
Leveraging the Expressivity of Grounded Conjunctive
Query Languages

Alissa Kaplunova, Ralf Möller, Michael Wessel

Hamburg University of Technology (TUHH)

Abstract. We present a pragmatic extension of a Semantic Web query language
(including so-called grounded conjunctive queries) with atermination safe func-
tional expression language. This addresses problems encountered in daily usage
of Semantic Web query languages for which currently no standardized solutions
exist, e.g., how to define aggregation operators and used-defined filter predicates.
We claim that the solution is very flexible, since users can define and executead
hoc extensionsefficiently and safely on the Semantic Web reasoning server with-
out having to devise and compile specialized “built-ins” and “plugins” in advance.
We also address the scalability aspect by showing how aggregation operators can
be realized efficiently in this framework.

1 Introduction
Nowadays, Description Logics (DLs) provide the basis for Semantic Web technology,
and in particular, for the de facto standards for Semantic Web ontology languages such
as OWL [1]. DL systems can thus be used as Semantic Web repositories. They of-
fer a set of standard inference services, such as consistency checking, automatic com-
putation of the concept (class) hierarchy (the so-called taxonomy), and the basic re-
trieval services (e.g., instance retrieval) [2]. An example of a prominent and widely-
used DL system is the RACERPRO system [3] which implements the expressive DL
ALCQHIR+(D−), also known asSHIQ(D−). In the context of the Semantic Web,
especially expressive semantic query languages (QLs) are of great importance to realize
the vision of semantic information retrieval, which is at the heart of the Semantic Web
idea. These QLs realize retrieval functionality that goes beyond the retrieval function-
ality offered by the basic retrieval services (e.g., instance retrieval).

Today, the most prominent Semantic Web QLs are (extended) RQL dialects, SWRL
(the Semantic Web Rule Language) [4], SPARQL [5] and OWL-QL.RQL [6] is pri-
marily an RDF QL and thus lacks many important expressive means and inference
capabilities needed to query ontologies / documents written in more expressive Seman-
tic Web languages, e.g. OWL. The same holds for SPARQL; many nowadays existing
SPARQL implementations do not consider the inferred (axiomatic) triples in an RDFS
document at all and from the standard it is not clear whether they should or “how com-
plete” a SPARQL implementation w.r.t. the RDFS semantics should be. Only recently
attempts are made to augment and enhance the expressivity and inference-awareness
of SPARQL in such a way that it will become useful to query, e.g. OWL documents.
This extension will be called SPARQL-DL. SWRL was primarilydesigned as a rule
language, but can also be used as a query language. Full SWRL is undecidable, but
restricted subsets (so-called DL-safe SWRL) exists. Considering the nowadays avail-
able SWRL implementations, the situation is similar as for SPARQL (e.g., sometimes,

simple forward chaining rule engines are used to implement SWRL, so most of the in-
ferences are missed). OWL-QL is very complex and does not seem to get much support
from implementors, since its semantics is quite involved.

The native QL of the RACERPRO description logic system is calledNRQL (new
RACERPRO Query Language, [7]). It was primarily designed as a DL ABox query
language and was later extended to also address specific aspects of OWL (despite its
name,NRQL is not an extended RQL dialect). Due to its OWL capabilities,NRQL is
also a Semantic Web QL. Being primary a QL for a DL system,NRQL was always fully
inference-aware and thus provides expressive means not found in the QLs discussed
above. Among others, nRQL offers classical and non-monotonic negation (so-called
“negation as failure” or NAF-negation), extended concretedomain querying facilities,
and a projection operator. Since NAF-negation and projection are available, both closed
world and open world (universal and existential guarded) quantifications are available.
Classical negation is not only applicable to (possibly complex) classes or concepts, but
also to properties or roles. Classical and NAF-negation caneven be mixed (e.g., one can
retrieve those instances which are not known to be instancesof ¬mother ; these could
be potentialmothers).

AlthoughNRQL is not standardized, it was and still is being used in manySemantic
Web research projects and applications, not only because ofits expressive means, but
also due to its efficient and stable implementation which offers some unique features
(queries are maintained as objects, multi-threading, etc.). However, in our own projects
we found a need to extend the expressivity and practical relevance ofNRQL even fur-
ther. For example,aggregation operatorswere missing. Certain RQL dialects offer the
standard SQL aggregation operators (sum, max, min, count, avg, etc.). Also for
SWRL, there is the principle possibility to realize these through so-called “built-ins”.
For example, one could think of a specialized built-in atom such as

sum(?car,?weigth-of-parts,has-part;weight)

Given a binding for?car , the variable?weigth-of-parts is then bound to the sum
of the weight datatype fillers of thehas-part object property fillers of that?car .
However, the semantics of such extensions is unclear (questions such as “which further
predicates apply to?weight-of-parts ?”, “are variables typed?” etc. arise). Obvi-
ously, the wish list of such conceivable “extensions” is endless. The list of built-ins is
therefore extensible in SWRL – user-defined built-ins can beadded. The implementa-
tions of these atoms must be provided by users – a plugin architecture of the SWRL
engine is thus required. The same idea applies of course tofilter atoms or predicates
(here,filter(?x) is true iff ?x satisfies a certain user-definedfilter predicate).

In order to offer a greater deal of flexibility and to allow forad hoc extensions,we
designed a more general extension mechanism forNRQL– (almost) arbitrary procedu-
ral extensions can be specified as part of aNRQL query. These extensions are written
in a functional expression language called MINI L ISP. Even though MINI L ISP per se is
purely functional we sayproceduralextension (see the Conclusion for further discus-
sions).

The semantics of the MINI L ISP extension is defined in such a way that it does not
interfere with theNRQL semantics. The nRQL query body is thus “kept clean”. In
the relational database realm, so-called stored procedures are well-known. However,

stored procedures can result inunsafe, non-terminating queries(an unsafe query may
run forever). Since decidability is crucial in the SemanticWeb context, MINI L ISP is
not a programming language, but a termination-safe functional expression language.
M INI L ISP “programs” are executed efficiently on the RACERPRO server and thus offer
the required efficiency and flexibility to “implement” arbitrary aggregation operators,
filter predicates that cannot be formulated solely in the query language, create XML or
HTML reports from query results, etc. In order to realize aggregation operators, often
sub-queries have to be evaluated from within MINI L ISP programs. We introduce a new
optimization technique (so-called promises) tailored forthis purpose.

2 Theoretical Background
The class of conjunctive queries is well-known and established in the literature, e.g.
see [9]. Aconjunctive query (CQ)has the formans(X)← atom1, . . . , atomn, where
X = (x1, . . . , xm) is a variable vector. The expressionans(X) is called thehead, and
atom1, . . . , atomn is thebodyof the query (interpreted as a conjunction). Theatoms
in the query body reference variables and/or individuals. All variables listed inX must
also be mentioned in the body. The vector of body variables isdenoted byY . Let Z

denote those variables inY which do not appear inX .
Most Semantic Web QLs offer at least concept and role query atoms. If x andy

are variables or individuals, thenconcept query atomsare unary atoms (e.g.,C(x)),
whereasrole query atomsare binary atoms (e.g.,R(x, y)). Often, also a (binary)equal-
ity atomis offered (either written asx = y, = (x, y) or same as(x, y)).

A query answeris a set of (m-) tuples. Each tuple represents bindings for the head
variablesX. In general, a head variable (inX) is bound to an RDF node (represent-
ing an ABox individual), or an ABox individual. These individuals are denoted with
inds(O) in the following. In order to compute the bindings for the variables inX, all
possible substitution functionsα : X → inds(O)m are considered and applied to the
query body. In case the resulting variable substituted query is entailed by the ontol-
ogy,α denotes a result tuple. Inunrestricted conjunctive queries, the variables inZ are
bound to individuals in the interpretation domain∆I of the logical models of the on-
tology. These variables are therefore considered asexistentially quantified.In so-called
grounded (or restricted)conjunctive queries (GCQs), the following simplification is
made: Not only are theX variables bound toinds(O), but also theY variables (and
thus, all variables in that query).

The answer of a CQ can now be specified by the following simple set comprehen-
sion; please note that variables not mentioned inX and individuals (inds(O)) remain
unaltered byα (for suchi, α(i) = i holds):

{ (i1, . . . , im) | ∃α : X 7→ (i1, . . . , im), (i1, . . . , im) ∈ inds(O)m,

O |= ∃Z.α(atom1) ∧ · · · ∧ α(atomn) }.

For grounded conjunctive queries, we simply change the domain of α fromX to Y and
remove “∃Z.” from the first-order body formula. In grounded conjunctivequeries, the
standard semantics can be obtained for so-calledtree-shaped queriesby using corre-
sponding existential restrictions in query atoms [8] (e.g., if y is not inX, then the atom
R(x, y) can be replaced by∃R.⊤(x); ∃R.⊤ is a complex anonymous concept).

From a theoretical perspective,NRQL goes beyond grounded conjunctive queries.NRQL
provides additional expressive means (see [7]), especially, NAF-negation, projection
and union operators, concrete domain reasoning facilities(so-calledconstraint check-
ing atoms), as well as a novel lambda-based expression language to be discussed in this
paper.

Let us consider the following example query which will also explain some basics of
lambda expressions and introduce the constraint query atoms as well. Suppose we want
to retrieve thewoman instances which are at least 40 and which have children whose
fathers are at least 8 years older than their mothers. Let us start with the query body

(woman⊓ ≥40 age)(x), has child(x, y), has father(y, f), has mother(y, m),
age(f, age1), age(m, age2), (λ(v1, v2) • (v2 + 8 ≤ v1))(age1, age2)

Please note that the atom(λ(v1, v2) • (v2 + 8 ≤ v1))(age1, age2) specifies an anony-
mous predicate with formal parametersv1, v2 which is applied to the actual arguments
age1, age2. Unlike in SWRL or SPARQL,NRQL does not allow variables to be bound
to anything else than ABox individuals in order to prevent semantic problems. Thus,
the agei cannot be used as variables. We therefore have to rewrite thebody using a
more complex lambda expression, utilizingage(vi) termsin the comparison predicate
instead of simplevi variables:

(woman ,≥40 age)(x), has child(x, y), has father(y, f), has mother(y, m),
(λ(v1, v2) • (age(v2) + 8 ≤ age(v1)))(f, m)

This translates more or less directly into concreteNRQL syntax:

(and (?x (and woman (min age 40))) (?x ?y has-child)
(?y ?f has-father) (?y ?m has-mother)
(?f ?m (constraint age age

(<= (+ age-2 8) age-1))))

Thus, a constraint query atom is very similar to a lambda expression. It is applied to
ABox variables?f, ?m , whose actual values of the attributeage are then bound to
the formal arguments in the constraint “lambda body”,age-1, age-2 . Concrete do-
main reasoning is used to check whether the concrete domain predicate holds. Note
that there may be no concrete known values for theage attributes, or their values need
not be unique, if only constraints are specified on them, e.g., only age(betty) + 10 <

age(charles) is known. This also explains whyNRQL does not offer variables rang-
ing over the concrete domain (their solutions resp. bindings could not be computed in
all cases). Finally, a completeNRQL query (including a query head)ans(x) ← . . . is
written as(retrieve (?x) ...) .

3 The Power ofλ
Unfortunately, the number of predicates which can be constructed withconstraint

query atoms is quite limited, either in order to ensure decidability in the concrete do-
main reasoning engine in RACERPRO, or simply because the required predicate is miss-
ing. Unfortunately, RACERPRO does not offer user-defined concrete domains. Thus, it
is even impossible to query for persons having a certainfirstname (e.g.,"Betty"),

given that only the concrete domain attributefullname exists. This is unfortunate,
since in many cases full concrete domain reasoning is not required (i.e., if concrete
datatype values are specified as “told values” in the ontology). This is where MINI L ISP

comes into play.
The basic idea is simple: ANRQL query head may not only contain variables, but

also lambda applications.Thus, a head is a vectorX = (h1, . . . , hm), wherehi is
either a variable or a lambda application. Such a lambda application has the syntax
((λ(v1, . . . , vp) • . . .) y1, . . . , yp); theyi are again variables, which also have to appear
in the body of the query:yi ∈ Y . The answer of a GCQ with bodyatom1, . . . , atomn,
head(h1, . . . , hm) andY = (x1, . . . , xk) is then specified by the following set com-
prehension:

{ (j1, . . . , jm) | ∃α : Y 7→ (i1, . . . , ik), (i1, . . . , ik) ∈ inds(O)k,

O |= α(atom1), . . .O |= α(atomn),
such that for alll ∈ 1 . . .m:

jl = α(hl) if hl is a variable,
jl = ((λ(v1, . . . , vp) • . . .) α(y1), . . . , α(yp))
if jl = ((λ(v1, . . . , vp) • . . .) y1, . . . , yp)

andjl 6= ⊥}.

So, instead of just returning the tuple(i1, . . . , ik), thehl “functions” are applied and
its results included in the constructed answer tuple at thatposition. This is very sim-
ilar to the mapcar operation in COMMON L ISP. In casehk is a variable, its bind-
ing α(hk) is included. Otherwise,hk denotes a lambda application:((λ(v1, . . . , vp) •
. . .) α(y1), . . . , α(yp)). Its result is included in the answer tuple at that position in case
the lambda did not return⊥. Whenever⊥ is returned by the lambda, the whole answer
tuple is rejected instead. Thus, lambdas can be used to specify arbitrary filter predicates.
Answer sets consisting of unary tuples can also be considered as flat sets, and thus, the
structure of the elements in the answer set can be defined completely by means of
lambda expressions. Moreover, by posing sub-queries in lambda bodies, we can easily
implement arbitrary aggregation operators, as demonstrated in Section 5.

Obviously, the expressivity of that extension depends on the admissible lambda
bodies. It is well-known that an unrestricted use of lambda results in undecidability
(e.g., consider the classical textbook example((λ(x) • (x x))(λ(x) • (x x)) which
specifies an endless loop). Lambda applications are specified in MINI L ISP. In order
to grant termination, lambdas itself are not first class citizens (which is the case in
languages such as Scheme). We will now describe the flexibility and added value of
M INI L ISP in concrete syntax by means of examples.

4 M INI L ISP by Example
Consider an ABox representing objects in a geographic information system having
width and length, and we want to compute and return the area ofthese objects with
a query. The individualbox1 has a width of 10 and a length of 20:

(define-concrete-domain-attribute width :type integer)
(define-concrete-domain-attribute length :type integer)
(instance box1 (and (equal width 10) (equal length 20)))

We can then query for the areas of the objects in this ABox as follows:

(retrieve (?x ((lambda (box)
(let ((w (told-value-if-exists (width box)))

(l (told-value-if-exists (length box))))
(if (and w l) (* w l) :reject)))

?x))
(?x (and (a width) (a length))))

The answer thus is:(((?x box1) 200)) . The query body(?x (and (a width)

(a length))) selects all ABox individuals which have – possibly only implicit –
fillers of the concrete domain attributeswidth and length. However, only in case
these fillers are “told” in the ontology (= syntactically explicit available) it is possible
to also retrieve them. Their retrieval is then supported by means of functional expres-
sions such as(told-value-if-exists (width box)) . In case these attribute val-
ues are told,w andl are bound and(* w l) is computed and returned; otherwise, the
:reject symbol is returned, so the result tuple is rejected (seejl 6= ⊥ in the set com-
prehension in Section 3). Of course, we could easily reject certain boxes (whose size is
too big or too small). Thus, almost arbitrary ad hoc filter predicates can be specified.

We claim that MINI L ISP is easy to understand and use for readers which have some
COMMON L ISP experience. In a nutshell, MINI L ISP offers the following data types:
numbers, symbols, strings and lists (and thus also trees). It supports conditional ex-
ecution (if, cond, when, unless, case), structure mapping functions such as
maplist (like mapcar in COMMON L ISP, e.g.,(maplist (lambda (x) (1+ x))

’(1 2 3)) returns(2 3 4)), as well as standard functions borrowed from the host
language COMMON L ISP (arithmetic functions, list function, string processing func-
tions, comparison and sorting functions, etc.). In order togrant termination, lambdas
(as required for higher-order functions such asmaplist) are not first class citizens (not
data objects). Thus,((lambda (x) (x x)) (lambda (x) (x x))) simply gives
a syntax error (x cannot be bound to the function object(lambda (x) (x x))). No
unbounded loops can be specified (only mappings over finite structures). MINI L ISP is
purely functional, although there is a notion of a state exploited in counting variables
(there is no variable assignment, but(incf count) and(decf count)).

In principle, all RACERPRO API functions can be called from within a lambda body.
This also applies toretrieve itself. Thus, nested queries can be posed. We will illus-
trate how aggregation operators can be implemented using nested queries.

5 Aggregation Operators inM INI L ISP

Consider the following example KB in which the compositional structure of a car is
modeled, see Figure 1. A car has certain parts, and each part has a certain weight:

(define-primitive-role has-part :transitive t)
(define-concrete-domain-attribute weight :type real)

(instance mycar car)
(related mycar engine1 has-part)
(related engine1 cylinder-1-4 has-part)
(related mycar wheel-1-4 has-part)

mycar

chassis1

engine1

wheel-1-4

cylinder-1-4

has-part

Fig. 1.Compositional structure ofmycar

(related mycar chassis1 has-part)
(instance engine1 (= weight 200.0))
(instance chassis1 (= weight 400.0))
(instance wheel-1-4 (= weight 30.0))

Suppose we want to compute the overall weight of the car as well as the number of
its components. Thus, using MINI L ISP, for each?car found we are going to construct
two sub-queries. For a given?car , the first sub-query retrieves the components of that
?car as well as their told weights, and the second sub-query simply counts the num-
ber of components. The two sub-queries are constructed and executed from within a
M INI L ISP lambda body. Their results are then appropriately processed and returned.

Note that the bodies of the two sub-queries are almost identical for every?car ,
but the considered?car obviously changes. Thus, the bodies of the sub-queries are not
fix. Sub-queries thus have to be constructed based on variable bindings which are estab-
lished by outer (sub)queries. For this purpose, query templates can be constructed using
the “backquote (‘) and comma (,) mechanism” from COMMON L ISP. For example, if
the variablecar is bound tomycar , then the expression‘(,car ?part hast-part)

evaluates to(mycar ?part has-part) . The query

(retrieve
(((lambda (car)

(let ((car-weight
(reduce ’+ (flatten

(retrieve ‘(((lambda (car-weight) car-weight)
(told-value-if-exists

(weight ?part))))
‘(and (,car car) (,car ?part has-part)

(?part (a weight)))))))
(car-parts (length

(retrieve ‘(?part)
‘(,car ?part has-part)))))

‘((?car ,car) (?no-of-parts ,car-parts)
(?total-weight ,car-weight))))

?car))
(?car car))

then returns

((((?car mycar) (?no-of-parts 4) (?total-weight 630.0)))).

The query works as follows. The body of the outer query consists of the single concept
query atom(?car car) . The lambda expression is then applied to the current
binding of ?car . So, within thelambda body,car is bound to the binding of?car .
First, the total weight is computed. For this purpose, a sub-query is constructed. If?car

= mycar , then the query body‘(and (mycar car) (mycar ?part has-part)

(?part (a weight))) is constructed and posed, asking for the parts ofmycar .
The head of the sub-query consists of yet anotherlambda , which simply applies the
told-value-if- exists head projection operator to retrieve the told values of the
weight attribute of?part s. The sub-query result is returned as a nested list; the listis
flattened and its items are simply summed using(reduce ’+ ...) . We have com-
puted the overall weight; this result is bound to the local variablecar-weight . Simi-
larly, the number ofcar-parts is computed (by posing yet another sub-query). Finally,
the result of thelambda expression is constructed and returned. The constructed and
returned value will become the result tuple. So, ifcar is mycar , andno-of-parts is
4, andcar-weight is 630.0 , then the template‘((?car ,car) (?no-of-parts

,car-parts) (?total-weight ,car-weight)) constructs the result tuple
(((?car mycar) (?no-of-parts 4) (?total-weight 630.0))) . We can
easily construct and return a string instead of a tuple by using (format nil "Car

˜A has ˜A parts and weights ˜A kg." car no-of-pars car-weight) .
Thus, the answer is"mycar has 4 parts and weights 630.0 kg" .

6 Efficient Aggregation Operators using Promises
Although the previous query demonstrated the power and utility of M INI L ISP, the ag-
gregation was not computed efficiently, since for each binding of ?car , two new sub-
queries were constructed. Thus, if 10 cars are present, 20 sub-queries had to be parsed,
optimized, compiled and finally executed in order to computethe aggregation.NRQL
supports the pre-compilation of queries; in fact, queries are maintained as first order
objects which have a complex life cycle [7]. However, the twosub-queries cannot be
simply precompiled since their bodies are not fixed. The bodies contain a variable part,
?car , whose binding can only be established at execution time by the outer query.
From the perspective of the inner sub-queries,?car is in fact an individual. Unfortu-
nately,?car cannot be treated as an individual at pre-compilation time,since the query
compiler would then produce special code which will treat?car as an individual, but
after all, there is not individual?car in the KB. This obviously prevents naive pre-
compilation. Note that this situation does not arise in SQL engines.

A new optimization technique can help here which is a generaltechnique that does
not only apply to theNRQL engine. To the best of our knowledge, the technique has not
been proposed or implemented before. Apromisedeclares that certain variables have
to be treated as individuals during query (pre-)compilation time. Thus,?car can be
treated as an individual by the optimizer and compiler. At the same time, it ispromised
to NRQL that this query will only be executed if a binding for?car is established in
advance, in this case, by the outer query. Thus, although theoptimizer and compiler see
and treat?car as an individual, during execution time that individual canchange (and
so remains a variable). Thus, the query bodies are constant again, and only 2 bodies are
needed instead of 20. Using promises, the example aggregation query looks as follows:

(with-future-bindings (?car)
(prepare-abox-query (?part)

(and (?car car) (?car ?part has-part))
:id :parts-of-car-query)

(prepare-abox-query
(((lambda (weight) weight)

(told-value-if-exists (weight ?part))))
(and (?car car) (?car ?part has-part) (?part (a weight)))
:id :weights-of-parts-of-car-query))

This prepares two queries named :parts-of-car-query and
:weights-of-parts-of-car-query . The queries are compiled and optimized,
but not executed yet. SinceNRQL supports full life cycle management for queries,
these queries are from now on available as query objects, ready for execution. Due to
the surrounding lexical promisewith-future-bindings , the query optimizer has
treated the?car variable as an individual, although it must be handled as a variable
at execution time. Thus, we have “promised”NRQL that we will only execute these
queries if we supply a binding for?car in advance. We can establish such a binding
during query execution usingwith-nrql-settings as follows:

(retrieve
(((lambda (car)

(with-nrql-settings (:bindings ‘((?car ,car)))
(let ((car-weight

(reduce ’+
(flatten
(execute-or-reexecute-query

:weights-of-parts-of-car-query))))
(car-parts

(length
(execute-or-reexecute-query

:parts-of-car-query))))
‘((?car ,car) (?no-of-parts ,car-parts)
(?total-weight ,car-weight))))

?car)))
(?car car))

This results in a very efficient query execution, since (re)execution of a prepared query
is immediate (only a function call to the compiled query evaluation function is re-
quired). No query parsing, optimization and compilation time is needed during query
execution, and much less memory is used as well.

7 Conclusion
We have presented a pragmatic extension of a Semantic Web QL by lambda expres-
sions. The termination safe functional expression language MINI L ISP offers solutions
to problems encountered in daily usage of Semantic Web QLs for which currently no
standardized solutions exist. The proposed solution is technically sound, since the query
body is kept clean from user defined predicates or proceduralextension which might re-
sult in unsafe queries and semantical problems. The solution is flexible, since users can

define and execute ad hoc extensions efficiently on the serverwithout having to com-
pile specialized “plugins” in advance. We have also addressed the scalability aspects
by showing how aggregation operators can be realized efficiently in this framework by
exploiting the novel notion of promises. Standard aggregation operators could also be
made accessible as macros in this framework. We believe thatthe flexibility offered by
M INI L ISP enhances the applicability ofNRQL to real world problems. For example,
the generation of HTML is directly supported in MiniLisp with “syntactic sugar”.

Is MINI L ISP a declarativeextension? The answer isyes and no. In case the spec-
ified lambda bodies are purely functional, the answer is truly yes. There are not states
in M INI L ISP itself; for example, there is no variable assignment operator. Thus, typical
M INI L ISP use cases will be fully declarative, e.g., if MINI L ISP is used for the real-
ization of aggregation operators or filter predicates. However, for pragmatic reasons,
M INI L ISP offers full access to all RACERPRO API functions. As such, it is of course
possible to alter the state of a knowledge base while the query is still running. Since
there is a notion of state involved, such queries can no longer be called fully declara-
tive. One could argue that this kind of extension could also be executed on the client
side. However, this will result in a bad performance and prevent ad hoc extensions.
Moreover, optimization techniques such as promises cannotbe used then.

8 Acknowledgments
We like to thank Atila Kaya for very valuable and thoughtful comments. This work was par-
tially supported by the EU funded projects TONES (Thinking ONtologiES FET-FP6-6703) and
BOEMIE (Bootstrapping Ontology Evolution with MultimediaInformation Extraction, IST-FP6-
027538).

References

1. van Harmelen, F., Hendler, J., Horrocks, I., McGuinness,D.L., Patel-Schneider, P.F., Stein,
L.A.: OWL Web Ontology Language Reference, http://www.w3.org/tr/owl-guide/ (2003)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003)

3. Haarslev, V., Möller, R.: RACER System Description. In:Int. Joint Conference on Automated
Reasoning, IJCAR ’01. (2001)

4. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. Technical Report, World Wide
Web Consortium (2004)

5. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical Report,
World Wide Web Consortium (2006)

6. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A
Declarative Query Language for RDF. In: The Eleventh International World Wide Web Con-
ference (WWW’02).

7. Wessel, M., Möller, R.: A High Performance Semantic Web Query Answering Engine. In:
Proc. of the 2005 Description Logic Workshop (DL 2005)

8. Horrocks, I., Tessaris, S.: Querying the Semantic Web: a Formal Approach. In: Proc. of the
1st Int. Semantic Web Conf. (ISWC 2002).

9. Calvanese. D., De Giacomo, G., Lenzerini, M.: On the Decidability of Query Containment un-
der Constraints. In: Prof. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’98).

	Leveraging the Expressivity of Grounded Conjunctive Query Languages
	 Alissa Kaplunova (TUHH), Ralf Möller (TUHH), Michael Wessel (TUHH)

