Leveraging the Expressivity of Grounded Conjunctive
Query Languages

Alissa Kaplunova, Ralf Moller, Michael Wessel
Hamburg University of Technology (TUHH)

Abstract. We present a pragmatic extension of a Semantic Web queryaajeg
(including so-called grounded conjunctive queries) witkrmination safe func-
tional expression language. This addresses problems eteced in daily usage
of Semantic Web query languages for which currently no stedided solutions
exist, e.g., how to define aggregation operators and usitkeddilter predicates.
We claim that the solution is very flexible, since users cdimdeand executad
hoc extensionsfficiently and safely on the Semantic Web reasoning seritér w
out having to devise and compile specialized “built-insd &plugins” in advance.
We also address the scalability aspect by showing how agtioegoperators can
be realized efficiently in this framework.

1 Introduction

Nowadays, Description Logics (DLs) provide the basis fom&etic Web technology,
and in particular, for the de facto standards for Semantib @fdology languages such
as OWL [1]. DL systems can thus be used as Semantic Web repesitThey of-
fer a set of standard inference services, such as congistbecking, automatic com-
putation of the concept (class) hierarchy (the so-call@drtamy), and the basic re-
trieval services (e.g., instance retrieval) [2]. An exampf a prominent and widely-
used DL system is the R&LZERPRO system [[8] which implements the expressive DL
ALCOQHIr+ (D), also known assSHZ Q(D~). In the context of the Semantic Web,
especially expressive semantic query languages (QLsY great importance to realize
the vision of semantic information retrieval, which is a¢ theart of the Semantic Web
idea. These QLs realize retrieval functionality that goegdmd the retrieval function-
ality offered by the basic retrieval services (e.g., instaretrieval).

Today, the most prominent Semantic Web QLs are (extended)d®ects, SWRL
(the Semantic Web Rule Languagg) [4], SPARQL [5] and OWL-QQL [6] is pri-
marily an RDF QL and thus lacks many important expressivensie@ad inference
capabilities needed to query ontologies / documents wirittenore expressive Seman-
tic Web languages, e.g. OWL. The same holds for SPARQL; mamadays existing
SPARQL implementations do not consider the inferred (astch triples in an RDFS
document at all and from the standard it is not clear whetheyr should or “how com-
plete” a SPARQL implementation w.r.t. the RDFS semantiagifthbe. Only recently
attempts are made to augment and enhance the expressiditgfarence-awareness
of SPARQL in such a way that it will become useful to query, ©gVL documents.
This extension will be called SPARQL-DL. SWRL was primardgsigned as a rule
language, but can also be used as a query language. Full S¥/Rtdecidable, but
restricted subsets (so-called DL-safe SWRL) exists. @lamsig the nowadays avail-
able SWRL implementations, the situation is similar as fBARQL (e.g., sometimes,

simple forward chaining rule engines are used to implem&RE, so most of the in-
ferences are missed). OWL-QL is very complex and does nat seget much support
from implementors, since its semantics is quite involved.

The native QL of the RCERPRO description logic system is calledRQL (new
RACERPRO Query Languagel[7]). It was primarily designed as a DL ABwexy
language and was later extended to also address specifictasp®©OWL (despite its
name,NRQL is not an extended RQL dialect). Due to its OWL capaksitnRQL is
also a Semantic Web QL. Being primary a QL for a DL systsRQL was always fully
inference-aware and thus provides expressive means nod fiouthe QLs discussed
above. Among others, nRQL offers classical and non-mornotoegation (so-called
“negation as failure” or NAF-negation), extended concdgeain querying facilities,
and a projection operator. Since NAF-negation and prajactie available, both closed
world and open world (universal and existential guardedngjifications are available.
Classical negation is not only applicable to (possibly claxjpclasses or concepts, but
also to properties or roles. Classical and NAF-negatioresan be mixed (e.g., one can
retrieve those instances which are not known to be instamicesother; these could
be potentialnothers).

AlthoughNRQL is not standardized, it was and still is being used in nzgmpantic
Web research projects and applications, not only because ekpressive means, but
also due to its efficient and stable implementation whiclersfsome unique features
(queries are maintained as objects, multi-threading). ¢dowever, in our own projects
we found a need to extend the expressivity and practicalaatee ofNRQL even fur-
ther. For exampleaggregation operators/ere missing. Certain RQL dialects offer the
standard SQL aggregation operatatsf, max, min, count, avg, etc.). Also for
SWRIL, there is the principle possibility to realize thesmtigh so-called “built-ins”.
For example, one could think of a specialized built-in atarohsas

sum(?car,?weigth-of-parts,has-part;weight)
Given a binding forcar , the variable?weigth-of-parts is then bound to the sum
of theweight datatype fillers of thénas-part object property fillers of thatcar .
However, the semantics of such extensions is unclear (igusstuch as “which further
predicates apply t@weight-of-parts ?”, “are variables typed?” etc. arise). Obvi-
ously, the wish list of such conceivable “extensions” islead. The list of built-ins is
therefore extensible in SWRL — user-defined built-ins caadded. The implementa-
tions of these atoms must be provided by users — a plugintaotbie of the SWRL
engine is thus required. The same idea applies of courfkegioatoms or predicates
(here filter(?x) is true iff ?x satisfies a certain user-definidtkr predicate).

In order to offer a greater deal of flexibility and to allow fad hoc extensionsye
designed a more general extension mechanismR®L- (almost) arbitrary procedu-
ral extensions can be specified as part ofRQL query. These extensions are written
in a functional expression language calledNVL ISP. Even though NNILISP per se is
purely functional we sayproceduralextension (see the Conclusion for further discus-
sions).

The semantics of the MiLIsP extension is defined in such a way that it does not
interfere with theNRQL semantics. The nRQL query body is thus “kept clean”. In
the relational database realm, so-called stored procedueewell-known. However,

stored procedures can resultinsafe, non-terminating queriéan unsafe query may
run forever). Since decidability is crucial in the Semamieb context, MNILISP is
not a programming language, but a termination-safe funatiexpression language.
MINILISP “programs” are executed efficiently on the®=RPRO server and thus offer
the required efficiency and flexibility to “implement” artdty aggregation operators,
filter predicates that cannot be formulated solely in thegleguage, create XML or
HTML reports from query results, etc. In order to realize r@g@gtion operators, often
sub-queries have to be evaluated from withimM.1SP programs. We introduce a new
optimization technique (so-called promises) tailorectfis purpose.

2 Theoretical Background
The class of conjunctive queries is well-known and esthbtisin the literature, e.g.

see[[9]. Aconjunctive query (CQhas the formuns(X) < atoms, ..., atom,,, where
X = (x1,...,z,) is avariable vector. The expressions(X) is called thehead and
atomy, ..., atom,, is thebodyof the query (interpreted as a conjunction). Tdtems

in the query body reference variables and/or individualbvéiables listed inX must
also be mentioned in the body. The vector of body variableeimted byy . Let Z
denote those variables ¥ which do not appear iX .

Most Semantic Web QLs offer at least concept and role quemysit If z andy
are variables or individuals, thezoncept query atomare unary atoms (e.g({(x)),
whereasole query atomare binary atoms (e.gR(z, y)). Often, also a (binary@qual-
ity atomis offered (either written as = y, = (z, y) or same_as(z, y)).

A query answeis a set of {n-) tuples. Each tuple represents bindings for the head
variablesX. In general, a head variable (i) is bound to an RDF node (represent-
ing an ABox individual), or an ABox individual. These indiltials are denoted with
inds(O) in the following. In order to compute the bindings for theightes inX, all
possible substitution functions : X — inds(O)™ are considered and applied to the
query body. In case the resulting variable substitutedygiseentailed by the ontol-
ogy, « denotes a result tuple. lmrestricted conjunctive querigthe variables irZ are
bound to individuals in the interpretation domairf of the logical models of the on-
tology. These variables are therefore considerezkiasdentially quantifiedn so-called
grounded (or restrictedonjunctive queries (GCQs), the following simplificatian i
made: Not only are th& variables bound tinds(O), but also theY” variables (and
thus, all variables in that query).

The answer of a CQ can now be specified by the following simplesmprehen-
sion; please note that variables not mentioneXirand individuals ipds(O)) remain
unaltered by (for suchi, «(7) = ¢ holds):

{1y yim) | Ja: X = (i1, -y 0m), (i1, - -, im) € inds(O)™,
O = 3Z.alatomy) A -+ A alatomy,) }.

For grounded conjunctive queries, we simply change the doafa from X toY and
remove 9Z.” from the first-order body formula. In grounded conjunctiugeries, the
standard semantics can be obtained for so-caikslshaped querielsy using corre-
sponding existential restrictions in query atoims [8] (gfgy is notin X, then the atom
R(z,y) can be replaced byR. T (z); AR.T is a complex anonymous concept).

From a theoretical perspectiveR QL goes beyond grounded conjunctive quemdsQL
provides additional expressive means (dee [7]), espgcMF-negation, projection
and union operators, concrete domain reasoning faciliescalledconstraint check-
ing atom$, as well as a novel lambda-based expression language istissed in this
paper.

Let us consider the following example query which will alspkin some basics of
lambda expressions and introduce the constraint querysadsiwell. Suppose we want
to retrieve thewoman instances which are at least 40 and which have children whose
fathers are at least 8 years older than their mothers. Leausngth the query body

(womanM >40 age)(x), has_child(z,y), has_father(y, f), has-mother(y, m),
age(f,age1), age(m, ages), (\(v1,v2) ® (v2 + 8 < v1))(ager, ages)

Please note that the atafh(v1,v2) @ (v2 + 8 < v1))(age1, ages) specifies an anony-
mous predicate with formal parameteis v, which is applied to the actual arguments
agei, ages. Unlike in SWRL or SPARQLNRQL does not allow variables to be bound
to anything else than ABox individuals in order to prevenhaatic problems. Thus,
the age; cannot be used as variables. We therefore have to rewritbdtig using a
more complex lambda expression, utiliziage(v;) termsin the comparison predicate
instead of simple; variables:

(woman, >40 age)(x), has_child(x,y), has_father(y, f), has-mother(y, m),
(A(v1,v2) @ (age(v2) + 8 < age(v1)))(f,m)

This translates more or less directly into concnefRQL syntax:
(and (?x (and woman (min age 40))) (?x ?y has-child)
(?y ?f has-father) (?y ?m has-not her)
(?f ?m (constraint age age
(<= (+ age-2 8) age-1))))

Thus, a constraint query atom is very similar to a lambdaesgion. It is applied to
ABox variables?f, ?2m , whose actual values of the attributge are then bound to
the formal arguments in the constraint “lambda bodye-1, age-2 . Concrete do-
main reasoning is used to check whether the concrete domedficate holds. Note
that there may be no concrete known values forade attributes, or their values need
not be unique, if only constraints are specified on them, erdy age(betty) + 10 <
age(charles) is known. This also explains whyRQL does not offer variables rang-
ing over the concrete domain (their solutions resp. binslicmuld not be computed in
all cases). Finally, a completeRQL query (including a query headys(z) < ...Iis
written as(retrieve (?x) ...)

3 The Power of\

Unfortunately, the number of predicates which can be cant#d withconstraint

query atoms is quite limited, either in order to ensure dgidy in the concrete do-
main reasoning engine inAR ERPRO, or simply because the required predicate is miss-
ing. Unfortunately, RCERPRO does not offer user-defined concrete domains. Thus, it
is even impossible to query for persons having a ceftastnéame (e.g.,"Betty”),

given that only the concrete domain attribtitédname exists. This is unfortunate,
since in many cases full concrete domain reasoning is nafine(i.e., if concrete
datatype values are specified as “told values” in the ontgldthis is where MNILISP
comes into play.

The basic idea is simple: ARQL query head may not only contain variables, but
alsolambda applicationsThus, a head is a vectoX = (hy, ..., h,,), whereh; is
either a variable or a lambda application. Such a lambdaicgtigin has the syntax
((Mo1,...,vp)®.) y1,. .., Yyp); they; are again variables, which also have to appear
in the body of the queryy; € Y. The answer of a GCQ with bodytom,, . . . , atom,,,
head(hi,...,h,) andY = (x1,...,2x) is then specified by the following set com-
prehension:

{(jla' .. a]m) | Ja:Y — (ila' "7ik)’ (ilv" 7Zk) € inds(O)k,
O = a(atomy), ... O E alatom,,),
suchthatforall € 1...m:

ji = a(hy) if hyis avariable,

Ji= (()\(1)1, s 7UQD) ®..) a(yl)v . '7a(yp))

if ji=((Avi,...,vp)® L) Y1,o0, Yp)
andj; # L }.

So, instead of just returning the tug(é, . .., i), the h; “functions” are applied and
its results included in the constructed answer tuple atpbaition. This is very sim-
ilar to the mapcar operation in @MMON LISP. In casehy, is a variable, its bind-
ing a(hy) is included. Otherwiseh, denotes a lambda applicatioffA(v1,. .., v,) e
) alyr),...,ayp)). tsresultis included in the answer tuple at that positiondase
the lambda did not returih. WheneverL is returned by the lambda, the whole answer
tuple is rejected instead. Thus, lambdas can be used tdspduitrary filter predicates.
Answer sets consisting of unary tuples can also be consldexflat sets, and thus, the
structure of the elements in the answer set can be definedlewmtypby means of
lambda expressions. Moreover, by posing sub-queries ibdarbodies, we can easily
implement arbitrary aggregation operators, as demoaestiatSection 5.

Obviously, the expressivity of that extension depends enatimissible lambda
bodies. It is well-known that an unrestricted use of lambekults in undecidability
(e.g., consider the classical textbook examle(x) e (x z))(A(z) e (z x)) which
specifies an endless loop). Lambda applications are spkaifi®INILISP. In order
to grant termination, lambdas itself are not first claszeits (which is the case in
languages such as Scheme). We will now describe the flayililid added value of
MINILISPin concrete syntax by means of examples.

4 MiINILIsP by Example

Consider an ABox representing objects in a geographic inédion system having
width and length, and we want to compute and return the ar¢laeske objects with
a query. The individuadox1 has a width of 10 and a length of 20:

(define-concrete-domain-attribute width :type integer)
(define-concrete-domain-attribute |l ength :type integer)
(instance box1l (and (equal wi dth 10) (equal length 20)))

We can then query for the areas of the objects in this ABox kse:

(retrieve (?x ((lanbda (box)
(let ((w (told-value-if-exists (wdth box)))
(I (told-value-if-exists (length box))))
(if (and wl) (* wl) :reject)))
?X))
(?x (and (a width) (a length))))

The answer thus ig{((?x box1) 200)) . The query body?x (and (a width)
(a length))) selects all ABox individuals which have — possibly only incfil—
fillers of the concrete domain attributesdth andlength. However, only in case
these fillers are “told” in the ontology (= syntactically dixft available) it is possible
to also retrieve them. Their retrieval is then supported f®ans of functional expres-
sions such agold-value-if-exists (width box)) . In case these attribute val-
ues are toldwand!l are bound and+ w) is computed and returned; otherwise, the
reject symbol is returned, so the result tuple is rejected (seé L in the set com-
prehension in Section 3). Of course, we could easily rejextam boxes (whose size is
too big or too small). Thus, almost arbitrary ad hoc filterdicates can be specified.

We claim that MNILISPis easy to understand and use for readers which have some
CoMMON L1IsP experience. In a nutshell, MiLisp offers the following data types:
numbers, symbols, strings and lists (and thus also trelesyipports conditional ex-
ecution (f, cond, when, unless, case), structure mapping functions such as
maplist (like mapcar in COMMON LISP, e.g.,(maplist (lambda (x) (1+ X))
'@ 2 3)) returns(2 3 4)), as well as standard functions borrowed from the host
language ©MMON Lisp (arithmetic functions, list function, string processinmé-
tions, comparison and sorting functions, etc.). In ordegrant termination, lambdas
(as required for higher-order functions suchraslist) are not first class citizens (not
data objects). Thug(lambda (x) (x x)) (lambda (x) (x X))) simply gives
a syntax errory cannot be bound to the function objéeimbda (x) (x x))). No
unbounded loops can be specified (only mappings over finitetstres). MNILISP is
purely functional, although there is a notion of a state eitgtl in counting variables
(there is no variable assignment, liutf count) and(decf count)).

In principle, all RacerRPRO API functions can be called from within a lambda body.
This also applies teetrieve itself. Thus, nested queries can be posed. We will illus-
trate how aggregation operators can be implemented usstgahqueries.

5 Aggregation Operators inMINILISP

Consider the following example KB in which the compositibsiucture of a car is
modeled, see Figure 1. A car has certain parts, and eachgsat ¢ertain weight:

(define-primtive-role has-part :transitive t)
(define-concrete-domain-attri bute weight :type real)

(i nstance nycar car)

(related mycar enginel has-part)
(related enginel cylinder-1-4 has-part)
(related mycar wheel -1-4 has-part)

has-part
chassis1

mycar enginel Cylinder-1-4

wheel-1-4
Fig. 1. Compositional structure afiycar

(related mycar chassisl has-part)

(i nstance engi nel (= weight 200.0))
(i nstance chassisl (= wei ght 400.0))
(i nstance wheel -1-4 (= wei ght 30.0))

Suppose we want to compute the overall weight of the car asasghe number of
its components. Thus, usingINIL ISP, for each?car found we are going to construct
two sub-queries. For a giverear , the first sub-query retrieves the components of that
?car as well as their told weights, and the second sub-query gicgints the num-
ber of components. The two sub-queries are constructed>awied from within a
MINILIspPlambda body. Their results are then appropriately prockssd returned.
Note that the bodies of the two sub-queries are almost iclnfior every?car |,
but the considere®@car obviously changes. Thus, the bodies of the sub-queriesodre n
fix. Sub-queries thus have to be constructed based on vabaliings which are estab-
lished by outer (sub)queries. For this purpose, query tateplcan be constructed using
the “backquote’() and comma,() mechanism” from ©MMON LIsSP. For example, if
the variablecar is bound tanycar , then the expressid@car ?part hast-part)
evaluates tgmycar ?part has-part) . The query

(retrieve
(((lanmbda (car)
(let ((car-weight
(reduce '+ (flatten
(retrieve ‘(((lanbda (car-wei ght) car-weight)
(tol d-val ue-if-exists
(wei ght ?part))))
‘(and (,car car) (,car ?part has-part)
(?part (a weight)))))))
(car-parts (length
(retrieve ‘(?part)
‘(,car ?part has-part)))))
‘“((?car ,car) (?no-of-parts ,car-parts)
(?total -weight ,car-weight))))
?car))
(?car car))

then returns
((((?car mycar) (?no-of-parts 4) (?total-weight 630.0)))).

The query works as follows. The body of the outer query casisibthe single concept
query atom(?car car) . The lambda expression is then applied to the current
binding of ?car . So, within thelambda body,car is bound to the binding ofcar .
First, the total weight is computed. For this purpose, aguiery is constructed. Hcar

= mycar , then the query bodyand (mycar car) (mycar ?part has-part)

(?part (a weight))) is constructed and posed, asking for the partsngtar .
The head of the sub-query consists of yet anolivebda , which simply applies the
told-value-if- exists head projection operator to retrieve the told values of the
weight attribute of?part s. The sub-query result is returned as a nested list; this list
flattened and its items are simply summed ugireguce '+ ...) . We have com-
puted the overall weight; this result is bound to the localalzle car-weight . Simi-
larly, the number ofar-parts is computed (by posing yet another sub-query). Finally,
the result of theambda expression is constructed and returned. The constructgd an
returned value will become the result tuple. Saaf is mycar , andno-of-parts is

4, andcar-weight is 630.0 , then the templaté(?car ,car) (?no-of-parts

,car-parts) (?total-weight ,car-weight)) constructs the result tuple
(((?car mycar) (?no-of-parts 4) (?total-weight 630.0))) . We can
easily construct and return a string instead of a tuple bggu@ormat nil "Car

“A has "A parts and weights "A kg." car no-of-pars car-weight).

Thus, the answer isnycar has 4 parts and weights 630.0 kg"

6 Efficient Aggregation Operators using Promises

Although the previous query demonstrated the power anityutil M INI L ISP, the ag-
gregation was not computed efficiently, since for each Inigdif ?car , two new sub-
queries were constructed. Thus, if 10 cars are present,l2quseries had to be parsed,
optimized, compiled and finally executed in order to comph&aggregatiomnRQL
supports the pre-compilation of queries; in fact, queriesraaintained as first order
objects which have a complex life cyclé [7]. However, the sud-queries cannot be
simply precompiled since their bodies are not fixed. The &®dontain a variable part,
?car , whose binding can only be established at execution timehbyouter query.
From the perspective of the inner sub-querisy is in fact an individual. Unfortu-
nately,?car cannot be treated as an individual at pre-compilation tgimee the query
compiler would then produce special code which will treedr as an individual, but
after all, there is not individuatcar in the KB. This obviously prevents naive pre-
compilation. Note that this situation does not arise in SQgiees.

A new optimization technique can help here which is a gertechinique that does
not only apply to thetRQL engine. To the best of our knowledge, the technique hias no
been proposed or implemented beforep®misedeclares that certain variables have
to be treated as individuals during query (pre-)compilatime. Thus,?car can be
treated as an individual by the optimizer and compiler. Atsame time, it ipromised
to NRQL that this query will only be executed if a binding fexar is established in
advance, in this case, by the outer query. Thus, althougbgtimizer and compiler see
and treatrcar as an individual, during execution time that individual cdvange (and
so remains a variable). Thus, the query bodies are congjaimt,and only 2 bodies are
needed instead of 20. Using promises, the example aggvegatery looks as follows:

(wi th-future-bindings (?car)
(prepare-abox-query (?part)
(and (?car car) (?car ?part has-part))
;id :parts-of-car-query)
(prepar e- abox- query
(((l ambda (weight) weight)
(tol d-val ue-if-exists (weight ?part))))
(and (?car car) (?car ?part has-part) (?part (a weight)))
©id :weights-of-parts-of-car-query))

This prepares two queries named :parts-of-car-query and
:weights-of-parts-of-car-query . The queries are compiled and optimized,
but not executed yet. SinaeRQL supports full life cycle management for queries,
these queries are from now on available as query objectdy fea execution. Due to
the surrounding lexical promiseith-future-bindings , the query optimizer has
treated the?car variable as an individual, although it must be handled asrabie

at execution time. Thus, we have “promisedRQL that we will only execute these
queries if we supply a binding forcar in advance. We can establish such a binding
during query execution usingith-nrqgl-settings as follows:

(retrieve
(((lambda (car)
(with-nrqgl-settings (:bindings ‘((?car ,car)))
(let ((car-weight
(reduce '+
(flatten
(execut e- or - r eexecut e- query
:wei ght s-of - parts-of -car-query))))
(car-parts
(length
(execut e- or -r eexecut e- query
:parts-of-car-query))))
“((?car ,car) (?no-of-parts ,car-parts)
(?total -weight ,car-weight))))
?car)))
(?car car))

This results in a very efficient query execution, since egaition of a prepared query
is immediate (only a function call to the compiled query esion function is re-
quired). No query parsing, optimization and compilationgiis needed during query
execution, and much less memory is used as well.

7 Conclusion

We have presented a pragmatic extension of a Semantic WebyQnibda expres-
sions. The termination safe functional expression langudgii Lisp offers solutions
to problems encountered in daily usage of Semantic Web QLwléach currently no
standardized solutions exist. The proposed solution feiieally sound, since the query
body is kept clean from user defined predicates or procedxrahsion which might re-
sult in unsafe queries and semantical problems. The saligiftexible, since users can

define and execute ad hoc extensions efficiently on the sefitteout having to com-
pile specialized “plugins” in advance. We have also addmebd¢ke scalability aspects
by showing how aggregation operators can be realized effigian this framework by
exploiting the novel notion of promises. Standard aggiegaiperators could also be
made accessible as macros in this framework. We believéhbdiexibility offered by
MINIL1sP enhances the applicability ofRQL to real world problems. For example,
the generation of HTML is directly supported in MiniLisp Wwitsyntactic sugar”.

Is MINILISP adeclarativeextension? The answery&s and noln case the spec-
ified lambda bodies are purely functional, the answer iy tyeals. There are not states
in MINILIsPitself; for example, there is no variable assignment operdhus, typical
MINILIsP use cases will be fully declarative, e.g., ifiMLIsp is used for the real-
ization of aggregation operators or filter predicates. Haxefor pragmatic reasons,
MiNIL1sP offers full access to all RCERPRO API functions. As such, it is of course
possible to alter the state of a knowledge base while theygaestill running. Since
there is a notion of state involved, such queries can no lobgealled fully declara-
tive. One could argue that this kind of extension could als@kecuted on the client
side. However, this will result in a bad performance and ené\ad hoc extensions.
Moreover, optimization techniques such as promises cammased then.

8 Acknowledgments

We like to thank Atila Kaya for very valuable and thoughtfulnements. This work was par-
tially supported by the EU funded projects TONES (Thinkingt@logiES FET-FP6-6703) and
BOEMIE (Bootstrapping Ontology Evolution with Multimediaformation Extraction, IST-FP6-
027538).

References

1. van Harmelen, F., Hendler, J., Horrocks, I., McGuinné&ss,, Patel-Schneider, P.F., Stein,
L.A.: OWL Web Ontology Language Reference, http://www.arg/tr/owl-guide/ (2003)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, Dglfthneider, P.F., eds.: The De-
scription Logic Handbook: Theory, Implementation, and Bgations. Cambridge University
Press (2003)

3. Haarslev, V., Moller, R.: RACER System Description. lim: Joint Conference on Automated
Reasoning, IJCAR '01. (2001)

4. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet,G8osof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. Tesdifeport, World Wide
Web Consortium (2004)

5. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Languag®DF. Technical Report,
World Wide Web Consortium (2006)

6. Karvounarakis, G., Alexaki, S., Christophides, V., Plesakis, D., Scholl, M.: RQL: A
Declarative Query Language for RDF. In: The Eleventh Iraéomal World Wide Web Con-
ference (WWW’'02).

7. Wessel, M., Moller, R.: A High Performance Semantic Walefy Answering Engine. In:
Proc. of the 2005 Description Logic Workshop (DL 2005)

8. Horrocks, I., Tessaris, S.: Querying the Semantic Welorenkl Approach. In: Proc. of the
1st Int. Semantic Web Conf. (ISWC 2002).

9. Calvanese. D., De Giacomo, G., Lenzerini, M.: On the Daaidy of Query Containment un-
der Constraints. In: Prof. of the 17th ACM SIGACT SIGMOD SIBA Symp. on Principles
of Database Systems (PODS'98).

	Leveraging the Expressivity of Grounded Conjunctive Query Languages
	 Alissa Kaplunova (TUHH), Ralf Möller (TUHH), Michael Wessel (TUHH)

