,¬F uB,¬P},
{¬B,¬B,¬P}
}

With the set RT (F) at hand we are able to set up linear programs to decide the satisfiability of
the terminology T and a finite set of conditional constraints F . We say that T ∪F is satisfiable
if and only if the linear program 7.8 is solvable for variables yr, where r ∈ RT (F). This means,
that in the objective function all coefficients preceding the variables yr are set to 1.
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∑
r∈R,r|=¬DuC

−lyr +
∑

r∈R,r|=DuC

(1− l)yr ≥ 0 (for all (D|C)[l, u] ∈ F) (7.8a)

∑
r∈R,r|=¬DuC

uyr +
∑

r∈R,r|=DuC

(u− 1)yr ≥ 0 (for all (D|C)[l, u] ∈ F) (7.8b)

∑
r∈R

yr = 1 (7.8c)

yr ≥ 0 (for all r ∈ R) (7.8d)

To be able to set up linear programs we further need to introduce the meaning of r |= C which
is used as index of the summation in 7.8a and 7.8b. It is an abbreviation for ∅ |= ur v C.
So the coefficient preceding the variables yr is set in linear constraints 7.8a and 7.8b if either
r |= ¬D u C or r |= D u C may be proven.

Computing g-Conscistency

With the tool at hand to decide satisfiability, we may also decide, if a conditional constraint may
be tolerated by a set of conditional constraints F . To verify a constraint we add a conditional
constraint (C|>)[1, 1]. With the extended set the linear program is generated and solved. If an
unfeasible solution is computed the conditional constraint is conflicting. If an optimal solution
is found, the conditional constraint is tolerated.

Now the z-partition of a set of conditional constraints is computable. For the example we would
have to set up four linear programs to compute part D0 and two for D1.

Computing Tight Logical Entailment

How to compute tightest probability bounds for given evidence C and conclusion D in respect
to a set of conditional constraints F under a terminology T is explained in the following text.
The task is named tight logical entailment and denoted T ∪ F |=tight (D|C)[l, u].

Given that T ∪F is satisfiable, a linear program is set up for F ∪ (C|>)[1, 1]∪ (D|>)[0, 1]. The
objective function is set to

∑
r∈R,r|=D

yr. So the coefficient in front of the variables yr are set 1 if

r |= D.

The tight logical entailed lower bound l is computed by minimising respectively the upper bound
u by maximising the linear program.

Computing Probabilistic Lexicographic Entailment

In order to compute tight probabilistic lexicographic entailment for given evidence C and con-
clusion D under a generic probabilistic terminology P} and a set F of terminological axioms and
conditional constraints the following steps have to be taken:

1. Compute the z-partition of Dg in order to be able to generate a lexicographic ordering

2. Compute lexicographic minimal sets D′ of conditional constraints of Dg as elements of D.

3. Compute the tight logical entailment T ∪ F ∪ D′ |=tight (D|C)[l, u] for all D′ ∈ D.
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4. Select the minimum of all computed lower bounds and the maximum of all upper bounds.

The 2. step needs some explanation since a new task ”compute lexicographic minimal sets”
is introduced. In order to define a lexicographic minimal set D′, a preparatory definition is
required.

A set D′ ⊂ Dg lexicographic preferable to D′′ ⊂ Dg if and only if some i ∈ {0, . . . , k} exists such
that |D′ ∩ Di| > |D′′ ∩ Di| and |D′ ∩ Di| > |D′′ ∩ Di| for all i < j ≤ k.

With the lexicographic order introduced onto the sets D′ the definition of lexicographic minimal
is given as:

D′ is lexicographic minimal in S ⊆ {S|S ⊆ Dg} if and only if D′ ∈ S and no D′′ ∈ S is
lexicographic preferable to D′.

Note that equivalence of using lexicographic minimal sets instead of lexicographically minimal
models is not proven in [12]. A prove is given in the follow up [22].

7.4.2 Using Probabilistic Lexicographic Entailment

The probabilistic lexicographic entailment may be used to decide the following two interesting
probabilistic inference problems:

Probabilistic Subsumption

To compute a probabilistic subsumption for the concepts D, C the tight probabilistic lexico-
graphic entailment is determined with respect to Pg and F = ∅.

Probabilistic Instance Checking

Probabilistic instance checking for an individual o and a concept E is done by computing the
tight probabilistic lexicographic entailment with E set as conclusion and > as evidence and with
respect to Pg and F = Po.

7.5 Application Example

Let us consider an annotated image (Fig. 2.1) and a modified athletics ontology from the
BOEMIE project to demonstrate how the new services can be applied in this context. Concept
definitions have been modeled as conditional constraints in the PTBox while the concept hier-
archy remains in the TBox. Relevant axioms and conditional constraints for our example are
shown below:

T = { Pg = {
High Jump v Jumping Event (High Jump|∃hasPart.Bar)[0.4, 1.0]
Pole V ault v Jumping Event (Pole V ault|∃hasPart.Bar)[0.4, 1.0]
High Jump u Pole V ault v ⊥} (Pole V ault|∃hasPart.Pole)[0.7, 1.0]

(Pole V ault|∃hasPart.Bar u ∃hasPart.Pole)[0.8, 1.0]}

We assume that we gained the lower bound for our conditional constraints from statistics over a
reasonable amount of pictures form the athletics domain. With an upper bound of 1.0 we wish
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to express the default knowledge e.g. ”If some hasPart.Bar is evident than this is a HighJump
Event”. More specific constraints having further evidences gain a higher lower bound probability
and therefore their uncertainty interval becomes smaller.

To use the probabilistic lexicographic reasoning services we need to compute the z-partition of
Pg. For the example we would have to set up four linear programs to compute part D0 and one
for D1. The z-partition of our PTBox contains the first three conditional constraints in part 0
and the last, more specific one in the 1 part. The conflicting constraints are one and four.

We now want to use our generic probabilistic terminology to determine the probability intervals
of pictures showing specific jumping events. From a picture as shown in Fig. 2.1 image analysis
and postprocessing might produce the following PAbox axioms :

(∃hasPart.Bar|>)image1[0.8, 1.0]
(∃hasPart.Pole|>)image1[0.9, 1.0]

Here the upper bound is set to 1.0 to express the optimism that the image extraction process
identified the right concept. The lower bound is set to the probability provided by the image
extraction process denoting the confidence in the identified concept . Notice that a concept
which has been detected with a low confidence results in a larger interval of uncertainty.

We also investigated the consequences of a change of confidence in a detected concept with
respect to probabilistic instance checking. The following values for (PoleV ault|>)image1[?, ?]
and (HighJump|>)image1[?, ?] have been computed while varying the lower bound of
(∃hasPart.Pole|>)image1[l, 1.0].

l 0.0-0.4 0.5 0.6 0.7 0.8 0.9 1.0
HJ-u 0.68 0.65 0.58 0.51 0.44 0.37 0.3
HJ-l 0.32 0.32 0.32 0.32 0.32 0.0 0.0
PV-u 0.68 0.68 0.68 0.68 0.68 1.0 1.0
PV-l 0.32 0.35 0.42 0.49 0.56 0.63 0.7

7.6 Average-Case Analysis

The ContraBovemRufum Prototype (http://www.sts.tu-harburg.de/%7Et.naeth/#software)
is an extension to RacerPro for first experiments with probabilistic approaches in the Boemie
project. After a successful implementation of the algorithm proposed in [12] a further objective
of this section is the analysis of its average-case behaviour.

Already during the implementation of the class TightLexEntailment it became obvious, that
the algorithm in [12] will perform in the average case like O(2n), where n is the number of
conditional constraints within the ith part of the z-Partition.

In order to explain this conclusion, one has to take a closer look at the algorithm. The algorithm
may be divided into three parts:

Part 1 tests, if the evidence concept is satisfiable against the TBox(Tg) and a set F of all
ABox and PABox axioms bound to a certain individual. F is only relevant, if probabilistic
concept membership is computed.

Part 2 computes lexicographic minimal sets of conditional constraints that are not in conflict
with the verified evidence.
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Part 3 computes the tightest entailed bounds using the previously computed sets and the con-
clusion concept.

The reason for poor average case performance is within the second part. Here the computation
of the power set for each part Di of the z-partition is required in order to iterate through all
possible subsets G. A power set has 2n elements (see proof in [40]) and the algorithm visits all
of them. Therefore the average complexity is determined to be O(2n) and it has been shown
that the algorithm is intractable.

Here are some ideas on how to modify the algorithm to improve its average case performance:

As the first idea ”lazy power set computation” is introduced. By this is meant, that one starts
with G as the set containing all elements and then with all subsets, where we have (n − 1)
elements and so on. The cardinality of these sets of subsets is given by

(
n
n−i
)
, where n is the

number of elements and i the number of omitted elements.

If a set of subsets is found, where some sets are satisfiable, the process may be stopped since
we are interested only in those kind of sets which satisfy as many conditional constraints as
possible. Still for the worst case all subsets down to the level where the subsets only contain one
element have to be computed. But on average the algorithm has to visit less subsets G than the
implemented algorithm.

The second idea is to combine ”lazy power set computation” with binary search. This works as
follows:

We start with the set of subsets containing
(

n
n−dn

2
e
)

and test its elements for satisfiability. If at
least one set is satisfied, the search continues within the upper half between n and dn2 e; otherwise
the search continues in the lower half in the same manner.

These two ideas have been already applied to the algorithm in [22].

A third idea is to introduce some heuristic method before performing binary search in order to
reduce the search space. For example we could pick a random subset G of Dj and test it for
satisfiability. If G is indeed satsfiable the cardinality of G is set as new lower bound for the binary
search. This makes sense because computing the satisfiability of a random subset is relativly
cheap compared to computing set of subsets with n− i elements.

All ideas presented are definitely fields of interest for future research. The ContraBovemRufum
Prototype as an extension to RacerPro is prepared for easy integration of these ideas.

7.7 Summary

A prototypical implementation of the inference algorithm for probabilistic description logics
proposed by Giugno and Lukasiewicz in [12] has been realised. Afterwards the average case
behaviour of the implemented algorithm was evaluated analytically.

The ContraBovemRufum Prototype may be seen as a basic software framework that is capable
of easily integrating further description logic reasoners , linear program solver and probabilistic
entailment algorithms. Within the scope of this section the description logic reasoner RacerPro
was integrated together with the linear program solver from OpsResearch in order to provide the
new probabilistic reasoning services probabilistic subsumption and probabilistic instance checking.

For determining the probabilistic lexicographic entailment, papers [13, 12] have been discussed
and the proposed algorithm has been implemented.
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As a freebie the prototype is able to handle tight probabilistic logical entailment. This entailment
does not allow exceptions in the Probabilistic Knowledge Base.

The average case analysis concluded analytically that the implemented algorithm is intractable.
But that does not mean that there is no room for improvement of the average case behaviour,
since the algorithm uses a brute force approach to compute the lexicographic minimal set.

Here some ideas for further research and development of the implemented ContraBovemRufum
System are given:

• Integration of further solvers, description logic reasoners and of general description logic
interfaces DIG and DIG 2.0, enabling a broader application of the system and selection of
the user-preferred subsystems.

• Research and development of new tractable algorithms by applying different search strate-
gies to determine lexicographic minimal sets.

• Development of an analysis package to evaluate new algorithms.

• Optimisation of the new algorithms by threaded computation of the variables yr, of the
parts of the z-partition and of lexicographic minimal sets.

• Improvement of the management functionality for Probabilistic Knowledge Bases by im-
plementation of a PKB Broker, which allows to save a PKB using XML and convert it
from one reasoner language to another.

• Research and development of applications which can be realised on top of the Contra-
BovemRufum System



Chapter 8

Conclusion

In order to meet the requirements of the Boemie project, the reasoning engine has been sub-
stantially extended. The abduction facility is the most important extension. It is necessary
to also support a preference measure in the abduction process in order to avoid unintented
high-level interpretations. The implementation could be extended to also support the event
recognition rules in the abduction process. In addition, rather than supporting event recogni-
tion in a backward-chaining way (in order to detect an event you have to iterate and query
over all possible events), it would advantageous to support a forward-chaining style of event
recognition (no queries necessary).

An initial implementation of nonstandard inferences are provided for moderately expressive
description logics. Based on future research on learning in Boemie, the implementation will be
extended to support more expressive logics.

For the probabilistic component, an initial implementation is provided. However, the average-
case complexity of the reasoning algorithms is exponential. Thus, the current version can serve
as an initial tool for studying how uncertainty can be modeled and how uncertain knowledge can
be used in Boemie. It is currently unclear how uncertainty can be considered in the abduction
process (e.g., in the preference measure mentioned above).

Parts of this report have been published in workshops and conferences. Namely, Chapter 1 is
published in [10] and [27]. The evaluation of the abduction framework is presented in [35]. The
event recognition facility is described in [27]. The triple store reasoning facilitiy was presented
at SemTech 07. The probabilistic extension to Racer is described in detail in [28].
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