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Abstract

This work investigates the quantifier elimination problem in real closed fields with re-
spect to the application in description logics. The motivation for the investigation in this
topic is mainly based on the demand for an extension of a description logic system to
support a default concrete domain for non-linear multivariate equations and inequations.
In this report we provide a literature overview that summarizes main mathematical tools
for checking whether a set of non-linear multivariate (in-)equations is satisfiable (quanti-
fier elimination problem). In addition, the report describes the interface to a prototype
implementation for complex numbers (rather than the reals) provided a description logic
system. We also shortly describe how initial application examples are handled with the
prototype implementation.

Zusammenfassung

In dieser Arbeit wird das Quantoreneliminationsproblem in rellen abgeschlossenen Körpern
im Zusammenhang mit Beschreibungslogiken untersucht. Die Untersuchung dieses The-
mas ist im wesentlichen durch die Forderung motiviert, ein Beschreibungslogiksystem um
eine Komponente zu erweitern, die konkrete Domänen mit linearen multivariaten Gle-
ichungen und Ungleichungen standardmäßig unterstützt. Dieser Beitrag bietet einen Lit-
eraturüberblick über die wichtigsten mathematischen Werkzeuge zur Überprüfung der
Erfüllbarkeit von nichtlinearen multivariaten (Un-)gleichungen (Quantoreneliminations-
problem). In dem Report wird außerdem die Schnittstelle der Prototypimplementation
für den Körper der komplexen Zahlen beschrieben. Weiterhin werden erste Anwendungs-
beispiele erläutert.
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Chapter 1

The Decision Problem in the
Context of Description Logics

This work investigates the quantifier elimination problem in real closed fields with re-
spect to the application in description logics. The motivation for the investigation in
this topic is mainly based on the demand for an extension of the description logic system
Racer(Renamed ABox and Concept Expression Reasoner) to support a default concrete
domain for non-linear multivariate equations and inequations. We refer here to the non-
commercial variant of Racer which is made available for free for research purposes. The
commercial version is called RacerPro and does not provide a concrete domain for non-
linear multivariate equations and inequations.

It is essential for practical applications to be able to reason about objects from other
domains, so called concrete domains (see, e.g., [HMW01]). Racer provides TBox and
ABox reasoning for the very expressive description logic ALCQHIR+(D)−. We assume
the reader has basic knowledge about description logic. As a summary a brief introduction
to the description logic ALCQHIR+(D)− is given, followed by an illustrating example for
the use of a concrete domain for non-linear multivariate equations and inequations.

In description logic (DL) systems, a knowledge base consists of a TBox and an ABox. A
TBox specifies the set of terminological axioms which represents the conceptual knowl-
edge of an application domain, while an ABox is a set of assertional axioms denoting
the knowledge about the instances of the domain and their interrelationships. Each DL
system includes the three major logic relations: subsumption (inclusion), equivalence, and
disjointness. For domain modeling, ALCQHIR+(D)− provides five disjoint sets: a set of
concept names C , a set of role names R, a set of feature names F , a set of individual
names O and a set of names for (concrete) objects OC . Figure 1.1 illustrates the syntax
and the semantic of the DL ALCQHIR+(D)−.

The set of concept names C represents atomic concepts, and the set of role names
R indicates atomic roles. Roles are binary predicates that describe relations between
elements of O . The right hand side of a role is called a role filler . The set of role names
R can be divided into a set of non-transitive roles P and a set of transitive roles T such
that R = P ∪ T and P and T are disjoint. Features, also called attributes, are functional
roles, i.e. each individual can only have up to one filler for this role. The set of features F
is a subset of P . Elements of F ∪ R are atomic roles .

Concepts can be built from atomic concepts using boolean operators including nega-
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(a)

Syntax Semantics
Concepts (R ∈ R, S ∈ S , and f, fi ∈ F )
A AI ⊆ ∆I (A is a concept name)
¬C ∆I \ CI

C u D CI ∩ DI

C t D CI ∪ DI

∃R .C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
∀R .C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S .C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≥ n}
∃≤m S .C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≤ m}
∃ f1, . . . , fn .P {a ∈ ∆I | ∃ x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I∧

(x1, . . . , xn) ∈ PI}
∀ f1, . . . , fn .P {a ∈ ∆I | ∀ x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I ⇒

(x1, . . . , xn) ∈ PI}
Roles and Features
R RI ⊆ ∆I ×∆I

f fI : ∆I → ∆D (features are partial functions)
‖ · ‖ denotes the cardinality of a set, and n, m ∈ N with n > 1, m > 0.

(b)

Axioms
Syntax Satisfied if
R ∈ T RI = (RI)+

R v S RI ⊆ SI

C v D CI ⊆ DI

(c)

Assertions (a, b ∈ O , x, xi ∈ OC )
Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

(a, x) : f (aI , α(x)) ∈ fI

(x1, . . . , xn) :P (α(x1), . . . , α(xn)) ∈ PI

Figure 1.1: Syntax and Semantics of ALCQHIR+(D)− (Figure taken from [HM02]).

tion, conjunction and disjunction. In addition, concepts can be constructed using existen-
tial and value restrictions, qualified number restrictions, and predicate restrictions. Value
restrictions are applied to enforce that all role fillers of a certain role are of a specific
concept. Let R,S ∈ R be role names and let C ∈ C be a concept name in the following.
Then, the DL notation for this is ∀R .C. For exists restrictions ∃R .C, it is required that
there exists at least one role filler for a certain role which is of the stated concept. Quali-
fied number restrictions ensure an upper or lower bound for the number of role fillers of a
certain role that each instance of the indicated concept must have. They are represented
by ∃≥n S .C and ∃≤m S .C, respectively. For features of a concrete domain, predicate exists
and predicate all restrictions are provided, denoted by ∃ f1, . . . , fn .P and ∀ f1, . . . , fn .P,
respectively. The concepts are presented in Figure 1.1a.

Roles can only be built from atomic roles with the inverse role constructor. The inverse
of a role R is then denoted by R−1.

A role hierarchy R can be generated via role inclusion axioms, for example S v R.
The role S is then called a sub-role of R and R is a super-role of S. Define v∗ as the
reflexive transitive closure of v over R, the set of sub-roles R↓ of a role R is given by
R↓ = {S ∈ R |S v∗ R}. The set of super-roles can be specified accordingly. Simple roles
are roles which are neither transitive nor have a transitive role as a sub-role. Thus, the
set of simple roles is S := {R ∈ P |R↓ ∩ T = ∅}. Qualified number restrictions can only be
expressed for simple roles.

A TBox is then a set of general concept inclusions (GCI’s), i.e. concept inclusion
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axioms, role inclusion axioms, and role element axioms (see Figure 1.1b). They are denoted
by C v D, R v S, and R ∈ T , respectively. The equivalence relation, denoted by C ≡ D, is
an abbreviation for C v D and D v C, whereas the disjointness relation can be expressed
by C v ¬ D. In addition, the concepts “top” and “bottom” are abbriviated by (>) and
(⊥). The former represents the top-most concept in the hierarchy, while the latter stands
for the inconsistent concept. In a TBox, it is also possible to define domain and range
restrictions for roles in order to restrict the left and right side of an atomic role. This can
be implemented using GCIs, i.e. (∃R .>) v C for domain restrictions and > v (∀R .D) for
range restrictions.

The semantics ofALCQHIR+(D)− is given as a Tarski-style model theoretic semantics.
ID = (∆I ,∆D, ·I) is an interpretation that consists of a set ∆I , the abstract domain, a
set ∆D, the domain of the concrete domain D and an interpretation function ·I , where
∆I ∩∆D = ∅ holds. The interpretation function maps each concept name C to a subset CI

of ∆I , each role name R to a subset RI of ∆I ×∆I and each feature f from F to a partial
function fI from ∆I → ∆D. A concrete domain D is then defined as a pair (∆D,ΦD),
where ΦD is a set of predicate names and ∆D denotes a specific concrete domain. The
interpretation function maps each predicate name P from ΦD with arity n to a subset PI of
∆n
D. The predicate >D specifies the predicate which is true for all elements in ∆D. Assume

that ⊥D is the negation of the predicate >D. A concrete domain D is called admissible iff
the set of predicate names ΦD is closed under negation and ΦD contains a name >D for ∆D,
and the satisfiability problem Pn1

1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm
m (xm1, . . . , xmnm) is decidable (m

is finite, Pni
i ∈ ΦD, ni is the arity of Pi, and xjk is a concrete object). Therefore, a variable

assignment α maps concrete objects to values in ∆D.

An ABox is a finite set of assertional axioms (see Figure 1.1c). Let C be a concept term,
R be a role, a, b ∈ O be individual names and x, x1, · · · , xn ∈ OC be names for concrete
objects. Then a :C indicates a concept assertion, (a, b) :R denotes a role assertion, (a, x) : f
represents a concrete domain feature assertion and (x1, . . . , xn) :P defines a concrete domain
predicate assertion. The interpretation function ·I of the interpretation ID can now be
extended by mapping each individual name from O to an element of ∆I and each name
for concrete objects from OC to an element of ∆D. Note that different individuals are
mapped to different domain objects (unique name assumption).

An interpretation I is a model of a concept C (or satisfies a concept C) iff CI 6= ∅ and
for all R ∈ R it holds that iff (x , y) ∈ RI then (y , x ) ∈ (R−1)I . An interpretation I is a
model of a TBox T iff it satisfies all axioms in T (see Figure 1.1b). An interpretation I
is a model of an ABox A w.r.t. a TBox T iff it is a model of T and satisfies all assertions
in A (see Figure 1.1c).

The ABox consistency problem is to decide whether a given ABox A is consistent with
respect to a TBox T . An ABox is consistent with respect to a TBox T if and only if it
has a model with respect to T . Otherwise, the ABox is called inconsistent.

An example is presented for the use of the concrete domain (∆D,ΦD) with ∆D = R and
a set of predicates ΦD for non-linear equations and inequations between real numbers.
For sake of readability and brevity, predicates are denoted as lambda expressions in-
stead of introducing predicate names. Let x1pos circle, x2pos circle, x1pos hyperbola and
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x2pos hyperbola be features. Suppose the following GCIs are in a TBox:

human in circle ≡ human u ∃ x1pos circle, x2pos circle . λ(x1, x2)(x2
1 + x2

2 − 1 < 0)
human in on circle ≡ human u ∃ x1pos circle, x2pos circle . λ(x1, x2)(x2

1 + x2
2 − 1 ≤ 0)

human on hyperbola ≡ human u ∃ x1pos hyperbola, x2pos hyperbola . λ(x1, x2)(x3
1 − x2

2 = 0)

A human in a circle is a human who is in a geometric circle but not on the circular line itself,
while a human in or on a circle is a human who can be in a circle or on the circular line.
A human on a hyperbola is a human who is on the branches of a geometric hyperbola.
Obviously, the concept human in circle is subsumed by the concept human in on circle.
With the TBox defined above, subsequent constraints between the individuals lara and
leon are established in the ABox.

lara :human in circle
(lara, x1pos lara) :x1pos circle, (lara, x2pos lara) :x2pos circle
leon :human on hyperbola
(leon, x1pos leon) :x1pos hyperbola, (leon, x2pos leon) :x2pos hyperbola
(x1pos lara, x1pos leon) :λ(x1 , x2 )(x1 = x2 )
(x2pos lara, x2pos leon) :λ(x1 , x2 )(x1 = x2 )

To decide the ABox consistency problem, one has to deduce that the ABox is consistent
with respect to the TBox defined above. This implies that lara and leon can be on the same
position. To deduce the consistency of the ABox means to solve the non-linear system of
polynomial equations and inequations containing the defining polynomial inequation for
the circle and the defining polynomial equation for the hyperbola:

x2
1 + x2

2 − 1 < 0 (1.1)

x3
1 − x2

2 = 0. (1.2)

Figure 1.2 illustrates these defining polynomial equations and inequations.

x
1

x
2

Figure 1.2: Illustration of the polynomial system.

Solutions of Inequation (1.1) are all points which lie in the shadowed circle without the cir-
cle itself. All valid solutions of Equation (1.2) are depicted in the two hyperbola branches.
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Obviously, the common solutions are represented by the parts of the hypberbola branches
which lie in, but not on, the circle. Thus, the ABox A should be verified to be consistent.

The main task of this work is to find and analyze computationally efficient algorithms
which can answer the question whether a given polynomial system is consistent with
respect to solutions in real closed fields. For example, the set of real numbers is a real closed
field. An exact definition, also for polynomial systems, will be given in the mathematical
overview in Chapter 2. This question is often referred to as the decision problem. Basically,
there exist three different interpretations for the question whether a system of polynomial
equations and inequations can be solved:

1) Decision interpretation, also called existential interpretation: This interpreta-
tion asks for the consistency of a given polynomial system, which means just to answer
the question whether a polynomial system has a common solution or not.

2) Counting interpretation: The counting interpretation ask for the number of so-
lutions, i.e. the cardinality of the solution set, in case the dimension of the solution
set is zero. A zero-dimensional solution set indicates that the number of solutions is
finite. If the cardinality of the solution set is infinite, the task is refined to the task of
determining the dimension of the solution set.

3) Enumeration interpretation: This interpretation requires to compute the exact
solutions in case the solution set is finite. If the solution set is infinite, the task is
to find sample points or to describe each connected component of the solution set.
For example, if the intersection of two planes results in a line, the line is a connected
component of the solution set which has to be described.

The decision problem can be seen as a quantifier elimination (QE) problem. The quantifier
elimination problem for the real numbers poses the task to find a quantifier-free formula φ
for a given formula ϕ such that φ is always true if and only if ϕ is true in the domain of real
numbers. Quantifier elimination is based on first-order logic combined with polynomial
equations and inequations. Atomic formulas are defined as polynomial equations and
inequations of the form f > 0, f ≥ 0, f = 0, f < 0, f ≤ 0 and f 6= 0. (Note that it
would also be sufficient to allow only the two forms f > 0 and f = 0 since the other
forms can be expressed by those two forms.) A quantifier-free formula is then a boolean
combination of atomic formulas, where the boolean operators can be elements of {∧,∨,¬}.
A quantifier-free formula can be quantified by universal ∀x and/or existential quantifiers
∃x. Such a formula is therefore called a quantified formula. All variables which are not
quantified in a formula are named parameters or free variables. Quantified formulas which
contain only existential or only universal quantifiers are called existential or universal
formulas, respectively. ∃x1 · · · ∃xnφ(u1, · · · , um, x1, · · · , xn) is an example for a existential
formula, where u1, · · · , um denote the parameters and x1, · · · , xn indicates the variables of
a quantifier-free formula φ. In general, a first-order formula is constructed by alternating
blocks of universal and existential quantifiers in front of a quantifier-free formula. For
example, applying quantifier elimination to the first-order formula a 6= 0∧∃x(ax2+bx+c =
0) yield the equivalent quantifier-free formula b2 − 4ac ≥ 0, which is true if and only if
the quantified formula has a real solution. The quantifier elimination problem for the
real numbers can always be solved as first stated and proved by Tarski in 1951 [Tar51].
However, Tarski’s QE algorithm was not constructive. The decision problem as considered
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in the application of description logics is only concerned with existential formulas. Thus
quantifier elimination does not really apply.

Algebra is that part of mathematics that is originally concerned with equations and their
solutions. The name Algebra was first used in the 12th century as a translation of the
Arabic word “al-dschabr” which occured in the title of a book from the 9th century ex-
plaining calculations with equations. Calculation involving letters (variables) was then
established in the 16th century by Francois Viète (1540-1603). Modern algebra investi-
gates structures of mathematical sets whereas linear algebra was concerned with solving
problems in geometry and therefore with solving systems of linear equations. Nowadays,
computer algebra, also called algorithmic algebra, is one of the most interesting fields be-
tween mathematics and computer science. An often cited definition for computer algebra
is the following: “Computer algebra is that part of computer science which designs, ana-
lyzes, implements, and applies algebraic algorithms” [BCL82]. Computer algebra puts an
emphasis on symbolic and algebraic computations, but one can also find computer algebra
algorithms dealing with integral, differential, and numerical computations. Thus, the term
computer algebra includes a wide range of mathematical fields. However, all algorithms
in computer algebra have a preceeding algebraic structure analysis in common.

The history of solving systems of multivariate polynomial equations dates back to the
19th century. The classical elimination theory is based on resultants. A definition of
resultants can be cited from Petitjean [Pet97]: “A resultant is an algebraic criterion for
determining when a pair of univariate polynomials has a common root expressed in terms
of the coefficients of the given polynomials.” Assume a system of m polynomial equations
in n variables. Different solution techniques are applied dependend on the values for m
and n:

1. m = 2 and n = 1: The resultant, given by the determinant of the Sylvester matrix, is
zero if and only if the two polynomials have common solutions.

2. m = n+1 and n ≥ 2: The resultant, also called the Macaulay resultant, is calculated as
the quotient of two determinants A and M . The system, which has to be homogenized
first, has common solutions if A is equal to zero while M is nonzero. If M is also
zero, the system still might have common solutions. This problem might be solved by
introducing symbolic coefficients.

3. m = n: The resultant, also called u-resultant, is obtained by homogenizing the system,
adding a so-called u-equation to the system and applying the Macaulay resultant.

The classical resultant-based solution techniques for the decision problem only address
polynomial systems including equations but not inequations. In the application of DL
systems as presented above, it is required to solve the decision problem for systems of
polynomial equations and inequations. Thus, this work presents two different solution
techniques. The first one is based on Gröbner bases while the second one relies on cylin-
drical algebraic decomposition. Gröbner bases are special polynomial systems which have
the same set of solutions as the original polynomial system but can be solved applying
various methods. A cylindrical algebraic decomposition of the space Rn can be described
as a partition of Rn into connected subsets, called cells, on which each of the polynomials
of the input polynomial system has constant sign.
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The aim of this work is

• to search for significant solution techniques in order to solve the decision problem
for a system of polynomial equations and inequations,

• to combine relevant information which is spread out widely in many different papers,

• to explain extremely complicated algebraic basics these solution techniques are relied
on, and

• to present these solution techniques in an uniform way such that it is applicable to
description logic applications.

This aim is reached by giving an algebraic overview in a general chapter and by introducing
the solution techniques based on Gröbner bases and on cylindrical algebraic decomposition
in two different chapters which can be read independently from each other. Thus, the
chapters are arranged as follows. In Chapter 2, the mathematical background of linear
and algorithmic algebra is presented. Chapter 3 analyzes solution techniques related to
Gröbner bases in order to solve the decision problem for a set of polynomial equations
and inequations. A method based on cylindrical algebraic decomposition to answer the
decision question for a polynomial system is explored in Chapter 4. Chapter 6 summarizes
the results of this work and inspects several performance studies presented in literature.
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Chapter 2

Mathematical Background

This chapter introduces some of the basic concepts of linear and algorithmic algebra. It is
mainly based on [Fis86], [Mis93], [CLO96] and [Yap00]. First, section 2.1 presents algebraic
preliminaries, mainly in linear algebra. Section 2.2 is concerned with characteristics and
properties of polynomials and polynomial rings. Subresultants and Sturm sequences are
then discussed in Section 2.3. Finally, basics of ideal theory are given in Section 2.4.

In the following, N, Z, Q, R, and C denote the set of natural numbers 0, 1, 2, · · ·, integers,
rational numbers, reals, and complex numbers, respectively. It is assumed that the reader
is familiar with matrix computations and analysis features such as derivatives.

2.1 Algebraic Preliminaries

First, the definition of relations, maps, groups, fields and vector spaces are recalled.

DEFINITION 2.1
Let A and B be two non-empty sets. A relation R on A and B is defined as a subset of
the Cartesian product A × B. If (a, b) ∈ R one says that a is related to b. This is also
denoted by aRb or a ∼ b.

DEFINITION 2.2
Consider a binary relation R on one set A, i.e. R ⊂ A×A. A relation R on A is called

• reflexive, iff ∀ a ∈ A ⇒ (a, a) ∈ R,

• symmetric, iff ∀ (a, b) ∈ R ⇒ (b, a) ∈ R,

• asymmetric, iff ∀ (a, b) ∈ R ⇒ (b, a) 6∈ R,

• antisymmetric, iff ∀ (a, b) ∈ R and (b, a) ∈ R ⇒ a = b,

• transitive, iff ∀ (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R.

DEFINITION 2.3
An ordering on A is defined as a relation on A which is reflexive, antisymmetric and
transitive. An irreflexive ordering is a relation on A which is irreflexive, asymmetric and
transitive. An ordering is called a quasi-ordering if it is just reflexive and transitive,
whereas an irreflexive quasi-ordering is one which is just irreflexive and transitive.
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DEFINITION 2.4
Two elements a, b of the set A are comparable with respect to an ordering R iff either
(a, b) ∈ R or (b, a) ∈ R.

DEFINITION 2.5
An ordering R on A is called total, linear or simple iff any two elements of A are
comparable with respect to R. Otherwise, the ordering is called a partial ordering. The
tuple (A,R) is called a partially ordered set or poset in case R is a partial ordering.
If R is a total ordering, (A,R) is called a chain.

For example, (Z,≤) is a chain since any two elements a, b of A are always comparable: it
is either a ≤ b or b ≤ a. However, (Z,′ divides′) is a poset because the elements 2 and
7 are not comparable, for example. 2 does not divide 7 and vise versa. Therefore, the
ordering ’divides’ is a partial ordering.

DEFINITION 2.6
Let X and Y be two non-empty sets. Then, an instruction f or f(x) is called a map or
a mapping if f assigns to each x ∈ X a well defined element f(x) ∈ Y . This statement
is denoted by:

f : X → Y

x 7→ f(x)

f(x) is the image of x under the map f. The set X is called the domain of f , whereas
the set Y is called the range of f .

DEFINITION 2.7
Let f : X → Y be a map. Then f is called

• surjective, if f(X) = Y , i.e. for each y ∈ Y there exists at least one x ∈ X with
y = f(x),

• injective, if for all x, x′ ∈ X with f(x) = f(x′) it holds that x = x′,

• bijective, if f is surjective and injective.

EXAMPLE 2.1
The map f : R → R+, x 7→ x2 is surjective, but not injective and the map f : R+ → R,
x 7→ x2 is injective, but not surjective. But the map f : R+ → R+, x 7→ x2 is surjective
and injective and thus bijective.

DEFINITION 2.8
A group is a tuple (G, ◦) which consists of a non-empty set G and a binary operation on
G, i.e. a map:

◦ : G×G → G

(a, b) 7→ a ◦ b

with the following properties (also called group axioms):

(G1) Associative law: (a ◦ b) ◦ c = a ◦ (b ◦ c) ∀ a, b, c ∈ G.
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(G2) Identity element: There exists one identity element e ∈ G, for which the subsequent
properties hold:

(G2a) e ◦ a = a ∀ a ∈ G.

(G2b) Inverse element: For every element a ∈ G, there exists an inverse element,
denoted by a′ ∈ G, with a · a′ = e.

A group (G, ◦) is called an Abelian group, if the commutative law is valid:

a ◦ b = b ◦ a ∀ a, b ∈ G.

For a semigroup, the only group axiom that holds is (G1). A monoid is defined as a
semigroup with identity, i.e. group axiom (G2a) is also valid. A subgroup of a group G
is a non-empty subset G′ iff ∀ a, b ∈ G′ it holds that a ◦ b ∈ G′.

EXAMPLE 2.2
1. (Z,+), the set of integers with the operation addition, is an Abelian group. The identity

element is 0, and the inverse element for any z ∈ Z is z′ = −z ∈ Z. Likewise (Q,+)
and (R,+) are Abelian groups. However, (N,+) is not a group since condition (G2b)
fails.

2. (Q∗, ·),where Q∗ := Q\{0}, i.e. the set of rational numbers without 0 with the operation
multiplication, is an Abelian group. The identity element is 1, and the inverse element
for any q ∈ Q∗ is equal to q′ = 1

q = q−1 ∈ Q∗. Equally, (R∗, ·) with R∗ := R \ {0} is
an Abelian group. But (Z∗, ·) and (N∗, ·) with Z∗ := Z \ {0} and N∗ := N \ {0} are no
groups, since condition (G2b) fails.

3. (Zm,⊕) is an Abelian group, whereas (Z∗m,�) is not a group if m = a · b is a composite
number with a, b > 1 and Z∗m := Zm\{0}. Zm denotes the set of residue classes modulo
m, and [r], 0 ≤ r ≤ m − 1, represents the residue class which consists of all numbers
that have the same remainder when divided by m. a ≡ b mod m iff a and b have the
same remainder by division by m. ⊕ and � are defined as follows: [r1]⊕ [r2] := [r1 +r2]
and [r1]� [r2] := [r1 · r2] with a1 + a2 ≡ b1 + b2 mod m and a1 · a2 ≡ b1 · b2 mod m for
a1 ≡ b1 mod m and a2 ≡ b2 mod m.

If it is clear which operation is meant, one shortly writes G instead of (G, ◦) for a group.
For groups with the operation addition (+) or multiplication (·), the following conventions
are adopted: In a · b, one can omit the multiplication operator and just write ab. Instead
of a + (−b) one also writes a− b, as well as a

b for ab−1. For any interger n ≥ 1, an denotes
the multiplication of a with itself n times, i.e. a3 = aaa, while a−n is the inverse element
of an.

DEFINITION 2.9
A ring is a triple (R,+, ·) which consists of a non-empty set R and two binary operations
+ and · on R, called addition and multiplication, i.e. the two maps:

+ : R×R → R · : R×R → R

(a, b) 7→ a + b (a, b) 7→ a · b

with the following properties:
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(R1) (R,+) is an Abelian group. (The identity element is denoted by 0, and the inverse
element with respect to addition for each x ∈ R is represented by −x.)

(R2) (R, ·) is a semigroup.

(R3) Distributive law:

a · (b + c) = (a · b) + (a · c) and

(a + b) · c = (a · c) + (b · c) ∀ a, b, c ∈ R.

The ring has an identity element, iff the semigroup with respect to multiplication has
an identity element according to Definition 2.8, item (G2a). Further, the ring is called
commutative, iff the multiplicative semigroup (R, ·) is commutative, i.e. a · b = b · a
∀ a, b ∈ R.
A ring is a field, iff the multiplicative semigroup (R, ·) can be replaced by a multiplicative
Abelian group as follows: (R∗, ·) is an Abelian group, where R is reduced to R∗ := R\{0}.
(The identity element is 1, and the inverse element is then denoted by x−1 for every x ∈ R.)
In general, R is replaced by the letter K in case of a field.

If it is obvious, how addition and multiplication are defined on R or K to build a ring or
field, one also writes R or K instead of (R,+, ·) or (K, +, ·), respectively. According to a
general convention, multiplication ties stronger than addition. Therefore, the parentheses
on the right hand side in item (R3) can be omitted. For a field element a and an integer
n ≥ 1, n · a means adding a to itself n times, i.e. 3 · a = a + a + a.

EXAMPLE 2.3
1. (Z,+, ·) is a ring with no zero divisors (see below).

2. (Zm,⊕,�) is a finite ring for any m ≥ 2. (Zm,⊕,�) is called a residue class ring
modulo m.

3. (Zp,⊕,�) is a finite field for any prime number p.

4. (R,+, ·) and (Q,+, ·) are examples for a field, whereas (Z,+, ·) is not a field since (Z∗, ·)
with Z∗ := Z \ {0} is not an Abelian group as explained above.

DEFINITION 2.10
An element a, a 6= 0, of a ring R is a zero divisor iff there exists an element b ∈ R, b 6= 0,
such that a · b = 0. An element a ∈ R is called a unit iff there exists an element b ∈ R
such that a · b = 1.

A zero divisor divides 0 in parts different from 0. An example for a zero divisor is a = 2
in the residue class ring modulo 6 since 2 · 3 = 0 mod 6. In a field, every element that
is different from zero is a unit since it has a uniquely determined inverse element. In the
field of real numbers R, R \ {0} represents the set of units, for example. In Z, the units
are +1 and −1.

DEFINITION 2.11
A ring R is called an integral domain iff it has no zero divisor.

12



DEFINITION 2.12
Let K be a field. A K-vector space is a triple (V,+, ·) which consists of a non-empty set
V , a binary operation + (addition), and a binary operation · (multiplication) with scalars
such that:

+ : V × V → V · : K × V → V

(v, w) 7→ v + w (λ, v) 7→ λ · v

with the following properties:

(V1) (V,+) is an Abelian group. (The identity element ~0 is called zero vector, and the
inverse element with respect to addition for each v ∈ V is represented by its negative
vector −v).

(V2) ∀ v, w ∈ V and λ, µ ∈ K the following conditions hold:

(i) (λ + µ) · v = (λ · v) + (µ · v),
(ii) λ · (v + w) = (λ · v) + (λ · w),

(iii) (λ · µ) · v = λ · (µ · v),
(iv) 1 · v = v.

Elements of a vector space are called vectors, also denoted by ~v or v, while elements of
K are called scalars.

If K is known, one simply says vector space instead of K-vector space. Again, if it is clear
which operations + and · are applied for the vector space, one can also write V instead of
(V,+, ·). For λ · v, where λ ∈ K and v ∈ V , the multiplication operator can be omitted
to yield the short form λv. Based on a usual convention, the tie for multiplication with
scalars is stronger compared to addition in V and addition in K. Thus, some parentheses
can be omitted. For a vector v and an integer n ≥ 1, n · v denotes the vector obtained by
adding v to itself n times, i.e. 3 · v = v + v + v.

EXAMPLE 2.4
The standard examples for K-vector spaces are the spaces Kn of n-tuples, where addition
and multiplication is defined as follows:
(x1, · · · , xn) + (y1, · · · , yn) := (x1 + y1, · · · , xn + yn) and λ(x1, · · · , xn) := (λx1, · · · , λxn).
The null vector ~0 = (0, · · · , 0) is the identity element of the Abelian group (Kn,+). The
inverse element for each ~v ∈ Kn is represented by the negative vector −~v = −~v.

DEFINITION 2.13
Let V and W be two K-vector spaces and let f : V → W be a map. Then, f is called K
-linear iff for all v, w ∈ V and λ ∈ K the following conditions hold:

(i) f(v + w) = f(v) + f(w),

(ii) f(λ · v) = λ · f(v).

One simply says linear instead of K-linear, if it is clear which field is meant.

Some linear maps for vector spaces have special names. They are defined in the sequel
since they are used quite often.
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DEFINITION 2.14
A linear map for vector spaces is also called a vector space homomorphism or homo-
morphism for short. Let f : V → W be a homomorphism. Then, a homomorphism is
further called a

• monomorphism, if f is injective,

• epimorphism, if f is surjective,

• isomorphism, if f is bijective,

• endomorphism, if V = W ,

• automorphism, if V = W and f is bijective.

Next, a definition for the term real closed field is presented which needs some preparatory
definitions first.

DEFINITION 2.15
An ordered field K is a commutative field K togeher with a subset P , the set of positive
elements, of K such that the following conditions hold:

(1) 0 6∈ P .

(2) If a ∈ K, then either a ∈ P , a = 0, or −a ∈ P .

(3) P is closed under addition and multiplication: if a, b ∈ P , then so are a + b and a · b.

If a binary transitive relation >, defined as a > b iff (a − b) ∈ P , is introduced in the
ordered field K, Definition 2.15 can be described as: (1) a = 0 or a > 0 or −a > 0 and
(2) a > 0 and b > 0 =⇒ a + b > 0 and a · b > 0. (It should be obvious that the binary
transitive relation < is defined in a similar way: a < b iff (b − a) ∈ P . Thus, −a > 0 is
equal to a < 0.)

DEFINITION 2.16
Let K be an ordered field. The sign function evaluates the sign of an element a ∈ K
and is defined to be

sign(a) =


+1 if a > 0,

−1 if a < 0,

0 if a = 0.

(2.1)

DEFINITION 2.17
A field K has characteristic p iff there exists a smallest positive integer p such that
p · 1 = 0. If no such p exists, the characteristic of the field is defined to be zero.

The characteristic of a field is either a prime number or 0. A field of characteristic zero is
always infinite, whereas a field with positive characteristic can be either finite or infinite.

EXAMPLE 2.5
1. The fields Q, R, and C are fields of characteristic zero.

2. The finite field Zp is a field of characteristic p. (For Zp see Example (2.3), item 3.)
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DEFINITION 2.18
A field K is called formally real iff all equations in K of the form

∑n
i=1 a2

i = 0 are only
true if every ai = 0 for ai ∈ K.

This definition implies that K is formally real iff −1 is not a sum of squares of elements
of K. Observe that every ordered field is formally real, and that a formally real field is
necessarily of characteristic zero.

DEFINITION 2.19 (Real Closed Field)
An ordered field K is called real closed if the following properties are satisfied:

(1) Every positive element of K has a square root in K.

(2) Every polynomial f(x) ∈ K[x] of odd degree has a root in K.

The next section introduces polynomials and polynomial rings, such as K[x], in general.
There also exists an alternative definition for a real closed field: A field K is real closed
if K is formally real and no proper algebraic extension of K is formally real. R is the
classical example of a real closed field.

2.2 Polynomials and Orderings

At the beginning of this section, polynomials and polynomial rings are defined. Then,
properties of polynomials with respect to their roots are evaluated, and the Euclidean
algorithm for the greatest common divisor is presented. This section concludes with
orderings on polynomials.

Let x be in the following an abbreviation for x1, · · · , xn. (It is not the vector x that is
meant here.)

DEFINITION 2.20
A power product or term over the variables x1, · · · , xn is a product of the form

T =
n∏

i=1

xei
i = xe1

1 · · ·xen
n , (2.2)

where each ei ≥ 0 is an integer. The total degree or simply degree deg(T ) of T is
given by

∑n
i=1 ei, and the maximum degree mdeg(T ) is defined as maxn

i=1ei. PP (x) =
PP (x1, · · · , xn) denotes the set of power products over x.

DEFINITION 2.21
Let R be a ring. A monomial is an expression of the form

c · T = c ·
n∏

i=1

xei
i = c · (xe1

1 · · ·xen
n ), (2.3)

where T is a power product and c ∈ R \ {0} is called a coefficent. The total degree or
degree of a monomial is simply the total degree of its power product. Also, the maximum
degree of a monomial is determined by the maximum degree of its power product. The
multidegree of a monomial, is given by the vector of exponents e := (e1, · · · , en).
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DEFINITION 2.22
A polynomial f in the variables (x1, · · · , xn) is uniquely defined as a finite linear combi-
nation of monomials with distinct power products:

f(x) =
k∑

i=1

ci · Ti =
k∑

i=1

ci

n∏
j=1

x
eij

j =
k∑

i=1

ci · xei1
1 · · ·xein

n . (2.4)

The ring elements ci are called the coefficients of f. A univariate polynomial is a
polynomial in one variable, whereas a polynomial in more than one variable is called a
multivariate polynomial. The length of a polynomial is the number of its monomials
that does not have a coefficient of 0. The total degree or simply degree of a polynomial
f , denoted by deg(f), is defined as the maximum of the total degrees of the monomials in
f . The maximum degree of a polynomial f , mdeg(f), is the largest maximum degree
of a monomial in f . By convention, deg(0) = −∞. Let p be any power product over the
variables x1, · · · , xn where the maximum degree is equal to 1. Then, the “p-degree” of a
polynomial f , denoted by degp(f), can be determined by simply viewing f as a polynomial
in p while the rest of the variables are considered as part of the coefficents.

A polynomial f is said to be an integer, rational, real, or complex polynomial, depending
on whether R is equal to Z, Q, R, or C. Throughout this whole work, it is assumed that
any polynomial expression containing a finite linear combination of monomials is auto-
matically simplified such that it only contains monomials with distinct power products.
Non-simplified polynomial expressions are therefore also referred to as polynomials.

The definition of a polynomial ring with respect to two operations additon and multipli-
caton is given in the following. Basically, the addition for two multivariate polynomials
is performed by summing up the monomials of both polynomials and simplifying the re-
ceived polynomial expression such that it only contains monomials with distinct power
products. The multiplication is done by applying the distributive law that holds in any
ring, followed by a simplification to a polynomial in the strong sense of Definition 2.22.

DEFINITION 2.23
The polynomial ring over the variables (x1, · · · , xn), n ≥ 1, with coefficients from a
ring R is defined as the ring of the set of polynomials over R with the two operations
addition and multiplication. Consider the two polynomials f =

∑k
i=1 ci · xei1

1 · · ·xein
n and

g =
∑l

j=1 cj · x
ej1

1 · · ·xejn
n . Then, addition and multiplication are defined as follows:

f + g =
s∑

h=1

ch · xeh1
1 · · ·xehn

n , (2.5)

where max(k, l) ≤ s ≤ (k + l) and ch = ai + bj if there exists i, j such that xei1
1 · · ·xein

n =
x

ej1

1 · · ·xejn
n , if not ch = ai or ch = bj , respectively.

f · g =
r∑

h=1

dh · xeh1
1 · · ·xehn

n , (2.6)

where r = k · l, dh = ai ·bj and eht = eit +ejt for all 1 ≤ t ≤ n, followed by a simplification,
i.e. addition of monomials with equal power products. The polynomial ring is denoted by
R[x1, · · · , xn] = R[x]. If R is a commutative ring with identity, then the polynomial ring
R[x] is also a commutative ring with identity.
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In the following, let R0, R1 be two rings such that Z ⊆ R0 ⊆ R1 ⊆ C. R0 denotes the
ring for the coefficients of a polynomial, whereas R1 indicates the ring for the considered
solutions of a polynomial. The definitions of polynomial functions, polynomial equation
and inequations are given first.

DEFINITION 2.24
Let f =

∑k
i=1 ci · xei1

1 · · ·xein
n be a polynomial in R0[x1, · · · , xn]. Then, the polynomial

function corresponding to the polynomial f is defined by the following mapping:

f : R1 → R1

x 7→ f(x) :=
k∑

i=1

ci · xei1
1 · · ·xein

n

DEFINITION 2.25
Let f ∈ R0[x1, · · · , xn] be a polynomial. Then, a polynomial equation is an expression
of the form f = 0 while a polynomial inequation is any expression of the following
forms: f > 0, f ≥ 0, f < 0, or f ≤ 0, and where =, >,≥, <,≤ are predicates over R0.

DEFINITION 2.26
Consider the nonconstant polynomial f ∈ R0[x] with coefficients in R0. Then, a solution,
root, or zero in R1 of the polynomial f is defined as the solution of its corresponding
polynomial equation

f = 0, (2.7)

which is any point α = (α1, · · · , αn) ∈ Rn
1 such that the polynomial function equals to

zero: f(α) = 0. The zero set for the set of R1 solutions is denoted by ZEROR1(f). The
subscript R1 in ZEROR1(f) is omitted in case R1 = R and thus ZERO(f) represents the
set of real zeros. If R1 is a field, the zero set is called an algebraic set.

To name this set “algebraic” has historical reasons as already illustrated in the introduc-
tion.

DEFINITION 2.27
Consider a Boolean combination of polynomial equations and inequations of the form
(f = 0), (f > 0), or (f ≥ 0). The set of real solutions to such a Boolean combination is
called a semialgebraic set or a Tarski set.

EXAMPLE 2.6
An example for a Boolean combination of three polynomial equations and inequations is
given by

[(f = 0) ∧ (g > 0)] ∨ ¬(h ≥ 0).

DEFINITION 2.28
A system of polynomial equations in n ≥ 1 variables is defined as follows:

f1 = 0
f2 = 0

...

fp = 0

 with fi ∈ R0[x1, · · · , xn] and p ≥ 1. (2.8)
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Equation (2.8) is the system of polynomial equations that corresponds to the polynomials
f1, · · · , fp. A point α = (α1, · · · , αn) ∈ Rn

1 is called a solution, root or zero of the system
of equations 2.8 iff the corresponding polynomial functions are equal to zero, fi(α) = 0,
∀i = 1, · · · , p. The notation of the zero set for one polynomial, ZEROR1(f), is extended to
the notation for a set of polynomials P ⊆ R0[x] such that ZEROR1(P ) ⊆ Rn

1 denotes the
zero set of P which is defined as the set of common solutions in R1 of the corresponding
system of polynomial equations. The subscript R1 in ZEROR1(f) is omitted in case
R1 = R and thus ZERO(P ) represents the set of real zeros.

Definition 2.28 can be extended to a system of polynomial equations and inequations in
n ≥ 1 variables. The polynomial equations and inequations are now specified by fi ρ 0,
where fi ∈ R0[x1, · · · , xn] and ρ ∈ {<,≤,=,≥, >}. A point α = (α1, · · · , αn) ∈ Rn

1

is called a solution of the system of polynomial equations and inequations iff fi(α) ρ 0
∀i = 1, · · · , p. SOLR1(S) ⊆ Rn

1 indicates the set of common solutions of S, where S can be
any set of polynomial equations and inequations. Here, S can also be a set of polynomial
equations only. In case R1 is equal to R the set of real solutions is a semialgebraic set
as defined in Definition 2.27 since polynomial inequations containing the predicates ≤
and < can be transformed to polynomial equations and inequations containing only the
predicates >,≥ and =.

In the following a polynomial system denotes a polynomial system of equations and
inequations in general, which means that it can also be only a polynomial system of
equations. Also, a polynomial system is called an integer, rational, real, or complex
polynomial system, depending on whether the ring of the coefficients is equal to Z, Q, R,
or C.

DEFINITION 2.29
Let S be a set of polynomial equations and inequations defining a polynomial system.
The polynomial system is said to be satisfiable or solvable in R1 iff it has at least
one common zero in R1, i.e. |SOLR1(S)| 6= {}. Otherwise it is called unsatisfiable or
unsolvable. The polynomial system is said to be finitely solvable iff it is solvable and
S has finitely many zeros.

The definition of the term “algebraically closed” is obviously based on the origin of the
name “algebra” as described in the introduction. The Fundamental Theorem of Algebra
then states that the complex numbers are a field which is algebraically closed.

DEFINITION 2.30
A field K is algebraically closed iff every non-constant polynomial in K[x] has a root
in K.

THEOREM 2.1 The Fundamental Theorem of Algebra states that every noncon-
stant polynomial f ∈ C[x] has a root α ∈ C. This means that C is algebraically closed.

Some interesting properties of univariate polynomials concerning their roots are presented
now. Similar properties of multivariate polynomials are considered in Chapter 3, where
Gröbner Bases are discussed to solve the decision problem.
Consider the complex polynomial f =

∑n
i=0 ai · xi, an 6= 0, n ≥ 1. Let f have exactly n

distinct complex roots, α1, · · · , αn ∈ C. The factorized form of the polynomial f can be
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written as follows:

f = an

n∏
i=0

(x− αi)mi ,

where mi ≥ 1, mi ∈ N.

DEFINITION 2.31
Let f = an

∏n
i=0(x − αi)mi be a complex polynomial in factorized form. Then, the root

αi is a root of multiplicity mi of f . Alternatively, αi is called an mi-fold root of f .
A root is simple or multiple according to whether mi = 1 or mi ≥ 2. f is said to be
“square” free iff it has no multiple roots.

This implies immediately that if α is a root of f of multiplicity m ≥ 1 then α is a root of
its first derivative f ′ of multiplicity m− 1.

COROLLARY 2.2 Let K be an arbitrary field and let f ∈ K[x] be a nonzero polynomial.
Then, the polynomial f̂

f̂ :=
f

GCD(f, f ′)
(2.9)

is square free and contains exactly the distinct roots of f .

The Corollary 2.2 implies how to find a univariate square free polynomial f̂ for every
polynomial f ∈ K[x]. For this task, the greatest common divisior, GCD, is applied.
Before presenting the definition of the greatest common divisor, the term “divide” needs
to be explained. Every f ∈ K[x] can be expressed with respect to a nonzero polynomial
g ∈ K[x] as follows:

f = qg + r, (2.10)

where q, r ∈ K[x] are unique, and either r = 0 or deg(r) < deg(g). r and q are called
remainder and quotient, respectively. In the case of r = 0 it is said that polynomial g
divides polynomial f .

DEFINITION 2.32
The greatest common divisor of the polynomials f1, · · · , fp ∈ K[x] is a polynomial h
with the following properties:

(1) h divides f1, · · · , fp.

(2) If g is another polynomial which divides f1, · · · , fp, then g divides h.

The greatest common divisor is denoted by gcd(f1, · · · , fp) and is unique up to multi-
plication by a nonzero constant in K. Furthermore, if p ≥ 3, then gcd(f1, · · · , fp) =
gcd(f1, gcd(f2, · · · , fp)).

The greatest common divisor is computed with the Euclidean algorithm, which is presented
in Algorithm 2.1. Algorithm 2.1 computes the greatest common divisor of two univariate
polynomials based on the fact that GCD(f, g) = GCD(g, r), where f is expressed as
in Equation (2.10). If r 6= 0, the polynomial division is applied continuously until the
remainder equals zero.
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Algorithm 2.1 GCD(f1, f2)
Input: Two polynomials f1 and f2 in K[x].
Output: The greatest common divisor, gcd(f1, f2), of f1 and f2.
h := f1; s := f2;
while (s 6= 0) do

(x, r) := DIV ISON(h, s); {x is not used}
h := s;
s := r;

end while
return h ;

Algorithm 2.2 DIVISION(f1, f2)
Input: Two polynomials f1 and f2 in K[x].
Output: The quotient q, and the remainder r of the division.
r := f1; q := 0;
while (r 6= 0) and (hmono(f2) divides hmono(r)) do

q := q + hmono(r)/hmono(f2);
r := r − (hmono(r)/hmono(f2)) · f2;

end while
return (q, r) ;

Algorithm 2.1 invokes the division algorithm DIVISON, Algorithm 2.2, which calculates
the quotient q and the remainder r for two input polynomials f and g as defined in
Equation (2.10).

The head monomial hmono(f) for a univariate polynomial f denotes that monomial in
f which has the largest degree. According to Definition (2.21), a monomial consists of a
power product and a coefficient. The monomial hmono(g) divides the monomial hmono(f)
if and only if the exponent of the power product of the monomial hmono(g) is less or equal
to the exponent of the power product of the monomial hmono(f) and if and only if the
coefficient of the monomial hmono(g) divides the coefficient of the monomial hmono(f)
in the field K, the field of coefficients of the polynomial ring K[x].

The GCD algorithm therminates because the degree of the remainder gets smaller in each
step of the loop. This is true since Equation (2.10) with either r = 0 or deg(r) < deg(g)
is always valid throughout the algorithm. In case the GCD algorithm is called with two
polynomials f and g, GCD(g,f), where deg(g) < deg(f) holds, the DIVISON algorithm
returns (0, f) and the arguments are switched for the next call of the DIVISON algorithm.
The GCD algorithm stops when the remainder equal zero and the greatest common divisor
of the polynomials f and g is given by the divisor of the last computed polynomial division.

The following theorem states an upper and lower bound of an interval within which all
real zeros of a polynomial can be found. These bounds will be used later on for real
root isolation in Chapter (4). The subsequent corollary denotes the minimum separation
between any two roots of a polynomial.
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THEOREM 2.3 Let f ∈ Z[x] be a univariate integer polynomial:

f = anxn + an−1x
n−1 + · · ·+ a0,

for which different norms are defined as follows:

‖f‖1 = |an|+ |an−1|+ · · ·+ |a0| (2.11)

‖f‖2 = (a2
n + a2

n−1 + · · ·+ a2
0)

1
2 (2.12)

‖f‖∞ = max (|an|, |an−1|, · · · , |a0|). (2.13)

Then all real roots of f are in the intervals (−‖f‖1, ‖f‖1), [−‖f‖2, ‖f‖2] and
(−1− ‖f‖∞, 1 + ‖f‖∞). Also for every nonzero real root α of f the following holds:

|α| > 1
1 + ‖f‖∞

. (2.14)

DEFINITION 2.33
If f is an complex polynomial of degree n, not necessarily square free, its minimal root
seperation sep(f) is defined by:

sep(f) := min1≤i<j≤k|αi − αj |, (2.15)

where the distinct roots of f are α1, · · · , αk ∈ C. If f has less than two distinct roots,
then sep(f) = ∞.

COROLLARY 2.4 Rump and Schwartz obtained a bound for the minimal root sepera-
tion as given in [Yap00] by:

sep(f) > [2 · n(n/2)+2(‖f‖∞ + 1)]−1. (2.16)

The following Corollary explaines why every polynomial f ∈ R[x] with an odd degree has
at least one real root.

COROLLARY 2.5 The nonreal roots of f ∈ R[x] appear in conjugate pairs. Let ᾱ =
a−−i · b denote the conjugate complex number of α = a + i · b, where i2 = −1. Then, the
following two conditions hold since (x− α)(x− ᾱ) is a real polynomial:

(1) f can be written as a product of real factors that are linear or quadratic.

(2) If deg(f) = n is odd, then f has at least one real root.

For multivariate polynomials, a precedence of the involved variables and an admissible
ordering has to specified. Admissible orderings on power products are discussed first.
Then, they are then extended to a quasi-ordering for monomials and polynomials. In the
following “A” in ≤

A
is a placeholder for any admissible ordering.

DEFINITION 2.34
Let PP = PP (x1, · · · , xn) be the set of power products of x as defined in Definition 2.20.
A partial ordering ≤

A
on PP is compatible iff for all p, q, r ∈ PP , p ≤

A
q implies rp ≤

A
rq.
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DEFINITION 2.35
A total ordering ≤

A
on PP is said to be semiadmissible iff it is compatible. It is admis-

sible iff it is semiadmissible and for all p ∈ PP it follows that 1 ≤
A

p.

There are three important admissible orderings on the set of power products: the (pure)
lexicographic ordering ≤

lex
, the (total) degree ordering ≤

tot
, and the reverse lexi-

cographic ordering ≤
rev

. These orderings can be uniquely defined once a precedence of

the variables x1, · · · , xn is chosen. Typically, the index number defines their precedence:
x1 < x2 < · · · < xn, where < is an total irreflexive ordering. It should be obvious that the
admissible orderings can be ordered in reverse direction, which is then denoted by ≥

lex
, ≥

tot
,

and ≥
rev

, respectively.

DEFINITION 2.36
Let p = xd1

1 xd2
2 · · ·xdn

n and q = xe1
1 xe2

2 · · ·xen
n be two power products in PP (x1, · · · , xn),

where the exponents can be expressed as vectors d = (d1, · · · , dn) and e = (e1, · · · , en).
Then,

(a) p ≥
lex

q if p = q or else, for the smallest i (1 < i < n) such that di 6= ei, di > ei, i.e

the first nonzero component in the vector d − e = (d1 − e1, d2 − e2, · · · , dn − en) is
positive,

(b) p ≥
tot

q if deg(p) > deg(q) or else, p ≥
lex

q,

(c) p ≥
rev

q if deg(p) > deg(q) or else, if deg(p) = deg(q), for the largest i (1 < i < n) such

that di 6= ei, di < ei, i.e the last nonzero component in the vector d− e is negative.

For all admissible orderings it holds that p >
A

q iff p ≥
A

q and p 6= q.

COROLLARY 2.6 Let PP (x, y, z) be the set of power products on the variables x, y, z
with the total irreflexive ordering z < y < x. Then, the admissible orderings for <

lex
, <

tot

and <
rev

are as follows:

(a) 1 <
lex

z <
lex

z2 · · · <
lex

y <
lex

yz · · · <
lex

y2 · · · <
lex

x <
lex

xz · · · <
lex

xy · · · <
lex

x2 · · ·,

(b) 1 <
tot

z <
tot

y <
tot

x <
tot

z2 <
tot

yz <
tot

y2 <
tot

xz <
tot

xy <
tot

x2 <
tot
· · ·,

(c) 1 <
rev

z <
rev

y <
rev

x <
rev

z2 <
rev

yz <
rev

xz <
rev

y2 <
rev

xy <
rev

x2 <
rev

· · ·.

EXAMPLE 2.7
Let f = 4xy2z + 4z2 − 5x3 + 7x2z2 be a polynomial in K[x, y, z] and let x > y > z.
Then, the monomials in f would have to be reordered with respect to the three mentioned
addmissible orderings:

(a) >
lex

: f = −5x3 + 7x2z2 + 4xy2z + 4z2,

(b) >
tot

: f = 7x2z2 + 4xy2z − 5x3 + 4z2,
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(c) >
rev

: f = 4xy2z + 7x2z2 − 5x3 + 4z2,

In case of the reverse lexicographic ordering, 4xy2z >
rev

7x2z2 holds according to Defini-

tion 2.36, since both monomials have the same degree, which is 4, and the first exponent
they differ is the one for the variable x, which is 1 for 4xy2z and 2 for 7x2z2 and which is
thus smaller for the first monomial than for the second one.

The admissible ordering ≤
A

for power products is now extended to a total quasi-ordering

for monomials and polynomials.

DEFINITION 2.37
Let c · p and d · q be two monomials with c, d ∈ K and p, q ∈ PP , where K is an arbitrary
field and PP is the set of power products. Then, c · p ≤

A
d · q if p ≤

A
q.

DEFINITION 2.38
Let f = c1p1 + c2p2 + · · · + ckpk and g = d1q1 + d2q2 + · · · + dlql be two polynomials,
written each as a sum of monomials with distinct pi’s and qi’s, respectively. The term
sequence of f is given by f̄ = (p1, · · · , pk), where p1 >

A
p2 >

A
· · · >

A
pk. Then, f ≤

A
g iff in

their term sequences (p1, · · · , pk) and (q1, · · · , ql) either

(1) k ≤ l and pi = qi ∀ i = 1, · · · , k or

(2) for some i ≤ min{k, l}, pi < qi and pj = qj for j = 1, · · · , i− 1.

To compare two polynomials, one scans through the their term sequences componentwise
until one finds the first component pair that differs. The polynomials to which the smaller
component belongs is defined to be the smaller polynomial. If one of the term sequences
runs out of components before a differing component pair could be found, it is immediately
defined to be the smaller polynomial.

With respect to a given admissible ordering ≤
A

, the head term, head monomial and the

head coefficient of a multivariate polynomial can be determined.

DEFINITION 2.39
Let f =

∑k
i=1 ci

∏n
j=1 x

eij

j =
∑k

i=1 ci ·xei1
1 · · ·xein

n be a polynomial in R[x1, · · · , xn]. Then,
the head monomial of f , denoted by hmono(f), is represented by the monomial that
contains the ≤

A
-largest power product or term in f . The head coefficient of f , hcoef(f),

and the head term of f , denoted by hterm(f), refers to the coefficient and the term as-
sociated to the head monomial of f , respectively. Thus, hmono(f) = hcoef(f) ·hterm(f).
Let F ⊆ R[x1, · · · , xn] be a set of polynomials, hterm(F ) is the extension of hterm(f) to
the set hterm(F ) = {hterm(f) | f ∈ F}. The multidegree of f , multideg(f), is given
by the vector of exponents ei := (ei1, · · · , ein) of the ≤

A
-largest power product in f , i.e. of

hterm(f).

EXAMPLE 2.8
Assume x > y and consider the polynomial f = −2x2y +x+1. Then hmono(f) = −2x2y,
hterm(f) = x2y and hcoef(f) = −2. In this example the evaluation of the head monomial,
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head term and head coefficient does not depend on the selection of the admissible ordering
as presented in Example 2.6. If the polynomial g = 2x + y3 is inspected, the evaluation
actually depends on the selection of the admissible ordering:

• ≤
lex

: hmono(g) = 2x, hterm(g) = x, hcoef(g) = 2, multideg(g) = (1, 0),

• ≤
tot

: hmono(g) = −y3, hterm(g) = y3, hcoef(g) = −1 multideg(g) = (0, 3).

The next definition introduces the reductum of a polynomial. The reductum is the poly-
nomial received from the original one by cutting off the head monomial. Applying the
reductum recursively to a polynomial will result in a set of polynomials, called the set of
reducta.

DEFINITION 2.40
The reductum, red(f), with respect to a specific ordering is defined by: red(f) =
f − hmono(f). The ith reductum of f, written redi(f) is received via induction on
i: red0(f) = f and redi+1(f) = red(redi(f)). The set of reducta is defined as follows:

RED(f) = {
deg(f)⋃
i=1

redi(f) | redi(f) 6= 0} (2.17)

EXAMPLE 2.9
Consider the following polynomial in the variable z:

f(x, y, z) = (y2 + x2 − 1) · z3 + (x− 1) · z2 + ((x− 1)2 + y2) · z0.

Then, the set of reducta of the polynomial is

RED(f) = {(y2+x2−1)·z3+(x−1)·z2+(x−1)2+y2, (x−1)·z2+(x−1)2+y2, (x−1)2+y2}.

2.3 Pseudo-Divison, PRS, Subresultants, and Sturm Sequences

This section introduces important mathematical tools such as division for the multivariate
case, polynomial remainder sequences, subresultants, principal subresultant coefficients
and Sturm sequences.

The most important tool to analyze univariate polynomials is the greatest common divisor
(GCD), which has been defined in Definition 2.32. It is possible to determine the number
of common zeros of two given polynomials as well as the number of distinct zeros of one
polynomial using the greatest common divisor. In general, the number of zeros (including
multiplicity) of a single univariate polynomial is equal to its degree. The number of
common zeros of two univariate polynomials can be evaluated from the degree of their
greatest common divisor.

LEMMA 2.7 The number of common zeros of the two polynomials f, g ∈ K[x] is

deg(GCD(f, g)).
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This lemma becomes obvious from the definition of the greatest common divisor and the
fact that the number of zeros (including multiplicity) of a univariate polynomial is equal to
its degree. This is also true for multivariate polynomials which are considered as polynomi-
als in one variable, for example xn, while all other occuring variables, x1, x2, . . . , xn−1, are
regarded as part of the coefficents. In this case the polynomial ring of these polynomials
is often denoted in the form K[x1, . . . , xn−1][xn] instead of K[x1, . . . , xn−1, xn].

In the following, let f ′ denote the first derivative of f .

LEMMA 2.8 The number of distinct zeros of a polynomial f ∈ K[x] is

deg(f)− deg(GCD(f, f ′)).

EXAMPLE 2.10
Given the polynomial f(x) = 6 · (x− 2)4 · (x+4)1 · (x− 3)2, its degree is 7. Written in this
factorized form, the number of distinct zeros can be evaluated to be 3. The derivative of
f(x) is f ′(x) = 6 · 4 · (x− 2)3 · 1 · 2 · (x− 3)1. Obviously, the greatest common divisor can
be computed to GCD(f, f ′) = 6 · (x − 2)3 · (x − 3)1, which has a degree of 4. Hence the
number of distinct zeros results in 3.

The subsequent polynomial divisions, obtained by applying the Euclidean algorithm to
two univariate polynomials as given by Algorithm 2.1, can be outlined as follows:

f1 = q1 · f2 + f3, deg(f3) < deg(f2)
f2 = q2 · f3 + f4, deg(f4) < deg(f3)

... (2.18)
fp−2 = qq−2 · fp−1 + fp, deg(fp) < deg(fp−1)
fp−1 = qq−1 · fp + 0.

The sequence (f1, f2, . . . , fp) is called a polynomial remainder sequence (PRS).

So far univariate polynomials have been considered. The case is slightly different for mul-
tivariate polynomials. Multivariate polynomials are considered here to be elements of the
polynomial ring K[x1, . . . , xn−1][xn]. This poses the difficulty that the number of zeros and
the locations of the zeros vary for different coefficient points α = (α1, . . . , αn−1) ∈ Kn−1.
Therefore, the greatest common divisor of two multivariate polynomials also depends on
α. The GCD-calculation for multivariate polynomials is performed with the Euclidean
Algorithm using pseudo division, which is explained in the following definition, and
which is implemented by Algorithm 2.3. The degree of a polynomial with respect to a
certain variable xi is denoted by deg(f1)xi . The head coefficient hcoef(f1)xi can be defined
respectively.

DEFINITION 2.41
Let f1, f2 ∈ K[x1, . . . , xn−1][xn] be two polynomials with deg(f1) = m, deg(f2) = h,
hcoef(f1) = am, and hcoef(f2) = bh such that:

f1 = am · xm
n + · · ·+ a1 · xn + a0 and

f2 = bh · xh
n + · · ·+ b1 · xn + b0
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with ai and bj ∈ K[x1, . . . , xn−1] for 0 ≤ i ≤ m and 0 ≤ j ≤ h. Assume furthermore
h ≤ m, f2 6= 0. Then, there exist two polynomials q and r in K[x1, . . . , xn−1, xn], s ≥ 0
such that:

bs
h · f1 = q · f2 + r (r = 0 or deg(r)xn < h). (2.19)

r is called the pseudo remainder, denoted by PREM( f1, f2).

Algorithm 2.3 PSEUDO-DIVISION(f1, f2)
Input: Two polynomials f1 and f2 in K[x1, · · · , xn−1][xn].
Output: The quotient q and the pseudo remainder r.
r := f1; q := 0; h := deg(f2)xn ;
bh := hcoef(f2)xn ;
while (r 6= 0) and (deg(r)xn ≥ h) do

c := hcoef(r)xn;
d := deg(r)xn;
r := bh · r − c · f2 · xd−h

n ;
q := bh · q + c · xd−h

n ;
end while
return (q, r) ;

Pseudo division can be easily described as ordinary one-variable polynomial division for
polynomials in xn with coefficients in K[x1, . . . , xn−1], followed by canceling denominators
in each division step by multiplying with the head coefficient of the divisor. The idea is
to eliminate the head coefficients of r in each iteration of the while loop. The variable s
in Equation 2.19 is not returned by the algorithm, but represents the counter of the while
loop.

Example 2.11 explains pseudo divison using two polynomials in the variable y with coef-
ficients in the variable x.

EXAMPLE 2.11 (Pseudo division)
Given the following polynomials

f1 = x2y3 − y

f2 = x3y − 2

the pseudo division of f1 by f2 is determined as follows:
Init: r = x2y3 − y, q = 0, h = 1, bh = x3

Loopstep s = 1: c = x2, d = 3,
r = x3 · (x2y3 − y)− x2 · (x3y − 2) · y3−1 = 2x2y2 − x3y,
q = x3 · 0 + x2 · y3−1 = x2y2

Loopstep s = 2: c = 2x2, d = 2,
r = x3 · (2x2y2− x3y)− 2x2 · (x3y− 2) · y2−1 = 2x5y2− x6y− 2x5y2 + 4x2y = (4x2− x6)y,
q = x3 · (x2y2) + 2x2 · y2−1 = x5y2 + 2x2y
Loopstep s = 3: c = (4x2 − x6), d = 1,
r = x3 · ((4x2− x6)y)− (4x2− x6) · (x3y− 2) · y1−1 = 4x5y− x9y− 4x5y + 8x2 + x9y− 2x6

= 8x2 − 2x6,
q = x3 · (x5y2 + 2x2y) + (4x2 − x6) · y1−1 = x8y2 + 2x5y + 4x2 − x6
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A polynomial remainder sequence (PRS) for univariate polynomials can now be extended
to a polynomial remainder sequence for multivariate polynomials. First, the similarity of
two polynomials is explained.

DEFINITION 2.42
Two polynomials in K[x1, . . . , xn−1][xn] are similar, denoted by f1(xn) ∼ f2(xn), iff there
exist a, b ∈ K[x1, . . . , xn−1] such that af1(xn) = bf2(xn).

DEFINITION 2.43 (PRS for multivariate polynomials)
Let f1, f2 ∈ K[x1, . . . , xn−1][xn] with deg(f1) ≥ deg(f2) in xn. The sequence f1, . . . , fp is
a polynomial remainder sequence (PRS) for f1 and f2 iff:

(i) ∀i = 3, . . . , p fi ∼ PREM(fi−2, fi−1)

(ii) the sequence terminates with PREM(fp−1, fp) = 0.

The polynomial remainder sequence (PRS) is unique up to similarity: GCD(f1, f2) ∼
. . . ∼ GCD(fp−1, fp) ∼ fp. Basically, one can distinguish between two sequences:

• Euclidean PRS (EPRS):

fi = PREM(fi−2, fi−1) 6= 0
PREM(fp−1, fp) = 0

(2.20)

• Primitive PRS (PPRS):

fi = PRIM(PREM(fi−2, fi−1)) 6= 0
PREM(fp−1, fp) = 0

(2.21)

where PRIM denotes the primitive part of the polynomial in which all the common factors
of the coefficients have been removed. Both, EPRS and PPRS, have a high computational
complexity due to an exponential coefficient growth for EPRS and due to GCD-calculations
for the coefficients in the case of PPRS, respectively. The so called Subresultant Polyno-
mial Remainder Sequence (SPRS) is a tradeoff between EPRS and PPRS. The SPRS is
not explained in detail here because it would exceed the scope of this work. Please refer
to [Yap00] or to [Mis93] for further information.

Now, the concept of subresultants and principle subresultant coefficients is explained.
They are an important mathematical tool to perform projections as it is required for the
cylindrical algebraic decomposition. Let U = K[x1, . . . , xn−1] throughout this part.

DEFINITION 2.44
Let a set of polynomials be defined by fi =

∑mi
j=0 aij · xj ∈ U [xn], i = 1, . . . , p. The

matrix associated with f1, . . . , fp is obtained by applying the matrix-operator on a

27



vector of polynomials:

MATRIX((f1, . . . , fp)) = [mst] = [as(l−t)] (2.22)

where l = 1 + max1≤i≤p(mi), 1 ≤ s ≤ p, and 1 ≤ t ≤ l. Remember that [mst] is a short
form of the following matrix:

[mst] =


m11 m12 · · · m1t

m21 m22 · · · m2t
...

...
...

ms1 ms2 · · · mst

 . (2.23)

A new pair of indices (s, t) is introduced for the matrix, since the index for the rows and
the index for the columns start at 1, whereas the index j in the definition of the polynomial
starts at 0.

This simply means that the coefficients of the polynomials are written from the left to the
right into a matrix starting with the highest degree of the polynomials first. The number
of matrix rows corresponds to the number of polynomials. Pseudo division can also be
achieved by matrix operations on a certain matrix containing the coefficients of the two
polynomials.

EXAMPLE 2.12
Given the following polynomials

f1 = x3 + 2x2 + 3x + 1

f2 = 2x2 + x + 2

the result of f1 pseudo divided by f2 according to Definition 2.41 is given by the polynomi-
als q = 2x+3 and r = 5x−2, since then Equation 2.19 holds: 22 ·f1 = (2x+3)·f2+(5x−2).
The same result can be achieved by the following matrix operations:

M = MATRIX((f1, x · f2, f2)) =

1 2 3 1
2 1 2 0
0 2 1 2

 7→ · · · 7→

2 1 2 0
0 2 1 2
0 0 5 −2

 = M′

Obviously, the pseudo remainder coefficients can be taken from the last row of M′, where
M′ is obtained from M by elementary row operations.

DEFINITION 2.45
Let M ∈ Up×l, l ≥ p. Define M(i) ∈ Up×p for i = p, . . . , l as the p× p square submatrix of

M consisting of the first (p− 1) columns of M combined with the i th column of M. The
determinant polynomial of M is then defined as follows:

DetPol(M) =
l∑

i=p

det(M(i)) · xl−i. (2.24)

Observe that DetPol(M) = 0 if l < p. Remember that det(M (i)) defines the determinant
of the matrix M (i).
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DEFINITION 2.46
The sylvestermatrix M of f1 and f2 with deg(f1) = m and deg(f2) = h is received by:

M = MATRIX((xh−1f1, x
h−2f1, . . . , f1, x

m−1f2, x
m−2f2, . . . , f2)). (2.25)

DEFINITION 2.47
Define Mi of the sylvestermatrix M of f1 and f2 with deg(f1) = m and deg(f2) = h as
the matrix obtained from M by deleting the last i rows belonging to f1, the last i rows
corresponding to f2 and the last i columns:

Mi = MATRIX((xh−i−1f1, x
h−i−2f1, . . . , f1, x

m−i−1f2, x
m−i−2f2, . . . , f2)). (2.26)

Then, the matrix Mi has m + h− 2i rows and m + h− i columns.

DEFINITION 2.48 (Subresultant)
The i th subresultant of f1 and f2 with deg(f1) = m and deg(f2) = h is then defined
using the Definitions 2.45 - 2.47:

SubResi(f1, f2) = DetPol(Mi) = det(M(m+h−2i)
i ) · xi + · · ·+ det(M(m+h−i)

i ), (2.27)

where 0 ≤ i < min(m,h).

DEFINITION 2.49 (Principal subresultant coefficient)
The nominal leading coefficient of SubResi is called the i th principal subresultant
coefficient of f1 and f2 with deg(f1) = m and deg(f2) = h:

psci(f1, f2) = det(M(m+h−2i)
i ). (2.28)

The psc set of f1 and f2 is defined as:

PSC(f1, f2) = {
min(m,h)⋃

i=0

psci(f1, f2) | psci 6= 0}. (2.29)

DEFINITION 2.50 (Subresultant chain)
The subresultant chain of f1 and f2 with deg(f1) = m and deg(f2) = h is (Sj)r+1

j=0,
where

Sr+1 = f1,

Sr = f2,

Sr−1 = SubResr−1(f1, f2),
...

S0 = SubRes0(f1, f2). (2.30)

A member SubResi(f1, f2) in the subresultant chain is regular iff its degree is equal to
the nominal degree i; otherwise it is irregular. The chain is regular iff SubResi(f1, f2)
is regular ∀i = 0, . . . , r − 1 .

One can easily imagine how to receive a principle subresultant coefficient chain from a
subresultant chain. The following lemma explains the correspondance of the psc chain of
two polynomials and the degree of their greatest common divisor.
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LEMMA 2.9 Let f1, f2 ∈ K[x1, . . . , xn−1][xn], where deg(f1)xn = m, deg(f2)xn = h.
Then for all 0 < i ≤ min(m,h) the following two statements are equivalent:

(i) f1 and f2 have a common factor of degree i,

(ii) pscj(f1, f2) = 0 for j = 0, . . . , i− 1 and psci(f1, f2) 6= 0.

In the following, Sturm Sequences are defined which can be used to calculate the number
of distinct real zeros of a polynomial within a certain interval of interest. Even though the
theory of Sturm Sequences supersedes Descartes’ rule of sign and its generalisations as a
tool for root counting, Descartes’ rule of sign is presented as well because it is sufficient for
various applications, and it is quite straightforward. Descartes’ rule of sign can be applied
to the simple case that all zeros of the polynomial are real, whereas Sturm Sequences can
be applied to polynomials with real and complex zeros. Before defining Descartes’ rule of
sign, sign variations need to be explained first.

DEFINITION 2.51
Let α̂ = (α0, · · · , αh) be a sequence of real numbers. A sign variation in α̂ at position i
(i = 1, · · · , h) occurs if for some j = 0, · · · , i− 1 the following two conditions are satisfied:

(i) αj · αi < 0 and

(ii) αj+1 = αj+2 = · · · = αi−1 = 0.

The number of sign variations in α̂ is denoted by V ar(α̂).

EXAMPLE 2.13
Take the following sequence as an example: α̂ = (0,−1, 0, 3, 8,−7, 9, 0, 0, 8). It has sign
variations at the positions 3, 5 and 6. The sequence has a sign variation at position 5
(α5 = −7) since condition (i) is satisfied with α4 = 8 and condition (ii) is trivially true
because there are not any α’s between position 4 and 5 which can be considered. Therefore,
the total number of sign variations in α̂ is V ar((0,−1, 0, 3, 8,−7, 9, 0, 0, 8)) = 3.

THEOREM 2.10 (Descartes’ Rule of Sign) Let f =
∑n

i=0 aixi be a univariate poly-
nomial. Then, the number ns of sign variations in the sequence (an, an−1, · · · , a1, a0) of
coefficients of f is greater than the number np of positive real roots of f by some nonneg-
ative even number. If all roots of f are real, then ns = np.

The history of counting real roots started with Descartes’ rule of sign which has been
established in 1637. At the beginning of the 19 th century, Budan and Fourier discovered
the first generalization of Descartes’ rule of sign. They (i) defined a sequence D of higher
nonzero derivatives of a polynomial f , (ii) denoted the number of real roots of f in the
interval (a, b) by n, and (iii) introduced s as the difference of the sign variations in the
sequences D(a) and D(b). Then, they could prove that n ≤ s, s − n is even, and n = s
iff all roots of f were real. Only some years later, Sturm replaced the sequence D by
his Sturm Sequence, which is obtained from f and its first derivative f ′ by successive
polynomial division with negative remainder, in order determine the exact number n of
real roots of f in the interval (a, b). Now, s denotes the difference of the sign variations
in the sequences S(a) and S(b). Using Sturm Sequences, the number n of real roots of
f in the interval (a, b) equals to s. In 1853, Sylvester extended Sturm’s root counting
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method with an additional polynomial side condition g. The sequence S was changed to
T which can be computed from f and f ′g by successive polynomial division with negative
remainder. Now, s represents the difference of the sign variations in the sequences T (a)
and T (b). If np and nn defines the number of positve and negative real roots of f in the
interval (a, b), respectively, then s = np − nn. A combinatorial extension to cover finitely
many side conditions has then been developed by Tarski which leads to the first quantifier
elimination method [Tar51].

In the following, Sturm’s theory is presented in greater detail. The Sturm Sequence is
based on successive polynomial division with negative remainder, i.e. it can be constructed
from the polynomial remainder sequence (PRS) with the only exception that the negative
remainder is taken instead of the positive one.

DEFINITION 2.52
A Sturm Sequence or canonical Sturm Sequence of two polynomials f and g in K[x],
denoted as STURM(f, g), is defined as the sequence of polynomials (h1, h2, · · · , hp), which
is constructed as follows:

h1 = f

h2 = g

h1 = q1 · h2 − h3, deg(h3) < deg(h2)
h2 = q2 · h3 − h4, deg(h4) < deg(h3)

...

hp−2 = qp−2 · hp−1 − hp, deg(hp) < deg(hp−1)
hp−1 = qp−1 · hp + 0, (2.31)

where hp = −GCD(h1, h2), (qi, ri) = PSEUDO-DIVISON(hi, hi+1), and hi+2 = −ri. The
standard Sturm Sequence is given by STURM(f, f ′), where f ′ represents the first
derivative of f . The Sturm-Sylvester Sequence is then represented by STURM(f, f ′g).

In order to illustrate the Sturm-Sylvester Theorem to count the number of real zeros
with one polynomial side condition g, an important lemma has to be mentioned first. In
general, a Sturm Sequence (h1, h2, · · · , hp) can be applied to an element a ∈ K by defining
(h1, h2, · · · , hp)(a) = (h1(a), h2(a), · · · , hp(a)).

LEMMA 2.11 Let f and g ∈ K[x] with K being a real closed field. Consider the Sturm-
Sylvester Sequence of the polynomials f and f ′g: STURM(f, f ′g) = (h1, h2, · · · , hp). Let
(a, b) to be the interval (a < b) containing exactly one zero c ∈ (a, b) of f . Then the
following holds:

V arDiff
[
STURM(f, f ′g)

]a

b
= sign(g(c)), where (2.32)

V arDiff [STURM(f, f ′g)]ab := V ar((h1, h2, · · · , hp)(a))− V ar((h1, h2, · · · , hp)(b)).

A detailed poof of Lemma 2.11 can be found in [Mis93]. Suppose the interval (a, b) contains
more than one zero, then V arDiff [STURM(f, f ′g)]ab equals just the sum of signs of g(c)
for all c ∈ (a, b) with f(c) = 0:

V arDiff
[
STURM(f, f ′g)

]a

b
=

∑
c∈(a,b),f(c)=0

sign(g(c)). (2.33)
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THEOREM 2.12 (Sturm-Sylvester Theorem) Let f and g be two polynomials with
coefficients in a real closed field K. Suppose STURM(f, f ′g) = (h1 = f, h2 = f ′g, · · · , hp).
Then for any interval [a,b] ⊆ K (a < b):

cf [g > 0]ab − cf [g < 0]ab = V arDiff
[
STURM(f, f ′g)

]a

b
(2.34)

where cf [E]ab denotes the number of distinct real roots of the polynomial f in the interval
[a, b] ⊆ K at which the polynomial equation or inequation E holds. Here, the value of a
may be −∞, and the value of b may be ∞.

Corollary 2.13 describes how to compute the number of distinct real zeros of a polynomial
f in the interval (a, b) when no side condition is applied. It can be easily deduced from
Theorem 2.12 by taking g as the constant polynomial 1.

COROLLARY 2.13 Let f(x) ∈ K[x] and let STURM(f, f ′) = (h1, h2, · · · , hp) be the
standard Sturm Sequence as defined in Definition 2.52. Then the number of distinct real
roots of f in the interval (a, b) can be computed with:

V arDiff
[
STURM(f, f ′g)

]a

b
(2.35)

Corollary 2.14 provides a method to obtain the number of distinct real roots of a polyno-
mial f in the interval (a, b), where g is greater than zero, equal to zero, and less than zero.
Thus, the Sturm theory presents a method to solve a polynomial system for two univari-
ate polynomial equations and inequations with the constraint that at least one polynomial
equation is available. (This method can be extended to count the number of zeros of f
with finitely many side conditions which is not discussed here.)

COROLLARY 2.14 Let f and g ∈ K[x] with K being a real closed field. For any
interval (a, b) ⊆ K (a < b), one has:

cf [g < 0]ab + cf [g = 0]ab + cf [g > 0]ab = V arDiff
[
STURM(f, f ′)

]a

b
(2.36)

−cf [g < 0]ab + cf [g > 0]ab = V arDiff
[
STURM(f, f ′g)

]a

b
(2.37)

cf [g < 0]ab + cf [g > 0]ab = V arDiff
[
STURM(f, f ′g2)

]a

b
. (2.38)

or expressed with matrix notation: 1 1 1
−1 0 1
1 0 1

 ·
cf [g < 0]ab

cf [g = 0]ab
cf [g > 0]ab

 =

 V arDiff [STURM(f, f ′)]ab
V arDiff [STURM(f, f ′g)]ab

V arDiff
[
STURM(f, f ′g2)

]a

b

 . (2.39)

All the above theorems, lemmas and corollaries of the Sturm theory assume that the
considered real roots lie within the open interval (a, b). The question is what happens, if
the polynomial vanishes on one or both interval bounds. (The REAL-ROOT-ISOLATION
Algorithm of Section 4.2 can be implemented in a simpler way if one knows whether the
interval in which the real roots are counted is open, closed or half-open.) The next
example investigates this question by counting the number of distinct real roots using
Corollary 2.13.
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Figure 2.1: 2D-Graph of the polynomial function f(x).

EXAMPLE 2.14
Given the following real polynomial:

f = (x− 2)(x + 2)(x− 1) = x3 − x2 − 4x + 4

and the graphical illustration of the corresponding polynomial function f(x) in Figure 2.1.
Then the standard Sturm Sequence of f and f ′ is as follows:

h1 = f = x3 − x2 − 4x + 4

h2 = f ′ = 3x2 − 2x− 4

h3 =
26
9

x− 32
9

h4 =
324
169

.

The number of distinct roots for an interval (a, b) can then be calculated according to
Corollary 2.13. Table 2.1 presents the results for several chosen intervals. One can observe
that the number of distinct roots is counted within the interval (a, b]. If a or b happens
to be a root of the polynomial f , this means that a would not be counted while b would
be counted. A mathematical proof in literature could not be found and therefore this is
only an empirical result which has to be pooved in order to become applicable.
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Interval (a, b) V arDiff [STURM(f, f ′)]ab ] of roots roots
(−3, 3) V ar−3(−,+,−,+)− V ar3(+,+,+,+) 3 x = −2, x = 1, x = 2
(−2, 3) V ar−2(0,+,−,+)− V ar3(+,+,+,+) 2 x = 1, x = 2
(−2, 1) V ar−2(0,+,−,+)− V ar1(0,−,−,+) 1 x = 1
(0, 1) V ar0(+,−,−,+)− V ar1(0,−,−,+) 1 x = 1
(1, 2) V ar1(0,−,−,+)− V ar2(0,+,+,+) 1 x = 2
(1, 3) V ar1(0,−,−,+)− V ar3(+,+,+,+) 1 x = 2
(2, 3) V ar2(0,+,+,+)− V ar3(+,+,+,+) 0

Table 2.1: Number of distinct roots in the interval (a, b).

2.4 Ideal Theory

This section introduces the concept of Ideals.

DEFINITION 2.53
A subset J ⊆ R of a ring R is an ideal if it satisfies the following properties:

1) a, b ∈ J ⇒ a− b ∈ J (2.40)
2) c ∈ R, a ∈ J ⇒ ca ∈ J (2.41)

The first condition states that J is an additive subgroup of the additive group of R and
thus the zero element 0 belongs to J . The second condition implies that J is closed under
multiplication with ring elements.

DEFINITION 2.54
An ideal J is said to be radical iff for all integers s ≥ 1, fs ∈ J implies f ∈ J . The
ideals {0} and R are called improper ideals of R while all other ideals are proper. A
subset F ⊆ J that generates J is called a basis or a system of generators of the ideal
J. The ideal consisting of all polynomials that vanish on the same zero set Z is denoted
by Ideal(ZERO(Z)).

The construction of an ideal is illustrated by the following theorem.

THEOREM 2.15 Let a1, · · · , am ∈ R and R ⊆ R′. The ideal generated in R′ by the
basis a1, · · · , am is denoted by IdealR′((a1, · · · , am)) and is constructed as follows:

IdealR′(a1, · · · , am) = {
m∑

i=1

ai · bi | bi ∈ R′}. (2.42)

In obvious situations, the subscript R′ can be omitted.

DEFINITION 2.55
An ideal is called a principle ideal if the ideal is generated by a single element. A
principle ideal ring or principle ideal domain, for short PID, is one in which every
ideal is principle.
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The principle ideal generated by the single basis element 0 is Ideal(0) = {0}, and the
one constructed by 1 is Ideal(1) = R. Those two principle ideals are the improper ideals
of the ring R. For example, R[x], the univariate polynomial ring, is a principle ideal
domain because the ideal generated by a set of polynomials F can also be generated by a
single generator which is the greatest common divisor (GCD) of all polynomials in F (see
Algorithm 2.1). Furthermore, the single generator of every ideal in R[x] is unique up to
multiplication by a nonzero constant in R.

DEFINITION 2.56
Let F ⊆ R[x1, · · · , xn] be a set of polynomials. Then, the head ideal Head(F ) of the set
F is defined to be the ideal generated by hterm(F ): Head(F ) = Ideal[hterm(F )].

DEFINITION 2.57
Let F ⊆ R[x1, · · · , xn] be a set of polynomials and let ZERO(F ) be the zero set of
these polynomials. Then, Ideal(ZERO(F )) defines the ideal that contains all polynomials
whose corresponding polynomial equations vanish on the same set of zeros. The ideal is
said to be generated by the zero set ZERO(F ).

DEFINITION 2.58
A ring R is called Noetherian if any ideal of R has a finite system of generators.

The Hilbert Basis Theorem extends this definition. It says that, if R is Noetherian, the
polynomial ring R[x1, · · · , xn] is also Noetherian.

The next definition gives the five basic operations defined on ideals.

DEFINITION 2.59
Let I, J ⊆ R be two ideals. Then, the basic ideal operations are:

(1) Sum: I + J is the smallest ideal containing both I and J .
I + J = {a + b | a ∈ I and b ∈ J}.

(2) Product: IJ is the ideal generated by {ab | a ∈ I and b ∈ J}.

(3) Intersection: I ∩ J is the set-theoretic intersection of I and J .
I ∩ J = {a | a ∈ I and a ∈ J}.

(4) Quotient: I : J is defined as the set {a ∈ R | aJ ⊆ I}.

(5) Radical(J):
√

J is defined to be the set {a ∈ R | n ∈ N,∃n ≥ 1an ∈ J}.

DEFINITION 2.60
A quotient ring, also called a residue-class ring, is a ring that is the quotient of a
ring R and one of its ideals I, denoted by R/I. Basically, a quotient ring defines a set
of equivalence classes or residue classes. Let [x] and [y] be two equivalence classes of the
quotient ring R/I. Then, it holds that [x] = [y] iff x− y ∈ I.
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Chapter 3

Solving the Decision Problem
using Gröbner Bases

In this chapter, Buchberger’s algorithm for constructing Gröbner bases is analyzed to
solve the decision problem for a system of non-linear multivariate polynomial equations
and inequations with respect to the application background of automated reasoning with
description logics. Buchberger introduced the concept of Gröbner bases as bases for ideals
in polynomial rings over a field first in 1965 (Thesis, Innsbruck). Buchberger named them
in honor of his thesis advisor W. Gröbner (1899-1980). This chapter discusses Buchberger’s
Algorithm as well as several methods to solve real polynomial systems using Gröbner bases.
It concludes with assessments of the presented Gröbner bases methods.

3.1 Buchberger’s Algorithm

Gröbner bases are special generators for ideals in polynomial rings over a field. They
offer solutions for a variety of algebraic problems and present more convenient compu-
tations to many problems in polynomial algebra. Basically, Buchberger’s algorithm can
be described as a combination of the Euclidean algorithm for two univariate polynomials
and the Gaussian elimination for a system of linear multivariate polynomials, (see also
[Yap00]). Buchberger’s algorithm is applicable for the non-linear multivariate case. Thus,
the Euclidean algorithm and the Gaussian elimination are considered first. A relationship
between these two and Buchberger’s algorithm is established later on.

First, an introductory example illustrates how a system of polynomial equations is solved
with mathematical tools from school. This is then extended to the Gaussian elimination
method which applies matrix computations.

EXAMPLE 3.1
Assume the following real linear polynomial system:

(1) −x1 − 2x2 + 5x3 = 2
(2) 3x1 + x2 = 9 (3.1)
(3) 2x1 − 4x2 + 3x3 = −2.

Using the method from school to solve this polynomial system two different pairs of poly-
nomial equations have to be combined to obtain two new polynomial equations such that
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the same variable has been eliminated. This means, two polynomials are added such that
the monomials of the same variable vanish. Eliminating, for example, x1, one yields:

(A) −8x2 + 13x3 = 2
(B) −5x2 + 15x3 = 15

Equation (A) is received by multiplying equation (1) by 2 and adding it to equation (3).
Similarily, equation (B) results from the multiplication from equation (1) with 3 and adding
it to equation (2). Then, equation (A) and (B) are multiplied by −5 and 8, respectively,
and the results are added to obtain the final polynomial equation in one variable:

55x3 = 110.

This equation can be solved for x3 which gives x3 = 2. By inserting this result in equation
(A) or (B) one obtains x2 = 3. Finally, x1 can be computed to be equal to x1 = 2 by
replacing the values for x2 and x3 in equation (1) or (3). Thus, the solution of the real
linear polynomial system in (3.1) is (2, 3, 2) ∈ R3.

For computers, it is more convenient to solve the same task using the Gaussian elimination
because Gaussian elimination is based on matrix computations. First, the coefficients of
the real linear polynomial system are inserted into a m× n matrix A′. Remember that a
m×n matrix consists of m rows and n columns. Therefore, each polynomial is traditionally
written in the form such that the monomial containing an arbitrary coefficient and the
power product 1, (1 = x0), is on the right hand side of the equal sign whereas all other
monomials are on the left hand side. The polynomial system in Equation (3.1) is already
in this form. The coefficients with their signs are inserted into the matrix just by dropping
the equal signs and the letters for the variables. Each equation corresponds to one row in
matrix A′ such that column n contains the coefficients of the monomials with the power
product 1 and column i, for 1 ≤ i ≤ n − 1, contains the coefficients of the monomials
where the power product is equal to a single variable xi. (Note that linear polynomials
consist only of such monomials.) This matrix is transformed to row echelon form by
applying elementary row operations (or elementary column operations but not both). A
m× n matrix is in row echelon form if, for all 1 ≤ i ≤ m, the first non-zero entry of row
i + 1 is to the right of the first non-zero entry of row i. (This is a staircase form.) The
result is a reduced polynomial system which can be solved easily.

EXAMPLE 3.2 (Gaussian elimination)
Now, the Gaussian elimination method is used to solve the system of polynomials in (3.1).
The matrix of coefficients is then given by the first of the following three matrices which
is transformed to row echelon form by elementary row operations:

A′ =

−1 −2 5 2
3 1 0 9
2 −4 3 −2

 7−→

−1 −2 5 2
0 −5 15 15
0 −8 13 2

 7−→

−1 −2 5 2
0 −5 15 15
0 0 −11 −22

 .

The second matrix can be obtained from the first one by multiplying the first row with
3 and adding the result to the second row and by multiplying the first row with 2 and
adding the result to the third row. The third matrix is computed from the second one
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by multiplying the second row with −8/5 and adding the result to the third row. The
reduced real linear polynomial system can be extracted from the last matrix:

(1′) −x1 − 2x2 + 5x3 = 2
(2′) −5x2 + 15x3 = 15
(3′) −11x3 = −22.

Again, x3 can be received from equation (3′), x2 is obtained from equation (2′) by inserting
the result of x3 and x1 can then be calculated from equation (1′). This also yields (2, 3, 2).

Note that the set of solutions is not altered when the matrix A′ is transformed to row
echelon form using elementary operations. The dimension of the solution space X for a
polynomial system can be obtained from a matrix A by counting its number of columns
and subtracting its rank: dim(X) = n − rank(A). The rank of a matrix is equal to
the rank of columns which in turn is equal to the rank of rows for all m × n matrices.
The rank of columns or the rank of rows of a matrix can be determined by the number
of linear independent columns or rows, respectively. Matrix A can be obtained from the
polynomial system when it is written in matrix notation as A ·x = b, where x is the vector
of the variables involved, b is the vector of the coefficients of the monomials containing the
power product 1, and A is the matrix of the coefficients of all other monomials. Extending
matrix A with vector b as an additional column, one yields the matrix A′. For the above
example, the rank of A is equal to 3 as well as the number of columns in A. Therefore,
the dimension of the solution space is 0.

The Gaussian elimination method is also applicable if the dimension of the solution space
is greater than 1. In this case, there exists at least one column where no edge of the steps
in the row echelon form of matrix A′ occurs. The variable that corresponds to such a
column is a free parameter. The solution space is not empty if rank(A) = rank(A′). The
polynomial system is said to be universely solvable, i.e. it is solvable for each chosen b,
if rank(A) = m. Also, the polynomial system is said to be uniquely solvable, i.e. it has
exactly one solution, if rank(A) = rank(A′) = n.

Now, the Euclidean algorithm is discussed with respect to the task of solving a system
of real non-linear univariate polynomial equations f1 = f2 = · · · = fp = 0. In this case,
solving means to compute the zero set of the polynomials: ZERO(f1, · · · , fp). Corollary
3.1 provides the basis for this.

COROLLARY 3.1 The zero set of a set of polynomials f1, · · · , fp is equivalent to the
zero set of the ideal J generated by the same set of polynomials (J = Ideal(f1, · · · , fp)):

ZERO(f1, · · · , fp) = ZERO(J). (3.2)

For univariate polynomials, K[x] is a principle ideal domain, where K is a field. Remember
that in a principle ideal domain, every ideal can be generated by a single polynomial.
Therefore, in order to solve the system of univariate polynomials, one can simply compute
this single generator of the ideal of the polynomials f1, · · · , fp and calculate the zeros of this
single equation. These zeros represent the common zeros of all polynomials. The following
corollary explains the relationship between ideals in K[x] and the greatest common divisor.
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COROLLARY 3.2 Let f1, · · · , fp ∈ K[x] be polynomials, where K is an arbitrary field.
Then, gcd(f1, · · · , fp) is a generator of the ideal Ideal(f1, · · · , fp).

Thus, the single generator of the ideal of the polynomials f1, · · · , fp is the greatest common
divisor of f1, · · · , fp. The greatest common divisor for two univariate polynomials can be
computed using the Euclidean algorithm as presented in Section 2.2 (Algorithm 2.1).
Definition 2.32 states that the greatest common divisor of p ≥ 3 polynomials can be
determined by the following recursion: gcd(f1, · · · , fp) = gcd(f1, gcd(f2, · · · , fp)).

EXAMPLE 3.3
Assume the following real non-linear univariate polynomial system:

f1 : x3 − 3x + 2 = 0

f2 : x4 − 1 = 0 (3.3)

f3 : 2x3 + 2x2 + 2x + 2 = 0.

The common solutions of the three equations are presented by the zero set
ZERO(f1, f2, f3), which is equal to the zero set of the single generator of the ideal
Ideal(f1, f2, f3). The single generator is gcd(f1, f2, f3), which is computed as follows:

gcd(f1, f2, f3) = gcd(x3 − 3x + 2, x4 − 1, 2x3 + 2x2 + 2x + 2)

= gcd(x3 − 3x + 2, gcd(x4 − 1, 2x3 + 2x2 + 2x + 2))

= gcd(x3 − 3x + 2, x2 − 1)
= x− 1.

Thus, Ideal(f1, f2, f3) = Ideal(x − 1). The zero of this single generator can be easily
computed to be x = 1, which is also the common zero of the set of polynomials in (3.3).

Two special cases have been considered: a multivariate but linear polynomial system and
a univariate but non-linear polynomial system. The decision problem can be solved for
both cases. Unfortunately, it is rather complicated to solve the decision problem for a non-
linear multivariate polynomial system with respect to real solutions. One possibility is to
apply solution techniques using Gröbner bases. Therefore, Gröbner bases are introduced
and discussed here, and related solution methods for the decision problem are presented
and analyzed.

The basic concept in Gröbner bases is that of reduction.

DEFINITION 3.1
Let f, g be two polynomials in R[x]. Then, f is reducible by g if hmono(g) divides some

monomial p in f , i.e. p = q · hmono(g) for some monomial q. This is denoted by f
g−→ h,

where h = f − q · g represents the reduct of f by g. The polynomial f is reducible by a
set of polynomials G, if there exists a g in G such that f

g−→ h. If f is not reducible by

G, f is called to be in G-normal form, written as f
G−→. A normal form of f is then

any G-normal form f̂ such that f
G−→
∗

f̂
G−→, where

G−→
∗

denotes the reflexive transitive

closure of
G−→. NFG(f) indicates the set of all G-normal forms of f.
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Algorithm 3.1 computes a normal form for a polynomial f ∈ R[x] and a finite set G ⊆ R[x].
The basic idea is to cancel the head monomial in f with respect to a fixed monomial
ordering by multiplying some gi by an appropriate monomial and subtracting the result.
The algorithm is based on the fact that every f ∈ K[x1, · · · , xn] can be written with respect
to an ordered p-tuple of nonzero polynomials F = (f1, · · · , fp) and a fixed admissible
ordering as:

f = a1f1 + · · ·+ apfp + r, (3.4)

where ai, r ∈ K[x1, · · · , xn]. Then, either r = 0 or r is a polynomial containing only
monomials, none of which can be divided by the head monomial of F , i.e. by the set of
head monomials of any polynomial in F : hmono(f1), · · · , hmono(fp). Also, if aifi 6= 0,
then multideg(f) ≥ multideg(aifi). r is called a remainder of f on division by F . Note
that Equation (3.4) is the multivariate equivalent to the univariate case in Equation (2.10).
The NORMAL-FORM algorithm is basically the multivariate version of the DIVISON
algorithm, Algorithm 2.2, used in the GCD algorithm. The NORMAL-FORM algorithm
computes the remainder f on division by F . Note that the pseudo division as presented
by in Section 2.3 cannot be applied here.

Algorithm 3.1 NORMAL-FORM(f,G)
Input: A polynomial f ∈ R[x] and a finite set G ⊆ R[x].
Output: Normal form of the polynomial f .
p := f ; h := 0; s := |G|;
G-tuple := N-TUPLE(G);
while p 6= 0 do

i := 1;
division occurred := FALSE;
while (i ≤ s) and (¬division occurred) do

if HMONO(gi) divides HMONO(p) then
p := p− (HMONO(p)/HMONO(gi)) · gi;
division occurred := TRUE;

else
i := i + 1;

end if
end while
if NOTdivision occurred then

h := h + HMONO(p);
p := p−HMONO(p);

end if
end while
return h ;

The N-TUPLE algorithm called in the NORMAL-FORM algorithm takes an arbitrary
set and returns it as an ordered n-tuple. The monomial hmono(g) divides the monomial
hmono(f) iff hmomo(f) can be expressed as in the univariate case according to Equa-
tion (2.10) as: hmomo(f) = q · hmono(g) + r and where r = 0. In case r = 0, the
devision operator / can be applied, and q = hmono(f)/hmono(g) is explicitly calculated.
The NORMAL-FORM algorithm terminates because the multideg(f) gets smaller at each
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step of the loop by one of the following two actions: If hmono(gi) divides hmono(f), then
f is reduced of its head monomial by multiplying some gi by an appropriate monomial and
subtracting the result from f . If no hmono(gi) divides hmono(f), the head monomial of
f is removed from f and added to the remainder. In both cases, multideg(f) is reduced,
and at some point f becomes equal to zero. When the algorithm terminates, r is of the
required form since a monomial is only added to r if it is not divisible by any of the head
monomials of the polynomials in G.

Note that a G-normal form of f as defined in Definition 3.1 and as implemented in
the NORMAL-FORM algorithm is not always unique. The G-normal form can depend
on the selection of gi in case more than one head monomial divides the head monomial
of the input polynomial f . In the NORMAL-FORM algorithm, a sequential selection is
implemented since the set G is transformed to an ordered n-tuple. Therefore, the ordering
of the input set G might produce different outputs.

EXAMPLE 3.4
This example illustrates the computation of the normal form of f = 2y4 + x3y − 3xy + 1
with respect to the set G = {x2y, y2} using Algorithm 3.1. First, let p be equal to f , h to
0 and s to 2.

1) i := 1 and division occurred := false

• i = 1: x2y does not divide 2y4 −→ i := 2

• i = 2: y2 divides 2y4 −→ p := (2y4 + x3y − 3xy + 1) − 2y4

y2 · y2 = x3y − 3xy + 1
−→ division occurred := true

2) i := 1 and division occurred := false

• i = 1: x2y divides x3y −→ p := (x3y − 3xy + 1)− x3y
x2y

· x2y = −3xy + 1
−→ division occurred := true

3) i := 1 and division occurred := false

• i = 1: x2y does not divide −3xy −→ i := 2

• i = 2: y2 does not divide −3xy

h := −3xy and p := 1

4) i := 1 and division occurred := false

• i = 1: x2y does not divide 1 −→ i := 2

• i = 2: y2 does not divide 1

h := −3xy + 1 and p := 0

5) h = −3xy + 1 is returned

There are several characterizations of Gröbner bases. All of them are useful for the general
understanding, but only Buchberger’s characterization directly implies a construction for
a Gröbner basis. The characterizations of Gröbner bases and are presented in the following
relative to some fixed admissible ordering ≤

A
.
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DEFINITION 3.2 (Normal Form Characterization)
A finite subset G of an ideal J ⊆ R[x] in R[x] is Gröbner iff every f ∈ J has a unique
G-normal form as defined in Definition 3.1. G is said to be a Gröbner basis for the ideal
J and J = Ideal(G).

Suppose there is a set F = {f1, · · · , fp} of polynomials which generate the ideal Ideal(F ).
Let G = {g1, · · · , gq} be a Gröbner basis for Ideal(F ), where the gj ’s are different from
the fi’s. Then, Ideal(F ) = Ideal(G) and for all f ∈ Ideal(F ) it holds that |NFG(f)| = 1
since each f ∈ Ideal(F ) has a unique G-normal form per definition.

DEFINITION 3.3 (Standard Characterization)
A finite subset G of an ideal J ⊆ R[x] in R[x] is called a Gröbner basis of the ideal J
iff Head(G) = Head(J) = Head[Ideal(G)].

This means that a set G = {g1, · · · , gq} ⊂ J is a Gröbner basis of J iff the head monomial
of any element of J is divisible by one of the head monomials of the gi’s.

EXAMPLE 3.5
Let J = Ideal(f1, f2), where f1 = x3 − 2xy and f2 = x2y − 2y2 + x are polynomials
in K[x, y]. G = {f1, f2} is not a Gröbner basis of the ideal J . This can be seen as
follows: Using total degree ordering, one can show, that x2 is a member of the ideal J
by computing: x · (x2y − 2y2 + x) − y · (x3 − 2xy) = x2. Therefore, x2 = hmono(x2) ∈
Head(J). But x2 6∈ Head(G). The set G is not a Gröbner basis since x2 is not divisible
by hmono(f1) = x3 or hmono(f2) = x2y. It follows that Head(G) ⊂ Head(J) but not
Head(J) = Head(G) as required by Definition (3.3) and therefore G is not a Gröbner
basis of J , either.

The next characterization is the basis for Buchberger’s algorithm of constructing Gröbner
bases. First, the definition of the least common multiple of two power products is pre-
sented.

DEFINITION 3.4
Let p, q ∈ PP be two power products, written as p = xe1

1 xe2
2 · · ·xen

n and q = xd1
1 xd2

2 · · ·xdn
n .

Then, the least common multiple (LCM) of p and q is defined as

LCM(p, q) = x
max(e1,d1)
1 x

max(e2,d2)
2 · · ·xmax(en,dn)

n . (3.5)

The least common multiple is extended for monomials a · p and b · q such that LCM(a ·
p, b · q) = a · b · LCM(p, q).

EXAMPLE 3.6
Given the following two monomials: p = 6x3y and q = 4x2y2. Then, the least common
multiple is computed to be LCM(p, q) = 24x3y2.

DEFINITION 3.5 (Buchberger’s Characterization)
A finite subset G of an ideal J ⊆ R[x] in R[x] is a Gröbner basis of the ideal

J iff the S-polynomial S(f, g) G−→
∗

0 for all f, g ∈ G, where m is given by m =

LCM [hterm(f), hterm(g)] and the S-polynomial is defined as follows:

S(f, g) =
m

hmono(f)
f − m

hmono(g)
g. (3.6)
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EXAMPLE 3.7
Let f = xy − 2 and g = 3x2 − 1 be two polynomials. Then, the least common multiple of
hterm(f) and hterm(g) is equal to m = LCM(xy, x2) = x2y and the S-polynomial can
be computed to be:

S(f, g) =
x2y

xy
f − x2y

3x2
g = x(xy − 2)− y

3
(3x2 − 1) = −2x +

1
3
y

As illustrated in the example for the standard characterization of Gröbner bases, Example
3.5, a set G = {g1, · · · , gq} fails to be a Gröbner basis if a suitable combination of the gi’s
create a polynomial whose head monomial is not in the ideal generated by Head(G). This
means that the created head monomial is not divisible by any head monomial of G. This
situation can occur if the head monomials in the suitable combination just cancel each
other. Therefore, an S-polynomial S(gi, gj) is designed such that the head monomials of
gi and gj cancel. If all S-polynomials for all gi, gj ∈ G can be reduced to 0 by the set G,
i.e. the head monomial of S(gi, gj) is divisible by some head monomial of G, G is said to
be a Gröbner basis according to Definition 3.5.

The subsequent characterization relates Gröbner bases with the Church-Rosser property.
Consider −→

∗
in the following as a partial order on an arbitrary set U .

DEFINITION 3.6
A partial order −→

∗
is said to be Noetherian if it has no infinite descending sequences in

the sense of f1 −→∗ f2 −→∗ f3 −→∗ · · ·.

DEFINITION 3.7
A partial order −→

∗
is Church-Rosser or confluent if for all f, g, g′ ∈ U if f −→

∗
g and

f −→
∗

g′ then there exists an h ∈ U such that g −→
∗

h and g′ −→
∗

h. The element h is

then called a common successor of g and g′. A minimal element k in this partial order
is a normal form of g if g −→

∗
k.

THEOREM 3.3 If −→
∗

is a Noetherian partial order on U then −→
∗

is Church-Rosser
iff every g ∈ U has a unique normal form.

DEFINITION 3.8 (Church-Rosser Property Characterization)
A finite subset G of an ideal J ⊆ R[x] in R[x] is a Gröbner basis of the ideal J iff the

relation
G−→
∗

is Church-Rosser.

The extended standard characterization can be easily derived from the construction of an
ideal, as described in Theorem 2.15.

DEFINITION 3.9 (Extended Standard Characterization)
A finite subset G of an ideal J ⊆ R[x] in R[x] is a Gröbner basis of the ideal J iff for
all f ∈ J , there are elements αi ∈ R[x], gi ∈ G, i = 1 · · ·m (i.e. m = |G| ) such that

f =
m∑

i=1

αigi,

and hterm(f) ≥
A

hterm(αigi) for all i.
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DEFINITION 3.10 (Ideal Membership Characterization)
A finite subset G of an ideal J ⊆ R[x] in R[x] is a Gröbner basis of the ideal J iff

∀f ∈ J , f
G−→
∗

0 . Clearly, J = Ideal(G) then.

Suppose that h is the G-normal form of f . Then, h ≡ f [modIdeal(G)] . If G is Church-
Rosser, then each equivalence class of polynomials modulo Ideal(G) has a unique repre-
sentative. Obviously, the unique representative of Ideal(G) is the zero polynomial. Thus
f

G−→
∗

0 for all f ∈ Ideal(G) which is equal to NFG(f) = {0}.

From Buchberger’s characterization of a Gröbner basis, one can deduce how to construct
a Gröbner basis for a given ideal. The Gröbner basis for a given ideal is represented by
a set of polynomials as generators. In the following, the basic version of Buchberger’s
algorithm is presented.

Algorithm 3.2 GRÖBNER-BASIS(F )
Input: A finite set of polynomials F ⊆ K[x].
Output: A Gröbner basis G for the ideal Ideal(F ).
G := F ;
B := {S(f, g) | f, g ∈ F, f 6= g}; { S(f, g) as defined in Equation (3.6)}
while B 6= ∅ do

B := B \ Si; {Remove one S-polynomial from B}
h := NORMAL-FORM(Si, G);
if h 6= 0 then

B := B ∪ {S(f, h) | f ∈ G};
G := G ∪ {h};

end if
end while
return G ;

EXAMPLE 3.8
This example computes the Gröbner basis for the following set F of polynomials using
Buchberger’s algorithm, Algorithm 3.2, while assuming lexicographic ordering:

F = {xy4 − 1, x3 − y,−x2 + y5}.

First, G is set equal to F . Then, the set B of S-polynomials throughout the algorithm is
given by:

1) B = {−x2 + y5, xy5 − y,−x + y9} and G = {xy4 − 1, x3 − y,−x2 + y5}

• −x2 + y5 G−→
∗

0 by −x2 + y5

• xy5 − y
G−→
∗

0 by xy4 − 1

• −x + y9 cannot be reduced by G

2) B = {y13 − 1, x2y9 − y, xy9 − y5} and G = {xy4 − 1, x3 − y,−x2 + y5,−x + y9}
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• x2y9 − y
G−→
∗

0 by xy4 − 1

• xy9 − y5 G−→
∗

0 by xy4 − 1

• y13 − 1 cannot be reduced by G

3) B = {x− y9, y14 − y,−x2 + y18,−y22 + y9} and
G = {xy4 − 1, x3 − y,−x2 + y5,−x + y9, y13 − 1}

• x− y9 G−→
∗

0 by −x + y9

• y14 − y
G−→
∗

0 by y13 − 1

• −x2 + y18 G−→
∗

0 by −x2 + y5 and y13 − 1

• −y22 + y9 G−→
∗

0 by y13 − 1

4) G = {xy4 − 1, x3 − y,−x2 + y5,−x + y9, y13 − 1} is returned

Observe that the computation time of this algorithm highly depends on the sequence of
the polynomials in F . Since G is not a Gröbner basis until the set B is empty, the output
of the normal form algorithm is dependent on the ordering of the polynomials in G and
thus is not unique. Therefore, the Gröbner basis as computed by this basic version of
Buchberger’s algorithm is not unique. Some additional conditions are needed to obtain a
unique Gröbner basis.

DEFINITION 3.11
A non-empty set F ⊆ R[x] is said to be self-reduced if each f ∈ F is not reducible
by F \ {f} relative to some admissible ordering. The zero polynomial 0 is defined to be
reducible by F for all F , and f 6= 0 is not reducible by the empty set.

This definition implies that no self-reduced set contains the zero polynomial. Moreover,
F is self-reduced if F is a singleton set and F 6= {0}. Also, if a ∈ R and a ∈ F then F is
self-reduced iff F = {a}.

DEFINITION 3.12
A finite non-empty set G ⊆ F is a reduced Gröbner basis if all of the following
conditions hold:

(1) G is a Gröbner basis

(2) G is self-reduced

(3) f ∈ G is monic, i.e. hcoef(f) = 1.

LEMMA 3.4 Every ideal has a reduced Gröbner basis relative to some admissible order-
ing.

A reduced Gröbner basis can be constructed from a Gröbner basis G by using Defini-
tion 3.11. For each g ∈ G, the normal form algorithm is applied with the set G \ {g}.
If the result g′ equals the zero polynomial, then g is discarded from G. Otherwise, g is
replaced by g′. If no g can be further reduced by the set G \ {g}, each polynomial g is
replaced by g/hcoef(g) to make it monic.
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THEOREM 3.5 Reduced Gröbner bases are unique with respect to an admissible order-
ing.

To discuss the decision problem for a system of polynomial equations, the relation between
ideals and their corresponding zero sets have to be analyzed first.

Accoding to Corollary 3.1, the zero set of a set of polynomials f1, · · · , fp is equivalent to
the zero set of the ideal J generated by the same set of polynomials: ZERO(f1, · · · , fp) =
ZERO(J).

THEOREM 3.6 (Weak Nullstellensatz) Let K be an algebraically closed field and let
J ⊂ K[x] = K[x1, · · · , xn] be an ideal satisfying ZEROK(J) = ∅. Then, J = K[x].

The Weak Nullstellensatz states that the only ideal which represents the empty zero set
is the entire polynomial ring itself. But this theorem is only valid for algebraically closed
fields. For example, consider the polynomials f1 = x2 + 1 and f2 = 1 in R[x] as well as
the ideals generated by these polynomials J1 = Ideal(f1) and J2 = Ideal(f2). (Note that
R is not algebraically closed.) Then, even though the two ideals are different, they both
represent the empty zero set: ZEROR(J1) = ZEROR(J2) = ∅ because both polynomials
do not have a solution in R. However, observe that ZEROC(J1) 6= ∅ but ZEROC(J2) = ∅
since f1 has a solution in C. Thus, to prove if an ideal J is equal to K[x], one simply has
to check whether the constant polynomial 1 is in J . If 1 ∈ J , then, using Definition 2.53,
f = f ·1 ∈ J for every f ∈ K[x] and thus J = K[x]. For K = C, the Weak Nullstellensatz
implies that every system of polynomials that generate an ideal smaller than C[x] has a
common zero in Cn.

Generally, a one-to-one mapping between ideals and their corresponding zero sets cannot
be defined. Consider for example the two polynomials f1 = x and f2 = x2. Then, the
ideals generated by these polynomials represent the same zero set: ZERO(Ideal(f1)) =
ZERO(Ideal(f2)) = {0}. Hilbert’s Nullstellensatz explains the reason for this.

THEOREM 3.7 (Hilbert’s Nullstellensatz) Let K be an algebraically closed
field. Suppose f, f1, · · · , fm ∈ K[x] = K[x1, · · · , xn] are such that f ∈
Ideal(ZERO(f1, · · · , fm)). Then, there exists an integer s ≥ 1 such that fs ∈
Ideal(f1, · · · , fm) and vice versa.

The proof of Hilbert’s Nullstellensatz is explained in detail because the trick used here is
used again later in this section.
Proof:
Assume the polynomial f vanishes at every common zero of the set of polynomials
f1, · · · , fm. It has to be shown that there exists an integer s ≥ 1 and polynomials
a1, · · · , am such that fs =

∑m
i=1 ai · fi. Therefore, a trick is used. The following ideal

is considered:
J̃ = Ideal(f1, · · · , fm, y · f − 1) ⊂ K[x1, · · · , xn, y].

Obviously, the zero set of the ideal J̃ , ZERO(J̃), is empty. Suppose a point α =
(α1, · · · , αn, αn+1) ∈ Kn+1. Hence, if (α1, · · · , αn) is a common zero of f1, · · · , fm, then
also f(α1, · · · , αn) = 0 which implies y · f − 1 = αn+1f(α1, · · · , αn) − 1 = −1 6= 0 and
thus α 6∈ ZERO(J̃). In the other case, if (α1, · · · , αn) is not a common zero of f1, · · · , fm,
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then there exists at least one i, 1 ≤ i ≤ m, for which fi(α1, · · · , αn) 6= 0 and therefore
α 6∈ ZERO(J̃) either. Therefore, ZERO(J̃) = ∅ can be concluded. Applying the Weak
Nullstellensatz from Theorem 3.6 one can deduce from ZERO(J̃) = ∅ that 1 ∈ J̃ . It
follows for all y that

1 = (
m∑

i=1

gi(x1, · · · , xn, y)fi) + h(x1, · · · , xn, y)(yf − 1),

where gi, h ∈ K[x1, · · · , xn, y]. The substitution 1/f(x1, · · · , xn) for y makes the last term
disappear:

1 =
m∑

i=1

gi(x1, · · · , xn, 1/f)fi.

Multiplying both sides of the equation by fs yields the desired, above stated, equation:

fs =
m∑

i=1

ai · fi.

�
Hilbert’s Nullstellensatz means, if a polynomial f vanishes at all points of the zero set of
a given Ideal J , then either it must be a member of the ideal J itself or some power of f
must belong to J . The following lemma presents the condition for ideals that consist of
all polynomials that vanish on the same zero set.

LEMMA 3.8 Let Z be a zero set and Ideal(Z) the ideal generated by this zero set. Then,
if fs ∈ Ideal(Z), also f ∈ Ideal(Z).

Lemma 3.8 states that the ideal consisting of all polynomials that vanish on the same zero
set is a radical ideal, as defined in Definition 2.54. One can construct a radical ideal from
any ideal J by applying the ideal operation Radical(J) =

√
J as given in Definition 2.59.

Note that J ⊆
√

J since f1 ∈ J implies f ∈
√

J per definition. This leads to the condition
that an ideal J is radical iff J =

√
J . Now, the Strong Nullstellensatz can be presented.

THEOREM 3.9 (Strong Nullstellensatz) Let K be an algebraically closed field. If J
is an ideal in K[x], then Ideal(ZEROK(J)) =

√
J .

The Strong Nullstellensatz finally provides the considered relation between ideals and their
corresponding zero sets. There exists a one-to-one mapping between radical ideals and
their corresponding zero sets, but not between ideals in general and their corresponding
zero sets.

Now, the decision problem for a system of polynomial equations can be considered. Sup-
pose the system of polynomial equations f1 = f2 = · · · = fp = 0 has to be analyzed
regarding its common solution set. This is equivalent to the question to whether the zero
set ZERO(f1, · · · , fp) = ∅. As stated by Equation (3.2), the zero set of a set of polynomi-
als is equivalent to the zero set of the ideal generated by the same set of polynomials, i.e.
ZERO(f1, · · · , fp) = ZERO(Ideal(f1, · · · , fp)). Applying the Weak Nullstellensatz for C
from Theorem 3.6, the question whether the zero set ZEROC(f1, · · · , fp) = ∅ amounts to
the question: “Is 1 ∈ Ideal(f1, · · · , fp)?” Since any polynomial equation consisting of a
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constant polynomial does not have any solutions, the zero set of the ideal containing such
a polynomial is empty and therefore the corresponding system of polynomial equations
is inconsistent with respect to C. Thus in order to decide the decision problem for C for
a system of polynomial equations, the Ideal Membership question “Is element f in
Ideal(f1, · · · , fp)?” has to be answered for f = 1.

LEMMA 3.10 (Ideal Membership) Let K be an arbitrary field and let J ⊂ K[x] be
the ideal generated by f1, · · · , fm. Assume G to be the Gröbner basis of J . Then f ∈ J iff
f

G−→
∗

0, i.e. NFG(f) = 0.

According to Lemma 3.10, one can determine whether an element f is a member of the
ideal Ideal(f1, · · · , fp), by first computing the Gröbner basis G of Ideal(f1, · · · , fp) and
then checking the normal form of f with respect to the Gröbner basis G for equality
with zero. For f = 1, one can simply test if the Gröbner basis G contains a nonzero
constant instead of applying the normal form algorithm. In terms of a reduced Gröbner
basis, it is even more convenient since {1} is the only reduced Gröbner basis for the ideal
Ideal(1) = C[x]. In the following, the consistency algorithm for the decision problem for
any algebraically closed field is summarized:

Algorithm 3.3 CONSISTENT(F )
Input: A finite set of polynomials F ⊆ K[x].
Output: A boolean variable indicating the consistency state of the set of polynomial
equations.
c := TRUE;
i = 1;
G := GRÖBNER-BASIS(F); {with respect to any ordering}
G-tuple := N-TUPLE(G); {gi ∈ G-tuple}
while (c) and (i ≤ |G|) do

if (gi = nonzero constant) then
c := FALSE;

end if
i := i +1;

end while
return c ;

Note that if the field K is not algebraically closed, the decision problem can only be an-
swered in one direction: If {1} is a reduced Gröbner basis for the ideal Ideal(f1, · · · , fp) ⊆
K[x], then the system of polynomial equations f1 = · · · = fp = 0 has no common solution.
The reverse is not true. Consider the fields R and C. If a system of polynomial equations
does not have any common complex zeros, it does not have any common real zeros either.
But on the other hand, if a system of polynomial equations does not have any common
real zeros, it can still have common complex zeros since R is not algebraically closed.

Now, the relationship between Gaussian elimination and Buchberger’s algorithm is ex-
plained as well as the connection between the Euclidean and Buchberger’s algorithm is
indicated.

In the same manner, as the S-polynomials provide the cancellation of the head mono-
mials to get a simpler set of equations in the non-linear multivariate case, the Gaussian
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elimination performs the same task in the linear multivariate case. The reduced poly-
nomials received from the row echelon form of the matrix of coefficients after Gaussian
elimination are the same as the Gröbner basis generators computed from Buchberger’s
algorithm using lexicographical ordering.

In the Euclidean algorithm, the greatest common divisor of two non-linear univariate
polynomials is computed as the generator for the ideal of these two polynomials. Therefore,
the DIVISON algorithm (Algorithm 2.2), is applied, which corresponds to the NORMAL-
FORM algorithm (Algorithm 3.1), in Buchberger’s algorithm for the non-linar multivariate
case. The ideal membership problem for the univariate case: The question “Is f ∈ K[x] an
element of Ideal(f1, · · · , fp)?” can be determined using the Euclidean algorithm. First,
the greatest common divisior is computed to find the single generator g of the ideal. Then,
f ∈ Ideal(f1, · · · , fp) equals to f ∈ Ideal(g), which can be answered by the DIVISON
algorithm. f = qg + r is element of Ideal(g) if and only if r = 0.

For the application of geometical theorem proving, one takes advantage of the relationship
between geometry and algebra. As explained before in this section, there exists a one-
to-one mapping between radical ideals and their corresponding zero sets. To prove a
geometrical theorem means to verify questions of the form:

∀x = (x1, · · · , xn) ∈ Rn : if h1(x) = 0, · · · , hr(x) = 0 then c(x) = 0, (3.7)

where h1, · · · , hr denote the hypotheses and c represents the conclusion. All hypotheses
and the conclusion have to be expressed as polynomial expressions. The answer to this
question can be found by replacing R by C and by solving the radical membership question
for c, i.e c ∈ Radical(h1, · · · , hr).

LEMMA 3.11 (Radical Membership) Let K be an arbitrary field. Let J ⊂
K[x1, · · · , xn] be the ideal generated by f1, · · · , fp. Then, f ∈

√
J iff the constant polyno-

mial 1 belongs to the ideal J̃ = Ideal(f1, · · · , fp, y · f − 1) ⊂ K[x1, · · · , xn, y].

Proof:
Using the proof of Hilbert’s Nullstellensatz, one can deduce from J ⊂ J̃ that fs ∈ J for
some s, which in turn implies f ∈

√
J . In the other direction, if f ∈

√
J then fs ∈ J ⊂ J̃

for some s.
�

In order to prove a geometrical theorem it is not possible to apply simply the consistency
question on the hypotheses and the conclusion by using the ideal membership problem on
the ideal I1 = Ideal(h1, · · · , hr, c). This would answer the question, whether there exists a
common solution for the system of polynomial equations h1, · · · , hr, c, but the question is,
whether c vanishes on all common solutions of h1, · · · , hr. Equally, a geometrical theorem
cannot be proved by applying the ideal membership problem of the polynomial c on the
ideal I2 = Ideal(h1, · · · , hr). The consistency question can fail even though c might vanish
on the same zero set because ideals and zero sets do not have a one-to-one correspondence,
and in this case cs ∈ I2 but not c ∈ I2 as stated in the Strong Nullstellensatz in Theorem
3.9 and Hilbert’s Nullstellensatz in Theorem 3.7.

Therefore, a geometrical theorem can be proved using the radical membership problem.
One has to compute the Gröbner basis G for the ideal J = Ideal(h1, · · · , hr, y · c− 1) and
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has to decide whether 1 belongs to the ideal J by checking if G contains any nonconstant
polynomial. Alternatively, the reduced Gröbner basis could be used, which then has to
be tested for equality with {1}. The ideal membership question could also be used to test
whether f ∈

√
J by checking if fs ∈ J for any integer s ≥ 1. However, this turns out to

be quite inefficient.

As already remarked for the consistency problem, this method of geometrical theorem
proving can only be used in one direction since the problem in R has to be shifted to the
algebraically closed field C. This means, if a geometrical theorem holds over C then it also
holds over R, but the reverse it not true in general. Therefore, only confirmations but no
refutations of geometrical theorems are possible. However, most geometrical theorems are
generally true over C, [Buc89].

It is also necessary to treat degenerate situations since most geometrical theorems are
indeed true for the general case but they may be false for degenerate situations. Degenerate
situations are situations when, for example, a radius or an angle becomes zero. If a
degenerate situation can be expressed as a polynomial inequation d, d(x1, · · · , xn) 6= 0, a
new variable, also called slack variable, can be introduced to transform it into a polynomial
equation, which is considered as an additional condition. The following lemma describes
this transformation.

LEMMA 3.12 The satisfiability of f 6= 0 is equivalent to the satisfiability of uf − 1 = 0,
where u is a new variable not appearing in f .

Therefore, a geometrical theorem including degenerate situations, like:

∀x((h1 = 0 ∧ · · · ∧ hr = 0 ∧ d1 6= 0 ∧ · · · ∧ dt 6= 0) =⇒ c = 0), (3.8)

is equivalent to

∃x,u, z((h1 = 0 ∧ · · · ∧ hr = 0 ∧ u1 · d1 = 1 ∧ · · · ∧ ut · dt = 1 ∧ v · c = 1), (3.9)

which can be solved by testing whether {1} is the reduced Gröbner basis of the ideal
Ideal(h1, · · · , hr, u1 ·d1−1, · · · , ut ·dt−1, v · c−1). Again, any polynomial inequation can
be transformed to a polynomial equation using slack variables and thus can be handled
by the Gröbner basis radical membership method. The equation u ·d = 1 assures that the
polynomial expression d never becomes zero. Inequalities involving ordering relations such
as <,>,≤ and ≥ cannot be treated with this method. For a more detailed investigation
in geometric reasoning, one can refer to [KM89]. In context with Gröbner basis, several
discussions can be found in [Kap86] and [KS86].

Coming back to the consistency algorithm, Algorithm 3.3, for a system of polynomial
equations, inequations can also be included herein by applying the transformation on
inequations to equations as explained in Lemma 3.12.

In order to extend the validity of the consistency problem from C to R, one could try to
compute the set of solutions of the system of polynomial equations explicitly and see if it
contains any real solution. Subsequently, three approaches are presented for a system of
polynomial equations with finitely many solutions using Gröbner basis computation: the
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elimination method, the univariate-polynomial method and the side condition method.
All methods can only be applied in case the considered ideal is zero-dimensional. This
will be explained in the following.

A set S ⊆ R[x] is zero-dimensional iff its zero set ZERO(S) ⊆ Rn is finite. As an ex-
ample for a set of polynomials which is zero-dimensional consider S = {x2

1−1, x2
2, · · · , x2

n}.
Then, obviously ZERO(S) has the following two n-tuples as roots: (1, 0, · · · , 0) and
(−1, 0, · · · , 0).

THEOREM 3.13 Let J ⊆ K[x1, · · · , xn] be an ideal. Then J is zero-dimensional iff for
each i = 1, · · · , n, J ∩K[xi] 6= ∅. In general, the dimension of J is the largest cardinality
of a set y ⊆ x with x = (x1, · · · , xn) such that J ∩K[y] = Ideal(0).

The finite solvability of a set of polynomial equations can be tested easily using Gröbner
basis computation as explained in the following theorem and lemma.

THEOREM 3.14 Let F be a set of polynomials in K[x1, · · · , xn] and let G be a Gröbner
basis for Ideal(F ). Then, G and consequently F are zero-dimensional iff for each i =
1, · · · , n there exists a gi ∈ G with hterm(gi) ∈ PP (xi), where PP (xi) is the set of power
products over the variable xi as defined in Section 2.2 by Definition 2.20. This means that
G and F have finitely many solutions iff for all i, 1 ≤ i ≤ n, there exists a k > 0 such
that axk

i , a ∈ K, is the head monomial of a polynomial in G.

In case G is a reduced Gröbner basis, the head monomials are monic and thus a k has to
be found such that xk

i is the head monomial of a polynomial in G. Theorem 3.14 leads to
a convenient property of the Gröbner basis.

LEMMA 3.15 Let F be a set of polynomials in K[x1, · · · , xn]. Assume the following
precendence on the variables: x1 < · · · < xn and let G = {g1, · · · , gq} be a Gröbner basis
for Ideal(F ) with respect to lexicographic ordering, >

lex
. If F has finitely many solutions,

then G has triangular form defined as:

g1, · · · , gs1 ∈ K[x1]
gs1 , · · · , gs2 ∈ K[x1, x2]

... (3.10)
gsi , · · · , gsi+1 ∈ K[x1, · · · , xn−1]
gsi+1 , · · · , gq ∈ K[x1, · · · , xn].

The next theorem combines the finite solvability with the dimension of an ideal and the
triangular form of the Gröbner basis.

THEOREM 3.16 Let F ⊂ K[x] be a system of polynomials. Then the following three
statements are equivalent:

1) F is finitely solvable.

2) Ideal(F ) is a proper zero-dimensional ideal.
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3) If G is a Gröbner basis of Ideal(F ) with respect to >
lex

, then G can be expressed in

triangular from.

Now, the elimination method for computing the real zeros of a system of polynomials F
is explained. According to Lemma 3.15, the Gröbner basis G has triangular form iff F has
finitely many zeros. This means that at least one gi of the Gröbner basis is a univariate
polynomial in the last variable with respect to the precendence on the variables. The roots
of the univariate polynomial are determined and propagated as a super set of solutions of
x1 to the polynomials in K[x1, x2]. This again leads to univariate polynomials, in this case
in the variable x2. The zeros of theses polynomials build a super set of two-dimensional
partial solutions, which are propagated to the next higher dimensional polynomials to
increment the solutions by one dimension. The polynomials are handled sequentially such
that the set of partial solutions is extended or confirmed. Non-valid solutions are omitted
when the validation of a partial solution or the elimination of another variable fails. This
procedure is repeated until all gi of the Gröbner basis has been solved and thus the zero
set for F is completed.

EXAMPLE 3.9
Given the following system of polynomials F = {f1, f2}:

f1 = x2 + xy + 2x + y − 1

f2 = xy − x + y2 − y.
(3.11)

The Gröbner basis G is calculated using lexicographic ordering and the precendence y > x
on the variables:

g1 = x2 − 1
g2 = yx− y − x + 1

g3 = y2 + 3y + 2x− 2.

(3.12)

EXAMPLE 3.10 (Elimination method)
Now, the elimination method is used to solve the system of polynomials in (3.11)
with the Gröbner basis G in (3.12). First, the univariate polynomial g1 is solved
which yields x = 1 or x = −1: ZERO(g1) = {1,−1}. Both solutions are prop-
agated to g2. x = 1 provides the solution (1, y) while x = −1 results in (−1, 1):
ZERO({g1, g2}) = {(1, y), (−1, 1)}. This set of solutions is inserted into g3. The
first solution is refined and gives {(1,−3), (1, 0)} and the second one is confirmed valid:
ZERO(F ) = ZERO({g1, g2, g3}) = {(1,−3), (1, 0), (1,−1)}.

An implementation of the elimination method is given in [Mon96]. The procedure which
solves the univariate polynomials uses a numerical method to determine the zeros of the
polynomials, which might yield a possible loss of solutions. This can be improved using
so-called real algebraic numbers. Different representations of real algebraic numbers and
computation methods with algebraic numbers are explained in detail in Section 4.2.

The second method for extracting the roots of a system of polynomials F is called
univariate-polynomial method. This method first computes the Gröbner Basis G
for the ideal Ideal(F ) and then constructs univariate polynomials as the smallest polyno-
mials pi ∈ Ideal(F ) in xi using an algorithm from Buchberger [Buc85]. Each univariate
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polynomial pi can be solved independantly. The zero set of F is obtained by building
the super set of all possible combinations of n-tuples composed of a solution of each pi,
reduced by those n-tuples which cannot be verified by all gi of G.

The basis of Buchberger’s algorithm for constructing the univariate polynomials based on
a given Gröbner Basis G, in case F is finitely solvable, is given by Theorem 3.17.

THEOREM 3.17 Let G be a Gröbner basis with respect to lexicographic ordering ≤
lex

where x1 ≤
lex
· · · ≤

lex
xn. Then, G is zero-dimensional iff for each i = 1, · · · , n there exists

a polynomial pi ∈ G such that pi ∈ K[xi].

The next algorithm presents the algorithm from Buchberger to construct univariate poly-
nomials for a given Gröbner basis.

Algorithm 3.4 UNIVARIATE-POLYNOMIAL(G, x)
Input: A Gröbner basis G ⊆ K[x1, · · · , xn] and a variable xi.
Output: The smallest univariate polynomial in the variable xi whose solutions contain
at least those values that occur in the n-tuples of ZERO(G) for xi.
expo := 0;
pexpo = 1;
while ¬((a0, · · · , aexpo) 6= (0, · · · , 0) such that

∑expo
i=0 aipi = 0) do

expo := expo + 1;
pexpo := NORMAL-FORM(x · pexpo−1, G);

end while
return 1

aexpo

∑expo
i=0 aixi

expo;

EXAMPLE 3.11 (Univariate-polynomial method)
Now, the univariate-polynomial method is used to solve the system of polynomials F
in (3.11) with the Gröbner basis G in (3.12). First, a univariate polynomial has to be
computed for each variable. Therefore, the univariate-polynomial Algorithm 3.4 is applied
for x and for y. The calculation of UNIVARIATE-POLYNOMIAL(G, y) is presented
stepwise in Table 3.1.

expo x · pexpo−1 pexpo
∑expo

i=0 aipi

0 - 1 a0

1 y y a0 + a1y
2 y2 2− 2x− 3y a0 + a1y + a2(2− 2x− 3y)
3 2y − 2yx− 3y2 −4 + 4x + 9y a0 + a1y + a2(2− 2x− 3y) + a3(−4 + 4x + 9y)

Table 3.1: Computation of UNIVARIATE-POLYNOMIAL (G, y).

The algorithm terminates because a non-zero solution can be found for
∑expo

i=0 aipi, for
example: a0 = 0, a1 = −3, a2 = 2 and a3 = 1. The univariate polynomial for y is
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returned as 1
aexpo

∑expo
i=0 aiyi

expo = y3+2y2−3y =: u1. The computation of UNIVARIATE-
POLYNOMIAL(G, x) provides the univariate polynomial: u2 := x2 − 1. The zeros in y
of u1 are {0, 1,−3}, the roots in x of u2 are given by {1,−1}. This leads to the super
set of possible solutions of F , consisting of the cross product of all zeros in x and y:
{(1, 0), (1, 1), (1,−3), (−1, 0), (−1, 1), (−1,−3)}. Each n-tuple has to be verified by every
polynomial gi in G as computed in (3.12). Non-valid solutions are removed. For example,
inserting (−1, 0) into g3 results in −4 and not in 0. Finally, computing the complete zero
set of the system of polynomials yields in ZERO(F ) = {(1, 0), (−1, 1), (1,−3)}.

In general, the advantage of the univariate-polynomial method is to remain symbolic until
the computation of the zeros of each polynomial. Introducing real algebraic numbers to
this method, one could receive further improvements. As mentioned above, different repre-
sentations of real algebraic numbers and computation methods with algebraic numbers are
presented in detail in Section 4.2. However, the disadvantage of the univariate-polynomial
method is to have too large super sets due to a combinatorial explosion. This can be re-
duced to some extend using Algorithm 3.5 to test the valitity of the super set of solutions
[Mon96]. Algorithm 3.5 takes advantage of the triangular form of a Gröbner basis when
computed with respect to lexicographic ordering.

Algorithm 3.5 starts with an ascendingly sorting procedure in order to work on a Gröbner
basis in triangular form with respect to lexicographic ordering. Then, the first univariate
polynomials of G are obtained in the smallest variable, the first variable in V , and are
omitted for the test of validity since the solutions are their own zeros. The solutions
are created incrementally as the carthesian product of the previous carthesian product
and the next variable in order. The carthesian product represents the set of valid partial
solutions at the end of each outer FOR loop which goes through every gi of G starting from
equations with two variables. The Procedure VARIABLES returns the set of variables for
a chosen generator of G. Thus, this algorithm diminishes the combinatorial exposion of
the carthesian product because it applies the latter only to the valid set of the previous
carthesian product.

Howevever, the eliminaton method is more efficient because the incrementality avoids
the propagation of non-valid partial solutions and because the usage of partial solutions
restricts combinatorial explosions.

The third method in order to count the real zeros of a system of polynomials F , the side
condition method, is discussed now. The side condition method is a simple case of the
method introduced by Pedersen, Roy and Szpirglas [PRS93] which counts the real zeros of
a system of polynomials F under one side condition based on Gröbner bases computations.
Again, this method is also constrained to zero-dimensional ideals, which means that the
zero set of the polynomial system has to be finite. Given a set of polynomials F =
{f1, · · · , fp} and a side condition h in K[x1, · · · , xn] the method of Pedersen, Roy and
Szpirglas counts the zeros in Rn such that fi(x1, · · · , xn) = 0 holds for all 1 ≤ i ≤ p and
h(x1, · · · , xn) ρ 0, where ρ ∈ {<,=, >}. The side condition method counts the real zeros
of a system of polynomials F unter the trivial side condition h = 1.
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Algorithm 3.5 VALIDATE-ZEROSET(G, V, S)
Input: A Gröbner basis G ⊆ K[x1, · · · , xn] computed with lexicographic ordering, a
tuple V of variables presenting the ascending precendence of them, and a tuple S con-
taining the sets of zeros for each variable in V .
Output: The zero set of G consisting of all valid n-tuples.
i := 1; s := 2;
G-tuple := SORT-ASC(N-TUPLE(G), V ); {G-tuple is sorted ascendingly w.r.t. the
variable precendence}
while VARIABLES(gi) = {V1} do

i := i + 1;
end while
CarthesianProduct := S1 × S2;
CP -help := CarthesianProduct;
SetV ar := VARIABLES(gi);
for j = i to |G| do

if VARIABLES(gj) 6= SetV ar then
s := s + 1;
CarthesianProduct := CarthesianProduct× Ss;
CP -help := CarthesianProduct;

end if
for k = 1 to |CarthesianProduct| do

if gj(CarthesianProductk) 6= 0 then
CP -help := CP -help \ CarthesianProductk;

end if
end for
CarthesianProduct := CP -help;

end for
return CarthesianProduct;

First, the method of Pedersen, Roy and Szpirglas is explained. In general, this method is
able to answer the decision problem of a system of non-linear multivariate equations and
one inequation for the reals. Then, an example is introduced to illustrate the application
of the side condition method to count the real zeros of a system of polynomials F under
the side condition h = 1.

The following Theorem provides the basics of the method of Pedersen, Roy and Szpir-
glas. It considers the quotient ring K[x]/J of the polynomial ring K[x], as defined by
Definition 2.60, as a vector space over the field K of coefficients.

THEOREM 3.18 Let K be an ordered field. Let R be a real closed field such that K ⊂ R
and let C be its algebraic closure. Take J to be the ideal in K[x] generated by the set of
polynomials F = {f1, · · · , fp} and fix B := {v1, · · · , vb} to be the basis of the K-vector
space K[x]/J . For any polynomial h ∈ K[x] define the matrix Qh as follows:

Qh := (trace(mh·vi·vj
))1≤i,j≤b, (3.13)

where mf : K[x]/J → K[x]/J is the vector space endomorphism induced by multiplication
by f in the quotient ring K[x]/J . Then it holds:

56



(1) The matrix Qh is real, quadratic, and symmetric.

(2) rank(Qh) = |{x ∈ ZEROC(J) | h(x) 6= 0}|.

(3) signature(Qh) = |{x ∈ ZEROR(J) | h(x) > 0}| − |{x ∈ ZEROR(J) | h(x) < 0}|.

Remember that the trace of a matrix is calculated as the sum of its diagonal elements.
Rank and signature in this special case can be computed according to the subsequent
definition.

DEFINITION 3.13
Let Q be a real, symmetric b×b matrix. Let πQ denote the number of positive eigenvalues
of Q counted with multiplicity and let νQ indicate the number of negative eigenvalues of
Q also counted with multiciplity. Then, rank and signature of Q can be determined as
follows:

(1) rank(Q) = πQ + νQ.

(2) signature(Q) = πQ − νQ.

Note that all eigenvalues of a real, symmetric matrix are always real. The eigenvalues of
the matrix Q are given by the zeros of the associated characteristic polynomial λQ, which
is defined as λQ = det(Q − t · I) and where I denotes the identity matrix. Therefore,
the zeros of the characteristic polynomial are also real. The number of positive and
negative eigenvalues can then be determined using Descartes’ rule of sign, which has been
presented in Theorem 2.10 in Section 2.3. Suppose the characteristic polynomial to be
λQ(t) =

∑b
i=0 aiti. Then, the number of positive eigenvalues of Q are equal to the number

of sign variations in the sequence of coefficients: πQ = V ar(ab, ab−1, · · · , a1, a0). Similarily,
the number of negative eigenvalues of Q can be evaluated from the sequence of coefficients
of λQ(−t): νQ = V ar(ab,−ab−1, ab−2, · · · , (−1)ba0).

It can be easily deduced from Theorem 3.18, that the number of solutions in C of the set
of polynomials F = {f1, · · · , fp} is the rank of the matrix Q1: rank(Q1) = |ZEROC(J)|.
Equally, one can show that the number of real zeros is determined by the signature of Q1:
signature(Q1) = |ZEROR(J)|. Another special case can be obtained from this theorem.
It can be derived that signature(Qh2) = |{x ∈ ZEROR(J) | h(x) 6= 0}|. Combining
these two special cases with the general case, one can set up the following equation, whose
solution presents the number of real zeros under one given side condition h: 1 1 1

−1 0 1
1 0 1

 ·
|{x ∈ ZEROR(J) | h(x) < 0}|
|{x ∈ ZEROR(J) | h(x) = 0}|
|{x ∈ ZEROR(J) | h(x) > 0}|

 =

 signature(Q1)
signature(Qh)
signature(Qh2)

 . (3.14)

Equation (3.14) is uniquely solvable since the determinant of its first matrix is not zero.
Note that this equation is similar to Equation (2.39) for the univariate case from Section
2.3, which is based on Sturm Sequences. An outline of the algorithm is presented in the
following. It takes the set of polynomials F and the side condition h in K[x] as input and
computes the number of common real zeros of F for h(x) < 0, h(x) = 0 and h(x) > 0
according to Equation (3.14).
An implementation of this algorithm as well as a detailed explanation of the mathemati-
cal background (such as bilinear form, commutative K-algebras, structure constants) can
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Algorithm 3.6 REAL-ZEROSET(F, h)
Input: A system of polynomial equations F = {f1, · · · , fp} ⊆ K[x1, · · · , xn] and the
polynomial of one side condition h.
Output: The number of common real zeros of F for h(x) < 0, h(x) = 0 and h(x) > 0
G = GRÖBNER-BASIS(F); {with respect to any ordering}
B = {v1, · · · , vb} : compute basis of the ideal quotient ring K[x]/J ;
Qh = (trace(mh·vi·vj

))1≤i,j≤b : compute matrix Qh for h = 1, h and h2;
s := (signature(Q1), signature(Qh), signature(Qh2));
zerovector := (|{ZEROR(J) | h < 0}|, |{ZEROR(J) | h = 0}|, |{ZEROR(J) | h > 0}|);
{using Corollary (3.14)}
return zerovector;

be found in [Lip93]. The applied method can be extended to count the real zeros of a
system of polynomials under finitely many side conditions. Given a set of polynomials
F = {f1, · · · , fp} and finitely many side conditions h1, · · · , hs in K[x1, · · · , xn], the ex-
tended method counts the zeros in Rn for which fi(x1, · · · , xn) = 0 for all 1 ≤ i ≤ p and
hj(x1, · · · , xn) ρ 0 for all 1 ≤ j ≤ s and where ρ ∈ {<,=, >}. The extended method uses
the work of Ben-Or, Kozen and Reif, [BOKR86] and has been invented by Weispfenning,
[Wei93] or revised in [Wei98]. An implemenation, called QERRC, of this method is given
in [Dol94]. The latter two references also address parametric problems using comprehen-
sive Gröbner bases. An extensive study of comprehensive Gröbner bases can be found in
[Wei92].

Again, in order to answer the decision problem it is sufficient to compute the signature of
the matrix Q1, which counts the number of real zeros of a system of polynomial equations
when no side condition is given. The following example, which has been taken from [Pet97],
explains the different steps to answer this question.

EXAMPLE 3.12
Consider the polynomial system F = {f1, f2} in Q[x1, x2], where f1 and f2 are given by:

f1 = x1x2 − x3
1 + x2

2 − 2x2
1x2

f2 = 2x2
1 − x2

2 + x1x2.
(3.15)

Let J be the ideal generated by the polynomials f1 and f2. The first step is to compute
a Gröbner basis with respect to an arbitrary monomial ordering. In this case, the reverse
lexicographic ordering ≥

rev
as defined in Definition 2.36 in Section 2.2, is applied. Thus, for

the Gröbner basis G it holds that:

G = {5x4
2 − 32x3

2 + 32x1x2 + 32x2
2, 2x2

1 − x2
2 + x1x2, 4x1x2 + 4x2

2 + x1x
2
2 − 3x3

2}.

Next, the basis B = {v1, · · · , vb} of the Q-vector space Q[x1, x2]/J is calculated. Basically,
the Q-vector of any polynomial is determined by computing its normal form and then
taking the coefficients of the monomials as vector elements. The normal form is obtained
by using the NORMAL-FORM algorithm with respect to G and a fixed monomial ordering.
In such a normal form only those monomials whose exponent vector appear below the
exponent vector of the head monomials of the Gröbner basis generators can occur. Assume
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T = {xe1
1 · · ·xen

n |(e1, · · · , en) ∈ Nn} to be the set of all terms in Q[x]. Then, the basis B of
the Q-vector space Q[x1, · · · , xn]/J is given by B = T \hterm(J) = T \hterm(Ideal(G)).
In this example, hterm(G) = {x4

2, x
2
1, x1x

2
2} and hterm(Ideal(G)) consists of hterm(G)

and all higher terms with respect to ≥
rev

. Therefore for the basis B it holds that B =

{1, x2, x
2
2, x

3
2, x1, x1x2}. Accoding to Equation (3.14), the matrix Q1 is constructed by

Q1 := (trace(mvi·vj ))1≤i,j≤b. In order to compute the matrices mvi·vj for all 1 ≤ i, j ≤ b,
one has to build a matrix for each variable xp for 1 ≤ p ≤ n by computing the normal
form of each term in B multiplied by xp. In this case, one can verify that the normal
forms for x1 are:

x1, x1x2,−4x1x2 − 4x2
2 + 3x3

2,
16
5

(x3
2 − x1x2 − x2

2),
1
2
(x2

2 − x1x2), 2x1x2 + 2x2
2 − x3

2,

and those for x2 are:

x2, x
2
2, x

3
2,

32
5

(x3
2 − x1x2 − x2

2), x1x2,−4x1x2 − 4x2
2 + 3x3

2.

This lead to the following matrices:

mx1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 −4 −16

5
1
2 2

0 0 3 16
5 0 −1

1 0 0 0 0 0
0 1 −4 −16

5 −1
2 2

 , mx2 =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 −32

5 0 −4
0 0 1 32

5 0 3
0 0 0 0 0 0
0 0 0 −32

5 1 −4

 .

The matrices mvi·vj for all 1 ≤ i, j ≤ b can now be easily obtained from the matrices
mx1 and mx2 since the vector space endomorphism mf : K[x]/J → K[x]/J is such that
mfmg = mfg. (This extends to any polynomial h by summing the matrices computed for
each monomial of the normal form of h.) For example, the matrix mv2v6 is then equal to:

mv2v6 = mv2mv6 = mx1m
2
x2

=



0 0 0 0 0 0
0 0 0 0 0 0
−4 −16

5 −192
5 −2304

125 −8
5 −96

5
3 16

5
192
5

2304
125

8
5

96
5

0 0 0 0 0 0
−4 −16

5 −192
5 −2304

125 −8
5 −96

5

 .

The trace of the matrix mv2v6 can then be calculated to be trace(mv2v6) = 864
125 , which is

the entry of row 2 and column 6 in the matrix Q1. Finally, Q1 is equal to:

Q1 =
6

15625



15625 6250 15000 36000 3125 7500
6250 15000 36000 86400 7500 18000
15000 36000 86400 207360 18000 43200
36000 86400 207360 497664 43200 103680
3125 7500 18000 43200 3750 9000
7500 18000 43200 103680 9000 21600

 .

The rank of Q1 is 2. As mentioned above, Equation (3.14) reduces for the decision problem
to signature(Q1) = |ZEROR(J)|. This means, computing the signature of Q1 provides the
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number of real solutions of F , as defined in Equation (3.15). According to Definition 3.13,
the signature can be determined by calculating πQ1 and νQ1 , the number of positive
and respectively negative eigenvalues of matrix Q1: signature(Q1) = πQ1 − νQ1 . The
characteristic polynomial of Q1 contains the eigenvalues of Q1 as its roots. It is given by:

λQ1 = t6 − (
6

15625
· 640039)t5 + (

62

156252
· 8130390625)t4.

Applying Descartes’ rule of sign, the number of positve eigenvalues are computed to be
πQ1 = V ar(+,−,+) = 2 and the number of negative eigenvalues can be verified to be
νQ1 = V ar(+,+,+) = 0. Thus, signature(Q1) = πQ1 − νQ1 = 2− 0 = 2. The number of
real solutions of F is 2 and therefore the consistency question can be answered with ’Yes’.

3.2 Improvements for Buchberger’s Algorithm

This section presents several improvements for the basic version of Buchberger’s algorithm
as given by Algorithm 3.2.

Polynomials entering the Gröbner basis have been reduced completely with respect to
all previous elements in the Gröbner basis using the NORMAL-FORM algorithm. But
existing elements in the Gröbner basis are not tested for reducibility by the new entrants.
This is called interreduction or reverse reduction. Buchberger states that these reverse
reductions are essential for good performance, [Buc85]. It should be obvious, that any
polynomial f which can be reduced to zero by a Gröbner basis G1 can also be reduced
to zero by a Gröbner basis G2, if G2 is obtained from G1 by interreduction. This means,
0 ∈ NFG1(f) ⇒ 0 ∈ NFG2(f). The following version of Buchberger’s algorithm includes
the concept of reverse reduction in the FOR-loop. In case a polynomial h should be
inserted into the non-complete Gröbner basis G, every gj is checked whether it can be
reduced by h. If h′ = gj , then gj cannot be reduced by h. But, if the reduct h′ is not
equal to gj , gj is removed from G and all S-polynomials which are built with gj , denoted
by Bhelp, are removed from the set of all S-polynomials B. If h′ is not equal to zero, all
S-polynomials that can be constructed from h′ and any element in G are added to B and
h′ is added to the Gröbner basis G. In case h′ = 0, all gj ’s in Bhelp are replaced by h and
added to B as well as h is added to the Gröbner basis G.
In [CY94], the design and implementation of a parallel algorithm for computing Gröbner
bases with interreduction on distributed memory multi-processors is presented. Therefore,
the basic sequential version of Buchberger’s algorithm is recasted as non-deterministic
procedures, which consist of guarded commands, called rules.

Important efficiency improvements can be achieved by reducing the number of S-
polynomials that have to be considered, since the polynomial reductions in the NORMAL-
FORM algorithm are computationally the most expensive ones. In Buchberger’s algo-
rithm, the S-polynomials are checked for a zero remainder using the NORMAL-FORM
algorithm with respect to a given set G. As already mentioned in Section 3.1, if G is a
Gröbner basis, the order in which elements of G are selected for reduction is not relevant
for the NORMAL-FORM algorithm. But in case G is not a Gröbner basis, the order in
which elements of G are selected for reduction can effect the result of the remainder since
the NORMAL-FORM algorithm transformes the set G into an ordered n-tuple. Thus, a
stronger definition of the concept of reduction modulo G is needed.
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Algorithm 3.7 GRÖBNER-BASIS-2(F )
Input: A finite set of interreduced polynomials F ⊆ K[x].
Output: A Gröbner Basis G for the ideal Ideal(F ).
G := F ;
B := {S(f, g) | f, g ∈ F, f 6= g}; { S(f, g) as defined in Corollary (3.6)}
while B 6= ∅ do

B := B \ Si; {Remove one S-polynomial from B}
h := NORMAL-FORM(Si, G);
G-tuple := N-TUPLE(G); {gj ∈ G-tuple}
if h 6= 0 then

for j := 1 to |G| do
h′ := NORMAL-FORM(gj , {h});
if (h′ 6= gj) then

G := G \ gj ;
Bhelp := {S(gj , g) | g ∈ G} ∪ {S(g, gj) | g ∈ G};
B := B \Bhelp;
if (h′ 6= 0) then

B := B ∪ {S(h′, g) | g ∈ G};
G := G ∪ {h′};

else
B := B ∪ {S(h, g) | S(gj , g) ∨ S(g, gj) ∈ Bhelp};
G := G ∪ {h};

end if
end if

end for
end if

end while
return G ;

DEFINITION 3.14
Let >

A
be a monomial ordering and let G = {g1, · · · , gq} be a subset in K[x1, · · · , xn] =

K[x]. Then, f ∈ K[x] is reduced to zero modulo G, written f −→G 0, if f can be
expressed in the form:

f = a1g1 + · · ·+ atgt, (3.16)

such that whenever aigi 6= 0, the following holds: multideg(f) ≥ multideg(aigi).

LEMMA 3.19 Let G = {g1, · · · , gq} be an ordered set of elements of K[x] and let f ∈
K[x]. Then f

G−→
∗

0 implies f −→G 0, but not vice versa.

EXAMPLE 3.13
Consider the following polynomial f = xy2−x and the set G = {xy +1, y2−1}. Applying

the NORMAL-FORM algorithm results in f
G−→
∗

(−x − y) 6= 0 since the first element

of G is taken first for reduction: f = xy2 − x = y · (xy + 1) + 0 · (y2 − 1) + (−x − y).
Using the reduction from Definition 3.14 instead, one yields f −→G 0 because f equals to
f = xy2 − x = 0 · (xy + 1) + x · (y2 − 1) + 0.
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THEOREM 3.20 A basis G = {g1, · · · , gq} for an ideal J is a Gröbner basis iff
S(gi, gj) −→G 0 for all i 6= j.

Theorem 3.20 provides a more general version of Definition 3.5 from Section 3.1. The next
corollary describes certain S-polynomials which are guaranteed to reduce to zero.

COROLLARY 3.21 Given a finite set G ⊂ K[x]. If the head terms of f, g ∈ G are rela-
tively prime, i.e. LCM(hterm(f), hterm(g)) = hterm(f)·hterm(g), then the S-polynomial
of f and g reduces to zero modulo G: S(f, g) −→G 0.

Proof:
Assume that hcoef(f) = hcoef(g) = 1 and express f and g as f = hterm(f) + p and
g = hterm(g) + q, respectively. It follows from the definition of S-polynomials that:

S(f, g) = hterm(g) · f − hterm(f) · g
= (g − q) · f − (f − p) · g
= g · f − g · f − f · g + p · g
= p · g − q · f.

In addition, one has to show that multideg(S(f, g)) = max(multideg(pg),multideg(qf)),
in order to prove that S(f, g) −→G 0.

�
The next example illustrates the effectiveness of Corollary 3.21.

EXAMPLE 3.14
Let G = {yz + y, x3 + y, z4} be a set of polynomials and let the monomial ordering
be total degree ordering. Then, S(x3 + y, z4) −→G 0 applying Corollary 3.21, whereas
using the NORMAL-FORM algorithm the following is computed: S(x3 + y, z4) G−→

∗
y.

This is because the S-polynomial S(x3 + y, z4) = yz4 is reduced by yz − y to y: yz4 =
(z3 − z2 − z − 1) · (yz − y) + y.

Therefore, in Buchberger’s algorithm only those S-polynomials S(f, g) have to be checked
for reducibility to zero, where hterm(f) and hterm(g) are not relatively prime.

Another valuable improvement can be deduced from the role of S-polynomials in general.
The name S-polynomial is an abbreviation for “syzygy polynomial”, where the word syzygy
comes from the greek word meaning “yoke”. Thus, the properties of S-polynomials are
studied in the following.

DEFINITION 3.15
Let F = {f1, · · · , fp} be a set of polynomials. A syzygy on the set of head mono-
mials {hmono(fi) | 1 ≤ i ≤ p} of F is a p-tuple of polynomials S = (h1, · · · , hp) ∈
(K[x1, · · · , xn])p such that

∑p
i=1 hi ·hmono(fi) = 0. The subset of (K[x1, · · · , xn])p which

consists of all syzygies on the head monomials of F is indicated by S(F ).

The next example visualizes the definition of a syzygy.

EXAMPLE 3.15
Let F = {x, x2+z, y+z} be a set of polynomials in K[x, y, z]. Fix lexicographic ordering as
a monomial ordering. Then S = (−x+ y, 1,−x) ∈ (K[x, y, z])3 is an example for a syzygy
of S(F ) since (−x+y)·hmono(x)+1·hmono(x2+z)+(−x)·(y+z) = −x2+yx+x2−xy = 0.
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Now, the connection between syzygies and S-polynomials is developed. Let ei be the
vector ei = (0, 0, · · · , 1, 0, · · · , 0) ∈ (K[x])p, where 1 is in the i th place. Then, a syzygy
S can also be expressed as a vector S =

∑p
i=1 hi · ei. The syzygies that belong to the

S-polynomials (also called syzygy-polynomials) from Buchberger’s Gröbner basis charac-
terization in Definition 3.5 are given by:

Sij =
m

hmono(fi)
ei −

m

hmono(fj)
ej , (3.17)

where m = LCM(hterm(fi), hterm(fj)) for a set of two polynomials from F with i < j.
Sij is a syzygy on the head monomials of F . The set of syzygies S(F ) is closed under
coordinate-wise sums and also under coordinate-wise multiplication with polynomials.
S(F ) has a finite basis, such that every syzygy of S(F ) can be described as a linear
combination of the basis syzygies.

For the next definition, recall the definition of the multidegree of a polynomial as given
by Definition 2.39 from Section 2.2.

DEFINITION 3.16
An element S ∈ S(F ) is homogeneous of multidegree α, where α ∈ Zn

≥0, if S has the
following structure:

S = (c1xα(1), · · · , cpxα(p)),

with ci ∈ K and α(i) + multideg(fi) = α whenever ci 6= 0.

LEMMA 3.22 Every element of S(F ) can be written uniquely as a sum of homogeneous
elements of S(F ).

This lemma can be easily illustrated as follows: Suppose S = (h1, · · · , hp) ∈ S(F ). Ac-
cording to the definition of a syzygy, it must be

∑p
i=1 hihmono(fi) = 0. For a given

α ∈ Zn
≥0, hiα defines the term of hi (if any) such that hiαhmono(fi) has multidegree α.

Then it follows that
∑p

i=1 hiαhmono(fi) also equals to 0 since the hiαhmono(fi) compose
all terms of multidegree α in

∑p
i=1 hihmono(fi) = 0. Thus, Sα = (h1α, · · · , hpα) is a

homogeneous element of S(F ) of multidegree α and S =
∑

α Sα.

COROLLARY 3.23 Given a set of polynomials F = (f1, · · · , fp), every syszgy S ∈ S(F )
can be written as

S =
∑
i<j

uijSij ,

where uij ∈ K[x1, · · · , xn] and the syzygy Sij is defined as in Corollary (3.17).

It follows from Corollary 3.23, that the Sij ’s are a basis of all syzygies on the head mono-
mials of F . This also illustrates that S-polynomials account for all possible cancellations of
head monomials. Coming back to the issue of how to reduce the number of S-polynomials
to be considered in Buchberger’s algorithm, it turns out that some of the Sij ’s can be
neglected because not always all of the Sij ’s are needed to create all syzygies in S(F ).
Consider the following example.
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EXAMPLE 3.16
Given the following set of polynomials F = {x2y2 + xy2− y, x2y + yz} ∈ K[x, y, z] and let
the monomial ordering be lexicographic ordering. Then, one can compute that the three
syzygies belonging to the S-polynomials are equal to:

S12 = (1,−x, 0), S13 = (1, 0,−y) and S23 = (0, x,−y).

For example, S23 is redundant since it can be expressed as a linear combination of S12

and S13: S23 = S13 − S12 and thus can be eliminated from the basis. Therefore, the set
{S12, S13} forms a basis for the syzygies. (It is also possible to express S12 or S13 as a
linear combination of the other two, respectively.)

The following theorem presents a refined definition of a Gröbner basis compared to Defi-
nition 3.5 from Buchberger’s Characterization. If the basis {Sij} is used for the syzygies
S(G), then the polynomials Sij ·G are precisely the S-polynomials S(gi, gj).

THEOREM 3.24 A basis G = {g1, · · · , gq} for an ideal J = Ideal(f1, · · · , fp) is a
Gröbner basis iff for every element Sj = (hj1, · · · , hjt) in a homogeneous basis S =
{S1, · · · , Ss} for the syzygies S(G) it holds that:

Sj ·G =
t∑

i=1

hji · gi −→G 0. (3.18)

Observe that if the basis {Sij} is used for the syzygies S(G), then the polynomials Sij ·G
to be tested compose the special case of the S-polynomials S(gi, gj).

COROLLARY 3.25 Given G = {g1, · · · , gq}, suppose a subset S ⊂ {Sij | 1 ≤ i < j ≤ t}
which is a basis of S(G). Assume distinct gi, gj , gk ∈ G such that hmono(gk) divides
LCM(hmono(gi), hmono(gj)). If Sik, Sjk ∈ S, then S \ {Sij} is also a basis of S(G).
(Note that if i > j then Sij = Sji.)

Proof:
Assume that i < j < k. Let mij = LCM(hterm(gi), hterm(gj)) and let mik and mjk be
defined in the same way. If there are distinct gi, gj , gk ∈ G such that hmono(gk) divides
LCM(hmono(gi), hmono(gj)), then this implies that mik and mjk also both divide mij .
The reason for this is because hmono(gk) is a factor of mik and mjk since the hcoef(gk)
can be neglected here. In order to show, that S \ {Sij} is also a basis of S(G), one has to
prove that Sij is a linear combination of Sik and Sjk. Using Corollary (3.17) for Sik and
Sjk, it follows that:

Sij =
mij

mik
Sik −

mij

mjk
Sjk

=
mij

mik
(

mik

hmomo(fi)
ei −

mik

hmono(fk)
ek)−

mij

mjk
(

mjk

hmomo(fj)
ej −

mjk

hmono(fk)
ek)

=
mij

hmomo(fi)
ei −

mij

hmono(fj)
ej

�
Corollary 3.25 states which elements of the basis {Sij} can be omitted. Therefore, ordered
pairs (i, j) are used to denote the syzygies and the corresponding S-polynomials. The fol-
lowing version of Buchberger’s algorithm, Algorithm 3.8, includes the improvements which
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can be achieved by Corollary 3.21 and Corollary 3.25. The algorithm starts with all Sij ’s
(the set of all ordered pairs B), which are known to be a basis of S(G) from Corollary 3.23.
It then takes then only those syzygies and computes the remainder of corresponding S-
polynomials with the NORMAL-FORM algorithm, for which neither Corollary 3.21 nor
Corollary 3.25 apply. Corallary 3.25 is implemented in the CRITERION algorithm which
is presented in Algorithm 3.9. In the CRITERION algorithm, the pair [i, j] is defined as:

[i, j] =

{
(i, j) if i < j

(j, i) if i > j,
(3.19)

because sometimes for a given i 6= j one does know which one is larger. If the pairs [i, k]
and [j, k] are not in the set of ordered pairs B, then they must have been removed earlier
and thus Sik and Sjk have already been computed to be in the basis S. Then, Sij does not
have to be considered since S \ {Sij} is also a basis of S(G).

Algorithm 3.8 GRÖBNER-BASIS-3(F )
Input: A finite set of polynomials F ⊆ K[x].
Output: A Gröbner Basis G for the ideal Ideal(F ).
G := F ; t := |G|;
G-tuple := N-TUPLE(G); {fi, fj ∈ G-tuple}
B := {(i, j) | 1 ≤ i < j ≤ t}; {ordered pairs (i, j) to denote the syzygies}
while B 6= ∅ do

B := B \ (i, j); {Remove one “syzygy” from B}
if (LCM(hmono(fi), hmono(fj)) 6= hmono(fi)hmono(fj))
and (¬CRETERION(fi, fj , F, B) then

S := S(fi, fj);
h := NORMAL-FORM(S, G);
if h 6= 0 then

t := t + 1; ft := h;
G := G ∪ {ft};
G-tuple := N-TUPLE(G); {fi, fj ∈ G-tuple}
B := B ∪ {(i, t) | 1 ≤ i ≤ t− 1};

end if
end if

end while
return G ;

For a detailed proof of this algorithm, please refer to [CLO96].

3.3 Assessments of Gröbner Basis Methods

The basic Gröbner basis method can decide the existential problem for a system of real
non-linear multivariate polynomials in any algebraically closed field by applying the ideal
membership question for the following class of formulas:

(quantifiers) (arbitrary boolean combination of polynomial equations), (3.20)
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Algorithm 3.9 CRITERION(fi, fj , F, B)
Input: Two polynomials fi and fj from the set F of polynomials and the set B of
ordered pairs to denote the syzygies and corresponding S-polynomials.
Output: TRUE or FALSE.
output := FALSE; k := 1;
mij := LCM(hmono(fi), hmono(fj));
while (k 6= |F |+ 1) and (¬output) do

if (k 6= i) and (k 6= j) then
if ([i, k] 6∈ B) and ([j, k] 6∈ B) and (hmono(fk) divides mij) then

output := TRUE;
else

k := k + 1;
end if

end if
end while
return output ;

where all quantifieres are either ∃ or ∀. Furthermore, the formula must be closed, i.e.
no free variables may occur. Any polynomial inequation f 6= 0 can be transformed to a
polynomial equation u · f = 1, where u is a new variable (slack variable). Inequalities
containing ordering relations such as <,>,≤ and ≥ cannot be handled with this method.
It is not completely possible to use the basic Gröbner basis method in a field K which is not
algebraically closed because it then only works in one direction. In this case, the method
provides the results for the algebraic closure of K. This applies also to the interesting
field of the reals and the complex’ as their algebraic closure. Posing the decision problem
for a system of real non-linear multivariate polynomials, one can only conclude that it
has no common real zeros if and only if it has no common complex zeros. (In this case,
the Gröbner basis contains a constant polynomial.) On the other hand, if the system
has common complex zeros, one cannot deduce if it has also real ones since R is not
algebraically closed.

In the application field of geometrical theorem proving, the basic Gröbner basis method
can be used to verify the following class of geometrical theorems:

∀x ∈ R((h1 = 0 ∧ · · · ∧ hr = 0 ∧ d1 6= 0 ∧ · · · ∧ dt 6= 0) =⇒ c = 0), (3.21)

where h1, · · · , hr denote the hypotheses, d1, · · · , dt indicates the degenerate situations and
c represents the conclusion. The hypotheses, degenerate situations, and the conclusion
have to be expressed as polynomial expressions. The geometrical theorem is proved by
moving the problem from R to its algebraic closure C and then by solving the radical
membership question for c, i.e c ∈ Ideal(h1, · · · , hr, u1 · d1 − 1, · · · , ut · dt − 1, v · c − 1).
Again, any polynomial inequation can be transformed to a polynomial equation using slack
variables. Inequalities involving ordering relations such as <,>,≤ and ≥ cannot be treated
with this method. Geometrical theorems can only be confirmed but not refuted for the
same reason again, that R is not algebraically closed and the problem has to be shifted
to its algebraic closure C in order to apply Gröbner bases. Therefore, if a geometrical
theorem holds over C then it also holds over R. The reverse cannot be implied in general.
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Gröbner bases can be used to solve a system of real non-linear multivariate polynomials if
the ideal generated by these polynomials is zero-dimensional, which means that the system
has finitely many solutions. Thus, the enumeration question as defined in the introduction
can be answered. Therefore, two methods have been presented: the elimination method
and the univariate-polynomial method. These two methods can be improved using alge-
braic numbers to represent the exact solutions. If it is possible to answer the enumeration
question, one can also easily answer the existential and the counting question.

The consistency problem for a system of real non-linear multivariate polynomial equations
and inequations can be solved by a method which counts the real zeros under one side
condition. However, this approach is also constrained to zero dimensional ideals. Given a
set of polynomials F = {f1, · · · , fp} and a side condition h in K[x1, · · · , xn], this method
counts the zeros in Rn for which fi(x1, · · · , xn) = 0 for all 1 ≤ i ≤ p and h(x1, · · · , xn)ρ 0,
where ρ ∈ {<,=, >}. Inequalities are transformed to equations as explained before. In-
equalities including ordering relations such as <,>,≤ and ≥ can occur only once in this
basic version and that is in the side condition. Having more than one inequality, one has
to apply the extended version of this approach, which allows finitely many side conditions.
Given a set of polynomials F = {f1, · · · , fp} and finitely many side conditions (h1, · · · , hs)
in K[x1, · · · , xn], the extended method counts the zeros in Rn for which fi(x1, · · · , xn) = 0
for all 1 ≤ i ≤ p and hj(x1, · · · , xn) ρ 0 for all 1 ≤ j ≤ s and where ρ ∈ {<,=, >}. Thus,
this method can solve the quantifier elimination problem for the elementary theory of the
reals for zero-dimensional ideals. It can handle the following type of formulas:

∃x1 · · ·xk(
p∧

i=1

fi(x1, · · · , xn) = 0 ∧
s∧

i=1

hi(x1, · · · , xn) ρ 0), (3.22)

with 1 ≤ k ≤ n, fi, hi ∈ Q[x1, · · · , xn] and ρ ∈ {<,=, >}. Formulas of the form ∀x(ϕ) for
any quantifier-free formula ϕ can be managed by inverting them to their equivalent form
¬∃x(¬ϕ)).

The complexity of Buchberger’s algorithm is still an active area of research. One can still
generate examples of ideals for which the computation of a Gröbner basis exceeds time or
storage limits. The reason for this is that the total degree of intermediate polynomials can
become very huge. Moreover, the rational coefficients of the Gröbner basis generators can
be quite complicated, even though the coefficients of the input polynomials which create
the ideal are small integers. In literature, several upper worst case bounds on the degrees
of intermediate polynomials have been depicted. However, time and storage capacities
required by the algorithm seem to be less extreme in the average case. Additionally,
computing geometric information is less complex.

In general, computing Gröbner Bases with respect to lexicographic ordering needs
more computation time than using total degree ordering or reverse lexicographic order-
ing. Therefore, it might be important to convert between Gröbner bases with respect to
different admissible monomial orderings, as for example in the application field of implic-
itizations for surfaces in polynomial parametric form. In [Tra00], Tran presents a fast
algorithm that computes for a given reduced Gröbner basis of an ideal J ⊂ K[x1, · · · , xn]
with respect to an admissible ordering a reduced Gröbner basis of J with respect to an-
other admissible ordering without applying Buchberger’s algorithm. The precedence of
the variables involved also seems to play an important role concerning complexity issues.
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Considering a decision problem in an incremental situation as described in the introduc-
tion, one can observe that the Gröbner basis method is applicable for it. A version of
Buchberger’s algorithm is requested that computes a new Gröbner basis from a given
Gröbner basis and an additional polynomial. This version does not have to consider S-
polynomials which are constructed from elements of the old Gröbner basis G because all
of those S-polynomials are reducible by G as stated in Definition 3.5. Thus, only those
S-polynomials generated from the additional polynomial and a generator of G need to be
treated. The Algorithm 3.10 presents this version of Buchberger’s algorithm.

Algorithm 3.10 GRÖBNER-BASIS-4(G, f)
Input: A Gröbner basis G ⊆ K[x] and an additional polynomial f .
Output: A new Gröbner basis Gnew for the ideal Ideal(G, f).
Gnew := G;
B := {S(f, g) | g ∈ G}; { S(f, g) as defined in Corollary (3.6)}
while B 6= ∅ do

B := B \ Si; {Remove one S-polynomial from B}
h := NORMAL-FORM(Si, Gnew);
if h 6= 0 then

B := B ∪ {S(g, h) | g ∈ Gnew};
Gnew := Gnew ∪ {h};

end if
end while
return Gnew ;

While traversing the tree-structure of polynomials, the Gröbner basis at each node and
leaf has to be saved for the purpose of backtracking. Backtracking needs to be performed
in case a new Gröbner basis leads to an inconsistent set of polynomials.
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Chapter 4

Solving the Decision Problem
using Cylindrical Algebraic
Decomposition

In this chapter, Collins’ constructive quantifier elimination method of finding a real so-
lution to a system of non-linear multivariate polynomial equations and inequations, a
real polynomial system, is analyzed to solve the decision problem with respect to the
application background of automated reasoning with description logics. The Cylindrical
Algebraic Decomposition (CAD) algorithm was discovered by Collins in 1973, [Col98], as
a basic tool for his effective method for quantifier elmination in real closed fields. This
chapter starts with a presentation of Collins’ CAD algorithm. Real algebraic numbers are
the basic objects of the CAD algorithm. Therefore, the representation of real algebraic
numbers as well as the calculation with real algebraic numbers are considered in a separate
section. The chapter concludes with assessments of Collin’s method.

4.1 Collins’ CAD Algorithm

This section is mainly based on [Jir95] and [ACM98]. First of all, the main algebraic con-
cepts for cylindrical algebraic decompositon are introduced followed by an introductory
example in order to explain the general outline of Collins’ Cylindrical Algebraic Decom-
position (CAD). In general, a cylindrical algebraic decomposition of Rn partitions Rn into
connected subsets, called cells, on which each of the polynomials has constant sign.

DEFINITION 4.1
A region R is a connected subset of Rn.
The set Z(R) = R× R = {(α, x) | α ∈ R, x ∈ R} is called a cylinder over R.
Let f, f1, f2 be continuous, real-valued functions on R. A f-section of Z(R) is the set
{α, f(α)) | α ∈ R} and a (f1, f2) -sector of Z(R) is the set {(α, β) | α ∈ R, f1(α) < β <
f2(α)}.
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Figure 4.1: Geometrical interpretations of Definition 4.1(Figure taken from [Jir95]).

DEFINITION 4.2
Let X ⊆ Rn. A decomposition of X is a finite collection of disjoint regions (components)
whose union is X:

X =
k⋃

i=1

Xi, Xi ∩Xj = ∅, i 6= j

DEFINITION 4.3
A stack over R is a decomposition of a cylinder Z(R) which consists of fi -sections and
(fi, fi+1) -sectors, where f0 < . . . < fk+1 for all x ∈ R and f0 = −∞, fk+1 = +∞.

DEFINITION 4.4
A decomposition D of Rn is cylindrical if either n = 1 and D is a partition of R1 into
a finite set of numbers and a finite set of open intervals bounded by these numbers, −∞
and +∞ or n > 1 and Dn−1 = X1 ∩ . . . ∩Xk is a cylindrical decomposition of Rn−1 and
over each Xi there is a stack which is a subset of D.

DEFINITION 4.5
A decomposition is algebraic if each of its components is a semi-algebraic set.

DEFINITION 4.6
A cylindrical algebraic decomposition (CAD) of Rn is a decomposition which is
both cylindrical and algebraic. The components of a CAD are called cells.
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DEFINITION 4.7
Let X ⊆ Rn and f ∈ K[x1, . . . , xn]. The polynomial f is invariant on X or one can
equally say X is f-invariant iff one of the following conditions holds for the corresponding
polynomial function f(x):

(i) ∀x ∈ X : f(x) > 0

(ii) ∀x ∈ X : f(x) = 0

(iii) ∀x ∈ X : f(x) < 0

The set F = f1, . . . , fr ⊂ K[x1, . . . , xn] of polynomials is invariant on X or X is F
-invariant iff each fi is invariant on X.

DEFINITION 4.8
Let f be a polynomial ∈ Z[x1, . . . , xn], n ≥ 1 and R be a region in Rn−1. Then, f is called
delineable on R if the portion of ZERO(f) lying in Z(R) consists of s disjoint sections
of Z(R), for some s ≥ 0.

ZERO(f )1

ZERO(f )2

ZERO(f )3

R

ZERO(f )1

ZERO(f )2

ZERO(f )3

R1 R2R3R4R5

Figure 4.2: Illustration of the delineability feature (Figure taken from [ACM98]).

Figure 4.2 illustrates Definition 4.8. On the left hand side of the figure, region R is
shown with the zero sets of three bivariate polynominals f1, f2 and f3. f1 and f2 are
delineable on R. The delineability condition does not hold for f3 because its zero set is
self-crossing. The right hand drawing presents a partition of region R into five smaller
regions R1,R2, · · · ,R5, such that all three polynomials are delineable on all regions
R1,R2, · · · ,R5. If a set of polynomials F ∈ K[x1, . . . , xn−1][xn] is delineable on a re-
gion R, one can rise a stack over R which is obviously F-invariant. The delineability
property implies that the total number of complex roots (counting multiplicity), the num-
ber of distinct complex roots, and the total number of common complex roots (count-
ing multiplicity) of every fi ∈ F remains invariant as α varies over the coefficient field
K[x1, . . . , xn−1]. A proof can be found in [Mis93].

The following example is presented as an introductory example.

EXAMPLE 4.1
Given the real polynomial system:

x2
1 + x2

2 − 1 < 0

x3
1 − x2

2 = 0.
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x1

x2

dot

patch

arc

Figure 4.3: Zero sets of the polynomial system.

The task is to determine, whether the semi-algebraic set of the given real polynomial
system is empty or not, considering only real solutions. The defining polynomials are pro-
jected onto the x1-axis such that the roots of the received univariate polynomials represent
their singularities and vertical tangent points. Singularities are points like selfcrossings,
isolated points and cusps. Points at which their tangent is vertical are called vertical
tangent points. With this projection, R1 is decomposed into points and several open in-
tervals. The open intervals are located inbetween two adjacent points as well as before and
after the first and last point, respectively. “Drawing” vertical lines over each point, one
receives vertical stripes over each open interval. The vertical lines consist of finitely many
disjoint dots and straight arcs, whereas the vertical stripes contain finitely many arcs
and patches of space. All these dots, arcs and patches constitute the cylindrical algebraic
decomposition, for short also called CAD, of the plane in this example. Analyzing the
sign of the polynomials in each element of the decomposition yields the solution.

All these open and closed intervals are regions according to Definition 4.1. Over all
open and closed intervals, stacks are constructed, such that the fi -sections and (fi, fi+1)
-sectors do not cross each other. The projection has to be performed in such a way that
it is guaranteed to be able to build a stack over each region in each dimension.

Coming back to Example 4.1, the question is to determine whether the real polynomial
system has a common real zero set. In Figure 4.3, the zero sets of the two defining
polynomials are shown. The zero set of the first polynomial equation consists of each
point inside the drawn circle excluding the points on the circle itself, whereas the zero
set for the second one contains each point on the two hyperbola branches. Obviously,
the common real zero set of the real polynomial system is defined by all points on the
two hyperbola branches from the origin of the coordinate system up to the circle. Using
the CAD algorithm from Collins’, one simply has to perform one single projection from
R2to R1 since this example is only two-dimensional. The zeros of this projection define
the singularities andvertical tangent points, which are represented by the 4 black dots on
the x1-axis. From left to right, the first dot is a vertical tangent point, the second one
denotes a cusp, the third stands for the crossing point of the two zero sets of the input
polynomials and the latter point is again a vertical tangent point. In a second step the
x1-axis is decomposed into several intervals according to the previous projection. The zero
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points of the projection constitute to closed point intervals and at the same time depict
the borders for the open intervals. The open intervals lie inbetween two adjacent zero
points and before and after the first and last zero point up to negative or positive infinity,
respectively. As a whole, there are 9 intervals. A sample point for each interval is selected.
Finally, the decomposition of R1 has to be extended back to R2. This means that a stack
has to be constructed over each region of the decomposition of R1. Therefore, each of
the sample points is inserted into the set of polynomials of the next higher dimension,
which is in this case R2. One receives again polynomials in one variable whose zero sets
can be calculated. These zero points are the basis for the decomposition of the vertical
line or the vertical stripe over the chosen cell of R1. Sample points are also determined
for the intervals. Together with the decomposition of R1, this results in a decomposition
of the two-dimensional space. A sample point of a two-dimensional cell consists in the
first coordinate of a sample point from the decomposition of the x1-axis and in the second
coordinate of a sample point from the decomposition in the second variable x2 over the
first coordinate. The signs of the defining polynomials are then evaluated for all the cells of
this two-dimensional cylindrical algebraic decomposition. This is simply done by inserting
the sample point of every cell into the polynomial equations. If any cell can be found in
this example for which the sign of the first polynomial is negative and for which the sign
of the second one is equal to zero, then the real polynomial system has a real solution.

The basic outline of Collins’ CAD algorithm in Rn is as follows:

• Successive projection of the set of polynomials into Rn−1, · · · , R1. The zeros of each
set depict the “signature” of the singularities and vertical tangent points of the next
higher dimensional space.

• Computation of the roots of the polynomials in R1, decomposition of R1 into points
and open intervals and determination of sample points for each interval.

• Extension of the decomposition of R1 to R2, · · · , Rn.

The important question is how to define a projection such that a stack can always be
constructed over each region in every n-dimensional space. First, the desired properties
of such a projection operator have to be defined. In the following, the projection operator
is called PROJECTION. The desired properties are:

• Any PROJECTION(F)-invariant cylindrical algebraic decomposition of Rn−1 is in-
duced by some F-invarant cylindrical algebraic decomposition of Rn, where F is a
set of input polynomials.

• For any PROJECTION(F)-invariant region R the following conditions hold:

(i) Each fi ∈ F is either delineable or identical zero on R.

(ii) The sections of Z(R) belonging to different fi, fj are either disjoint or identical.

Now, the first part of the projection operator is developed. The next theorem provides
the basis for this.

THEOREM 4.1 Let f ∈ K[x1, . . . , xn−1][xn] and let R be a region in Rn−1. fα denotes
f(α, xn), where α ∈ Rn−1. Suppose that deg(fα) is constant and nonnegative for α ∈ R.
If the least k such that psck(fα, f ′α) 6= 0 is constant for α ∈ R, then f is delineable on R.
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DEFINITION 4.9 (PROJECTION1(F))
Let F = {f1, · · · , fp}, p ≥ 1 be a set of polynomials in K[x1, . . . , xn−1][xn]. The first part of
the projection operator is denoted by PROJECTION1 such that PROJECTION1(F) ⊂
K[x1, . . . , xn−2][xn−1]. For each i, 1 ≤ i ≤ p, let Ri = RED(fi). Then
PROJECTION1(F) is defined as follows:

PROJECTION1(F) =
p⋃

i=1

⋃
Gi∈Ri

({HEADCOEF (Gi)} ∪ PSC(Gi, G
′
i)). (4.1)

Given a PROJECTION1(F)-invariant region R, Theorem 4.1 implies for each fi ∈ F
that deg((fi)α) is constant ∀α ∈ R. Consider Example 2.9 from the Section 2.2 again. The
degree of f(x, y, z) changes for different regionsR in K[x, y]. IfR is the region disjoint from
the unit circle, then f(x, y, z) has degree 3 ∀α ∈ R. f(x, y, z) equals the zero polynomial,
in case region R contains only the point (1,0) from the unit circle. If R is a subset of
the unit circle, except the point (1,0), then f(x, y, z) is of degree 2. All these different
cases are taken into consideration by the projection operator since all the head coefficients
of each element of the set of reducta of f(x, y, z) are included in the set of polynomials
for the projection. If for every fi ∈ F holds that deg((fi)α) is constant ∀α ∈ R, it also
means that the total number of complex roots of fi with counting multiplicity remains
invariant as α varies over R. The invariance of the principle subresultant coefficient set of
any element of the set of reducta of f(x, y, z) and its derivative, denoted by PSC(Gi, G

′
i)

in Equation (4.1), provides that the greatest common divisor of each polynomial and its
derivative has constant degree according to Lemma 2.9. Applying Lemma 2.8 and using
the invariance of deg((fi)α), denoted by HEADCOEF (Gi) in equation 4.1, it can be
derived that the number of distinct complex zeros of each polynomial in F is constant, as
α varies over R. For a detailed proof, please refer to [Col98] and [Mis93].

Now, the main theorem for the second part of the projection operator is formulated as
well as the definition of it is presented.

THEOREM 4.2 Let F ∈ K[x1, . . . , xn−1][xn] and let R be a region in Rn−1. Suppose
that for every f ∈ F , the hypotheses of Theorem 4.1 are satisfied. Suppose also that for
every f, g ∈ F , f 6= g, the least k such that psck(fα, gα) 6= 0 is constant for α ∈ R. Then
every f ∈ F is delineable on R and for every f, g ∈ F , any f-section and any g-section of
Z(R) are either disjoint or identical.

DEFINITION 4.10 (PROJECTION2(F))
Let F = {f1, · · · , fp}, p ≥ 1, be a set of polynomials in K[x1, . . . , xn−1][xn]. For each i,
1 ≤ i ≤ p, let Ri = RED(fi). Then, the second part of the projection operator, denoted
by PROJECTION2, is defined as follows:

PROJECTION2(F) =
⋃

1≤i<j≤p

⋃
Gi∈Ri & Gj∈Rj

PSC(Gi, Gj). (4.2)

The invariance of PROJECTION2(F) in addition to the fact that deg((fi)α) as well
as deg((fj)α) are constant according to the definition of PROJECTION1(F) in Corol-
lary (4.1) causes the total number of common complex roots of fi and fj for every
1 ≤ i < j ≤ p to remain invariant as α varies over R. This is achieved in Corollary (4.2)
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by including the principle subresultant coefficient set of any element of the set of reducta
of fi and fj respectively, denoted by PSC(Gi, Gj). The invariance of the lattersupplies
again that the greatest common divisor of each polynomial of the set of reducta of fi and
fj has constant degree according to Lemma 2.9. Finally, it can be derived that the number
of common complexzeros of fi and fj stays invariant as α varies over R using Lemma 2.7
and applying the invariance of deg((fi)α). The proof is omitted here. [Col98] and [Mis93]
provide a more detailed explanation.

The complete projection operator, denoted by PROJECTION(F), is then defined to
be the union of the first and the second part of the projection operator as given by
Corollary (4.1) and Corollary (4.2) respectively:

PROJECTION(F) = PROJECTION1(F) + PROJECTION2(F). (4.3)

With the definition of the projection operator, the algorithm for cylindrical algebraic
decomposition (CAD algorithm) can now be explained in detail. The CAD algorithm is
used to answer the question whether a real polynomial system has a common real solution.
It takes a set F of multivariate polynomials as input and provides an F-invariant cylindrical
algebraic decomposition of Rn as output. As already stated above, the CAD algorithm
consists of three parts: the projection phase, the base phase and the extension phase.

The projection phase takes the set F = f1, · · · , fp ⊂ R[x1, · · · , xn] of input polynomials
and applies the projection operator recursively n − 1 times. This results in successive
projections of the set of input polynomials into Rn−1, · · · , R1. n denotes the number
of variables. In each step, a new set of polynomials is constructed and the number of
variables is decreased by one. The zero set of each projection set of polynomials depicts
“significant” points of the zero sets of the preceeding higher dimensional projection set.

Let F = f1, · · · , fp, PROJECTION0(F) = F and
PROJECTION j(F) = PROJECTION(PROJECTION j−1(F)) for 1 ≤ j ≤ n − 1.
Then, the following projection sets are obtained:

Fn = F ⊂ R[x1, · · · , xn]

Fn−1 = PROJECTION1(F) ⊂ R[x1, · · · , xn−1]

Fn−2 = PROJECTION2(F) ⊂ R[x1, · · · , xn−2]
...

F1 = PROJECTIONn−1(F) ⊂ R[x1]

In the base phase, the real roots of the univariate polynomials of the last projection
set PROJECTIONn−1(F) are isolated. They define a sign invariant decomposition of
R1 into points and open intervals. The points or zeros can also be considered as closed
intervals. For each closed and open interval a sample point of the decomposition of R1 is
chosen. This means the zeros themselves are selected as well as one intermediate point for
each open interval.

Let F j = fj,1, · · · , fj,p and take j = 1 here. (The j in F j corresponds to the dimension
of polynomials in the projection sets.) Then the zeros αi of all polynomials fj,i in F j are
enumerated as follows:

−∞ < α1 < α2 < · · · < αs < +∞.
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The base phase provides the real root isolation of these enumerated zeros such that

α1 ∈ [u1, v1), · · · , αs ∈ [us, vs), where ui, vi ∈ Q.

These zeros are called algebraic numbers. For infinite precision numbers, special repre-
sentation mechanisms are needed. The next section presents different representations for
real algebraic numbers and provides algorithms for calculations with these numbers. Fi-
nally, the base phase performs the decomposition of R1 into points - the zeros - and open
intervals:

(−∞, α1), [α1, α1], (α1, α2), · · · , [αs, αs], (αs,∞)

and selects a sample point ξ for each cell (interval) c according to:

ξ =


α1 − 1, if c = (−∞, α1);
αi, if c = [αi, αi];
(αi + αi+1)/2, if c = (αi, αi+1);
αs + 1, if c = (αs,∞).

(4.4)

The extension phase takes the decomposition of R1 and extends it to R2 · · ·Rn. Sample
point constructions of all the cells of the CAD of Rn are performed in this phase. Starting
from the sample point construction of the base phase, a sample point ξ = (ξ1, ξ2) ∈ R2 for
each cell of the stack over the cells of the base decomposition is constructed. Successive
construction of sample points, repeated n − 1 times, results finally in sample points for
all cells of the CAD of Rn. To determine whether a real polynomial system has a real
solution, one only has to evaluate the signs of F for a sample point of each cell since F
remains invariant on each cell by this construction.

In order to extend a sign invariant decomposition Di−1 of Ri−1 to a sign invari-
ant decompositon Di of Ri the mathematical techniques from the base phase are ap-
plied, which means root isolation and choice of sample points. Suppose the base de-
compositon of R1 in terms of cells and sample points in one variable has been com-
puted. Then, the polynomials of the next higher dimensional projection set, given by
PROJECTIONn−2(F) ⊂ R[x1, x2], are evaluated over each sample point ξ ∈ c ⊂ D1,
where c denotes a cell. This evaluation yields a set of univariate polynomials for each
sample point ξ in the variable x2. Similar to the base phase, the roots of these polynomi-
als are isolated and the sample points constructed for each interval of the decomposition.
The received sample points represent the second component of a cell in R2, where the first
component denotes the sample point over which the stack has been constructed. This
corresponds to the geometical interpretation of raising vertical lines and stripes over the
closed and open intervals of the lower dimensional decomposition and computing the in-
tersections of these lines and stripes with the zero set of the next higher dimensional set of
projection. The presented process has to be repeated until all sample points of D3, · · · ,Dn

are completed. The CAD algorithm finally provides a list of cells and their sample points.
The cylindrical algebraic decomposition can be seen as a tree structure, where the first
level of nodes under the root belongs to the cells of R1, the second level to cells of R2, etc.

Now, the algorithm for cylindrical algebraic decomposition (CAD) is presented as it can be
used to answer the question whether a given real polynomial system has a common solution
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or not. The subsequent CAD algorithm takes the set of the polynomials from the given real
polynomial system as input and returns a list of sample points of the F-sign-invariant cylin-
drical algebraic decomposition of Rn. The BASE-DECOMPOSITION algorithm which is
used inside the CAD algorithm is provided here after. The REAL-ROOT-ISOLATION
algorithm requires information on algebraic numbers and thus is presented in Section 4.2.
To answer the decision problem, each element of the list of sample points is inserted into
the real polynomial system until one element is found which satisfies the real polynomial
system. If none of the sample points satisfies the real polynomial system, it does not have
a common real solution.

Algorithm 4.1 CAD(F)
Input: F = f0, · · · , fr ⊆ Q[x1, · · · , xn].
Output: A list of sample points of the F -sign-invariant CAD of Rn.
sp-ext-list := {}; sp-base-list := {}; sp-base1-list := {}; sp-base2-list := {};
if n = 1 then

sp-base-list := BASE-DECOMPOSTION(F); {sp-base-list : samplepoint-base-list}
return sp-base-list;

else
Fn−1 := PROJECTION(F);
for j = 2 to n− 1 do
Fn−j := PROJECTION(Fn−(j+1));

end for
sp-base1-list := BASE-DECOMPOSITION(F1);
for j = 2 to n do

n-sp-base1 := CARDINALITY(sp-base1-list);
for i = 1 to n-sp-base1 do

sp-base2-list := BASE-DECOMPOSITION(F j (sp-base1-listi));
n-sp-base2 := CARDINALITY(sp-base2-list);
for k = 1 to n-sp-base2 do

sp-ext-list := sp-ext-list + (sp-base1-listi, sp-base2-listk);
{sp-ext-list : samplepoint-extension-list}

end for
end for
sp-base1-list := sp-ext-list;
sp-ext-list := {};

end for
return sp-ext-list;

end if

EXAMPLE 4.2
This example is taken from [Jir95]. It determines the CAD in R2 for the set F = {f1, f2}
with the following polynomials

f1 = x2
2 − 2x1x2 + x4

1

f2 = (2431x1 − 3301)x2 − 2431x1 + 2685. (4.5)
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Algorithm 4.2 BASE-DECOMPOSITION(F)
Input: F = f0, · · · , fr ⊆ Q[x].
Output: A list of sample points for the decomposition of R1 according to Equation (4.4).
zero-list := {};
for i = 0 to r do

f-zero-list := REAL-ROOT-ISOLATION(fi);
zero-list := zero-list + f-zero-list;

end for
zero-list := SORT(zero-list);
z := CARDINALITY(zero-list);
sp-list := sp-list + (α0 − 1); {sp-list : samplepoint list}
for i = 0 to z − 2 do

sp-list := sp-list + (αi) + ((αi + αi+1)/2);
end for
sp-list := sp-list + (αz−1) + (αz−1 + 1);
return sp-list;

Figure 4.4 illustrates a sketch of the real zero sets of the preceeding polynomials.

x1

x2

2

1

1-1

-1

2

-2

-2

ZERO( )f1

ZERO( )f2

ZERO( )f2

Figure 4.4: A sketch of the real zero sets of the polynomials in Corollary (4.5) (Figure
taken from [Jir95]).

The CAD algorithm starts with the projection phase. First, the projection operator
from Corollary (4.3) is applied. This is done only once since the example is only two-
dimensional. Therefore, the set of reducta of f1 and f2 have to be computed first:

RED(f1) = {x2
2 − 2x1x2 + x4

1,−2x1x2 + x4
1, x

4
1} (4.6)

RED(f2) = {(2431x1 − 3301)x2 − 2431x1 + 2685,−2431x1 + 2685}. (4.7)

The projection is performed in such a way that the projection operators PROJECTION1

and PROJECTION2 from Corollary (4.1) and from Corollary (4.2) respectively are
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applied seperately to the polynomials f1 and f2. Hence, PROJECTION1(f1) is equal to
the union of the following sets:

PROJECTION1(f1) =

{{1,−2x1, x
4
1} ∪ PSC(f1, f

′
1) ∪ PSC(−2x1x2 + x4

1,−2x1) ∪ PSC(x4
1, 0)} (4.8)

The first set is received from the head coefficients with respect to the variable x2 of any
element in the set of reducta of f1, RED(f1), as given by Corollary (4.6). The other
three sets are now computed according to Definition 2.49. A psc set consists of all i th

principle subresultant coefficients from Corollary (2.28), where 0 < i ≤ min(m, h) and m
and h denote the degrees of the two considered polynomials. Hence, for the calculation
of PSC(f1, f

′
1) from Corollary (4.8), f1, f

′
1 are equal to f1 = x2

2 − 2x1x2 + x4
1 and f ′1 =

2x2 − 2x1 with degx2(f1) = 2 and degx2(f
′
1) = 1, respectively. Therefore, the sole element

of PSC(f1, f
′
1) is the 0 th principle subresultant coefficient, psc0 since the minimum of

degx2(f1) and degx2(f
′
1) is 1. To calculate the i th principle subresultant coefficient the

matrix Mi has to be constructed according to Definition 2.47. In this case, only M0 is
needed, which is equal to the Sylvestermatrix as defined by Corollary (2.25):

M0 = MATRIX((f1, x2 · f ′1, f ′1)) =

1 −2x1 x4
1

2 −2x1 0
0 2 −2x1

 .

Then, PSC(f1, f
′
1) = {psc0(f1, f

′
1)} with:

psc0(f1, f
′
1) = det(M (m+h−2i)

0 ) = det(M (2+1−2·0)
0 ) = det(M0) = 4x4

1 − 4x2
1. (4.9)

In the same manner PSC(−2x1x2 +x4
1,−2x1) from Corollary (4.8) is computed with g1 =

−2x1x2+x4
1 and g′1 = −2x1. The minimum of the degrees of the two polynomials is equal to

0 since degx2(g1) = 1 and degx2(g
′
1) = 0. Therefore, no i th principle subresultant coefficient

can be calculated and PSC(−2x1x2 + x4
1,−2x1) results in the empty set. The same

argument holds for the psc set PSC(x4
1, 0) because again both degrees of the polynomials

are equal to 0. Thus no principle subresultant coefficient can be determined. Altogether,
the projection of PROJECTION1(f1) yields:

PROJECTION1(f1) = {1,−2x1, x
4
1, 4x4

1 − 4x2
1}. (4.10)

Now, the projection operator PROJECTION1 is applied to the polynomial f2:

PROJECTION1(f2) =
{{2431x1 − 3301,−2431x1 + 2685} ∪ PSC(f2, f

′
2) ∪ PSC(−2431x1 + 2685, 0)} (4.11)

Again, the first set denotes the head coefficients with respect to the variable x2 of any
element in the set of reducta of f2, RED(f2), as given by Corollary (4.7). The second psc
set PSC(−2431x1 + 2685, 0) is equal to the empty set since the minimum of both degrees
results in 0. PSC(f2, f

′
2) is computed for the polynomials f2 = (2431x1 − 3301)x2 −

2431x1 + 2685 and f ′2 = 2431x1 − 3301 with the degrees degx2(f2) = 1 and degx2(f
′
2) = 0,

respectively. The minimium of both degrees can also be calculated to be 0 and thus
PSC(f2, f

′
2) = {}. Finally, the projection set of PROJECTION1(f2) is:

PROJECTION1(f2) = {2431x1 − 3301,−2431x1 + 2685}. (4.12)
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The second projection operator, PROJECTION2, is now used according to Corol-
lary (4.2). The projection contains all the psc sets of any element of the set of reducta of
f1 and f2:

PROJECTION2(F) =

{PSC(f1, f2) ∪ PSC(f1,−2431x1 + 2685) ∪ PSC(−2x1x2 + x4
1, f2) ∪

PSC(−2x1x2 + x4
1,−2431x1 + 2685) ∪ PSC(x4

1, f2) ∪ PSC(x4
1,−2431x1 + 2685)}

(4.13)

It can be easily verified that

PSC(f1,−2431x1 + 2685) = PSC(−2x1x2 + x4
1,−2431x1 + 2685)

= PSC(x4
1,−2431x1 + 2685) = {},

since degx2(−2431x1 + 2685) = 0 and therefore no i th principle subresultant coefficient
can be determined. The same is true for PSC(x4

1, f2) since degx2(x
4
1) = 0. The psc

set for f1 and f2 with degx2(f1) = 2 and degx2(f2) = 1 consists of one single element:
PSC(f1, f2) = {psc0(f1, f2)} since the minimum of the degree is equal to 1 and therefore
the principle subresultant coefficient is only computed for i = 0. The Sylvester matrix M0

is given by:

M0 = MATRIX((f1, x2 ·f2, f2)) =

 1 −2x1 x4
1

2431x1 − 3301 −2431x1 + 2685 0
0 2431x1 − 3301 −2431x1 + 2685


and PSC(f1, f2) contains:

psc0(f1, f2) = det(M (m+h−2i)
0 ) = det(M (2+1−2·0)

0 ) = det(M0)

= (221x2
1 − 280x1 + 75) · (26741x4

1 − 38742x3
1 − 8854x2

1 − 51552x1 + 96123).
(4.14)

PSC(−2x1x2 + x4
1, f2) is the last psc set to be computed from Corollary (4.13). The

polynomial g = −2x1x2 + x4
1 has degree 1 as well as the polynomial f2 is of degree 1 with

respect to the variable x2. Thus, the psc set consists of the sole element psc0(−2x1x2 +
x4

1, f2). For the given polynomials, the Sylvester matrix is constructed as follows:

M0 = MATRIX((g, f2)) =
[

−2x1 x4
1

2431x1 − 3301 −2431x1 + 2685

]
.

With this Sylvester matrix the 0th principle subresultant coefficient results in:

psc0(g, f2) = det(M (m+h−2i)
0 ) = det(M (1+1−2·0)

0 ) = det(M0)

= −2431x5
1 + 3301x4

1 + 4862x2
1 − 5370x1.

(4.15)

PROJECTION(F) is then the sum of PROJECTION1(f1), PROJECTION1(f2) and
PROJECTION2(F).

The second phase of the CAD algorithm is the base phase. First the real roots of
PROJECTION(F), which is the last and only projection set in this example, are deter-
mined. Then, the decomposition of R1 is performed and finally a sample point construction
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for each cell of the decomposition is computed. From PROJECTION1(f1) one receives
the zeros: −1, 0 and 1. PROJECTION1(f2) provides the two zeros: 2685

2431 and 3301
2431 . The

first term of Corollary (4.14) from PROJECTION2(F) has the two real roots 5
13 and15

17 .
Corollary (4.15) from PROJECTION2(F) can be solved providing two real algebraic
numbers as real zeros: α ≈ 0.93208 and β ≈ 1.59982 as well as the real root 0. Thus, the
real zeros of PROJECTION(F) are:

−1, 0,
5
13

,
15
17

, α ≈ 0.93208, 1,
2685
2431

,
3301
2431

, β ≈ 1.59982.

[Jir95] states that only six roots are needed for the construction of the CAD of R2. These
are:

−1, 0,
5
13

,
15
17

, 1,
3301
2431

.

With these six zeros, the decomposition of R1 consists of 13 intervals:

(−∞,−1), [−1,−1], (−1, 0), [0, 0], (0,
5
13

), [
5
13

,
5
13

], (
5
13

,
15
17

), [
15
17

,
15
17

], (
15
17

, 1), [1, 1],

(1,
3301
2431

), [
3301
2431

,
3301
2431

], (
3301
2431

,∞).

The sample points for these intervals, which are selected conveniently and not according
to Equation 4.4 in this example, are from left to right as follows:

−2,−1,−1
2
, 0,

1
4
,

5
13

,
1
2
,
15
17

,
9
10

, 1,
5
4
,
3301
2431

, 2.

In the last phase of the CAD algorithm, the extension phase, the decomposition of R1 is
lifted to a decomposition of R2 by constructing the stack of each cell of the base decom-
position. The whole CAD consists of 63 cells. In this example, only the calculation of
the stack over cell 7, 5

13 , 15
17), with the sample point x1 = 1

2 is illustrated. Therefore, the
sample point is inserted into the two polynomials f1 and f2 of R2, yielding two univariate
polynomials in the variable x2:

f1(
1
2
, x2) = x2

2 − x2 +
1
16

f2(
1
2
, x2) = −4171

2
x2 +

2939
2

.

The real root isolation process results in three zeros:

1
2
±
√

3
4

, and
2939
4171

.

For the decomposition of R2 over the cell 7 one gets 7 intervals:

(−∞,
1
2
−
√

3
4

), [
1
2
−
√

3
4

,
1
2
−
√

3
4

], (
1
2
−
√

3
4

,
2939
4171

), [
2939
4171

,
2939
4171

],

(
2939
4171

,
1
2

+
√

3
4

), [
1
2

+
√

3
4

,
1
2

+
√

3
4

], (
1
2

+
√

3
4

,∞).
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The following sample points chosen for the 7 intervals, which are again selected conve-
niently and not according to Equation 4.4 in this example, are:

0,
1
2
−
√

3
4

,
1
2
,
2939
4171

,
3
4
,
1
2

+
√

3
4

, 2.

The following table presents the sample points for the 7 cells received from the stack over
cell 7 of the base decomposition and the corresponding signs of the polynomials f1 and f2

within these cells.

Sample point (x1, x2) sign(f1) sign(f2)
(1
2 , 0) + +

(1
2 , 1

2 −
√

3
4 ) 0 +

(1
2 , 1

2) - +
(1
2 , 2939

4171) - 0
(1
2 , 3

4) - -
(1
2 , 1

2 +
√

3
4 ) 0 -

(1
2 , 2) + -

Table 4.1: Sample points and signs of f1 and f2 over cell 7 (Table taken from [Jir95]).

Suppose the real polynomial system f1 < 0 and f2 < 0. This real polynomial system has
a common real solution if one can determine a cell in the CAD, where the sign of f1 is
negative and also the sign of f2 is negative. This is given in this example for the cell in
row five of Table 4.1. This cell corresponds to the striped region in Figure 4.4.

4.2 Calculations with Real Algebraic Numbers

This section deals with some representations of real algebraic numbers and integers as
well as with how to calculate with these numbers. Real algebraic numbers and integers
solve the problem of how to represent an infinite precision number in limited time space
and computer memory. Infinite precision numbers occur in the isolation procedure for real
roots of univariate polynomials which is needed in the base and in the extension phase of
the CAD algorithm.

First, the terms algebraic number and algebraic integer are defined. Then, three different
representations of real algebraic numbers are considered. Finally, the real-root-isolation
problem is solved and calculations with real algebraic numbers are discussed.

DEFINITION 4.11
The zero of a polynomial f ∈ Z[x] is called an algebraic number α. f is said to be
a minimal polynomial of α if the degree of f is minimal. In order to make f unique,
f has to be primitive and its leading coefficient has to be a distinguished element of Z.
The degree of α is defined as the degree of its minimal polynomial. A nonalgebraic
number in C is called a transcendental number. An algebraic number α is integral
or an algebraic integer if α is the root of a monic integer polynomial. Real algebraic
numbers define the subset of the set of algebraic numbers for which α ∈ R is true. The
set of all real algebraic numbers is denoted by A.
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In general, algebraic numbers are elements in C. For example, 1
2(1+

√
5) is an algebraic

integer since it is a zero of the monic polynomial x2 − x− 1. Ordinary integers n ∈ Z are
algebraic integers, as they are roots of x−n = 0. Also, all rational numbers p

q ∈ Q (q 6= 0)
constitute to real algebraic numbers since they are zeros of the polynomials qx−p = 0. The
zeros of the polynomials qxn − p = 0 are n-dimensional square roots of rational numbers
in R which also represent real algebraic numbers. π (circumference of the circle with unit
diameter) and e (base of the natural logarithm) pose two examples for transcendental
numbers. The minimal polynomial for α = 0 is the zero polynomial which degree is equal
to −∞.

The following two lemmas are repeated here without any proof. A proof is given in [Mis93].

LEMMA 4.3 Every (real) algebraic number can be expressed as a (real) algebraic integer
divided by an integer.

LEMMA 4.4 If α, β are real algebraic numbers (real algebraic integers), then so are −α,
α−1 (α 6= 0), α + β and α · β.

The coding of real algebraic numbers can be done in three different ways. One of them is
based on Thom’s Lemma which is explained in the following. The proof is presented in
[Yap00].

LEMMA 4.5 (Thom’s Lemma) Let f ∈ R[x] be a real univariate polynomial of degree
n and let f ′, · · · , f (i) be its derivatives. Given a sign condition
ε = (ε0, ε1, · · · , εn) ∈ {−1, 0,+1}n+1, A(ε) is defined as follows:

A(ε) = {x ∈ R | sign(f (i)(x)) = εi, for i = 0, · · · , n}, (4.16)

where f (i)(x) denotes the polynomial function of f (i). Then, A(ε) is either empty or
connected.

Thom’s Lemma implies that every non-empty set A(ε) must be connected, that means
it consists of a single interval. A real root α of a polynomial f of degree n with real coef-
ficients may be distinguished from the other real roots of f by the signs of the derivatives
f (i) of f at α, for i = 0, · · · , n. The next Corollary characterizes a real algebraic number
using Thom’s Lemma, which is proved in [Yap00] or in [CR88].

COROLLARY 4.6 Let f be a polynomial of degree n with integer coefficients. Let α
and α′ be two distinct real roots of f . Suppose ε = (ε0, ε1, · · · , εn) and ε′ = (ε′0, ε

′
1, · · · , ε′n)

to be the sign conditions of f (i)(α) and f (i)(α′), respectively. Then:

(i) ε and ε′ are distinct.

(ii) Let i be the largest index such that εi 6= ε′i. Then εi+1 = ε′i+1 6= 0, for 0 < i < n.
Furthermore, α < α′ iff one of the following conditions holds:

(a) εi+1 = +1 and εi < ε′i;

(b) εi+1 = −1 and εi > ε′i.
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Corollary 4.6 is a direct consequence of Thom’s Lemma. It defines a real algebraic
number and implies how to decide whether α < α′ or α > α′ for to given distinct real
roots α and α′. Basically, a real algebraic number ξ can be represented by a polynomial
f ∈ Z[x] for which α is a zero and by additional information identifying this particular
zero. Three different representations of real algebraic numbers are given now.

COROLLARY 4.7 Let f be a polynomial of degree n with integer coefficients and as-
sume that the distinct real roots of f are enumerated as follows:

α1 < α2 < · · · < αi−1 < αi = α < αi+1 < · · · < αl,

where l ≤ n.

1. Order Representation: A real algebraic number is represented as a pair consisting
of its polynomial f and its index i which determines the real root within the sequence
of enumerated real roots of f :

αorder = 〈f, i〉.

This representation requires O(n lg ‖f‖1 + log n) bits.

2. Interval Representation: A real algebraic number is represented as a triple con-
sisting of its polynomial f and the two end points of an isolation interval (l, r)
(l, r ∈ Q, l < r) which contains only α as a zero:

αinterval = 〈f, l, r〉.

The interval representation needs only O(n lg ‖f‖1 + n lg n) bits.

3. Sign Representation: A real algebraic number is represented as a pair consisting
of its polynomial f and the sign condition ε indicating the signs of the derivatives
f (i) of f at α:

αsign = 〈f, ε〉.

The sign representation requires only O(n lg ‖f‖1 + n) bits.

EXAMPLE 4.3
This example illustrates the three different representations for the real algebraic number
α =

√
2 +

√
3:

αorder =
√

2 +
√

3 = 〈x4 − 10x2 + 1, 4〉,
αinterval =

√
2 +

√
3 = 〈x4 − 10x2 + 1, 3, 7/2〉,

αsign =
√

2 +
√

3 = 〈x4 − 10x2 + 1, (+1,+1,+1)〉.

The Algorithm 4.3 solves the real root isolation problem for a given polynomial and returns
an ordered list of isolating intervals. It isolates all distinct zeros of an integral polynomial
f(x) by computing an isolating interval for each zero. The main mathematical tool for this
algorithm is taken from Corollary 2.13. It implies a method for calculating the number of
distinct real roots within a chosen interval by applying the Standard Sturm Sequence from
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Algorithm 4.3 REAL-ROOT-ISOLATION(f)
Input: f ∈ Z[x];
Output: An isolating interval (a,b) (a, b ∈ Q), containing a real root of f).
h1, · · · , hp := STURM(f, f ′);
a := −NORM1(f); b := NORM1(f); s := [2 · n(n/2)+2(NORM∞(f) + 1)]−1;
rootinterval-list := { };
roots := V ar((h1, h2, · · · , hp)(a))− V ar((h1, h2, · · · , hp)(b));
if V ar((h1, h2, · · · , hp)(a)) = V ar((h1, h2, · · · , hp)(b)) then

return “No root in (a, b)”;
else

for i = 0 to roots do
while V ar((h1, h2, · · · , hp)(a))− V ar((h1, h2, · · · , hp)(b)) > 1 do

c := (a + b)/2;
if V ar((h1, h2, · · · , hp)(a)) > V ar((h1, h2, · · · , hp)(c)) then

b := c;
else

a := c;
end if

end while
if f(b) = 0 then

rootinterval-list := rootinterval-list + { [b, b] };
a := b + s;

else
rootinterval-list := rootinterval-list + { (a, b) };
a := b;

end if
b := NORM1(f);

end for
end if
return rootinterval-list ;

Definition 2.52. A starting interval is shortened using biselection until it contains only one
distinct zero of the polynomial. The second interval bound has to be checked whether it
is itself a real root of f(x), whereas the first interval bound does not have to be checked
for zero as illustrated in Example 2.14. In case the second interval bound is a root itself,
the closed interval [b, b] is appended to the interval list of the roots and the lower interval
bound is set to a := b + s, where s indicates the minimal separation bound according to
Corollary 2.4. If s 6∈ Q, s has to be set to the next smaller rational number. (This is not
implemented in the algorithm yet.) Thus, it is ensured that the lower interval bound is
not a root itself. If the second interval bound is not a zero itself, the lower interval bound
is adjusted such that it equals the higher bound from the previous interval. In both cases,
the higher interval bound is reset to the starting value. The starting interval is defined
according to Theorem 2.3. The algorithm finds the isolating intervals for the zeros of the
polynomial from the left to the right of the starting interval and returns all the intervals
in a list.
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For the interval representation, a normalization has to be performed to receive that if α 6= 0
then 0 6∈ (l, r) , so that l and r have the same sign. The normalization can be achieved by
the Algorithm 4.4. Remember that the bound p is defined according to Theorem 2.3. p
denotes the smallest positive bound over 0 and −p indicates the greatest negative bound
below 0. Which case is true is checked using Corollary 2.13. The algorithm has a time
complexity of O(n2) with deg(f) = n.

Algorithm 4.4 NORMALIZATION(α)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A.
Output: A representation of α = 〈f, l′, r′〉 such that 0 6∈ (l′, r′)
S(x) := STURM(f(x), f ′(x));
p := 1/(1 + ‖f‖∞);
if V ar(S(l)) > V ar(S(−p)) then

α = 〈f, l,−p〉;
else if V ar(S(−p)) > V ar(S(p)) then

α = 0;
else

α = 〈f, p, r〉;
end if
return α;

The REFINE algorithm simply bisects the input interval of the real algebraic number and
returns the halves which still includes the zero. Here also, the time complexity can be
shown to be in the order of O(n2).

Algorithm 4.5 REFINE(α)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A.
Output: A finer representation of α = 〈f, l′, r′〉 such that 2(r′ − l′) ≤ (r − l)
h1, · · · , hp := STURM(f, f ′);
m := (l + r)/2;
if V ar((h1, h2, · · · , hp)(l)) > V ar((h1, h2, · · · , hp)(m)) then

α = 〈f, l, m〉;
else

α = 〈f,m, r〉;
end if
return α;

The SIGN algorithm evaluates the sign of a univariate polynomial at a real algebraic
number. The algorithm is a straight application of the Sturm-Sylvester Theorem, The-
orem 2.12. It is integrated in the Interval-to-Sign conversion algorithm which will be
presented later in this section. Furthermore, the sign evaluation algorithm can be used
to compare an algebraic number α with a rational number p

q by computing the sign of
qx−p at α. Another application could be the calculation of the multiplicity of a root α of
a polynomial f by evaluating the sign of the polynomials f ′, f (2), f (3), · · · at α. The time
complexity is given by O(n2), [Mis93].
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Algorithm 4.6 SIGN(α, g)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A and a univariate rational polynomial
g(x) ∈ Q[x].
Output: sign(g(α)) = sign of g at α
h1, · · · , hp := STURM(f, f ′g);
return V ar((h1, h2, · · · , hp)(l))− V ar((h1, h2, · · · , hp)(r));

The interval representation of a real algebraic number is used in many more applications
compared to the order or sign represetation. For the given problem of the cylindrical alge-
braic decomposition ofRn, the interval representation seems to be the obvious one to apply
to. In [CR88], the important topic of real roots of a polynomial with real algebraic num-
ber coefficients is addressed using sign representation. Therefore, the Interval-to-Order
conversion algorithm is presented, followed by the Interval-to-Sign conversion algorithm.
The time complexities for the Interval-to-Order and Interval-to-Sign algorithm are stated
by [Mis93] with O(n2) and O(n3), respectively.

Algorithm 4.7 INTERVAL-TO-ORDER(α)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A.
Output: Its order representation α = 〈f, i〉.
h1, · · · , hp := STURM(f, f ′);
return 〈f, V ar((h1, h2, · · · , hp)(−1− ‖f‖∞))− V ar((h1, h2, · · · , hp)(r))〉;

Algorithm 4.8 INTERVAL-TO-SIGN(α)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A.
Output: Its sign representation α = 〈f, ε〉.
FOURIER(f) := 〈f, f ′, f (2), · · · , f (deg(f))〉;
ε := (SIGN(α, f), SIGN(α, f ′), · · · , SIGN(α, f (deg(f))));
return 〈f, ε〉;

In order to state the correctness of an algorithm for addition and multiplication as well as
an algorithm for the additive and multiplicative inverse, the following properties of resul-
tants are needed. The theory of resultants provides several basic properties of algebraic
numbers and is taken from [Yap00]. In the following, f(x) and g(x) are the polynomial
functions corresponding to the polynomials f and g, respectively.

LEMMA 4.8 Let f, g ∈ K[x] with deg(f) = m, deg(g) = n and let α, β ∈ K. Then the
following conditions hold:

(i) res(α, g) = αn. By definition, res(α, β) = 1.

(ii) res((x− α) · f, g) = g(α)res(f, g).

(iii) res(f, g) = (−1)mnres(g, f).

(iv) res(α · f, g) = αnres(f, g).
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THEOREM 4.9 Let f, g ∈ K[x], a = hoef(f), b = hcoef(g), deg(f) = m, deg(g) = n
with roots

α1, · · · , αm, β1, · · · , βn ∈ K.

Then res(f, g) is equal to each of the following expressions:

(i) an
m∏

i=1

g(αi)

(ii) (−1)nmbm
n∏

j=1

f(βj)

(iii) anbm
m∏

i=1

n∏
j=1

(αi − βj).

Proof:
Assume f = a

∏m
i=1(x − αi) and g = b

∏n
j=1(x − βj), then condition (i) follows from

Lemma 4.8 using the items in the sequence (iv), (ii), · · · , (ii).

res(f, g) = anres

[
m∏

i=1

(x− αi), g

]
= ang(α1)res

[
m∏

i=2

(x− αi), g

]
= ang(α1) · · · g(αm).

Condition (ii) is deduced similarily. One can get (iii) from (i) since g(αi) = b
n∏

j=1

(αi−βj).

�
If f, g are multivariate polynomials in K[x1, · · · , xn], their resultant can be calculated by
considering them as univariate polynomials in any variable y = xi. This is then indicated
by a subscript resy(f, g).

LEMMA 4.10 Let f, g ∈ K[x], α, β ∈ K and deg(f) = m, deg(g) = n. If α is a root of
f , β a root of g which are not equal to 0, then the next conditions are true:

(i) 1/α is the root of xmf(1/x) provided α 6= 0.

(ii) β ± α is a root of h(x) = resy(f(y), g(x∓ y)).

(iii) αβ is a root of h(x) = resy(f(y), yng(x
y )).

Proof:
Assume again that f = a

∏m
i=1(z − αi) and g = b

∏n
j=1(z − βj).

(i) This is immediate.

(ii) It follows from Theorem 4.9 (i) and g(x∓ αi) = b
∏n

j=1(x∓ αi − βj) that:

resy [f(y), g(x∓ y)] = an
m∏

i=1

g(x∓ αi) = anbm
m∏

i=1

n∏
j=1

(x∓ αi − βj).
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(iii) This is deduced from Theorem 4.9 (i) and g( x
αi

) = b
∏n

j=1(
x
αi
−βj) followed by some

transformations.

resy

[
f(y), yng(

x

y
)
]

= an
m∏

i=1

[
αn

i g(
x

αi
)
]

= an
m∏

i=1

bαn
i

n∏
j=1

(
x

αi
− βj)


= anbm

m∏
i=1

n∏
j=1

(x− αiβj).

�

Now, the algorithms for some arithmetic operations are presented.

Algorithm 4.9 ADDITIVE-INVERSE(α)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A.
Output: −α and its interval representation.
return 〈f(−x),−r,−l〉;

The correctness of the algorithm for the additive-inverse of a real algebraic number can
be deduced from the fact that if α is a root of f(x), then −α is a root of f(−x). The
algorithm has a linear time complexity.

Algorithm 4.10 MULTIPLICATIVE-INVERSE(α)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A.
Output: 1/α and its interval representation.
return 〈xdeg(f)f( 1

x), 1
r , 1

l 〉;

This preceeding algorithm follows directly from Lemma 4.10 (i). Again, this algorithm
has a linear time complexity. The next algorithm is concerned with the addition of
two algebraic numbers. It is implemented according to the second main property of
Lemma 4.10 whose correctness has been proven above. An isolating interval is ob-
tained by applying the refinement Algorithm 4.5 repeatedly. The size complexities of
the polynomial f3 with deg(f3) ≤ nm and deg(f1) = n, deg(f2) = m is given by
‖f3‖1 ≤ 2O(nm)‖f1‖m

1 ‖f2‖n
1 . It can be proven that the time complexity of the algorithm is

in the order of O(n3m4lg‖f1‖1 + n4m3lg‖f2‖1).
The algorithm for the multiplication of two real algebraic numbers can be obtained

immediately from Lemma 4.10 condition (iii). The proof of its correctness has been
shown above. Again, the refinement process using Algorithm 4.5 provides an isolated
interval. Again, [Mis93] states a size complexity of the polynomial f3 with deg(f3) ≤
nm of ‖f3‖1 ≤ nm‖f1‖m

1 ‖f2‖n
1 , where deg(f1) = n and deg(f2) = m. Hence, the time

complexity of the multiplication algorithm is in the same order as the addtion algorithm:
O(n3m4lg‖f1‖1 + n4m3lg‖f2‖1).

Before the computation of the zeros of a polynomial with real algebraic coefficients is
explained, the term of number fields has to be introduced. It should be mentioned that
the roots of a polynomial with algebraic number coefficients are algebraic numbers again.
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Algorithm 4.11 ADDITION(α1, α2)
Input: Two real algebraic numbers α1 = 〈f1, l1, r1〉 and α2 = 〈f2, l2, r2〉 ∈ A.
Output: α3 = α1 + α2 = 〈f3, l3, r3〉 and its interval representation.
f3 := RESULTANTy(f1(y), f2(x− y));
h1, · · · , hp := STURM(f3, f

′
3);

l3 := l1 + l2;
r3 := r1 + r2;
while V ar((h1, h2, · · · , hp)(l3))− V ar((h1, h2, · · · , hp)(r3)) > 1 do

α1 := REFINE(〈f1, l1, r1〉);
α2 := REFINE(〈f2, l2, r2〉);
l3 := l1 + l2;
r3 := r1 + r2;

end while
return 〈f3, l3, r3〉;

Algorithm 4.12 MULTIPLICATION(α1, α2)
Input: Two real algebraic numbers α1 = 〈f1, l1, r1〉 and α2 = 〈f2, l2, r2〉 ∈ A.
Output: α3 = α1 · α2 = 〈f3, l3, r3〉 and its interval representation.
f3 := RESULTANTy(f1(y), ydeg(f2)f2(x

y ));
h1, · · · , hp := STURM(f3, f

′
3);

l3 := min(l1l2, l1r2, r1l2, r1r2);
r3 := max(l1l2, l1r2, r1l2, r1r2);
while V ar((h1, h2, · · · , hp)(l3))− V ar((h1, h2, · · · , hp)(r3)) > 1 do

α1 := REFINE(〈f1, l1, r1〉);
α2 := REFINE(〈f2, l2, r2〉);
l3 := min(l1l2, l1r2, r1l2, r1r2);
r3 := max(l1l2, l1r2, r1l2, r1r2);

end while
return 〈f3, l3, r3〉;

THEOREM 4.11 Let α be an algebraic number over the field Q and let f be its defining
polynomial of degree m > 0. Then the set of all algebraic numbers represented by β =∑m−1

i=0 biα
i = g(α), where bi ∈ Q, forms a field. Q(α) and subfields of the form Q(α) are

called number fields or simple algebraic extensions of Q.

Q(α) is called separable, if the defining polynomial for α is square free. Q(α)(β) =
Q(α, β) is then a double extension of Q or a double number field, which is a field again.

THEOREM 4.12 Every separable multiple algebraic extension can be reduced to a simple
algebraic extension.

To understand the basic arithmetic in number fields Q[α], the minimal defining polynomial
f(x) of α is considered. Suppose α is of degree d. Then, it follows from f(α) = 0 that
αd can be expressed as a polynomial of degree at most d − 1 in α and coefficients in
Q. Every element β =

∑m−1
i=0 biα

i ∈ Q[α] is uniquely determined by its coefficient vector
(b0, b1, · · · , bd−1). Thus, addition and subtraction in Q[α] can be computed componentwise
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in these coefficients. Multiplication is performed as in polynomial multiplication, where
the received polynomial is reduced to the degree at most d− 1.

In the extension phase of the CAD algorithm, the decomposition of R1 is lifted to R2 · · ·Rn.
Therefore, a sign invariant decomposition Di−1 of Ri−1 is extended to a sign invariant
decomposition of Di of Ri using the technique of the base phase. A sample point ξ =
(ξ1, · · · , ξi−1) ∈ Ai−1 is inserted into the polynomials of the next higher dimensional
projection set F j = fj,1, · · · , fj,p ⊆ Q[x1, · · · , xi], where 1 ≤ j ≤ n − 1. Assume the
following polynomial

f = cnxn
i + · · ·+ c0,

with cn, · · · , c0 ∈ Q[x1, · · · , xi−1]. Applying the arithmetic for real algebraic numbers,
the insertion of the above sample point yields the polynomial f(ξ, xi) ∈ A[xi] with real
algebraic number coefficients ci(ξ) = 〈fi, li, ri〉 ∈ A. Each coefficient ci represents a real
algebraic number αi such that f ∈ Q(αn, · · · , α0)[xi]. Q(αn, · · · , α0) is a multiple number
field which can be reduced to a simple number field Q(α) according to Theorem 4.12. A
repeated reduction for the coefficients of f results in a univariate polynomial f̂ ∈ Q(α)[xi]
whose coefficients are polynomials in α. To find the zeros of f̂ , one computes a polynomial
ĝ ∈ Z[xi], such that ZERO(f̂) ⊆ ZERO(ĝ). The isolating intervals of the zeros of f̂ have
to be found in order to identify the corresponding zeros in the set of zeros of ĝ. A refinement
might be needed for the isolating intervals of the zeros of ĝ since the isolating intervals
have to contain the same real algebraic number for f̂ and for ĝ.

In [Loo82] an algorithm is presented that computes such a polynomial ĝ ∈ Z[xi] from a
polynomial f ∈ Q(αn, · · · , α0)[xi]. The algorithm NORMAL uses the algorithm SIMPLE
to perform the reduction of the multiple number field to a simple number field. The
algorithm SIMPLE takes two algebraic numbers α and β and their defining polynomials
as input and computes a real algebraic number γ and its defining polynomial such that
α, β ∈ Q(γ). The algorithm SIMPLE is given first, followed by the algorithm NORMAL.

The algorithm SIMPLE constructs the primitive element γ by applying Lemma 4.10,
condition (ii). Thus, the polynomial r(x, t) has the zeros γij = αi + tβj . Then, the
smallest positive integer t1 is computed, such that the polynomial r(x, t1) is square free.
The condition for a square free polynomial is that the polynomial and its derivate does
not have a greatest common divisor: deg(gcd(r(x, t1), r′(x, t1))) 6= 0. This implies that all
γij are different for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Since there would be only finitely many pairs of
γij to compare but infinitely many positive integers, a t1 can always be found. (Therefore,
the WHILE-loop is not an endless loop.) In the next step, an isolating interval for the
defining polynomial of γ is computed using interval arithmetic. The polynomial h(x) is
defined as gcd(f1(γ− t1x), f2(x)) because βj is then a root of h(x). By construction, there
is only one such β. Thus, h(x) = x− β and g2(x) equal to the negative trailing coefficient
of h(x). g1(x) follows then from g2(x) with g1(x) := x − t1g1(x). The computing time
of this algorithm is polynomial. The limiting factor of the algorithm SIMPLE is the fact
that the degree of γ is growing rapidely ( deg(γ) = n2 mostly), if applied multiple times.

The basic idea of the algorithm NORMAL is deduced from Theorem 4.13.

THEOREM 4.13 Let f(x) =
∑m

i=0 fix
i = am

∏m
i=1(x − αi) be a primitive square

free polynomial over integral domain R. Let g(x, y) =
∑n

j=0 gj(x)yj be a bivariate
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Algorithm 4.13 SIMPLE(α, β)
Input: Two real algebraic numbers α = 〈f1, l1, r1〉 and β = 〈f2, l2, r2〉 ∈ A.
Output: γ = 〈f3, l3, r3〉 and g1(x), g2(x) such that α = g1(γ) and β = g2(γ).
r(x, t) := RESULTANTy(f2(y), f1(x− ty));
t1 := 1;
while DEG(GCD(r(x, t1), r′(x, t1))) 6= 0 do

t1 := t1 + 1;
end while
f3(x) := r(x, t1);
h1, · · · , hp := STURM(f3, f

′
3);

l3 := l1 + t1 · l2;
r3 := r1 + t1 · r2;
while V ar((h1, h2, · · · , hp)(l3))− V ar((h1, h2, · · · , hp)(r3)) > 1 do

α1 := REFINE(〈f1, l1, r1〉);
α2 := REFINE(〈f2, l2, r2〉);
l3 := l1 + t1 · l2;
r3 := r1 + t1 · r2;

end while
k(x) := GCD(f1(γ − t1x), f2(x));
g2(γ) := x− k(x);
SUBST (x, γ, g2(γ)); {substitute x for γ in g2(γ)}
g1(x) := x− t1g1(x);
return {〈f3, l3, r3〉, g1(x), g2(x)};

polynomial over R such that deg(gcd(f(x), gn(x))) = 0. Let k = degy(g(x, y)) and
r(x) = resx(f(x), g(x, y)). Then r(x) contains the zeros of g(x) among its own roots.

Proof:
It follows from Theorem 4.9 condition (i) and g(x, y) =

∑n
j=0 gj(x)yj = gn(x)

∏n
j=1(y−βj),

which is equal to g(αi, y) = gn(αi)
∏n

j=1(y − βij) inserting αi for x, that:

r(x) = resx(f(x), g(x, y)) = ak
m

m∏
i=1

g(αi, y) = ak
m

m∏
i=1

gn(αi)
n∏

i=1

(y − βij).

�
The isolating intervals of the zeros of f̂ could be computed using a modified version of the
REAL-ROOT-ISOLATION algorithm, Algorithm 4.3, for the number field Q[α]. Applying
the REFINE algorithm, Algorithm 4.5, the isolating intervals can be adjusted such that
they contain the same real algebraic number for f̂ and for ĝ.

In [Sei01], a different representation of real algebraic numbers is presented and imple-
mented in order to solve the decision problem for real polynomial systems using the cylin-
drical algebraic decomposition method of Collins. This representation has been invented
to avoid arithmetics in Q[α], which seem to pose severe limitations. The interval rep-
resentation as defined in Corollary 4.7 is extended such that the defining polynomial is
exchanged for a tuple. This tuple consists of a now multivariate polynomial in Q in the
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Algorithm 4.14 NORMAL(f(αn, · · · , α0, xi))
Input: A polynomial f(αn, · · · , α0, xi), where αi = 〈fi, li, ri〉 ∈ A.
Output: A polynomial ĝ(xi) ∈ Z[xi], such that ZERO(f̂) ⊆ ZERO(ĝ).
γ-g1-g2-list := SIMPLE(α0, α1);
p-α0(x) := g1(x);
p-α1(x) := g2(x);
for i = 2 to n do

α := γ {α = 〈a(x), a-li, a-ri〉 }
γ-g1-g2-list := SIMPLE(α, αi);
p-αi(x) := g2(x);
for j = 0 to i− 1 do

p-αj(x) := p-αj(g1(x)); { Condition: deg( p-αj(x)) < m = deg(a(x))}
end for

end for
α := γ
p-αi(x) := d· p-αi(x) ∈ Z[x]; {compute d for 0 ≤ i ≤ n such that ...}
f̂(x, y) :=

∑n
j=0 p-αj(x)yj ;

h(x) := GCD(a(x), p-αn(x));
if h(x) > 0 then

a(x) := a(x)/h(x);
p-αi(x) := p-αi(x) mod a(x);
p-αi(x) := d· p-αi(x) ∈ Z[x]; {compute d for 0 ≤ i ≤ n such that ...}

end if
ĝ(y) := RESULTANTx(a(x), f̂(x, y));
return ĝ(y);

first component and a context in the second component. The context includes the free
variables as well as the variables bound by real algebraic numbers in the second component,
the real algebraic numbers of the extension and implicitely the order of the extension.

4.3 Assessments of the CAD Algorithm

Collins’ cylindrical algebraic decomposition can solve the decision problem for a system
of real non-linear multivariate polynomials in any real closed field for the following type
of formulas:

∃x1 · · ·xn(
p∧

i=1

fi(x1, · · · , xn) ρ 0), (4.17)

where fi ∈ R[x1, · · · , xn] and ρ ∈ {<,=, >}. Formulas of the form ∀x(φ) for any quantifier-
free formula φ can be integrated via their equivalents ¬∃x(¬φ)). Any polynomial inequa-
tion f 6= 0 is equivalent to (f < 0) ∨ (f > 0). The CAD algorithm only takes the set of
polynomials F = {f1, · · · , fp} as input. It then returns a list of sample points, one for each
cell of the F-sign-invariant cylindrical algebraic decomposition of Rn. In order to decide
the consistency problem, each sample point has to be inserted into the set of polynomial
equations and inequations until one sample point is found which satisfies the whole real
polynomial system. If none of the sample points represents a solution of the polynomial
system, it does not have a common real solution. Then, SOLR(F ) = ∅.
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The decision method using Collins’ CAD algorithm is applicable for any ideal. This
means, the ideal which is generated by the set of polynomials F does not have to be zero-
dimensional. Parameters are handled like quantified variables in this method. The CAD
algorithm is extendable to a general quantifier elimination (QE) algorithm, [Col98], which
provides defining formulas for each valid cell.

Many improvements concerning efficiency aspects have been developed for the quanti-
fier elimination method based on Collins’ cylindrical algebraic decomposition. Improved
projection operators are presented for example in [Hon98] and [McC98]. Especially, the
partial cylindrical algebraic decomposition by Collins and Hong should be mentioned here,
[CH98]. Hong implemented the partial cylindrical algebraic decomposition in a program
called QEPCAD, which is available from him on request. It is based on the computer alge-
bra C-library SACLIB. The algorithm is doubly exponential in the number of all variables,
i.e. including parameters.

Considering the aspect of incrementality with respect to the CAD method used to decide
the consistency problem, one has to confirm that the cylindrical algebraic decomposition
of a consistent polynomial system cannot be reused in order to construct a cylindrical
algebraic decomposition of the same consistent polynomial system extended by one addi-
tional polynomial equation or inequation. The cylindrical algebraic decomposition of the
extended polynomial system has to be computed from scatch again.
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Chapter 5

Practical Integration into the
Racer System

One practical implementation of Buchberger’s Algorithm is made available by Rychlik
[Ryc00]. It is based on so-called Comprehensive Groebner Bases [Wei92]. Note that the
system by Rychlik is not part of the commercial variant of Racer, called RacerPro. In
this appendix we present an examples that demonstrates how constraint systems with
nonlinear equalities can be set up in Racer. For linear inequalities, Racer uses incremental
constraint solving algorithms similar to those described in [JM94]. Thus, for specific
classes of constraint systems, Racer uses more efficient algorithms. Before we can discuss
the examples, some technical preliminaries must be presented.

5.1 Naming Conventions

Throughout this chapter we use the following abbreviations, possibly subscripted.

C Concept term
CN Concept name
IN Individual name

ON Object name
R Role term

RN Role name
AN Attribute name

ABN ABox name
TBN TBox name
KBN knowledge base name

name Name of any sort
S List of Assertions

GNL List of group names
LCN List of concept names
abox ABox object
tbox TBox object

n A natural number
real A real number

integer An integer number
string A string

5.2 RACER Knowledge Bases

In description logic systems a knowledge base is consisting of a TBox and an ABox. The
conceptual knowledge is represented in the TBox and the knowledge about the instances
of a domain is represented in the ABox.

5.2.1 Concept Language

The content of RACER TBoxes includes the conceptual modeling of concepts and roles
as well. The modelling is based on the signature, which consists of two disjoint sets: the
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C −→ CN |
*top* |
*bottom* |
(not C) |
(and C1 ...Cn) |
(or C1 ...Cn) |
(some R C) |
(all R C) |
(at-least n R) |
(at-most n R) |
(exactly n R) |
(at-least n R C) |
(at-most n R C) |
(exactly n R C) |
(a AN ) |
(an AN ) |
(no AN ) |
CDC

R −→ RN |
(inv RN )

Figure 5.1: RACER concept and role terms.

set of concept names C, also called the atomic concepts, and the set R containing the role
names1.

Starting from the set C complex concept terms can be build using several operators.
An overview over all concept- and role-building operators is given in Figure 5.1.

Boolean terms build concepts by using the boolean operators.

DL notation RACER syntax
Negation ¬ C (not C)
Conjunction C1 u . . .u Cn (and C1 ...Cn)
Disjunction C1 t . . .t Cn (or C1 ...Cn)

1The signature does not have to be specified explicitly in RACER knowledge bases - the system can
compute it from the all the used names in the knowledge base - but specifying a signature may help
avoiding errors caused by typos!
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CDC −→ (min AN integer) |
(max AN integer) |
(equal AN integer) |
(equal AN AN ) |
(divisible AN cardinal) |
(not-divisible AN cardinal) |
(> aexpr aexpr) |
(>= aexpr aexpr) |
(< aexpr aexpr) |
(<= aexpr aexpr) |
(<> aexpr aexpr) |
(= aexpr aexpr) |
(string= AN string) |
(string<> AN string) |
(string= AN AN ) |
(string<> AN AN )

string −→ ’’ letter∗ ’’
aexpr −→ AN |

real |
(+ aexpr1 aexpr1 ∗) |
aexpr1

Figure 5.2: RACER concrete domain concepts and attribute expressions.

aexpr1 −→ aexpr2
| aexpr3
| aexpr5

aexpr2 −→ real
| AN (AN of type real or complex)
| (* real AN ) (AN of type real or complex)

aexpr3 −→ real
| AN (AN of type complex)
| (* integer aexpr4 aexpr4 ∗)

aexpr4 −→ AN (AN of type complex)
| (expt AN n) (AN of type complex)

aexpr5 −→ integer
| AN (AN of type cardinal)
| (* integer AN ) (AN of type cardinal)

Figure 5.3: Specific expressions for predicates (n > 0 is a natural number) .

Qualified restrictions state that role fillers have to be of a certain concept. Value
restrictions assure that the type of all role fillers is of the specified concept, while exist
restrictions require that there be a filler of that role which is an instance of the specified
concept.
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DL notation RACER syntax
Exists restriction ∃ R.C (some R C)
Value restriction ∀ R.C (all R C)

Number restrictions can specify a lower bound, an upper bound or an exact number
for the amount of role fillers each instance of this concept has for a certain role. Only
roles that are not transitive and do not have any transitive subroles are allowed in number
restrictions (see also the comments in [HST00]).

DL notation RACER syntax
At-most restriction ≤ n R (at-most n R)
At-least restriction ≥ n R (at-least n R)
Exactly restriction = n R (exactly n R)
Qualified at-most restriction ≤ n R.C (at-most n R C)
Qualified at-least restriction ≥ n R.C (at-least n R C)
Qualified exactly restriction = n R.C (exactly n R C)

Actually, the exactly restriction (exactly n R) is an abbreviation for the concept term
(and (at-least n R) (at-most n R)) and (exactly n R C) is an abbreviation for
the concept term (and (at-least n R C) (at-most n R C))

There are two concepts implicitly declared in every TBox: the concept “top” (>)
denotes the top-most concept in the hierarchy and the concept “bottom” (⊥) denotes the
inconsistent concept, which is a subconcept to all other concepts. Note that > (⊥) can
also be expressed as C t ¬C (C u ¬C ). In RACER > is denoted as *top* and ⊥ is
denoted as *bottom*2.

2For KRSS compatibility reasons RACER also supports the synonym concepts top and bottom.
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Concrete domain concepts state concrete predicate restrictions for attribute fillers (see
Figure 5.2.1). RACER currently supports three unary predicates for integer attributes
(min, max, equal), six nary predicates for real attributes (>, >=, <, <=, =, <>), a unary
existential predicate with two syntactical variants (a or an), and a special predicate re-
striction disallowing a concrete domain filler (no). The restrictions for attributes of type
real have to be in the form of linear inequations (with order relations) where the attribute
names play the role of variables. If an expression is built with the rule for aexpr4 (see
Figure 5.2.1), a so-called nonlinear constraint is specified. In this case, only equations
and inequations (=, <>), but no order constraints (>, >=, <, <=) are allowed, and the at-
tributes must be of type complex. If an expression is built with the rule for aexpr5 (see
Figure 5.2.1) a so-called cardinal linear constraint is specified, i.e., attributes are con-
strainted to be a natural number (including zero). Racer also supports a concrete domain
for representing equations about strings with predicaes string= and string<>. The use
of concepts with concrete domain expressions is illustrated with examples in Section 5.3.
For the declaration of types for attributes, see see Section 5.2.4.

DL notation RACER syntax
Concrete filler exists restriction ∃A.>D (a A) or (an A)
No concrete filler restriction ∀A.⊥D (no A)
Integer predicate exists restriction ∃A.minz (min A z)

with z ∈ Z ∃A.max z (max A z)
∃A.=z (equal A z)

Real predicate exists restriction ∃A1, . . . , An.P (P aexpr aexpr)
with P ∈ {>,>=, <, <=,=}

An all restriction of the form ∀A1, . . . , An.P is currently not directly supported. How-
ever, it can be expressed as disjunction: ∀A1.⊥D t · · · t ∀An.⊥D t ∃A1, . . . , An.P .

5.2.2 Concept Axioms and Terminology

RACER supports several kinds of concept axioms.

General concept inclusions (GCIs) state the subsumption relation between two con-
cept terms.
DL notation: C1 v C2

RACER syntax: (implies C1 C2)

Concept equations state the equivalence between two concept terms.
DL notation: C1

.= C2

RACER syntax: (equivalent C1 C2)

Concept disjointness axioms state pairwise disjointness between several concepts.
Disjoint concepts do not have instances in common.
DL notation: C1 v ¬(C2 t C3 t · · · u Cn)

C2 v ¬(C3 t · · · u Cn)
. . .
Cn−1 v ¬Cn

RACER syntax: (disjoint C1 ...Cn)
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Actually, a concept equation C1
.= C2 can be expressed by the two GCIs: C1 v C2 and

C2 v C1. The disjointness of the concepts C1 . . .Cn can also be expressed by GCIs.

There are also separate forms for concept axioms with just concept names on their left-
hand sides. These concept axioms implement special kinds of GCIs and concept equations.
But concept names are only a special kind of concept terms, so these forms are just
syntactic sugar. They are added to the RACER system for historical reasons and for
compatibility with KRSS. These concept axioms are:

Primitive concept axioms state the subsumption relation between a concept name and
a concept term.
DL notation: (CN v C )
RACER syntax: (define-primitive-concept CN C)

Concept definitions state the equality between a concept name and a concept term.
DL notation: (CN .= C )
RACER syntax: (define-concept CN C)

Concept axioms may be cyclic in RACER. There may also be forward references to con-
cepts which will be “introduced” with define-concept or define-primitive-concept in
subsequent axioms. The terminology of a RACER TBox may also contain several axioms
for a single concept. So if a second axiom about the same concept is given, it is added
and does not overwrite the first axiom.

5.2.3 Role Declarations

In contrast to concept axioms, role declarations are unique in RACER. There exists just
one declaration per role name in a knowledge base. If a second declaration for a role is
given, an error is signaled. If no signature is specified, undeclared roles are assumed to be
neither a feature nor a transitive role and they do not have any superroles.

The set of all roles (R) includes the set of features (F) and the set of transitive roles
(R+). The sets F and R+ are disjoint. All roles in a TBox may also be arranged in a role
hierarchy. The inverse of a role name RN can be either explicitly declared via the keyword
:inverse (e.g. see the description of define-primitive-role in Section ??, page ??) or
referred to as (inv RN ).

Features (also called attributes) restrict a role to be a functional role, e.g. each individual
can only have up to one filler for this role.

Transitive Roles are transitively closed roles. If two pairs of individuals IN 1 and IN 2

and IN 2 and IN 3 are related via a transitive role R, then IN 1 and IN 3 are also
related via R.

Role Hierarchies define super- and subrole-relationships between roles. If R1 is a su-
perrole of R2, then for all pairs of individuals between which R2 holds, R1 must hold
too.

In the current implementation the specified superrole relations may not be cyclic. If
a role has a superrole, its properties are not in every case inherited by the subrole. The
properties of a declared role induced by its superrole are shown in Figure 5.4. The table
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Superrole RN 1 ∈
R R+ F

Subrole RN 1 R R R F
declared as R+ R+ R+ -
element of: F F F F

Figure 5.4: Conflicting declared and inherited role properties.

should be read as follows: For example if a role RN 1 is declared as a simple role and it
has a feature RN 2 as a superrole, then RN 1 will be a feature itself.

The combination of a feature having a transitive superrole is not allowed and features
cannot be transitive. Note that transitive roles and roles with transitive subroles may not
be used in number restrictions.

RACER does not support role terms as specified in the KRSS. However, a role being the
conjunction of other roles can as well be expressed by using the role hierarchy. The KRSS-
like declaration of the role (define-primitive-role RN (and RN 1 RN 2)) can be ap-
proximated in RACER by: (define-primitive-role RN :parents (RN 1 RN 2)).

KRSS DL notation
(define-primitive-role RN (domain C)) (∃ RN.>) v C
(define-primitive-role RN (range D)) > v (∀ RN.D)

RACER Syntax DL notation
(define-primitive-role RN :domain C) (∃ RN.>) v C
(define-primitive-role RN :range D) > v (∀ RN.D)

Figure 5.5: Domain and range restrictions expressed via GCIs.

RACER offers the declaration of domain and range restrictions for roles. These restrictions
for primitive roles can be either expressed with GCIs, see the examples in Figure 5.5 or
declared via the keywords :domain and :range.

5.2.4 Concrete Domain Attributes

RACER supports reasoning over natural numbers (N), integers (Z), reals (R), complex
numbers (C), and strings. For different sets, different kinds of predicates are supported.

N linear inequations with order constraints and integer coefficients
Z interval constraints
R linear inequations with order constraints and rational coefficients
C nonlinear multivariate inequations with integer coefficients

Strings equality and inequality

For the users convenience, rational coefficients can be specified in floating point no-
tation. They are automatically transformed into their rational equivalents (e.g., 0.75 is
transformed into 3/4). In the following we will use the names on the left-hand side of the
table to refer to the correspondings concrete domains.

Names for values from concrete domains are called objects. The set of all objects is
referred to as O. Individuals can be associated with objects via so-called attributes names

101



(or attributes for short). Note that the set A of all attributes must be disjoint to the set
of roles (and the set of features). Attributes can be declared in the signature of a TBox
(see below).

Attributes are considered as “typed” since they can either have fillers of type cardinal,
integer, real, complex, or string. The same attribute cannot be used in the same TBox
such that both types are applicable, e.g., (min has-age 18) and (>= has-age 18) are
not allowed. If the type of an attribute is not explicitly declared, its type is implicitly
derived from its use in a TBox/ABox. An attribute and its type can be declared with the
signature form or by using the KRSS-like form define-concrete-domain-attribute. If
an attribute is declared to be of type complex is can be used in linear (in-)equations.
However, if an attribute is declare to be of type real or integer it is an error to use
this attribute in terms for nonlinear polynoms. In a similar way, currently, an attribute of
type integer may not be used in a term for a linear polynoms, either. If the coefficients
are integers, then cardinal (natural number, including 0) for the type of attributes may
be used in a linear polynom. Furthermore, attributes of type string may not be used on
polynoms, and non-strings may not be used in constraints for strings.

5.2.5 ABox Assertions

An ABox contains assertions about individuals. The set of individual names (or individuals
for brevity) I is the signature of the ABox. The set of individuals must be disjoint to the
set of concept names and the set of role names. There are four kinds of assertions:

Concept assertions with instance state that an individual IN is an instance of a spec-
ified concept C .

Role assertions with related state that an individual IN 1 is a role filler for a role R
with respect to an individual IN 2.

Attribute assertions with constrained state that an object ON is a filler for a role R
with respect to an individual IN .

Constraints within constraints state relationships between objects of the concrete do-
main. The syntax for constraints is explained in Figure 5.2.1. Instead of attribute
names, object names must be used.

5.3 An Example for Linear Inequalities

The following example is an extension of the family TBox introduced above. In the
example, the concrete domains Z and R are used.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
...
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Asking for the children of teenager reveals that old-teenager is a teenager. A further
extensions demonstrates the usage of reals as concrete domain.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)

(real temperature-celsius)
(real temperature-fahrenheit)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
(equivalent human-with-feaver (and human (>= temperature-celsius 38.5))
(equivalent seriously-ill-human (and human (>= temperature-celsius 42.0)))
...

Obviously, RACER determines that the concept seriously-ill-human is subsumed
by human-with-feaver. For the reals, RACER supports linear equations and inequa-
tions. Thus, we could add the following statement to the knowledge base in order
to make sure the relations between the two attributes temperature-fahrenheit and
temperature-celsius is properly represented.

(implies top (= temperature-fahrenheit
(+ (* 1.8 temperature-celsius) 32)))

If a concept seriously-ill-human-1 is defined as

(equivalent seriously-ill-human-1
(and human (>= temperature-fahrenheit 107.6)))

RACER recognizes the subsumption relationship with human-with-feaver and the
synonym relationship with seriously-ill-human.

In an ABox, it is possible to set up constraints between individuals. This is illustrated
with the following extended ABox.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes (...)
:individuals (eve doris)
:objects (temp-eve temp-doris))

...
(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5))
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For instance, this states that eve is related via the attribute temperature-fahrenheit
to the object temp-eve. The initial constraint (= temp-eve 102.56) specifies that the
object temp-eve is equal to 102.56.

Now, asking for the direct types of eve and doris reveals that both individuals are
instances of human-with-feaver. In the following Abox there is an inconsistency since
the temperature of 102.56 Fahrenheit is identical with 39.5 Celsius.

(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5)
(> temp-eve temp-doris))

We present another example that might be important for many applications: dealing
with dates. The following declarations can be processed with Racer. The predicates
divisible and not-divisible are defined for natural numbers and are reduced to linear
inequations internally.

(define-concrete-domain-attribute year :type cardinal)
(define-concrete-domain-attribute days-in-month :type cardinal)

(implies Month (and (>= days-in-month 28) (<= days-in-month 31)))

(equivalent month-inleapyear
(and Month

(divisible year 4)
(or (not-divisible year 100)

(divisible year 400))))

(equivalent February
(and Month

(<= days-in-month 29)
(or (not month-inleapyear)

(= days-in-month 29))
(or month-inleapyear

(= days-in-month 28))))

Next, we assume some instances of February are declared.

(instance feb-2003 February)
(constrained feb-2003 year-1 year)
(constrained feb-2003 days-in-feb-2003 days-in-month)
(constraints (= year-1 2003))

(instance feb-2000 February)
(constrained feb-2000 year-2 year)
(constrained feb-2000 days-in-feb-2000 days-in-month)
(constraints (= year-2 2000))
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Note that the number of days for both months is not given explicitly. Nevertheless,
asking (concept-instances month-inleapyear) yields (feb-2000) whereas asking for
(concept-instances (not month-inleapyear)) returns (feb-2003). In addition, one
could check the number of days:

(constraint-entailed? (<> days-in-feb-2003 29))
(constraint-entailed? (= days-in-feb-2000 29))

In both cases, the answer is true.

5.4 An Example with Nonlinear Equations

The following examples how easily nonlinear constraints can be set up with Racer.

(in-knowledge-base test)

(define-concrete-domain-attribute x :type complex)
(define-concrete-domain-attribute y :type complex)

(implies human-on-circle
(= (+ (* 1 x x) (* 1 y y) -1) 0))

(implies human-on-hyperbola
(= (+ (* 1 x x x) (* 1 y y)) 0))

(instance lara human-on-circle)
(constrained lara x-pos-lara x)
(constrained lara y-pos-lare y)

(instance leon human-on-hyperbola)
(constrained leon x-pos-leon x)
(constrained leon y-pos-leon y)

(constraints (= x-pos-lara x-pos-leon))
(constraints (= y-pos-lara y-pos-leon))

If Racer is asked whether the knowledge base is consistent, the answer is true. However,
currently, Racer does not support nonlinear inequations (based on order relations), so it is
not possible to specify that Lara’s location is somewhere IN the circle (as indicated in the
example in the introdcution). Furthermore, the range of the concrete domain attributes
used in the example must be declared as complex. As indicated in this report, real
root counting algorithms must be integrated into Racer to support also real attributes
in nonlinear (in-)equations. In the current version, real attributes can only be used in
linear inequations. If concrete solutions for constraint systems are required, algorithms
for cylindrical algebraic decomposition might be implemented in future versions of Racer.
As long as constraint systems are underconstrained, it might be possible to compute
minimal interval for (some) variables in constraint systems. This kind of inference service
might also be supported in a future version of Racer.
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Chapter 6

Comparison

This work presents the decision problem for real closed fields with respect to the applica-
tion in description logics. Different methods using Gröbner bases computation or applying
cylindrical algebraic decomposition are explained and analyzed to solve the decision prob-
lem. In Figure 6.1, the discussed methods are depicted in an overview. Additionally,
two methods are included which have not been considered in this work but should be
mentioned as well. Weispfenning introduces a quantifier elimination (QE) method based
on virtual term substitution, [Wei97]. This method is doubly exponential in the num-
ber of quantifier blocks but only singly exponential in the number of quantified variables,
[Dol99]. The quantifier elimination method using virtual term substitution is implemented
in a REDUCE-package, called REDLOG, whose source code and documentation is freely
available in the internet. REDLOG also provides interfaces to QEPCAD, Hong’s im-
plementation of the partial cylindrical algebraic decomposition, and to QERRC, the QE
method using real root counting and comprehensive Gröbner bases. The second method is
presented by Basu, which states a better theoretical complexity than a doubly exponential
complexity, [Bas99]. This quantifier elimination method has not been implemented yet,
but seems to be interesting for further investigations.

The Gröbner basis methods, as presented in Chapter 3, can be applied to solve the decision
problem for real closed fields with respect to the application in description logics. The
advantage of these methods is that an incremental version of Buchberger’s algorithm
for generating a Gröbner basis can be implemented. The main disadvantage poses the
fact that the dimension of the solution set is restricted to zero. This means that all
kinds of problems which have an infinite number of solutions cannot be applied to these
methods. The extensions of the basic Gröbner basis method with the Elimination Method
or the Univariate Polynomial Method have even restrictions on the form of the input
equations and inequations such that ordering inequations are not allowed. Thus, among
the methods based on Gröbner basis, the the Gröbner basis thechnique combined with
real root counting is the only method that allows polynomial equations and inequations
with ordering relations. Therefore, it can be applied to solve the decision problem for an
application such as in a concrete domain for the description logic (DL) system Raceras
illustrated in the introduction.

The method based on Collins’ cylindrical algebraic decomposition can also be used to
solve the the decision problem for real closed fields with respect to the application in
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description logics. Here, the advantage is given by the applicability to all polynomial
systems including those which have an infinite solution space. Moreover, equations and
inequations containing ordering inequations are allowed for input. However, this method
is not adaptable to an incremental version, which should be mentioned as a disadvantage
with respect to the application in description logics.

One of the main problems in symbolic-algebraic computations is due to storage limitations
and not due to time limitiations. In most cases, the size of the expressions arising during
the computations exceed the storage capacity. Research studies for the common real zeros
of a polynomial system can not yet present general solving strategies for a whole class of
polynomial systems. Moreover, it also seems to be difficult to determine the class of poly-
nomials for which a certain quantifier elimination method is best applicable. Therefore, it
is rather important to combine and explore the different advantages of several quantifier
eliminations methods to solve a problem. In [DSW97] and in [Dol99], a comparison be-
tween QERRC, QEPCAD and REDLOG for some practical examples has been evaluated.
As a conclusion, it cannot be stated that one of the three methods is superior to the oth-
ers. In [Hon91], Hong compares three QE algorithms with respect to their complexities on
the decision problem: Collins’ cylindrical algebraic decompostion method, Grigor’ev and
Vorobjov’s method (1988) and Renegar’s method (1989). It turned out that comparing
theoretical complexities can lead to wrong estimations on the average case since theoret-
ical complexities consider worst case scenarios. Even though Renegar’s algorithm should
be faster than Grigor’ev ’s which should be faster than Collins’, it seems to be the case
that Collins’ algorithm is the fastest with respect to average problems.

In general, it is more complicated to find the common zeros of a system of polynomials over
fields which are not algebraically closed. Concerning future investigations, it seems to be of
great importance to introduce solving methods which directly search for the real solutions
without having to compute the complex roots as well since there exist many problems
where the number of real zeros compose only a small fraction of the number of total zeros
[Pet97]. Thus, we hope that this work provides a good basis for ongoing implementations
to solve the decision problem for real closed fields in many different applications such as
in a concrete domain for the description logic (DL) system Racer.
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Figure 6.1: Methods for the Decision Problem
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