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Abstract. In this work we present an approach to interpret information
extracted from multimedia documents through Abox abduction, which
we consider as a new type of non-standard retrieval inference service
in Description Logics (DLs). We discuss how abduction can be adopted
to interpret multimedia content through explanations. In particular, we
present a framework to generate explanations, and introduce a preference
measure for selecting ‘preferred’ explanations.1

1 Introduction

Automated extraction of information from different types of multimedia docu-
ments such as image, text, video, and audio becomes more and more relevant
for intelligent retrieval systems. An intelligent retrieval system is a system with
a knowledge base and capabilities that can be used to establish connections
between a request and a set of data based on the high-level semantics of the
data (which can also be documents). Typically, nowadays, automated semantics
extraction from multimedia occurs by using low-level features and is often lim-
ited to the recognition of isolated items if even. Examples are single objects in
an image, or single words (or maybe phrases) in a text. However, multimedia
documents such as images usually present more than objects detectable in a
bottom-up fashion. For instance, an image may illustrate an abstract concept
such as an event. An event in a still image can hardly be perceived without
additional high-level knowledge.

We see multimedia interpretation as abduction (reasoning from effects to
causes) in that we reason from observations (effects) to explanations (causes).
The aim of this work is to present a novel approach for multimedia interpretation
through Abox abduction, which we consider as a new type of non-standard
retrieval inference service in DLs. In particular, we focus on the use of DL-
safe-like rules for finding explanations and introduce a preference measure for
selecting ‘preferred’ explanations.

2 Related Work in Media Interpretation and Abduction

The idea of formalizing interpretation as abduction is investigated in [4] in the
context of text interpretation. In [8], Shanahan presents a formal theory of robot
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perception as a form of abduction. In this work, low-level sensor data is trans-
formed into a symbolic representation of the world in first-order logic and ab-
duction is used to derive explanations. In the context of scene interpretation,
recently, in [7] the use of DLs for scene interpretation processes is described.

In this paper we present a novel approach based on the combination of the
works in [4, 8] and [7], and indicate how formal representation and reasoning tech-
niques can be used for interpretation of information extracted from multimedia
documents. The approach used description logics and rules, with abduction im-
plemented with backward-chaining applied to the rules. In contrast to approaches
such as [5], which use abduction in the context of rules in logic programming,
we use description-logic reasoning for proving subgoals of (non-recursive) rules.
Other approaches for abduction in description logics (e.g., [1]) have dealt with
concept abduction only. In [3] among other abductive reasoning tasks in DLs
also Abox abduction is discussed. A solution to the Abox abduction problem is
formally presented, but it is not shown how to derive solutions.

Abduction is investigated for supporting information retrieval based on high-
level descriptions on media content. The approach builds on [6] and, in contrast
to later related work such as [2], the approach is integrated into a mainstream
description logic system and is based on high-level descriptions of media content.

3 Retrieval Inference Services

Before introducing abduction as a new inference service, we start with an overview
of retrieval inference services that are supported by state-of-the-art DL reason-
ers.

The retrieval inference problem w.r.t. a Tbox T is to find all individuals men-
tioned in an Abox A that are instances of a certain concept C: {x mentioned
in A | (T ,A) |= x : C}. In addition to the basic retrieval inference service, ex-
pressive query languages are required in practical applications. Well-established
is the class of conjunctive queries. A conjunctive query consists of a head and
a body. The head lists variables for which the user would like to compute bind-
ings. The body consists of query atoms (see below) in which all variables from
the head must be mentioned. If the body contains additional variables, they are
seen as existentially quantified. A query answer is a set of tuples representing
bindings for variables mentioned in the head. A query is a structure of the form
{(X1, . . . , Xn) | atom1, . . . , atomm}.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X,Y )),
same-as query atoms (X = Y ) as well as so-called concrete domain query atoms.
The latter are introduced to provide support for querying the concrete domain
part of a knowledge base and will not be covered in detail here. Complex queries
are built from query atoms using boolean constructs for conjunction (indicated
with comma) or union (∨).

In standard conjunctive queries, variables (in the head and in query atoms in
the body) are bound to (possibly anonymous) domain objects. A system support-
ing (unions of) standard conjunctive queries is QuOnto. In so-called grounded



conjunctive queries, C(X), R(X,Y ) or X = Y are true if, given some bindings
α for mapping from variables to individuals mentioned in the Abox A, it holds
that (T ,A) |= α(X) : C, (T ,A) |= (α(X), α(Y )) : R, or (T ,A) |= α(X) = α(Y ),
respectively. In grounded conjunctive queries the standard semantics can be
obtained for so-called tree-shaped queries by using corresponding existential re-
strictions in query atoms. Due to space restrictions, we cannot discuss the details
here. In the following, we consider only grounded conjunctive queries, which are
supported by KAON2, Pellet, and RacerPro.

In practical applications it is advantageous to name subqueries for later reuse,
and practical systems, such as for instance RacerPro, support this for grounded
conjunctive queries with non-recursive rules of the following form

P (X1, . . . , Xn1)← A1(Y1), . . . , Al(Yl), R1(Z1, Z2), . . . , Rh(Z2h−1, Z2h). (1)

The predicate term to the left of ← is called the head and the rest is called the
body (a set of atoms), which, informally speaking, is seen as a conjunction of
predicate terms. All variables in the head have to occur in the body, and rules
have to be non-recursive (with the obvious definition of non-recursivity). Since
rules have to be non-recursive, the replacement of query atoms matching a rule
head is possible (unfolding, with the obvious definition of matching). The rule
body is inserted (with well-known variable substitutions and variable renamings).
If there are multiple rules (definitions) for the same predicate P , corresponding
disjunctions are generated. The unfolding process starts with the set of atoms
of a query. Thus, we start with a set of atom sets.

{{atom1, atom2, . . . atomk}}

Each element of the outer set represents a disjunct. Now, wlog we assume that
there are n rules matching atom2. Then, the set {atom1, atom2, . . . atomk}
is eliminated and replaced with the sequence of sets {atom1} ∪ replace vars(
body(rule1), head(rule1), atom2)∪{. . . atomk}, . . . , {atom1}∪replace vars(body
(rulen), head(rulen), atom2)∪{. . . atomk}. The unfolding process proceeds until
no replacement is possible any more (no rules match). The unfold operator is
used in the abduction process, which is described in the next section.

4 Abduction as a Non-Standard Inference Service

In this paper, we argue that abduction can be considered as a new type of non-
standard retrieval inference service. In this view, observations (or part of them)
are utilized to constitute queries that have to be answered. Contrary to existing
retrieval inference services, answers to a given query cannot be found by simply
exploiting the knowledge base. In fact, the abductive retrieval inference service
has the task of acquiring what should be added to the knowledge base in order
to positively answer a query.

More formally, for a given set of Abox assertions Γ (in form of a query) and
a knowledge base Σ = (T ,A), the abductive retrieval inference service aims to



derive all sets of Abox assertions ∆ (explanations) such that Σ ∪ ∆ |= Γ and
the following conditions are satisfied:

– Σ ∪∆ is satisfiable, and
– ∆ is a minimal explanation for Γ , i.e., there exists no other explanation ∆′

in the solution set that is not equivalent to ∆ and it holds that Σ ∪∆′ |= ∆.

In addition to minimality (simplicity), in [4] another dimension called con-
silience is mentioned. An explanation should explain as many elements of Γ as
possible. Both measures are contradictory.

In the next section, we will focus on the use of abductive retrieval infer-
ence services for multimedia interpretation and address two important issues,
namely finding explanations that meet the conditions listed above and selecting
‘preferred’ ones.

5 Interpretation of Multimedia Documents

For intelligent retrieval of multimedia documents such as images, videos, audio,
and texts, information extracted by media analysis techniques has to be enriched
by applying high-level interpretation techniques. The interpretation of multime-
dia content can be defined as the recognition of abstract knowledge, in terms of
concepts and relations, which are not directly extractable by low-level analysis
processes, but rather require additional high-level knowledge. Furthermore, such
abstract concepts are represented in the background knowledge as aggregate
concepts with constraints among its parts.

In this section, we start by specifying the requirements for the abduction
approach by defining its input and output. Then, we proceed with describing the
framework for generating explanations, and finally introduce a scenario with a
particular example involving for image interpretation where various explanations
are generated and the usefulness of a preference score is demonstrated.

5.1 Requirements for Abduction

The abduction approach requires as input a knowledge base Σ consisting of
a Tbox T and an Abox A. We assume that the information extracted from a
multimedia document through low-level analysis (e.g., image analysis) is formally
encoded as a set of Abox assertions (Γ ). For example, in the context of images for
every object recognized in an image, a corresponding concept assertion is found in
Γ . Usually, the relations that can be extracted from an image are spatial relations
holding among the objects in the image. These relations are also represented
as role assertions in Γ . In order to construct a high-level interpretation of the
content in Γ , the abduction process will extend the Abox with new concept and
role assertions describing the content of the multimedia document at a higher
level.

The output of the abduction process is formally defined as a set of assertions
∆ such that Σ ∪∆ |= Γ , where Σ = (T ,A) is the knowledge base (usually the



Abox A is assumed to be empty), Γ is a given set of low-level assertions, and
∆ is an explanation, which should be computed. The solution ∆ must satisfy
certain side conditions (see Section 4). To compute the explanation ∆ in our
context we modify this equation into

Σ ∪ Γ1 ∪∆ |= Γ2, (2)

where the assertions in Γ will be split into bona fide assertions (Γ1) and asser-
tions requiring fiats (Γ2).2 Bona fide assertions are assumed to be true by default,
whereas fiat assertions are aimed to be explained. The abduction process tries to
find explanations (∆) such that Γ2 is entailed. This entailment decision is imple-
mented as (boolean) query answering. The output ∆ of the abduction process is
represented as an Abox. Multiple solutions are possible.

5.2 The Abduction Framework

The abduction framework exploits the non-recursive rules of Σ to answer a
given query in a backward-chaining way (see Framework 1). The function com-
pute_explanations gets Σ,Γ1, and Γ2 as input. We assume a function trans-
form_into_query that is applied to a set of Abox assertions Γ2 and returns
a set of corresponding query atoms. The definition is obvious and left out for
brevity. Since the rules in Σ are non-recursive, the unfolding step (see Line 2
in Framework 1) in which each atom in the transformed Γ2 is replaced by the
body of a corresponding rule is well-defined. The function unfold returns a set
of atom sets (each representing a disjunct introduced by multiple matching rules,
see above).

The function explain computes an explanation ∆ for each γ ∈ Γ ′2. The
function vars (or inds) returns the set of all vars (or inds) mentioned in the
argument structures. For each variable in γ a new individual is generated (see the
set new inds in Line 7). Besides old individuals, these new individuals are used in
a non-deterministic variable substitution. The variable substitution σγ,new inds

(line 8) is inductively extended as follows:

– σγ,new inds({a1, . . . , an}) =def {σγ,new inds(a1), . . . , σγ,new inds(an)}
– σγ,new inds(C(x)) =def C(σγ,new inds(x))
– σγ,new inds(R(x, y)) =def R(σγ,new inds(x), σγ,new inds(y))
– σγ,new inds(x) =def x if x is an individual

The function transform maps C(i) into i : C and R(i, j) into (i, j) : R, respec-
tively. All satisfiable explanations ∆ derived by explain are added to the set of
explanations ∆s. The function compute-preferred-explanations transforms
the ∆s into a poset according to a preference measure and returns the maxima
as a set of Aboxes. The preference score of a ∆ used for the poset order relation
is: Spref (∆) := Si(∆)− Sh(∆) where Si and Sh are defined as follows.

2 With the obvious semantics we slightly abuse notation and allow a tuple of sets of
assertions Σ to be unioned with a set of assertions Γ1 ∪∆.



– Si(∆) := |{i|i ∈ inds(∆) and i ∈ inds(Σ ∪ Γ1)}|
– Sh(∆) := |{i|i ∈ inds(∆) and i ∈ new inds}|

Algorithm 1 The Abduction Framework
1: function compute explanations(Σ,Γ1, Γ2, S) : set of Aboxes
2: Γ ′2 := unfold(transform into query(Γ2), Σ) // Γ ′2 = {{atom1, . . . , atomm}, . . .}
3: ∆s := {∆ |∃γ ∈ Γ ′2.(∆ =explain(Σ,Γ1, γ), Σ ∪ Γ1 ∪∆ 6|= ⊥)}
4: return compute preferred explanations(Σ,Γ1,∆s, S)

5: function explain(Σ,Γ1, γ) : Abox
6: n := |vars(γ)|
7: new inds := {new indi | i ∈ {1 . . . n}}, where new inds∩(inds(Σ)∪inds(Γ1)) = ∅
8: ∆ := {transform(a) | ∃σγ,new inds : vars(γ) 7→ (inds(Σ) ∪ inds(Γ1) ∪ new inds).
9: (a ∈ σγ,new inds(γ), (Σ ∪ Γ1) 6|= a)}

10: return ∆

11: function compute preferred explanations(Σ,Γ1,∆s, S) : set of Aboxes
12: return maxima(poset(∆s, λ(x, y) • S(x) < S(y)))

Depending on the preference function given as the actual parameter for the
argument S, the procedure compute_explanations can be considered as an
approximation w.r.t. the minimality and consilience condition defined in Section
4. It adds to the explanation those query atoms that cannot be proven to hold.

For the abduction framework, only the rules are considered. The GCIs should
be used for abduction as well, however. We might accomplish this by approx-
imating the Tbox with the DLP fragment and, thereby, see the Tbox axioms
from a rules perspective in order to better reflect the Tbox in the abduction
process. The procedure does not add irrelevant atoms (spurious elements of an
explanation), in case the rules are well-engineered and do not contain irrelevant
ways to derive assertions. The procedure could be slightly modified to check for
those redundancies.

5.3 An Example for Image Interpretation as Abduction

For the image shown in Figure 1, we suppose the Abox in Figure 2 is provided
by low-level image analysis. Furthermore, a sample Tbox of the athletics domain
and a small set of rules are assumed to be provided as background knowledge Σ
(see Figure 3).

In order to find a ‘good’ high-level interpretation of this image, we divide the
Abox Γ into Γ1 and Γ2 following Equation 2. In this example Γ1 contains {pole1 :
Pole, human1 : Human, bar1 : Bar} and Γ2 contains {(bar1, human1) : near}.
Consequently, the abductive retrieval inference service computes the following
boolean query in line 2: Q1:={() | near(bar1, human1)}. In this paper we do not
elaborate on the strategy to determine which Γ2 to actually choose.
Obviously, both rules in Σ match with the ‘near’ atom in query Q1. Therefore,
the abduction framework first generates explanations by non-deterministically



Fig. 1. A pole vault event.

pole1 : Pole
human1 : Human

bar1 : Bar
(bar1, human1) : near

Fig. 2. An Abox Γ representing the results
of low-level image analysis.

Jumper v Human
Pole v Sports Equipment
Bar v Sports Equipment

Pole uBar v ⊥
Pole u Jumper v ⊥
Jumper uBar v ⊥

Jumping Event v ∃≤1hasParticipant.Jumper
Pole V ault v Jumping Event u ∃hasPart.Pole u ∃hasPart.Bar
High Jump v Jumping Event u ∃hasPart.Bar
near(Y,Z) ← Pole V ault(X), hasPart(X,Y ), Bar(Y ),

hasPart(X,W ), Pole(W ), hasParticipant(X,Z), Jumper(Z)
near(Y,Z) ← High Jump(X), hasPart(X,Y ), Bar(Y ),

hasParticipant(X,Z), Jumper(Z)

Fig. 3. A tiny example Σ consisting of a Tbox and DL-safe rules.

substituting variables in the query body with different instances from Γ1 or with
new individuals. Some intermediate ∆ results turn out to be unsatisfiable (e.g., if
the bar is made into a pole by the variable subsitution process). However, several
explanations still remain as possible interpretations of the image. The preference
score is used to identify the ‘preferred’ explanations. For example, considering
the following explanations of the image

– ∆1 = {new ind1 : Pole V ault, (new ind1, bar1) : hasPart, (new ind1, new ind2) :
hasPart, new ind2 : Pole, (new ind1, human1) : hasParticipant, human1 :
Jumper}

– ∆2 = {new ind1 : Pole V ault, (new ind1, bar1) : hasPart, (new ind1, pole1) :
hasPart,
(new ind1, human1) : hasParticipant, human1 : Jumper}

– ∆3 = {new ind1 : High Jump, (new ind1, bar1) : hasPart, (new ind1, human1) :
hasParticipant,
human1 : Jumper}

the preference measure of ∆1 is calculated as follows: ∆1 incorporates the in-
dividuals human1 and bar1 from Γ1 and therefore Si(∆1)=2. Furthermore, it
hypothesizes two new individuals, namely new ind1 and new ind2, such that



Sh(∆1)=2. The preference score of ∆1 is S(∆1)= Si(∆1)- Sh(∆1)=0. Similarly,
the preference scores of the second and third explanations are S(∆2)=2 and
S(∆3)=1. After transforming the ∆s into a poset, the algorithm computes the
maxima. In our case, the resulting set of Aboxes contains only one element, ∆2,
which represents the ‘preferred’ explanation. Indeed, the result is plausible, since
this image should better be interpreted as showing a pole vault and not a high
jump, due to the fact that low-level image analysis could detect a pole, which
should not be ignored as in the high-jump explanation.

6 Summary

In this paper we presented a novel approach to interpret multimedia data using
abduction with description logics that makes use of a new type of non-standard
retrieval service in DLs. We showed that results from low-level media analysis
can be enriched with high-level descriptions using our Abox abduction approach.
In this approach, backward-chained DL-safe-like rules are exploited for generat-
ing explanations. For each explanation, a preference score is calculated in order
to implement the selection of ‘preferred’ explanations. Details of the approach
have been discussed with a particular example for image interpretation. An im-
plementation of the abduction process described in this paper is available as a
non-standard retrieval service integrated in RacerPro.
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