
Certification of Transformation Algorithms
in Model-Driven Software Development

Miguel Garcia, Ralf Möller

Institute for Software Systems (STS)
Hamburg University of Technology (TUHH), D-21073 Hamburg

{miguel.garcia, r.f.moeller}@tuhh.de

Abstract: The increasing reliance on Model-Driven Software Development calls for
model compilers to assume the role of today’s compilers, i.e., reliability of these com-
ponents is of utmost importance. We describe how to certify model transformations in
this context by bridging the gap between the languages in which such transformations
are specified (e.g., Essential MOF, OCL, OO programs) and the decision procedures
needed to verify properties expected of such transformations. Two major aspects are
investigated in this paper: (i) valid output is obtained for each valid input, (ii) the
output satisfies certain properties. Results from application projects validate our ap-
proach, which internally applies model-driven techniques to the certification process
itself by mapping transformation specifications into the +CAL model-checking lan-
guage.

1 Introduction

Model-Driven Software Development (MDSD) is gaining consensus in the Software En-
gineering community as a viable technology to improve both productivity and quality.
Metamodel-based definitions of Domain Specific Languages (DSLs) are routinely lever-
aged to automatically derive language processing tools (syntax-aware editors [JBK06], di-
agram editors [EEHT05], software repositories [APM03]) using techniques that build upon
a common infrastructure such as the Eclipse Modeling Framework (EMF) [BSM+03].
The sketched productivity gains in jumpstarting a toolchain for MDSD can be traced back
to the specification of the static semantics (also called well-formedness rules, WFRs, or
validity-checking rules) of DSLs in terms of declarative OCL invariants [WK03] over an
Essential MOF (EMOF) metamodel [OMG06]. Such metamodels contain a wealth of
machine-processable information, relieving tool implementors from manually hardwiring
such specs into language processing tools (e.g., in the semantic analysis phase of a dedi-
cated DSL compiler).

In order for MDSD to deliver on its full potential, commensurate progress is required to
increase the quality of emerging model transformers and compilers. A methodology and
its associated tooling is presented in this paper to reach that goal for a representative class
of model transformations. In particular, we investigate languages for which an EMOF +
OCL metamodel is available. This methodology involves the automatic translation of the

input and output metamodels into a formalism for which a decision procedure is avail-
able to answer whether a given procedural transformation exhibits certain properties of
interest. Two basic desirable guarantees for such tranformations are (a) that all output
sentences belong to the target language [HZS05], and (b) that the transformation function
covers the whole input language for which it was designed [WKC06]. Experiences with
current model-driven tooling shows that these basic requirements are not always met. Be-
yond these general requirements, guarantees specific to a given transformation are also
desirable. For example, that an optimized implementation should produde the same result
as the non-optimized version.

Nowadays, model compilers are in operation for various kinds of application tasks. For
instance, transformations into Java Enterprise Edition (Java EE, defined in JSR-220) are
very popular and include: DASL [Gol05], SecureUML [BDW06], and WebML [Cer05].
These DSLs allow for the specification of three-tier enterprise systems at a high level of
abstraction and have metamodel-based descriptions. Similarly, platform-specific meta-
models are available. For example, the persistent query language of Java EE (EJB3QL)
has been metamodeled in [Gar06]: all the normative restrictions formulated in English in
Ch. 4 of JSR-220 are recast as OCL invariants. Instantiations of the EJB3QL metamodel
satisfying those invariants are valid abstract syntax trees (ASTs) for particular EJB3QL
queries, and can be unparsed into text. Along the same lines, a complete metamodel of
BPEL 1.1 is discussed in [Ake04].

In the current state of the practice, the WFRs on the input and output ASTs are evaluated
at transformation-time, for each application of the transformation. We aim instead at cer-
tifying transformation algorithms at design-time, to make runtime-checks redundant, but
moreover to get model compilers right early on, instead of patching them as new cases are
discovered which were overlooked before widespread deployment.

As decision procedure for the task described above we adopt model-checking as described
in [Lam06b]. A model-checker manipulates execution traces, which can be conceptualized
as trees of states (each state also called a system snapshot), with root states derived to cover
all initial conditions. Candidate successor states are computed from all actions enabled in
the current state.

Once a transformation algorithm has been specified, at algorithm-design time the model-
checker can detect situations where the transformation does not terminate, or terminates
without establishing the properties of interest. The coverage achieved by the admittedly
finite analysis of a model-checker is much higher than testing because (a) states can be
manipulated symbolically, and (b) several properties of interest depend on the shape of an
object graph rather than on its size or concrete attribute values (the “small scope hypothe-
sis”) [Jac06]. For example, the condition “two lines intersect” can be manipulated without
considering concrete crossing points. Model-checkers can detect these situations, taking a
single state as representative of all those exhibiting such shape.

In summary, the contribution of this paper is twofold. First, we eliminate the laborious
task of preparing a model-checkable specification for nontrivial MDSD transformations by
reusing the EMOF/OCL WFRs for the static semantics contained in the metamodels of the
languages participating in the transformation. Second, we demonstrate how to support the

development of robust transformation algorithms by employing a model-checking engine.
In particular, we investigate the language +CAL and use the correpsonding model-checker
TLC. The significance of the approach is demonstrated using an application scenario con-
cerning a well-known graph transformation problem (Schorr-Waite).

The structure of this paper is as follows. Sec. 2 elaborates on static semantics and derives
set-theoretic definitions for EMOF + OCL metamodels. Afterwards, it is exemplified how
OCL pre- and postconditions can be mapped to +CAL. This is followed (in Sec. 3) by
a discussion of the steps to follow when applying the proposed model-checking-based
certification methodology. Afterwards, the section focuses on the analysis of a sample
transformation. Alternative and complementary approaches to model-based verification
are discussed in Sec. 4. Knowledge is assumed from the reader about MDSD, set-theory
and logic. The software artifacts discussed in this paper can be downloaded from [Gar].

2 Formalization of Essential MOF + OCL for model-checking

+CAL [Lam06b] is a specification language designed to replace pseudo-code for writ-
ing high-level descriptions of algorithms. A +CAL algorithm manipulates mathemati-
cal objects in a series of steps. The granularity of a step is chosen by the algorithm de-
signer, ranging from a single built-in statement to a composite step inolving several +CAL
statements. A step exhibits transaction semantics: intermediate results are not visible to
concurrently executing processes and system invariants are required to hold only at step
boundaries.
+CAL includes control-flow statements typical from block-structured programming (if-
then-else, while-do, sequential composition), as well as constructs for expressing non-
deterministic and concurrent algorithms. For the purposes of this work, we focus on the
sequential subset of +CAL. Mathematical expressions and logical formulae may appear in
+CAL programs whenever a construct calls for a value (e.g., in the condition part of an
if-then-else, in an assert statement). In fact, the properties an algorithm should exhibit are
routinely expressed as mathematical assertions on the input and output data (in our case:
ASTs), with the model-checker being able to compute them for finite system snapshots.

The proposed certification methodology comprises the following steps:

1. Automatic translation of the definitions contained in the participating EMOF + OCL
metamodels into +CAL (these definitions allow the transformation algorithm to re-
fer to well-formed ASTs).

2. Expressing a model transformation as a +CAL algorithm operating on ASTs.

3. If appropriate, annotating the transformation with assumptions about its input, be-
yond the constraints expressed in the metamodels of input ASTs. The invoker of the
transformation is responsible for satisfying these assumptions.

4. Annotating the transformation with assurances about the system state (in particular
about the output ASTs) after every successful run of the transformation on valid

input (i.e. on well-formed input satisfying the assumptions made in the previous
item). The algorithm is responsible for satisfying these assurances.

Following Design-By-Contract [MMS98], the assumptions in (3) are called transforma-
tion preconditions and the assurances in (4) transformation postconditions. This terminol-
ogy overlaps with that of Hoare logic, where a postcondition fully specifies the transforma-
tion function between the pre and post states (no procedural statements are necessary). The
checks that Design-By-Contract performs at runtime can be carried out at transformation-
design time thanks to model-checking. As to the language for pre- and postconditions,
besides +CAL some or all of them can be expressed in OCL, with our prototype taking
care of their translation.

2.1 Translating EMOF into +CAL

This translation of AST structures results in +CAL procedures to allocate instances and
manipulate links and attributes, constituting a certified building block that simplifies the
expression of the transformation algorithm. Our encoding of EMOF + OCL into +CAL
leverages previous work on set-theoretic semantics of UML and OCL [BKS02]. In the
context of UML, a thorough analysis of the logical consistency of the MOF 2.0 specifi-
cation is also reported in [AS06]. Our work focuses on the more recent EMOF and uses
+CAL instead [Lam06b]. Due to space restrictions we cannot present the transformation
of all EMOF language constructs, but as an example for the main ideas Figure 2 shows the
invariant for the bidirectionaly constraint stated in the EMOF model in Figure 1

Figure 1: Sample EMOF model

The translation of ASTs results in +CAL procedures for the allocation of instances and the
manipulate of links and attributes. The generated specification allows for checking in every
execution trace whether the constraints specified in the EMOF model (about multiplicities,
ordering, bidirectionality, etc.) and all OCL invariants are maintained, and this for arbitrary
finite system snapshots (being automatically generated by the model-checker).

2.2 Translating OCL into +CAL

OCL prescribes that, at the end of a transaction, each system snapshot should fulfill the
specified invariants. Lacking transaction demarcation, it is generally agreed that invariants

for each instance b of B , those instances of A
reachable over D from it must in turn have b among
their instances reachable over D

InvariantBidirectionality AtoB
∆

=
∨ AsForBoverD = 〈〉
∨ ∀ b ∈ domain AsForBoverD :

let AsReachable
∆

= AsForBoverD [b]in a sequence

∀ i ∈ domain AsReachable :
let anA

∆

= AsReachable[i]in
b ∈ BsForAoverD [anA]

counterpart of the above, this time for each a

InvariantBidirectionality BtoA
∆

=
∨ BsForAoverD = 〈〉
∨ ∀ a ∈ domain BsForAoverD :

let BsReachable
∆

= BsForAoverD [a]in a set

∀ aB ∈ BsReachable :
ElemIsInSeq(a, AsForBoverD [aB])

InvariantsDirectionality
∆

= ∧ InvariantBidirectionality AtoB

∧ InvariantBidirectionality BtoA

Figure 2: Bidirectionality expressed in +CAL

in an OO program should hold after object construction and after the execution of each
public operation. This concept of transaction boundaries is directly supported by +CAL
step granularity. The efficient evaluation of invariants can be challenging. Usually an op-
eration involves a small number of updates which leave most invariants unaffected. Being
+CAL based on a temporal logic, there is no shortage of expressivity to encode OCL in-
variants, with the model-checker evaluating them in the background as execution traces
are considered. Model-checkers can take into account the data-flow dependencies of for-
mulae so as to approach non-redundant yet complete evaluation. This shortens the time
elapsed from submitting an algorithm till counterexamples are found, thus increasing the
productivity of the transformation designer. As already mentioned at the beginning of this
section, OCL pre- and postconditions are translated as assertions into +CAL, i.e., they are
no substitute for the specification of the input-output transformation, which must be given
as imperative statements.

The conversion from OCL to +CAL is performed by visitors over ASTs of OCL expres-
sions, similar to the work of [BKS02]. A metamodel of +CAL was prepared for this
purpose. This AST-to-AST conversion in turn is thus amenable to be verified with the
techniques described in this paper. The inspiration to bootstrap the verification of this
transformation was offered by the algorithm to translate from +CAL to TLA+ (Temporal
Logic of Actions [Lam02], the logic underlying +CAL), which is itself specified in TLA+.

3 Certification process

Certification of an algorithm is an iterative process. Whenever, at design time it can be
shown that an algorithm is bound to fail at runtime (i.e., for some inputs does not terminate,
breaks metamodel invariants, or does not fulfill its part of the contract in establishing the
postconditions) the model-checker not only indicates failure but presents an execution
trace leading to that situation (a counterexample). The algorithm designer may apply
a combination of (i) reformulating the algorithm to handle the situation that caused the
failure, (ii) strengthening the preconditions (making the algorithm applicable to a subset
smaller than well-formed ASTs), or (iii) weakening the postconditions. The practical limit
to postcondition weakening is that the output must still be well-formed, as demanded by
metamodel invariants.

3.1 Specifying algorithms in EMOF

As a further means to increase certification productivity, a textual syntax for an object-
oriented programming language (“Executable EMOF”, or xEMOF for short) could de-
fine statements to manipulate instances of metamodels, as a high-level notation to express
model transformation algorithms. The rationale for this is the large number of transforma-
tions already expressed in terms of the Visitor design pattern [GVJH98]. In a green field
scenario, a language such as xEMOF would also prove useful by reducing the conceptual
distance between a transformation algorithm and its implementation, thus shortening the
certification process.

A language such as xEMOF is not just a thin layer of syntactic sugar over +CAL. Instead,
the translation is non-trivial because (a) method-dispatch in an object-oriented language
depends on runtime-types instead of only declared types, (b) method overloading simi-
larly complicates method selection, and (c) the interplay between inheritance and object
initialization has to be taken into account. A more realistic modeling of Java, including for
examples exceptions (which introduce alternative return paths and require bookkeeping to
correctly unfold the activation frames in the call-stack) would not add expressive power
yet complicate the translator.

Besides those transformations expressed in terms of visitors, another large group of exist-
ing transformations relies on pattern-matching mechanisms followed by in-place transfor-
mations (ATL [JK06], QVT [OMG05], graph-grammars [AKRS06]). Provided that they
manipulate EMOF-based ASTs, their execution engines can similarly be formulated in
terms of +CAL reusing the translation performed by our prototype.

3.2 Certifying a non-trivial in-place transformation: Schorr-Waite

As to the readability of +CAL, Figure 3 shows the encoding of the Schorr-Waite graph-
marking algorithm. It is complex enough to serve as a reference case in source code

verification [HM05, MN05], as it involves modifying in-place an AST-like pointer-rich
data structure, yet intuitive enough that its operation can be explained succinctly. To our
knowledge, this is the first account on model-checking Schorr-Waite. Although we man-
ually created the example specification from Figure 3, the discussion in the previous sub-
section and also, e.g., the results of [BB06] indicate that manual efforts can be reduced if
not eliminated in the near future.

The Schorr-Waite algorithm performs a depth-first traversal of a directed graph, starting
from a specific node called the root. Given that memory is at a premium during garbage
collection, Schorr-Waite offers a constant upper bound on memory usage by avoiding
keeping a stack with the nodes in the current path. Instead, as new nodes are visited,
the link that was followed is reversed in place. Upon going back along the current path,
the algorithm reconstructs the original topology. Pointer reversal avoids the introduction
of a stack.

The correctness guarantees we expect are: (a) termination, (b) that all nodes reachable
from the root (and only those) are marked, and (c) that the algorithm leaves the topology
unchanged. These guarantees are encoded as assertions: the results computed by the im-
plementation are compared with those computed from mathematical definitions which are
executable in +CAL. For example, the set of nodes marked by Schorr-Waite is compared
to the transitive closure over the pointsTo (mathematical) relationship applied to the root
(our download [Gar] contains the full source code of this paper).

We model-checked the +CAL algorithm in Figure 3 using TLC and investigated graphs
with up to 10 nodes and found that acceptable runtimes can be achieved (see also [Lam06a]
for the empirical behavior of TLC). Thus, we conclude that the proposed methodology is
practically significant. As mentioned before, due to the small scope hypothesis [Jac06],
many, if not all, problems will be found using this problem size.

4 Related work: Alternative and complementary approaches

The methodology reported in this paper allows for the validation of model transforma-
tion algorithms. If implemented carefully, the assertions made for an algorithm carry over
to its implementation. This manual step introduces the possibility of a non-conforming
implementation. We argue that validation of output models is still necessary: a faulty
model transformation, however correctly implemented, will not improve quality. In addi-
tion, metamodel-based approaches (based, e.g., on OCL specification) allow for a higher
expressivity of constraints to be validated than, e.g., approaches based on XML-Schema.

A straightforward solution consists in devising a translator from the language in which the
transformation was certified (+CAL or xEMOF) into Java, and certifying this translator.
Assuming that verification of a (manually or automatically derived) Java implementation is
required, the OCL invariants contained in the metamodel can still be reused by translating
them to JML [BCC+05] as discussed in [Ham04]. As with all source-code level verifi-
cation approaches, a larger state space has to be explored, thus reaching practical limits
more quickly than for the model-level counterpart as a result of the faithful representation

module test2
–algorithm test {
variables

g ∈ VertexGraph; root ∈ g.node;

alloc = [v ∈ g.node 7→ MemnodeForVertex [v]];

pointsTo = [v ∈ g.node 7→ SetToSequence(Targets[v , g])];

current = root ; next = Null ; prev = Null ; i = 1; backref = Null ; bQuit = false;

{while(¬bQuit){
\ ∗ go down the leftmost branch

while((current 6= Null) ∧ (alloc[current].markBit = false)){
alloc[current].markBit := true; alloc[current].flag := 1;

if (Len(pointsTo[current]) > 0){
i := alloc[current].flag; next := pointsTo[current][i];

pointsTo[current][i] := prev ; prev := current ;

alloc[current].flag := alloc[current].flag + 1; current := next ;

};
}; \ ∗ end of while current

\ ∗ retreat , all objects pointed from current have been visited

while(∧ (prev 6= Null)

∧ (alloc[prev].flag = Len(pointsTo[prev]) + 1)){
i := Len(pointsTo[prev]); next := pointsTo[prev][i];

pointsTo[prev][i] := current ; current := prev ; prev := next ;

}; \ ∗ end of while prev

\ ∗ retreated back to the starting point

if (prev = Null){bQuit := true; };
if (¬bQuit){ \ ∗ visit subgraph to the right of prev

i := alloc[prev].flag − 1; backref := pointsTo[prev][i];

pointsTo[prev][i] := current ; next := pointsTo[prev][alloc[prev].flag];

pointsTo[prev][alloc[prev].flag] := backref ;

current := next ; alloc[prev].flag := alloc[prev].flag + 1;

};
};
assert(Topology(pointsTo) = g.edge);

assert(ReachableFrom[g, root] = {v ∈ g.node : alloc[v].markBit});
}}

BEGIN TRANSLATION

variables g , root , alloc, pointsTo, current , next , prev , i , backref , bQuit ,
pc

vars ∆= 〈g , root , alloc, pointsTo, current , next , prev , i , backref , bQuit ,
pc〉

Init ∆= Global variables

∧ g ∈ VertexGraph
∧ root ∈ g .node
∧ alloc = [v ∈ g .node 7→ MemnodeForVertex [v]]
∧ pointsTo = [v ∈ g .node 7→ SetToSequence(Targets[v , g])]
∧ current = root
∧ next = Null

1

Figure 3: Schorr-Waite expressed in +CAL. Preconditions concern valid input (not shown), post-
conditions (see the assert statements) verify certain topological invariants.

of Java Virtual Machine abstractions. For example, expressions in Java may have side-
effects while OCL expressions are guaranteed to be read-only. Adopting EMOF models
as the only mechanism to define state allows us to consider only those state evolutions
allowed by EMOF, reducing the state space to explore. This is in tune with the principle
of reasoning at the highest-level of abstraction possible, because it’s more efficient.

The application of TLA+ has been investigated also in other software engineering contexts.
In the field of enterprise software architectures, model-checking of web service protocols
is reported in [JLLV04]. An Eclipse-based text editor to support editing +CAL and TLA+

specifications is described in [Zam05].

Expressing behavior at the level of object-oriented models is also the aim of approaches
under the Executable UML umbrella [RFW+04]. Most products in this category target
the embedded systems or telecommunications market and are heavily focused on state-
charts. Minor semantic differences between representative statechart dialects are analyzed

in detail in [CD05], as part of the UML 2.0 Semantics Project.

Another formalization of OCL with tool support for verification is KeY [ABB+03] which
targets different verification use cases from the ones addressed in this paper. Its execu-
tion language is JavaCard, with both JML and a dedicated Dynamic Logic as verification
backends. KeY is used in tandem with a commercial UML tool.

Brucker et. al. [BW06a] describe in detail a tool to transform UML+OCL into a formal-
ization processable by a theorem prover. The same team has also mechanized a Hoare-
calculus for an idealized object-oriented programming language [BW06b]. In principle,
both tools can evolve into an integrated proof environment for object-oriented programs.
As of now, verification based on interactive theorem-provers is not fully automatic (that’s
where the interactive comes in), requiring assistance from the user who has to understand
the underlying logic and the deduction rules. Once a language-processing algorithm has
been formulated in an imperative language amenable for Hoare-analysis, those verification
conditions that cannot be automatically derived by the tool have to be specified manually.
Proof tactics are then to be applied (automatically or assisted by the user) to discharge the
verification conditions and therefore the (Hoare) pre- and postconditions for the algorithm
as a whole. There is as of now no similar Hoare-calculus with theorem prover support for
+CAL. +CAL is translated to TLA+, The Temporal Logic of Actions [Lam02]. This logic
is examined by Merz in [Mer03].

5 Conclusions and Further Work

Given the remarkable progress during the last decade in the areas of model-checking and
in anchoring the semantics of metamodeling, there is no reason preventing combining their
strengths to increase the reliability of model compilers. Our findings confirm that language
metamodeling techniques contribute not only to the productivity of MDSD but also to
its quality. Our prototype aims at enabling the interchange of standard metamodels and
certified transformations within the software engineering community, reaping the benefits
of network effects. Integrated model-driven toolchains for enterprise-scale projects involve
metamodels for several languages, whose development costs would be prohibitive if done
from scratch and in isolation by separate teams. We foresee the existence of peer-reviewed,
public repositories of machine-checked metamodels and transformations in the near future.

After certifying properties about well-formedness, a follow-up problem is compiler cor-
rectness [BGL05], i.e. answering whether the meaning of a high level specification is
preserved in its compiled formulation. For example, whether an OCL query retrieves the
same resultset as its SQL’92 formulation. In the example, the formal problem consists in
determining whether the membership conditions defined over their respective universes by
the OCL and the SQL’92 queries are logically equivalent. Research in this field for model
compilers targeting an enterprise-class software architecture is at its early stages.

Our work on certifying model transformations will be continued with the development
of extensions to the Eclipse Modeling infrastructure (supported by a 2006 Eclipse In-
novation Grant). This project involves implementing transformations so that generated

Java code exhibits (a) efficient detection of broken OCL invariants, (b) reactive rules, and
(c) statechart-related design patterns. There is an interplay between these research and
development activities. The listed capabilities were motivated by our work on declarative
specifications of behavior, as necessary for example when defining consistency-enforcing
algorithms for use in DSL editors. In turn, the experience gained with case studies on
model-checking transformations is directly applicable to the language design of the mod-
eling infrastructure extensions mentioned above.

References

[ABB+03] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Hähnle, Wolfram Menzeand Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The KeY Tool. Technical report, Department of
Computing Science, Chalmers University and Göteborg University, Göteborg, Sweden,
2003.

[Ake04] D. H. Akehurst. Validating BPEL Specifications using OCL. Technical Report 15-04,
University of Kent at Canterbury, August 2004.

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In A. Rensink and
J. Warmer, editors, Model Driven Architecture - Foundations and Applications: Second
European Conference, volume 4066 of Lecture Notes in Computer Science (LNCS),
pages 361–375, Heidelberg, 2006. Springer Verlag, Springer Verlag.

[APM03] G. Antoniol, M. Di Penta, and E. Merlo. YAAB (Yet Another AST Browser): Using
OCL to Navigate ASTs. In IWPC ’03: Proceedings of the 11th IEEE International
Workshop on Program Comprehension, page 13, Washington, DC, USA, 2003. IEEE
Computer Society.

[AS06] C. Amelunxen and A. Schürr. On OCL as part of the metamodeling framework
MOFLON. In 6th OCL Workshop at the UML/MoDELS Conference, 2006.

[BB06] Fabian Büttner and Hanna Bauerdick. Realizing UML Model Transformations with
USE. In Dan Chiorean, Birgit Demuth, Martin Gogolla, and Jos Warmer, editors,
UML/MoDELS Workshop on OCL (OCLApps’2006), pages 96–110. Technical Univer-
sity of Dresden, Technical Report TUD-FI06, 2006.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T. Leav-
ens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications.
Software Tools for Technology Transfer, 7(3):212–232, June 2005.

[BDW06] Achim D. Brucker, Jürgen Doser, and Burkhart Wolff. A Model Transformation Seman-
tics and Analysis Methodology for SecureUML. Technical Report 524, ETH Zürich,
2006.

[BGL05] Jan Olaf Blech, Sabine Glesner, and Johannes Leitner. Formal Verification of Java Code
Generation from UML Models. Fujaba Days, september 2005.

[BKS02] Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. Translating the Object Con-
straint Language into First-order Predicate Logic. In Proceedings, VERIFY, Workshop
at Federated Logic Conferences (FLoC), Copenhagen, Denmark, 2002. Available at
i12www.ira.uka.de/ key/doc/2002/BeckertKellerSchmitt02.ps.gz.

[BSM+03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J. Grose.
Eclipse Modeling Framework. Addison-Wesley Professional, Boston, MA, USA, 2003.

[BW06a] Achim D. Brucker and Burkhart Wolff. The HOL-OCL Book. Technical Report 525,
ETH Zürich, 2006.

[BW06b] Achim D. Brucker and Burkhart Wolff. A Package for Extensible Object-Oriented Data
Models with an Application to IMP++. In Abhik Roychoudhury and Zijiang Yang,
editors, International Workshop on Software Verification and Validation (SVV 2006),
Computing Research Repository (CoRR). Seattle, USA, August 2006.

[CD05] Michelle L. Crane and Jürgen Dingel. UML Vs. Classical Vs. Rhapsody Statecharts:
Not All Models Are Created Equal. In Lionel C. Briand and Clay Williams, editors,
MoDELS, volume 3713 of Lecture Notes in Computer Science, pages 97–112. Springer,
2005.

[Cer05] Stefano Ceri. Process Modeling in Web Applications. In Robert Meersman, Zahir Tari,
Mohand-Said Hacid, John Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno
Jacobsen, Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra, editors, OTM
Conferences (1), volume 3760 of Lecture Notes in Computer Science, page 20. Springer,
2005.

[EEHT05] Karsten Ehrig, Claudia Ermel, Stefan Hänsgen, and Gabriele Taentzer. Generation of
visual editors as eclipse plug-ins. In ASE ’05: Proceedings of the 20th IEEE/ACM in-
ternational Conference on Automated software engineering, pages 134–143, New York,
NY, USA, 2005. ACM Press.

[Gar] M. Garcia. Accompanying materials to this paper
http://www.sts.tu-harburg.de/˜mi.garcia/pubs/2007/se2007.

[Gar06] M. Garcia. Formalizing the well-formedness rules of EJB3QL in UML + OCL. In
3rd Intnl Workshop on Metamodels, Schemas, Grammars, and Ontologies for Reverse
Engineering, at the UML/MoDELS Conference, 2006.

[Gol05] Bob Goldberg. The DASL Language: Programmer’s Guide and Reference Manual,
TR-2005-128. Technical report, Sun Microsystems Research Labs, 2005.

[GVJH98] Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. Design Patterns
CD: Elements of Reusable Object-Oriented Software, (CD-ROM). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[Ham04] Ali Hamie. Translating the Object Constraint Language into the Java Modelling Lan-
guage. In SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing,
pages 1531–1535, New York, NY, USA, 2004. ACM Press.

[HM05] Thierry Hubert and Claude Marche. A case study of C source code verification: the
Schorr-Waite algorithm. In SEFM ’05: Proceedings of the Third IEEE International
Conference on Software Engineering and Formal Methods, pages 190–199, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[HZS05] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Statically Safe Program
Generation with SafeGen. In Robert Glück and Michael R. Lowry, editors, GPCE,
volume 3676 of Lecture Notes in Computer Science, pages 309–326. Springer, 2005.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the Specification of
Textual Concrete Syntaxes in Model Engineering. In GPCE’06: Proceedings of the
Fifth International Conference on Generative programming and Component Engineer-
ing, 2006. To appear.

[JK06] Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT.
In Proceedings of the 2006 ACM Symposium on Applied Computing (SAC 06), pages
1188–1195, Dijon, France, 2006. ACM Press.

[JLLV04] James E. Johnson, David E. Langworthy, Leslie Lamport, and Friedrich H. Vogt. Formal
Specification of a Web Services Protocol. Electr. Notes Theor. Comput. Sci., 105:147–
158, 2004.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[Lam06a] L. Lamport. Checking a Multithreaded Algorithm with +CAL. In Proc. 20th Interna-
tional Symposium on Distributed Computing DISC 06, 2006.

[Lam06b] Leslie Lamport. The +CAL Algorithm Language. Submitted for publication, 2006.
Available at http://research.microsoft.com/users/lamport/pubs/pluscal.pdf.

[Mer03] Stephan Merz. On the Logic of TLA+. Computers and Informatics, 22:351–379, 2003.

[MMS98] Bertrand Meyer, Christine Mingins, and Heinz Schmidt. Providing Trusted Components
to the Industry. Computer, 31(5):104–105, 1998.

[MN05] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order logic. Inf.
Comput., 199(1-2):200–227, 2005.

[OMG05] Object Management Group. MOF QVT Final Adopted Specification, formal/05-11-01,
Nov 2005.

[OMG06] Object Management Group. Meta Object Facility (MOF) Core Specification, formal/06-
01-01, Jan 2006.

[RFW+04] Chris Raistrick, Paul Francis, John Wright, Colin Carter, and Ian Wilkie. Model Driven
Architecture with Executable UML. Cambridge University Press, Cambridge, UK,
2004.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your Mod-
els Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[WKC06] Junhua Wang, Soon-Kyeong Kim, and David Carrington. Verifying Metamodel Cover-
age of Model Transformations. In ASWEC ’06: Proceedings of the Australian Software
Engineering Conference (ASWEC’06), pages 270–282, Washington, DC, USA, 2006.
IEEE Computer Society.

[Zam05] Boris Gruschko; Friedrich H. Vogt; Simon Zambrovski. The Use of TLA+ and Model
Checking Tools in the Eclipse Environment. In 2nd International Workshop on Web
Services and Formal Methods, Versailles, France, 9 2005.

