
Techniques for Ontology Design and
Maintenance

Deliverable TONES-D13

F. Baader4, R. Bernardi1, D. Calvanese1, A. Cal̀ı1, B. Cuenca Grau3,
M. Garcia5, G. de Giacomo2, A. Kaplunova5, O. Kutz3, D. Lembo2,

M. Lenzerini2, L. Lubyte1, C. Lutz4, M. Milicic4, R. Möller5,
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1 Introduction

Workpackage 3 of the TONES project is concerned with automated reasoning support
of ontology design and maintenance. As discussed in much more detail in the previous
deliverable [LLS06], such support is needed to assist the ontology designer in carrying
out a principled and systematic design-process, and to ensure that the resulting ontology
is well-structured and useful for the intended application. To maintain the high-quality
structure throughout the whole ontology life-cycle, it is additionally necessary to carry
out maintenance and evolution in a structured and systematic way. Also here, support
provided by automated reasoning tools can be of tremendous benefit.

In the deliverable [LLS06], we have identified and described the tasks that play a crucial
role during ontology design and maintenance. We have also identified services that should
be offered by ontology design tools and methodologies to support the ontology engineer
in the identified tasks. It turned out that, often, these services are closely related to
reasoning problems that have been studied in logic. Therefore, in [LLS06] we have also
identified and discussed logical reasoning problems that can be used to implement the
desirable services for ontology design and maintenance. Finally, we have given a brief
survey of the available results and techniques, and identified important open research
issues.

The purpose of the current deliverable is to summarize the techniques that realize
the reasoning services identified as fundamental for ontology design and maintenance,
and to report on their computational properties. In particular, we concentrate on novel
techniques and results that have been developed within the TONES project. To discuss
logical reasoning techniques in detail, we need to select a concrete logical formalism that is
used as an ontology language. For the remainder of this deliverable, the selected formalism
will be description logic (DL). A good introduction to DL and a comprehensive overview of
the field is provided by the handbook [BCM+03b]. The use of DLs as ontology languages
has been described for example in the survey articles [BHS02] and [BHS03a]. We have
chosen DLs as the ontology language for the following two reasons:

1. Description logics currently have a very strong standing as ontology languages. Most
notably, under the names OWL-Lite and OWL-DL they have been standardized as
the ontology language of the web. A description of the history and development of
the OWL standard can be found in [HPSvH03]; see also Section 5.

2. The core definitions of description logics capture the core aspects of ontologies in a
straightforward and uncontroversial way. Since we will mainly use the core of DLs
in this deliverable, most of the discussion of DL reasoning problems provided in this
section applies also to other ontology languages.

The deliverable starts with a brief introduction to description logics in Section 2. In Sec-
tion 3, we briefly summarize the tasks for ontology design and maintenance identified in
Deliverable [LLS06] for later reference. Each of the following technical sections concen-
trates on a family of techniques that have been developed within TONES. For example,
Section 5 discusses reasoning techniques for the new 1.1 version of the ontology language
OWL and the closely related description logic SROIQ. Both OWL 1.1 and SROIQ,
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as well as the presented reasoning techniques, have been developed within the TONES
project. All the technical sections have an identical structure: we first give a brief intro-
duction to the addressed problem, relating it to the ontology design tasks in Section 3
and to the common logical framework developed in Deliverable [CGG+06]. Then the tech-
niques and results are presented in detail. Finally, we put these results into perspective
of related and existing work.
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2 Description Logics

In this section, we introduce the description logic SHOIQ and its fragments. We have
chosen this particular DL for presentation at this point because SHOIQ forms the basis
of the OWL 1.0 standard. Additionally, it is very expressive and most of the DLs referred
to in this deliverable can be conveived as fragments of SHOIQ.

2.1 Syntax and Semantics of SHOIQ

In DLs, concepts and roles are the main ingredients to the concept definitions that com-
prise an ontology (also called knowledge base in DL parlance). Concepts and roles are
inductively defined with the help of a set of constructors, starting with a set NC of concept
names, a set NR of role names, and (possibly) a set NI of individual names. In some
DLs such as SHOIQ, the set of role names contains a subset NtR ⊆ NR of transitive
role names. In SHOIQ, there is only a single role constructor: a role is an element of
NR ∪ {r

− | r ∈ NR}, where roles of the form r− are called inverse roles.

SHIQ-concepts (or concepts for short) are built inductively using the following gram-
mar, where A ∈ NC, a ∈ NI, n ≥ 0, r is a role, and s is a role such that neither s ∈ NtR

nor s = r− for some r ∈ NtR:

C ::= ⊤ | ⊥ | A | {a} | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∀r.C | ∃r.C | (6 n s C) | (> n s C)

The concepts ⊤ and ⊥ denote logical truth and falsity. Concepts of the form {a} are
called nominals, concepts of the form ∀r.C universal restrictions, and concepts of the
form ∃r.C existential restrictions. Finally, concepts of the form (6 n r C) and (> n r C)
are called (qualified) number restrictions.

The semantics for concepts and roles are provided by interpretations I = (∆I , ·I),
which consist of a non-empty set ∆I , the domain of I, and a function ·I , which maps
every concept name A to a subset AI ⊆ ∆I , every role name r ∈ NR to a binary relation
rI ⊆ ∆I × ∆I such that rI is transitive for every r ∈ NtR, and every individual name
a to an element aI ∈ ∆I . This semantics is extended to complex concepts and roles as
follows:

⊤I = ∆I

⊥I = ∅

{a}I = {aI}

(¬C)I = ∆I \ CI ,

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∀r.C)I = {d ∈ ∆I | if (d, d′) ∈ rI , then d′ ∈ CI}

(∃r.C)I = {d ∈ ∆I | there is d′ ∈ CI with (d, d′) ∈ rI}

(6 n s C)I = {d ∈ ∆I | #{d′ ∈ CI | (d, d′) ∈ sI} 6 n}

(> n s C)I = {d ∈ ∆I | #{d′ ∈ CI | (d, d′) ∈ sI} > n}

where #S denotes the cardinality of the set S.
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A SHOIQ ontology consists of three components, which we introduce next. The first
component is a TBox, which is a finite set of general concept inclusions (GCIs) of the
form C ⊑ D, where C and D are SHOIQ concepts. The second component is a role
hierarchy, which is a finite set of role inclusions r ⊑ s, where r and s are roles. Finally,
the third component is an ABox, which is a finite set of assertions of the form C(a) or
r(a, b), where C is a concept, r a role, and a, b ∈ NI. Thus, a SHOIQ ontology is a triple
(T ,H,A) with T a TBox, H a role hierarchy, and A an ABox. In this deliverable, we
will also call such a triple a knowledge base and sometimes refer to the TBox component
alone as the ontology.

As for the semantics, an interpretation I satisfies a GCI C ⊑ D if CI ⊆ DI , a
role inclusion r ⊑ s if rI ⊆ sI , an assertion C(a) if aI ∈ CI , and an assertion r(a, b)
if (aI , bI) ∈ rI . It satisfies a TBox/role hierarchy/ABox if it satisfies all GCIs/role
inclusions/assertions in it.

When we use an ontology with a non-empty role hierarchy, we have to strenghten our
assumption on the roles allowed inside number restrictions (6 n s C) and (> n s C).
Recall that we disallowed transitive roles there, i.e., demanded that neither s ∈ NtR nor
s = r− for some r ∈ NtR. In the presence of role hierarchies, there may be different
reasons for a role to be transitive. This is captured by the notion of a simple role, defined
as follows:

• Inv(r) := r− if r ∈ NR and Inv(r) := s if r = s− for a role name s.

• For a role hierarchy H, ⊑∗
H is the reflexive transitive closure of ⊑ over H∪{Inv(r) ⊑

Inv(s) | r ⊑ s ∈ H}, and we use r ≡∗
H s as an abbreviation for r ⊑∗

H s and s ⊑∗
H r.

• For a role hierarchy H and a role s, we define the set TransH of transitive roles as

{s | ∃ role r with r ≡∗
H s and r ∈ NtR or Inv(r) ∈ NtR}.

• A role r is called simple w.r.t. a role hierarchy H if, for each role s such that s ⊑∗
H r,

s /∈ TransH.

This finishes the introduction of SHOIQ. In the remainder of this section, we identify
a number of important fragments. We start with introducing to rather basic DLs. First,
the DL that

1. has no role constructors (and thus no inverse roles) and no role hierarchies;

2. has only the concept constructors negation, conjunction, disjunction, and universal
and existential restriction;

3. does not have transitive roles

is called ALC. And second the DL that extends ALC with role hierarchies and transitive
roles is called S.

The availability of additional constructors in ALC and S is indicated by concatenation
of a corresponding letter: Q stands for number restrictions; I stands for inverse roles, and
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O for nominals. Thus, ALCO is ALC extended with nominals, ALCQIO is the fragment
of SHOIQ that does not allow role hierarchies and transitive roles, and SHIQ is the
fragment of SHOIQ that does not allow nominals.

The main task of a DL system is to infer implicit knowledge from the knowledge base
and make it explicit. The most relevant inference problems can be described as follows:

• Concept satisfiability. A concept C is satisfiable w.r.t. a knowledge base K iff there
exists a model I of K such that CI 6= ∅.

• Concept subsumption. A concept C subsumes a concept D w.r.t. a knowledge base
K (written C ⊑K D) iff CI ⊆ DI in every model I of K.

• Knowledge base consistency. A knowledge base K is consistent iff K has a model.

• The instance problem. An individual name a is an instance of a concept C in a
knowledge base K iff aI ∈ CI for every model I of K.
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3 Tasks in Ontology Design and Maintenance

The main purpose of deliverable D05 was to identify design and maintenance tasks that
are crucial for achieving and preserving a high-quality formalization of knowledge in the
ontology. Here, we repeat a short summary of each identified task. These summaries will
be used as reference points in the discussion of techniques for supporting the identified
tasks, which comprises the main part of the current deliverable. For more details on the
tasks listed in the following, we refer to deliverable D05 [LLS06].

3.1 Authoring Concept Descriptions

The author wants to add a new concept description to the ontology or modify a concept
description that was already contained in the ontology. This may happen either in the
design phase of the ontology or during the maintenance phase. After producing a candi-
date description of the concept, the author needs to understand the implicit consequences
of his modelling and the interaction of this description with the other descriptions in the
ontology.

3.2 Generating Concept Descriptions

The ontology designer wants to add a new concept to the ontology, but finds it difficult
to describe it. To obtain a starting point for the concept description, the designer wants
to automatically generate an initial description of the new concept that is based on the
position of this concept in the subsumption hierarchy.

3.3 Structuring the Ontology

The ontology designer wants to improve the structure of an ontology by inserting inter-
mediate concepts into the subsumption hierarchy. He needs support to decide where to
add such concepts and how to describe them.

3.4 Bottom-up Construction

The ontology designer wants to design the ontology bottom-up, i.e., by proceeding from
the most specific concepts to the most general ones. This should be supported by au-
tomatically generating concept descriptions from descriptions of typical instances of the
new concept (and, additionally, of intended subclasses in the hierarchy–if any).

3.5 Stepwise Extension

To develop an ontology, the designer starts with formalizing only a part of the domain, and
then extends the ontology with notions from additional parts in a stepwise fashion. When
adding concept descriptions from new parts of the application domain to the existing
ontology, he wants to avoid that the existing and debugged ontology is compromised by
the extension.
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3.6 Ontology Customization

An ontology user wants to adapt an existing ontology to his purposes by making simple
modifications. Since he is not an expert in ontology languages, he works with a simpler
language than the one used to formulate the ontology and/or with graphical frame-like
interfaces.

3.7 Concept Inspection

The ontology designer wants to display a concept description in a way that facilitates
understanding of the concept’s meaning. He wants to query the ontology for concepts
that are similar to a given concept description.

3.8 Error management

An automated reasoning tool has reported a problem in the ontology. The ontology de-
signer wants support in pinpointing the source of the problem, have the problem explained
in an understandable way, and/or have suggestions on how to resolve the problem.a

3.9 View-based Ontology Design and Maintenance

In designing and maintaining an ontology, the developer may want to use views (i.e.,
queries) specified over the ontology to have a result of high quality. She/he may have
some typical views at hand and wants to test whether they are non-empty and whether
some of which are contained in some others. Based on the knowledge about the domain of
the ontology developer, he could conclude that the ontology contains flaws if the results
are not as he would expect. We point out that this task comprises and refines the “Query
Management” task introduced in the previous deliverable D05 [LLS06].

3.10 Ontologies from Database Schema

The ontology designer wants to create an ontology about an enterprise domain that is
already (partly) described in the form of a database schema. Instead of constructing the
ontology from scratch, he wants automatic support for converting the database schema
into an initial ontology.
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4 Reasoning in Lightweight DLs

4.1 Introduction

When designing an ontology language, one faces the ubiquitous tradeoff between the
expressive power of the language and the computational complexity of reasoning in it.
On the one hand, greater expressive power allows to describe the relevant concepts of the
application domain in more detail. On the other hand, higher computational complexity
means that reasoning may become infeasible if ontologies become larger or answer time
plays a crucial role.

There is no one optimal solution to this tradeoff. In particular, it is not possible to
find an optimal solution without taking into consideration the application for which the
ontology is designed. There exist applications that require a rather detailed modelling of
concepts in the ontology, and in which ontologies are small enough so that reasoning in
computationally expensive languages is possible. Applications of this kind may be using
onology languages such as those discussed in Section 5. In other applications such as
medical informatics and genomics, ontologies tend to be extremely large and can usually
not be processed by reasoners that support expressive and computationally expensive
ontology languages. Fortunately, it seems to be the case that applications of the latter
kind often only need a much more abstract modelling of the relevant concepts, and thus
a relatively inexpressive ontology language is sufficient.

In this section, we explore description logics for which reasoning w.r.t. general TBoxes
(i.e., sets of GCIs) is tractable and that are still sufficiently expressive to be used in
relevant applications such as medical informatics, bioinformatics, and genomics. More
precisely, we focus on the most important reasoning problem during ontology design,
namely TBox classification: given a TBox T , compute the subsumption relation between
all concept names that appear in T . Classification is of crucial importance for almost
all ontology design task. In particular, it plays a central role for authoring concept
constructions and structuring the ontology. From the perspective of the common logical
framework in deliverable D08, we are concerned with stand-alone ontologies.

The quest for tractable (i.e., polynomial-time decidable) description logics (DLs)
started in the 1980s after the first intractability results for DLs were shown [BL84, Neb88].
Until recently, it was restricted to DLs that extend the basic language FL0, which com-
prises the concept constructors conjunction (⊓) and value restriction (∀r.C). The main
reason for this focussing was that, when clarifying the logical status of property arcs in
semantic networks and slots in frames (which are the ancestors of modern DLs), the deci-
sion was taken that arcs/slots should be read as value restrictions rather than existential
restrictions (∃r.C).

Unfortunately, as soon as TBoxes were taken into consideration, tractability turned
out to be unattainable in FL0: even classifying the simplest form of TBoxes that ad-
mit only acyclic concept definitions was shown to be coNP-hard [Neb90]. If the most
general form of TBoxes is admitted, which consists of general concept inclusion axioms
(GCIs) as introduced in Section 2, then classification in FL0 even becomes ExpTime-
complete [BBL05].
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For these reasons, and also because of the need for expressive DLs in applications,
from the mid 1990s on, the DL community had mainly given up on the quest of finding
tractable DLs. Instead, it investigated more and more expressive DLs, for which reasoning
is worst-case intractable. Recently, the choice of value restrictions as a sine qua non of
DLs has been reconsidered. On the one hand, it was shown that the DL EL, which
allows for conjunction and existential restrictions, has better algorithmic properties than
FL0. Classification of both acyclic and cyclic EL TBoxes is tractable [Baa03c], and this
remains so even if general TBoxes with GCIs are admitted [Bra04]. A related line of
research has identified a family of DLs (the DL-Lite family) that is closely related to EL,
but orthogonal in expressive power [CDGL+05a, CGL+06]. Just like EL, many variants
DL-Lite admit tractable classification in the presence of GCIs. More details are given in
Section 14. On the other hand, there are applications where value restrictions are not
needed, and where the expressive power of EL or small extensions thereof appear to be
sufficient. In fact, the Systematized Nomenclature of Medicine (SNOMED), employs EL
with an acyclic TBox [Spa00]. The Gene Ontology (GO) [Gen00] can be seen as an acyclic
EL TBox with one transitive role. Finally, large parts of the Galen Medical Knowledge
Base (GALEN) can also be expressed in EL with GCIs, role hierarchy, and transitive roles
[RH97].

The tractability results for EL together with the bio-medical applications mentioned
above have motivated our research on extensions of EL: the leitmotif for this research was
to extend EL as far as possible by adding standard DL constructors available in ontology
languages like OWL, while still retaining polynomial-time reasoning in the presence of
GCIs. Our first results in this direction have been published in [BBL05]. As part of
the TONES project, we have considerably extended and refined our results about the
EL family of DLs. As a result, the tractability border for classification in these DLs is
now very well understood. In particular, we have identified two dialects called EL++

rr and
EL++

ri for which classification is tractable and whose expressive power is well-suited for
being used in life science ontologies. In this section, we present some selected results from
this line of research. For the full picture, we refer to the paper [BBL07].

4.2 Description Logics

We introduce the description logic EL++ and two of its variations called EL++
rr and EL++

ri .
Concept descriptions of EL++ are formed using the constructors shown in the upper part
of Table 1. The concrete domain constructor provides an interface to so-called concrete
domains, which permits reference to, e.g., strings and integers. Formally, a concrete
domain D is a pair (∆D,PD) with ∆D a set and PD a set of predicate names. Each
p ∈ P is associated with an arity n > 0 and an extension pD ⊆ (∆D)n. To provide a
link between the DL and the concrete domain, we introduce a set of feature names NF.
In Table 1, p denotes a predicate of some concrete domain D and f1, . . . , fk are feature
names. The DL EL++ may be equipped with a number of concrete domains D1, . . . ,Dn

such that ∆Di ∩ ∆Dj = ∅ for 1 ≤ i < j ≤ n. If we want to stress the use of particular
concrete domains D1, . . . ,Dn, we write EL++(D1, . . . ,Dn) instead of EL++.

The semantics of EL++(D1, . . . ,Dn)-concept descriptions is defined in terms of an
interpretation as introduced in Section 2, with the addition that each feature name f ∈ NF
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Name Syntax Semantics

top ⊤ ∆I

bottom ⊥ ∅

nominal {a} {aI}

conjunction C ⊓D CI ∩DI

existential
restriction

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

concrete
domain

p(f1, . . . , fk)

for p ∈ PDj

{x ∈∆I | ∃y1, . . . , yk ∈ ∆Dj :
fI

i (x) = yi for 1 ≤ i ≤ k ∧ (y1, . . . , yk) ∈ pDj}

GCI C ⊑ D CI ⊆ DI

RI C : r1 ◦ · · · ◦ rk ⊑ r (CI ×∆I) ∩ (rI1 ◦ · · · ◦ rIk ) ⊆ rI

domain
restriction

dom(r) ⊑ C rI ⊆ CI ×∆I

range
restriction

ran(r) ⊑ C rI ⊆ ∆I × CI

concept
assertion

C(a) aI ∈ CI

role
assertion

r(a, b) (aI , bI) ∈ rI

Table 1: Syntax and semantics of EL++.

to a partial function fI from ∆I to
⋃

1≤i≤n ∆Di. The extension of ·I to arbitrary concept
descriptions is inductively defined as shown in the third column of Table 1.

An EL++ knowledge base (which corresponds to an ontology with an assertional part)
comprises two sets, the constraint box (CBox) and the assertional box (ABox). While the
CBox contains intensional knowledge defining the main notions relevant to the domain of
discourse, the ABox contains extensional knowledge about actual named individuals of the
domain. An EL++ CBox is a finite set of constraints. Such constraints are general concept
inclusions (GCIs), role inclusions (RIs), domain restrictions and range restrictions, whose
syntax can be found in Table 1. In role inclusions, we admit the case k = 0 and write the
resulting inclusion as ε ⊑ r. Note that a finite set of GCIs would commonly be called a
general TBox. We use the term CBox due to the presence of RIs and domain and range
restrictions. An interpretation I is a model of a CBox C if, for each constraint in C, the
conditions given in the third column of Table 1 are satisfied. In the definition of the
semantics of RIs, the symbol “◦” denotes composition of binary relations.

Apart from unrestricted EL++ CBoxes as defined above, two subsets of restricted
CBoxes are of particular interest for us. We call every EL++ CBox C an EL++

rr CBox iff
all role inclusions in C are of the form C : ε ⊑ r (expressing reflexivity for C), C : r ⊑ s
(role hierarchy for C), or C : r◦r ⊑ r (transitivity for C). An EL++ CBox C is called EL++

ri

CBox iff C contains no range restrictions. In other words, EL++
rr CBoxes admit arbitrary

range restrictions but limited role inclusions while EL++
ri CBoxes admit arbitrary role
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inclusions but no range restrictions.

It remains to define the second component of our knowledge bases. An EL++ ABox
is a finite set of concept assertions and role assertions, whose syntax can also be found in
Table 1. An interpretation I is a model of an ABox A if, for each concept assertion and
role assertion in A, the conditions given in the third column of Table 1 are satisfied.

In the remainder of the present paper, we will concentrate on subsumption as the basic
reasoning task. This is justified by the facts that, first, all of the standard reasoning tasks
“concept satisfiability”, “concept subsumption”, “ABox consistency”, and the “instance
problem” can be mutually polynomially reduced to one another, and second, subsump-
tion is the most “traditional” reasoning service in description logics. We show mutual
reducibility by reducing all (other) reasoning tasks to subsumption, and vice versa:

• Satisfiability to (non-)subsumption: a concept C is satisfiable w.r.t. a CBox C iff
C 6⊑C ⊥.

• Instance problem to subsumption. We convert an ABox A into a concept CA as
follows:

CA := ⊓
C(a)∈A

∃u.({a} ⊓ C) ⊓ ⊓
r(a,b)∈A

∃u.({a} ⊓ ∃r.{b})

where u is a new role name not used in A. Then, an individual a is an instance of
a concept C in an ABox A w.r.t. a CBox C iff {a} ⊓ CA ⊑C C.

• Consistency to subsumption: A is consistent w.r.t. C iff CA 6⊑ ⊥.

• Subsumption to satisfiability: C ⊑C D iff C ⊓ {a} is unsatisfiable w.r.t. the CBox
C ∪ {D ⊓ {a} ⊑ ⊥}, where a is an individual name not occurring in C, D, and C.

• Subsumption to the instance problem: C ⊑C D iff a is an instance of D in the ABox
{C(a)} w.r.t. C.

• Subsumption to consistency: C ⊑C D iff the ABox {C(a)} is inconsistent w.r.t. the
TBox C ∪ {D ⊓ {a} ⊑ ⊥}.

Three remarks regarding the expressivity of EL++
rr and EL++

ri are in order. First, our RIs
generalize four means of expressivity important in ontology applications: role hierarchies
r ⊑ s, which can be expressed as ⊤ : r ⊑ s; transitive roles, which can be expressed by
writing ⊤ : r◦r ⊑ r; reflexive roles via ⊤ : ε ⊑ r; and so-called right-identity rules r◦s ⊑ s,
expressible as ⊤ : r ◦ s ⊑ s, which are important in medical applications [Spa00, HS03b].
Second, the bottom concept in combination with GCIs can be used to express disjointness
of complex concept descriptions: C ⊓ D ⊑ ⊥ says that C, D are disjoint. Finally, the
unique name assumption for individual names can be enforced by writing {a} ⊓ {b} ⊑ ⊥
for all relevant individual names a and b.

4.3 Deciding Subsumption in EL++
rr and EL++

ri extended by con-
crete domains

We develop a polynomial time algorithm for classification in EL++
rr and EL++

ri , proceeding
as follows. First, we develop an appropriate normal form for EL++ CBoxes; second, we
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show how to eliminate domain and range restrictions from EL++
rr CBoxes; and third,

we show how to classify the resulting CBoxes, i.e., how to compute the subsumption
relationships between all concept names in such a TBox.

4.3.1 A Normal Form for CBoxes

Given a CBox C formulated in EL++, we use BCC to denote the set of basic concept
descriptions for C , i.e., the smallest set of concept descriptions that contains

• the top concept ⊤;

• all concept names used in C;

• all (sub)concepts of the form {a} or p(f1, . . . , fk) appearing in C.

Now, a normal form for CBoxes can be defined as follows.

Definition 4.1 [Normal Form for CBoxes] An EL++-CBox C is in normal form if

1. all concept inclusions have one of the following forms, where C1, C2 ∈ BCC and
D ∈ BCC ∪ {⊥}:

C1 ⊑ D

C1 ⊓ C2 ⊑ D

C1 ⊑ ∃r.C2

∃r.C1 ⊑ D

2. for all role inclusions C : r1 ◦ · · · ◦ rk ⊑ r ∈ C, we have C ∈ BCC and k ≤ 2;

3. there are no domain restrictions and all range restrictions are of the form ran(r) ⊑ A,
where A is a concept name.

By introducing new concept and role names, any CBox C can be turned into a normalized
CBox C′ such that every model of C′ is also a model of C, and every model of C can be
extended to a model of C′ by appropriate choice of the interpretations of the additional
concept and role names.

This transformation can actually be done in linear time, yielding a normalized CBox
C′ whose size is linear in the size of C. More precisely, this is achieved using the translation
rules shown in Figure 1 in two phases:

1. exhaustively apply Rules NF0 to NF6;

2. exhaustively apply Rules NF7 to NF9.

Here “rule application” means that the concept inclusion on the left-hand side is replaced
with the set of concept inclusions on the right-hand side, where Rule NF4 is applied modulo
commutativity of conjunction.
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NF0 Ĉ : r1 ◦ · · · ◦ rk ⊑ s −→ {A ⊑ C, C ⊑ A, A : r1 ◦ · · · ◦ rk ⊑ s}

NF1 C : r1 ◦ · · · ◦ rk ⊑ s −→ {C : r1 ◦ · · · ◦ rk−1 ⊑ u, C : u ◦ rk ⊑ s}

NF2 ran(r) ⊑ Ĉ −→ {ran(r) ⊑ A, A ⊑ Ĉ}

NF3 dom(r) ⊑ C −→ {∃r.⊤ ⊑ C}

NF4 C ⊓ D̂ ⊑ E −→ { D̂ ⊑ A, C ⊓A ⊑ E }

NF5 ∃r.Ĉ ⊑ D −→ { Ĉ ⊑ A, ∃r.A ⊑ D }

NF6 ⊥ ⊑ D −→ ∅

NF7 Ĉ ⊑ D̂ −→ { Ĉ ⊑ A, A ⊑ D̂ }

NF8 B ⊑ ∃r.Ĉ −→ { B ⊑ ∃r.A, A ⊑ Ĉ }

NF9 B ⊑ C ⊓D −→ { B ⊑ C, B ⊑ D }

where Ĉ, D̂ 6∈ BCC, u denotes a new role name, and A a new concept name.

Figure 1: Normalization Rules

Lemma 4.2 Subsumption w.r.t. CBoxes in EL++ can be reduced in linear time to sub-
sumption w.r.t. normalized CBoxes in EL++.

Note that if all rules are applied together in one phase we obtain a quadratic blowup
in the worst case due to the duplication of the concept B by Rule NF9. Note also that,
while domain restrictions are easily eliminated by means of Rule NF3, range restrictions
remain unchanged by the above normalization procedure. In the following section, We
therefore show how to remove range restrictions from EL++

rr CBoxes before presenting our
subsumption algorithm in Section 4.3.3.

4.3.2 Eliminating Range Restrictions

Our aim is to devise a general strategy by which to remove range restrictions from any
EL++

rr CBoxe C normalized in the sense of Definition 4.1. In order to simplify the pre-
sentation of our strategy, we begin by introducing some notation. For two roles s and
r, we write s ⊑∗

C r if there are roles r0, . . . , rn, n ≥ 0, such that s = r0, r = rn−1, and
ri ⊑ ri+1 ∈ C for all i < n. Also, we write r ∈ reflC if there is a role s such that ε ⊑ s and
s ⊑∗

C r.
To substitute a range restriction ran(r) ⊑ A in C, we proceed as follows:

1. exchange every GCI C ⊑ ∃s.D such that s ⊑∗ r with the three GCIs C ⊑ ∃s.B,
B ⊑ A, and B ⊑ D, where B is a fresh concept name.

2. if r ∈ reflC then add the GCI ⊤ ⊑ A.

Let C′ be the resulting CBox. Then we have the following.
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Lemma 4.3 For all concept names A, B occurring in C, A ⊑C B iff A ⊑C′ B.

Observe that eliminating range restrictions induces only a linear blowup in the size of the
original CBox. Moreover, every normalized EL++

rr CBox is by definition also a normalized
EL++

ri CBox. In the following, we may therefore assume w.l.o.g. to deal solely with
normalized EL++

ri CBoxes.

4.3.3 The Algorithm

We now develop a polynomial-time algorithm for deciding subsumption w.r.t. normalized
EL++

rr or EL++
ri CBoxes. Note that every normalized EL++

rr can also be viewed as an
EL++

ri CBox. Hence, we devise an algorithm for normalized EL++
ri (D1, . . . ,Dn) CBoxes.

We can restrict our attention to subsumption between concept names. In fact, C ⊑C D
iff A ⊑C′ B, where C′ = C ∪ {A ⊑ C, D ⊑ B} with A and B new concept names. Our
subsumption algorithm not only computes subsumption between two given concept names
w.r.t. the normalized input CBox C; it rather classifies C, i.e., it simultaneously computes
the subsumption relationships between all pairs of concept names occurring in C.

Now, let C be an EL++
ri CBox in normal form that is to be classified. We use RC to

denote the set of all role names used in C. The algorithm computes

• a mapping S from BCC to a subset of BCC ∪ {⊥}, and

• a mapping R from RC to a binary relation on BCC.

The intuition is that these mappings make implicit subsumption relationships explicit in
the following sense:

(I1) D ∈ S(C) implies that C ⊑C D,

(I2) (C, D) ∈ R(r) implies that C ⊑C ∃r.D.

In the algorithm, these mappings are initialized as follows:

• S(C) := {C,⊤} for each C ∈ BCC,

• R(r) := ∅ for each r ∈ RC.

Then the sets S(C) and R(r) are extended by applying the completion rules shown in
Table 2 until no more rule applies.

Some of the rules use abbreviations that still need to be introduced. First, CR6 uses the
relation ⊆ BCC×BCC, which is defined as follows: C  D iff there are C1, . . . , Ck ∈ BCC

such that

• C1 = C or C1 = {b} for some individual name b,

• (Cj, Cj+1) ∈ R(rj) for some rj ∈ RC (1 ≤ j < k),

• Ck = D.
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CR1 If C ′ ∈ S(C), C ′ ⊑ D ∈ C, and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR2 If C1, C2 ∈ S(C), C1 ⊓ C2 ⊑ D ∈ C, and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR3 If C ′ ∈ S(C), C ′ ⊑ ∃r.D ∈ C, and (C, D) /∈ R(r)
then R(r) := R(r) ∪ {(C, D)}

CR4 If (C, D) ∈ R(r), D′ ∈ S(D), ∃r.D′ ⊑ E ∈ C, and E /∈ S(C)
then S(C) := S(C) ∪ {E}

CR5 If (C, D) ∈ R(r), ⊥ ∈ S(D), and ⊥ /∈ S(C),
then S(C) := S(C) ∪ {⊥}

CR6 If {a} ∈ S(C) ∩ S(D), C  D, and S(D) 6⊆ S(C)
then S(C) := S(C) ∪ S(D)

CR7 If conj(S(C)) is unsatisfiable in Dj and ⊥ /∈ S(C),
then S(C) := S(C) ∪ {⊥}

CR8 If conj(S(C)) implies p(f1, . . . , fk) ∈ BCC in Dj, and p(f1, . . . , fk) /∈ S(C),
then S(C) := S(C) ∪ {p(f1, . . . , fk)}

CR9 If p(f1, . . . , fk), p
′(f ′

1, . . . , f
′
k′) ∈ S(C), p ∈ PDj

p′ ∈ PDℓ , j 6= ℓ, fs = f ′
t for some s, t, and ⊥ /∈ S(C)

then S(C) := S(C) ∪ {⊥}

CR10 If C ∈ BCC, D ∈ S(C), D : ε ⊑ r ∈ C, and (C, C) /∈ R(s)
then R(r) := R(r) ∪ {(C, C)}

CR11 If (C, D) ∈ R(r), E ∈ S(C), E : r ⊑ s ∈ C, and (C, D) /∈ R(s)
then R(s) := R(s) ∪ {(C, D)}

CR12 If (C, D) ∈ R(r1), (D, E) ∈ R(r2), F ∈ S(C),
F : r1 ◦ r2 ⊑ r3 ∈ C, and (C, E) /∈ R(r3)
then R(r3) := R(r3) ∪ {(C, E)}

Table 2: Completion Rules
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Second, rules CR7 and CR8 use the notion conj(Si(C)), and satisfiability and impli-
cation in a concrete domain. If p is a predicate of the concrete domain Dj, then the
EL++-concept description p(f1, . . . , fn) can be viewed as an atomic first-order formula
with variables f1, . . . , fn. Thus, it makes sense to consider Boolean combinations of such
atomic formulae, and to talk about whether such a formula is satisfiable in (the first-order
interpretation) Dj, or whether in Dj one such formula implies another one. For a set Γ
of EL++(D1, . . . ,Dn)-concept descriptions and 1 ≤ j ≤ n, we define

conj(Γ) :=
∧

p(f1,...,fk)∈Γ with p∈PDj

p(f1, . . . , fk).

For the rules CR7 and CR8 to be executable in polynomial time, satisfiability and implication
in the concrete domains D1, . . . ,Dn must be decidable in polynominal time. However, for
our algorithm to be complete, we must impose an additional condition on the concrete
domains.

Definition 4.4 The concrete domain D is p-admissible if

1. satisfiability and implication in D are decidable in polynominal time;

2. D is convex : if a conjunction of atoms of the form p(f1, . . . , fk) implies a disjunction
of such atoms, then it also implies one of its disjuncts.

We investigate the property of p-admissibility in more detail in Section 4.4, where we also
exhibit some useful concrete domains that are p-admissible.

The next lemma shows how all subsumption relationships between concept names
occurring in C can be determined once the completion algorithm has terminated.

Lemma 4.5 Let S be the mapping obtained after the application of the rules of Table 2
to the normalized CBox C has terminated, and let A, B be concept names occurring in C.
Then A ⊑C B iff one of the following two conditions holds:

• S(A) ∩ {B,⊥} 6= ∅,

• there is an {a} ∈ BCC such that ⊥ ∈ S({a}).

Lemma 4.5 is proved in [BBL07], where it is also shown that the algorithm terminates
after at most polynomially many rule applications. Here, we briefly discuss soundness
of the algorithm on an intuitive level. Soundness immediately follows from the fact that
(I1) and (I2) are satisfied for the initial definition of S, R, and that application of the
rules preserves (I1) and (I2). This is trivially seen for most of the rules. However, it is
worthwhile to consider CR6 in more detail. If {a} ∈ S(C)∩S(D), then C, D ⊑C {a}. Now,
C  D implies that C ⊑C ∃r1. · · · ∃rk−1.D or {b} ⊑C ∃r1. · · · ∃rk−1.D for some individual
name b. In the second case, this implies that D cannot be empty in any model of C, and in
the first case it implies that D is non-empty in any model of C for which C is non-empty.
Together with C, D ⊑C {a}, this implies that C ⊑C D, which shows that the rule CR6 is
sound since it preserves (I1). When dropping the requirement C  D from this rule, (I1)
is no longer preserved.

Finally, we obtain the following result.

c©2007/TONES – January 30, 2007 21/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3

Theorem 4.6 Satisfiability, subsumption, ABox consistency, and the instance problem
in EL++

rr and EL++
ri can be decided in polynomial time.

4.4 P-admissible and Non-admissible Concrete Domains

In the previous sections we have dealt with p-admissible concrete domains without actu-
ally specifying one. In order to obtain concrete DLs of the form EL++

rr (D1, . . . ,Dn) and
EL++

ri (D1, . . . ,Dn) for n > 0 to which Theorem 4.6 applies, actual p-admissible concrete
domains are needed. In the following, we introduce two p-admissible concrete domains
and show that the property of p-admissibility is lost in small extensions of them. To
simplify notation, we call every finite conjunction of atomic formulae p(f1, . . . , fk) from a
concrete domain D a D-conjunction.

The concrete domain Q = (Q,PQ) has as its domain the set Q of rational numbers,
and its set of predicates PQ consists of the following predicates:

• a unary predicate ⊤Q with (⊤Q)Q = Q;

• unary predicates =q and >q for each q ∈ Q;

• a binary predicate =;

• a binary predicate +q, for each q ∈ Q, with
(+q)

Q = {(q′, q′′) ∈ Q2 | q′ + q = q′′}.

The concrete domain S is defined as (Σ∗,PS), where Σ is the ISO 8859-1 (Latin-1) char-
acter set and PS consistes of the following predicates:

• a unary predicate ⊤S with (⊤S)
S = Σ∗;

• a unary predicate =w, for each w ∈ Σ∗;

• a binary predicate =;

• a binary predicate concw, for each w ∈ Σ∗, with
concQ

w = {(w′, w′′) | w′′ = w′w}.

Both Q and S are interesting concrete domains since they allow us to refer to concrete
numbers and strings in concepts, and use the properties of the concrete predicates when
reasoning. However, the predicates available in these concrete domains are rather re-
stricted. We now show that both Q and S are p-admissible.

Proposition 4.7 The concrete domains Q and S are p-admissible.

Note that p-admissibility of concrete domains is easily broken. Consider e.g. the following
examples:

• The concrete domain Q<q ,>q with domain Q that has the predicates (>q)q∈Q from
Q and, additionally, unary predicates (<q)q∈Q with

(<q)
Q<q,>q

:= {q′ ∈ Q | q′ < q}.

Then the Q<q,>q-conjunction c := >0(f
′) does not imply any concept from Γ :=

{<0(f), =0(f), >0(f)}, but every solution of c satisfies some concept of Γ.

c©2007/TONES – January 30, 2007 22/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3

Name Syntax Semantics

negation ¬C ∆I \ CI

disjunction C ⊔D CI ∪DI

value restriction ∀r.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI → y ∈ CI}

sink restriction ∀r.⊥ {x ∈ ∆I | ¬∃y ∈ ∆I : (x, y) ∈ rI}

at-least restriction (> n r) {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ rI} ≥ n}

at-most restriction (6 n r) {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ rI} ≤ n}

inverse roles ∃r−.C {x | ∃y ∈ ∆I : (y, x) ∈ rI ∧ y ∈ CI}
role negation ∃¬r.C {x | ∃y ∈ ∆I : (y, x) /∈ rI ∧ y ∈ CI}
role union ∃r ∪ s.C {x | ∃y ∈ ∆I : (y, x) ∈ rI ∪ sI ∧ y ∈ CI}

transitive closure ∃r∗.C {x | ∃y ∈ ∆I : (y, x) ∈ (rI)+ ∧ y ∈ CI}
symmetric roles — subset Nsym

R ⊆ NR such that for all r ∈ Nsym
R ,

rI = rI ⊆ {(y, x) | (x, y) ∈ rI}

Table 3: The additional constructors.

• Any concrete domain S∗ with domain Σ∗ for some finite alphabet Σ and the unary
predicates prefs and suffs for every s ∈ Σ∗ with

prefS∗

s := {s′ | s is a prefix of s′}

suffS∗

s := {s′ | s is a suffix of s′}

Assume a ∈ Σ. Then the S∗-conjunction c := suffa(f) implies no formula from
Γ := {prefσ(f) | σ ∈ Σ}, but every solution of c satisfies some formula from Γ.

• Any concrete domain S∗ with domain Σ∗ for some finite alphabet Σ, the unary
predicates ⊤S∗ and =ε with the obvious semantics, and the unary predicates prefs,
s ∈ Σ∗, as in the previous example. Then the S∗-conjunction c := ⊤S∗(f) implies
no concept from Γ := {=ε(f)} ∪ {prefσ(f) | σ ∈ Σ}, but every solution of c satisfies
some concept from Γ.

4.5 Lower Bounds

The purpose of this section is to justify our choice of constructors in the languages EL++
rr

and EL++
ri . We start by showing that subsumption w.r.t. CBoxes in full EL++ is undecid-

able. Then, we consider the sublanguage EL of EL++ and restrict the attention to general
TBoxes, i.e., finite sets of GCIs. Recall that ELis obtained from EL++ by dropping all
concept constructors except conjunction, existential restriction, and top. We will show
that the extension of EL with basically any typical DL constructor not present in EL++

results in subsumption w.r.t. general TBoxes becoming ExpTime-complete. In this de-
liverable, we present only the proofs for three selected cases and refer to [BBL07] for full
details. A list of the constructors whose addtion to EL leads to ExpTime-completeness
can be found in Table 3, along with the syntax and semantics. Here, #S denotes the
cardinality of a set S and (rI)+ denotes the transitive closure of the relation rI .
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4.5.1 Undecidability of Full EL++

We show that subsumption w.r.t. CBoxes in EL++ is undecidable. Our proof applies to
the fragment of EL++ that has conjunction and existential restriction as the only concept
constructors, and GCIs, RIs, and range restrictions as the only constraints in CBoxes. The
proof uses a reduction of the emptyness problem of the intersection of two context-free
grammars [HU97, Theorem 8.10].

Recall that a context free grammar is a tuple (Σ, N, P, S) with Σ a finite alphabet
of terminal symbols, N a finite set of non-terminal symbols, S ∈ N a start symbol, and
P ⊆ N × (Σ ∪ N)∗ a finite set of productions. We denote the lanuage generated by a
grammar G with L(G).

Let G = (Σ, N, P, S) and G′ = (Σ, N ′, P ′, S ′) be two context-free grammars. W.l.o.g.,
we may assume that N ∩N ′ = ∅. We show how to translate G and G′ into a CBox C and
concept names A and B such that L(G) ∩ L(G′) = ∅ iff A 6⊑C B. In the CBox C, we use
two role names rx and r′x for every x ∈ Σ ∪N and three additional concept names A′, X
and Y . More precisely, C contains the following constraints:

1. the GCIs A ⊑⊓
a∈Σ
∃r′a.A

′ and A′ ⊑⊓
a∈Σ
∃ra.A

′;

2. for every v ⊢ x1 · · ·xn ∈ P ∪P ′, the RIs ⊤ : rx1 ◦· · ·◦rxn
⊑ rv and ⊤ : r′x1

◦· · ·◦rxn
⊑

r′v;

3. the range restrictions ran(r′S) ⊑ X and ran(r′S′) ⊑ Y ;

4. the GCI X ⊓ Y ⊑ B and for each a ∈ Σ, the GCIs ∃ra.B ⊑ B and ∃r′a.B ⊑ B.

This translation is as desired.

Lemma 4.8 L(G) ∩ L(G′) = ∅ iff A 6⊑C B.

We also mention a related undecidability result here. It shows that in EL++
ri , we cannot

strength role inclusions to so-called role value maps without losing decidability. Formally,
a role-value-maps (RVMs) is an inclusions ⊤ : r1 ◦ · · · ◦ rk ⊑ s1 ◦ · · · ◦ sℓ whose right-hand
side is a composition of role names. The semantics of RVMs is defined in analogy with
the semantics of EL++’s role inclusions. By a result of Baader [Baa03c], subsumption in
ELis undecidable already if only RVMs, but no concept inclusions and no domain and
range restrictions are admitted in CBoxes.

Theorem 4.9 (Baader) Subsumption of EL-concepts w.r.t. RVMs is undecidable.

In the following, we walk through the constructors listed in Table 3 and, for each of them,
prove that subsumption w.r.t. general TBoxes is not tractable.

4.5.2 Atomic negation

Let EL¬ be the extension of ELwith negation, and let EL(¬) be obtained from EL¬ by re-
stricting the applicability of negation to concept names (atomic negation). Since EL¬ is a
notational variant of the DL ALC, ExpTime-completeness of satisfiability and subsump-
tion in ALC w.r.t. general TBoxes [Sch91] carries over to EL¬. ExpTime-completeness
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even carries over to EL(¬) since ¬C with C complex can be replaced with ¬A for a new
concept name A if we add the two GCIs A ⊑ C and C ⊑ A.

Theorem 4.10 In EL(¬), satisfiability and subsumption w.r.t. general TBoxes is
ExpTime-complete.

For many other extensions of ELpresented in this section, satisfiability is trivial in the
sense that every concept is satisfiable w.r.t. every TBox. In the following, we will only
explicitly mention satisfiability if it is not trivial.

4.5.3 Disjunction

Let ELU be the extension of ELwith disjunction. Our aim is to show that subsumption
in ELU w.r.t. general TBoxes is ExpTime-complete. The upper bound follows from ELU
being a fragment of ALC. For the lower bound, we reduce satisfiability of EL(¬)-concepts
w.r.t. general TBoxes to subsumption of ELU-concepts. The former is ExpTime-hard by
Theorem 4.10.

Let A0 be an EL(¬) concept name and T a general EL(¬) TBox. To decide satisfiability
of A0 w.r.t. T , take a new (i.e. distinct from A0 and not occurring in T ) concept name
A′ for each concept name A occurring in T . Also fix an additional new concept name L.
Then the TBox T ∗ is obtained from T by first replacing each subconcept ¬A with A′,
and then adding the following GCIs:

• ⊤ ⊑ A ⊔ A′ and A ⊓A′ ⊑ L for each concept name A occurring in T ;

• ∃r.L ⊑ L for every role r occurring in T .

Note that the concept inclusion ∃r.L ⊑ L is equivalent to ¬L ⊑ ∀r.¬L. It thus ensures
that L acts as the bottom concept in (connected) countermodels of the subsumption
A0 ⊑T ∗ L. Using this observation, it is not hard to verify that C is satisfiable w.r.t. T if,
and only if, A0 6⊑T ∗ L.

Theorem 4.11 In ELU , subsumption w.r.t. general TBoxes is ExpTime-complete.

This theorem improves upon the result of Brandt that subsumption of ELU concepts
w.r.t. general TBoxes is NP-hard [Bra04], and it improves upon the result of Hladik and
Sattler that satisfiability of ELU concepts extended with functional roles and the bottom
concept w.r.t. general TBoxes is ExpTime-hard [HS03a].

4.5.4 At-Least Restrictions

Let EL≥2 be the extension of EL with at-least restrictions of the form (> 2 r). Sub-
sumption in EL≥2 w.r.t. general TBoxes is in ExpTime since EL≥2 is a fragment of ALC
extended with number restrictions [GL94]. We establish a matching lower bound by re-
ducing subsumption in ELU w.r.t. general TBoxes. Let A0 and B0 be concept names
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and T a general ELU TBox. We assume that all concept inclusions in T have one of the
following forms:

C ⊑ D

C1 ⊓ C2 ⊑ C

C ⊑ C1 ⊔ C2

C ⊑ ∃r.D

∃r.C ⊑ D

where C, D, C1, and C2 are concept names or ⊤. It is easily verified that this assumption
can be made without loss of generality since every general TBox can be converted into
normal form using normalization rules similar to the one presented in Figure 1. Note in
particular that C1 ⊔ C2 ⊑ C can be replaced by the two rules C1 ⊑ C and C2 ⊑ C. To
convert T into an EL≥2 CBox, we only need to rephrase concept implications of the form
C ⊑ C1 ⊔ C2. This is done as follows: introduce two new concept names A and B and a
new role name r, and replace the mentioned implication with

C ⊑ ∃r.A ⊓ ∃r.B

C ⊓ ∃r.(A ⊓ B) ⊑ C1

C ⊓ (> 2 r) ⊑ C2

Call the resulting TBox T ∗. It is easily seen that A0 ⊑T B0 iff A0 ⊑T ∗ B0.

Theorem 4.12 In EL≥2, subsumption w.r.t. general TBoxes is ExpTime-complete.

4.6 Related Work

Our results show that the quest for tractable DLs that are expressive enough to be useful
in practice can be successful. Our DL formalisms EL++

rr and EL++
ri are tractable even

w.r.t. GCIs, and offer many constructors that are important in ontology applications.
This is in strong contrast to their counterpart with value restrictions: FL0 is tractable
without TBoxes [BL84], co-NP-complete for acyclic TBoxes [Neb90], PSpace-complete
for cyclic TBoxes [Baa96, KdN03], and ExpTime-complete for general TBoxes (as shown
above, and, independently, in [Hof05]).

As has already been mentioned, there is a closely related line of research within the
TONES project, namely that on the DL-Lite family of description logics, see [CDGL+05a,
CGL+06] and Section 14. In a nutshell, the main difference between the EL++ and DL-
Lite families of DLs is that, in the latter, the existential restriction ∃r.C is only allowed
in the form ∃r.⊤. This then allows to add features such as inverse roles without losing
tractability of reasoning w.r.t. GCIs; recall that, in contrast, EL++ with inverse roles and
GCIs is ExpTime-complete.

As part of the TONES project, a reasoner for EL++
rr and EL++

ri CBoxes is currently
being implemented. In its current state, the reasoner CEL [BLS06] supports EL+-CBoxes,
where EL+ denotes the fragment of EL++

ri without the bottom concept, nominals, and
concrete domains. Both GCIs and RIs are fully supported in the TBox formalism. In
order to achieve high efficiency, the algorithm presented in Section 4.3.3 needs to be
significantly modified. This will be the subject of a future deliverable.
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5 Reasoning in OWL 1.1 and SROIQ

5.1 Introduction

Since the inception of the Semantic Web, the development of a language for modeling
ontologies—conceptualizations of a domain shared by a community of users—was seen
as a key task. The initial proposals focused on RDF and RDF Schema; however, these
languages were soon found to be too limited in expressive power [HPSvH03]. The World
Wide Web Consortium (W3C) therefore formed the Web Ontology Language working
group, whose goal was to develop an expressive language suitable for application in the
Semantic Web. The result of this endeavor was the OWL Web Ontology Language, which
became a W3C recommendation in February, 2004. OWL is actually a family of three
language variants (often called species) of increasing expressive power: OWL Lite, OWL
DL, and OWL Full.

The standardization of OWL has sparked the development and/or adaption of a num-
ber of OWL-based reasoners1 and ontology editors such as Protege and Swoop. Despite
the success story surrounding OWL, the numerous contexts in which the language has
been applied, OWL is still lacking some of the expressive power required for many appli-
cations.

In response to user comments and requests, the idea was born to address some of
these needs via an incremental revision of OWL, called OWL 1.1. The initial goal was to
exploit recent developments in DL research in order to address some of the expressivity
limitations of the language.

The drawbacks of OWL 1.0 regarding expressivity have long been recognized in the
DL community, and a significant amount of research has been devoted to finding possible
solutions. The cumulative results of this work are embodied in the DL SROIQ, which
constitutes the logical underpinning for OWL 1.1.

Extending the ontology language, however, poses new challenges. In particular, ex-
isting reasoning algorithms must be extended to deal with the new constructs. This
reasoning support is key for assisting the user in crucial tasks in ontology design. In par-
ticular, the availability of algorithms for ontology consistency, concept satisfiability and
classification is fundamental for the formulation of concept descriptions, which are finally
to constitute the ontology. Indeed, experience in ontology design shows that even users
who are experts in both the ontology language and the domain to be formalized often
find it difficult to construct adequate and comprehensive concept descriptions.

The most important reasoning services for assisting the user in the construction of
both concept descriptions and axioms in the ontology are the following:

• Inconsistent Ontology. The reasoning backend takes an ontology as input and deter-
mines whether the whole ontology is consistent. Intuitively, an ontology is consistent
if there exists at least a single possible state of the world that matches the concept
descriptions contained in the ontology. An inconsistent ontology always indicates a
serious modeling flaw, and may be the result of adding a new concept description
that interacts with the existing ones in an unintended way. If an inconsistent ontol-

1See http://www.cs.man.ac.uk/∼ sattler/reasoners.html for a list of reasoners.
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ogy occurs not as the result of adding a new concept, it may be difficult to remove
the inconsistency because many concept descriptions that interact in a subtle way
may be involved in it.

• Inconsistent Concept Descriptions. The reasoning backend takes an ontology and
a concept description as input and determines whether or not the description is
inconsistent w.r.t. the ontology. In particular, the reasoner takes into account the
impact of the surrounding ontology as described above. An inconsistent concept
is a concept that cannot have any instances. Note that all concepts contained in
an inconsistent ontology are inconsistent w.r.t. this ontology, but there may be
inconsistent concepts in a consistent ontology. In this sense, inconsistent concepts
are a less severe problem than an inconsistent ontology. Nevertheless, they usually
indicate a modeling mistake that requires inspection by the ontology designer.

• Position in Subsumption Hierarchy: To properly understand the implicit conse-
quences of a new concept description, it is usually advisable to determine the posi-
tion of a new concept in the subsumption hierarchy. To achieve this, the reasoning
backend takes the modified ontology and recomputes the subsumption hierarchy
that can then be displayed to the user. If undesired subsumption relationships show
up or desired ones are missing, the ontology designer should reexamine the new
concept description to resolve the problem.

• Detection of Equivalent Concepts: Large ontologies are often designed by a group of
collaborating designers rather than by a single individual. In such an environment, it
frequently happens that different designers inadvertedly introduce the same concept
into the ontology twice, using different names. This may happen e.g. when the
designers work on different subareas of the application domain that are both related
to the concept in question. A reasoning backend can take an ontology and a concept
as input, and return all the concepts in the ontology that are equivalent to the given
one. A detected equivalence is usually a sign for redundancy in the ontology or for
a modeling mistake. It therefore requires inspection by an ontology designer.

In this Section, we develop algorithmic techniques for solving these reasoning problems in
very expressive ontology languages. In particular, we develop algorithms for ontology con-
sistency, concept satisfiability and concept subsumption in the description logic SROIQ,
which provides the logical underpinning for OWL 1.1. We will assume that reasoning is
performed on a single, stand-alone, OWL 1.1 ontology T and thus we will be dealing with
the simplest case in our framework for representing ontologies.

5.2 The Description Logic SROIQ

In this section, we describe the logic SROIQ, which is an extension of the SHOIQ
description logic described in Section 2. The logic SROIQ extends SHOIQ with the
following functionality:

1. disjoint roles. Most DLs can be said to be “unbalanced” since they allow to express
disjointness on concepts but not on roles, despite the fact that role disjointness is
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quite natural and can generate new subsumptions or inconsistencies in the presence
of role hierarchies and number restrictions. E.g., the roles sister and mother should
be declared as being disjoint.

2. reflexive, irreflexive, and antisymmetric roles. These features are of minor inter-
est when considering only TBoxes not using nominals, yet they add some useful
constraints if we also refer to individuals, either by using nominals or ABoxes, es-
pecially in the presence of number restrictions. E.g., the roles knows, hasSibling,
and properPartOf, should be declared as, respectively, reflexive, irreflexive, and
antisymmetric.

3. negated role assertions. Most Abox formalisms only allow for positive role assertions,
whereas SROIQ also allows for statements like (John, Mary) : ¬likes. In the
presence of complex role inclusions, negated role assertions can be quite useful and,
like disjoint roles, they overcome a certain asymmetry in expressivity.

4. SROIQ provides complex role inclusion axioms of the form R◦S ⊑ R and S ◦R ⊑
R. For example, w.r.t. the axiom owns ◦ hasPart ⊑ owns, and the fact that each
car contains an engine Car ⊑ ∃hasPart.Engine, an owner of a car is also an owner
of an engine, i.e., the following subsumption holds: ∃owns.Car ⊑ ∃owns.Engine.

5. SROIQ provides the universal role U . Together with nominals (which are also
provided by SHOIQ), this role is a prominent feature of hybrid logics [BS95].
Nominals can be viewed as a powerful generalisation of ABox individuals [Sch94,
HS01], and they occur naturally in ontologies, e.g., when describing a class such as
EUCountries by enumerating its members.

6. Finally, SROIQ allows for concepts of the form ∃R.Self which can be used to
express “local reflexivity” of a role R, e.g., to define the concept “narcist” as
∃likes.Self .

SROIQ is designed to be of similar practicability as SHOIQ. Even though the ad-
ditional expressive means require certain adjustments, these adjustments do not add
new sources of non-determinism and, subject to empirical verification, are believed to be
“harmless” in the sense of not significantly degrading typical performance as compared
with the SHOIQ algorithm.

Definition 5.1 Let C be a set of concept names including a subset N of nominals, R a
set of role names including the universal role U , and NN = {a, b, c . . .} a set of individual
names. The set of roles is R ∪ {R− | R ∈ R}, where a role R− is called the inverse role
of R.

As usual, an interpretation I = (∆I , ·I) consists of a set ∆I , called the domain
of I, and a valuation ·I which associates, with each role name R, a binary relation
RI ⊆ ∆I × ∆I , with the universal role U the universal relation ∆I × ∆I , with each
concept name C a subset CI ⊆ ∆I , where CI is a singleton set if C ∈ N, and, with each
individual name a, an element aI ∈ ∆I . Inverse roles are interpreted as usual, i.e., for
each role R ∈ R, we have

(R−)I = {(y, x) | (x, y) ∈ RI}.
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Obviously, (U−)I = (U)I . Note that, unlike in the cases of SHIQ or SHOIQ, we
did not introduce transitive role names. This is because, as will become apparent below,
role box assertions can be used to force roles to be transitive.

To avoid considering roles such as R−−, we define a function Inv on roles such that
Inv(R) = R− if R ∈ R is a role name, and Inv(R) = S ∈ R if R = S−.

Since we will often work with finite strings of roles it is convenient to extend both
·I and Inv(·) to such strings: if w = R1 . . . Rn is a string of roles Ri (1 ≤ i ≤ n), we
set Inv(w) = Inv(Rn) . . . Inv(R1) and wI = RI

1 ◦ . . . ◦ RI
n, where ◦ denotes composition of

binary relations.
A role box R consists of two components. The first component is a role hierarchy Rh

which consists of (generalised) role inclusion axioms. The second component is a set Ra

of role assertions stating, for instance, that a role R must be interpreted as an irreflexive
relation.

We start with the definition of a (regular) role hierarchy whose definition involves a
certain ordering on roles, called regular. A strict partial order ≺ on a set A is an irreflexive
and transitive relation on A. A strict partial order ≺ on the set of roles R∪{R− | R ∈ R}
is called a regular order if ≺ satisfies, additionally, S ≺ R ⇐⇒ S− ≺ R, for all roles R
and S. Note, in particular, that the irreflexivity of ≺ ensures that neither S− ≺ S nor
S ≺ S− hold.

Definition 5.2 [(Regular) Role Inclusion Axioms]
Let ≺ be a regular order on roles. A role inclusion axiom (RIA for short) is an

expression of the form w ⊑̇ R, where w is a finite string of roles not including the
universal role U , and R 6= U is a role name. A role hierarchy Rh is a finite set of RIAs.
An interpretation I satisfies a role inclusion axiom w ⊑̇ R, written I |= w ⊑̇ R, if
wI ⊆ RI . An interpretation is a model of a role hierarchy Rh if it satisfies all RIAs in
Rh, written I |= Rh.

A RIA w ⊑̇ R is ≺-regular if R is a role name, and

1. w = RR, or

2. w = R−, or

3. w = S1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or

4. w = RS1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or

5. w = S1 . . . SnR and Si ≺ R, for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is regular if there exists a regular order ≺ such that each RIA
in Rh is ≺-regular.

Regularity prevents a role hierarchy from containing cyclic dependencies. For instance,
the role hierarchy

{RS ⊑̇ S, RT ⊑̇ R, V T ⊑̇ T, V S ⊑̇ V }
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is not regular because it would require ≺ to satisfy S ≺ V ≺ T ≺ R ≺ S, which would
imply S ≺ S, thus contradicting the irreflexivity of ≺. Such cyclic dependencies are
known to lead to undecidability.

Also, note that RIAs of the form RR− ⊑̇ R, which would imply (a weak form of)
reflexivity of R, are not regular according to the definition of regular orderings. However,
the same condition on R can be imposed by using the GCI ∃R.⊤ ⊑̇ ∃R.Self ; see below.

From the definition of the semantics of inverse roles, it follows immediately that
(x, y) ∈ wI iff (y, x) ∈ Inv(w)I. Hence, each model satisfying w ⊑̇ S also satisfies
Inv(w) ⊑̇ Inv(S) (and vice versa), and thus the restriction to those RIAs with only role
names on their right hand side does not have any effect on expressivity.

Given a role hierarchy Rh, we define the relation ⊑* to be the transitive-reflexive
closure of ⊑̇ over {R ⊑̇ S, Inv(R) ⊑̇ Inv(S) | R ⊑̇ S ∈ Rh}. A role R is called a sub-role
(super-role) of a role S if R ⊑* S (S ⊑* R). Two roles R and S are equivalent (R ≡ S) if
R ⊑* S and S ⊑* R.

Note that, due to restriction (3) in the definition of ≺-regularity, we also restrict ⊑*
to be acyclic, and thus regular role hierarchies never contain two equivalent roles.2

Next, let us turn to the second component of Rboxes, the role assertions. For an
interpretation I, we define DiagI to be the set {(x, x) | x ∈ ∆I}. Note that, since the
interpretation of the universal role U is fixed in any given model (as the universal relation
on ∆I ×∆I which is, by definition, reflexive, symmetric, and transitive), we disallow the
universal role to appear in role assertions.

Definition 5.3 [Role Assertions] For roles R, S 6= U , we call the assertions Ref(R), Irr(R),
Sym(R), Asy(R), Tra(R), and Dis(R, S), role assertions, where, for each interpretation I
and all x, y, z ∈ ∆I , we have:

I |= Sym(R) if (x, y) ∈ RI implies (y, x) ∈ RI ;
I |= Asy(R) if (x, y) ∈ RI implies (y, x) /∈ RI

I |= Tra(R) if (x, y) ∈ RI and (y, z) ∈ RI

imply (x, z) ∈ RI ;
I |= Ref(R) if DiagI ⊆ RI ;
I |= Irr(R) if RI ∩DiagI = ∅;
I |= Dis(R, S) if RI ∩ SI = ∅.

Adding symmetric and transitive role assertions is a trivial move since both of these
expressive means can be replaced with complex role inclusion axioms as follows: Sym(R)
is equivalent to R− ⊑̇ R and Tra(R) is equivalent to RR ⊑̇ R.

Thus, as far as expressivity is concerned, we can assume, for convenience, that no
role assertions of the form Tra(R) or Sym(R) appear in Ra, but that transitive and/or
symmetric roles will be handled by the RIAs alone. In particular, notice that regularity
of a role hierarchy is preserved when replacing such role assertions with the corresponding
RIAs.

The situation is different, however, for the other Rbox assertions. None of reflexivity,
irreflexivity, antisymmetry or disjointness of roles can be enforced by role inclusion axioms.

2This is not a serious restriction for, if R contains ⊑* cycles, we can simply choose one role R from
each cycle and replace all other roles in this cycle with R in the input Rbox, Tbox, and Abox.
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However, as we shall see later, reflexivity and irreflexivity of roles are closely related to
the new concept ∃R.Self .

Note that the version of antisymmetry introduced above is strict in the sense that
it also implies irreflexivity as opposed to the more widely used notion of antisymmetry
which allows for reflexive points. For instance, in mereology, the relation PartOf is usually
assumed to be ‘reflexive antisymmetric’ (i.e., reflexivity, plus xRy and yRx implies x = y),
while the relation properPartOf is assumed to be ‘irreflexive antisymmetric’ (defined just
as antisymmetry above)[Sim87, CV99]. The more general version of antisymmetry is more
difficult to handle algorithmically, and we leave this to future work.

In SHIQ, the application of qualified number restrictions has to be restricted to cer-
tain roles, called simple roles, to preserve decidability [HST99]. In the context of SROIQ,
the definition of simple role has to be slightly modified, and simple roles figure not only
in qualified number restrictions, but in several other constructs as well. Intuitively, non-
simple roles are those that are implied by the composition of roles.

Given a role hierarchy Rh and a set of role assertions Ra (without transitivity or
symmetry assertions), the set of roles that are simple in R = Rh ∪ Ra is inductively
defined as follows:

• a role name is simple if it does not occur on the right hand side of a RIA in Rh,

• an inverse role R− is simple if R is, and

• if R occurs on the right hand side of a RIA in Rh, then R is simple if, for each
w ⊑̇ R ∈ Rh, w = S for a simple role S.

A set of role assertions Ra is called simple if all roles R, S appearing in role assertions of
the form Irr(R), Asy(R), or Dis(R, S), are simple in R. If R is clear from the context, we
often use “simple” instead of “simple in R”.

Definition 5.4 [Role Box] A SROIQ-role box (Rbox for short) is a set R = Rh ∪ Ra,
where Rh is a regular role hierarchy and Ra is a finite, simple set of role assertions.

An interpretation satisfies a role box R (written I |= R) if I |= Rh and I |= φ for all
role assertions φ ∈ Ra. Such an interpretation is called a model of R.

5.3 Concepts and Inference Problems for SROIQ

Definition 5.5 [SROIQ Concepts, Tboxes, and Aboxes]
The set of SROIQ-concepts is the smallest set such that

• every concept name (including nominals) and ⊤,⊥ are concepts, and,

• if C, D are concepts, R is a role (possibly inverse), S is a simple role (possibly
inverse), and n is a non-negative integer, then C ⊓ D, C ⊔ D, ¬C, ∀R.C, ∃R.C,
∃S.Self , (> n S C), and (6 n S C) are also concepts.
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A general concept inclusion axiom (GCI) is an expression of the form C ⊑̇ D for two
SROIQ-concepts C and D. A Tbox T is a finite set of GCIs.

An individual assertion is of one of the following forms: a : C, (a, b) : R, (a, b) : ¬R,
or a 6

.
= b, for a, b ∈ NN (the set of individual names), a (possibly inverse) role R, and a

SROIQ-concept C. A SROIQ-Abox A is a finite set of individual assertions.

It is part of future work to determine which of the restrictions to simple roles in role
assertions Dis(R, S), Asy(R), and Irr(R), as well as the concept expression ∃S.Self , are
strictly necessary in order to preserve decidability or practicability. These restrictions,
however, allow a rather smooth integration of the new constructs into existing algorithms.

Definition 5.6 [Semantics and Inference Problems]
Given an interpretation I = (∆I , ·I), concepts C, D, roles R, S, and non-negative inte-

gers n, the extension of complex concepts is defined inductively by the following equations,
where ♯M denotes the cardinality of a set M , and concept names, roles, and nominals are
interpreted as in Definition 5.1:

⊤I = ∆I , ⊥I = ∅, (¬C)I = ∆I \ CI

(C ⊓D)I = CI ∩DI , (C ⊔D)I = CI ∪DI

(∃R.C)I = {x | ∃y.(x, y) ∈ RI and y ∈ CI}
(∃R.Self)I = {x | (x, x) ∈ RI}

(∀R.C)I = {x | ∀y.(x, y) ∈ RI implies y ∈ CI}
(> n R C)I = {x | ♯{y.(x, y) ∈ RI and y ∈ CI} > n}
(6 n R C)I = {x | ♯{y.(x, y) ∈ RI and y ∈ CI} 6 n}

I is a model of a Tbox T (written I |= T ) if CI ⊆ DI for each GCI C ⊑̇ D in T . A
concept C is called satisfiable if there is an interpretation I with CI 6= ∅. A concept D
subsumes a concept C (written C ⊑ D) if CI ⊆ DI holds for each interpretation. For an
interpretation I, an element x ∈ ∆I is called an instance of a concept C if x ∈ CI .
I satisfies (is a model of) an Abox A (I |= A) if for all individual assertions φ ∈ A

we have I |= φ, where

I |= a :C if aI ∈ CI ;
I |= a 6

.
= b if aI 6= bI ;

I |= (a, b) :R if (aI , bI) ∈ RI ;
I |= (a, b) :¬R if (aI , bI) /∈ RI .

An Abox A is consistent with respect to an Rbox R and a Tbox T if there is a model
I for R and T such that I |= A.

The above inference problems can be defined w.r.t. a role box R and/or a Tbox T in
the usual way, i.e., by replacing interpretation with model of R and/or T .

5.4 Reduction of Inference Problems

For DLs that are closed under negation, subsumption and (un)satisfiability of concepts
can be mutually reduced: C ⊑ D iff C ⊓ ¬D is unsatisfiable, and C is unsatisfiable iff
C ⊑ ⊥. Furthermore, a concept C is satisfiable iff the Abox {a :C} (a a ‘new’ individual
name) is consistent.
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It is straightforward to extend these reductions to Rboxes and Tboxes. In contrast,
the reduction of inference problems w.r.t. a Tbox to pure concept inference problems
(possibly w.r.t. a role hierarchy), deserves special care: in [Baa91, Sch91, BBN+93], the
internalisation of GCIs is introduced, a technique that realises exactly this reduction. For
SROIQ, this technique only needs to be slightly modified. We will show in a series of
steps that, in SROIQ, satisfiability of a concept C with respect to a triple 〈A,R, T 〉 of,
respectively, a SROIQ Abox, Rbox, and Tbox, can be reduced to concept satisfiability of
a concept C ′ with respect to an Rbox R′, where the Rbox R′ only contains role assertions
of the form Dis(R, S), Ref(R), or Asy(R), and the universal role U does not appear in C ′.

While nominals can be used to ‘internalise’ the Abox, in order to eliminate the univer-
sal role, we use a ‘simulated’ universal role U ′, i.e., a reflexive, symmetric, and transitive
super-role of all roles and their inverses appearing in 〈A,R, T 〉, and which, additionally,
connects all nominals appearing in the input.

Thus, let C and 〈A,R, T 〉 be a SROIQ concept and Abox, Rbox, and Tbox, respec-
tively. In a first step, we replace the Abox A with an Abox A′ such that A′ only contains
individual assertions of the form a :C. To this purpose, we associate with every individual
a ∈ NN appearing in A a new nominal oa not appearing in T or C. Next, A′ is the result
of replacing every individual assertion in A of the form (a, b) : R with a : ∃R.ob, every
(a, b) :¬R with a :∀R.¬ob, and every a 6

.
= b with a : ¬ob. Now, given C and A′, define C ′

as follows:
C ′ := C ⊓ ⊓

a:D∈A′
∃U.(oa ⊓D),

where U is the universal role. It should be clear that C is satisfiable with respect to
〈A,R, T 〉 if and only if C ′ is satisfiable with respect to 〈R, T 〉.

Lemma 5.7 (Abox Elimination) SROIQ concept satisfiability with respect to
Aboxes, Rboxes, and Tboxes is polynomially reducible to SROIQ concept satisfiability
with respect to Rboxes and Tboxes only.

Hence, in the following we will assume that Aboxes have been eliminated. Next, although
we have the ‘real’ universal role U present in the language, the following lemma shows how
general concept inclusion axioms can be internalised while at the same time eliminating
occurrences of the universal role U , using a simulated “universal” role U ′, that is, a
transitive super-role of all roles (except U) occurring in T or R and their respective
inverses. Recall that the universal role U is not allowed to appear in Rboxes.

Lemma 5.8 (Tbox and Universal Role Elimination) Let C, D be concepts, T a
Tbox, and R = Rh ∪ Ra an Rbox. Let U ′ 6= U be a role that does not occur in C,
D, T , or R, and, for X a Tbox or a concept, let X ′ result from X by replacing every
occurrence of U with U ′. We define

CT ′ := ∀U ′.
( ⊓

C′
i⊑̇D′

i∈T
′
¬C ′

i ⊔D′
i

)
⊓

( ⊓
N∋o∈T ∪C∪D

∃U ′.o
)
,

RU ′

h := Rh ∪ {R ⊑̇ U ′ | R occurs in C ′, D′, T ′, or R},

RU ′

a := Ra ∪ {Tra(U ′), Sym(U ′), Ref(U ′)}, and

RU ′ := RU ′

h ∪R
U ′

a . Then
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• C is satisfiable w.r.t. T and R iff C ′ ⊓ CT ′ is satisfiable w.r.t. RU ′.

• D subsumes C with respect to T and R iff C ′⊓¬D′⊓CT ′ is unsatisfiable w.r.t. RU ′.

The proof of Lemma 5.8 is similar to the ones that can be found in [Sch91] and [Baa91].
Most importantly, it must be shown that (a): if a SROIQ-concept C is satisfiable with
respect to a Tbox T and an Rbox R, then C, T ,R have a nominal connected model, i.e.,
a model which is a union of connected components, where each such component contains
a nominal, and where any two elements of a connected component are connected by a role
path over those roles occurring in C, T or R, and (b): if y is reachable from x via a role
path (possibly involving inverse roles), then (x, y) ∈ U ′I . These are easy consequences of
the semantics and the definition of U ′ and CT ′, which guarantees that all nominals are
connected by U ′ links.

Now, note also that, instead of having a role assertion Irr(R) ∈ Ra, we can add,
equivalently, the GCI ⊤ ⊑̇ ¬∃R.Self to T , which can in turn be internalised. Likewise,
instead of asserting Ref(R), we can, equivalently, add the GCI⊤ ⊑̇ ∃R.Self to T . However,
in the case of Ref(R) this replacement is only admissible for simple roles R and thus not
possible (syntactically) in general.

Thus, using these equivalences (including the replacement of Rbox assertions of the
form Sym(R) and Tra(R)) and Lemmas 5.7 and 5.8, we arrive at the following theorem:

Theorem 5.9 (Reduction)

1. Satisfiability and subsumption of SROIQ-concepts w.r.t. Tboxes, Aboxes, and
Rboxes, are polynomially reducible to (un)satisfiability of SROIQ-concepts w.r.t.
Rboxes.

2. W.l.o.g., we can assume that Rboxes do not contain role assertions of the form
Irr(R), Tra(R), or Sym(R), and that the universal role is not used.

With Theorem 5.9, all standard inference problems for SROIQ-concepts and Aboxes
can be reduced to the problem of determining the consistency of a SROIQ-concept w.r.t.
to an Rbox (both not containing the universal role), where we can assume w.l.o.g. that
all role assertions in the Rbox are of the form Ref(R), Asy(R), or Dis(R, S)—we call such
an Rbox reduced.

5.5 SROIQ is Decidable

In this section, we show that SROIQ is decidable. We present a tableau-based algorithm
that decides the consistency of a SROIQ concept w.r.t. a reduced Rbox, and therefore
also all standard inference problems as discussed above, see Theorem 5.9. Therefore, in
the following, by Rbox we always mean reduced Rbox.

The algorithm tries to construct, for a SROIQ-concept C and an Rbox R, a tableau
for C and R, that is, an abstraction of a model of C and R.

For a regular role hierarchy Rh and a (possibly inverse) role S occurring in Rh, a non-
deterministic finite automaton (NFA) BS is defined. The construction of these automata
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is identical to the one presented in [HS04], and we therefore refer to this paper for detailed
definitions and proofs of the automata related results below.

The following proposition states that BS indeed captures all implications between
(paths of) roles and S that are consequences of the role hierarchy Rh, where L(BS)
denotes the language (a set of strings of roles) accepted by BS.

Unfortunately, as shown in [HS04], the size of BR can be exponential in the size of
R. [HS04] consider certain further syntactic restrictions of role hierarchies (there called
simple role hierarchies) that avoid this exponential blow-up. We conjecture that, without
some such further restriction, this blow-up is unavoidable. The following technical Lemma
from [HS04] will be needed later on.

Lemma 5.10

1. S ∈ L(BS) and, if w ⊑̇ S ∈ R, then w ∈ L(BS).

2. If S is a simple role, then L(BS) = {R | R ⊑* S}.

3. L(BInv(S)) = {Inv(w) | w ∈ L(BS)}.

5.5.1 A Tableau for SROIQ

In the following, if not stated otherwise, C, D (possibly with subscripts) denote SROIQ-
concepts (not using the universal role), R, S (possibly with subscripts) roles, R = Rh∪Ra

an Rbox, and RC the set of roles occurring in C and R together with their inverses.
Furthermore, as noted in Theorem 5.9, we can (and will from now on) assume w.l.o.g.
that all role assertions appearing in Ra are of the form Dis(R, S), Asy(R), or Ref(R).

We start by defining fclos(C0,R), the closure of a concept C0 w.r.t. a regular role hier-
archy R. Intuitively, this contains all relevant sub-concepts of C0 together with universal
value restrictions over sets of role paths described by an NFA. We use NFAs in universal
value restrictions to memorise the path between an object that has to satisfy a value
restriction and other objects. To do this, we “push” this NFA-value restriction along all
paths while the NFA gets “updated” with the path taken so far. For this “update”, we
use the following definition.

Definition 5.11 For B an NFA and q a state of B, B(q) denotes the NFA obtained from

B by making q the (only) initial state of B, and we use q
S
→ q′ ∈ B to denote that B has

a transition q
S
→ q′.

Without loss of generality, we assume all concepts to be in negation normal form
(NNF), that is, negation occurs only in front of concept names or in front of ∃R.Self. Any
SROIQ-concept can easily be transformed into an equivalent one in NNF by pushing
negations inwards using a combination of De Morgan’s laws and equivalences such as
¬(∃R.C) ≡ (∀R.¬C), ¬(6 n R C) ≡ (> (n + 1) R C), etc. We use ¬̇C for the NNF of
¬C. Obviously, the length of ¬̇C is linear in the length of C.

For a concept C0, clos(C0) is the smallest set that contains C0 and that is closed under
sub-concepts and ¬̇. The set fclos(C0,R) is then defined as follows:

fclos(C0,R) := clos(C0) ∪ {∀BS(q).D | ∀S.D ∈ clos(C0) and BS has a state q}.

c©2007/TONES – January 30, 2007 36/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3

It is not hard to show and well-known that the size of clos(C0) is linear in the size of C0.
For the size of fclos(C0,R), we have mentioned above that, for a role S, the size of BS can
be exponential in the depth of R. Since there are at most linearly many concepts ∀S.D,
this yields a bound for the cardinality of fclos(C0,R) that is exponential in the depth of
R and linear in the size of C0.

Definition 5.12 [Tableau] T = (S, L, E) is a tableau for C0 w.r.t. R if

• S is a non-empty set;

• L : S→ 2fclos(C0,R) maps each element in S to a set of concepts;

• E : RC0 → 2S×S maps each role to a set of pairs of elements in S;

• C0 ∈ L(s) for some s ∈ S.

Furthermore, for all s, t ∈ S, C, C1, C2 ∈ fclos(C0,R), o ∈ N ∩ fclos(C0,R), R, S ∈ RC0,
and

ST (s, C) := {r ∈ S | (s, r) ∈ E(S) and C ∈ L(r)},

the tableau T satisfies:

(P1) C ∈ L(s) =⇒ ¬C /∈ L(s), (C atomic or ∃R.Self);

(P2) ⊤ ∈ L(s), and ⊥ /∈ L(s);

(P3) ∃R.Self ∈ L(s) =⇒ (s, s) ∈ E(R);

(P4) ¬∃R.Self ∈ L(s) =⇒ (s, s) /∈ E(R);

(P5) C1 ⊓ C2 ∈ L(s) =⇒ C1, C2 ∈ L(s);

(P6) C1 ⊔ C2 ∈ L(s) =⇒ C1 ∈ L(s) or C2 ∈ L(s);

(P7) ∀B(p).C ∈ L(s), (s, t) ∈ E(S), and p
S
→ q ∈ B(p) =⇒ ∀B(q).C ∈ L(t);

(P8) ∀B.C ∈ L(s) and ε ∈ L(B) =⇒ C ∈ L(s);

(P9) ∀S.C ∈ L(s) =⇒ ∀BS.C ∈ L(s);

(P10) ∃S.C ∈ L(s) =⇒ there is some r ∈ S with (s, r) ∈ E(S) and C ∈ L(r);

(P11) (s, t) ∈ E(R) ⇐⇒ (t, s) ∈ E(Inv(R));

(P12) (s, t) ∈ E(R) and R ⊑* S =⇒ (s, t) ∈ E(S);

(P13) (6 n S C) ∈ L(s) =⇒ ♯ST (s, C) 6 n;

(P14) (> n S C) ∈ L(s) =⇒ ♯ST (s, C) > n;

(P15) (6 n S C) ∈ L(s) and (s, t) ∈ E(S) =⇒ C ∈ L(t) or ¬̇C ∈ L(t);

(P16) Dis(R, S) ∈ Ra =⇒ E(R) ∩ E(S) = ∅;
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(P17) Ref(R) ∈ Ra =⇒ (s, s) ∈ E(R);

(P18) Asy(R) ∈ Ra =⇒ (s, t) ∈ E(R) implies (t, s) /∈ E(R);

(P19) o ∈ L(r) for some r ∈ S;

(P20) o ∈ L(s) ∩ L(t) =⇒ s = t.

Theorem 5.13 (Tableau) A SROIQ-concept C0 is satisfiable w.r.t. a reduced Rbox R
iff there exists a tableau for C0 w.r.t. R.

5.5.2 The Tableau Algorithm

In this section, we present a terminating, sound, and complete tableau algorithm that de-
cides consistency of SROIQ-concepts not using the universal role w.r.t. reduced Rboxes,
and thus, using Theorem 5.9, also concept satisfiability w.r.t. Rboxes, Tboxes and Aboxes.

We first define the underlying data structures and corresponding operations. For
more detailed explanations concerning the intuitions underlying these definitions, consult
[HS05].

The algorithm generates a completion graph, a structure that, if complete and clash-
free, can be unravelled to a (possibly infinite) tableau for the input concept and Rbox.
Moreover, it is shown that the algorithm returns a complete and clash-free completion
graph for C0 and R if and only if there exists a tableau for C0 and R, and thus with
Lemma 5.13, if and only if the concept C0 is satisfiable w.r.t. R.

As usual, in the presence of transitive roles, blocking is employed to ensure termination
of the algorithm [HST00].

Definition 5.14 [Completion Graph] Let R be a reduced Rbox, let C0 be a SROIQ-
concept in NNF not using the universal role, and let N be the set of nominals. A comple-
tion graph for C0 with respect to R is a directed graph G = (V, E, L, 6

.
=) where each node

x ∈ V is labelled with a set

L(x) ⊆ fclos(C0,R) ∪N ∪ {(6 m R C) | (6 n R C) ∈ fclos(C0,R) and m ≤ n}

and each edge (x, y) ∈ E is labelled with a set of role names L((x, y)) containing (possibly
inverse) roles occurring in C0 or R. Additionally, we keep track of inequalities between
nodes of the graph with a symmetric binary relation 6

.
= between the nodes of G.

In the following, we often use R ∈ L((x, y)) as an abbreviation for (x, y) ∈ E and
R ∈ L((x, y)).

If (x, y) ∈ E, then y is called a successor of x and x is called a predecessor of y.
Ancestor is the transitive closure of predecessor, and descendant is the transitive closure
of successor. A node y is called an R-successor of a node x if, for some R′ with R′ ⊑* R,
R′ ∈ L((x, y)). A node y is called a neighbour (R-neighbour) of a node x if y is a successor
(R-successor) of x or if x is a successor (Inv(R)-successor) of y.

For a role S and a node x in G, we define the set of x’s S-neighbours with C in their
label, SG(x, C), as follows:

SG(x, C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

G is said to contain a clash if there are nodes x and y such that
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1. ⊥ ∈ L(x), or

2. for some concept name A, {A,¬A} ⊆ L(x), or

3. x is an S-neighbour of x and ¬∃S.Self ∈ L(x), or

4. there is some Dis(R, S) ∈ Ra and y is an R- and an S-neighbour of x, or

5. there is some Asy(R) ∈ Ra and y is an R-neighbour of x and x is an R-neighbour
of y, or

6. there is some concept (6 n S C) ∈ L(x) and {y0, . . . , yn} ⊆ SG(x, C) with yi 6
.
= yj

for all 0 ≤ i < j ≤ n, or

7. for some o ∈ N, x 6
.
= y and o ∈ L(x) ∩ L(y).

If o1, . . . , oℓ are all the nominals occurring in C0 then the tableau algorithm is initialised
with the completion graph G = ({r0, r1 . . . , rℓ}, ∅, L, ∅) with L(r0) = {C0} and L(ri) =
{oi} for 1 ≤ i ≤ ℓ. G is then expanded by repeatedly applying the expansion rules given
in Figure 2, stopping if a clash occurs.

Before describing the tableau algorithm in more detail, we define some terms and
operations used in the (application of the) expansion rules:

Nominal Nodes and Blockable Nodes A node x is a nominal node if L(x) contains
a nominal. A node that is not a nominal node is a blockable node. A nominal o ∈ N is
said to be new in G if no node in G has o in its label.

Blocking A node x is label blocked if it has ancestors x′, y and y′ such that

1. x is a successor of x′ and y is a successor of y′,

2. y, x and all nodes on the path from y to x are blockable,

3. L(x) = L(y) and L(x′) = L(y′), and

4. L((x′, x)) = L((y′, y)).

In this case, we say that y blocks x. A node is blocked if either it is label blocked or
it is blockable and its predecessor is blocked; if the predecessor of a blockable node x is
blocked, then we say that x is indirectly blocked.

Generating and Shrinking Rules and Safe Neighbours The >-, ∃- and NN -rules
are called generating rules, and the 6- and the o-rule are called shrinking rules. An R-
neighbour y of a node x is safe if (i) x is blockable or if (ii) x is a nominal node and y is
not blocked.

Pruning When a node y is merged into a node x, we “prune” the completion graph by
removing y and, recursively, all blockable successors of y. More precisely, pruning a node
y (written Prune(y)) in G = (V, E, L, 6

.
=) yields a graph that is obtained from G as follows:

1. for all successors z of y, remove (y, z) from E and, if z is blockable, Prune(z);

2. remove y from V .
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Merging In some rules, we “merge” one node into another node. Intuitively, when we
merge a node y into a node x, we add L(y) to L(x), “move” all the edges leading to y so
that they lead to x and “move” all the edges leading from y to nominal nodes so that they
lead from x to the same nominal nodes; we then remove y (and blockable sub-trees below
y) from the completion graph. More precisely, merging a node y into a node x (written
Merge(y, x)) in G = (V, E, L, 6

.
=) yields a graph that is obtained from G as follows:

1. for all nodes z such that (z, y) ∈ E

(a) if {(x, z), (z, x)} ∩E = ∅, then add (z, x) to E and set L((z, x)) = L((z, y)),

(b) if (z, x) ∈ E, then set L((z, x)) = L((z, x)) ∪ L((z, y)),

(c) if (x, z) ∈ E, then set L((x, z)) = L((x, z)) ∪ {Inv(S) | S ∈ L((z, y))}, and

(d) remove (z, y) from E;

2. for all nominal nodes z such that (y, z) ∈ E

(a) if {(x, z), (z, x)} ∩E = ∅, then add (x, z) to E and set L((x, z)) = L((y, z)),

(b) if (x, z) ∈ E, then set L((x, z)) = L((x, z)) ∪ L((y, z)),

(c) if (z, x) ∈ E, then set L((z, x)) = L((z, x)) ∪ {Inv(S) | S ∈ L((y, z))}, and

(d) remove (y, z) from E;

3. set L(x) = L(x) ∪ L(y);

4. add x 6
.
= z for all z such that y 6

.
= z; and

5. Prune(y).

If y was merged into x, we call x a direct heir of y, and we use being an heir of another
node for the transitive closure of being a “direct heir”.

Level (of Nominal Nodes) Let o1, . . . , oℓ be all the nominals occurring in the input
concept D. We define the level of a node inductively as follows:

• each (nominal) node x with an oi ∈ L(x), 1 ≤ i ≤ ℓ, is of level 0, and

• a nominal node x is of level i if x is not of some level j < i and x has a neighbour
that is of level i− 1.

Strategy (of Rule Application) The expansion rules in Figure 2 are applied according
to the following strategy:

1. the o-rule is applied with highest priority,

2. next, the 6- and the NN -rule are applied, and they are applied first to nominal
nodes with lower levels (before they are applied to nodes with higher levels). In
case they are both applicable to the same node, the NN -rule is applied first.
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3. all other rules are applied with a lower priority.

We are now ready to finish the description of the tableau algorithm. A completion
graph is complete if it contains a clash, or when none of the rules is applicable. If the
expansion rules can be applied to C0 and R in such a way that they yield a complete,
clash-free completion graph, then the algorithm returns “C0 is satisfiable w.r.t. R”, and
“C0 is unsatisfiable w.r.t. R” otherwise.

As usual, we prove termination, soundness, and completeness of the tableau algorithm
to show that it indeed decides satisfiability of SROIQ-concepts w.r.t. Rboxes.

Theorem 5.15 (Termination, Soundness, and Completeness)
Let C0 be a SROIQ-concept in NNF and R a reduced Rbox.

1. The tableau algorithm terminates when started with C0 and R.

2. The expansion rules can be applied to C0 and R such that they yield a complete and
clash-free completion graph if and only if there is a tableau for C0 w.r.t. R.

From Theorems 5.9, 5.13 and 5.15, we thus arrive at the following theorem:

Theorem 5.16 (Decidability) The tableau algorithm decides satisfiability and sub-
sumption of SROIQ-concepts with respect to Aboxes, Rboxes, and Tboxes.

5.6 Outlook

In this section, we have introduced a description logic, SROIQ, that overcomes certain
shortcomings in expressiveness of other DLs. We have used SHOIQ as a starting point,
extended it with “useful-yet-harmless” expressive means, and extended the tableau algo-
rithm accordingly. SROIQ is intended to be a basis for future extensions of OWL, and
has already been adopted as the logical basis of OWL 1.1.

It is left for future work to determine whether the restrictions to simple roles can
be relaxed, to pinpoint the exact computational complexity of SROIQ, and to include
further role assertions such as the more general version of antisymmetry to allow a better
modeling of mereological notions.

A further line of investigation concerns concrete datatypes with inverse functional
datatype properties: these are of interest since they allow to express simple key con-
straints. For instance, we might want to use a datatype property SSN for social security
number as a key for US citizen.

Another line of research within the TONES project that investigates expressive DLs
and has led to very interesting new decidability results is concerned with DLs that are
related to propositional dynamic logic with intersection. We omit a detailed discussion of
these logics here, and refer e.g. to the TONES paper [GLL07].
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⊓-rule: if C1 ⊓ C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} 6⊆ L(x),
then L(x) −→ L(x) ∪ {C1, C2}

⊔-rule: if C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} ∩L(x) = ∅
then L(x) −→ L(x) ∪ {E} for some E ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x), x is not blocked, and x has no S-neighbour y with C ∈ L(y)
then create a new node y with L((x, y)) := {S} and L(y) := {C}

Self–Ref-rule: if ∃S.Self ∈ L(x) or Ref(S) ∈ Ra, x is not blocked, and S /∈ L((x, x))
then add an edge (x, x) if it does not yet exist, and set L((x, x)) −→ L((x, x)) ∪ {S}

∀1-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and ∀BS .C 6∈ L(x)
then L(x) −→ L(x) ∪ {∀BS.C}

∀2-rule: if ∀B(p).C ∈ L(x), x is not indirectly blocked, p
S
→ q in B(p), and there is an S-neighbour

y of x with ∀B(q).C /∈ L(y),
then L(y) −→ L(y) ∪ {∀B(q).C}

∀3-rule: if ∀B.C ∈ L(x), x is not indirectly blocked, ε ∈ L(B) and C 6∈ L(x)
then L(x) −→ L(x) ∪ {C}

choose-rule: if (6 n S C) ∈ L(x), x not indirectly blocked, and
exists S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅

then L(y) −→ L(y) ∪ {E} for some E ∈ {C, ¬̇C}
>-rule: if 1. (> n S C) ∈ L(x), x is not blocked

2. there are not n safe S-neighbours
y1, . . . , yn of x with C ∈ L(yi)
and yi 6

.
= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with
L((x, yi)) = {S}, L(yi) = {C},
and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6 n S C) ∈ L(z), z is not indirectly blocked
2. ♯SG(z, C) > n and there are two S-neighbours

x, y of z with C ∈ L(x) ∩ L(y), and not x 6
.
= y

then 1. if x is a nominal node then Merge(y, x)
2. else, if y is a nominal node or an
ancestor of x then Merge(x, y)
3. else Merge(y, x)

o-rule: if for some o ∈ NI there are 2 nodes x, y with o ∈ L(x) ∩ L(y) and not x 6
.
= y

then Merge(x, y)
NN -rule: if 1. (6 n S C) ∈ L(x), x is a nominal node, and

there is a blockable S-neighbour y of x such
that C ∈ L(y) and x is a successor of y,

2. there is no m such that 1 6 m 6 n,
(6 m S C) ∈ L(x), and there exist m nominal
S-neighbours z1, . . . , zm of x with C ∈ L(zi)
and zi 6

.
= zj for all 1 ≤ i < j ≤ m.

then 1. guess m with 1 6 m 6 n,
and set L(x) = L(x) ∪ {(6 m S C)}

2. create m new nodes y1, . . . , ym with
L((x, yi)) = {S}, L(yi) = {C, oi},
for each oi ∈ NI new in G,
and yi 6

.
= yj for 1 ≤ i < j ≤ m.

Figure 2: The Expansion Rules for the SROIQ Tableau Algorithm.
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6 Description Logics with Concrete Domains

6.1 Introduction

To use description logics (DLs) in an application, it is crucial to identify a DL that is
sufficiently expressive to represent the relevant notions of the application domain, but for
which reasoning is still decidable.

For several relevant applications of DL-based ontologies such as the semantic web and
reasoning about ER and UML diagrams, there is a need for DLs that include, among
others, the expressive means concrete domains and general TBoxes [BHS03b, CLN98,
Lut02b]. The purpose of concrete domains is to enable the definition of concepts with
reference to concrete qualities of their instances such as the weight, age, duration, and
spatial extension. General TBoxes play an important role in modern DLs as they allow to
represent background knowledge of application domains by stating via inclusions C ⊑ D
that the extension of a concept C is included in the extension of a concept D.

Unfortunately, combining concrete domains with general TBoxes easily leads to unde-
cidability. For example, it has been shown in [Lut04b] that the basic DL ALC extended
with general TBoxes and a rather inexpressive concrete domain based on the natural num-
bers and providing for equality and incrementation predicates is undecidable, see also the
survey paper [Lut03]. In view of this discouraging result, it is a natural question whether
there are any useful concrete domains that can be combined with general TBoxes in a
decidable DL. A positive answer to this question has been given in [Lut04a] and [Lut02a],
where two such well-behaved concrete domains are identified: a temporal one based on
the Allen relations for interval-based temporal reasoning, and a numerical one based on
the reals and equipped with various unary and binary predicates such as “≤”, “>5”, and
“ 6=”. Using an automata-based approach, it has been shown in [Lut04a, Lut02a] that
reasoning in the DLs ALC and SHIQ extended with these concrete domains and general
TBoxes is decidable and ExpTime-complete.

In this section, we summarize the TONES publication [LM07], whose contribution is
two-fold: first, instead of focusing on particular concrete domains as in previous work, we
identify a general property of concrete domains, called ω-admissibility, that is sufficient
for proving decidability of DLs equipped with concrete domains and general TBoxes.
For defining ω-admissibility, we concentrate on a particular kind of concrete domains:
constraint systems. Roughly, a constraint system is a concrete domain that only has
binary predicates, which are interpreted as jointly exhaustive and pairwise disjoint (JEPD)
relations. We exhibit two example constraint systems that are ω-admissible: a temporal
one based on the real line and the Allen relations [All83], and a spatial one based on the
real plane and the RCC8 relations [EF91, Ben97, RCC92].

Second, we develop a tableau algorithm for DLs with both general TBoxes and concrete
domains. This algorithm is used to establish a general decidability result for the concept
satisfiability and subsumption problem3 in ALC equipped with general TBoxes and any
ω-admissible concrete domain. In particular, we obtain decidability of ALC with general
TBoxes and the Allen relations as first established in [Lut04a], and, as a new result,
prove decidability of ALC with general TBoxes and the RCC8 relations as a concrete

3for the detailed description of the problem see Section 3.3 of [LLS06]
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domain. In contrast to existing tableau algorithms [HMW01, HS01], we do not impose
any restrictions on the concrete domain constructor. As state-of-the-art DL reasoners
such as FaCT and RACER are based on tableau algorithms similar to the one described
in this section [Hor98, HM01], we view our algorithm as a first step towards an efficient
implementation of description logics with (ω-admissible) concrete domains and general
TBoxes. In particular, we identify an expressive fragment of our logic that should be
easily integrated into existing DL reasoners.

Therefore, we are interested in stand-alone ontologies and mainly address the ontology
design task of authoring concept descriptions and of structuring the ontology.

6.2 Constraint Systems

We introduce a general notion of constraint system that is intended to capture standard
constraint systems based on a set of jointly-exhaustive and pairwise-disjoint (JEPD) bi-
nary relations. Examples for such systems include spatial constraint networks based on the
RCC8 relations [EF91, Ben97, RN99] or on cardinal direction relations [Fra96], and tempo-
ral constraint networks based on Allen’s relations of time intervals [All83, VKvB90, NB95]
or on relations between time points [VK86, VKvB90].

Definition 6.1 [Rel-network] Let Var be a countably infinite set of variables and Rel

a finite set of binary relation symbols. A Rel-constraint is an expression (x r y) with
x, y ∈ Var and r ∈ Rel. A Rel-network is a (finite or infinite) set of Rel-constraints. For N
a Rel-network, we use VN to denote the variables used in N . We say that N is complete
if, for all x, y ∈ VN , there is exactly one constraint (x r y) ∈ N .

We define the semantics of Rel-network by using complete Rel-networks as models. Intu-
itively, the nodes in these complete networks should be viewed as concrete values rather
than as variables. Equivalently to our network-based semantics, we could proceed as in
constraint satisfaction problems, associate each variable with a set of values, and view
relations as constraints on these values, see e.g. [RN95].

Definition 6.2 [Model, Constraint System] Let N be a Rel-network and N ′ a complete
Rel-networks. We say that N ′ is a model of N if there is a mapping τ : VN → VN ′ such
that (x r y) ∈ N implies (τ(x) r τ(y)) ∈ N ′.

A constraint system C = 〈Rel, M〉 consists of a finite set of binary relation symbols Rel

and a set M of complete Rel-networks (the models of C). A Rel-network N is satisfiable
in C if M contains a model of N .

To emphasize the different role of variables in Rel-networks and in models, we denote
variables in the former with x, y, . . . and in the latter with v, v′, etc. Note that Rel-
networks used as models have to be complete, which corresponds to the relations in Rel

to be jointly exhaustive and mutually exclusive.
Equivalently to our network-based semantics, we could proceed as in constraint sat-

isfaction problems, associate each variable with a set of values, and view relations as
constraints on these values, see e.g. [RN95].

In the following two subsections, we introduce two example constraint systems: one
for spatial reasoning based on the RCC8 topological relations in the real plane, and one
for temporal reasoning based on the Allen relations in the real line.
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Figure 3: The eight RCC8 relations.

6.2.1 RCC8

The RCC8 relations, which are illustrated in Figure 3, are intended to describe the relation
between regions in topological spaces [RCC92]. Here, we will use the standard topology
of the real plane which is one of the most appropriate topologies for spatial reasoning.
Let

RCC8 = {eq, dc, ec, po, tpp, ntpp, tppi, ntppi}

denote the RCC8 relations. Recall that a topological space is a pair T = (U, I), where U
is a set and I is an interior operator on U , i.e., for all s, t ⊆ U , we have

I(U) = U I(s) ⊆ s

I(s) ∩ I(t) = I(s ∩ t) II(s) = I(s).

As usual, the closure operator C is defined as C(s) = I(s), where t = U \ t, for t ⊆ U .
As the regions of a topological space T = (U, I), we use the set of non-empty, regular
closed subsets of U , where a subset s ⊆ U is called regular closed if CI(s) = s. Given a
topological space T and a set of regions UT, we define the extension of the RCC8 relations
as the following subsets of UT× UT:

(s, t) ∈ dcT iff s ∩ t = ∅
(s, t) ∈ ecT iff I(s) ∩ I(t) = ∅ ∧ s ∩ t 6= ∅
(s, t) ∈ poT iff I(s) ∩ I(t) 6= ∅ ∧ s \ t 6= ∅ ∧ t \ s 6= ∅
(s, t) ∈ eqT iff s = t

(s, t) ∈ tppT iff s ∩ t = ∅ ∧ s ∩ I(t) 6= ∅ ∧ s 6= t

(s, t) ∈ ntppT iff s ∩ I(t) = ∅ ∧ s 6= t
(s, t) ∈ tppiT iff (t, s) ∈ tppT

(s, t) ∈ ntppiT iff (t, s) ∈ ntppT.

Let TR2 be the standard topology on R2 induced by the Euclidean metric, and let RSR2

be the set of all non-empty regular closed subsets of TR2. Then we define the constraint
system

RCC8R2 = 〈RCC8, MR2〉

by setting MR2 := {NR2}, where NR2 is defined by fixing a variable vs ∈ Var for every
s ∈ RSR2 and setting

NR2 := {(vs r vt) | r ∈ RCC8, s, t ∈ RSR2 and (s, t) ∈ rTR2}.
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black b gray
gray a black

black m gray
gray mi black

black o gray
gray oi black

black d gray
gray di black

black s gray
gray si black

black f gray
gray fi black

Figure 4: The thirteen Allen relations.

Note that using only regular closed sets excludes sub-dimensional regions such as points
and lines. This is necessary for the RCC8 relations to be jointly exhaustive and pairwise
disjoint.

6.2.2 Allen’s Relations

In artificial intelligence, constraint systems based on Allen’s interval relations are a pop-
ular tool for the representation of temporal knowledge [All83]. Let

Allen = {b, a, m, mi, o, oi, d, di, s, si, f, fi, =}

denote the thirteen Allen relations. Examples of these relations are given in Figure 4. As
the flow of time, we use the real numbers with the usual ordering. Let IntR denote the set
of all closed intervals [r1, r2] over R with r1 < r2, i.e., point-intervals are not admitted.
The extension rR of each Allen relation r is a subset of IntR × IntR. It is defined in terms
of the relationships between endpoints in the obvious way, c.f. Figure 4. We define the
constraint system

AllenR = 〈Allen, MR〉
by setting MR := {NR}, where NR is defined by fixing a variable vi ∈ Var for every
i ∈ IntR and setting

NR := {(vi r vj) | r ∈ Allen, i, j ∈ IntR and (i, j) ∈ rR}.
We could also define the constraint system AllenQ based on the rationals rather than
on the reals: this has no impact on the satisfiability of finite and infinite Allen-networks
(which are countable by definition). If we use the natural numbers or the integers, this
still holds for finite networks, but not for infinite ones: there are infinite Allen-networks
that are satisfiable over the reals and rationals, but not over the natural number and
integers.
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6.2.3 Properties of Constraint Systems

We will use constraint systems as a concrete domain for description logics. To obtain
sound and complete reasoning procedures for DLs with such concrete domains, we require
that constraint systems satisfy certain properties. First, we need to ensure that satisfiable
networks (satisfying some additional conditions) can be “patched” together to a joint
network that is also satisfiable. This is ensured by the patchwork property.

Definition 6.3 [Patchwork Property] Let C = 〈Rel, M〉 be a constraint system, and let
N, M be finite complete Rel-networks such that, for the intersection parts

IN,M := {(x r y) | x, y ∈ VN ∩ VM and (x r y) ∈ N}

IM,N := {(x r y) | x, y ∈ VN ∩ VM and (x r y) ∈M}

we have IN,M = IM,N . Then the composition of N and M is defined as N ∪M . We say
that C has the patchwork property if the following holds: if N and M are satisfiable then
N ∪M is satisfiable.

The patchwork property is similar to the property of constraint networks formulated by
Balbiani in [BC02], where constraint networks are combined with linear temporal logic.

For using constraint systems with the DL tableau algorithm presented here, we must
be sure that, even if we patch together an infinite number of satisfiable networks, the
resulting (infinite) network is still satisfiable. This is guaranteed by the compactness
property.

Definition 6.4 [Compactness] Let C = 〈Rel, M〉 be a constraint system. If N is a Rel-
network and V ⊆ VN , we write N |V to denote the network {(x r y) ∈ N | x, y ∈ V } ⊆ N .
Then C has the compactness property if the following holds: a Rel-network N with VN

infinite is satisfiable in C if and only if, for every finite V ⊆ VN , the network N |V is
satisfiable in C.

Finally, our tableau algorithm has to check satisfiability of certain C-networks. Thus, we
have to assume that C-satisfiability is decidable. The properties of constraint systems we
require are summarized in the following definition.

Definition 6.5 [ω-admissible] Let C = (Rel, M) be a constraint system. We say that C
is ω-admissible iff the following holds:

1. satisfiability of finite C-networks is decidable;

2. C has the patchwork property (c.f. Definition 6.3);

3. C has the compactness property (c.f. Definition 6.4).

In the appendixes of [LM07], we prove that RCC8R2 and AllenR satisfy the patchwork
property and the compactness property. Moreover, satisfiability of finite networks is NP-
complete (and thus decidable) in both systems: this is proved in [VKvB90] for AllenR and
in [RN99] for RCC8R2. Thus, RCC8R2 and AllenR are ω-admissible.
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6.3 Syntax and Semantics

We introduce the description logic ALC(C), a superlogic of the basic DL ALC introduced
in Section 2, that allows to define concepts with reference to the constraint system C.
Different incarnations of ALC(C) are obtained by instantiating it with different constraint
systems.

Definition 6.6 [ALC(C) Syntax and Semantics] Let C = (Rel, M) be a constraint system,
and let NC, NR, and NcF be mutually disjoint and countably infinite sets of concept names,
role names, and concrete features. We assume that NR is partitioned into two countably
infinite subsets NaF and NrR. The elements of NaF are called abstract features and the
elements of NrR standard roles. A path of length k +1 with k ≥ 0 is a sequence R1 · · ·Rkg
consisting of roles R1, . . . , Rk ∈ NR and a concrete feature g ∈ NcF. A path R1 · · ·Rkg with
{R1, . . . , Rk} ⊆ NaF is called feature path. The set of ALC(C)-concepts is the smallest set
such that

1. every concept name A ∈ NC is a concept,

2. if C and D are concepts and R ∈ NR, then ¬C, C ⊓D, C ⊔D, ∀R.C, and ∃R.C are
concepts;

3. if u1 and u2 are feature paths and r1, . . . , rk ∈ Rel, then the following are also
concepts:

∃u1, u2.(r1 ∨ · · · ∨ rk) and ∀u1, u2.(r1 ∨ · · · ∨ rk);

4. if U1 and U2 are paths of length at most two and r1, . . . , rk ∈ Rel, then the following
are also concepts:

∃U1, U2.(r1 ∨ · · · ∨ rk) and ∀U1, U2.(r1 ∨ · · · ∨ rk);

Observe that we restrict the length of paths inside the constraint-based constructor to
two only if at least one of the paths contains a standard role.

Interpretations forALC(C), relative to those defined in Section 2, have as an additional
argument a network M from the set of models M of C. Thus, an interpretation I is a
tuple (∆I , ·I , MI), where ∆I is a set called the domain, ·I is the interpretation function,
and MI ∈ M. The interpretation function maps concept and role names as defined in
Section 2, and, additionally:

• each abstract feature f to a partial function fI from ∆I to ∆I ;

• each concrete feature g to a partial function gI from ∆I to the set of variables VMI

of MI .

If r = r1 ∨ · · · ∨ rk, where r1, . . . , rk ∈ Rel, we write MI |= (x r y) iff there exists an
i ∈ {1, . . . , k} such that (x ri y) ∈ MI . The interpretation function is then extended to
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the concepts of the form ¬C, C ⊓D, C ⊔D, ∃R.C and ∀R.C as defined in Section 2, and
additionally:

(∃U1, U2.r)
I := {d ∈ ∆I | ∃v1 ∈ UI

1 (d) and v2 ∈ UI
2 (d)

with MI |= (v1 r v2)},

(∀U1, U2.r)
I := {d ∈ ∆I | ∀v1 ∈ UI

1 (d) and v2 ∈ UI
2 (d),

we have MI |= (v1 r v2)}

where for a path U = R1 · · ·Rkg and d ∈ ∆I , UI(d) is defined as

{v ∈ VMI
|∃e1, . . . , ek+1 : d = e1,
(ei, ei+1) ∈ RI

i for 1 ≤ i ≤ k, and gI(ek+1) = v}.

An interpretation I is a model of a concept C iff CI 6= ∅. I is a model of a TBox T iff it
satisfies CI ⊆ DI for all concept inclusions C ⊑ D in T .

C is called satisfiable with respect to a TBox T iff there exists a model of C and T . A
concept D subsumes a concept C with respect to T (written C ⊑T D) iff CI ⊆ DI holds
for each model I of T .

Observe that the network MI in the previous definitionis a model of the constraint system
C, whence variables in this network correspond to values in C and are denoted with v, v′

rather than x, y.
The following example TBox describes some properties of a hotel using the constraint

system RCC8R2, where has-room is a role, has-reception and has-carpark are abstract fea-
tures (assuming that a hotel has at most a single reception and car park), loc is a concrete
feature, and all capitalized words are concept names.

Hotel ⊑ ∀has-room.Room ⊓ ∀has-reception.Reception

⊓ ∀has-carpark.CarPark

Hotel ⊑ ∀(has-room loc), (loc).tpp ∨ ntpp

⊓ ∀(has-room loc), (has-room loc).dc ∨ ec ∨ eq

CarFriendlyHotel
.
= Hotel ⊓ ∃(has-reception loc), (loc).tpp

⊓ ∃(has-carpark loc), (loc).ec

⊓ ∃(has-carpark loc), (has-reception loc).ec

The first concept inclusion expresses that hotels are related via the three roles to objects
of the proper type. The second concept inclusion says that the rooms of a hotel are
spatially contained in the hotel, and that rooms do not overlap. Finally, the last concept
inclusion describes hotels that are convenient for car owners: they have a carpark that is
directly next to the reception. This situation is illustrated in Figure 5.

The most important reasoning tasks for DLs are satisfiability and subsumption: a
concept C is called satisfiable with respect to a TBox T iff there exists a common model
of C and T . A concept D subsumes a concept C with respect to T (written C ⊑T D)
iff CI ⊆ DI holds for each model I of T . It is well-known that subsumption can be
reduced to (un)satisfiability: C ⊑T D iff C ⊓¬D is unsatisfiable w.r.t. T . This allows us
to concentrate on concept satisfiability when devising reasoning procedures.
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Room

CarPark

Reception

Hotel

Figure 5: An example of a CarFriendlyHotel.

6.4 A Tableau Algorithm for ALC(C)

We present a tableau algorithm that decides satisfiability of ALC(C)-concepts w.r.t.
TBoxes. Tableau algorithms are among the most popular decision procedures for de-
scription logics since they are amenable to various optimization techniques and often can
be efficiently implemented. Therefore, we view the algorithm presented here as a first
step towards practicable reasoning with concrete domains and general TBoxes. On the
flipslide, algorithms such as the one developed in this section usually do not yield tight
upper complexity bounds.

The algorithm developed in the following is independent of the constraint system
C. This is achieved by delegating reasoning in C to an external reasoner that decides
satisfiability of C-networks. Throughout this section, we assume C to be ω-admissible.

6.4.1 Normal Forms

It is convenient to first convert the input concept and TBox into an appropriate syntactic
form. More precisely, we convert concepts and TBoxes into negation normal form (NNF)
and restrict the length of paths that appear inside the constraint-based concept construc-
tors. We start with describing NNF conversion. A concept is said to be in negation normal
form if negation occurs only in front of concept names. The following lemma shows that
NNF can be assumed without loss of generality. For a path U = R1 · · ·Rkg, we write
ud(U) to denote the concept ∀R1. · · · ∀Rk.(∀g, g.r⊓∀g, g.r′) where r, r′ ∈ Rel are arbitrary
such that r 6= r′.4

Lemma 6.7 (NNF Conversion) Exhaustive application of the following rewrite rules
translates ALC(C)-concepts to equivalent ones in NNF.

¬¬C  C

¬(C ⊓D)  ¬C ⊔ ¬D ¬(C ⊔D) ¬C ⊓ ¬D

¬(∃R.C)  (∀R.¬C) ¬(∀R.C) (∃R.¬C)

4This presupposes the natural assumptions that Rel has cardinality at least two.
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¬(∀U1, U2.(r1 ∨ · · · ∨ rk))  






⊥ if Rel = {r1, . . . , rk}

∃U1, U2.
( ∨

r∈Rel\{r1,...,rk}

r
)

otherwise

¬(∃U1, U2.(r1 ∨ · · · ∨ rk))  






ud(U1) ⊔ ud(U2) if Rel = {r1, . . . , rk}

∀U1, U2.
( ∨

r∈Rel\{r1,...,rk}

r
)

otherwise

By nnf(C), we denote the result of converting C into NNF using the above rules.

In Lemma 6.7, the last two transformations are equivalence preserving since the Rel-
networks used as models in C are complete.

We now show how to restrict the length of paths by converting concepts and TBoxes
into path normal form. This normal form was first considered in [Lut04a] in the context
of the description logic T DL and in [Lut02a] in the context of Q-SHIQ.

Definition 6.8 [Path Normal Form] AnALC(C)-concept C is in path normal form (PNF)
if it is in NNF and for all subconcepts

∃U1, U2.(r1 ∨ · · · ∨ rk) and ∀U1, U2.(r1 ∨ · · · ∨ rk)

of C, the length of U1 and U2 is at most two. An ALC(C)-TBox T is in path normal form
iff T is of the form {⊤ ⊑ C}, with C in PNF.

The following lemma shows that we can w.l.o.g. assume ALC(C)-concepts and TBoxes to
be in PNF.

Lemma 6.9 Satisfiability of ALC(C)-concepts w.r.t. TBoxes can be reduced in polynomial
time to satisfiability of ALC(C)-concepts in PNF w.r.t. TBoxes in PNF.

The previous lemma shows that, in what follows, we may assume w.l.o.g. that all concepts
and TBoxes are in PNF.

6.4.2 Data Structures

We introduce the data structures underlying the tableau algorithm, an operation for
extending this data structure, and a cycle detection mechanism that is needed to ensure
termination of the algorithm. As already said, we assume that the input concept C0 is in
PNF, and that the input TBox T is of the form T = {⊤ ⊑ CT }, where CT is in PNF.

The main ingredient of the data structure underlying our algorithm is a tree that, in
case of a successful run of the algorithm, represents a single model of the input concept and
TBox. Due to the presence of the constraint system C, this tree has two types of nodes:
abstract ones that represent individuals of the logic domain ∆I and concrete ones that
represent values of the concrete domain. We use sub(C) to denote the set of subconcepts
of the concept C and set sub(C0, T ) := sub(C0) ∪ sub(CT ).

Definition 6.10 [Completion system] Let Oa and Oc be disjoint and countably infinite
sets of abstract nodes and concrete nodes. A completion tree for an ALC(C)-concept C
and a TBox T is a finite, labeled tree T = (Va, Vc, E,L) with nodes Va ∪ Vc and edges
E ⊆ (Va × (Va ∪ Vc)) such that Va ⊆ Oa and Vc ⊆ Oc. The tree is labeled as follows:
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1. each node a ∈ Va is labeled with a subset L(a) of sub(C, T ),

2. each edge (a, b) ∈ E with a, b ∈ Va is labeled with a role name L(a, b) occurring in
C or T ;

3. each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labeled with a concrete feature
L(a, x) occurring in C or T .

A node b ∈ Va is an R-successor of a node a ∈ Va if (a, b) ∈ E and L(a, b) = R, while
x ∈ Vc is a g-successor of a if (a, x) ∈ E and L(a, x) = g. The notion U-successor for a
path U is defined in the obvious way.

A completion system for an ALC(C)-concept C and a TBox T is a pair S = (T,N )
where T = (Va, Vc, E,L) is a completion tree for C and T and N is a Rel-network with
VN = Vc.

We now define an operation that is used by the tableau algorithm to add new nodes
to completion trees. The operation respects the functionality of abstract and concrete
features.

Definition 6.11 [⊕ Operation] An abstract or concrete node is called fresh in a com-
pletion tree T if it does not appear in T . Let S = (T,N ) be a completion system with
T = (Va, Vc, E,L). We use the following operations:

• if a ∈ Va, b ∈ Oa fresh in T , and R ∈ NR, then S⊕aRb yields the completion system
obtained from S in the following way:

– if R 6∈ NaF or R ∈ NaF and a has no R-successors, then add b to Va, (a, b) to E
and set L(a, b) = R, L(b) = ∅.

– if R ∈ NaF and there is a c ∈ Va such that (a, c) ∈ E and L(a, c) = R then
rename c in T with b.

• if a ∈ Va, x ∈ Oc fresh in T , and g ∈ NcF, then S⊕agx yields the completion system
obtained from S in the following way:

– if a has no g-successors, then add x to Vc, (a, x) to E and set L(a, x) = g;

– if a has a g-successor y, then rename y in T and N with x.

Let U = R1 · · ·Rng be a path. With S ⊕ aUx, where a ∈ Va and x ∈ Oc is fresh in T ,
we denote the completion system obtained from S by taking distinct nodes b1, ..., bn ∈ Oa

which are fresh w.r.t. T and setting

S ′ := S ⊕ aR1b1 ⊕ · · · ⊕ bn−1Rnbn ⊕ bngx

The tableau algorithm works by starting with an initial completion system that is then
successively expanded with the goal of constructing a model of the input concept and
TBox. To ensure termination, we need a mechanism for detecting cyclic expansions, which
is commonly called blocking. Informally, we detect nodes in the completion tree that are
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similar to previously created ones and then block them, i.e., stop further expansion at
such nodes. To introduce blocking, we start with some preliminaries. For a ∈ Va, we
define the set of features of a as

feat(a) := { g ∈ NcF | a has a g-successor }.

Next, we define the concrete neighborhood of a as the constraint network

N (a) := { (x r y) | there exist g, g′ ∈ feat(a) s.t. x is a g-succ.
of a, y is a g′-succ. of a, and (x r y) ∈ N }

Finally, if a, b ∈ Va and feat(a) = feat(b), we write N (a) ∼ N (b) to express that N (a)
and N (b) are isomorphic, i.e., that the mapping π : VN (a) → VN (b) defined by mapping
the g-successor of a to the g-successor of b for all g ∈ feat(a) is an isomorphism.

If T is a completion tree and a and b are abstract nodes in T , then we say that a is
an ancestor of b if b is reachable from a in the tree T .

Definition 6.12 [Blocking] Let S = (T,N ) be a completion system for a concept C0 and
a TBox T with T = (Va, Vc, E,L), and let a, b ∈ Va. We say that a ∈ Va is potentially
blocked by b if the following holds:

1. b is an ancestor of a in T,

2. L(a) ⊆ L(b),

3. feat(a) = feat(b).

We say that a is directly blocked by b if the following holds:

1. a is potentially blocked by b,

2. N (a) and N (b) are complete, and

3. N (a) ∼ N (b).

Finally, a is blocked if it or one of its ancestors is directly blocked.

6.4.3 The Tableau Algorithm

To decide the satisfiability of an ALC(C)-concept C0 w.r.t. a TBox T , the tableau al-
gorithm is started with the initial completion system SC0 = (TC0 , ∅), where the initial
completion tree TC0 is defined by setting

TC0 := ({a0}, ∅, ∅, {a0 7→ {C0}}).

The algorithm then repeatedly applies the completion rules given in Figure 6. In the
formulation of Rnet, a completion of a Rel-network N is a satisfiable and complete Rel-
network N ′ such that VN = VN ′ and N ⊆ N ′. Later on, we will argue that the completion
to be guessed always exists.
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R⊓ if C1 ⊓ C2 ∈ L(a), a is not blocked, and {C1, C2} 6⊆ L(a),
then set L(a) := L(a) ∪ {C1, C2}

R⊔ if C1 ⊔ C2 ∈ L(a), a is not blocked, and {C1, C2} ∩ L(a) = ∅,
then set L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(a), a is not blocked, and there is no R-successor b of
a such that C ∈ L(b)
then set S := S ⊕ aRb for a fresh b ∈ Oa and L(b) := L(b) ∪ {C}

R∀ if ∀R.C ∈ L(a), a is not blocked, and b is an R-successor of a
such that C 6∈ L(b)
then set L(b) := L(b) ∪ {C}

R∃c if ∃U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a), a is not blocked, and there exist no
x1, x2 ∈ Vc such that xi is a Ui-successor of a for i = 1, 2 and
(x1 ri x2) ∈ N for some i with 1 ≤ i ≤ k
then set S := S ⊕ aU1x1 ⊕ aU2x2 with x1, x2 ∈ Oc fresh and
N := N ∪ {(x1 ri x2)} for some i with 1 ≤ i ≤ k

R∀c if ∀U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a), a is not blocked, and there are
x1, x2 ∈ Vc such that xi is a Ui-successor of a for i = 1, 2 and
(x1 ri x2) 6∈ N for all i with 1 ≤ i ≤ k
then set N := N ∪ {(x1 ri x2)} for some i with 1 ≤ i ≤ k

Rnet if a is potentially blocked by b or vice versa and N (a) is not complete
then non-deterministically guess a completion N ′ of N (a) and set
N := N ∪N ′

Rtbox if CT 6∈ L(a)
then set L(a) := L(a) ∪ {CT }

Figure 6: The completion rules.

As has already been noted above, rule application can be understood as the step-wise
construction of a model of C0 and T . Among the rules, there are four non-deterministic
ones: R⊔, R∃c, R∀c, and Rnet.5 Rules are applied until an obvious inconsistency (as
defined below) is detected or the completion system becomes complete, i.e., no more rules
are applicable. The algorithm returns “satisfiable” if there is a way to apply the rules
such that a complete completion system is found that does not contain a contradiction.
Otherwise, it returns “unsatisfiable”.

All rules except Rnet are rather standard, see for example [BH91, Lut02b].6 The
purpose of Rnet is to resolve a potential blocking situation between two nodes a and
b into either an actual blocking situation or a non-blocking situation. This is achieved
by completing the networks N (a) and N (b). For ensuring termination, an appropriate

5By disallowing disjunctions of relations in the constraint-based concept constructors, R∃c and R∀c

can easily be made deterministic.
6Note that our version of the R∃ rule uses the operation S ⊕ aRb which initializes the label L(b), and

thus the rule only adds C to the already existing label.
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procedure sat(S)
if S contains a clash then return unsatisfiable

if S is complete then return satisfiable

if Rnet is applicable
then S ′ := application of Rnet to S
else S ′ := application of any applicable completion rule to S

return sat(S ′)

Figure 7: The (non-deterministic) algorithm for satisfiability in ALC(C).

interplay between this rule and the blocking condition is crucial. Namely, we have to apply
Rnet with highest precedence. It can be seen that the blocking mechanism obtained in
this way is a refinement of pairwise blocking as known from [HST99]. In particular, the
conditions L(a) ⊆ L(b) and feat(a) = feat(b) are implied by the standard definition of
pairwise blocking due to path normal form.

We now define what we mean by an obvious inconsistency. As soon as such an incon-
sistency is encountered, the tableau algorithm returns “unsatisfiable”.

Definition 6.13 [Clash] Let S = (T,N ) be a completion system for a concept C and
a TBox T with T = (Va, Vc, E,L). S contains a clash if one of the following conditions
holds:

1. there is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a);

2. N is not satisfiable in C.

If S does not contain a clash, S is called clash-free.

We present the tableau algorithm in pseudo-code notation in Figure 7. It is started with
the initial completion system as argument, i.e., by calling sat(SC0).

Note that checking for clashes before rule application is crucial for Rnet to be well-defined:
if Rnet is applied to a node a, we must be sure that there indeed exists a completion N ′ of
N (a) to be guessed, i.e., a satisfiable network N ′ such that V ′

N = VN (a) and N (a) ⊆ N ′.
Clash checking before rule application ensures that the network N is satisfiable when
Rnet is applied. Clearly, this implies the existence of the required completion.

Termination, soundness and completeness of the presented tableau algorithm are
proved in [LM07]. Thus, we get the following theorem:

Theorem 6.14 If C is an ω-admissible constraint system, the tableau algorithm decides
satisfiability of ALC(C) concepts w.r.t. general TBoxes.

A close inspection of our algorithm shows that it runs in 2-NExpTime if C-satisfiability
is in NP. We conjecture that, by mixing the techniques presented here with those from
[Lut04a, Lut02a], it is possible to prove ExpTime-completeness of satisfiability inALC(C)
provided that satisfiability in C can be decided in ExpTime. Various language extensions
such as transitive roles and number restrictions should also be possible in a straightforward
way.
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6.5 Practicability

With Theorem 6.14, we have achieved the our main aim: providing a general decidability
result for description logics with both general TBoxes and concrete domains. Our second
aim is to identify an algorithm that is more practicable than the existing approaches based
on automata [Lut04a, Lut02a], i.e., that can be implemented such that an acceptable
runtime behaviour is observed on realistic inputs. Since we have not yet implemented
our algorithm,7 an empirical evaluation is out of reach. In the following, we discuss the
practicability on a general level.

Regarding an efficient implementation, the main difficulties of our algorithm compared
with successfully implemented tableau algorithms such as the ones in [SS91, HS99] are
the following:

• Our algorithm requires satisfiability checks of the network N constructed as part of
the completion system. The problem is that this check involves the whole networkN
rather than only small parts of it. In practice, the constructed completion systems
(and associated networks) are often too large to be considered as a whole.

• The rules R∃c, R∀c, and Rnet introduce additional non-determinism. In implemen-
tations, this non-determinism induces backtracking.

It is possible that these difficulties can be overcome by developing appropriate heuristics
and optimization techniques. However, there is also an easy way around them. In the
following, we argue that there is a fragment of our language that still provides interesting
expressive power and in which the implementation difficulties discussed above are non-
existent.

The fragment of ALC(C) that we consider is obtained by making the following as-
sumptions:

• There is only a single concrete feature g. Note that this is acceptable with constraint
systems such as RCC8R2 and AllenR, where g could be has-extension and has-lifetime,
respectively.

• There are no paths of length greater than 2, i.e., Clause 3 is eliminated from Defi-
nition 6.6. This is necessary since we need to introduce additional concrete features
to establish path normal form if Clause 3 is present. We believe that paths of length
three or more are only needed in exceptional cases, anyway.

• There exists a unique equality predicate eq in C, i.e., for all models N ∈M and all
v ∈ VN , we have (v eq v) ∈ N .

Going to this fragment of ALC(C) allows the following simplification of our tableau algo-
rithm.

1. The non-deterministic Rnet rule can simply be dropped because, for each abstract
node a, the networkN (a) is either empty or consists of a single node that is related to
itself via eq. Thus, every potential blocking situation is an actual blocking situation.

7This is a non-trivial task since a large number of sophisticated optimization techniques is required,
c.f. [HPS99].
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2. We can localize the satisfiability check of the network N as follows. For a ∈ Va, let
N̂ (a) denote the restriction of N to the g-successor of a and the g-successors of all
abstract successors of a. Instead of checking the whole network N for satisfiability,
we separately check, for each a ∈ Va, satisfiability of N̂ (a). It can be seen as
follows that this is equivalent to a global check: first, C has the patchwork property.
Second, due to the fact that there is only a single concrete feature g, the networks
N̂ (a) overlap at single nodes only. Due to the presence of the equality predicate eq,
the overlapping part of two such networks is thus complete. Finally, it is easy to
see that the patchwork property implies a more general version of itself where only
the overlapping part of the two involved networks is complete, but the networks
themselves are not.

Hence, the only difficulty that remains is the non-determinism of the rules R∃c and R∀c.
However, we believe that this non-determinism is not too difficult to deal with. To see
this, observe that the non-deterministic choices made by these rules have only a very
local impact: they only influence the outcome of the satisfiability check of the relevant
local network N̂ (a). Therefore, it does not seem necessary to implement a complex
backtracking/backjumping machinery. If the concrete domain reasoner used for deciding
C-satisfiability supports disjunctions, it is even possible to push the non-determinism out
of the tableau algorithm into the reasoner for C-satisfiability. Roughly, one would need to
allow disjunctions in the constraint network N and pass these on to the reasoner for C.

6.6 Related Work

Concrete domains in the context of DL were first introduced in [BH91], where the first
tableau algorithm for deciding consistency of ALC(D)-ABoxes is developed and shown
that reasoning in ALC(D) is PSpace-complete.

Various extensions of ALC(D) (with acyclic TBoxes, feature agreements, role forming
operators etc.) were treated in [HLM98, Lut01, Lut04b, Lut02b]. Even seemingly harm-
less extensions were shown to lead to NExpTime-complete reasoning and some of them
even to undecidability. Most importantly, it was shown that reasoning in the presence
of general TBoxes is undecidable for a large class of concrete domains [Lut04b]. For a
survey on DLs with concrete domains see [Lut03].

In [Lut04a, Lut02a] it is shown that reasoning in the DLs ALC and SHIQ extended
with a temporal concrete domain and a concrete domain based on rationals and relations
≤, =5,. . . , respectively, and general TBoxes is decidable and ExpTime-complete.

A reasoning procedure for the epressive DL with a concrete domain SHOQ(D), which
is underlying the web ontology language OWL, was presented in [HS01]. DLs with
concrete domains and different kinds of key constraints were thoroughly investigated in
[LAHS05, LM04, DK06].

The DL reasoner RACER supports concrete domains based on real numbers where the
paths appearing in concepts are restricted to concrete features [HM01, HMW01].
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7 Pinpointing in Expressive DLs

7.1 Introduction

The main advantage of reasoning support during ontology design is that modelling mis-
takes can be automatically detected and reported to the user. However, simply reporting
a mistake is often not enough since it does not help the designer in understanding and
resolving the problem. Therefore, error management comprises much more than only
reporting a problem. Additionally, the source of the problem has to be pinpointed and
the problem can be explained to the designer in detail in an understandable way. Going
even further, a reasoner can make suggestions on how to resolve the problem.

Error management is as important to ontology design and maintenance as debugging
is to software engineering. As discussed in previous sections, the most important errors
that can occur during ontology design and automatically detected by reasoners are the
following:

• Inconsistent Ontology. The ontology is contradictory in itself. Logically, anything
follows from such an ontology. Therefore, a contradictory ontology cannot be used
in practice before the inconsistency is resolved.

• Inconsistent Concept Description. Though less severe than an inconsistent ontology,
an inconsistent concept description also indicates modelling flaws in the ontology:
inconsistent concept description cannot have any instances, and thus does not rep-
resent any realistic concept in any domain.

• Unintended Subsumptions. Even though the ontology is consistent and does not
involve any inconsistent concept descriptions, it might still contain errors. Notably,
there can be a surplus subsumptions, i.e. subsumption relationships that are implied
by the ontology but neither desired nor expected.

• Missing Subsumption. The opposite of the previous, where a subsumption relation-
ship is expected to follow from the ontology, but does not. Can be fixed by explicitly
adding the missing subsumption.

Available ontology reasoners are able to determine the existence of the above errors.
Unfortunately, they usually only report the existence of an error, without providing any
further information. If the designed ontology is large and there are complex interactions
between the defined concepts, it may be very difficult to find the source of the problem. For
example, a single inconsistent concept description may result in hundreds of other concept
descriptions becoming inconsistent as well. If the ontology designer is only presented with
a list of hundreds of unsatisfiable concepts, it is far from clear where to look for locating
the problem. Even if the problem is located, it may be difficult to understand it and it
may be unclear how to resolve it.

In order to support error management, the reasoning backend must first be able to
pinpoint to the cause of error what causes it. The answer to this question can be, for
example, in the form of a minimal set of concept descriptions responsible for such an error.
Also, after explanation of the error, an unexperienced developer may not know what
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actions to take to resolve the errors. To alleviate this problem, the reasoning backend
can suggest how to resolve the problem making as little change as possible. Such a
suggestion for revision may be of the form that describes what measures to take to rectify
the ontology. It might also display to the experts a number of possibilities to fix the error.

In description logic, various approaches to error pinpointing and explanation have
been studied. For example, the computation of Minimal Unsatisfiability Preserving Sub-
TBoxes (MUPS) can be used to pinpoint the source of the inconsistency of a concept
description. In case of missing subsumptions, a small counter-model can be generated as
explanations. In case of too many subsumptions, the derivation steps of some proof cal-
culus can be used as a basis to obtain explanation. When the error is to be automatically
resolved, methods from belief revision become relevant.

In this section, we present a set of algorithms for axiom pinpointing, in particular for
finding all the justifications for an entailment. The algorithms come in two flavors:

1. Reasoner dependent (or Glass-box) algorithms are built on existing tableau-based
decision procedures for expressive Description Logics. Their implementation re-
quires a thorough and non-trivial modification of the internals of the reasoner.

2. Reasoner independent (or Black-box) algorithms use the DL reasoner solely as a sub-
routine and the internals of the reasoner do not need to be modified. The reasoner
behaves as a “Black-box” that accepts, as usual, a concept and a KB as input and
returns an affirmative or a negative answer, depending on whether the concept is
satisfiable or not w.r.t. the KB. In order to obtain the justifications, the axiom pin-
pointing algorithm selects the appropriate inputs to the DL reasoner and interprets
its output accordingly.

Glass-box algorithms typically affect many aspects of the internals of the reasoner and
strongly depend on the DL under consideration.

Black-box algorithms typically require many satisfiability tests, but they can be easily
and robustly implemented, since they only rely on the availability of a sound and complete
reasoner for such a DL. Consequently, using a Black-box approach, the service can also
be implemented on reasoners that are based on techniques other than tableaux, such as
resolution.

We also investigate hybrid algorithms, which combine Glass-box and Black-box ap-
proaches to obtain sound and complete solutions relatively easily, i.e., without dealing
with complicated implementation issues. The idea here is to use one of the approaches to
reduce the problem space significantly and the other as a post-processing step to obtain
the correct solution.

Finally, we propose a collection of techniques for repairing errors, once the the axioms
responsible for the error have been identified.

7.2 Justification of Entailments and MUPS

In this section, we provide a formal definition of justifications and introduce the notion of
a MUPS, as described in [SC03a]. Finally, we show how justifications and MUPS relate
to each other for the description logic SHOIN .
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We start with the definition of justifications.

Definition 7.1 [Justification] Let T |= α where α is a sentence. A fragment T ′ ⊆ T is
a justification for α in T if T ′ |= α, and T ′′ 6|= α for every T ′′ ⊂ T ′.

We denote by JUST (α, T ) the set of all the justifications for α in T . Given α and T ,
the Axiom Pinpointing inferential service is the problem of computing JUST (α, T )

MUPS are formally defined as follows:

Definition 7.2 [MUPS] Let C be a concept, which is unsatisfiable w.r.t. a knowledge
base T . A fragment T ′ ⊆ T is a MUPS of C in T if C is unsatisfiable in T ′, and C is
satisfiable in every T ′′ ⊂ T ′.

We denote by MUPS(C, T ) the set of all the MUPS for C in T . When the KB we
are referring to is clear from the context, we will relax the notation and use MUPS(C)
instead.

The relationship between MUPS and justifications is established by Proposition 7.3.
The simple theorem is based on the following on the following well-known result: given a
SHOIN knowledge base T , for every sentence (axiom or assertion) α entailed by T , there
is always a concept Cα that is unsatisfiable w.r.t T . Conversely, given any concept C that
is unsatisfiable w.r.t. T , there is always a sentence αC that is entailed by T . Consequently,
given a SHOIN KB, the problem of finding all the MUPS for an unsatisfiable concept
and the problem of finding all the justifications for a given entailment can be reduced to
each other.

Proposition 7.3 Let T be a knowledge base, α be a sentence and let Cα be a concept
s.t. for every KB T ′ ⊆ T , T ′ |= α ⇔ Cα is unsatisfiable w.r.t. T ′, then JUST (α, T ) =
MUPS(Cα, T )

In the remainder of this section, we shall restrict our attention, without loss of gen-
erality, to the problem of finding all the MUPS for an unsatisfiable concept w.r.t to a
SHOIN KB.

Note: The notion of justifications can be easily extended to include justifications for
an inconsistent KB, i.e., minimal sets of axioms responsible for making a KB logically
inconsistent. Also, all the ensuing algorithms for finding justifications for unsatisfiability
entailments are directly applicable to finding justifications for inconsistency. This should
be no surprise as unsatisfiability detection is performed by attempting to generate an
inconsistent ontology.

7.3 Finding Justifications

In this section, we investigate the problem of computing justifications. First, we focus on
the problem of finding one justification and then we discuss how to compute all of them.
For such a purpose, we explore and discuss different techniques to tackle the problem.
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7.3.1 Computing a Single Justification

The most common strategy for computing a single justification is to keep track of the
axioms from the KB responsible for each change in the completion graph in a tableau
expansion, namely, the addition of a particular concept (or role) to the label of a specific
node (or edge), or the detection of a contradiction (clash) in the label of a node. Glass
box approaches, while efficient, are reasoner and proof procedure dependent. However
capable a reasoner one selects, there will be ontologies which it cannot handle, or handle
as well as alternatives. Furthermore, glass box approaches require extensive revision as
new features are added to the reasoner. Given these drawbacks, black box approaches are
still worth exploring.

The intuition behind our black box approach is simple: given a concept C unsatisfiable
relative to T , add axioms from T to a freshly generated ontology T ′ until C is found
unsatisfiable relative to T ′. We then prune extraneous axioms in T ′ until we arrive at a
single minimal justification. Thus, the algorithm consists of two stages: (i) “expand” T ′ to
find a superset of a justification and (ii)“shrink” to find the final justification. Each stage
involves various consistency-check calls to the reasoner and the main aim of optimizations
should be minimizing the number of consistency tests.

This algorithm, which we refer to as SINGLE MUPSBlack−Box(C, T ), shown in Table
4, is composed of two main parts: in the first loop, the algorithm generates an empty KB
T ′ and inserts into it axioms from T in each iteration, until the input concept C becomes
unsatisfiable w.r.t T ′. In the second loop, the algorithm removes an axiom from T ′ in
each iteration and checks whether the concept C turns satisfiable w.r.t. T ′, in which case
the axiom is reinserted into T ′. The process continues until all axioms in T ′ have been
tested.

Algorithm: SINGLE MUPSBlack−Box

Input: KB T , Unsatisfiable concept C
Output: KB T ′

T ′ ← ∅
while (C is satisfiable w.r.t T ′) do

select a set of axioms s ⊆ T /T ′

T ′ ← T ′ ∪ s
for each axiom k′ ∈ T ′, do
T ′ ← T ′ − {k′}
if (C is satisfiable w.r.t. T ′), then
T ′ ← T ′ ∪ {k′}

Table 4: Single MUPS (Black Box)

A key component of an efficient “expand” stage is selecting which axioms to copy
over from T into T ′. In our implementation, we run a loop that starts by inserting the
concept definition axioms into T ′ and slowly expands T ′ to include axioms of structurally
connected concepts, roles, and individuals (i.e., axioms which share terms in their signa-
ture). We vary the pace with which the fragment T ′ is expanded, initially considering
few axioms to keep the size of T ′ bounded, and later allowing a large number of axioms
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into T ′ (at each iteration of the loop) if the concept continues to remain satisfiable in T ′.
Also, we perform a fast pruning of T ′ before proceeding to the “shrink” stage. The

idea here is to use a window of n axioms, slide this window across the axioms in T ′,
remove axioms from T ′ that lie within the window and determine if the concept is still
unsatisfiable in the new T ′. If the concept turns satisfiable, we can conclude that at least
one of the n axioms removed from T ′ is responsible for the unsatisfiability and hence we
insert the n axioms back into T ′. However, if the concept still remains unsatisfiable, we
can conclude that all n axioms are irrelevant and we remove them from T ′.

7.3.2 Computing All Justifications

While the the techniques we have just described can be used to find a single justifica-
tion of an unsatisfiable concept, extending them to compute all the justifications is not
straightforward. In particular, extending glass-box techniques to computing all justifica-
tions amounts to saturating the completion graph generated by the DL reasoner (when
testing the concept satisfiability) in order to explore all possible clashes. This, in effect,
requires us to “turn off” many of the key optimizations in the reasoner. Since the ex-
cellent performance of current OWL reasoners critically depends on these optimization
techniques, having to disable them renders this technique (currently) impractical. The
optimizations (such as early clash detection or backjumping) need to be reworked (if pos-
sible) to handle the fact that finding a single clash is no longer useful (in that it stops the
search).

Fortunately, given an initial justification, we can use other techniques to compute the
remaining ones. A plausible one is to employ a variation of the classical Hitting Set Tree
(HST) algorithm. This technique is both reasoner independent and, perhaps surprisingly,
practically effective.

Consider a set U and a set S ⊆ PU of conflict sets, with P the powerset operator.
The set T ⊆ U is a hitting set for S if each si ∈ S contains at least one element of T .
If, in addition, no T ′ ⊂ T is a hitting set for S, then T is a minimal hitting set for S.
The Hitting Set Problem with input S, U is to compute all the minimal hitting sets for
S. The problem is of interest to many kinds of diagnosis tasks and has found numerous
applications.

Given a collection S of conflict sets, Reiter’s algorithm constructs a labeled tree called
Hitting Set Tree (HST). Nodes in an HST are labeled with a set s ∈ S and: 1) if H(v)
is the set of edge labels on the path from the root to the node v, then L(v) ∩H(v) = ∅;
2) for each σ ∈ L(v), v has a successor w and L(〈v, w〉) = σ; 3) if L(v) = ∅, then H(v)
is a hitting set for S. Our approach is based on the following result, that establishes the
relationship between the Hitting Set and axiom pinpointing problems:

Theorem 7.4 Let C be unsatisfiable w.r.t T and let T ′ ⊂ T , with T ′ = T −H, then:

1. C is satisfiable w.r.t. T ′ if and only if H is a Hitting Set for JUST (C, T )

2. H is a minimal Hitting Set for JUST (C, T ), if and only if there is no H′ ⊂ H such
that C is satisfiable w.r.t. T −H′.
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The algorithm relies on the fact that, in order to make a concept C satisfiable w.r.t. T ,
one needs to remove from T at least one axiom from each of the elements of JUST (C, T ).
Our aim is to use this theorem and Reiter’s HS algorithm to obtain the set JUST (C, T )
out of any of its elements.

The main component of the algorithm is the recursive procedure SEARCH-HST, that
effectively traverses an HST.

ALL-JUST(C, T )
Input: Concept C and ontology T
Output: Set S of ontologies
(1)Globals: S ← HS ← ∅
(2)just ← SINGLE JUST(C, T )
(3)S ← S ∪ {just}
(4)α← select some i ∈ just
(5)path ← ∅
(6)SEARCH-HST(C, T \ {α}, α, path)
(7)return S

SEARCH-HST(C, T , α, path)
Input: C and T as before
α is the axiom that was removed
path is a set of axioms
Output: none — modifies globals S, HS
(1)if path ∪ {α} ⊆ h for some h ∈ HS
(2) return
(3)if C is unsatisfiable relative to T
(4) new-just ← SINGLE JUST(C, T )
(5) S ← S ∪ {new-just}
(6) new-path ← path ∪ {α}
(7) foreach β ∈ new-just
(8) SEARCH-HST(C, T \ {β}, β, new-path)
(9)else
(10) HS ← HS ∪ path

The algorithm has exponential complexity and its worst case arises when all the sets
in JUST (C, T ) are mutually disjoint.

7.4 Error Repair

owever, while the emphasis was on pinpointing and explaining the errors in OWL on-
tologies, there was a lack of support for (semi-)automatically repairing or fixing them.
Though in most cases, repairing errors is left to the ontology modeler’s (/author’s) dis-
cretion, and understanding the cause of the error certainly helps make resolving it much
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easier, bug resolution can still be a non-trivial task, requiring an exploration of remedies
with a cost/benefit analysis, and tool support here can be quite useful.

In this section, we propose a technique to generate repair solutions automatically
based on strategies used to rank erroneous axioms and a modified Reiter’s Hitting Set
algorithm. In addition, we consider strategies for rewriting axioms.

Note that while we focus on repairing unsatisfiable concepts in a consistent OWL
Ontology, the underlying problem involves dealing with and rectifying a set of erroneous
axioms, and thus the same principles for generating repair solutions are applicable when
debugging an inconsistent OWL ontology.

7.4.1 Strategies for Ranking Axioms

We now discuss a key piece of the repair process: selecting which erroneous axiom(s) to
remove from the MUPS in order to fix the unsatisfiable concepts.

For this purpose, an interesting factor to consider is whether the axioms in the MUPS
can be ranked in order of importance. Repair is then reduced to an optimization problem
whose primary goal is to get rid all of the inconsistency errors in the ontology, while
ensuring that the highest rank axioms are preserved and the lowest rank axioms removed
from the ontology.

A simple criterion to rank axioms is to count the number of times it appears in the
MUPS of the various unsatisfiable concepts in an ontology. This idea is similar to the
notion of arity of the axiom as discussed in [SC03a]. If an axiom appears in n different
MUPS (in each set of the MUPS), removing the axiom from the ontology ensures that
n concepts turn satisfiable. Thus, higher the frequency, lower the rank assigned to the
axiom.

Besides the axiom frequency in the MUPS, we consider the following strategies to rank
ontology axioms:

• impact on ontology when the axiom is removed or altered (need to identify minimal
impact causing changes),

• test cases specified manually by the user to rank axioms,

• provenance information about the axiom (author, source reliability, time-stamp
etc.), and

• relevance to the ontology in terms of its usage

The basic notion of revising a knowledge base while preserving as much information as
possible has been discussed extensively in belief revision literature. We now apply the
same principle to repairing unsatisfiable concepts in an OWL ontology, i.e., we determine
the impact of the changes made to the ontology in order to get rid of unsatisfiable concepts,
and identify minimal-impact causing changes. Since repairing an unsatisfiable concept
involves removing axioms in its MUPS, we consider the impact of axiom removal on the
OWL ontology.

A fundamental property of axiom removal based on the monotonicity of OWL-DL
is the following: removing an axiom from the ontology cannot add a new entailment.
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Hence, we only need to consider entailments (subsumption, instantiation etc.) that are
lost upon axiom removal, and need not consider whether other concepts in the ontology
turn unsatisfiable.

For now, we shall only consider subsumption/disjointness (between atomic concepts)
and instantiation (of atomic concepts) as the only interesting entailments to check for
when an axiom is removed. In the next subsection, we discuss how the user can provide
a set of test cases as additional interesting entailments to check for.

As mentioned earlier, our Axiom Pinpointing service computes the minimal set of
axioms (justification) responsible for any arbitrary entailment of an OWL-DL ontology
. Thus, we can use this service to compute the justification sets for the significant sub-
sumption and instantiation relationships in the ontology. When removing an axiom, we
can check if it falls into a particular justification set, and accordingly determine which
subsumption and/or instantiation relation(s) would break directly. Axioms to be removed
can then be ranked based on the number of entailments they break (higher the rank, lesser
the entailments broken).

An important distinction is the entailments resulting from the unsatisfiable concepts
in the ontology. Note that when a concept is unsatisfiable, it is equivalent to the bottom
concept (or in OWL lingo, owl:Nothing), and hence is trivially equivalent to all other
unsatisfiable concepts, and is a subclass of all satisfiable concepts in the ontology. In
this case, we need to differentiate between the stated or explicit entailments related to
unsatisfiable concepts and the trivial ones. Thus, we apply the following strategy: if a
given entailment related to an unsatisfiable concept holds in a fragment of the ontology
in which the concept is satisfiable, we consider the entailment to be explicit.

There are two techniques to obtain such explicit entailments: the first is a brute-force
approach that involves considering all possible (minimal) solutions to fix the unsatisfiable
concept in the ontology, and verifying if the entailment still holds in the modified ontology.
In order to obtain minimal repair solutions, we can use Reiter’s algorithm as seen in the
next section. On the other hand, the second approach is much faster (though incomplete)
and is based on using the structural analysis techniques seen in [KPSH05] to detect
the explicit relationships involving unsatisfiable concepts without performing large scale
ontology changes. For example, we can use the Ontology Approximation heuristic to
get rid of the contradictions in the ontology while revealing the hidden subsumption
entailments.

Having obtained the explicit entailments related to unsatisfiable concepts, we can
present them to the user to learn which, if any, of the relationships are (un)desired. This
information would then be used in the plan generation phase.

We consider a few examples that highlight the significance of this strategy.
In addition to the standard entailments considered in the previous subsection, the user

can specify a set of test cases describing desired entailments. Axioms to be removed can
be directly ranked based on the desired entailments they break.

Also, in some cases, the user can specify undesired entailments to aid the repair
process. For example, a common modeling mistake is when an atomic concept C inad-
vertently becomes equivalent to the top concept, owl:Thing. Now, any atomic concept
disjoint from C becomes unsatisfiable. This phenomenon occurred in the CHEM-A ontol-
ogy, where the following two axioms caused concept A (anonymized) to become equivalent
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to owl:Thing: {A ≡ ∀R.C, domain(R, A) }. Here, specifying the undesired entailment
prevented our ontology-effect strategy from considering the impact of removal of the er-
roneous axiom (in this case, the equivalence, which needed to be changed to a subclass)
on this entailment.

Provenance Information regarding Change: Provenance information about an ax-
iom can act as a useful pointer for determining its importance/rank, i.e., based on factors
such as:

• reliability of the source (author, document etc.),

• context/reason for which the axiom was added (specified as an annotation or oth-
erwise), and

• time the axiom was specified.

OWL has support for adding human-readable annotations to entities in an ontology
using owl:AnnotationProperties such as rdfs:label, rdfs:comment. However, there is no
direct provision to annotate assertions or axioms in the ontology, unless one resorts to
reification. In general, manually providing provenance information about axioms can be
a tedious task, and thus tool support is critical. To address this issue, ontology editors
such as Protege [GMF+03], KAON [MS06] and Swoop have the option to maintain an
elaborate change log to record provenance information.

In Swoop, we automatically keep track of all changes made to an OWL ontology,
storing information such as authorship, date etc of each change. Additionally, we use a
change-ontology that represents various atomic and complex change operations to serialize
the change-log to RDF/XML, which can then be shared among users.

Such information is extremely useful for ranking axioms in a collaborative ontology
building context, i.e., if a group of authors are collectively building an ontology, and there
exists a precedence level among the authors, i.e., ontology changes made by the supervisor
are given higher priority than those made by a subordinate. In this case, for each change
made, one can derive the corresponding axioms added to the ontology, and automatically
determine the rank of each axiom based on the person making the change.

Syntactic Relevance: There has been research done in the area of ontology ranking
[DPF+05], where for example, terms in ontologies are ranked based on their structural
connectedness in the graph model of the ontology, or their popularity in other ontologies,
and the total rank for the ontology is assigned in terms of the individual entity ranks.
Since an ontology is a collection of axioms, we can, in theory, explore similar techniques
to rank individual axioms. The main difference, of course, lies in the fact that ontologies
as a whole can be seen as documents which link to (or import) other ontology documents,
whereas the notion of linkage is less strong for individual axioms.

Here, we present a simple strategy that ranks an axiom based on the usage of elements
in its signature, i.e., for each OWL entity (atomic class, property or individual) in the
signature of the axiom, we determine how often the entity has been referenced in other
axioms in the ontology, and sum the reference counts for all the entities in the axiom
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signature to obtain a measure of its syntactic (or structural) relevance. The significance
of this strategy is based on the following intuition: if the entities in the axiom are used
(or are referred to) often in the remaining axioms or assertions of the ontology, then the
entities are in some sense, core or central to the overall theme of the ontology, and hence
changing or removing axioms related to these entities may be undesired. For example, if
a certain concept is heavily instantiated, or if a certain property is heavily used in the
instance data, then altering the axiom definitions of that concept or property is a change
that the user needs to be aware of. Similarly, in large ontologies where certain entities
are accidentally underspecified or unused, axioms related to these entities may be given
less importance.

The simple strategy presented above can be altered in various ways such as by restrict-
ing usage counts to certain axiom types, and/or weighing certain kinds of axioms differ-
ently than others (e.g., weighing property attribute assertions such as InverseFunctional
higher). This would be motivated by user preferences depending on the ontology modeling
philosophy and purpose.

7.4.2 Generating Repair Solutions

So far, we have devised a procedure to find tagged MUPS for an unsatisfiable concept in
an OWL-DL ontology and proposed various strategies to rank axioms in the MUPS. The
next step is to generate a repair plan (i.e., a set of ontology changes) to resolve the errors
in a given set of unsatisfiable concepts, taking into account their respective MUPS and
axiom ranks.

Modifying Reiter’s Algorithm: The first technique we propose for generating repair
plans is to modify the Reiter’s Hitting Set algorithm that we have previously introduced
in this section to take into account the axiom ranks.

However, there is a drawback of using the above procedure to generate repair plans,
i.e., impact analysis is only done at a single axiom level, whereas the cumulative impact of
the axioms in the repair solution is not considered. This can lead to non-optimal solutions.

In order to resolve this issue, we propose another modification to the algorithm above:
each time a hitting-set HS is found, we compute a new path-rank for HS based on the
cumulative impact of the axioms in the hitting-set. The algorithm now finds repair plans
that minimize these new path-ranks. Note that the early termination condition for paths
remains the same since the path rank represents a lower bound, as cumulative impact is
always greater than or equal to the sum of individual unique impacts.

Improving and Customizing Repair: The hitting set algorithm can be used in gen-
eral to fix any arbitrary set of unsatisfiable concepts, once the MUPS of the concepts
and the ranks for axioms in the MUPS is known. Thus, a brute force solution for resolv-
ing all the errors in an ontology involves determining the MUPS (and ranking axioms
in the MUPS) for each of the unsatisfiable concepts. This is computationally expensive
and moreover, unnecessary, given that strong dependencies between unsatisfiable concepts
may exist. Thus, we need to focus on the MUPS of the critical or root contradictions in
the ontology.
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To achieve this, we make use of a debugging service we have devised in [KPSH05]
that identifies the root unsatisfiable concepts in an ontology, which propagate and cause
errors elsewhere in the ontology, leading to derived unsatisfiable concepts. Intuitively, a
root unsatisfiable concept is one in which a clash or contradiction found in the concept
definition does not depend on the unsatisfiability of another concept in the ontology;
whereas, a derived unsatisfiable concept acquires a contradiction due to its dependence
on another unsatisfiable concept. For example, if A is an unsatisfiable concept, then a
concept B (B ⊑ A) or C (C ⊑ ∃R.A) also becomes unsatisfiable due to its dependence
on A, and is thus considered as derived.

We have experimented with the root/derived debugging service on numerous OWL
ontologies that have a large number of unsatisfiable concepts and found it to be useful in
narrowing down the error space quickly, e.g, for the Tambis OWL Ontology, only 3 out
of 144 unsatisfiable concepts were discovered as roots in under 5 seconds. From a repair
point of view, the key advantage here is that one needs to focus on the MUPS of the root
unsatisfiable concepts alone since fixing the roots effectively fixes a large set of directly
derived concept bugs.

Also, the service guides the repair process which can be carried out by the user at
three different granularity levels:

• Level 1: Reparing a single unsatisfiable concept at a time: In this case, it makes
sense to deal with the root unsatisfiable concepts first, before resolving errors in
any of the derived concepts. This technique allows the user to monitor the entire
debugging process closely, exploring different repair alternatives for each concept
before fully fixing the ontology. However, since at every step in the repair process,
the user is working in a localized context (looking at a single concept only), the
debugging of the entire ontology could be prolonged due to new bugs introduced
later based on changes made earlier. Thus, the repair process may not be optimal.

• Level 2: Repairing all root unsatisfiable concepts together : The user could batch
repair all the root unsatisfiable concepts in a single debugging iteration before pro-
ceeding to uncover a new set of root/derived unsatisfiable concepts. This technique
provides a cross between the tool-automation (done in level 3) and finer manual
inspection (allowed in level 1) with respect to bug correction.

• Level 3: Repairing all unsatisfiable concepts : The user could directly focus on re-
moving all the unsatisfiable concepts in the ontology in one go. This technique
imposes an overhead on the debugging tool which needs to present a plan that ac-
counts for the removal of all the bugs in an optimal manner. The strategy works
in a global context, considering bugs and bug-dependencies in the ontology as a
whole, and thus may take time for the tool to compute, especially if there are a
large number of unsatisfiable concepts in the ontology (e.g. Tambis). However, the
repair process is likely to be more efficient compared to level 1 repair.

The number of steps in the repair process depends on the granularity level chosen
by the user: for example, using Level 1 above, the no. of steps is atleast the no. of
unsatisfiable concepts the user begins with; whereas using Level 3 granularity, the repair
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reduces to a single big step. To make the process more flexible, the user should be allowed
to change the granularity level, as and when desired, during a particular repair session.

7.4.3 Suggesting Axiom Rewrites

Now, to make our repair solution more flexible, we consider strategies to rewrite erroneous
axioms instead of strictly removing them from the ontology. Note that rewriting an axiom
involves an axiom removal followed by an addition. Thus, similar to the impact analysis
performed for axiom removal, we also need to consider entailments that are introduced
when an axiom is added. Currently, we only check if unsatisfiable concepts arise upon
axiom addition.

Using Erroneous Axiom Parts: As shown in section 3.2, our Axiom Pinpointing
service has been extended to identify parts of axioms in the MUPS responsible for making a
concept unsatisfiable. Having determined the erroneous part(s) of axioms, we can suggest
a suitable rewrite of the axiom that preserves as much as information as possible while
eliminating unsatisfiability.

Identifying Common Pitfalls: Common pitfalls in OWL ontology modeling have
been enumerated in literature [ALRR04]. We have summarized some commonly occurring
errors that we have observed (in addition to those mentioned in [ALRR04]), highlighting
the meant axiom and the reason for the mistake in each case.

Asserted Meant Reason for Misunderstanding
A ≡ C A ⊑ C Difference between

Defined and Primitive concepts
A ⊑ C A ⊑ C ⊔D Multiple subclass
A ⊑ D has intersection semantics

domain(P,A) A ⊑ ∀P.B Global vs. Local
range(P,B) property restrictions
domain(P,A) domain(P, A ⊔B) Unclear about multiple domain
domain(P,B) semantics

A library of error patterns can be easily maintained, extended and shared between
ontology authors using appropriate tool support. Once we have identified the axioms in
the ontology responsible for an unsatisfiable concept, we can check if any of the axioms
has a pattern corresponding to one in the library, and if so, suggest the meant axiom
to the user as a replacement. We note that in a lot of cases that we have observed, the
most common reason for unsatisfiability is the accidental use of equivalence instead of
subsumption.

In some cases, an additional heuristic to consider is the label (or ID) of the concept or
role, which acts as a pointer to its intended meaning and can be used to detect mismatches
in modeling. For example, the unsatisfiable concept OceanCrustLayer seen earlier in the
Sweet-JPL OWL ontology was accidentally defined to be a subclass of CrustRegion,
instead of CrustLayer.
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A combination of the heuristics was used to debug an error in the University on-
tology. The concept ProfessorInHCIorAI was responsible for the unsatisfiable con-
cepts AI Student and HCI Student because there were two separate subclass axioms
for ProfessorInHCIorAI, associating it with the student concepts separately, whereas
the ‘or’ in the concept name implied that a disjunction was intended.

7.5 Glass-box algorithms

Glass-box algorithms are built modifying the existing tableau-based decision procedures
built in a reasoner. The adaptations needed for identifying a set of axioms relevant to a
given error in an ontology, have been seen as strongly dependent on the DL under consid-
eration and the current implementation used. Thus, Glass-box algorithms are typically
custom-made. The idea undelying all these adjustments is, nonetheless, always the same.

Tableau algorithms consist on a repeated application of rules over sets of assertions,
or ABoxes. A rule verifies whether an ABox contains a particular subset of assertions,
and whether some axioms exist in the input TBox. If they do, then the rule triggers. It
then makes possibly multiple copies of the selected ABox and adds new assertions to each
of these copies. During the execution of this algorithm, no assertion is ever removed from
an ABox.

In order to find the relevant causes of an inconsistency, the modified algorithm must
keep track of the axioms ultimately responsible for the addition of an assertion to the
ABox. To achieve this, a Boolean monotonic formula can be associated to each assertion.
First, each axiom is represented by a distinct propositional variable and each assertion
in the input ABoxes is associated to a tautology. When a rule is triggered, every new
assertion added to the set will be linked to the conjunction of the axioms and the formulas
of assertions that triggered the rule. Furthermore, if an assertion can be produced in
different ways, it will be tied to the formula consisting of the disjunction of the formulas
that produce it.

The formulas attached to the assertions have the following property. If an assertion a
is linked to the formula φ, then, for every valuation ω, ω maps φ to true if and only if it
holds that if the tableau is run using only the axioms that are also evaluated to true by
ω, then the assertion a will also be produced. In other words, the formulas do represent
the axiomatic cause for each assertion to be added to an ABox. These formulas are then
used to produced a so-called clash-formula: a Boolean monotonic formula representing
the axiomatic causes of inconsistency.

The clash-formula provides all the information needed to find both, minimal justifi-
cations for the inconsistency, and maximal sub-TBoxes solving the inconsistency found.
For the former one needs only to find minimal valuations that make the clash-formula
true, while for the latter, the task consists in finding maximal valuations mapping the
formula to false. Since the clash-formula is monotonic, the task of finding such minimal
and maximal valuations does make sense.

We have shown this simply idea is applicable to every tableau-based algorithm with-
out blocking conditions. To implement it in a reasoner, it is only necessary to extend it
to associate a label to every assertion, and compute some simple operations over these
labels. In other words, we have been able to describe a simple method for modifying an
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implemented tableau-based algorithm to allow for pinpointing the causes of inconsisten-
cies, if these are found. Although this method is a Glass-box approach, since it requires a
modification in the current implemented algorithm, it is a general approach that can be
applied to any current, or future, tableau-based reasoning service.

The importance of this Glass-box approach relies on the fact that it makes no as-
sumptions on the tableau used; it simply states a method to modify the original tableau
algorithm in order to obtain also the causes of inconsistency if it is found during the appli-
cation of the algorithm. Hence, this approach can be used regardless of the underlying DL
or the reasoning task for which the tableau algorithm is used. In other words, whenever
a tableau algorithm is available for deciding the presence of an error, then the Glass-box
approach can be used for pinpointing the main causes and correcting such found error,
regardless of the definition of error used, and of the underlying logic.

Apart from soundness and completeness, two of the main characteristics desirable in
every implemented tableau-based algorithm are:

• Termination. The algorithm will give an answer after finite time, for every possible
input.

• Application order irrelevance. The order in which the rules are applied to the ABoxes
has no effect on the final result.

Termination is important to ensure that an answer will be given to the user, regardless
of the input it states. The irrelevance of the application order opens the doors for finding
orderings that require minimal number of steps to terminate, optimizing this way the
execution time. It can also be used to ensure termination since, while for every tableau-
based algorithm the order in which the rules are applied is irrelevant for the answer, some
of these algorithms might not be terminating.

The properties of the clash-formula ensure that the modification of the original tableau
method will preserve soundness and completeness, and hence, will always give the correct
answer, if the original algorithm did so too. Even with this result, the modified algorithm
would be useless in practice if any of the two properties, termination and application
order irrelevance, was not preserved. If termination is lost, then an answer might never
be returned for a given input; if the application order becomes relevant for finding the
correct answer, then not only the order-dependent optimizations turn to be useless, but
also every application order must be checked, inducing an exponential-step blow-up in
the execution time.

Under the minimal assumption that the input TBox and the initial ABoxes are finite,
it is easy to show that the algorithm obtained by the modifications we described earlier
preserves termination. This result follows from the fact that, if the original algorithm
terminates, then it will produce only finitely many finite ABoxes. Since every rule appli-
cation adds at least one element to an ABox, then all the elements will be produced after
finitely many steps. The modified algorithm can then perform extra-steps concerning the
different ways that each element can be generated, but each of these extra steps always
associates a more general formula to the assertions. Since there are only finitely many
propositionally-distinct Boolean monotonic formulas, these extra steps can be done only
finitely, and hence, the new algorithm also terminates.
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The irrelevance of the application order is also preserved by this modified algorithm.
This is a simple consequence from the fact that, whenever an assertion is added to an
ABox, it is never eliminated again. Thus, whenever a rule is applicable, it will still be
applicable in any point in the future until it is applied. Thus, when there are no more
applicable rules, and the algorithm stops, the elements that would be added by that rule
application must be already present in the ABox, or, in other words, the rule was already
applied.

For expressive DLs, or TBoxes containing GCIs, it is sometimes necessary to add
blocking conditions to some rules. These are conditions that stop the application of a rule
even when it is triggered. Blocking conditions vary greatly depending on the properties
in the DL decided by the algorithm. Due mainly to this variety, the notion of blocking
condition has not yet been formalized and the preservation of the forementioned properties
is yet to be shown for the algorithm obtained by modifying in the same fashion these kinds
of tableaus.

In order for the modified algorithm to work properly, there is a condition that must
be satisfied by the original tableau-based procedure. This condition, called axiom mono-
tonicity, states that the addition of axioms can never remove an inconsistency. When no
blocking conditions are present, the tableau is always axiom monotonic. Depending on
what the definition of blocking condition is, it might be the case that a tableau using
valid blocking conditions is not axiom monotonic. In that case, it cannot be ensured that
the modified algorithm works in a correct manner. For this reason, the minimal semantic
property required in a tableau containing blocking conditions is that it is axiom mono-
tonic. Although this property is enough for ensuring correctness of the modified method,
semantic properties are usually not desired, since they cannot be easily verified for a given
tableau-based algorithm.

One thing to be noticed is that blocking conditions are generally used, in DL rea-
soning, only to ensure termination. With this in mind, it should be possible to define
adequate conditions that involve the goal of termination and still ensure axiom monotonic-
ity, while being easily checked. Such conditions would extend the pinpointing methodol-
ogy to tableaus that require such blocking conditions to ensure termination, and should,
of course, be required that the modified algorithm preserves such termination property.
Current research is focused on finding easily-verifiable conditions on the tableaus with
blocking conditions which ensure that extending them to use the described labeling-based
Glass-box approach will lead to a correct pinpointing algorithm.

7.6 Related Work

The Ontology Engineering community widely agrees on the importance of explaining the
output of a reasoner to the user in a sensible way. The first steps in this direction, in the
context of Description Logics, were taken in the early and mid nineties by the developers
of the CLASSIC system. The explanation component in CLASSIC [McG96] generated
formal proofs for an inference using a deductive framework based on ‘natural semantics’
style proof rules that needed to be explicitly stated for the DL. CLASSIC incorporated
a structural subsumption algorithm and was able to generate explanations for concept
subsumption [McG96]. In the late nineties, the authors of [BFH+99] used a modified
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sequent calculus to explain tableau-based subsumption proofs for the logic ALC.
A different view was recently explored in [SC03a], where the trace of a tableau reasoner

was exploited to maintain a dependency relation between axioms in the KB and the
inferences drawn from it. The motivation was debugging unsatisfiable concepts in the
DICE terminology and the work applied to unfoldable ALC TBoxes. The paper provided
a formalization of the problem based on the notion of Minimal Unsatisfiability Preserving
Sub-TBoxes (MUPS). Roughly, a MUPS for an atomic concept A is a minimal fragment
of the KB in which A is unsatisfiable. Obviously, a concept may have several different
MUPS within an ontology.

In [KPSH05], we extended this technique to the more expressive Description Logic
SHIF , provided an optimized implementation in the reasoner Pellet and a UI in the
ontology editor Swoop. We showed through a user study that these techniques are effective
for debugging unsatisfiable concepts and proposed various enhancements in the UI to
improve the explanation.
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8 Model Checking and Model Generation

8.1 Introduction

Model checking as well as model generation (aka model finding) are well-established
methodologies for formally verifying properties of possibly time-evolving systems. A re-
cent survey can be found in [Hut06]. Usually, some aspects of real-world systems have to
be abstracted away in order to make them accessible to formal logical modeling: contin-
uous vs. discrete behavior, granularity, stochasticity, etc. Nevertheless, model-checking
tools are successfully applied in practice. Indeed, improvements in the underlying deci-
sion procedures (most notably SAT and BDDs) together with higher-level specification
languages have broadened the applicability of these techniques. New application fields
have been identified recently. One such field comprises solving selected problems arising
in ontology management and evolution as a complement to dedicated DL engines.

The model generation problem is postulated as follows. Given an ontology O, which
is a pair (T ,A) of a TBox T and an ABox A, find an interpretation I which satisfies all
axioms of T and A. In case of a model checking problem the goal is to prove whether a
given interpretation is a model.

In order to support the ontology development process in an incremental way, our
thesis is that well-known model-generation tools can be adopted accordingly and provide
major benefits for human ontology designers. In this chapter we evaluate pros and cons
of applying an existing model checking and generation tool in this context (see below for
details).

In fact, the ontology designer is often not interested in just testing the satisfiability of
an ontology by checking whether one single model exists, but possibly wants to inspect a
number of generated models instead. This way, unintended models might be identified.
This kind of modeling methodology has been proven to be very effective in software engi-
neering (e.g., [Jac06]). The ontology designer should be offered a possibility to adjust the
ontology by examining automatically generated relational model structures. Model gen-
erators support this process quite well whereas for checking the satisfiability of ontologies
and computing the taxonomy tableau algorithms have been proven to be very effective.
Thus, it seems attractive to augment tableau provers to also support model generation.
Current tableau algorithms are not well applicable as model generation procedures since
they only return (a description of) a so-called single canonical model [BCM+03a]. Instead,
model finders are able to enumerate all models systematically. This can indeed be useful
for ontology design tasks. To illustrate this, we discuss the following simple example. Let
A, B be concepts and R be a role. Suppose the satisfiability of the following concept is
checked by both a DL system and a model finder:

(∃R.A) ⊓ (∃R.B)

The model generated by a tableau algorithm is shown on the left-hand side of the
vertical bar in Figure 8. However, the ontology designer may be more interested in
inspecting models computed by a model finder (see Figure 8, to the right of the vertical
bar). The latter four models are not considered by the rules of tableau prover because
if the left structure is model, then the structures to the right of the bar are also models.
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Thus, it suffices to consider only one model (the one to the left of the bar) in order to
show satisfiability. In order to evaluate an ontology (i.e., the concepts, roles, and axioms
in it), considering all models is nevertheless interesting as we argued above. Thus, it
makes sense to investigate contemporary model finders, study the state of the art in this
field from a practical point of view, and identify possible limitations.
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Figure 8: Models of (∃R.A) ⊓ (∃R.B)

In our case study, we adopt a particular finite model finder, namely Alloy Analyzer 3.0
[Jac06], whose language is based on relational calculus and thus allows for straightforward
representation of ALC knowledge bases. The technique reported here is not the first at-
tempt at rephrasing ontology languages in Alloy, yet it has been developed independently.
In [WDSS06], case studies have been published where an ontology has been formulated
(and further analyzed) in Alloy, Z, and (recently) HOL. Unlike our approach to capture
the semantics of ALC constructs directly, the authors define a translation schema that
considers the meta-level of the ontology language in terms of individuals for concepts and
properties as well as relationships among these individuals.

In the context of the common ontology framework proposed by TONES, we concern
DL-based stand-alone ontologies in the design phase. As argued by [WDSS06], a synergy
between DL systems and model-generating tools results in a new reasoning service, a
model finding service, which takes a knowledge base as input and presents generated
models as output.
We show results achieved so far for several case studies:

• Model inspection (Sect. 8.3.1);

• Visual display of counterexamples for a subsumption assumption (Sect. 8.3.2) and
for a concept equivalence assumption (Sect. 8.3.3);

• Finding models for ALC terms whose satisfiability analysis is expensive for contem-
porary tableaux-based reasoners (Sect. 8.4).

In the next section we address the translation rules for DL into Alloy, starting with the
base logic ALC.
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8.2 Translation from Description Logics into Alloy

The logic underlying the Alloy Analyzer is Relational Logic (RL) whose syntax, type rules
and semantics are described in [Jac00]. This logic is more than a syntactical variation of
first-order logic, because it includes transitive closure. An automatic model finder requires
the specification of a scope, a bound on the number of atoms in the universe (cardinalities
of concepts). This limitation is not as dramatic as it might seem, given the so-called
small-scope hypothesis :

“First-order logic is undecidable, so our analysis cannot be a decision pro-
cedure: if no model is found, the formula may still have a model in a larger
scope. Nevertheless, the analysis is useful, since many formulas that have
models have small ones.” [Jac00]

Moreover,

“Given a relational formula, we can construct a boolean formula that has
a model exactly when the original formula has a model in some given scope.”
[Jac00]

Given that ALC exhibits the finite model property, it is thus amenable to circumvent
the finite-scope limitation. In fact, we can compute worst case concept cardinalities
according to the maximum concept branching factor and the maximum depth of nested
existential quantifiers.

8.2.1 Translation Rules for ALC

Definition 1 (Alloy Translation Rules for ALC Concepts) If A is a concept name,
C, D are concepts, R is a role name, the following translation rules can be applied to
ALC concepts in order to obtain semantically equivalent Alloy formulas:

A A

C ⊓D C & D

C ⊔D C + D

¬C univ - C

∀R.C univ - (R.(univ - C))

∃R.C R.C

Here, A, C, D, R denote Alloy relations, &, +, - are set operators (intersection, union and
difference, respectively), “.” stands for the relational join operator. The unary relation
univ represents the set containing every instance of the universe (interpretation domain).

Definition 2 (Alloy Translation Rules for ALC TBox and ABox axioms) We
summarize translation rules for ALC terminological and assertional axioms into Alloy.

• In ALC, expressions ⊤ (universal concept) and ⊥ (unsatisfiable concept) are used
as abbreviations for A⊔¬A resp. A⊓¬A, where A is a concept name. In Alloy, we
define the TOP relation as subset of univ and BOTTOM as subset of TOP containing
no instances:
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abstract sig TOP

sig BOTTOM in TOP {} fact { #BOTTOM = 0 }

A signature (denoted as sig) introduces a set of atoms. The declaration sig A { }
introduces a set named A. An abstract signature has no elements except those
belonging to the extension of its subsignatures.

• Elementary descriptions are atomic concepts and atomic roles.

Atomic concepts are declared in Alloy as non-empty subsets of TOP. For example,
A is declared as atomic concept:

sig A in TOP {} fact { }

Atomic roles are specified in Alloy with a set TOP as both domain and range. For
example, the role hasChild is an atomic role:

abstract sig TOP { hasChild : set TOP }

• If C is an atomic concept and D is a concept, then C ⊑ D is called generalized
concept inclusion, or GCI. GCIs are translated into Alloy using the set operator in
(subset):

fact {C in D}

• Concept definitions of the form A ≡ C, where A is an atomic concept, are called
equality axioms. Equalities are translated using Alloy’s set equality operator =:

fact { A = C }

• Instances of a given concept description are called individuals. If i is an individual,
then it can be defined in Alloy as follows:

sig i in TOP {} fact { #i = 1 }}

In Alloy, a multiplicity keyword placed before a signature declaration constrains the
number of elements in the signature’s set. E.g., the keyword one allows for defining
a signature whose set contains exactly one element. Thus,

one sig i in TOP {}

declares instance i, having the same effect as the specification above.

To implement the unique name assumption, additional constraints are generated to
ensure that these singleton sets are pairwise different, for example
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/* pairwise disjointness of individuals */

fact { no ( polyneikes & iokaste ) }

fact { no ( polyneikes & thersandros ) }

fact { no ( polyneikes & oedipus ) }

• If a, b are individual names, C is a concept and R is a role name, than the following
assertions about named individuals can be built by using constructs above:

C(a) (concept membership assertion)

R(a, b) (role membership assertions)

In terms of Alloy we use the following transformation schema for concept mem-
bership assertions and role membership assertions resp. (-> denotes the relational
product operator):

fact { a in C }

fact { a -> b in R }

8.2.2 Translation of SHIQ and SROIQ

Alloy’s underlying logic is expressive enough to encode SHIQ or even SROIQ formulas.
As an outlook, tables below depict the Alloy formulation of SHIQ and SROIQ concepts
and role constructors as well as of additional role constructs possible in Alloy. Here,
:> denotes the range restriction and ~ is the relational transpose operator defined over
binary relations. The operator # applied to a relation gives the cardinality of the relation
as an integer value. The binary relation iden relates all the instances of the universe to
themselves.

SHIQ concepts Alloy translation
≤ nR.C { a : univ | #(a.(R :> C)) =< n }
≥ nR.C { a : univ | #(a.(R :> C)) => n }
inverse ~R

SROIQ concepts Alloy translation
{o} sig i in TOP { } fact { #o = 1 }}

∃R.Self (R & iden).univ

Further role terms Alloy translation
R ⊓ S R & S

reflexive transitive closure *R

SHIQ allows for defining role hierarchies, which is a finite set of role inclusion axioms
R ⊑ S where R and S are roles, and transitive roles (R ◦ R ⊑ R). In Alloy, we achieve
the same expressibility using the set operator in and the relational composition (join)
operator .:

R in S

(R . R) in R
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In SROIQ, a role inclusion axiom is of the form w ⊑ R, where w is a finite string of
roles (e.g., S1, S2) and R is a role name. The appropriate translation into Alloy is:

(S1 . S2) in R

8.2.3 Translation Algorithm

As input language a subset of the KRSS format is adopted. A grammar for it was
specified in terms of the JavaCC parser generator [Kod04]. The generated parser contains
actions to instantiate AST (Abstract Syntax Tree) nodes from Java classes, these Java
classes were in turn also generated following the recommended methodology to provide
Eclipse-based tooling for custom DSLs (Domain Specific Languages). The AST classes
are specified in a so-called language metamodel (see Figure 9), in our case this metamodel
is expressed in EMOF (Essential MOF [Gro06]) which can be considered as a subset of the
language used to express UML class models. A possibility exists to enrich the metamodel
with validation checks beyond syntactic correctness (so called static semantics) in the
form of OCL (Object Constraint Language) invariants. These OCL expressions can be
automatically translated into Java, further cutting down on the tooling development effort.

Figure 9: AST classes for object-oriented ASTs of ALC

Another advantage of the metamodel approach is the loose coupling between concrete
and abstract syntax. In effect, handling alternative input formats (e.g., those originating
in W3C standards) requires generating a new Java-based parser yet the rest of the trans-
lation is isolated from this change, as only data structures specified in the metamodel are
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required. In turn, extending the translation to handle, for example, SHIQ can leverage
object-oriented extensions mechanisms to define a metamodel taking that for ALC as
starting point. In short, most of the Java code infrastructure need not be re-developed
from scratch when migrating to another DL logic.

After the ASTs of an ALC TBox and a (possibly empty) ABox have been built, the
translation process begins with an Alloy file (.als extension) generated after visiting the
AST nodes. Every output is made to contain Alloy definitions for ⊤ and ⊥, followed by
those for atomic concepts and atomic roles. The object-oriented structure of the AST
simplifies processing at this point. The translator leverages the type system of Java 5 (in
particular, parametric polymorphisms) resulting in improved readability and increased
confidence in the reliability of the implementation. For example, a user of our framework
can find methods such as getIndividuals() in class ABox, which returns a value of type
Set(Individual). Java 5 combines the advantages of a statically and strongly typed
language with expressive types.

The assumptions that Alloy can make when searching for models are encoded as facts.
For example, equality axioms are generated by our translator as follows:

res.append(NL + "/* equality axioms */" + NL);

for (EqualityAxiom ea : getTbox().getEqAxioms()) {

res.append("fact { (" + ea.getLeft().toAlloy3() + ") = ("

+ ea.getRight().toAlloy3() + ") } ");

res.append(NL);

}

The above code has been simplified to unclutter some optimizations, e.g., string ma-
nipulation is performed instead of directly writing to a buffered stream.

Similar steps are followed for inclusion axioms, concept membership assertions, and
role membership assertions.

8.3 Case Studies

In follows, we illustrate advantages of our proposal in the context of ontology design by
discussing several case studies.

8.3.1 Model Inspection by Counterexample Extraction

As an introductory example of model inspection, we use the Oedipus example (see
[BCM+03a, p. 73]). In this example, the following ABox with some facts about the
Oedipus story is supposed:

hasChild(iokaste, oedipus) hasChild(iokaste, polyneikes)

hasChild(oedipus , polyneikes) hasChild(polyneikes, thersandros)

Patricide(oedipus) ¬Patricide(thersandros)

Now, we want to find out whether some individual exists that have a child that is a
patricide and that itself has a child that is not a patricide. This can be seen as a prob-
lem of checking the satisfiability of the concept hasPatricideChildWithNonPatricideChild
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declared as follows:

hasPatricideChildWithNonPatricideChild ≡

(∃hasChild .(Patricide ⊓ ∃hasChild .¬Patricide))

Applying ALC translation rules to the Oedipus knowledge base, we obtain the following
Alloy specification:

module oedipus

abstract sig TOP {

/* atomic roles */

hasChild : set TOP

}

sig BOTTOM in TOP {}

fact { #BOTTOM = 0 }

/* atomic concepts */

sig hasPatricideChildWithNonPatricideChild in TOP {}

sig Patricide in TOP {}

/* individuals */

one sig polyneikes in TOP {}

one sig iokaste in TOP {}

one sig thersandros in TOP {}

one sig oedipus in TOP {}

/* pairwise disjointness of individuals */

fact { no ( polyneikes & iokaste ) }

fact { no ( polyneikes & thersandros ) }

fact { no ( polyneikes & oedipus ) }

fact { no ( iokaste & thersandros ) }

fact { no ( iokaste & oedipus ) }

fact { no ( thersandros & oedipus ) }

/* equality axioms */

fact { (hasPatricideChildWithNonPatricideChild) =

( (hasChild).((Patricide)&((hasChild).((univ - Patricide))))) }

/* no inclusion axioms were declared */

/* concept assertions */

fact { oedipus in Patricide }

fact { thersandros in ( univ - Patricide ) }

/* role assertions */

fact { oedipus -> polyneikes in hasChild }

fact { iokaste -> polyneikes in hasChild }

fact { polyneikes -> thersandros in hasChild }

fact { iokaste -> oedipus in hasChild }

pred show() { #univ = 4

/* to make sure that no additional persons get into the myth */}

run show for 4
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Alloy presents the following model (Figure 10). We will discuss next how it relates to
the ontology given above. In summary, Iokaste is shown to have a patricide child (Oedipus
in this model) who in turn has a non patricide child (a choice of individuals in this model).

Figure 10: Oedipus example

Alloy offers a choice of customization capabilities for visualizing models but we will
stick with the default settings. Particular models can be shown graphically as “snap-
shots” where individuals are represented as rectangles. Each such rectangle is identi-
fied by the internal name used by Alloy (e.g., “TOP102”) which appears on the upper
part of the rectangle. Arcs between rectangles stand for binary relations (roles), a la-
bel on the arc makes clear which role is being referred to. For each individual, the
sets (concepts) it belongs to are shown as a comma separated list of labels on the lower
part of the rectangle in question. Absence of one such labels means that the individual
does not satisfy that concept. For example, the labels of the node “TOP2” “iokaste,
hasPatricideChildWithNonPatricideChild” reveal that the individual iokaste is de-
scribed by the concept hasPatricideChildWithNonPatricideChild. Browsing further
models will show other constellations under which this concept is satisfied. Note however
that in this particular model, polyneikes is considered to have himself as child (nothing
in the TBox prevents this). Inspecting models may give rise for adjusting the ontology
by adding further axioms.

8.3.2 Counterexamples for a Subsumption Assumption

We use the following example from [BCM+03a, p. 82] to demonstrate how a subsumption
relation can be explained using Alloy. Assume that we want to check whether (∃r.a) ⊓
(∃r.b) is subsumed by ∃r.(a⊓ b). This is equivalent to the satisfiability test of the concept
ifUnsatisfiableThenSubsumes defined below:
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ifUnsatisfiableThenSubsumes ≡ (∃r.a) ⊓ (∃r.b) ⊓ ¬(∃.(a ⊓ b))

Figure 11: Counterexample for ifUnsatisfiableThenSubsumes

Letting Alloy analyze the predicate ifUnsatisfiableThenSubsumes results in several
models. If left to its own devices, Alloy presents a model that minimizes the number of
individuals. Alloy can be instructed however to look for models of a certain shape. We
will do just that in order to display the solution presented in [BCM+03a, p. 82], which is
computed by a tableau algorithm. In order to achieve this, we will constraint those model
we are interested in to those having exactly three individuals, with no individual in a nor
b having a role filler over r. Using Alloy syntax, we formulate the last requirement in
terms of set cardinality (#) and the join operator, where a.r stands for the images over r
whose domain is a. The model we are looking for is depicted in Figure 11. The technique
described above is, of course, generally applicable and results in shorter response times
as only a subset of all possible models is explored.

To gain a better understanding for this result, one must recall that labels of particular
individuals (nodes) contain concept names the individual belongs to. Absence of some
concept name C in the label of an individual means that the individual belongs to the
concept ¬C. Therefore, the node TOP1 explicitly has b in its label and implicitly ¬a. A
similar explanation holds for the node TOP2. An Alloy specification for the given example
is presented below:

abstract sig TOP {

/* atomic roles */

r : set TOP

}

sig BOTTOM in TOP {}

fact { #BOTTOM = 0 }

/* atomic concepts */

sig ifUnsatisfiableThenSubsumes in TOP {}

sig a in TOP {} fact { #a > 0 }

sig b in TOP {} fact { #b > 0 }
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/* no individuals were declared */

/* equality axioms */

fact { (ifUnsatisfiableThenSubsumes) =

(((( r.a ) & ( r.b )) & (univ - (r.( a & b ))))) }

/* no inclusion axioms were declared */

/* no concept assertions were declared */

/* no role assertions were declared */

pred show() {

#ifUnsatisfiableThenSubsumes = 1 and

#univ = 3 and #a.r = 0 and #b.r = 0

}

run show for 3

8.3.3 Counterexamples for a Concept Equivalence Assumption

As a next example we assume the following simple TBox:

dogholder ≡ (person ⊓ (≥ 1 hasdog .dog))

houndholder ≡ (person ⊓ (≥ 1 hashound .hound))

dog ≡ hound

hashound ⊑ hasdog

Suppose we expect that concepts dogholder and houndholder must be equivalent. In
order to check this we let Alloy Analyzer generate models of the concept counterExample:

counterExample ≡ (dogholder ⊓ ¬houndholder) ⊔ (¬dogholder ⊓ houndholder)

One model found by Alloy Analyzer as a counterexample is shown in Figure 12. In
this model, the individual TOP3 is found that belongs to the concept dogholder but not
to the concept houndholder. The reason is that the roles hasdog and hashound are not
equivalent.

Figure 12: Model of counterExample

A specification in Alloy is given below:

abstract sig TOP {

/* atomic roles */

hasdog : set TOP ,
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hashound : set TOP

}

sig BOTTOM in TOP {}

fact { #BOTTOM = 0 }

/* atomic concepts */

sig houndholder in TOP {}

sig counterExample in TOP {}

sig person in TOP {}

sig dogholder in TOP {}

sig hound in TOP {}

sig dog in TOP {}

/* equality axioms */

fact { dog = hound }

fact { hashound in hasdog }

fact { (houndholder) = ((person & ({ a : univ | #(a.(hashound :> hound)) >= 1 })))}

fact { (dogholder) = (( person & ({ a : univ | #(a.(hasdog :> dog)) >= 1 })))}

fact { (counterExample) = (((dogholder & (univ - houndholder))

+ ((univ - dogholder) & houndholder)))}

pred show() {

#counterExample > 0

}

run show for 4

8.4 Evaluation of Practical Usefulness

In order to empirically study the performance of model generation with Alloy we have
chosen a benchmark originally proposed for comparing DL systems (DL-98 systems com-
parison). We consider, k-branch, which evaluates satisfiability-testing performance for
large concept expressions without reference to a TBox. Progressively larger expressions
(from size 1 to size 21) are presented in two variants: all k-branch-p expressions are unsat-
isfiable while all k-branch-n expressions are satisfiable. These (and other) benchmarks are
available at http://dl.kr.org/dl98/comparison/data.html. We also used RacerPro
1.9.1 beta to measure the times for (un)satisfiability checking with a tableau prover.

Summing up, Alloy exhibits a competitive performance for satisfiable input concepts
if models can be found with up to 10 individuals. If models have more than 10 objects,
performance quickly degrades (in particular, if unsatisfiable concepts are used as input).
Apparently, BDD optimizations used in these systems cannot cope with combinatorial
explosion, as more models are explored by Alloy than by tableau-based algorithms. Thus,
there is good news when models are small enough (as full information can be presented
to the ontology designer). If large model structures have to be explored, we found that
model generators such as Alloy are not applicable.

As explained in the Alloy literature, the guiding principle for their construction was
the “small scope hypothesis”, which k-branch does not exhibit. Had we chosen a bench-
mark where this is the case, the results would have been more favorable to Alloy. For
comparison, the time spent by RacerPro in this problem for different problem sizes is also
shown in Table 5 and Table 6. The results of Alloy’s runs are shown for different scope
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sizes (we did not yet implemented an algorithm to compute the scope size according to the
maximum concept branching factor and maximum depth of nested existential quantifiers
as mentioned in Sect. 8.2).

As we can conclude from the measurement results, modern high-optimized tableau-
based provers such as RacerPro far outperform model finders like Alloy, and therefore
there is no reason to switch from one system to another completely. However, in order to
improve the usefulness of tableau-based reasoners also for ontology design tasks, it may
be a good idea to equip them with model generation capacities like those provided by
model finders.

8.5 Conclusion and Further Work

In this work, we have studied an applicability of finite model finders (by the example of
Alloy Analyzer) for ontology design tasks. For this, we have proposed translation rules
from DL (ALC and some constructs of SHIQ and SROIQ) into Alloy and illustrated
the translation by several examples. We conducted experiments that demonstrate the
benefit model finders but also indicate their weaknesses.

While originally addressing interactive systems, in particular communication proto-
cols, model-checking techniques are now applied to general imperative algorithms, as
exemplified by the +CAL algorithm language [Lam06]. Given that +CAL allows spec-
ifying pre- and postconditions alongside imperative statements, it constitutes a viable
mechanism for automatically testing the correctness of a proposed algorithm. A setting
where this can be seen at work is the validation of the optimized implementation of a
decision procedure. Indeed, model checkers might also be successfully applied for devel-
oping robust and scalable optimized description logics systems. Unlike testing, checking
a specification even for a finite set of individual using model checking techniques might
dramatically reduce development efforts.

The crucial requirement for integrating model finders in practical applications like on-
tology development tools is the effectiveness of constraint-solving engines they are based
on. One of the recent investigations in producing high-performance tools is a Kodkod,
a prototype SAT-based model finder designed for a relational logic [TJ06]. Besides of
promising performance results, the system provides for further relevant features like opti-
mized handling of assertional knowledge (in Alloy, specifying partial solutions is possible
only in the form of additional constraints that increases the complexity of the solving
process).
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Problem size Alloy, 10 inds Alloy, 15 inds RacerPro
1 265 110 3
2 110 328 5
3 1,797, NMF 5,281 24
4 1,422, NMF 21,921, NMF 31
5 2,562, NMF 43,687, NMF 164
6 1,469, NMF 31,125, NMF 288
7 6,828, NMF 61,625, NMF 681
8 6,906, NMF 42,625, NMF 1,809
9 6,250, NMF 53,000, NMF 4,392

10 7,375, NMF 4,970,229, NMF 9,714
11 7437, NMF 3,024,688, NMF 23,623
12 17,50, NMF 575,407, NMF 51,266
13 27,640, NMF 4,215,123, NMF 119,628
14 4,281, NMF 3,654,211, NMF 294,519
15 38,577, NMF 1,282,483, NMF 765,325

Table 5: Concept satisfiability benchmarks (k-branch-n, all times in milliseconds, NMF
= no model found).

Problem size Alloy, 10 inds Alloy, 15 inds RacerPro
1 47 94 1
2 1,532 531 2
3 875 44,624 4
4 1,281 34,421 5
5 2,610 30,953 11
6 9,828 56,422 24
7 5,781 63,935 29
8 1,984 41,578 218
9 6,578 70,466 113

10 58,718 716,200 225
11 12,500 520,077 638
12 30,484 345,288 711
13 6,500 409,849 1,099
14 10,624 811,636 3,517
15 11,719 3,129,982 4,143
16 5,066 845,979 11,742
17 7,219 1,204,383 24,594
18 94,466 1,401,839 31,498
19 8,141 660,968 63,331
20 15,090 2,096,752 187,332
21 135,829 563,153 197,030

Table 6: Concept unsatisfiability benchmarks (k-branch-p, all times in milliseconds)
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9 Conservative Extensions

9.1 Introduction

The paper [GLW06], which presents work that has been carried out within the TONES
project, introduces conservative extensions in the context of description logics and identi-
fies them as a central notion for the iterative development of ontologies and for ontology
merging. Formally, conservative extensions are formulated as follows. For a TBox T ,
the signature of T (denoted sig(T ) is the set of all concept and role names used in T .
Then, a TBox T1 ∪ T2 is a conservative extension of the TBox T1 if, for all concepts C, D
formulated in sig(T1), we have that C ⊑T1∪T2 D implies C ⊑T1 D.

In the context of ontology design, conservative extensions can be used in the following
way. Suppose that an ontology designer has already developed and tested the core part of
an ontology (i.e., TBox) T that formalizes an application domain. Assume that he wants
to extend T with a number of additional axioms that describe the terminology of a part of
the domain that was not yet covered by T . Then, it is important that the extension of T
does not compromise the existing part of T . In particular, the extended ontology should
not entail new subsumptions between concepts that are formulated in the signature of
the old ontology. By deciding whether the extended ontology is a conservative extension
of the original one, we can check whether such subsumptions exist. Thus, conservative
extensions are a crucial ingredient to the ontology design task of stepwise extension,
where the idea is that the designer repeatedly extends the ontology with notions from
additional parts of the application domain. Note that conservative extensions also play a
core role in the definition of modules in an ontology, see [GHKS07]. Regarding the comon
logical framework established in Deliverable D08, it is important to note that conservative
extensions are concerned with stand-alone ontologies.

In this section, we summarize the results obtained in the papers [GLW06] and
[LWW07]. In Section 9.3, we show that deciding conservative extensions in the basic
description logic ALC is decidable and pinpoint it’s exact computational complexity. In
Section 9.4, we then consider a natural model-theoretic variation of the notion of a con-
servative extension and show that deciding this variation is highly undecidable already
for ALC. In Section 9.5, we consider the more expressive DL ALCQI and show that
conservative extensions (in the original sense) are still decidable and that the complexity
is the same as for ALC. Finally, Section 9.6 contains a proofs that conservative exten-
sions in ALCQIO are undecidable. It is important to note that the latter result implies
undecidability of conservative extensions in the ontology language OWL.

9.2 Preliminaries

It is not difficult to see that T1 ∪ T2 is a conservative extension of T1 iff there exists a
concept C such that C is satisfiable w.r.t. T1, but not w.r.t. T1 ∪ T2. We call such a
concept a witness concept. Thus, deciding whether an extension is conservative amounts
to deciding the existence of a witness concept.

For some applications, it is more natural to consider the following variant of conser-
vative extensions. Let Γ be a signature, i.e., a finite set of concept and role names. Let
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T1 and T2 be TBoxes. Then, T1 ∪ T2 is a conservative extension of T1 w.r.t. Γ if, for all
C1, C2 ∈ ALC(Γ), we have T1 |= C1 ⊑ C2 iff T1 ∪ T2 |= C1 ⊑ C2. This version of con-
servative extensions allows more control by specifying a signature Γ. In particular, the
user can select a signature Γ that he does not want to be compromised by an extension,
instead of always using sig(T1) as in the original version of conservative extensions.

The two kinds of conservative extensions give rise to two reasoning problems:

• Deciding conservative extensions means, given TBoxes T1 and T2, to decide whether
T1 ∪ T2 is a conservative extension of T1

• Deciding relativized conservative extensions means, given TBoxes T1, T2 and a sig-
nature Γ ⊆ sig(T1), to decide whether T1 ∪ T2 is a conservative extension of T1
w.r.t. Γ.

9.3 Conservative Extensions in ALC

We start with stating a basic result about the complexity of deciding conservative exten-
sions in ALC and an upper bound on the length of witness concepts. In the following, we
denote by |C| the length of a concept C. Similarly, the size |T | of a TBox T is defined
as

∑
C⊑D∈T (|C|+ |D|).

Theorem 9.1 It is 2ExpTime-complete to decide relativized and non-relativized conser-
vative extensions in ALC. In both cases, if input TBoxes are T1 and T2 and the extension
is not conservative, then there exists a witness concept C of length at most 3-exponential
in |T1 ∪ T2| that can be computed in time polynomial in |C|.

As we will see later, the upper bound on the length of witness concepts given in Theo-
rem 9.1 is tight. We now refine Theorem 9.1 by distinguishing between the size of the
TBoxes T1 and T2. Such a more fine-grained analysis is rewarding if the sizes of T1 and T2
can be expected to differ substantially. This will usually be the case if an existing TBox
is extended with a set of new GCIs: then, |T2| is small compared to |T1|. In contrast,
when merging two existing TBoxes, then no obvious assumption can be made concerning
the relative size of T1 and T2.

It turns out that, when discriminating the size of T1 and T2, a difference in computa-
tional complexity emerges between deciding non-relativized and relativized conservative
extensions. We first consider the former and show that there exists a decision proce-
dure that is only exponential in the size of T1, but double exponential in the size of T2.
We cannot expect a better bound in the size of T1: it follows from an easy reduction
of satisfiability of ALC concepts w.r.t. TBoxes that deciding conservative extensions is
ExpTime-hard even if T2 is assumed to be constant. We also provide a refined upper
bound for the length of witness concepts by proving that, if T1 ∪ T2 is not a conservative
extension of T1, then one can compute witness concepts of size ‘only’ 2-exponential in the
size of T1, but 3-exponential in the size of T2. A matching lower bound on the size of
witness concepts is established as well.
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Theorem 9.2

(i) There exists a deterministic algorithm for deciding conservative extensions in ALC

whose runtime is bounded by 2p(|T1|)×2p(|T2|), with p a polynomial.

(ii) For all ALC TBoxes T1 and T2, if T1∪T2 is not a conservative extension of T1, then

there exists a witness concept of length at most 22|T1|×2|T2|

.

(iii) There exist families of ALC TBoxes (Tn)n>0 and (T ′
n)n>0, such that, for all n > 0,

– Tn ∪ T ′
n is not a conservative extension of Tn,

– |Tn| ∈ O(n2), |T ′
n| ∈ O(n2), and

– every witness concept for (Tn, T ′
n) is of length at least 2(2n×22n

)−1.

A proof of this theorem can be found in [GLW06]. The algorithm underlying Point (i)
bears some similarity to the algorithm presented in Section 9.5.

We now refine our analysis of relativized conservative extensions. In contrast to the
previous case, we can prove that there exists no decision procedure that is only sin-
gle exponential in the size of T1: even for a fixed TBox T2, the complexity of deciding
whether T1∪T2 is a conservative extension of T1 w.r.t. Γ is 2ExpTime-hard. The proof is
based on the following reduction of non-relativized conservative extensions to relativized
conservativity w.r.t. a fixed extension.

Lemma 9.3 Let T1 and T2 be ALC TBoxes, Γ = sig(T1), and B a concept name not used
in T1 and T2. Denote by T B

2 the TBox resulting from T2 by replacing every implication
C1 ⊑ C2 ∈ T2 with C1 ⊓ B ⊑ C2. Let T3 = {B = ⊤}. Then the following are equivalent,
for every C ∈ ALC(Γ):

• C is satisfiable w.r.t. T1 but not w.r.t. T1 ∪ T2;

• C is satisfiable w.r.t. T1 ∪ T B
2 but not w.r.t. T1 ∪ T B

2 ∪ T3.

It follows that T1 ∪ T2 is a conservative extension of T1 iff T1 ∪ T B
2 ∪ T3 is a conservative

extension of T1 ∪ T B
2 w.r.t. Γ.

Together with Theorem 9.2, Lemma 9.3 allows us to establish the desired 2ExpTime lower
bound. A matching upper bound is obtained from Theorem 9.1. Using Theorem 9.2 and
Lemma 9.3, we can also establish a lower bound on the size of witness concepts that is
triple exponential in the size of T1. This should be contrasted with the upper bound
on witness concepts given in Theorem 9.2 for the case of non-relativized conservative
extensions, which is only double exponential in T1.

Theorem 9.4 Let T ′ be an ALC TBox of the form {B = ⊤}, with B a concept name.
Then

(i) it is 2ExpTime-complete to decide, given an ALC TBox T1 and a signature Γ ⊆
sig(T1), whether T1 ∪ T ′ is a conservative extension of T1 w.r.t. Γ.

c©2007/TONES – January 30, 2007 90/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3

(ii) there exist families of ALC TBoxes (Tn)n>0 and signatures (Γn)n>0, such that, for
all n > 0,

– Tn ∪ T ′ is not a conservative extension of Tn w.r.t. Γn,

– |Tn| ∈ O(n2), and

– every witness concept for (Tn, T ′, Γn) is of length at least 2(2n·22n
)−1.

Again, a proof can be found in [GLW06].

9.4 Model-Conservative Extensions in ALC

In mathematical logic and software specification [Mai97], there are two different kinds
of conservative extensions: one that is based on the consequence relation “|=” and one
that is based on models only . For simplicity, we formulate this second notion only for
non-relativized conservative extensions.

Definition 9.5 [Model Conservative Extension] Let T1 and T2 be TBoxes. We say that
T1 ∪ T2 is a model conservative extension of T1 iff for every model I of T1, there exists
a model of T1 ∪ T2 which can be obtained from I by modifying the interpretation of the
predicates in sig(T2) \ sig(T1) while leaving the predicates in sig(T1) fixed.

To distinguish the two versions of conservative extensions, in this section we call the
original one deductive conservative extension.

The notion of a model conservative extension is more strict than the deductive one:
if T1 ∪ T2 is a model conservative extension of T1, then it is clearly also a deductive
conservative extension of T1, but the converse does not hold. To see the latter, consider
the TBoxes

T1 = {∃r.⊤ ⊓ ∃s.⊤ = ⊤}, T2 = {∃r.A ⊓ ∃s.¬A = ⊤}.

It is not hard to see that T1∪T2 is a deductive conservative extension of T1 if ALC (or even
ALCQI) is the language for witness concepts, but it is not a model conservative extension.
The stronger notion of model conservative extensions is of interest for query answering
modulo ontologies. In this case, one might want to ensure that under the addition of
any ABox A (over the signature of T1) the answers to queries (over the signature of T1)
to T1 ∪ T2 ∪ A coincide with those to T1 ∪ A. This immedialy follows if T1 ∪ T2 is a
model conservative extension of T1, but it does not follow if T1 ∪ T2 is just a deductive
conservative extension of T1.

However, from an algorithmic viewpoint model conservative extensions are a problem-
atic choice: we show that they are highly undecidable even in the basic description logic
ALC (and therefore also in all its extensions). The proof of the following result is by a
reduction from the semantic consequence problem in modal logic.

Theorem 9.6 It is Π1
1-hard to decide whether for two given ALC TBoxes T1 and T2, the

TBox T1 ∪ T2 is a model conservative extension of T1.
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9.5 Conservative Extensions in ALCQI

We give a tight complexity bound for deciding conservative extensions in ALCQI.

Theorem 9.7 It is 2-ExpTime-complete to decide conservative extensions in ALCQI.
In the case that T1∪T2 is not a conservative extension of T1, there exists a witness concept
C of length at most 3-exponential in |T1 ∪ T2| that can be computed in time polynomial
in |C|.

The lower bound can be proved exactly in the same way as the 2-ExpTime lower bound
for conservative extensions in ALC. However, the lower bounds from ALC do not simply
transfer to ALCQI and it is necessary to walk through the proof and check that it
also works for the case of ALCQI. In the following, we concentrate on proving the upper
bound. It is established by devising a 2-ExpTime algorithm that, for convenience, decides
non-conservative extensions.

We start by reminding that ALCQI has the tree model property. More precisely,
a tree interpretation is an interpretation I = (∆I , ·I , <I) equipped with an additional
relation <I ⊆ ∆I × ∆I such that (i) (∆I , <I) is a tree, (ii)

⋃
r∈NR

rI ∪ r−
I

= < ∪ <−1,

and (iii) sI and rI are disjoint for all distinct roles s and r. In ALCQI, every concept C
that is satisfiable w.r.t. a TBox T is satisfiable in a tree model of T , i.e., a model of T
that is a tree interpretation [HST99]. In this section, when talking of an interpretation
or model of a TBox we always mean a tree interpretation.

To develop the algorithm for deciding non-conservative extensions in ALCQI, we
introduce a new kind of witness for non-conservativity. The new witnesses are very similar
to finite tree interpretations and easier to work with than witness concepts. For a signature
Γ, let a literal type S for Γ be a subset of lit(Γ) := {A,¬A | A ∈ Γ ∩ NC} such that for
each A ∈ Γ ∩ NC, A ∈ S iff ¬A /∈ S. A Γ-role is a role r such that r or r− is in Γ.

Definition 9.8 [Γ-tree] A Γ-tree T = (W, <, L, O) is a finite intransitive tree (W, <) such
that each node w ∈W is labeled by a literal type L(w) for Γ, each edge (w, w′) is labeled
by a Γ-role L(w, w′), and O ⊆W is a set of leafs of (W, <).

Essentially, a Γ-tree is a finite tree interpretation equipped with an additional unary
predicate O denoting a subset of the leafs. The following definition provides a way to
relate Γ-trees and actual interpretations.

Definition 9.9 [Γ-embedding] Let T = (W, <, L, O) be a Γ-tree with root w ∈ W , and
I an interpretation with root d ∈ ∆I . A Γ-embedding f : T→ I is an injection from W
to ∆I such that

• f(w) = d,

• L(v, v′) = r iff f(v)rIf(v′), for all v, v′ ∈W and Γ-roles r,

• C ∈ L(v) iff f(v) ∈ CI , for all v ∈W and C ∈ lit(Γ),

• if v 6∈ O, then every d′ ∈ ∆I with f(v)rId′ for some Γ-role r is in the range of f .

T is called Γ-embeddable into I if there is a Γ-embedding f : T→ I.
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The definition illustrates that Γ-trees represent a (finite) initial part of (potentially infi-
nite) tree interpretations. This explains the predicate O of Γ-trees: O marks those leafs
in the Γ-tree that are not necessarily leafs in the tree interpretation I that we embed into.
We can now establish Γ-trees as witnesses for non-conservativity.

Lemma 9.10 T1 ∪ T2 is not a conservative extension of T1 w.r.t. Γ iff there exists a
Γ-tree T = (W, <, L, O) which is Γ-embeddable into a model of T1 but not into any model
of T1 ∪ T2.

The general idea behind the algorithm is as follows: by Lemma 9.10, to decide whether
T1 ∪ T2 is not a conservative extension of T1, it suffices to decide whether there exists
a Γ-tree that is Γ-embeddable into a model of T1, but not into any model of T1 ∪ T2.
This is what our algorithm will do. Alas, we conjecture that there are cases in which the
smallest such tree is 3-exponential in |T1 ∪ T2|, and therefore a 2-exponential algorithm
cannot simply try to construct such a tree. Instead, we check the existence of the Γ-
tree by searching for certain witnesses for the existence of such a tree. Before we can
introduce these witnesses (which should not be confused with Γ-trees as witnesses for
non-conservativity), we need to introduce the notion of a type.

Definition 9.11 [Type] Let T be a TBox. We use cl(T ) to denote the smallest set that
contains all concepts in T and is closed under single negations and under subconcepts. A
T -type t is a subset of cl(T ) such that

• ¬C ∈ t iff C 6∈ t, for all ¬C ∈ cl(T );

• C1 ⊓ C2 ∈ t iff C1 ∈ t and C2 ∈ t, for all C1 ⊓ C2 ∈ cl(T ).

Given an interpretation I and u ∈ ∆I , the set

tTI (u) = {C ∈ cl(T ) | u ∈ CI}

is a T -type. In what follows, we will not always distinguish between the type t and the
conjunction of all members of t. We now introduce a witness for the existence of a Γ-tree
that is Γ-embeddable into a model of T1, but not into any model of T1 ∪ T2. To avoid
writing sub- and superscripts, from now on we assume the input T1, T2, and Γ to be fixed.

Definition 9.12 [Root pair, Internal pair] A root pair (t, U) consists of a T1-type t and
a set U of T1 ∪ T2-types. An internal pair (t′ →r t, U) consists of a Γ-role r, T1-types t′

and t, and a function U mapping each T1 ∪ T2-type to a set of T1 ∪ T2-types.

Intuitively, each (root or internal) pair encodes relevant information about possible em-
beddings of a Γ-tree into models of T1 and T1 ∪ T2. This is made precise by the notion of
realizability.

Definition 9.13 [Realizable root pair] Let T = (W, <, L, O) be a Γ-tree. A root pair
(t, U) is realized by T iff

1. there exist a model I of T1 with root d ∈ tI and a Γ-embedding f : T→ I;

2. for every T1 ∪T2-type s, we have s ∈ U iff there exist a model I of T1 ∪T2 with root
d ∈ sI and a Γ-embedding f : T→ I.
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While root pairs encode information about possible embeddings of a Γ-tree into models
of T1 and T1 ∪ T2, internal pairs encode information about possible embeddings of a Γ-
tree into rooted submodels of models of T1 and T1 ∪ T2. In the following, if I is a (tree)
interpretation and d ∈ ∆I , we write Id to denote the sub-tree interpretation of I rooted
at d.

Definition 9.14 [Realizable internal pair] Let T = (W, <, L, O) be a Γ-tree. An internal
pair (t′ →r t, U) is realized by T iff

• there exist a model I of T1 and d′, d ∈ ∆I such that d′ ∈ (t′)I , d′rId, d ∈ tI , and
there is a Γ-embedding f : T→ Id;

• for all T1 ∪ T2-types s, s′, we have s′ ∈ U(s) iff there exist a model I of T1 ∪ T2
and d′, d ∈ ∆I such that d′ ∈ (s′)I , d′rId, d ∈ sI , and there is a Γ-embedding
f : T→ Id.

A (root or internal) pair is realizable if there exists a Γ-tree T which realizes it.

Observe that internal pairs store information not only about the element d ∈ ∆I to which
the root of T is mapped, but also comprise the type t′ of the predecessor d′ of d in I
and the (unique!) role r which connects d′ and d. This is necessary due to the presence
of inverse roles and number restrictions and bears some similarity to the double blocking
technique in tableau algorithms; see [HST99]. Also note that the U -component of internal
pairs is a function rather than a set because, intuitively, the possible types of d in models
of T1 ∪ T2 depend on the type of the predecessor d′ in such models.

Let us now describe the algorithm. By Lemma 9.10 and definition of realizability, there
exists a realizable root pair of the form (t, ∅) iff T1 ∪ T2 is not a conservative extension of
T1 w.r.t. Γ. The algorithm for deciding non-conservative extensions searches for such a
root pair. The easiest case is that a root pair (t, ∅) is realized by a singleton Γ-tree, i.e.,
a Γ-tree that consists of only a single node. This special case is tested first. If the test
is not successful, we must check whether there is a root pair (t, ∅) that is realized by a
non-singleton tree T = (W, <, L, O). Assume that this is the case and that the root of
T is w. Then each subtree of T rooted at a succesor node w′ of w realizes an internal
pair (t̂′ →r̂ t̂, Û) with t̂′ = t and r̂ = L(w, w′). Intuitively, this means that we can check
realization of the root pair (t, ∅) in T based on the realization of internal pairs in trees
of strictly smaller height. Similarly, we can check the realizability of internal pairs in
a Γ-tree based on the realizability of internal pairs in Γ-trees of strictly smaller height.
Based on these observations, our algorithm repeatedly generates internal pairs that are
realized by Γ-trees of larger and larger height until all such pairs are generated. It then
checks whether there exists a root pair (t, ∅) that is realizable based on the generated
internal pairs. The following definition formalizes one step of the algorithm in which root
pairs or new internal pairs are generated from an existing set of internal pairs.

In the following, if T is a Γ-tree and w ∈ W , we write Tw to denote the sub-tree of T

rooted at w.

Definition 9.15 [One step] Let R be a set of internal pairs. A root pair (t, U) (resp.
internal pair (t′ →r t, U)) can be obtained in one step from R if there exists a Γ-tree
T = (W, <, L, O) with root w such that
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Suppose TBoxes T1 and T2, and a signature Γ ⊆ sig(T1) are given.

1. Determine the set Rr
0 of root pairs realized by singleton Γ-trees. If Rr

0 = ∅, then
reject the input (because T1 is not satisfied in any model). If Rr

0 contains a root
pair (t, U) such that U = ∅, then accept. Else,

2. Determine the set R0 of internal pairs realizable by singleton Γ-trees. If R0 = ∅,
then reject the input. Else,

3. Generate the sequence R1,R2, . . . of sets of internal pairs such that

Ri+1 = Ri ∪R
′
i,

where R′
i is the set internal pairs which can be obtained from some non-empty

subset of Ri of cardinality not exceeding mT1,T2 in one step. This is done until
Ri = Ri ∪ R′

i. Then accept the input if there exists a root pair (t, U) with
U = ∅ which can be obtained in one step from some subset of Ri of cardinality
not exceeding mT1,T2. If no such root pair exists, reject the input.

Figure 13: Algorithm for non-conservativeness w.r.t. Γ.

• T realizes (t, U) (resp. (t′ →r t, U));

• for all w′ ∈ W with w < w′, there exists an internal pair p = (t̂′ →r̂ t̂, Û) ∈ R such
that t̂′ = t, r̂ = L(w, w′), and p is realized by Tw′.

The details of our algorithm are given in Figure 13, where

mT1,T2 := 2× |T1 ∪ T2| × 23×|T1∪T2|.

Intuitively, considering only a subset of Ri of cardinality mT1,T2 means that we limit our
attention to Γ-trees of out-degree mT1,T2. This is justified by the following lemma.

Lemma 9.16 If T1 ∪ T2 is not a conservative extension of T1 w.r.t. Γ, then there exists
a root pair (t, ∅) realized by a Γ-tree T of outdegree at most mT1,T2.

It remains to be shown that each step of the algorithm can be carried out effectively and
that the algorihm yields the 2-ExpTime upper bound stated in Theorem 9.7. We start
with the former. The proof of the following lemma relies on the fact that satisfiability in
ALCQI w.r.t. TBoxes can be decided in ExpTime [Tob01].

Lemma 9.17 It can be checked in 2-exponential time (in the size of T1, T2) whether a
(root or internal) pair can be obtained in one step from a set R of realizable internal pairs
with |R| ≤ mT1,T2.

The number of internal pairs is bounded double exponentially in the size of |T1 ∪ T2|.
Therefore, the third step of the algorithm stabilizes after at most double exponentially
many rounds. Together with Lemma 9.17, it follows that our algorithm is a 2-ExpTime
one.

Theorem 9.18 The algorithm in Figure 13 accepts input T1, T2, Γ iff T1 ∪ T2 is not a
conservative extension of T1 w.r.t. Γ. It runs in 2-exponential time.
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To show the upper bound on the size of witness concepts stated in Theorem 9.7, we
proceed as follows: first, we observe that if the algorithm finds a realizable root pair
(t, ∅), then this pair is realized by a Γ-tree of at most double exponential depth and single
exponential outdegree. Second, we show how to convert such a Γ-tree into a witness
concept of three-exponential size.

9.6 Conservative Extensions in ALCQIO

We show that conservative extensions are undecidable in ALCQIO. The proof is by a
reduction of the following undecidable tiling problem.

Definition 9.19 A domino system D = (T, H, V, R, L, T, B) consists of a finite set T of
tiles, horizontal and vertical matching relations H, V ⊆ T × T , and sets R, L, T, B ⊆ T
of right tiles, left tiles, top tiles, and bottom tiles. A solution to D is a triple (n, m, τ)
where n, m ≥ 0 and τ : {0, . . . , n− 1}×{0, . . . , m− 1} → T such that the following hold:

1. (τ(i, j), τ(i + 1, j)) ∈ H , for all i < n and j ≤ m;

2. (τ(i, j), τ(i, j + 1)) ∈ V , for all i ≤ n and j < m;

3. τ(0, j) ∈ L and τ(n, j) ∈ R, for all j ≤ m;

4. τ(i, 0) ∈ B and τ(i, m) ∈ T , for all i ≤ n.

Using proof methods from [vEB97], it is easy to show that it is undecidable whether a
given domino system D has a solution. We show how to convert a domino system D into
TBoxes T1 and T2 such that D has a solution iff T1 ∪T2 is not a conservative extension of
T1. In particular, models of witness concepts will correspond to solutions of D.

Let D = (T, H, V, R, L, T, B) be a domino system. The TBox T1 uses the following
signature: an indidual name o, role names rx and ry, concept names top, bottom, left, and
right and each element of T as a concept name. The TBox T1 contains the following:

• The roles rx, ry, and their inverses are functional:

⊤ ⊑ (6 1 r ⊤), for r ∈ {rx, ry, r
−
x , r−y }

• Every position in the n×m grid is labeled with exactly one tile and the matching
conditions are satisfied:

⊤ ⊑ ⊔
t∈T

(t ⊓ ⊓
t′∈T, t′ 6=t

¬t′)

⊤ ⊑ ⊓
t∈T

(t→ ( ⊔
(t,t′)∈H

∀rx.t
′ ⊓ ⊔

(t,t′)∈V
∀ry.t

′))

• The concepts left, right, top, bottom mark the boundaries of the grid in the expected
way:

right ⊑ ¬∃rx.⊤⊓ ∀ry.right ⊓ ∀r−1
y .right

¬right ⊑ ∃rx.⊤

and similarly for left, top, and bottom.
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• The individual name o marks the origin:

{o} ⊑ left ⊓ bottom.

The TBox T2 introduces two new concept names Q and P . It contains the following two
concept inclusions:

{o} ⊑ Q ⊑ ∃rx.Q ⊔ ∃ry.Q ⊔ (∃rx.∃ry.P ⊓ ∃ry∃rx.¬P )

The idea behind this definition of T2 is to enforce that models I of witness concepts are
such that (i) there is no infinite outgoing rx/ry-path starting at oI and (ii) rx and ry

commute in the connected part of I rooted at oI . This is achieved as follows: if (i) is
violated, then we can find an assignment of Q in I that satisfies T2. Similarly, if (ii) is
violated, then we can find an assignment of (Q and) P in I that satisfies T2.

It can be checked that, as intended, D has a solution iff T1 ∪ T2 is not a conservative
extension of T1. Here, we only show how to construct a witness concept in the case that
D has a solution. Such a witness concept C has to ensure that for all models I of C and
T1, the connected part of I rooted at oI is isomorphic to the n×m-grid.

For every word w ∈ {rx, ry}∗, denote by ←−w the word that is obtained by reversing w
and then adding ·− to each symbol. Let |w|r denote the number of occurrences of the
symbol r in w. Now, C is the conjunction of

{o} ⊓ ∀rn
x .right ⊓ ∀rm

y .top

and for every w ∈ {rx, ry}∗ such that |w|rx
< n and |w|ry

< m, the concept

∃(w · rxryr
−
x r−y ·

←−w ).{o},

where ∃w.D abbreviates ∃r1. · · · ∃rk.D if w = r1 · · · rk. It is readily checked that C
enforces an n×m-grid as required.

Theorem 9.20 In ALCQIO, conservative extensions are undecidable.

Note that the theorem applies even to the case where Γ = sig(T1) and we allow (6 1 r ⊤)
as the only form of number restriction.

9.7 Related Work

Conservative extensions in DLs to support ontology design and integration have only only
been considered in the two papers that we have summarized in the preceeding sections and
in the TONES publications [GHKS07]. In the latter, conservative extensions are used as
a basis for different notions of modularity. Since the complexity of deciding conservative
extensions is relatively high, it remains as important future work to understand whether
the identified algorithms can be implemented in an efficient way to be useful in practice.
If this is not the case, one may either try to identify more feasible algorithms or try to
develop a more pragmatic approach. The syntactic restrictions presented in [GHKS07]
are a promising step in this direction. It may also be interesting to analyze conserva-
tive extensions for other logics such as the dynamic epistemic logics analyzed within the
TONES paper [Lut06].
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10 FCA-based Completion of TBoxes

10.1 Introduction

In Section 2, DLs were introduced and it was mentioned that the DL-based ontology
language OWL is standardized as the ontology language of the web. As a consequence
of this standardization, many ontology editors now support OWL [BHGS01, KFNM04,
OVSM04, KPS+05], and ontologies written in OWL are employed in more and more
applications. As the size of such ontologies grows, tools that support improving the
quality of large DL-based ontologies become more important. The tools available until
now use DL reasoning to detect inconsistencies and to infer consequences. There are
also first approaches that allow to pinpoint the reasons for inconsistencies and for certain
consequences, and that help the ontology engineer to resolve inconsistencies and to remove
unwanted consequences [SC03b, Sch05a, Sch05b, PSK05, KPSCG06]. These approaches
address the quality dimension of soundness of an ontology, both within itself (consistency)
and w.r.t. the intended application domain (no unwanted consequences). Here, we are
concerned with a different quality dimension: completeness. We want to develop tools that
support the ontology engineer in checking whether an ontology contains all the relevant
information about the application domain, and to extend the ontology appropriately if this
is not the case. Given an application domain and a DL knowledge base (KB) describing
it, we can ask whether the KB contains all the relevant information about the domain:

• Are all the relevant constraints that hold between concepts in the domain captured
by the TBox?

• Are all the relevant individuals existing in the domain represented in the ABox?

Obviously, completeness in this sense is a very relevant issue for structuring the ontology.
As an example, consider the OWL ontology for human protein phosphatases that has

been described and used in [WBH+05]. This ontology was developed based on information
from peer-reviewed publications. The human protein phosphatase family has been well
characterised experimentally, and detailed knowledge about different classes of such pro-
teins is available. This knowledge is represented in the terminological part of the ontology.
Moreover, a large set of human phosphatases has been identified and documented by ex-
pert biologists. These are described as individuals in the assertional part of the ontology.
One can now ask whether the information about protein phosphatases contained in this
ontology is complete. Are all the relationships that hold among the introduced classes
of phosphatases captured by the constraints in the TBox, or are there relationships that
hold in the domain, but do not follow from the TBox? Are all possible kinds of human
protein phosphatases represented by individuals in the ABox, or are there phosphatases
that have not yet been included in the ontology or even not yet been identified?

Such questions cannot be answered by an automated tool alone. Clearly, to check
whether a certain relationship between concepts, which does not follow from the TBox,
holds in the domain, one needs to ask a domain expert, and the same is true for questions
regarding the existence of individuals not described in the ABox. The rôle of the auto-
mated tool is to ensure that the expert is asked as few questions as possible; in particular,
she should not be asked trivial questions,i.e., questions that could actually be answered
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based on the represented knowledge. In the above example, answering a non-trivial ques-
tion regarding human protein phosphatases may require the biologist to study the relevant
literature, query existing protein databases, or even to carry out new experiments. Thus,
new biological knowledge may be acquired by the expert in the process.

Attribute exploration [Gan84] is an approach developed in Formal Concept Analysis
(FCA) [GW99] that can be used to acquire knowledge about an application domain by
querying an expert. To answer a query whether a certain relationship holds, the expert
must either confirm the relationship (by using results from the literature or providing a
new proof for this fact), or give a counterexample (again, by either finding one in the
literature or constructing a new one).

Although this sounds very similar to what is needed in our context, we cannot directly
use this approach. The main reason is the open-world semantics of description logic
knowledge bases. Consider an individual i from the ABox and a concept C occurring in
the TBox. If we cannot deduce from the TBox and ABox that i is an instance of C, then we
do not assume that i does not belong to C. Instead,we only accept this as a consequence
if the TBox and ABox imply that i is an instance of ¬C. Thus, our knowledge about the
relationships between individuals and concepts is incomplete: if TBox and ABox imply
neither C(i) nor ¬C(i), then we do not know the relationship between i and C. In contrast,
classical FCA and attribute exploration assume that the knowledge about individuals is
complete: the basic datastructure is that of a formal context, i.e., a crosstable between
individuals and properties. A cross says that the property holds, and the absence of a
cross is interpreted as saying that the property does not hold.

In the next section, we first briefly review some notions and results from FCA. Then,
we develop our variant of FCA that can deal with partial contexts, and finally describe
an attribute exploration procedure that works with partial contexts. In Section 10.5, we
specialize our new attribute exploration procedure to the case of partial contexts induced
by DL knowledge bases. For proofs of the results please see the technical report [BGSS06].
This work is going to be published as [BGSS07].

10.2 Formal Concept Analysis

Formal Concept Analysis (FCA) [GW99] is a field of applied mathematics that is based on
a lattice-theoretic formalization of the notions of a concept and of a hierarchy of concepts.
It is supposed to facilitate the use of mathematical reasoning for conceptual data analysis
and knowledge processing. In FCA, one represents data in the form of a formal context,
which in its simplest form is a way of specifying which attributes (properties) are satisfied
by which objects (individuals). Formally, a formal context is defined as follows:

Definition 10.1 A formal context is a triple K = (G, M, I), where G is a set of objects,
M is a set of attributes, and I ⊆ G×M is a relation that associates each object g with
the attributes satisfied by g. In order to express that an object g is in relation I with an
attribute m, we write gIm.

A formal context is usually visualised as a crosstable, where the rows represent the objects,
and the columns represent the attributes. A cross in column m of row g means that object
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g has attribute m, and the absence of a cross means that g does not have attribute m.
Here, we will always assume the set of attributes M to be finite.

Let K = (G, M, I) be a formal context. For a set of objects A ⊆ G, the intent A′ of
A is the set of attributes that are satisfied by all objects in A, i.e.,

A′ := {m ∈M | ∀g ∈ A: gIm}.

Similarly, for a set of attributes B ⊆ M , the extent B′ of B is the set of objects that
satisfy all attributes in B, i.e.,

B′ := {g ∈ G | ∀m ∈ B: gIm}.

It is easy to see that, for A1 ⊆ A2 ⊆ G (resp. B1 ⊆ B2 ⊆M), we have

• A′
2 ⊆ A′

1 (resp. B′
2 ⊆ B′

1),

• A1 ⊆ A′′
1 and A′

1 = A′′′
1 (resp. B1 ⊆ B′′

1 and B′
1 = B′′′

1 ).

As an easy consequence one obtains that the ·′′ operation is a closure operator on both G
and M .

Definition 10.2 Let K = (G, M, I) be a formal context. A formal concept of K is a pair
(A, B) where A ⊆ G, B ⊆ M such that A′ = B and B′ = A. We call A the extent , and
B the intent of (A, B). If (A1, B1) and (A2, B2) are two formal concepts of a context,
and A1 ⊆ A2 (equivalently B2 ⊆ B1), we say that (A1, B1) is a subconcept of (A2, B2),
and write (A1, B1) ≤ (A2, B2). The relation ≤ is called the hierarchical order of formal
concepts.

The set of all formal concepts of a context K = (G, M, I) ordered with the hierarchical
order form a complete lattice, called the concept lattice of K and it is denoted by B(G, M, I
). The concept lattice B(G, M, I) is a complete lattice in which infimum and supremum
are given by: ∧

t∈T (At, Bt) =
(⋂

t∈T At,
(⋃

t∈T Bt

)′′)
,

∨
t∈T (At, Bt) =

((⋃
t∈T At

)′′
,
⋂

t∈T Bt

)
.

Given a formal context, one common method to analyse it is to find (a base of) the
implications between the attributes of this context. Implications between attributes are
constraints between attributes that hold in the given context. They are statements of the
form

“Every object that satisfies the attributes mi1, . . . , mik also satisfies the at-
tributes mj1, . . . , mjℓ.”

Formally, an implication between attributes is defined as follows:

Definition 10.3 Let K = (G, M, I) be a formal context. An implication between the
attributes in M is a pair of sets L, R ⊆ M , usually written as L → R. An implication
L → R holds in K if every object of K that has all of the attributes in L also has all of
the attributes in R, i.e., if L′ ⊆ R′. We denote the set of implications that hold in K by
Imp(K).
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It is easy to see that an implication L→ R holds in K iff R is contained in the ·′′-closure
of L, i.e., if R ⊆ L′′.

A set of implications induces its own closure operator.

Definition 10.4 Let L be a set of implications. For a set P ⊆ M , the implicational
closure of P with respect to L, denoted by L(P ), is the smallest subset Q of M such that

• P ⊆ Q, and

• Li → Ri ∈ L and Li ⊆ Q imply Ri ⊆ Q.

It is easy to see that L(·) is indeed a closure operator.
From the viewpoint of logic, computing the implication closure of a set of attributes

is just computing consequences in propositional Horn logic. For this reason, the implica-
tional closure L(B) of a set of attributes B can be computed in time linear in the size
of L and B using methods for deciding satisfiability of sets of propositional Horn clauses
[DG84]. Alternatively, implications can be seen as functional dependencies in relational
databases, and thus the linearity result can also be obtained by using methods for deriving
new functional dependencies from given ones [Mai83].

Definition 10.5 The implication L → R is said to follow from a set J of implications
if R ⊆ J (L). The set of implications J is called complete for a set of implications L if
every implication in L follows from J . It is called sound for L if every implication that
follows from J is contained in L. A set of implications J is called a base for a set of
implications L if it is both sound and complete for L, and no strict subset of J satisfies
this property.

If J is sound and complete for Imp(K), then the two closure operators that we have
introduced until now coincide, i.e., B′′ = J (B) for all B ⊆ M . Consequently, given a
base J for Imp(K), any question of the form “B1 → B2 ∈ Imp(K)?” can be answered
in time linear in the size of J ∪ {B1 → B2} since it is equivalent to asking whether
B2 ⊆ B′′

1 = J (B1).
In many applications, one needs to classify a large (or even infinite) set of objects

with respect to a relatively small set of attributes. Moreover, it is often the case that
the formal context is not given explicitly as a crosstable, but it is rather “known” to a
domain expert. In such cases, Ganter’s interactive knowledge acquisition method attribute
exploration [Gan84] has proved to be a useful method to efficiently capture the expert’s
knowledge. By asking implication questions to a domain expert, the method computes
a base for Imp(K) and a subcontext K′ of the K such that Imp(K′) = Imp(K). For
each implication question, the expert either says that it holds in K, in which case the
implication is added to the base, or the expert gives a counterexample from K, which is
then added to K′.

In order to produce a base for Imp(K), one could, of course, enumerate all possible
implications, and have the expert decide for each of them whether it holds in K or not.
Obviously, this would be very inefficient, and produce all of Imp(K) rather than a small
base for this set. The main idea underlying attribute exploration (see Algorithm 1) is that
one can restrict the attention to implications having a left-hand side that is closed under
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the implications of the context, and whose right-hand side is obtained from the left-hand
side by applying the ·′′ closure operator. The left-hand sides are enumerated in a certain
order, called the lectic order, which ensures that it is sufficient to build the implication
closure w.r.t. the already computed implications. In addition, the ·′′ operator is computed
w.r.t. the already computed subcontext rather than the full context K.

Definition 10.6 Assume that M = {m1, . . . , mn} and fix some linear order m1 < m2 <
· · ·mn on M . This order imposes a linear order on the power set of M , called the lectic
order, which we also denote by <: For mi ∈M and A, B ⊆M we define

A <i B iff mi ∈ B, mi 6∈ A and ∀j < i. (mj ∈ A⇔ mj ∈ B).

The order < is the union of these orders <i, i.e.,

A < B iff A <i B for some i ∈M.

Obviously, < extends the strict subset order, and thus ∅ is the smallest and M the largest
set w.r.t. <.

The following proposition shows how one can enumerate all closed sets w.r.t. a given
closure operator in the lectic order.

Proposition 10.7 Given a closure operator ϕ on M and a ϕ-closed set A ( M , the next
ϕ-closed set following A in the lectic order is

ϕ((A ∩ {m1, . . . , mj−1}) ∪ {mj})

where j is maximal such that A <j ϕ((A ∩ {m1, . . . , mj−1}) ∪ {mj}.

Based on this observation, the attribute exploration algorithm is described in Algo-
rithm 1 below. It can be shown that Algorithm 1 always terminates, and that the set of
implications Li obtained after termination is a base for Imp(K). More precisely, one can
show that it is the so-called Duquenne-Guigues base of the context, which contains a min-
imal number of implications. This base can be described independently of the algorithm,
based on the notion of a pseudo-intent of the context.

Definition 10.8 A set P ⊆ M is called a pseudo-intent of the context K = (G, M, I) if
P 6= P ′′ and Q′′ ⊆ P holds for all pseudo-intents Q ( P .

The Duquenne-Guigues base of K consists of implications that have the pseudo-intents
of K as left-hand sides.

Definition 10.9 The Duquenne-Guigues base of the context K consists of the implica-
tions P → P ′′ \ P, where P ranges over all pseudo-intents of K.
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Algorithm 1 Attribute exploration

1: Initialization
2: K0 {initial formal context, possibly empty set of objects}
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: i := 0
6: while Pi 6= M do
7: Compute P

′′

i w.r.t. Ki

8: if Pi 6= P
′′

i then
9: Ask the expert if Pi → P

′′

i holds
10: if yes then
11: Ki+1 := Ki

12: Li+1 := Li ∪ {Pi → P
′′

i \ Pi}
13: Pi+1 := Li+1((Pi ∩ {m1, . . . , mj−1})∪ {mj}) for the max. j that satisfies Pi <j

Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj})
14: else
15: Get an object o of K from the expert s.t: Pi ⊆ o′ a nd P

′′

i 6⊆ o′

16: Ki+1 := Ki ∪ {o}
17: Pi+1 := Pi

18: Li+1 := Li

19: end if
20: else
21: Ki+1 := Ki

22: Li+1 := Li

23: Pi+1 := Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj}) for the max. j that satisfies Pi <j

Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj})
24: end if
25: i := i + 1
26: end while

10.3 Partial contexts

The goal of this section is to extend the classical approach to FCA described above to the
case of objects that have only a partial description in the sense that, for some attributes,
it is not known whether they are satisfied by the object or not. As above, we assume that
we have a finite set M of attributes and a (possibly infinite) set of objects.

Definition 10.10 A partial object description (pod) is a tuple (A, S) where A, S ⊆ M
are such that A∩ S = ∅. We call such a pod a full object description (fod) if A∪ S = M .
A set of pods is called a partial context and a set of fods a full context.

Note that the notion of a full context introduced in this definition coincides with the
notion of a formal context introduced in the previous section: a set of fods K corresponds
to the formal context KK := (K, M, I), where (A, S)Im iff m ∈ A for all (A, S) ∈ K.

A partial context can be extended by either adding new pods or by extending existing
pods.
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Definition 10.11 We say that the pod (A′, S ′) extends the pod (A, S), and write this
as (A, S) ≤ (A′, S ′), if A ⊆ A′ and S ⊆ S ′. Similarly, we say that the partial context K′

extends the partial context K, and write this as K ≤ K′, if every pod in K is extended
by some pod in K′. If K is a full context and K ≤ K, then K is called a realizer of K. If
(A, S) is a fod and (A, S) ≤ (A, S), then we also say that (A, S) realizes (A, S).

Next, we extend the definition of the implications of a formal context to the case of
partial contexts.

Definition 10.12 Let L, R ⊆ M . The implication L → R is refuted by the pod (A, S)
if L ⊆ A and R ∩ S 6= ∅. It is refuted by the partial context K if it is refuted by at least
one element of K. The set of implications that are not refuted by a given partial context
K is denoted by Imp(K). The set of all fods that do not refute a given set of implications
L is denoted by Mod(L).

If (A, S) is a fod and L→ R an implication, then (A, S) does not refute L→ R iff L ⊆ A
implies R∩ S = ∅ iff L ⊆ A implies R ⊆ M \ S = A. Thus, the implication L→ R is not
refuted by the full context K iff it holds in the corresponding formal context KK.

The following simple facts regarding the connection between Imp(·), Mod(·), and
the consequence operator for implications will be employed later on without explicitly
mentioning their application:

• If K is a full context and L a set of implications, then K ⊆ Mod(L) iff L ⊆ Imp(K).

• If K is a partial context and L a set of implications, then L ⊆ Imp(K) implies that
every implication that follows from L belongs to Imp(K).

The following is a trivial fact regarding the connection between partial contexts and
the implications they do not refute.

Proposition 10.13 For a given set P ⊆M and a partial context K,

K(P ) := M \
⋃
{S | (A, S) ∈ K, P ⊆ A}

is the largest subset of M such that P → K(P ) is not refuted by K.

The following facts are immediate consequences of the definition of K(·):

• If P ⊆ Q, then K(P ) ⊆ K(Q).

• If K ≤ K′, then K′(P ) ⊆ K(P ).

For a full context K, the operator K(·) coincides with the ·′′ operator of the corre-
sponding formal context KK. In fact, if L is a base for Imp(KK), then we have m ∈ P ′′

iff m ∈ L(P ) iff P → {m} follows from L iff P → {m} holds in KK iff P → {m} is not
refuted by K iff m ∈ K(P ).

The following proposition connects refutation by a partial context to refutation by the
realizers of this partial context.
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Proposition 10.14 Let K be a partial context. An implication is refuted by K iff it is
refuted by all realizers of K.

Note that the if-direction of this proposition need not hold if we consider a set of
implications rather than a single implication. For example, consider the implications
{a, b} → {c}, {a} → {b}. The partial context that consists of the single pod ({a}, {c})
does not refute any of these two implications, but each realizer of this partial context
refutes one of them.

In the proof of the only-if-direction, we did not make use of the fact that K is a full
context. Thus, this direction also holds for partial contexts.

Lemma 10.15 If K,K′ are partial contexts such that K ≤ K′, then every implication
refuted by K is also refuted by K′.

10.4 Attribute exploration with partial contexts

In contrast to existing work on extending FCA to the case of partial knowledge [BH00,
Hol04a, Hol04b, BH05], we do not assume that the expert has only partial knowledge
and thus cannot answer all implication questions. In principle, our expert is assumed
to have access to a full context K and thus can answer all implication questions w.r.t.
K. 8 What is partial is the subcontext that the attribute exploration algorithm works
with. The reason is that the initial context may be partial, and the same is true for the
counterexamples that the experts provides for implications that do not hold in K.

More formally, we consider the following setting. We are given an initial (possibly
empty) partial context K, an initially empty set of implications L, and a full context K
that is a realizer of K. The expert answers implication questions “L → R?” w.r.t. the
full context K. More precisely, if the answer is “yes,” then K does not refute L→ R (and
thus L → R holds in the corresponding formal context KK). The implication L → R
is then added to L. Otherwise, the expert extends the current context K such that the
extended context refutes L→ R and still has K as a realizer. Consequently, the following
invariant will be satisfied by K,K,L:

K ≤ K ⊆ Mod(L).

Our aim is to enrich K and L such that eventually L is not only sound, but also complete
for Imp(K), and K refutes all other implications (i.e., all the implications refuted by K).
As in the classical case, we want to do this by asking as few as possible questions to the
expert.

Definition 10.16 Let L be a set of implications and K a partial context. An implication
is called undecided w.r.t. K and L if it neither follows from L nor is refuted by K. It is
decided w.r.t. K and L if it is not undecided w.r.t. K and L.

In principle, our attribute exploration algorithm tries to decide all undecided impli-
cations by either adding the implication to L or extending K such that it refutes the
implication. If all implications are decided, then our goal is achieved.

8though finding these answers may involve literature study, or even proving new mathematical theo-
rems or carrying out new experiments.
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Proposition 10.17 Assume that K ≤ K ⊆ Mod(L) and that all implications are decided
w.r.t. K and L. Then L is complete for Imp(K) and K refutes all implications not
belonging to Imp(K).

How can we find the undecided implications? The following proposition motivates
why it is sufficient to consider implications whose left-hand sides are L-closed. It is an
immediate consequence of the fact that L(·) is a closure operator, and thus idempotent.

Proposition 10.18 Let L be a set of implications and L → R an implication. Then,
L→ R follows from L iff L(L)→ R follows from L.

Given an L-closed set L as left-hand side, what kind of right-hand sides should we
consider? Obviously, we need not consider right-hand sides R for which the implication
L→ R is refuted by K: such implications are already decided. By Proposition 10.13, the
largest right-hand side R such that L→ R is not refuted by K is R = K(L). It is actually
enough to consider just this right-hand side. In fact, once we have decided L→ K(L) (by
either extending K such that it refutes the implication or adding the implication to L),
all implications L→ R′ with R′ ⊆ K(L) are also decided.

In order to enumerate all left-hand sides, we again use the lectic order and the proce-
dure derived from Proposition 10.7 for enumerating all L-closed sets w.r.t. this order.

Until now, we have talked as if there was a fixed set of implications L and a fixed
partial context K to work with. In reality, however, both L and K are changed during
the run of our procedure. We start with an empty set of implications and an initial
partial context, and the procedure can extend both. The following proposition shows
that the left-hand sides of the previously added implications are also closed with respect
to the extended set of implications. This is due to the fact that the left-hand sides are
enumerated in lectic order.

Proposition 10.19 Let L be a set of implications and P1 < . . . < Pn the lectically first n
L-closed sets. If L is extended with L→ R s.t. L is L-closed and Pn < L, then P1, . . . , Pn

are still the lectically first n closed sets with respect to the extended set of implications.

If an implication has been added because the expert has stated that it holds in K, then
we can extend the current context K by applying the implications to the first component
of every pod in K. To be more precise, for a partial context K and a set of implications
L we define

L(K) := {(L(A), S) | (A, S) ∈ K}.

The following is a simple consequence of this definition.

Proposition 10.20 Let K ≤ K be a partial and a full context, respectively, and let L
be a set of implications such that L ⊆ Imp(K). Then L(K) is a partial context and
K ≤ L(K) ≤ K.

Going from K to L(K) is actually only one way to extend the current context based
on the already computed implications. For example, if we have the pod ({ℓ}, {n}) and
the implication {ℓ, m} → {n} is not refuted by K, then we know that m must belong
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to the second component of every fod realizing ({ℓ}, {n}). Consequently, we can extend
({ℓ}, {n}) to ({ℓ}, {m, n}). To allow also for this and possible other ways of extending
the partial context, the formulation of the algorithm just says that, in case an implication
is added, the partial context can also be extended.

Whenever an implication is not accepted by the expert, K will be extended to a context
that refutes the implication and still has K as a realizer. The following proposition shows
that the right-hand sides of implications accepted by the expert and computed with
respect to the smaller partial context are identical to the ones that would have been
computed with respect to the extended one.

Proposition 10.21 Let K ≤ K′ ≤ K, where K,K′ are partial contexts and K is a full
context. If L → K(L) is an implication that is not refuted by K, then L → K(L) is not
refuted by K′ and K(L) = K′(L).

Based on these considerations, our attribute exploration algorithm for partial contexts
is described in Algorithm 2. The following proposition shows that this algorithm always
terminates, and in which sense it is correct.

Proposition 10.22 Let M be a finite set of attributes, and K and K0 respectively a full
and a partial context over the attributes in M such that K0 ≤ K. Then Algorithm 2
terminates, and upon termination it outputs a partial context K and a set of implications
L such that

• L is sound and complete for Imp(K), and

• K refutes every implication that is refuted by K.

Next, we show that the set of implications L produced by the algorithm is actually
the Duquenne-Guigues base of KK, the formal context corresponding to the full context
K. Since Imp(K) = Imp(KK), we call this also the Duquenne-Guigues base of K. Recall
that the left-hand sides of the implications in this base are pseudo-intents of KK. Because
the operator ·′′ for KK and the operator K(·) coincide, a subset P of M is a pseudo-intent
of KK if P 6= K(P ) and K(Q) ⊆ P holds for all pseudo-intents Q ( P . We call such a set
also a pseudo-intent of K.

Proposition 10.23 The set L computed by Algorithm 2 is the Duquenne-Guigues base of
K, and thus contains the minimum number of implications among all sets of implications
that are sound and complete for Imp(K).

10.5 DLs and partial contexts

Given a consistent DL knowledge base (T ,A), any individual in A induces a partial object
description, where the set of attributes consists of concepts. To be more precise, let M
be a finite set of concept descriptions. Any individual name a occurring in A gives rise
to the partial object description

podT ,A(a, M) := (A, S) where A := {C ∈M | T ,A |= C(a)} and
S := {C ∈M | T ,A |= ¬C(a)},
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Algorithm 2 Attribute exploration for partial contexts

1: Initialization
2: K0 {initial partial context, realized by the underlying full context K}
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: i := 0
6: while Pi 6= M do
7: Compute Ki(Pi)
8: if Pi 6= Ki(Pi) then {Pi → Ki(Pi) is undecided}
9: Ask the expert if the undecided implication Pi → Ki(Pi) is refuted by K

10: if no then {Pi → Ki(Pi) not refuted}
11: Ki+1 := K′ where K′ is a partial context such that Ki ≤ K′ ≤ K
12: Li+1 := Li ∪ {Pi → Ki(Pi) \ Pi}
13: Pi+1 := Li+1((Pi ∩ {m1, . . . , mj−1})∪ {mj}) for the max. j that satisfies Pi <j

Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj})
14: else {Pi → Ki(Pi) refuted}
15: Get a partial context K′ from the expert such that Ki ≤ K′ ≤ K and Pi →

Ki(Pi) is refuted by K′

16: Ki+1 := K′

17: Pi+1 := Pi

18: Li+1 := Li

19: end if
20: else {trivial implication}
21: Ki+1 := Ki

22: Li+1 := Li

23: Pi+1 := Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj}) for the max. j that satisfies Pi <j

Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj})
24: end if
25: i := i + 1
26: end while

and the whole ABox induces the partial context

KT ,A(M) := {podT ,A(a, M) | a is an individual name occurring in A}.

Note that podT ,A(a, M) is indeed a pod since (T ,A) was assumed to be consistent, and
thus we cannot simultaneously have T ,A |= C(a) and T ,A |= ¬C(a).

Similarly, any element d ∈ ∆I of an interpretation I gives rise to the full example

fodI(d, M) := (A, S) where A := {C ∈M | d ∈ CI} and
S := {C ∈M | d ∈ (¬C)I},

and the whole interpretation induces the full context

KI(M) := {fodI(d, M) | d ∈ ∆I}.

Note that fodI(d, M) is indeed a fod since every d ∈ ∆I satisfies either d ∈ CI or
d ∈ ∆I \ CI = (¬C)I .
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Proposition 10.24 Let (T ,A) be a consistent knowledge base, M a set of concept de-
scriptions, and I a model of (T ,A). Then KI(M) is a realizer of KT ,A(M).

The notion of refutation of an implication is transferred from partial (full) contexts to
knowledge bases (interpretations) in the obvious way.

Definition 10.25 The implication L→ R over the attributes M is refuted by the knowl-
edge base (T ,A) if it is refuted by KT ,A(M), and it is refuted by the interpretation I if
it is refuted by KI(M). If an implication is not refuted by I, then we say that it holds
in I. The set of implications over M that hold in I is denoted by ImpM(I). In addition,
we say that L → R follows from T if ⊓L ⊑T ⊓R, where ⊓L and ⊓R respectively stand

for the conjunctions ⊓
C∈L

C and ⊓
D∈R

D.

Obviously, L → R is refuted by (T ,A) iff there is an individual name a occurring in A
such that T ,A |= C(a) for all C ∈ L and T ,A |= ¬D(a) for some D ∈ R. Similarly,
L→ R is refuted by I iff there is an element d ∈ ∆I such that d ∈ CI for all C ∈ L and
d 6∈ DI for some D ∈ R. In addition, the implication L→ R holds in I iff (⊓L)I ⊆ (⊓R)I .

Proposition 10.26 Let T be a TBox and I be a model of T . If the implication L→ R
follows from T , then it holds in I.

The operator KT ,A(M)(·) induced by the partial context KT ,A(M) is defined as in
Proposition 10.13. Since in the following the attribute set M can be assumed to be fixed,
we will write KT ,A rather that KT ,A(M). Obviously, the result of applying this operator
to a set P ⊆M can be described as follows:

KT ,A(P ) = M \
⋃
{D ∈M | ∃a. P ⊆ {C | T ,A |= C(a)} ∧ T ,A |= ¬D(a)}

By Proposition 10.13, KT ,A(P ) is the largest subset of M such that P → KT ,A(P ) is not
refuted by (T ,A).

10.6 Completion of DL knowledge bases

We are now ready to define what we mean by a completion of a DL knowledge base.
Intuitively, the knowledge base is supposed to describe an intended model. For a fixed
set M of “interesting” concepts, the knowledge base is complete if it contains all the
relevant knowledge about implications between these concepts. To be more precise, if an
implication holds in the intended interpretation, then it should follow from the TBox,
and if it does not hold in the intended interpretation, then the ABox should contain a
counterexample. Based on the notions introduced in the previous subsection, this can
formally be defined as follows.

Definition 10.27 Let (T ,A) be a DL knowledge base, M a finite set of concept descrip-
tions, and I a model of (T ,A). Then (T ,A) is M-complete (or simply complete if M
is clear from the context) w.r.t. I if the following three statements are equivalent for all
implications L→ R over M :
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1. L→ R holds in I;

2. L→ R follows from T ;

3. L→ R is not refuted by (T ,A).

Let (T0,A0) be a DL knowledge base that also has I as a model. Then (T ,A) is a
completion of (T0,A0) if it is complete and extends (T0,A0), i.e., T0 ⊆ T and A0 ⊆ A.

In order to rephrase the definition of completeness, let us say that the element d ∈ ∆I

of an interpretation I satisfies the subsumption statement C ⊑ D if d 6∈ CI or d ∈ DI ,
and that I satisfies this statement if every element of ∆I satisfies it. In addition, let
us call the individual name a a counterexample in (T ,A) to the subsumption statement
C ⊑ D if T ,A |= C(a) and T ,A |= ¬D(a).

Lemma 10.28 The knowledge base (T ,A) is complete w.r.t. its model I iff the following
statements are equivalent for all subsets L, R of M :

1. ⊓L ⊑ ⊓R is satisfied by I;

2. ⊓L ⊑T ⊓R holds;

3. (T ,A) does not contain a counterexample to ⊓L ⊑ ⊓R.

In the following, we use an adaptation of the attribute exploration algorithm for partial
contexts presented in the previous section in order to compute a completion of a given
knowledge base (T0,A0) w.r.t. a fixed model I of this knowledge base. It is assumed that
the expert has enough information about this model to be able to answer questions of
the form “Is L → R refuted by I?”. If the answer is “no,” then L → R is added to the
implication base computed by the algorithm. In addition, the GCI ⊓L ⊑ ⊓R is added
to the TBox. Since L → R is not refuted by I, the interpretation I is still a model of
the new TBox obtained this way. If the answer is “yes,” then the expert must extend
the current ABox (by adding assertions) such that the extended ABox refutes L → R
and I is still a model of this ABox. Because of Proposition 10.26, before actually asking
the expert whether the implication L → R is refuted by I, we can first check whether
⊓L ⊑ ⊓R already follows from the current TBox. If this is the case, then we know that
L → R cannot be refuted by I. This completion algorithm for DL knowledge bases is
described in more detail in Algorithm 3.

Note that Algorithm 3 applied to T0,A0, M with the underlying model I of (T0,A0)
behaves identical to Algorithm 2 applied to the partial context KT0,A0(M) with the under-
lying full context KI(M) as realizer. This is an immediate consequence of the following
facts:

1. for all i ≥ 0, the underlying interpretation I is a model of (Ti,Ai);

2. if the test ⊓Pi ⊑Ti
⊓KTi,Ai

(Pi) is successful, then the implication Pi → KTi,Ai
(Pi)

holds in I, and thus the expert would have answered “no” to this implication ques-
tion;
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3. if T ′ is a TBox such that Ti ⊆ T
′ and I is a model of T ′, then KTi,Ai

(M) ≤
KT ′,Ai

(M) ≤ KI(M);

4. if A′ is an ABox such that Ai ⊆ A′, I is a model of A′, and Pi → KTi,Ai
(Pi) is

refuted by A′, then KTi,Ai
(M) ≤ KTi,A′(M) ≤ KI(M) and Pi → KTi,Ai

(Pi) is refuted
by KTi,A′(M).

Thus, Proposition 10.22 immediately implies the following proposition.

Proposition 10.29 Let (T0,A0) be a knowledge base, M a finite set of concept descrip-
tions,and I a model of (T0,A0). Then Algorithm 3 terminates, and upon termination
outputs a knowledge base (T ,A) and a set of implications L such that

• L is sound and complete for ImpM(I), and

• (T ,A) refutes every implication that is refuted by I.

It remains to show that Algorithm 3 really computes a completion of the input knowl-
edge base.

Theorem 10.30 Let (T0,A0) be a knowledge base, M a finite set of concept descrip-
tions,and I a model of (T0,A0), and let (T ,A) be the knowledge base computed by Algo-
rithm 3. Then (T ,A) is a completion of (T0,A0).

10.7 Related Work

There has been some work on how to extend FCA and attribute exploration from com-
plete knowledge to the case of partial knowledge. In [Obi02], a new three-valued modal
logic for the evaluation of arbitrary propositional formulae under partial knowledge, and
a deduction mechanism was presented. In [BH00, Hol04a, Hol04b, BH05], an attribute
logic based on three-valued Kleene-logic and a version of attribute exploration for partial
knowledge was introduced. However, this work is based on assumptions that are different
from ours. In particular, it assumes that the expert cannot answer all queries, and as a
consequence the knowledge obtained after the exploration process may still be incomplete
and the relationships between concepts that are produced in the end fall into two cate-
gories: relationships that are valid no matter how the incomplete part of the knowledge
is completed, and relationships that are valid only in some completions of the incomplete
part of the knowledge. In contrast, our intention is to complete the KB, i.e., in the end
we want to have complete knowledge about these relationships. What may be incomplete
is the description of individuals used during the exploration process.
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Algorithm 3 Completion of DL knowledge bases

1: Input: T0, A0, M {(T0,A0) has the underlying interpretation I as model}
2: i := 0
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: while Pi 6= M do
6: Compute KTi,Ai

(Pi)
7: if Pi 6= KTi,Ai

(Pi) then {check whether the implication follows from Ti}
8: if ⊓Pi ⊑Ti

⊓KTi,Ai
(Pi) then

9: Ai+1 := Ai

10: Li+1 := Li ∪ {Pi → KTi,Ai
(Pi) \ Pi}

11: Pi+1 := Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj}) for the max. j that satisfies P <j

Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj})
12: else
13: Ask the expert if Pi → KTi,Ai

(Pi) is refuted by I.
14: if no then {⊓Pi ⊑ ⊓KTi,Ai

(Pi) is satisfied in I}
15: Ai+1 := Ai

16: Li+1 := Li ∪ {Pi → KTi,Ai
(Pi) \ Pi}

17: Pi+1 := Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj}) for the max. j that satisfies
P <j Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj})

18: Ti+1 := Ti ∪ {⊓Pi ⊑ ⊓(KTi,Ai
(Pi) \ Pi)} {extend the TBox}

19: else
20: Get an ABox A′ from the expert such that Ai ⊆ A′, I is a model of A′, and

Pi → KTi,Ai
(Pi) is refuted by A′

21: Ai+1 := A′ {extend the ABox}
22: Ti+1 = Ti

23: Pi+1 := Pi

24: Li+1 := Li

25: end if
26: end if
27: else
28: Ai+1 := Ai

29: Ti+1 := Ti

30: Li+1 := Li

31: Pi+1 := Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj}) for the max. j that satisfies P <j

Li+1((Pi ∩ {m1, . . . , mj−1}) ∪ {mj})
32: end if
33: i := i + 1
34: end while
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11 Computing Common Subsumers

11.1 Introduction

By computing common subsumers of a set of concepts (possibly defined w.r.t. an ontology)
one obtains a new concept that subsumes all concepts from the set. This new concept
captures the information shared by all of the concepts from the set. So far mainly the
task of computing least common subsumers (lcs) has been investigated [BKM99, KM01,
Baa03a]. Intuitively, for a DL L the lcs of a set of concepts in L is the most specific
L-concept that subsumes C1, . . . , Cn.

However, the lcs is only useful in DLs that do not offer disjunction as a concept
constructor: in the presence of disjunction, the lcs of concepts C1, . . . , Cn is simply C1 ⊔
· · · ⊔ Cn. Clearly, the latter concept does not shed any light on the commonalities of
C1, . . . , Cn.

One approach to obtain a “meaningful” common subsumer also for DLs that offer dis-
junction is proposed in [BKT02b] and extended in [BKT02a]. The idea is to first compute
for each input concept the concept approximation, i.e., the closest concept (w.r.t. sub-
sumption) in a DL that does not offer disjunction. Second, the lcs of these approximations
is computed.

In more recent times, research has tried to overcome the main limitation of exist-
ing research in computing the lcs by employing a different framework, first proposed in
[BST04a]. In this framework we assume that there is a fixed background terminology de-
fined in an expressive DL; e.g., a large ontology written by experts, which the user has
bought from some ontology provider. The user then wants to extend this terminology in
order to adapt it to the needs of a particular application domain. However, since the user
is not a DL expert, he employs a less expressive “user DL” and needs support through
the bottom-up approach when building this user-specific extension of the background
terminology–the user ontology. There are several reasons for the user to employing a
restricted DL in this setting:

• such a restricted DL may be easier to comprehend and to use for a non-expert;

• it may allow for a more intuitive graphical or frame-like user interface;

• to use the bottom-up approach, the lcs must exist and make sense, and it must be
possible to compute it with reasonable effort.

Thus the user DL does not offer concept disjunction. The lcs obtained for the selected
concepts is then (edited by the user and) added to the user terminology.

To make this more precise, consider a background terminology (TBox) T defined in
an expressive DL L2. When defining new concepts, the user employs only a sublanguage
L1 of L2, for which computing the lcs makes sense and does not only build a disjunction
of the input concepts. However, in addition to primitive concepts and roles, the concepts
written in the DL L1 may also contain names of concepts defined in T . Let us call such
concepts L1(T )-concepts. Given L1(T )-concepts C1, . . . , Cn, we are now looking for their
lcs in L1(T ), i.e., the least L1(T )-concept that subsumes C1, . . . , Cn w.r.t. T . Depending
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on the DLs L1 and L2, least common subsumers of L1(T )-concepts w.r.t. an L2-TBox T
may or may not exist.

In the context of the TONES project this direction of research was further pursued,
e.g. by extending the results given in [BST04a] to more expressive ontology languages
in [BST07] and to a more relaxed notion of common subsumers called good common
subsumers (gcs), which are still common subsumers, but not necessary least ones.

Before we discuss the technical details of the computation of common subsumers w.r.t.
background terminologies, we take a look at how this inferences are employed for the tasks
for ontology design and maintenance.

Bottom-up Construction of knowledge bases is one of the main motivation for inves-
tigating the lcs inference. Here the ontology engineer wants to design the ontology
bottom-up, i.e., by proceeding from the most specific concepts to the most gen-
eral ones. This should be supported by automatically generating concepts from
descriptions of typical instances of the new concept (and, additionally, of intended
subclasses in the hierarchy–if any).

Generating Concept Descriptions as a first draft for the concept the ontology engi-
neer wants to add to the ontology, but finds it difficult to describe. Based on the
desired position of this concept in the subsumption hierarchy, one can offer the lcs
concept for the (prospective) direct subsumees as a candidate description.

Structuring the Ontology to improve the structure of an ontology by inserting inter-
mediate concepts into the subsumption hierarchy. The ontology engineer can obtain
support on how to describe such concepts by, again, computing the lcs concept for
the (prospective) direct subsumees as a candidate description.

Ontology Customization by adapting an existing ontology to purposes of a specific
application by making simple modifications. Since the ontology user is not an
expert in ontology languages, he works with a simpler language than the one used
to formulate the ontology and/or with graphical frame-like interfaces. This case is
the prototypical application for computing a lcs w.r.t. a background terminology.

The TONES “common framework for representing ontologies”[CGG+06] distinguishes
three kinds of ontologies. The task of computing common subsumers w.r.t. a background
ontology refers rather to stand-alone ontologies than to peer ontologies. Although we
distinguish two ontologies in use–the background and the user ontology–, this setting is
not a typical setting for peer ontologies. The mapping between the ontologies is trivial
in our case: it’s identity. Furthermore, once the user ontology has been build, simply the
union of the two ontologies is used.

11.2 Preliminaries

In order to devise the techniques for computing lcs or gcs w.r.t. background terminologies
we need to refine some notions already introduced earlier.

From the DL ALCwhich was introduced in Section 2 the DL ALE is obtained by
disallowing disjunction and restricting general negation to primitive negation, i.e. negation
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may only appear in front of concept names. The DL EL in turn is obtained by restricting
ALE further. This DL only allows for conjunction and existential restrictions.

In contrast to general concept inclusion C ⊑ D, where C can be an arbitrary concept,
a concept definition A ≡ C assigns a concept name A to a complex concept C. A finite
set of such definitions is called an acyclic TBox iff it is acyclic (i.e., no definition refers,
directly or indirectly, to the name it defines) and unambiguous (i.e., each name has at
most one definition). If the TBox is unambiguous, but not acyclic, then it is called a
cyclic TBox. The concept names occurring on the left-hand side of a concept definition
are called defined concepts, and the others primitive. In this section we call a TBox
containing GCIs a general TBox. If we say just TBox then this means an acyclic, a
cyclic or a general TBox. An acyclic or a cyclic ALE-TBox must satisfy the additional
restriction that no defined concept occurs negated in it (i.e., negation can only be applied
to primitive concepts).

The interpretation I is a model of the (a)cyclic TBox T iff it satisfies all its concept
definitions, i.e., AI = CI holds for all A ≡ C in T . It is a model of the general TBox T
iff it satisfies all its concept inclusions, i.e., CI ⊑ DI holds for all C ⊑ D in T .

Given this semantics, we can now turn to the inferences. The subsumption relation
⊑T is a preorder (i.e., reflexive and transitive), but in general not a partial order since it
need not be antisymmetric (i.e., there may exist equivalent descriptions that are not syn-
tactically equal). As usual, the preorder ⊑T induces a partial order ⊑≡

T on the equivalence
classes of concepts:

[C1]≡ ⊑
≡
T [C2]≡ iff C1 ⊑T C2,

where [Ci]≡ := {D | Ci ≡T D} is the equivalence class of Ci (i = 1, 2).When talking
about the subsumption hierarchy, we mean this induced partial order.

In addition to standard inferences like computing the subsumption hierarchy, so-called
non-standard inferences have been introduced and investigated in the DL community
(see, e.g., [Küs01]). In this section, we concentrate on the problem of computing the least
common subsumer. Originally, this problem was introduced for concept descriptions (i.e.,
w.r.t. the empty TBox). In the presence of acyclic TBoxes, one can apply this inference
if one first expands the concept descriptions. Let L be some description logic.

Definition 11.1 [least common subsumer (lcs)] Given a collection C1, . . . , Cn of L-
concept descriptions, the least common subsumer (lcs) of C1, . . . , Cn in L is the most
specific L-concept description that subsumes C1, . . . , Cn, i.e., it is an L-concept descrip-
tion D such that

1. Ci ⊑ D for i = 1, . . . , n (D is a common subsumer);

2. if E is an L-concept description satisfying
Ci ⊑ E for i = 1, . . . , n, then D ⊑ E (D is least).

As an easy consequence of this definition, the lcs is unique up to equivalence, which
justifies talking about the lcs. In addition, the n-ary lcs as defined above can be reduced
to the binary lcs (the case n = 2 above). Thus, it is enough to devise algorithms for
computing the binary lcs. It should be noted, however, that the lcs need not always exist.
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It is also clear that in DLs allowing for disjunction, the lcs of C1, . . . , Cn is their dis-
junction C1⊔ . . .⊔Cn. In this case, the lcs is not really of interest for our purpose. Instead
of extracting properties common to C1, . . . , Cn, it just gives their disjunction, which does
not provide the ontology engineer with new information. For the DLs introduced above,
this means that it makes sense to look at the lcs in ELand ALE , but not in ALC. Both
for ELand ALE , the lcs always exists, and can be effectively computed [BKM99]. For
EL, the size and computation time for the binary lcs is polynomial, but exponential in
the n-ary case. For ALE , already the size of the binary lcs may grow exponentially in the
size of the input concept descriptions.

Let us now define the new non-standard inference introduced recently in [BST04b,
BST04a], which is a generalization of the lcs to (a)cyclic or general background TBoxes.
Let L1,L2 be DLs such that L1 is a sub-DL of L2, i.e., L1 allows for less constructors. For
a given L2-TBox T , we call L1(T )-concepts those L1-concepts that may contain concepts
defined in T .

Definition 11.2 [least common subsumer w.r.t. background terminology] Given an L2-
TBox T and L1(T )-concept descriptions C1, . . . , Cn, the least common subsumer (lcs) of
C1, . . . , Cn in L1(T ) w.r.t. T is the most specific L1(T )-concept description that subsumes
C1, . . . , Cn w.r.t. T , i.e., it is an L1(T )-concept description D such that

1. Ci ⊑T D for i = 1, . . . , n (D is a common subsumer);

2. if E is an L1(T )-concept description satisfying
Ci ⊑T E for i = 1, . . . , n, then D ⊑T E (D is least).

The obtained concept description only uses concept constructors from L1, but it uses
concept names defined in the L2-TBox. This is the main distinguishing feature of a least
common subsumer w.r.t. a background terminology. Depending on the DLs L1 and L2,
least common subsumers of L1(T )-concept descriptions w.r.t. an L2-TBox T may exist
or not. Let us illustrate this inference by a trivial example.

Example 11.3 Assume that L1 is the DL ALEand L2 is ALC. Consider the ALC-TBox
T := {A ≡ P ⊔Q}, and assume that we want to compute the lcs of the ALE(T )-concept
descriptions P and Q. Obviously, A is the lcs of P and Q w.r.t. T . If we were not
allowed to use the name A defined in T , then the only common subsumer of P and Q in
ALEwould be the top-concept ⊤.

It may seem that in the case of an acyclic background TBox, the problem of computing
the lcs in ALE(T )w.r.t. an ALC-TBox T can be reduced to the problem of computing
the lcs in ALEby expanding the TBox and computing the approximation of ALC by
ALE(see [BKT02b]). To make this more precise, we define the non-standard inference of
approximating concepts of one DL L1 by descriptions of a less expressive DL L2.

Definition 11.4 [concept approximation] Given an L2-concept C, the L1-concept D ap-
proximates C from above iff D is the least L1-concept satisfying C ⊑ D.

In [BKT02b] it is shown that the approximation from above of anALC-concept description
by an ALE-concept description always exists, and can be computed in double-exponential
time.
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Thus, given an acyclic ALC-TBox T and a collection of ALE(T )-concepts C1, . . . , Cn,
one can first expand C1, . . . , Cn w.r.t. T to concepts C ′

1, . . . , C
′
n. These are ALC-concepts,

since they may contain constructors of ALC that are not allowed in ALE . One can then
build the ALC-concept description C := C ′

1 ⊔ . . . ⊔ C ′
n, and finally approximate C from

above by an ALE-concept description D. By construction, D is a common subsumer of
C1, . . . , Cn.

However, D does not contain concept names defined in T , and thus it is not necessarily
the least ALE(T )-concept description subsuming C1, . . . , Cn w.r.t. T . Indeed, this is the
case in Example 11.3 above, where the approach based on approximation that we have
just sketched yields ⊤ rather than the lcs A.

11.3 Existence and non-existence of the lcs w.r.t. TBoxes

We start with the DL ELas the formalism for the user ontology and examine the cases (i)
of acyclic and unambiguous and of (ii) cyclic ALC-ontologies. Then we extend the results
to the user DL ALE.

11.3.1 Existence and non-existence of the EL(T )-lcs

In this section, we assume that L1 is EL and L2 is ALC. In addition, we assume that
the sets of concept and role names available for building concept descriptions are finite.
First, we consider the case of acyclic TBoxes.

Theorem 11.5 Let T be an acyclic ALC-TBox. The lcs of EL(T )-concept descriptions
w.r.t. T always exists and can effectively be computed.

The theorem is shown in [BST04a] and an easy consequence of the following facts:

1. If D is an EL(T )-concept description of role depth k, then there are (not necessarily
distinct) roles r1, . . . , rk such that D ⊑ ∃r1.∃r2. . . .∃rk.⊤

2. Let C be an EL(T )-concept description, and assume that the ALC-concept de-
scription C ′ obtained by unfolding C w.r.t. T is satisfiable and has the role depth
ℓ < k. Then C ′ 6⊑ ∃r1.∃r2. . . .∃rk.⊤, and thus C 6⊑T ∃r1.∃r2. . . .∃rk.⊤. In fact, the
standard tableau-based algorithm for ALC applied to C ′ constructs a tree-shaped
interpretation of depth at most ℓ whose root individual belongs to C ′, but not to
∃r1.∃r2. . . .∃rk.⊤.

3. For a given bound k on the role depth, there is only a finite number of inequivalent
EL-concept descriptions of role depth at most k. This is a consequence of the fact
that we have assumed that the sets of concept and role names are finite, and can
be shown by induction on k.

It is not hard to see that the above facts point to a method how to one can effectively
compute EL(T )-lcs. First one enumerates all (representatives of the equivalence classes
of) all common subsumers of C1, . . . , Cn, and then build their conjunction. However, this
brute-force algorithm is probably not useful in practice.

Second, we consider the case of TBoxes allowing for GCIs.
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Theorem 11.6 Let T := {A ⊑ ∃r.A, B ⊑ ∃r.B}. Then, the lcs of the EL(T )-concept
descriptions A, B w.r.t. T does not exist.

So, already for the small DL EL the lcs w.r.t. cyclic background knowledge bases does
not exist.

11.3.2 Existence and non-existence of the ALE(T )-lcs

In this section, we assume that L1 is ALEand L2 is ALC. The following Theorem is
shown in [BST07].

Theorem 11.7 Let T be an acyclic ALC-TBox. The lcs of ALE(T )-concept descriptions
w.r.t. T always exists and can effectively be computed.

A first attempt to show Theorem 11.7 could be the following. Let C1, C2 be ALE(T )-
concept descriptions, and assume that the role depths of the ALC-concept description
C ′

1, C
′
2 obtained by expanding the descriptions Ci w.r.t. T are bounded by k. If we could

show as in the case of EL(T ) that this implies that the role depth of any common subsumer
of C1, C2 w.r.t. T is also bounded by k, then we could obtain the least common subsumer
by simply building the (up to equivalence) finite conjunction of all common subsumers of
C1, C2 in ALE(T ).

However, due to the fact that in ALC and ALEwe can define unsatisfiable concepts,
this simple approach does not work. In fact, ⊥ has role depth 0, but it is subsumed
by any concept description. Given this counterexample, the next conjecture could be
that it is enough to prevent this pathological case, i.e., assume that at least one of the
concept descriptions C1, C2 is satisfiable w.r.t. T , i.e., not subsumed by ⊥ w.r.t. T . This
assumption can be made without loss of generality. In fact, if C1 is unsatisfiable w.r.t. T
(i.e., equivalent to ⊥ w.r.t. T ), then C2 is the lcs of C1, C2 w.r.t. T .

In fact, to compute the lcs of C1, C2 w.r.t. T , it is enough to compute the (up to
equivalence) finite set of allALE(T )-concept descriptions of role depth at most k+1, check
which of them are common subsumers of C1, C2 w.r.t. T , and then build the conjunction
E of these common subsumers which is finite. By definition, E is a common subsumer of
C1, C2 w.r.t. T , and for any common subsumer D of C1, C2 w.r.t. T , there is a conjunct
D0 in E such that D0 ⊑T D, and thus E ⊑T D. Again, this brute-force algorithm is
probably not useful in practice.

If we allow for general TBoxes T , then the lcs w.r.t. T need not exist.

Theorem 11.8 Let T := {A ⊑ ∃r.A, B ⊑ ∃r.B}, where A, B are distinct concept names.
Then, the lcs of the ALE(T )-concept descriptions A, B w.r.t. T does not exist.

It is easy to see that the same claim holds even for the cyclic TBox T := {A ≡ ∃r.A, B ≡
∃r.B}.

Corollary 11.9 Let T := {A ≡ ∃r.A, B ≡ ∃r.B}, where A, B are distinct concept names.
Then, the lcs of the ALE(T )-concept descriptions A, B w.r.t. T does not exist.

Thus the lcs can in general not be extended to general TBoxes that contain GCIs. How-
ever, to support the ontology design and maintenance tasks mentioned at the beginning
of this section it is not necessary to compute the least common subsumer, a good common
subsumer may also suffice to solve the task.
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11.4 Good common subsumers

The brute-force algorithm for computing the lcs in ALE(T )w.r.t. an acyclic background
ALC-TBox described in the previous section is not useful in practice since the number of
concepts that must be considered is very large (super-exponential in the role depth). In
addition, w.r.t. cyclic or general TBoxes the lcs need not exist.

In the bottom-up construction of DL knowledge bases, it is not really necessary to
take the least common subsumer–Using it may even result in over-fitting! A common
subsumer that is not too general can also be used. In this section, we introduce an
approach for computing such “good” common subsumers w.r.t. a background TBox. In
order to explain this approach, we must first recall how the lcs ofALE-concept descriptions
(without background TBox) can be computed.

11.4.1 The lcs of ALE-concept descriptions

Since the lcs of n concept descriptions can be obtained by iterating the application of the
binary lcs, we describe how to compute the least common subsumer lcsALE(C, D) of two
ALE-concepts C, D (see [BKM99] for more details and a proof of correctness).

First, the input descriptions C, D are normalized by applying the following
equivalence-preserving rules modulo associativity and commutativity of conjunction:

∀r.E ⊓ ∀r.F −→ ∀r.(E ⊓ F ), ∀r.E ⊓ ∃r.F −→ ∀r.E ⊓ ∃r.(E ⊓ F ),
∀r.⊤ −→ ⊤, E ⊓ ⊤ −→ E,
∃r.⊥ −→ ⊥, E ⊓ ⊥ −→ ⊥,

A ⊓ ¬A −→ ⊥ for each A ∈ NC.

Note that, due to the second rule in the first line, this normalization may lead to an
exponential blow-up of the concept descriptions.

In order to describe the lcs algorithm, we need to introduce some notation. Let C
be a normalized ALE-concept description. Then names(C) (names(C)) denotes the set of
(negated) concept names occurring in the top-level conjunction of C, roles∃(C) (roles∀(C))
the set of role names occurring in an existential (value) restriction on the top-level of C,
and restrict∃r(C) (restrict∀r (C)) denotes the set of all concept descriptions occurring in an
existential (value) restriction on the role r in the top-level conjunction of C.

Now, let C, D be normalized ALE-concept descriptions. If C (D) is equivalent to ⊥,
then lcsALE(C, D) = D (lcsALE(C, D) = C). Otherwise, we have

lcsALE(C, D) = ⊓
A∈names(C)∩names(D)

A ⊓ ⊓
¬B∈names(C)∩names(D)

¬B ⊓

⊓
r∈roles∃(C)∩roles∃(D)

⊓
E∈restrict∃r (C),F∈restrict∃r (D)

∃r.lcsALE(E, F ) ⊓

⊓
r∈roles∀(C)∩roles∀(D)

⊓
E∈restrict∀r (C),F∈restrict∀r (D)

∀r.lcsALE(E, F ).

Here, the empty conjunction stands for the top-concept ⊤. The recursive calls of lcsALE

are well-founded since the role depth decreases with each call.
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11.4.2 A good common subsumer in ALEw.r.t. a background TBox

Let T be a background TBox in some DL L2 extending ALEsuch that subsumption in
L2 w.r.t. this kind of TBoxes is decidable.9 Let C, D be normalized ALE(T )-concept
descriptions. We apply the above algorithm for ALE-concept descriptions, but we take
the smallest (w.r.t. subsumption w.r.t. T ) conjunction of concept names and negated
concept names that subsumes (w.r.t. T ) both

⊓
A∈names(C)

A ⊓ ⊓
¬B∈names(C)

¬B and ⊓
A′∈names(D)

A′ ⊓ ⊓
¬B′∈names(D)

¬B′.

to obtain concept names in the result concept. We modify the above lcs algorithm in this
way, not only on the top-level of the input concepts, but also in the recursive steps. It is
easy to show that the ALE(T )-concept description computed by this modified algorithm
still is a common subsumer of A, B w.r.t. T .

Proposition 11.10 The ALE(T )-concept description E obtained by applying the modi-
fied lcs algorithm to ALE(T )-concept descriptions C, D is a common subsumer of C and
D w.r.t. T , i.e., C ⊑T E and D ⊑T E.

In general, this common subsumer will be more specific than the one obtained by ignoring
T , i.e. applying the original ALE lcs algorithm. though it need not be the least common
subsumer. In the following, we will call the common subsumer computed this way good
common subsumer (gcs), and the algorithm that computes it the gcs algorithm.

In order to implement the gcs algorithm, we must be able to compute the smallest
conjunction of (negated) concept names that subsumes two such conjunctions C1 and C2

w.r.t. T . In principle, one can compute this smallest conjunction by testing, for every
(negated) concept name whether it subsumes both C1 and C2 w.r.t. T , and then take the
conjunction of those (negated) concept names for which the test was positive. However,
this results in a large number of (possibly quite expensive) calls to the subsumption
algorithm for L2 w.r.t. (general or (a)cyclic) TBoxes. Since in our application scenario
(bottom-up construction of DL knowledge bases w.r.t. a given background terminology),
the TBox T is assumed to be fixed, it makes sense to precompute this information. In
Section 11.5 we will show that attribute exploration can be used for this purpose.

11.4.3 Using ALE-expansion when computing the gcs

If the background terminology is an acyclic TBox T , then one can employ an appropriate
partial expansion of T in order to uncover ALE-parts hidden within the defined concepts.
The idea is that the gcs algorithm will possibly yield a more specific common subsumer
if it can make use of ALE-concepts “hidden” within the defined concepts.

However,as a simple example, consider the ALC-TBox T :

NoSon ≡ ∀has-child.Female,
NoDaughter ≡ ∀has-child.¬Female,

SonRichDoctor ≡ ∀has-child.(Female ⊔ (Doctor ⊓ Rich)),
DaughterHappyDoctor ≡ ∀has-child.(¬Female ⊔ (Doctor ⊓ Happy)),

ChildrenDoctor ≡ ∀has-child.Doctor,

9Note that the TBox T used as background terminology may be a general TBox.
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and the ALE-concept descriptions

C := ∃has-child.(NoSon ⊓ DaughterHappyDoctor),
D := ∃has-child.(NoDaughter ⊓ SonRichDoctor).

For instance, the concepts defining NoSon and NoDaughter are actually ALE(T )-
concept descriptions, and thus C, D can be expanded to

C ′ := ∃has-child.(∀has-child.Female ⊓ DaughterHappyDoctor),
D′ := ∃has-child.(∀has-child.¬Female ⊓ SonRichDoctor),

before computing the gcs. The concepts defining DaughterHappyDoctor and SonRichDoctor

are not ALE(T )-concept descriptions, and thus these two names cannot be expanded.
However, in this example, the common subsumer computed by applying the gcs algorithm
to the expanded concepts C ′, D′ is

∃has-child.⊤,

which is actually less specific than ∃has-child.ChildrenDoctor the result of applying the gcs
algorithm to the unexpanded concepts C, D.

To overcome this problem, we do the partial expansion, but also keep the defined
concepts that we have expanded. In the example, this yields the expanded concepts

C ′′ := ∃has-child.(∀has-child.Female ⊓ NoSon ⊓ DaughterHappyDoctor),
D′′ := ∃has-child.(∀has-child.¬Female ⊓ NoDaughter ⊓ SonRichDoctor).

If we apply the gcs algorithm to C ′′, D′′, then we obtain (up to equivalence w.r.t. T ) the
same common subsumer as obtained from C, D, i.e., in this case the expansion does not
yield a more specific result.

However, it is easy to construct examples where this kind of expansion leads to better
results. For instance, if we apply the gcs algorithm to ∀has-child.(Female ⊓ Doctor) and
NoSon ⊓ ∀has-child.Happy, then the result is ⊤. In contrast, if we apply it to the ex-
panded concept descriptions ∀has-child.(Female⊓Doctor) and NoSon⊓∀has-child.Female⊓
∀has-child.Happy, then the result is the more specific common subsumer ∀has-child.Female.

Before checking whether a defined concept can be expanded, it is useful to transform
it into negation normal form (NNF) by pushing all negations into the description until
they occur only in front of concept names, using de Morgan’ rules and the facts that
¬¬D ≡ D and ¬⊤ ≡ ⊥. For example, the concept description ¬∀has-child.Female is not
an ALE-concept description, but its negation normal form ∃has-child.¬Female is. More
formally, we define the ALE-expansion of (negated) concept names defined in T and of
ALE(T )-concept descriptions as follows.

Definition 11.11 [ALE-expansion] Let T be an acyclic TBox, let A be a concept name
defined in T , and let A ≡ C be its definition. We first build the negation normal form
C ′ of C. If C ′ is not an ALE(T )-concept description, then the ALE-expansion of A is A.
Otherwise, it is A ⊓ C ′′, where C ′′ is obtained from C ′ by replacing all (negated) defined
concept names in C ′ by their ALE-expansion.

To obtain the ALE-expansion of ¬A, we just apply the same approach to ¬C. The
ALE-expansion of an ALE(T )-concept description is obtained by replacing all (negated)
defined concept names by their ALE-expansions.
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Note that this recursive definition of an ALE-expansion is well-founded since the TBox
is assumed to be acyclic. As an example, consider the TBox T consisting of

A ≡ ¬∀r.(B1 ⊔ B2), B1 ≡ P ⊔Q, B2 ≡ P ⊓Q.

Then we obtain A ⊓ ∃r.(¬B1 ⊓ ¬P ⊓ ¬Q ⊓ ¬B2) as ALE-expansion of A.
It is easy to see that ALE-expansion may lead to more specific common subsumers,

but never to less specific ones.

Proposition 11.12 Let T be an acyclic L2-TBox, C, D ALE(T )-concept descriptions
with ALE-expansion C ′, D′, and let E (E ′) be the result of applying the gcs algorithm to
C, D (C ′, D′). Then E ′ is a common subsumer of C, D that is at least as good as E, i.e.,
C ⊑T E ′, D ⊑T E ′, and E ′ ⊑T E.

ALE-expansion can also be applied to cyclic L2-TBoxes, provided that the cycles
go through non-ALEparts of the TBox. This is, for example, the case in the TBox
T := {A ≡ ∃r.B, B ≡ P ⊔ A}.

11.4.4 Alternative approaches for computing common subsumers

In Section 11.2 we have already sketched an approach based on approximation, which
works if the TBox T is acyclic, L2 allows for disjunction, and one can compute the
approximation from above of L2-concept descriptions by ALE-concept descriptions. For
example, if we take ALC as L2, then all these conditions are satisfied.

Definition 11.13 [Common subsumer by approximation (acs)] Assume that L2 allows
for disjunction, and that one can compute the approximation from above of L2-concept
descriptions by ALE-concept descriptions. Let T be an acyclic L2-TBox. Given ALE(T )-
concept descriptions C, D, one first fully expands them into L2-concept descriptions C ′, D′.
Then one approximates their disjunction C ′⊔D′ from above by an ALE-concept descrip-
tion. The common subsumer of C, D obtained this way is called the common subsumer
by approximation (acs) of C, D w.r.t. T .

In Section 11.2, we have shown by an example that the acs can be less specific than
the lcs. In this example (Example 11.3), the gcs coincides with the lcs, and thus is also
more specific than the acs: in fact, w.r.t. the TBox T = {A ≡ P ⊔ Q}, the smallest
conjunction of concept names above both P and Q is A, and thus the gcs of P and Q is
A.

There are, however, also examples where the gcs is less specific than the acs. For
instance, consider the TBox

T = {A ≡ ∃r.A1 ⊔ ∃r.A2, B ≡ ∃r.B1 ⊔ ∃r.B2}.

With respect to this TBox, the gcs of A, B is ⊤, whereas the acs is the more specific
common subsumer ∃r.⊤.

The gcs algorithm makes use of the subsumption relationships between conjunctions
of (negated) concept names. Usually, these relationships are not known for a given TBox,
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and thus we must either precompute them (see Section 11.5) or compute them on the fly
(as sketched in Section 11.4.2). Both may be quite expensive. What is usually known for
a given TBox T are all subsumption relationships between the concept names occurring
in T .10 This information can be used as follows. Given two conjunctions

⊓
A∈names(C)

A ⊓ ⊓
¬B∈names(C)

¬B and ⊓
A′∈names(D)

A′ ⊓ ⊓
¬B′∈names(D)

¬B′,

the gcs algorithm takes the smallest (w.r.t. subsumption w.r.t. T ) conjunction of con-
cept names and negated concept names that subsumes (w.r.t. T ) both conjunctions. In
contrast, the algorithm that just ignores the TBox would take

⊓
A∈names(C)∩names(D)

A ⊓ ⊓
¬B∈names(C)∩names(D)

¬B.

Using the subsumption relationships between concept names, we can come up with a new
approach that lies between these two approaches.

Definition 11.14 [Subsumption closure] Let T be a TBox, and S (S) a set of (negated)
concept names. The subsumption closure of S (S) w.r.t. T is a set of (negated) concept
names, which is defined as follows:

SC(S) := {A | ∃B ∈ S. B ⊑T A},
SC(S) := {¬A | ∃¬B ∈ S. A ⊑T B}.

Instead of using the intersection names(C) ∩ names(D) (names(C) ∩ names(D)), as
in the approach that ignores T , one can first build the subsumption closures, and then
intersect the closures, i.e., use

⊓
A∈SC(names(C))∩SC(names(D))

A ⊓ ⊓
¬B∈SC(names(C))∩SC(names(D))

¬B.

We call the algorithm for computing common subsumers obtained this way the scs algo-
rithm, and the result of applying it to ALE(T )-concept descriptions C, D the scs of C, D
w.r.t. T .

Proposition 11.15 Let T be an L2-TBox, C, D ALE(T )-concept descriptions, and let
E (E ′) be the result of applying the gcs (scs) algorithm to C, D. Then E ′ is a common
subsumer of C, D that is at most as good as the gcs E, i.e., C ⊑T E ′, D ⊑T E ′, and
E ⊑T E ′.

To obtain a practical gcs algorithm, we must be able to compute the smallest con-
junction of (negated) concept names that subsumes two such conjunctions w.r.t. T in
an efficient way. Since in our application scenario (customization of DL knowledge bases
based on a given background terminology), the TBox T is assumed to be fixed, it makes
sense to precompute this information. Obviously, a näıve approach that calls the subsump-
tion algorithm for each pair of conjunctions of (negated) concept names is too expensive
for TBoxes of a realistic size. Instead, we propose to use attribute exploration for this
purpose.

10Most DL system compute these automatically when reading in a TBox.
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11.5 Computing the subsumption lattice of conjunctions of
(negated) concept names w.r.t. a TBox

In the following we refer to notions from formal concept analysis that were already intro-
duced in Section 10.2 of this deliverable.

In order to apply attribute exploration (this method was discussed in Section 10.2, Al-
gorithm 1) to the task of computing the subsumption lattice11 of conjunctions of (negated)
concept names (some of which may be defined concepts in an L2-TBox T ), we define a
formal context (for a general definition see Definition 10.1) whose concept lattice is iso-
morphic to the subsumption lattice we are interested in. We are interested in a context
that has the same attributes and the same concept lattice (up to isomorphism), but for
which a standard subsumption algorithm can function as an expert. Such a context was
first introduced in [BS04]:

Definition 11.16 Let T be an L2-TBox. The context KT = (O,P,S) is defined as
follows:

O := {E | E is an L2-concept description},

P := {A1, . . . , An} is the set of concept names occurring in T ,

S := {(E, A) | E ⊑T A}.

The following Theorem was proven in [BST07].

Theorem 11.17 The concept lattice of the context KT is isomorphic to the subsumption
hierarchy of all conjunctions of subsets of P w.r.t. T .

Attribute exploration can be used to compute the concept lattice of KT since any standard
subsumption algorithm for the DL under consideration is an expert for KT . In fact, any
decision procedure for subsumption w.r.t. TBoxes in L2 functions as an expert for the
context KT .

In order to compute the gcs, we consider not only conjunctions of concept names,
but rather conjunctions of concept names and negated concept names. The above results
can easily be adapted to this case. In fact, one can simply extend the TBox T by a
definition for each negated concept name, and then apply the approach to this extended
TBox. To be more precise, if {A1, . . . , An} is the set of concept names occurring in

T , then we introduce new concept names A1, . . . , An, and extend T to a TBox T̂ by
adding the definitions A1 ≡ ¬A1, . . . , An ≡ ¬An.12 The concept lattice of the context
KbT is isomorphic to the subsumption hierarchy of all conjunctions of concept names and
negated concept names occurring in T .

Thus Attribute exploration applied to KbT can be used to compute the Duquenne-
Guigues base of KbT . Given this base, we can compute the supremum in the concept
lattice of KbT as follows:

11In general, the subsumption relation induces a partial order, and not a lattice structure on concepts.
However, in the case of conjunctions of (negated) concept names, all infima exist, and thus also all
suprema.

12For T̂ to be an L2-TBox, we must assume that L2 allows for full negation.
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Lemma 11.18 Let J be the Duquenne-Guigues base of KbT , and let B1, B2 be sets of
attributes of KbT . Then J (B1) ∩ J (B2) is the intent of the supremum of the formal
concepts (B′

1, B
′′
1 ) and (B′

2, B
′′
2 ).

As an immediate consequence of this lemma together with Theorem 11.17 and its proof,
the supremum in the hierarchy of all conjunctions of concept names and negated concept
names occurring in T can be computed as follows:

Proposition 11.19 Let J be the Duquenne-Guigues base of KbT , and let B1, B2 be sets
of (negated) concept names occurring in T . Then

⊓
L∈J (B1)∩J (B2)

L

is the least conjunction of (negated) concept names occurring in T that lies above both

⊓
L∈B1

L and ⊓
L∈B2

L.

Computing the implication hull J (B) for a set of attributes B can be done in time
linear in the size of J and B. This means that the supremum can be computed efficiently
as long as the Duquenne-Guigues base of KbT is relatively small.

11.6 Future and Related Work

The problem of computing the lcs has already been investigated in the literature for
a couple of Description Logics. One can divide the algorithms for computing the lcs
according the kind of terminology the algorithms support. For acyclic and unambiguous
TBoxes the lcs has been investigated in [CH94, FP96, BKM99, KM01, KB01, BTK03].
Algorithms for computing the lcs w.r.t. cyclic TBoxes and w.r.t. greatest fixed point
semantics were proposed in [BK98, Baa03b]. For TBoxes that use GCIs the lcs has so far
not been investigated. The results presented here indicate that for EL or ALE the lcs
need not exist. However, most applications use TBoxes that contain GCIs. To support
ontology maintenance tasks, it is desirable to compute commonalities in the presence of
GCIs. The here presented approach for computing a gcs, more precisely the scs, can bridge
this gap to some extend. The computation algorithm for (unfolded) concept descriptions
devised here can also be applied to background terminologies that contain GCIs, since
the method only makes use of subsumption w.r.t. the background terminology. However,
the task of how to “unfold” the input concepts, i.e., to make the information captured in
the terminology explicit, remains to be solved.

Furthermore, on the theoretical side, the main topic for future research is to find exact
algorithms for computing the least common subsumer that are better than the brute-force
algorithm sketched in the proof of Theorem 11.7.

On the practical side, we integrate an implementation of the scs computation into our
non-standard inference system sonic [TK04]. The integration of the scs in sonic will enable
us to see whether this fairly inexpensive way of computing a common subsumer is already
useful for practical applications, or whether the more expensive gcs or lcs is needed.
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12 Ontology Extraction from DB Schemas

12.1 Introduction

A number of important database problems have been shown to have improved solutions
by using a conceptual model or an ontology to provide precise semantics for a database
schema. These scenarios include federated databases, data warehousing [CDGL+01], in-
formation integration through mediated schemas [Len02], and the Semantic Web [HH01]
(for a survey see [WVV+01]). Since ontologies provide a conceptual view of the applica-
tion domain, the recent trend to employ such ontologies for navigational (and reasoning)
purposes when accessing the data gives additional motivation for the problem of extract-
ing the ontology from database schema [LLS06]. When such an ontology exists, modeling
the relation between the data sources and an ontology is a crucial aspect in order to
capture the semantics of the data.

In this chapter we define the framework for extracting from a relational database
an ontology that is to be used as a conceptual view over the data, where the semantic
mapping between the database schema and the ontology is captured by associating a view
over the source data to each element of the ontology. Thus, the vocabulary over the data
can be seen as a set of (materialized) views over the vocabulary of the ontology [FTG+06]
(i.e., technique known as GAV approach in the literature [Len02]).

The heuristics that underlie the ontology extraction process are based on a careful
study of standard design process relating the constructs of the relational model with
those of conceptual modeling languages. In particular, we use ideas of standard relational
schema design from Entity-Relationship diagrams.

Our proposed ontology extraction algorithm works in two phases. First, the classifica-
tion schemes for tables necessary for the extraction process are derived. Second, we devise
a process for extracting the an ontology describing the data source; plus the set of view
definitions, which express the mapping between the database schema and the ontology.

The rest of the chapter is structured as follows. In section 2 we present the formal
framework, where first the constraints expressed over the relational schema are defined,
and the ontology language is presented. Section 12.3 describes an intuitive progression
of ideas underlying our approach, while section 12.4 provides the ontology extraction
algorithm. In section 12.5 we shortly report on related work.

12.2 Preliminaries

We introduce the formal framework for representing ontologies and their relation with
a relational data source. We call a DLR-DB system S is a triple 〈R,P,K〉, where R
is a relational schema, P is a component structure over R, and K is a set of assertions
involving names in R. In this section we describe these concepts.

12.2.1 Relational Model

We make use of the standard notion of relational model by using named attributes, each
with an associated datatype, instead of tuples.
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Definition 12.1 A relational schema R is a set of relationships, each one with a fixed
set of attributes (assumed to be pairwise distinct) with associated datatypes. We use
[s1 : D1, . . . , sn : Dn] to denote that a relationship has attributes s1, . . . , sn with associated
data types D1, . . . , Dn. We interpret relationships over a fixed countable domain ∆ of
datatype elements, which we consider partitioned into the datatypes Di. The domain
contains a special constant (null) called the NULL value.

A database instance (or simply database) D over a relational schema R is an (inter-
pretation) function that maps each relationship R in R into a set RD of total functions
from the set of attributes of R to ∆. The instance must satisfy the attribute datatypes
specified in the relational schema. I.e., if R has attributes [s1 : D1, . . . , sn : Dn], and
φ ∈ RD, then φ(si) ∈ Di or φ(si) = null.

To ease the presentation of the semantics for a DLR-DB system we make use of
relational algebra. To this purpose, we introduce the definition of a projection of a
relationship over a sequence of attributes.

Definition 12.2 Let A = [s1, . . . , sm] be a sequence of m attribute names of a relationship
R of a schema R, and D a database over R. The projection of RD over A is the relation
πARD ⊆ ∆m

D , satisfying the condition that φ ∈ RD iff (φ(s1), . . . , φ(sn)) ∈ πARD.

Note that the order of the attributes in A fixes the correspondence between positional
arguments of πARD and the attribute names of R.

12.2.2 Ontology Language

The ontology language enables the explicit representation of the constraints which the
underlying data source satisfies. The use of an ontology language can be seen as an
alternative to the use of standard modelling paradigms of Entity Relationships or UML
diagrams. The advantage over these formalisms lies on the fact that the ontology language
has a clear and unambiguous semantics which enables the use of automatic reasoning to
support the designer.

In addition to the standard definition of a relational schema, we introduce the concept
of named components. The intuition behind a named component is the role name of a
relationship in an ER schema (or UML class-diagram). The component structure P asso-
ciates to each relationship a mapping from named components to sequences of attributes.
Let R be a relationship in R, to ease the notation we write PR instead of P(R).

Definition 12.3 Let R be a relationship in R, with attributes [s1 : D1, . . . , sn : Dn]. PR

is a nonempty (partial) function from a set of named components to the set of nonempty
sequences of attributes of R. The domain of PR, denoted CR, is called the set of compo-
nents of R. For a named component c ∈ CR, the sequence PR(c) = [si1 , . . . , sim ], where
each ij ∈ {1, . . . , n}, is called the c-component of R. We denote with δ(R) the set of all
attributes not belonging to any c-component.

We require that the sequences of attributes for two different named components are not
overlapping, and that each attribute appears at most once in each sequence. I.e., given
PR(ci) = [si1 , . . . , sik ] and PR(cj) = [sj1, . . . , sjm

], if siℓ = sjr
then ci = cj and ℓ = r.
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The signature of a component PR(c), denoted τ(PR(c)), is the sequence of types of the
attributes of the component. Specifically, if the attributes of R are [s1 : D1, . . . , sn : Dn],
the signature of the component PR(c) = [si1, . . . , sim ] is the sequence [Di1 , . . . , Dim].

Two components PR(c1) and PR(c2) are compatible if the two signatures τ(PR(c1))
and τ(PR(c2)) are equal.

The DLR-DB ontology language, used to express the constraints in K, is based on
the idea of modelling the domain by means of axioms involving the projection of the
relationship over the named components. The constraints are intended to capture typical
constructs encountered in conceptual models, in fact it could be considered a sort of
textual representation of ER diagrams.

An atomic formula is a projection of a relationship R over one of its components. The
projection of R over the c-component is denoted by R[c]. When the relationship has a
single component, then this can be omitted and the atomic formula R corresponds to its
projection over the single component.

Two atomic formulae R[c] and S[c′] are compatible iff the two corresponding compo-
nents PR(c) and PS(c′) are compatible. Given the atomic formulae R[c], R′[c′], Ri[ci], an
axiom is an assertion of the form

R[c] ⊑ R′[c′] Subclass

R[c] disj R′[c′] Disjointness

funct(R[c]) Functionality

R1[c1], . . . , Rk[ck] cover R[c] Covering

where all the atomic formulae involved in the same axiom must be compatible.
The semantics of a DLR-DB system 〈R,P,K〉 is given in terms of relational models

for R, where K plays the role of constraining the set of “admissible” models.

Definition 12.4 A database D for a schema R satisfies the axiom

R[c] ⊑ R′[c′] if πcR
D ⊆ πc′R

′D

R[c] disj R′[c′] if πcR
D ∩ πc′R

′D = ∅

funct(R[c]) if for all φ1, φ2 ∈ RD with φ1 6= φ2,

we have φ1(s) 6= φ2(s) for some s in c

R1[c1], . . . , Rk[ck] cover R[c] if πcR
D =

⋃

i=1...n

πci
R′D

i

A database D is said to be a model for K if it satisfies all its axioms, and for each
relations R in R with components c1, . . . , ck, for any φ1, φ2 ∈ RD with φ1 6= φ2, there is
some s in ci s.t. φ1(s) 6= φ2(s).

The above conditions are well defined because we assumed the compatibility of the atomic
formulae involved in the constraints. Note that, in the definition above, we require the
satisfiability of all the axioms, and in addition we consider the sequence of attributes of
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all the components of a relationship as a key for the relationship itself. This reflects the
fact that in conceptual models the additional attributes not belonging to any component
are not considered relevant to identify an element of an entity or a relationship.

The DLR-DB ontology language enables the use of the most commonly used constructs
in conceptual modelling. In particular, among these we mention:

ISA, using assertions of the form E1 ⊑ E2, stating that the class E1 is a subclass of the
class E2;

13

Disjointness, using assertions of the form E1 disj E2, stating disjointness between the
two classes E1 and E2;

Role typing, using assertions of the form R[c] ⊑ E, stating that the role corresponding
to the c component of the relationship R is of type E;

Participation constraints, using assertions of the form E ⊑ R[c], stating that in-
stances of class E participate to the relationship R as value for the c component;

Non-participation constraints, using assertions of the form E disj R[c], stating that
instances of class E do not participate to the relationship R as value for the c
component;

Functionality, using assertions of the form funct(R[c]), stating that an object can appear
in the c component of the relationship R at most once;

Covering, using the corresponding assertion to state that each member of a class must
be contained in (at least) one of the covering classes.

Note that by taking away the covering axioms and considering only components con-
taining single attributes this ontology language corresponds to DLR-Lite (see [CGL+06]).
The discussion on the actual reasoning tasks which can be employed in the context of
DLR-DB systems is not in the scope of this document. Herewith we are mainly inter-
ested of the use of the language to express data models extracted from the relational data
sources.

12.2.3 Relational Schemata

We assume that the reader is familiar with standard relational database notions as pre-
sented, for example, in [AHV95]. We assume that the database domain is a fixed denu-
merable set of elements ∆ and that every such element is denoted uniquely by a constant
symbol, called its standard name [LL01].

Definition 12.5 A relational schema R is a pair (Ψ, Σ), where Ψ is a set of rela-
tions, each with a fixed set of attributes (assumed to be pairwise disjoint) with associ-
ated datatypes. We use [A1 : D1, . . . , An : Dn] to denote that a relation has attributes

13As mentioned in Section 12.2.2, when a relation has a single component, the component name can
be omitted.
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A1, . . . , An with associated datatypes D1, . . . , Dn. Σ is a set of integrity constraints ex-
pressed on the relations in Ψ; i.e., assertions on the relations in Ψ that express conditions
that are intended to be satisfied by database instances.

The semantics of relational schemata is provided in the usual way by means of the re-
lational model, as described in Section 12.2.1. In our framework we consider the following
kinds of integrity constraints:

• nulls-not-allowed constraints: given a relation r in the schema, a nulls-not-allowed
constraint over r is an assertion of the form nonnull(r,A), where A is a sequence
of attributes of r. Such a constraint is satisfied in a database D if for each φ ∈ rD

we have φ(a) 6= null for each a ∈ A.

• unique constraints: given a relation r in the schema, a unique constraint over r is an
assertion of the form unique(r,A), where A is a sequence of attributes of r. Such a
constraint is satisfied in a database D if for each φ1, φ2 ∈ rD, with φ1 6= φ2, we have
φ1(A) 6= φ2(A).14 When we have unique(r,A) and nonnull(r,A) for r, then a key
constraint key(r,A) is associated to r.

• inclusion dependencies : an inclusion dependency is an assertion of the form
r1 [A1] ⊆ r2 [A2], where r1, r2 are relations, A1, A2 are sequences of distinct at-
tributes of r1 and r2, respectively. Such a constraint is satisfied in a database D if
πA1

(rD1 ) ⊆ πA2
(rD2 ). We call an inclusion dependency r1 [A1] ⊆ r2 [A2] where A2 is

in key(r2,A2) a foreign key constraint.

• exclusion dependencies : an exclusion dependency is an assertion of the form
(r1 [A1] ∩ . . . ∩ rm [Am]) = ∅, where m ≥ 2 r1, . . . , rm are relations, A1, . . . ,Am

are sequences of attributes of r1, . . . , rm, respectively. Such a constraint is satisfied
in a database D if πA1

(rD1 ) ∩ . . . ∩ πAm
(rDm) = ∅.

• covering constraints: a covering constraint is an assertion of the form (r1 [A1]∪ . . .∪
rm [Am]) = r0 [A0], where m ≥ 2, r1, . . . , rm, r0 are relations, A1, . . . ,Am,A0 are
sequences of attributes of r1, . . . , rm, r0, respectively. Such a constraint is satisfied
in a database D if πA1

(rD1 ) ∪ . . . ∪ πAm
(rDm) = πA0

(rD0 ).

We denote sets of nulls-not-allowed, unique, key, inclusion and foreign key constraints
expressed on a relation r in Ψ by N (r), U(r), K(r), I(r) and F(r), respectively. The
set of exclusion and covering constraints expressed on relational schema are denoted by
E and C, respectively.

In the following we will use terms ”table” and ”column” when talking about relational
schemas, reserving ”relation(ship)” and ”attribute” for aspects of ontologies. Thus, we
will use the notation T (K, X) to represent a relational table T with columns KX and
primary key K (i.e., key(T ) = K). Our notational convention is that single column
names are indexed and appear in lower-case. A foreign key in T is a set of columns
F that references the primary key K ′ of table T ′, and imposes a foreign key constraint
T [F ] ⊆ T ′ [K ′].

14Given a function φ and a sequence of attributes A = [s1, . . . , sm], we use the notation φ(A) to indicate
the tuple composed by the values of the attributes; i.e. (φ(s1), . . . , φ(sn)).
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12.3 Principles of conceptual schema extraction

Given a relational schema R, our task is to extract from R the ontology in terms of
DLR-DB ontology language, together with a set of views V. Specifically, suppose we are
given a table T (k, a, f) with key k, foreign key f and non null values on the foreign key
f . Then our goal is to identify for T ”reasonable” constructs in DLR-DB K, taking also
into account the constraints associated to T (such as non null values for f).

We have chosen to flesh out the above principles in a systematic manner by consid-
ering the behavior of our proposed conceptual schema extraction algorithm on relational
schemas designed from ER diagrams - a standard database modeling technique, widely
covered in [BCN92, EN04], for example. One benefit of this approach is that it can be
immediately shown that our algorithm, though heuristic in general, is correct for a certain
class of schemas (e.g., when table schemes have not been denormalized). Also note that
the assumption that a given relational schema was designed from some ER conceptual
model does not mean that obtained ontology is this ER model, or is even expressed in
the ER notation. In fact, we exploit the similarities of ER model and DLR-DB language
over K for representing the knowledge about the domain.

We assume the reader is familiar with basics of ER modeling and database design
[EN04, TLN06], though we summarize the ideas. We consider an ER model that supports
entity sets E (or simply entities) with attributes (referred to by attrs(E)), n-ary (n ≥ 2)
relationship sets (or simply relationships) with attributes and ISA hierarchies between
entities. In order to avoid ambiguities in the extraction process, we do not cover the
case when sub-entities participate in a functional relationship. We refer to a sub-entity S
having E as its super-entity by S(E). Relationships are subject to cardinality constraints,
which are used here in min-max notation [BCN92] and allow 1 as lower bounds (called
total relationships), and 1 as upper bounds (called functional relationships). As a special
case of n-ary relationships, we analyze in detail binary relationships as a reason for their
wide use in ER diagrams, as well as UML class diagrams. A binary relationship R between
entities E1 and E2 (we denote such relationship by R(E1, E2)) is one-to-one (1:1), if it is
functional on both directions (i.e., from E1 to E2 and from E2 to E1). R(E1, E2) is one-
to-many (1:N) if it is functional from E1 to E2, and R(E1, E2) is many-to-many (N:M)
if nether it nor its inverse is functional. A relationship R from entity E to itself is called
recursive relationship, and is considered here in the form R(E, E) (i.e., as a special case
of binary relationship). Sub-entities of ISA may be constrained to be disjoint and/or
covering. An entity E has some attributes that act as identifier. We will refer to these
using id(E) when describing the rules of schema design.

Table 7 specifies a mapping τ(C) (we follow mostly [BCN92, TLN06]) returning a
relational table scheme being in third normal form (3NF)15 for every ontology component
C, where C is either an atomic concept/entity or a n-ary relation(ship) (n ≥ 2). Note
that τ is defined recursively, and will only terminate if there are no cycles in a given
conceptual model [MM90]. Also observe that one conceptual model may result in several

15The main reason for 3NF requirement is that it simplifies the ontology extraction process because
each table will correspond to one atomic concept/entity and one or several binary relation(ships), rather
than corresponding to several merged atomic concepts/entities. Anyhow, it should not be seen as a
drawback, since 3NF modeling is a classical relational database modeling technique that minimizes data
redundancy and, at the same time, is generally met without creating an exceedingly complicated schema.
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ER component C Relational table τ(C)

Entity E Table τ(E)
X = attrs(E) columns: X
K = id(E) key(τ(E),K)

Sub-entity S(E) Table τ(S)
X = attrs(S) columns: KX
K = id(E) key(τ(S),K)

τ(S) [K] ⊆ τ(E) [K]

if S1(E), . . . , Sm(E) are disjoint (τ(S1) [K] ∩ . . . ∩ τ(Sm) [K]) = ∅
if S1(E), . . . , Sm(E) are covering (τ(S1) [K] ∪ . . . ∪ τ(Sm) [K]) = τ(E) [K]

n-ary relationship
R(E1, . . . , En), n ≥ 1

Table τ(R)

X = attrs(R)
Ki = id(Ei), for i = 1, . . . , n columns: K1 . . . KnX
if R is functional on Ei side key(τ(R),Ki), for each i = 1 . . . n
if R is non-functional key(τ(R),K1 . . . Kn)

τ(R) [Ki] ⊆ τ(Ei) [Ki], for i = 1, . . . , n

if R is total on Ei side τ(Ei) [Ki] ⊆ τ(R) [Ki]

N:M relationship R(E1, E2) Table τ(R)
X = attrs(R) columns: K1K2X
K1 = id(E1), K2 = id(E2) key(τ(R),K1K2)

τ(R) [Ki] ⊆ τ(Ei) [Ki], for i = 1, 2

if R is total on Ei side, i = 1, 2 τ(Ei) [Ki] ⊆ τ(R) [Ki]

1:N relationship R(E1, E2) Option (a): Table τ(R)
X = attrs(R) columns: K1K2X
K1 = id(E1), K2 = id(E2) key(τ(R),K1)
Let R be functional on E1 side τ(R) [Ki] ⊆ τ(Ei) [Ki], for i = 1, 2

if R is total on Ei side, i = 1, 2 τ(Ei) [Ki] ⊆ τ(R) [Ki]

1:N relationship R(E1, E2) Option (b): Add foreign key to τ(E1)
K1 = id(E1), K2 = id(E2)
Let R be functional on E1 side τ(E1) [K2] ⊆ τ(E2) [K2]

if R is total from E1 to E2 nonnull(τ(E1),K2)
if R is total from E2 to E1 τ(E2) [K2] ⊆ τ(E1) [K2]

1:1 relationship R(E1, E2) Option (a): Table τ(R)
X = attrs(R) columns: K1K2X
K1 = id(E1), K2 = id(E2) key(τ(R),Ki), i = 1, 2

τ(R) [Ki] ⊆ τ(Ei) [Ki], for i = 1, 2

unique(τ(R),K2)
if R is total on Ei side, i = 1, 2 τ(Ei) [Ki] ⊆ τ(R) [Ki]

1:1 relationship R(E1, E2) Option (b): Add foreign key to τ(E1)
K1 = id(E1), K2 = id(E2) τ(E1) [K2] ⊆ τ(E2) [K2]

unique(τ(E1),K2)
if R is total on E1 side nonnull(τ(E1),K2)
if R is total on E2 side τ(E2) [K2] ⊆ τ(E1) [K2]

Table 7: Mapping ER model to relational model.
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different relational schemas, e.g., there are choices in which direction a primary key of
one table may be posted as a foreign key to another table while mapping a one-to-one
relationship. Finally, we assume that the obtained table schemes were not merged (e.g.,
for reducing the number of tables, etc).

12.4 Conceptual schema extraction algorithms

Now we are ready to turn to the algorithm for extracting from a given relational database
an ontology, described in terms of DLR-DB ontology language, plus the set of views, each
of them corresponding to a unique construct in the ontology. The algorithm comprises of
two steps:

1. Classify the relational tables in R according to the correlations between their keys
and foreign keys.

2. Based on output of the first step, extract set of assertions in K of DLR-DB system
and define the corresponding views.

To flesh out the above steps, we begin with the tables created by the standard design
process. If a table is derived by the methodology of translating ER model to relational
model, then Table 7 provides substantial knowledge about how the relational tables can
be classified based on the appearance of their primary and foreign keys.

Before going into details let us fix up the general notation. Let pki denote one of
the keys of relational table Ti, i.e., a sequence of columns Ai such that key(Ti,Ai)

16.
Let FKi be a set of all foreign keys of Ti, i.e., sequences of columns appearing on the
left-hand side of the foreign key constraints of Ti, F(Ti). We denote with fkij ∈ FKi a
foreign key of Ti referencing table Tj . Additionally, if Atti denotes all columns of Ti, then
Xi = Atti − pki − FKi.

The following function Classify classifies all tables in R into the three classes.

16In other words, pki denotes primary key of Ti
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Function Classify(R)

Input: Relational schema R = (Ψ,Σ).
Output: Sets ΨB ,ΨR,ΨS of classified tables.

ΨB := {};
ΨR := {};
ΨS := {};
foreach Ti ∈ Ψ do

Let card(X) be cardinality of set X;
if pki = FKi and card(FKi) = 1 then

ΨS := ΨS ∪ Ti;
end
if pki ∩ FKi = ∅ then

ΨB := ΨB ∪ Ti;
end
if pki ⊆ FKi and card(FKi) > 1 then

ΨR := ΨR ∪ Ti;
end

end

Classify essentially attempts to reverse the function τ . Looking to Table 7 we see
that tables representing entities have keys disjoint with all their foreign keys where every
foreign key represents functional binary relationship with another entity. Thus, tables of
this type are classified as so-called base tables, denoted ΨB, and correspond to atomic
formulae with a single component in DLR-DB K. On the other hand, tables that directly
represent relationships in ER have keys included in the set of all their foreign keys. We
call tables of this type as relationship tables, denoted ΨR, which in DLR-DB correspond
to atomic formulae with n components. Finally, tables that represent sub-entities in ER
have one key that coincide with their only foreign key. We call such tables as specific
tables, denoted by ΨS, which correspond in our ontology to subsumption between two
atomic formulas (both with single components).

We are, at this point, ready to define the algorithm SchemaExtract that takes as input
a relational schema R and returns two structures as output. First, the set of DLR-DB
assertions are generated, defining both atomic formulae and set of axioms between the
formulae, thus expressing constraints in K. Second, a view over the sources is defined for
each atomic formula.

Informally, at step (a), the algorithm for every base table Ti creates an atomic formula
with a single component Ri [pki] with the attributes in a one-to-one correspondence with
key columns in Ti (recall that according to Table 7 a base table corresponds to an entity),
and defines a corresponding view by projecting on all non-foreign key columns of Ti.
Once atomic formulae are generated, relations between objects denoted by these atomic
formulae are identified. Roughly speaking, a foreign key in a base table Ti determines the
relationship between Ti and its referenced table, say Tj. Thus, inclusion dependencies of
the form R [pki] ⊑ Ri

17 are generated stating that the component denoted by pki (2 ≤ k ≤
n) of the relation R is an instance of class Ri. Then the view is defined by joining the two

17When a relation has a single component, for the sake of simplicity the component name is omitted
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Algorithm SchemaExtract(R).

Input: Relational schema R = (Ψ, Σ).
Output: DLR-DB system S.
A := {};
K := {};
V := {};
Classify(R);
(a) foreach Ti ∈ ΨB do
A := A∪Ri [pki];
V := V ∪ Vi : πpki,Xi

(Ti);
end
foreach Ti ∈ ΨB do

if FKi 6= ∅ then
foreach fkij

∈ FKi do
A := A ∪Rk [pki];
A := A ∪Rk [pkj ];
V := V ∪ Vi,j : πpkj ,pki

(Tj ⋊⋉ Ti);
K := K ∪Rk [pki] ⊑ Ri;
K := K ∪Rk [pkj ] ⊑ Rj ;
if fkij

is in N (Ti) then
K := K ∪Ri ⊑ Rk [pki];

end
if fkij

is in U(Ti) then
K := K∪ (funct Rk [pkj ]);

end
if fkij

is in I(Ti) then
K := K ∪Rj ⊑ Rk [pkj ];

end

end

end

end
(b) foreach Ti ∈ ΨR do
V := V ∪ Vi : πAtti

(Ti);
foreach fkij

∈ FKi do
A := A ∪Ri

[
fkij

]
;

K := K ∪Ri

[
fkij

]
⊑ Rj ;

if fkij
= pki or fkij

is in U(Ti) then
K := K∪ (funct R

[
fkij

]
);

end
if fkij

is in I(Ti) then
K := K ∪Rj ⊑ Ri

[
fkij

]
;

end

end

end
(c) foreach Ti ∈ ΨS do
A := A∪Ri

[
fkij

]
;

K := K ∪Ri ⊑ Rj ;
V := V ∪ Vi : πAtti

(Ti);
end
SetDisjCover(E , C);
return V ,A,K;
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Function SetDisjCover(E , C).

Input: Sets of exclusion and covering dependencies, E(T1, . . . , Tm) and C(T1, . . . , Tm, T0),
resp.

Output: Sets of disjointness and covering assertions in K.
foreach exclusion dependency E(T1, . . . , Tm) in relational schema do

foreach Ti, Tj in E(T1, . . . , Tm) do
Let Ti, Tj correspond to atomic formulae Ri, Rj respectively;
K := K ∪Ri disj Rj ;

end

end
foreach covering dependency C(T1, . . . , Tm, T0) in relational schema do

Let T1, . . . , Tm, T0 correspond to atomic formulae Ri, . . . , Rm, R0 respectively;
K := K ∪R1, . . . , Rm cover R0;

end

tables Ti and Tj and by projecting on their keys. Whenever a foreign key in a base table Ti

is constrained to have non-null values, Table 7 suggests mandatory participation for class
Ri (that corresponds to table Ti) in a relation R. Thus, the inclusion assertion Ri ⊑ R [pki]
is included in our ontology. On the other hand, if a foreign key of Ti is constrained to
take unique values, we deduce that a class denoted by relationship Rj corresponding
to the referenced table Tj is functional, and a functional assertion (funct R [pkj ]) is
associated to K. Finally, a foreign key that participates in an inclusion dependency18

clearly determines mandatory participation for class denoted by Rj in a relation R, and
thus the corresponding inclusion dependency is generated.

As for step (b) in SchemaExtract, the view is defined for each relationship table Ti by
projecting on all columns of Ti (as already discussed before, relationship tables correspond
directly to relationships). Then, relation R is determined by defining the appropriate
inclusion assertions (i.e., role-typing). Whenever we have a foreign key of Ti coinciding
with its key or a foreign key constrained to take unique values, we deduce (from Table 7)
that R is functional over the component which instances are of type Rj . Next, mandatory
participation for class denoted by Rj in R is determined if the foreign key of Ti occurs in
the set of inclusion dependencies for Ti.

Finally, at step (c) inclusion assertions are generated for every specific table Ti, where
a relation denoted by an atomic formula Ri

[
fkij

]
corresponding to Ti is subsumed by

relation denoted by an atomic formula Rj [pkj] corresponding to the referenced table
Tj . Additionally, function SetDisjCover generates the set of disjointness and covering
assertions induced by exclusion and covering dependencies, respectively.

The following example illustrates the extraction process.

Example 12.1 Suppose we are given the following table schemes:
Employee(ssn, name, pcode) Project(code, title)
Permanent(essn, monthlySalary) Consultant(essn, dailyWage)

18We assume here that foreign key constraints F(Ti) are excluded from inclusion dependencies I(Ti).
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Assume the following constraints are expressed (we do not list key constraints, they
are underlined in table schemes):

(1) Employee [pcode] ⊆ Project [code]
(2) Permanent [essn] ⊆ Employee [ssn]
(3) Consultant [essn] ⊆ Employee [ssn]
(4) Project [code] ⊆ Employee [pcode]
(5) nonnull(Employee, pcode)
(6) Permanent [essn] ∩ Consultant [essn] = ∅
(7) Permanent [essn] ∪ Consultant [essn] = Employee [ssn]

Applying the first step of the algorithm, tables Employee and Project will be classified
as base tables (i.e., their key and foreign key columns are disjoint). Thus, at step (a)
of the algorithm SchemaExtract, relationships having single components Employee and
Project will be generated. Constraint (1) determines foreign key for table Employee. Thus,
following the steps of our algorithm, the relationship AssignedTo19[employee, project]
with two components is identified. At this point we define the following inclusion
assertions (corresponding to role-typing): AssignedTo [employee] ⊑ Employee and
AssignedTo [project] ⊑ Project. Furthermore, inclusion dependency in (4) determines
mandatory participation for Project in a relationship AssignedTo [employee, project].
Thus, we obtain the inclusion assertion Project ⊑ AssignedTo [project]. On the
other hand, nulls-not-allowed constraint in (5) imposes mandatory participation for
Employee in AssignedTo [project], and we have the inclusion assertion Employee ⊑
AssignedTo [employee].

As for tables Permanent and Consultant, they will be classified by Classify as specific
tables. Then, following step (c) of SchemaExtract, relationships with single components
Permanent and Consultant will be identified, and the corresponding inclusion assertions
Permanent ⊑ Employee and Consultant ⊑ Employee (based on inclusion dependen-
cies in (2) and (3)) will be defined. Finally, constraints in (6) and (7) determine dis-
jointness and covering assertions, and thus we have Permanent disj Consultant, and
Permanent, Consultant cover Employee.

12.5 Related Work

A potentially relevant work includes database reverse engineering, which is the process of
two distinct steps: i) eliciting the data semantics from the system (like keys and foreign
keys), and ii) expressing the extracted semantics with a high level data model, such as
an ER diagram [Hai98]. Many approaches to this overlook the first step by assuming
that some of the data semantics is known, but such assumptions may not hold for legacy
databases (for a survey see [JS99]). Sophisticated algorithms and approaches to database
reverse engineering have appeared in the literature over the years (e.g., [MM90, CBS94,
Alh03]). Our ontology extraction algorithm uses the idea of classifying the relational
tables based on correlations between their keys and foreign keys, which with a more
broad view is defined in [CBS94].

19For the sake of clarity we use meaningful names for extracted relationships.
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13 Query Containment and Satisfiability

13.1 Introduction

The query containment problem is a question of whether the result of one query is always
contained in the result of another. The most interesting and practically significant instance
of the problem arises when queries are posed against databases that satisfy constraints. In
this case, query results that are otherwise not contained within each other might become
contained if we restrict the attention to databases that satisfy a given set of constraints.

In dealing with this problem, an important issue is the form of the constraints and
where they are coming from. If no restriction on the form of the constraints is placed,
the containment problem may be computationally hard or even undecidable. However,
in practice, constraints typically come from design tools that follow certain methodology,
such as the Entity-Relationship Model.

We take the same approach and considers the constraints that typically arise from
object-oriented design, in a single ontology setting. The specific data model that we use
comes from F-logic, a knowledge representation formalism that has generated considerable
interest in the academia, within various standardization efforts, and commercially as a
means for building ontologies and for reasoning on the Semantic Web. F-logic queries
have one property that is not present in the query classes considered so far: it has meta-
querying capability, i.e., it can query data and schema in a uniform way. This property
is considered important in knowledge integration and service discovery on the Semantic
Web. The need to access schema information has been recognized in other languages as
well, albeit the facilities that are made available to the user are often rather awkward.
For instance, SQL databases provide access to the system catalog and Java has reflection
API for the same purpose.

Here, we show that query containment is decidable for a subset of conjunctive F-logic
meta-queries, and is in NP. This subset, which we call F-logic lite, excludes negation and
default inheritance, and allows only a limited form of cardinality constraints.

Fortunately, for this contribution we need only a very limited amount of background
on F-logic, which will be introduced in this section. However, we assume familiarity with
Datalog and Logic Programming.
Basic F-logic notation. Unlike classical predicate calculus, F-logic has special atomic
formulas to represent the various object-oriented concepts that are common to object-
oriented and frame-based systems. For instance, john:student states that object
john is a member of class student; freshman::student and student::person state
that class freshman is a subclass of the class student and student is a subclass of
person. These statements imply, for instance, that john:person (john is a student) and
freshman::person (class freshman is a subclass of person) are true statements.

A statement of the form john[age->33] means that object john has an attribute,
age, whose value is 33. Actually, this really means that 33 is just one of the values of the
attribute age — to say that 33 is the only value, one would need a cardinality constraint,
as explained later.

Common constraints such as type constraints and cardinality constraints are
specified via so called signature statements. A typical signature has the form
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person[age*=>number]. It says that the attribute age of class student has the type
number and that this type is inherited by subclasses and class instances of person. This
acts as a constrain on the statements of the form john[age->33]. That is, for every
object in class person the value of the attribute age must be an object of class number.

Cardinality constraints can also be specified using signature statements. For instance,
to say that the attribute age has at most one value, one would write person[age {0:1}
*=> number]. Another frequently used cardinality constraint states that a certain at-
tribute in a class is mandatory, i.e., it must have at least one value on any object in the
class. For instance, to say that the name attribute is mandatory in class person, we write
person[name {1:*} *=> string].

As mentioned in the introduction, F-logic treats object data and meta-data in a uni-
form way. This is primarily manifested in the following two ways:

• Classes are also objects, so, for example, statements like student:class are correct.
Here student, which was previously seen in a context of a class (john:student),
now occurs in a context of an object—a member of the class class. (Note
that it does not follow from this and the previous statements that john:class,
freshman:class, or student::class.)

• Variables can occur anywhere an object, an attribute, or a class is allowed. In the fol-
lowing, we will be using capitalized words as variable names. For instance, john:X,
Y::person, john[Att->33], and person[Att*=>Val] are all allowed statements
where X, Y , Att, and V al are variables.

The above properties enable simple and natural formulation for a wide variety of meta-
queries—queries that return information about the schema of the database instead of the
data stored in it. For instance, the answer to the meta-query

?- X::person.

could be X = employee and X = student, and the answer to the meta-query

?- student[Att*=>string].

could be Attr = name and Attr = major. Queries can also mix the meta and the object
levels. For instance, the mixed query (where “,” denotes “and”)

?- student[Att*=>string], john[Att->Val].

will return a set of attribute-value pairs for the attributes of type string in class student.
Only the attributes that have defined values for object john are returned. Incidentally,
john does not need to be a member of class student for such a query to return a result.

Examples of meta-queries. Meta-querying is a commonly acknowledged need in knowl-
edge representation — especially on the Semantic Web. To show that it is not such an
esoteric idea, we give some examples of meaningful meta-queries and the corresponding
query containments. Consider the following rule:

q(A,B) :- T1[A*=>T2], T2::T3, T3[B*=>_].
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As usual, :- here denotes Datalog implication. The part to the left of :- is the head of the
rule and the part to the right is the rule body. The comma separating the statements in
the rule body is an abbreviation for conjunction, and the symbol is a common notation
for a completely new variable that does not appear anywhere else in the rule. (Different
occurrences of denote different variables.)

The above rule defines a set of pairs (A,B) of attributes that are joinable in a path
expression of the form A.B (that is, the range of A is contained in the domain of B). If we
now examine the following rule

qq(A,B) :- T1[A*=>T2], T2[B*=>_].

we will see that the query containment q ⊆ qq holds.
For another example, consider the following rule:

q(Att,Class,Type) :-

Class[Att {1,*} *=> _],

Class[Att*=>Type],

_:Class.

Recall that {1,*} is a cardinality constraint that says that Att must have at least one
value, i.e., it is a mandatory attribute. This rule defines a set of triples (Att,Class,Type)
such that Att is a mandatory attribute in Class of type Type and, furthermore, Class is
nonempty. Note that here we are querying meta-data that is subject to certain constraints:
only the mandatory attributes are of interest and only the classes that have at least one
member in the database. Consider now the following rule:

qq(Att,Class,Type) :-

O:Class, O[Att->V], V:Type.

It is easy to see that the containment q ⊆ qq holds.

Low-level encoding of F-logic primitives. The above notation was used to motivate
the problem and to define the target class of queries. The actual theoretical development
will use an encoding of the semantics of a subset of F-logic using the standard logic
programing notation. The encoding relies on the equivalence result of [KLW95].

The subset of F-logic, which we will consider will be referred to as F-logic Lite. This
subset is characterized by the absence of negation and nonmonotonic features of F-logic
(such as default inheritance) and by allowing only the cardinality constraints of the form
{1:*} — a constraint that says that the corresponding attribute in mandatory — and
of the form {0:1} — a constraint that marks functional (single-valued) attributes. Some
other features, such as default values and non-inheritable types, are also ignored.

The encoding, uses the following predicates, whose set we will denote by PFL:

• member(O, C): object O is a member of class C.
This is the encoding for O : C.

• sub(C1, C2): class C1 is a subclass of class C1.
This encodes the statement C1 :: C2.
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• data(O, A, V ): attribute A has value V on object O. This is the encoding for
O[A->V ].

• type(O, A, T ): attribute A has type T for object O (recall that in F-logic classes are
also objects). This encodes the statements of the form O[A*=>T ].

• mandatory(A, O): attribute A is mandatory for object (class) O, i.e., it must have at
least one value for O. This is an encoding of statements of the form O[A {1:*}*=> ].

• funct(A, O): A is a functional attribute for the object (class) O, i.e., it can have at
most one value for O. This statement encodes O[A {0:1}*=> ].

Note that this encoding places meta-data (classes and attributes) and object data at the
same level, which is needed for supporting F-logic meta-queries. This encoding is also
related to, but is slightly different from, the usual encoding of RDF in first-order logic.

We can now formulate the axioms that represent the low-level encoding of the F-logic
primitives discussed above in standard predicate notation. We annotate each rule in the
encoding to make it easier to follow.

1. Type correctness:
member(V, T )← type(O, A, T ), data(O, A, V ).
This encodes the semantics of the constraint that an F-logic signature like O[A *=>

T] imposes on a statement like O[A -> V]; that is, that V must be of type T.

2. Subclass transitivity:
sub(C1, C2)← sub(C1, C3), sub(C3, C2).
This rule encodes the fact that the subclass relationship is transitive.

3. Membership property:
member(O, C1)← member(O, C), sub(C, C1).
This is the usual property that relates class membership and subclass relationship:
O:C and C::C1 imply O:C1.

4. Functional attribute property:
V = W ←

data(O, A, V ), data(O, A, W ), funct(A, O).
This rule states that if we have O[A->V], O[A->W], and the attribute A is single-
valued then X must equal W .

5. Mandatory attributes definition:
∀O, A ∃V data(O, A, V )← mandatory(A, O). This states that mandatory attributes
must have at least one value. Note that this is not a Datalog rule (not even a Horn
rule) because it has an existentially quantified variable in the head.

6. Inheritance of types from classes to members:
type(O, A, T )← member(O, C), type(C, A, T ).
This rule expresses the usual property of type inheritance: the type of an attribute
is inherited from superclasses to class members.
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7. Inheritance of types from classes to subclasses: type(C, A, T ) ←
sub(C, C1), type(C1, A, T ).
This states that subclasses inherit types from superclasses.

8. Supertyping:
type(C, A, T )← type(C, A, T1), sub(T1, T ).
This states that T1::T and C[A *=> T1] entails C[A *=> T]. This is also one of the
usual properties of typing: if an attribute has certain type then any supertype of
that type will also do.

9. Inheritance of mandatory attributes to subclasses:
mandatory(A, C)← sub(C, C1), mandatory(A, C1).
This states that a mandatory attribute of a class is also a mandatory attribute of
its subclasses.

10. Inheritance of mandatory attributes from classes to their members:
mandatory(A, O)←

member(O, C), mandatory(A, C).
Like in (9), but this time inheritance of the mandatory property is to class members
rather than subclasses.

11. Inheritance of functional property to subclasses:
funct(A, C)← sub(C, C1), funct(A, C1).
If A is a single-valued attribute in a class then it must be single-valued in the
subclasses of that class.

12. Inheritance of functional property to members:
funct(A, O)← member(O, C), funct(A, C).
Like (11), but this time inheritance of the single-valued property is to class members.

In the following, we will denote the above set of rules by ΣFL. We will also refer to the
i-th rule as ρi. The above statements are all Datalog rules except ρ4 and ρ5. Rule ρ4 uses
equality in the head and ρ5 has an existential quantifier in the rule head and thus invents
new (fresh) values. Also, most of the rules are recursive. Additional properties of this
encoding are studied in the next section.

Thanks to the above encoding, we can express any F-logic Lite database and its schema
as a relational database augmented with a set of rules for deriving new information and
for expressing constraints. We shall consider only the databases that satisfy the above
set of rules.

Query containment. The query containment problem for F-logic Lite can be now
stated as follows. Given a pair of meta-queries, q1 and q2, over the predicates PFL of the
above encoding of F-logic Lite, we say that q1 is contained in q2 with respect to ΣFL,
denoted q1 ⊆ΣFL

q2, if for every database B that satisfies ΣFL we have q1(B) ⊆ q2(B),
where q(B) denotes the result of query q on B.

In our case we will focus on positive conjunctive queries [AHV95], i.e., the queries that
are conjunctions of the predicates in PFL and no negation is allowed.
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13.2 Checking Query Containment

In this section we study the problem of query containment for queries expressed over
the schema PFL derived from the low-level encoding of F-logic Lite. We recall that the
encoding is entirely relational plus the rules ΣFL shown in Section 13.1. First, we introduce
the notion of homomorphism, which is of fundamental importance in conjunctive query
containment [CM77]. We remind that for conjunctive queries over generic relational
schemata without constraints, a homomorphism from the body of a query q2 to the body
of another query, q1, which also maps the head of q2 to the head of q1, implies q1 ⊆ q2.
Indeed, if the body of q1 is mapped by a homomorphism to facts of a database, B, so that
the head of q1 is mapped to tuple t, then by composing the homomorphisms q2 −→ q1

and q1 −→ B we get a homomorphism that maps the body of q2 to the facts of B and
the head of q2 to t. Thus, every tuple produced by q1 is also produced by q2.

Given a database B and a query q, a homomorphism from q to B is a function from
the symbols of q to the values of B that maps every constant occurring in q to itself and
variables of q to constants in B. This induces a well defined map from the conjuncts of q
to the tuples of the corresponding relations in B. In particular, a conjunct r(c1, . . . , cn)
in q is mapped by a homomorphism µ to a fact r(µ(c1), . . . , µ(cn)) in B. We also extend
the definition to sets of conjuncts: given a set of conjuncts C = {c1, . . . , cn}, we define
µ(C) = {µ(c1), . . . , µ(cn)}.

13.2.1 Containment by chasing

Now we come to the notion of chase of a query with respect to our set of rules ΣFL. The
chase [MMS79, JK84] is a tool for representing databases that satisfy certain dependencies,
and it is used to check implication of dependencies and containment of queries under
dependencies. Given a database, the chase is constructed by a sort of repair of the
database w.r.t. the rules that are not satisfied. In particular, in our case, violations of all
rules except ρ4 are repaired with the addition of suitable tuples, while violations of ρ4 are
repaired by equating constants that are not equal. The rules in ΣFL−{ρ4} are called tuple-
generating dependencies, while ρ4 is an equality generating dependency. The query q to be
“chased” is treated as a database, and new tuples (or conjuncts) are added according to
the rules. The chase of a query q, denoted chaseΣFL

(q), is a database constructed starting
from body(q) [CK06]. The construction of the chase proceeds iteratively applying the
rules; in case of cyclic rules, which is our case, it is possible that the construction of the
chase does not terminate.

Example 13.1 Consider the following meta-query:

q(V1, V2) ← data(O, A, V1), data(O, A, V2),

funct(A, C), member(O, C)

In the construction of chaseΣFL
(q), rule ρ12 will add the conjunct funct(A, O) and then,

by rule ρ4, we will replace V2 with V1 and obtain

q(V1, V1) ← data(O, A, V1), data(O, A, V1),

funct(A, O),

funct(A, C), member(O, C)
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Therefore, the chase procedure may have side effects on the head of the query. Hence-
forth we shall use head(chaseΣFL

(q)) to denote the head of the query q as it is transformed
by the construction of chaseΣFL

(q) according to ΣFL.
A notion that is needed for technical reasons, and also for somehow “measure” how

far we go in the construction of the chase, is the chase graph. In this graph, the notion of
level roughly indicates how far we need to go in the chase starting from the initial query.
This is crucial for our purposes, since we will show that in order to test containment we
will need to examine the chase only up to a certain level. Intuitively, the initial facts are
considered at level 0, and at every iterative construction step that starts from level k, a
new level, numbered with k + 1, is created.

The following theorem provides the basic tool for checking containment of queries
over PFL. Intuitively, in the containment check between two queries q1 and q2, body(q1)
represents the set of tuples in a generic database B that lead to an answer tuple in q(B).
Since we need to check containment under ΣFL, we need to take into account not only
body(q1), but also further tuples that the rules guarantee to be in B; therefore, we need
to consider chaseΣFL

(q1). This is stated as follows.

Theorem 13.2 Let q1 and q2 be two conjunctive queries over PFL with the same arity.
Then q1 ⊆ΣFL

q2 if and only if there exists a homomorphism that sends the conjuncts of
body(q2) to conjuncts in chaseΣFL

(q1) and head(q2) to head(chaseΣFL
(q1)).

The previous theorem establishes a criterion for checking containment, but it is not
directly applicable, since it does not suggest an algorithm for deciding containment. In
fact, the iterative construction of the chase by application of the chase rules may not
terminate. In the following section we will first show some properties of the chase, and
then we will show that, in order to test containment of meta-queries, only a finite portion
of the chase is necessary.

13.2.2 Decidabilty of containment

In this section we show that containment of object meta-queries is decidable, and we
give a nondeterministic polynomial time algorithm for checking containment between two
object meta-queries. We show that only a finite portion of the possibly infinite chase
is necessary to check containment with the technique suggested by Theorem 13.2, and
then we present an algorithm for query containment, showing an upper bound for the
complexity of the problem.

For technical reasons, we will do the chase in a special way. This will isolate some of
the peculiarities of the chase and allow us to concentrate on more important properties.
Namely, we shall first proceed with the chase with respect to all the rules except for ρ5;
such a preliminary chase always terminates, since no new constant is generated.

To simplify matters, we will view all tuples in chaseΣ−
FL

(q) as being at level 0, where

Σ−
FL

= ΣFL − {ρ5}. This will allow us to isolate the initial part of the chase from the
cyclic phase (if the latter takes place). First of all it is not difficult to notice that, in
the construction of the chase for a query q with respect to the set ΣFL, the only way to
have an infinite chase is the iterative application of rules ρ5-ρ1-ρ6-ρ10. This happens when
q contains at least a set of atoms specifying a cycle of mandatory attributes A1, . . . , Ak
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belonging to classes T1, . . . , Tk, respectively, where Ai is of type Ti+1 for all i ∈ {1, . . . , k−
1} and Ak is of type T1. More precisely, we need q to have conjuncts of the following
form:

mandatory(A1, T1)
type(T1, A1, T2)
. . .
mandatory(Ak−1, Tk−1)
type(Tk−1, Ak−1, Tk)
mandatory(Ak, Tk)
type(Tk, Ak, T1)

In such a case, if there is no atom in q of the form data(T1, A1, v), where v is a constant
or variable, the chase process yields the following series of conjuncts:

cycle 1 : data(T1, A1, v1)
member(v1, T2)
type(v1, A2, T3)
mandatory(A2, v1)

cycle 2 : data(v1, A2, v2)
member(v2, T3)
type(v2, A3, T4)
mandatory(A3, v2)
. . .
. . .

cycle k − 1 : data(vk−2, Ak−1, vk−1)
member(vk−1, Tk)
type(vk−1, Ak, T1)
mandatory(Ak, vk−1)

cycle k : data(vk−1, Ak, vk)
member(vk, T1)
type(vk, A1, T2)
mandatory(A1, vk)

In the rest of the chase, at levels greater than 0, the only other applications of a rule
in ΣFL occur due to the application of ρ3 or ρ8. In this case, depending on the conjuncts
al level 0, new cycles may start. All other rules are applied in chaseΣ−

FL

(q) (i.e., in the

initial construction of level 0 of the chase graph), and they are never applied again at
higher levels.

The aforementioned properties of the chase disclose that the chase has some regularity
properties; indeed, such properties can be exploited for showing, analogously to what is
done in [JK84], that the chase has a sort of periodicity, so that the levels above a certain
limit provide no additional information regarding containment. This is the main property
behind the key result, mentioned earlier, asserting that a set of n conjuncts in the chase
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of a query q can be mapped by a homomorphism to another set of conjuncts at levels
lower than a certain limit, which depends on n and q.

Lemma 13.3 Given a query q over PFL, consider a set of conjuncts C = {c1, . . . , cn} in
chaseΣFL

(q). Then there exists a homomorphism h from C to chaseΣFL
(q) such that for

every i, 1 ≤ i ≤ n, we have level(h(ci)) ≤ n · δ, where δ = 2 · |q|.

As a consequence of the previous lemma, to check q1 ⊆ΣFL
q2 we only need to find a

homomorphism from q2 to an initial, a priori bounded finite segment of chaseΣFL
(q1).

Theorem 13.4 Let q1 and q2 be two conjunctive queries over PFL with the same ar-
ity. Then q1 ⊆ΣFL

q2 if and only if there exists a homomorphism that sends the con-
juncts of body(q2) to conjuncts in the first |q2| · δ levels of chaseΣFL

(q1), and head(q2) to
head(chaseΣFL

(q1)), where δ = 2 · |q1|.

Finally, we characterize the computational complexity of the problem of checking
containment of queries by giving an upper bound for the problem. We do this by exhibiting
an algorithm for checking containment, which obeys the bounds.

Theorem 13.5 Consider two conjunctive queries q1, q2 on PFL. Containment q1 ⊆ΣFL
q2

of q1 in q2 can be decided by a nondeterministic algorithm running in time polynomial in
|q1| and |q2|.

13.3 Related work

The problem of query containment has attracted considerable interest in the database
and knowledge representation communities. In databases, query containment is key to
query optimization and schema integration [ASU79b, JK84, MLF00], and in knowledge
representation it has been widely used in Description Logic [BCM+03a] for object clas-
sification, schema integration, service discovery, and more [CDGL02, LH03]. A study of
this problem was pioneered by Johnson and Klug in [JK84] in the relational case, where
functional and inclusion dependencies hold on the database schema, and then further
studied in other works [CDGL98a, Cal06]. A study about query containment over ob-
ject databases is found in [LS97]; however, in the framework of this work there is no
possibilities of meta-queries as in F-Logic.

F-logic was introduced in [KL89, KLW95] as a formalism for object-oriented de-
ductive databases. Since then it received further development and was implemented
in the FLORA-2 and FLORID knowledge representation systems as well as commer-
cially [YKZ03, FLOa, FHL+98, FLOb, Ont, SD02]. We considered the problem of query
containment for conjunctive meta-queries over F-logic knowledge bases; this important
class of queries has not been covered by the known results on query containment. Earlier
works on the subject are [CDGL98a, Cal06]; F-logic queries and the associated constraints
are different from the formalisms adopted in these works: for instance, decidability does
not follow from [CDGL98a] because conjunctive F-logic queries involve certain recursion,
unions, and joins of ternary predicates, which are not allowed in [CDGL98a].
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The practical upshot of the results we presented here is that they pave the way to the
use of query containment for F-logic based applications in query processing, ontology inte-
gration, and Web service modeling and discovery [AL04, Kif05, LBT92, dB05, BBB+05].
These results are also relevant to the Semantic Web language RDF [Le99] and the recently
proposed query language for it, called SPARQL [PS05]; RDF has many of the meta-data
features of F-logic and SPARQL can query them.
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14 Query Satisfiability, Disjointness, and Contain-

ment

14.1 Introduction

Query management is very significative for ontology design and maintenance, since we
can make use of queries to construct views that can be exploited for the task of view-
based ontology design and maintenance. More precisely, query management groups the
following reasoning techniques

• Query satisfiability, i.e., determining if a query q is consistent with respect to the
ontology over which it is formulated, i.e., establishing whether there exists a model
of the ontology in which the query is evaluated to a non-empty set.

• Query disjointness, i.e., determining whether two queries expressed over the same
ontology are disjoint from each other. They are disjoint if their answer sets are
always mutually exclusive for every possible model of the ontology.

• Query containment, i.e., determining whether a query q1 expressed over an ontology
is contained in a query q2 expressed over the same ontology, i.e., establishing whether
in all possible models of the ontology, q1 is evaluated to be a subset of the evaluation
of q2.

Notice that the above techniques are interesting in all setting considered by the TONES
logical framework, i.e., stand-alone ontologies, situated ontologies, or peer ontologies. For
easy of exposition, we consider them here in the setting of stand-alone ontology.

Techniques for query management have been studied under different choices for the
language used to specify the ontology over which the query are issued and the language
used to express queries (see e.g. [CDGL97, CDGL98a, CDGL07, HT00]). We consider
here this problem in the setting in which

(a) ontologies are expressed in DL-Lite [CDGL+05a], a DL that is specifically tailored
to capture basic ontology languages, while keeping low complexity of reasoning (in
particular, in LogSpace in the size of the instances in the knowledge base, a.k.a.
data complexity), and therefore it is particularly suited for reasoning services relying
on queries;

(b) queries belong to the class of conjunctive queries that is the most expressive class
of queries that go beyond instance checking, and for which decidability of query
answering (and therefore query containment) has been proved in DLs [CDGL00,
OCE06, GHLS07].

DL-Lite is a subset of the DL SHOIQ, introduced in Section 2. In particular, DL-Lite

presents some limitations in using constructs to specify complex concepts and in the
kind of concepts that can occur in the right-hand of inclusion between concepts; also
DL-Lite does not allow for the specification of inclusions between roles, and permits
to express only functionality restrictions on roles or on the inverse of roles, but does
not allow for generic cardinality constraints. All the above limitations ensure the nice
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computational complexity characteristics we mentioned before, i.e., reasoning services, as
query answering of (union of) conjunctive queries, are in LogSpace in data complexity.
Notably, query answering in DL-Lite can be solved by means of evaluation of suitable
domain independent first-order logic queries (thus expressible in SQL) over the underlying
DL-Lite ABox considered as a flat relational database. This allows us to take advantage
of well established Relational Data Base Management System (RDBMS) technology for
reasoning over queries in DL-Lite.

We point out that, although DL-Lite is quite simple from the language point of view,
it allows for querying the extensional knowledge of a KB in a much more powerful way
than usual DLs, in which only membership to a concept or to a role can be asked, whereas
DL-Lite allows for using conjunctive queries of arbitrary complexity. At the same time,
DL-Lite is able to capture the main notions (though not all, obviously) of both ontologies,
and of conceptual modeling formalisms used in databases and software engineering (i.e.,
ER and UML class diagrams). In particular, DL-Lite assertions allow us to specify ISA,
e.g., stating that a concept is subsumed by another concept; disjointness, e.g., stating that
two concepts are disjoint; role-typing, e.g., stating that the first or the second component
of a relation is an instance of a certain concept; participation constraints, e.g., stating that
all instances of a concept participate to a relation as the first or the second component;
non-participation constraints, e.g., stating that no instance of a concept participates to
a relation as the first or the second component; functionality restrictions on relations.
Notice that DL-Lite is a strict subset of OWL Lite20, which presents some constructs
(e.g., some kinds of role restrictions) that are non expressible in DL-Lite, and that make
reasoning in OWL Lite non-tractable in general.

In the rest of this section we first formally present the DL-Lite language, then we tackle
query satisfiability, query disjointness and query containment. Finally, briefly discuss
some related work.

14.2 DL-Lite

As usual in DLs, DL-Lite allows for representing the domain of interest in terms of con-
cepts and roles. DL-Lite concepts are defined as follows:

B ::= A | ∃r | ∃r−

C ::= B | ¬B

where A denotes an atomic concept and r denotes an (atomic) role; B denotes a basic
concept that can be either an atomic concept, a concept of the form ∃r, or a concept of
the form ∃r−, which involves an inverse role. C denotes a (general) concept. Note that
we use negation of basic concepts only, and we do not allow for disjunction.

As said in Section 2, a DL KB is a triple (T ,H,A), where T is a TBox, H a role hier-
archy, and A an ABox. Since DL-Lite does not allow for specifying subsumptions between
roles, a DL-Lite KB is simply a pair (T ,A). In particular, DL-Lite TBox assertions are
of the form

B ⊑ C inclusion assertions
(funct r), (funct r−) functionality assertions

20http://www.w3.org/TR/owl-features
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An inclusion assertion expresses that a basic concept is subsumed by a general concept,
while a functionality assertion expresses the (global) functionality of a role, or of the
inverse of a role.

We observe that we might include B1⊔B2 in the constructs for the left-hand side of the
inclusion assertions (where ⊔ denotes union) and C1 ⊓C2 in the constructs for the right-
hand side (where ⊓ denotes conjunction). In this way, however, we would not extend
the expressive capabilities of the language, since these constructs can be simulated by
considering that B1 ⊔B2 ⊑ C is equivalent to the pair of assertions B1 ⊑ C and B2 ⊑ C,
and that B ⊑ C1 ⊓ C2 is equivalent to B ⊑ C1 and B ⊑ C2. Similarly, we might add
⊥ (denoting the empty set) to the constructs for the left-hand side and ⊤ (denoting the
whole domain) to those for the right-hand side.

Hereinafter, we call positive inclusions (PIs) assertions of the form B1 ⊑ B2, whereas
we call negative inclusions (NIs) assertions of the form B1 ⊑ ¬B2.

As for the ABox, DL-Lite allows for assertions of the form:

B(a), r(a, b) membership assertions

where a and b are constants. These assertions state respectively that the object denoted
by a is an instance of the basic concept B, and that the pair of objects denoted by (a, b)
is an instance of the role r.

As already said, DL-Lite allows for querying the extensional knowledge of a KB by
means of conjunctive queries. A conjunctive query (CQ) over a DL-Lite knowledge base
K is an expression of the form

{ ~x | ∃~y.conj (~x, ~y) }

where ~x are the so-called distinguished variables, ~y are existentially quantified variables
called the non-distinguished variables, and conj (~x, ~y) is a conjunction of atoms of the form
B(z), or r(z1, z2), where B and r are respectively a basic concept and a role in K, and
z, z1, z2 are constants in K or variables in ~x or ~y. The number of distinguished variables
in a query q is called the arity of the q. A boolean conjunctive query is a CQ that does
not involve distinguished variables, i.e., it is an expression of the form { | ∃~y.conj (~y) }.
Given a boolean CQ of the form above, we may simply denote it as ∃~y.conj (~y).

A union of conjunctive queries (UCQ) q is a query of the form

{ ~x |
∨

i=1,...,n

∃~yi.conj i(~x, ~yi) }

where each conj i(~x, ~yi) is, as before, a conjunction of atoms and equalities with free
variables ~x and ~yi. Obviously, the class of union of conjunctive queries contains the class
of conjunctive queries. The notion of boolean UCQ is analogous to the notion of boolean
CQ.

As for the semantics of a DL-Lite KB, we refer the reader to Section 2 for the notion of
interpretation of concepts, roles, membership assertions, and TBox inclusion assertions.
Furthermore, we say that an interpretation I = (∆I , ·I) satisfies a functionality assertion
(funct r) if (c, c′) ∈ rI ∧ (c, c′′) ∈ rI ⊃ c′ = c′′, similarly for (funct r−). We also say that
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an interpretation I for a DL-Lite KB K is a model of K, denoted I |= K, if I satisfies all
inclusion, functionalities, and membership assertions in K.

A conjunctive query q = { ~x | ∃~y.conj (~x, ~y) } is interpreted in an interpretation I =
(∆I , ·I) as the set qI of tuples ~c ∈ ∆I×. . .×∆I such that when we substitute the variables
~x with the objects ~c, the formula ∃~y.conj (~x, ~y) evaluates to true in I. Analogously, a union
of conjunctive query q = { ~x |

∨
i=1,...,n ∃~yi.conj i(~x, ~yi) } is interpreted in I as the set qI

of tuples ~c ∈ ∆I × . . .×∆I such that when we substitute the variables ~x with the objects
~c, the formula

∨
i=1,...,n ∃~yi.conj i(~x, ~yi) evaluates to true in I.

As for boolean queries, given a boolean CQ q = { | ∃~y.conj (~y) } over a DL-Lite KB
K, and an interpretation I for K, qI consists of the only empty tuple, i.e., the tuple of
arity 0, in the case in which the sentence ∃~y.conj (~y) is true in I, whereas qI is empty if
such a sentence is false in I. Analogously for boolean UCQs.

Notice that very recently, under WPs 4 and 6 of the TONES project, some extensions
of the DL presented above have been considered, which have the same characteristics
with respect computational complexity and possibility of solving reasoning by means of
first-order query evaluation over a relational database instance [CDGL+]. In fact, the
term DL-Lite refers to an entire family of DLs, and the DL considered here is only one of
such DLs (also called DL-LiteF , for its capability of specifying functionality restrictions on
roles). We point out, however, that all results presented in the following apply, provided
minor adaptations, to all DLs of the DL-Lite family.

14.3 Query Satisfiability

As already said, given a query q specified over an ontology O, query satisfiability is the
problem of verifying whether there exists a model of O in which the query is evaluated
to a non-empty set. For a DL-Lite KB and a conjunctive query, the problem can be
formalized as follows. Given a DL-Lite TBox T and a conjunctive query q over T , we say
that q is satisfiable wrt T if there exists a modelM of T such that qM 6= ∅.

In what follows we provide a technique for conjunctive query satisfiability over DL-Lite

KBs. The technique is based on a reduction of the above problem to the problem knowl-
edge base satisfiability in DL-Lite. We recall that, given a DL-Lite KB K, the problem of
KB satisfiability for K is the problem of checking whether there exists an interpretation I
for K such that I |= K. Such a problem is under investigation within the TONES project
under the Work Package 4 (WP4 – “Ontology access, processing, and usage”) and Work
Package 6 ( WP6 – “Ontology interoperation”), within which a technique for checking
satisfiability of DL-Lite KBs has provided. Such a technique has been recently presented
in [CDGL+]. We now first briefly recall this technique and then provide our algorithm for
query satisfiability.

14.3.1 An algorithm for KB satisfiability

We first introduce two preliminary definitions.

Definition 14.1 Given an ABox A we denote by db(A) = (∆db(A), ·db(A)) the interpre-
tation defined as follows:
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∆db(A) is a non-empty set which contains all constants occurring in A,

adb(A) = a, for each constant a,

Adb(A) = {a | A(a) ∈ A}, for each atomic concept A, and

P db(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P .

Roughly speaking, db(A) is a minimal interpretation of the ABox A, in which we
interpret every constants occurring in A by itself.

Definition 14.2 Let T be a DL-Lite TBox. We call NI-closure of T , denoted by cln(T ),
the TBox obtained inductively as follows:

1. all negative inclusion assertions in T are also in cln(T );

2. all functionality assertions in T are also in cln(T );

3. if B1 ⊑ B2 is in T and B2 ⊑ ¬B3 or B3 ⊑ ¬B2 is in cln(T ), then also B1 ⊑ ¬B3 is
in cln(T );

4. if one of the assertions ∃r ⊑ ¬∃r, or ∃r− ⊑ ¬∃r− is in cln(T ), then both such
assertions are in cln(T );

In other words, cln(T ) is a special TBox that does not contain PIs and is obtained
by closing the NIs in T with respect to the PIs in T (notice, however, that not all NIs
logically implied T are inserted in cln(T ), but only those that are useful for our aims).

The following notable theorem tells us how to check satisfiability of a DL-Lite KB.

Theorem 14.3 Let K = (T ,A) be a DL-Lite KB. Then, K is satisfiable if and only if
db(A) is a model of the DL-Lite KB (cln(T ),A).

At this point, it is not difficult to show that verifying if db(A) is a model of (cln(T ),A)
can be done by simply evaluating a suitable boolean conjunctive queries (with inequalities)
over db(A) itself. In particular we define a translation function δ from assertions in cln(T )
to boolean conjunctive queries with inequalities, as follows

δ((funct r)) = ∃x, y, z.r(x, y) ∧ r(x, z) ∧ y 6= z
δ((funct r−)) = ∃x, y, z.r(x, y) ∧ r(z, y) ∧ x 6= z
δ(B1 ⊑ ¬B2) = ∃x.γ1(x) ∧ γ2(x)

where in the last equation γi(x) = Ai(x) if Bi = Ai, γi(x) = ∃yi.ri(x, yi) if Bi = ∃ri, and
γi(x) = ∃yi.ri(yi, x) if Bi = ∃r−i .

The algorithm Consistent, described in Figure 14, takes as input a DL-Lite KB, com-
putes db(A) and cln(T ), and evaluates over db(A) the boolean union of conjunctive
queries obtained by taking the union of all boolean conjunctive queries returned by the
application of the above function δ to every assertion in cln(T ).

In the algorithm, the symbol ⊥ indicates a predicate whose evaluation is false in every
interpretation. Therefore, in case in which neither functionality assertions nor negative
inclusion assertions occur in K, q

db(A)
unsat = ⊥db(A), and therefore Consistent(K) returns true.

The following theorem establishes soundness and completeness of the above technique.
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Algorithm Consistent(K)
Input: DL-Lite knowledge base K = (T ,A)
Output: true if K is satisfiable, false otherwise
begin

qunsat = ⊥;
for each α ∈ cln(T ) do

qunsat = qunsat ∨ δ(α);

if q
db(A)
unsat = ∅ return true;

else return false;
end

Figure 14: The algorithm Consistent

Lemma 14.4 Let K = (T ,A) be a DL-Lite KB. Then, the algorithm Consistent(K) ter-
minates, and K is satisfiable if and only if Consistent(K) = true.

As for computational complexity, the following result holds

Lemma 14.5 In DL-Lite knowledge base satisfiability is PTIME in the size of the whole
knowledge base (combined complexity).

14.3.2 An algorithm for query satisfiability

In Figure 15 we present the algorithm QueryConsistent that we define for verifying query
satisfiability. In the algorithm we make use of three functions.

• The function τ , which takes as input a CQ and transforms it in a CQ without atoms
with predicate symbol of the form ∃r or ∃r−. More precisely, τ takes as input a
CQ q = { ~x | ∃~y.conj (~x, ~y) } and returns a CQ q′ = { ~x | ∃~y′.conj ′(~x, ~y′) }, where
conj ′(~x, ~y′) is obtained from conj (~x, ~y) by replacing each atom of the form ∃r(z)
(resp. ∃r−(z)), where z is a constant or a variable in ~x or ~y, with an atom of the
form r(z, z′) (resp. r(z′, z)), where z′ is a new variable not occurring elsewhere in q′,
and ~y′ = ~y, ~z, where ~z is the sequence of the new variables that have bee introduced
in the transformation of the query.

• The function freeze, takes as input a conjunctive query q, and returns a set of
DL-Lite membership assertions obtained by “freezing” the body of q, i.e., consid-
ering its atoms as membership assertions in an ABox. More precisely, given a CQ
q = { ~x | ∃~y.conj (~x, ~y) }, we have that

freeze(q) = {A(z) | A(z) ∈ conj (~x, ~y)} ∪ {r(z1, z2) | r(z1, z2) ∈ conj (~x, ~y)}

where z, z1, z2 are constants or variables in ~x or ~y. Notice that the set of constants
in the ABox returned by the function freeze is the union of the set of constants
occurring in the query q and the set of variables in the query q (therefore, variables
in the query are now considered ABox constants).
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Algorithm QueryConsistent(q, T )
Input: Conjunctive Query q; DL-Lite TBox T
Output: true if q is satisfiable wrt T , false otherwise
begin

let ΓV be the set of variables occurring in q;
Aq = unify(freeze(τ(q)), T , ΓV );
Kq = (T ,Aq);
return Consistent(Kq);

end

Figure 15: The algorithm QueryConsistent

• the function unify , which takes as input a DL-Lite ABox A, a DL-Lite TBox T and
a set of constants symbol Γ, and returns a DL-Lite ABox A′ obtained from A by
unifying all constants from Γ occurring in A according to functionality assertions
contained in T . More precisely, A′ = unify(A, T , Γ), is obtained starting from A
by repeatedly applying the following rule that unifies constants of Γ:

Funct-rule: if the functionality assertion (funct r) (resp. (funct r−)) is in T and
there are two membership assertions r(z, z′), r(z, z′′) (resp. r(z′, z), r(z′′, z)) in A′

such that either z′ or z′′ occur in Γ, then (a) if z′′ occurs in Γ, replace each occurrence
of z′′ in A′ with z′, or (b) if z′′ does not occur in Γ, replace each occurrence of z′ in
A′ with z′′.

Notice that the use of the function τ is necessary due to the presence in the query q of
atoms of the form ∃r(z) and ∃r−(z) that cannot be directly freezed by the function freeze.
Furthermore, the use of the function unify is needed due to the presence of functionality
assertions in T . Indeed, the basic idea of the algorithm is to construct an ABox which
suitably represents the query21, and then verify that the knowledge base obtained by
uniting such an ABox with the TBox T is satisfiable. However, unsatisfiability of such
a knowledge base might arise since two membership assertions of the form r(z, z′) and
r(z, z′′), where z′ and z′′ do not both belong to ΓV , violate a functionality assertion of
the form (funct r), but this is not a real violation, since z′ and z′′ can be unified. In other
words, due the presence of functionality assertions, constants in the ABox coming from
the “freezing” of variables could be made equal.

The following theorem establishes that the algorithm QueryConsistent is sound and
complete.

Theorem 14.6 Let T be a DL-Lite TBox, and let q a conjunctive query over T . Then,
the algorithm QueryConsistent(q, T ) terminates, and q is satisfiable wrt T if and only if
QueryConsistent(q, T ) = true.

We are finally able to provide computational complexity of query satisfiability (only
membership).

21The technique used for achieving this aim is called freezing of the query and is typically used in the
reduction of query containment to query answering in the database theory [AHV95]
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Algorithm QueryDisjointness(q1, q2, T )
Input: CQ q1 = { ~x | ∃~y1.conj 1(~x, ~y1) }, CQ q2 = { ~x | ∃~y.conj 2(~x, ~y2) }

DL-Lite TBox T
Output: true if q1 and q2 are disjoint wrt T , false otherwise
begin

q = { ~x | ∃~y1, ~y2.conj 2(~x, ~y2) ∧ conj 2(~x, ~y2) };
return not QueryConsistent(q, T );

end

Figure 16: The algorithm QueryDisjointness

Theorem 14.7 Let T be a DL-Lite TBox, and let q a conjunctive query over T . Then,
establishing if q is satisfiable wrt T is PTIME in the size of the query and the TBox
(combined complexity).

14.4 Query Disjointness

As already said, given two queries q1 and q2 specified over an ontology O, query disjoint-
ness is the problem of verifying whether, for every model of O, the answer sets of q1 and
q2 are always mutually exclusive. For DL-Lite KBs and conjunctive queries, the problem
can be formalized as follows. Given a DL-Lite TBox T and two conjunctive queries q1

and q2 of the same arity over T , we say that q1 and q2 are disjoint wrt T if for every
modelM of T we have that qM1 ∩ qM2 = ∅.

In Figure 16 we present the algorithm QueryDisjointness that we define for checking
query disjointness. In the algorithm we construct a new conjunctive query q that is
obtained by the conjunction of the the two conjunctive queries in input. Then, we can
conclude that the two queries are disjoint if the new query q is unsatisfiable (and vice-
versa), and for verifying this we make use of the algorithm for query satisfiability defined
in the above subsection. The following theorem shows that QueryDisjointness is sound and
complete.

Theorem 14.8 Let T be a DL-Lite TBox, and let q1 and q2 two conjunctive queries over
T . Then, the algorithm QueryDisjointness(q1, q2, T ) terminates, and q1 and q2 are disjoint
wrt T if and only if QueryDisjointness(q1, q2, T ) = true.

We are now able to provide computational complexity of conjunctive query disjointness
in DL-Lite (only membership).

Theorem 14.9 Let T be a DL-Lite TBox, and let q1 and q2 be two conjunctive queries
over T . Then, establishing if q1 and q2 are disjoint wrt T is PTIME in the size of the
queries and the TBox (combined complexity).

14.5 Query Containment

As already said, given two queries q1 and q2 specified over an ontology O, query contain-
ment of q1 in q2 is the problem of verifying whether, for every model of O, the answer
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Algorithm QueryContainment(q1, q2, T )
Input: CQs q1 and q2, DL-Lite TBox T
Output: true if q1 is contained in q2 wrt T , false otherwise
begin

if not QueryConsistent(q1, T )
return true;

else if not QueryConsistent(q2, T )
return false;

else begin
let ΓV be the set of variables occurring in q1;
Aq1 = unify(freeze(τ(q1)), T , ΓV );
PR2 = perfectRef (q2, T );

if PR
db(Aq1 )
2 = ∅

return false;
else return true;

end
end

Figure 17: The algorithm QueryContainment

set of q1 is contained in the answer set of q2. For DL-Lite KBs and conjunctive queries,
the problem can be formalized as follows. Given a DL-Lite TBox T and two conjunctive
queries q1 and q2 of the same arity over K, we say that q1 is contained in q2 wrt T , denoted
q1 ⊆T q2 if for every modelM of T we have that qM1 ⊆ qM2 .

In the following, we present an algorithm for query containment which is based on the
reduction of this problem to a problem of query answering over a DL-Lite KB.

We recall that, given a query q (either a conjunctive query or a union of conjunctive
queries) and a DL-Lite KB K, the answer to q over K is the set ans(q,K) of tuples ~a of
constants appearing in K such that ~aM ∈ qM, for every model M of K. Notice that by
definition ans(q,K) is finite since K is finite, and hence the number of constants appearing
in K is finite. Notice also that the tuple ~a can be the empty tuple in the case in which q
is a boolean conjunctive query. More precisely, in this case the set ans(q,K) consists of
the only empty tuple if and only if the formula q is true in every model of K.

The problem of (conjunctive) query answering in DL-Lite is currently under investi-
gation within the TONES project under the Work Package 4 (WP4 – “Ontology access,
processing, and usage”) and Work Package 6 ( WP6 – “Ontology interoperation”). Within
these WPs a technique for answering union of conjunctive queries over DL-Lite KBs has
been produced and recently presented in [CDGL+] (a preliminary version of it has been
published in [CDGL+05a]).

In a nutshell, our query answering method strongly separates the intensional and the
extensional level of the DL-Lite KB: the query is first processed and reformulated based
on the TBox axioms; then, the TBox is discarded and the reformulated query is evaluated
over the ABox, as if the ABox were a simple relational database (cf. Definition 14.1).
More precisely, given a (union of) conjunctive query q given a UCQ q over a DL-Lite
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K = (T ,A), we first compute the so-called perfect reformulation of q wrt T , i.e., a query

qr such that, for each ABox A′, q
db(A′)
r = ans(q, (T ,A′). As shown in [CDGL+], in the

above setting qr is a union of conjunctive queries. Therefore, when then evaluating qr

over db(A) in order to get the answer to q over K, we essentially reduce query answering
to the evaluation of a union of conjunctive queries over a database instance. In order
to compute the perfect reformulation, we defined an algorithm, called perfectRef , which
takes as input a UCQ q and a DL-Lite TBox T , and produces a union of conjunctive
queries PR over T that is the perfect reformulation of q of q under T . Roughly speaking,
in perfectRef , PIs in T are used as rewriting rules, iteratively applied from right to left to
atoms occurring in the query body, which allow one to compile away in the reformulation
the intensional knowledge (represented by T ) that is relevant for answering q. We do
not give here the exact definition of the algorithm perfectRef , but refer the reader to
[CDGL+05a, CDGL+] for such details and for the formal proof that perfectRef is sound
and complete with respect to the problem of computing perfect rewriting.

Let us now turn our attention to our algorithm for query containment. In Figure 17
we present the algorithm QueryContainment. For the sake of simplicity, QueryContainment

takes as input only boolean conjunctive queries. However, the case of non-boolean con-
junctive queries can be dealt with in an analogous way, provided minor modification to
the algorithm. In the algorithm we make use of the functions τ , freeze, unify introduced
in the subsection on query satisfiability, and of the function perfectRef , discussed before.
Furthermore, db(Aq1) represents the special interpretation of Definition 14.1 for the ABox
Aq1, obtained by the freezing of the query q1.

Roughly speaking, in the case in which both q1 and q2 are consistent, the algorithm
QueryContainment first “freezes” the body of the query q1, thus obtaining Aq1 (such a
process has been precisely described in the subsection on query satisfiability), and then
compute the answer to q2 over (T ,Aq1), exploiting the algorithm perfectRef and the prop-
erties of the perfect reformulation. In the case in which q1 is unsatisfiable, the containment
of q1 in q2 is trivially true, since evaluation of q1 is empty in every interpretation. Simi-
larly, if q2 is unsatisfiable and q1 is satisfiable, the containment of q1 in q2 is false, since
evaluation of q2 is empty in every interpretation, but q1 is evaluated to a non-empty set
in at least one interpretation.

The following theorem shows soundness and correctness of the algorithm
QueryContainment.

Theorem 14.10 Let T be a DL-Lite TBox, and let q1 and q2 two conjunctive queries
over T . Then, the algorithm QueryContainment(q1, q2, T ) terminates, and q1 ⊆T q2 if and
only if QueryContainment(q1, q2, T ) = true.

We finally provide computational complexity of conjunctive query containment in DL-

Lite.

Theorem 14.11 Let T be a DL-Lite TBox, and let q1 and q2 two conjunctive queries
over T . Then, establishing if q1 ⊆T q2 is NP -complete in the size of the queries and the
TBox (combined complexity).
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We point out that, notably, the complexity of the above problem in DL-Lite is exactly
the same of the complexity of the containment of conjunctive queries over relational
databases [CM77].

14.6 Related Work

Among the reasoning services considered in this Section, the most important and the
one that has received more attention is the problem of query containment. Many papers
point out that checking containment is a relevant task in several contexts, including
information integration [Ull97], query optimization [AHV95, ASU79a], (materialized) view
maintenance [GM95], data warehousing [Wid95], constraint checking [GSUW94], and
semantic caching [APTP03].

Query containment under integrity constraints, is the problem of checking whether
containment between two queries holds for every interpretation satisfying a given set of
constraints (which may be classical relational database constraints in a database setting,
or DL constraints in a context in which ontologies come into the scene).

This problem arises in those situation where one wants to check query containment
relatively to a data schema specified with a rich data definition language. For example,
in the case of information integration, queries are often to be compared relatively to
(inter-schema) constraints, which are used to declaratively specify the “glue” between
two source schemas, and between one source schema and the global schema [CDGL+98b,
Hul97, Ull97, CL93, LSK95, Len02, Hal01].

The complexity of query containment in the absence of constraints has been studied in
various settings. In [CM77], NP-completeness has been established for conjunctive queries,
and in [CR97] a multi-parameter analysis has been performed for the same case, showing
that the intractability is due to certain types of cycles in the queries. In [Klu88, vdM98],
Πp

2-completeness of containment of conjunctive queries with inequalities was proved, and
in [SY80] the case of queries with the union and difference operators was studied. For
various classes of Datalog queries with inequalities, decidability and undecidability results
were presented in [CV92, vdM98, Bon04, CDGV03], respectively.

Query containment under constraints has also been the subject of several investiga-
tions. For example, decidability of conjunctive query containment was investigated in
[ASU79b] under functional and multi-valued dependencies, in [JK84] under functional
and inclusion dependencies, in [Cha92, LR96, LS97] under constraints representing is-a
hierarchies and complex objects, and in [DS96] in the case of constraints represented as
Datalog programs. Undecidability is proved in [CR03] for recursive queries under inclusion
dependencies. Several results on containment of XML queries under constraints expressed
as DTDs are reported in [NS03, Woo03]. Finally, conjunctive query containment under
description logics constraints has been studied in [CDGL98a], where algorithms for de-
cidable cases are given, and undecidability of containment of conjunctive queries with
inequalities in the right-hand side query is proved.
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15 Ontology specification in natural language

15.1 Introduction

In this section we address the issue of providing a natural language interface to ontology
design tools. The aim of such an interface is to allow unskilled users to state in natural
language the assertions, both at the intensional and at the extensional level, that are to
become part of an ontology. The problem we are considering here goes back to early work
in the Seventies and Eighties to build Natural Language Interfaces (NLIs) to Databases,
and that has turned out to some level of disappointment towards the Nineties [ART95].
Due to the recent developments both in Knowledge Representation and in Natural Lan-
guage Technologies, and the widespread actual and foreseen use of ontologies, e.g., in
the Semantic Web [BKGK05, ST04a], a similar question is calling for attention again.
Specifically, due to the restricted expressive power of current ontology languages, NLIs
are required where only a suitable fragment of natural language (a controlled natural
language) is used [Huj98, Kit03, Sow04].

For the purpose of querying data sources through ontologies, systems have been pro-
posed that guide the user to formulate her question via an ontology that incremen-
tally shows the possible concepts on which the remaining part of the question could be
about [DFT04, DF06]. Others guide the user via an incremental parser [BKKK06, ST04b].
Both approaches aim at allowing the user to build only those questions that the system can
handle (and that form a controlled language). Differently from those approaches, which
concentrate on queries, here we aim at providing a natural language interface for the spec-
ification of an ontology. We concentrate on ontologies expressed in DLs that belong to
the DL-Lite family [CDGL+05a, CDGL+06]. Such DLs are designed and specifically opti-
mized for the purpose of providing efficient access to large data repositories [CDGL+05b].

Specifically, we address the question of which should be the natural language frag-
ment to be used for such a purpose, and how we can define it. To this end we consider
of particular value the studies carried out by Ian Pratt [PHT06] who is investigating the
satisfiability of sets of sentences in fragments of natural language and its computational
complexity. Our proposal is similar in spirit to Pratt’s approach, in that we aim at iden-
tifying natural language fragments with a desirable computational complexity; we use as
controlled language for accessing ontologies fragments for which the meaning representa-
tion of a sentence is expressible as a DL-Lite (TBox or ABox) assertion, and hence can be
efficiently reasoned upon. Instead, we resort to Categorial Grammar (CG) as the system
to answer the how, viz. aiming to capture those syntactic structures corresponding to all
and only the meaning representations allowed in the chosen variant of DL-Lite.

15.2 The framework

Our aim is to build a natural language interface that helps users to specify an ontology
expressed in a DL, i.e., to enter facts in the ABox and universal statements in the TBox.
To this end, we follow the Controlled Language approach to the problem. Since we are
interested in performing these tasks over large data, efficiency in managing such data
through the ontology is of primary importance. For this reason, we focus our attention
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on DL-Lite [CDGL+05a], a family of DLs specifically tailored to manage large amounts
of data efficiently. More precisely, answering unions of conjunctive queries22 over a DL-
Lite ontology is polynomial in the size of the TBox, and LogSpace in the size of the
ABox, and, most importantly, it can be done by relying on a commercial RDBMS sys-
tem for storing the ABox and managing the access to its data. Moreover, the DLs in
the DL-Lite family are essentially the maximal DLs that exhibit such nice computational
properties [CDGL+06]. Nevertheless, they have the ability to capture the essential fea-
tures of the most commonly used formalisms for conceptual modeling, such as UML class
diagrams and entity-relationship schemas [CDGL+05a].

We want to capture the fragment of English that consists of all and only those sentences
whose meaning representation belongs to DL-Lite. This fragment is rather restricted and
might turn out to be too constrained for a user. Therefore, we plan to study how natural
language structures that outscope the defined fragments can be rephrased so to maintain
their meaning at least partially while satisfying the constraints imposed by the defined
grammar, and therefore be reduced to eligible constructs.

The idea of studying a Controlled Language, though brought up for different motiva-
tions, is not too far away from Montague’s proposal to restrict attention to fragments of
natural languages [Tho74]. His program was based on the thesis that the relation between
syntax and semantics in a natural language such as English could be viewed as not essen-
tially different from the relation between syntax and semantics in a formal language such
as the language of FOL. The main components of his framework are: (i) the principle of
compositionality (i.e., the meaning of the whole is built out of the meaning of its parts) to-
gether with the idea that the construction of meaning is guided by the syntactic structure;
(ii) the view of words (and phrases) as complete (e.g., noun phrases) and incomplete (e.g.,
verbs) expressions, and consequently their representation as functions by means of lambda
terms and the assignment of categorial grammar types as syntactic categories; and finally
(iii) the model-theoretic interpretation of the obtained meaning representations based on
standard FOL interpretation. Following Montague, we use a Categorial Grammar (CG)
to capture the needed natural language fragment. Furthermore, we exploit the syntax-
semantics interface provided by the Curry-Howard Correspondence between the Lambek
Calculus (the logic version of CG) and the lambda calculus to obtain DL-Lite meaning
representation compositionally while parsing [Ben87, Moo97].

15.3 DL-Lite and Natural Language

15.3.1 Introduction to DL-Lite

In this work, we consider DLs belonging to the DL-Lite family [CDGL+05a, CDGL+06],
and specifically, we consider variants of DL-Lite in which the TBox is constituted by a
set of inclusion assertions of the form

Cl ⊑ Cr

22Such queries correspond to unions of select-project-join SQL queries, which constitute the vast ma-
jority of queries posed to RDBMS systems.
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where Cl and Cr denote concepts that may occur respectively on the left and right-hand
side of inclusion assertions. The form of such concepts depends on the specific variant of
DL-Lite. Here, we consider two variants, called DL-Litecore and DL-LiteR,⊓, and defined
below. In fact, DL-Litecore represents a core part shared by all logics of the DL-Lite
family.

Definition 15.1 [DL-Litecore and DL-LiteR,⊓ ] In DL-Litecore , Cl and Cr are defined as
follows:23

Cl −→ A | ∃r Cr −→ A | ¬A | ∃r | ¬∃r

where A denotes an atomic concept, and r denotes an atomic role.
In DL-LiteR,⊓, in addition to the clauses of DL-Litecore , we have also:

Cl −→ Cl1 ⊓ Cl2 Cr −→ ∃r.A

DL-Lite can be seen as a restricted form of the DLs introduced in Section 2, and its
semantics can be defined as for those DLs.

Finally, in DL-Lite, an ABox is constituted by a set of assertions on individuals, of
the form A(c) or r(a, b), where A and r denote respectively an atomic concept and role,
and a, and b denote constants. As in FOL, each constant is interpreted as an element of
the interpretation domain, and the above ABox assertions correspond to the analogous
FOL facts.

We are interested in studying the linguistic structures that correspond to such con-
structs. In the following we look at their straightforward translations into natural lan-
guage.

15.3.2 Fragment of Natural Language for DL-Lite

The constraints expressed in the TBox are universals. They are of the form Cl ⊑ Cr that
translates into FOL as ∀x.Cl(x)→ Cr(x) and in natural language as

(a) [Every NOUN︸ ︷︷ ︸
Cl

] VERB PHRASE︸ ︷︷ ︸
Cr

(b) [[Everyone [who VERB PHRASE]︸ ︷︷ ︸
Cl

] VERB PHRASE︸ ︷︷ ︸
Cr

]

Hence, the determiner “every” and the quantifier “everyone” play a crucial role in
determining the linguistic structures that belong to the natural language fragment corre-
sponding to a DL-Lite TBox. In the following, we zoom into the NOUN and VERB PHRASE

constituents. In other words, we spell out how the Cl and Cr of DL-Lite can be expressed
in English.

First of all, notice that since an atomic concept A is a unary predicate, it can be either
a noun “student”, e.g., (2) or an intransitive verb phrase “left”(1); and its negation, ¬A,
can be either “is not a boy”(3), or “does not leave”(4).

23We have omitted inverse roles from the DLs to simplify the presentation of the main idea we are
investigating.

c©2007/TONES – January 30, 2007 161/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3

The introduction of the ∃r in the Cl part can be performed by means of the quantifier
“everyone” followed by the relative pronoun “who”(5 and 6) (or by the conjunction that
would correspond to the use of ⊓ on the Cl part allowed in DL-LiteR,⊓ fragment, see (13)
below).

(1) Every student left [Student ⊑ Left]

(2) Every student is a boy [Student ⊑ Boy]

(3) Every student is not a boy [Student ⊑ ¬Boy]

(4) Every student does not leave [Student ⊑ ¬Leave]

(5) Everyone who eats left [∃Eats ⊑ Left]

(6) Everyone who knows something left [∃Know ⊑ Left]

On the other hand, the introduction of ∃R on the Cr part corresponds to the use of
a transitive verb followed by an existential quantifier, “something” (7), and its negation
to the use of “does not” to negate such construction (8).

(7) Every student knows something [Student ⊑ ∃Know]

(8) Every student does not know something [Student ⊑ ¬∃Know]

Note, that as the DL-Lite clause show the only reading of the ambiguous sentence in
(8) is the one with every having wide scope and something be in the scope of not24.

When we move to DL-LiteR,⊓, the addition of the conjunction in the Cl part corre-
sponds to the use of adjective (9), or relative clauses modifying the noun quantified by
“every” (10-12), or the “and” coordinating two verb phrases (13).

(9) Every nice student left.

∀x.(student(x) ∧ nice(x))→ left(x) [Student ⊓Nice ⊑ Left]

(10) Every student who studies left.

∀x.(student(x) ∧ study(x))→ left(x) [Student ⊓ ∃Study ⊑ Left]

(11) Every student who is a boy left.

∀x.(student(x) ∧ Boy(x))→ left(x) [Student ⊓Boy ⊑ Left]

(12) Every student who eats something left.

∀x.(student(x) ∧ ∃y.eats(x, y))→ left(x) [Student ⊓ ∃Eats ⊑ Left]

(13) Everyone who drinks something and eats something left.

∀x.(∃y.drink(x, y) ∧ ∃z.eats(x, z))→ left(x) [∃Drinks ⊓ ∃Eats ⊑ Left]

24For ease of explanation we do not consider the distinction between something and the negative
polarity item anything. This distinction could be incorporated into the fragment as studied in [Ber02].
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Furthermore, the introduction of the qualified existential on the Cr is performed by
the determiner “a” (14).

(14) Every student knows a girl.

∀x.student(x)→ ∃y.girl(y) ∧ know(x, y) [Student ⊑ ∃Know.Girl]

An important remark to emphasize is the presence of the relative pronoun in the above
fragment of sentences. Pratt [PHT06] has shown how the uncontrolled use of such expres-
sion brings to NP-complete fragments when allowing the use only of the copula or even
EXPTIME-completeness when adding transitive verbs. Below, we will show how relative
pronouns can be used in a controlled grammar and preserve tractability of inferences.

We now turn to show how the Lambek Calculus can be used to capture the Natural
Language fragment consisting only of linguistic structures listed above or a recursive
extension of them. Notice that the latter can happen only by means of either conjunction
(and) or an adjective.

15.4 CG and Natural Language for DL-Lite

15.4.1 Introduction to Categorial Grammar

As most of the linguistically motivated formal grammars currently in use, Categorial
Grammar (CG) is a lexicalised grammar, i.e., the lexicon carries most of the information
about how words can be assembled to form grammatical structures. The peculiarity of
CG is that it captures the tight correspondence between syntax and semantics of natural
language. In the logical version we employ, namely the (non associative) Lambek Calculus
(NL) [Lam58, Moo97], this aspect is even stronger thanks to the Curry-Howard Corre-
spondence that holds between the logical rules of NL and (a fragment of) typed lambda
calculus [Ben87]. In this framework, syntactic categories are seen as formulas and their
category forming operators as connectives, i.e., logical constants. As a result, the rules for
category combination are the (very few) rules of inference for these connectives (function
application and abstraction25). This aspect of the formalism significantly simplifies the
implementation task, since one has to focus only on the construction of the lexicon and
can rely on any existing parser for the Lambek Calculus.26

Information both about the syntactic structure where the word could occur and its
meaning are stored in the lexicon.

Definition 15.2 [Term Labelled Lexicon] Given a set Σ of basic expressions of a natural
language, a term labelled categorial lexicon is a relation,

LEX ⊆ Σ× (CAT × TERM) such that if (w, (A, α)) ∈ LEX, then α ∈ TERMtype(A)

where TERM is the set of all lambda terms and TERMtype(A) denotes the set of lambda
terms whose type is mapped to the category A. CAT is defined as follows

CAT ::= ATOM | CAT\CAT | CAT/CAT

25In this paper we use the product free version of NL.
26The lexicon we present in this article has been tested using Grail [Moo98].
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In the following, we will use the set of atoms ATOM = {np, n, s}, and the function
type: CAT → TYPE mapping syntactic categories to semantic types given below, where
the atomic types are e (entity) and t (truth values), and (a, b) denotes the functional type
a→ b as always.

type(np) = e; type(A/B) = (type(B), type(A));
type(s) = t; type(B\A) = (type(B), type(A));
type(n) = (e, t).

This constraint on lexical entries enforces the requirement that if the expression w is
assigned a syntactic category A and term α, then the term α is of the appropriate type
for the category A. We will assign lambda terms whose body is a FOL formula, λ-FOL.

We look at the determiner every, by means of example, since it has a crucial role in
our grammar. The reader is referred to [KF85, Eij85] for an in depth explanation of this
and similar expression.

Example 15.3 [Determiner] The meaning of “every NOUN” (e.g., “every man”) is the set
of those properties that every NOUN (e.g., man) has

[[every NOUN]] = {X|[[NOUN]] ⊆ X}.

Therefore, in a functional perspective, it is seen as a two argument function that
corresponds to the following syntactic category

(s/(np\s))/n

where the n is the first argument that must occur on the right of every and np\s, i.e.,
a verb phrase, is its second argument to occur still on the right of every NOUN (viz.
[[every NOUN] VP]). The typed lambda term corresponding to this syntactic category is:
λX(e,t).λY(e,t).∀xeX(x)→ Y (x) that properly represents the set theoretical meaning given
above. In the following, we won’t use types on the lambda term unless necessary.

Our proposal for the definition of the proper fragment of natural language exploits
this correspondence between syntactic categories and lambda terms.

Furthermore, it takes advantage of derivability relations among categories of the same
semantic type carried out by unary operators decorating CAT [Ber02]. For reason of
space, we won’t go into the details of this part which would require the introduction
of the multi modal extension of NL. It suffices to provide the intuitive idea behind the
proposed solution: a function A → B can be applied to either an argument A or to an
argument C such that C derives A (C ⇒ A). In our case, ⇒ is the derivability relation
of the logical grammar we use.

Finally, the “parsing as deduction” approach, gives us a mean to reduce the problem of
identifying a proper set of linguistic structures to a problem of defining the allowed logical
formulas. In other words, instead of looking at linguistic strings w1 . . . wn, we can exploit
the formally well defined structures corresponding to them. Parsing a string w1 . . . wn

amounts to prove that Γ ⊢ B : φ, where Γ consists of pairs of categories and terms as
defined in the lexicon (viz. (wi, (Ai, αi))), A1 : α1, . . .An : αn, to be proved to be of
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category B. As by-product of this derivation one derives also the meaning representation
of the structure assigned to the string, i.e., the lambda term φ. For instance, parsing
Every nice student left means to prove that the following is a theorem of NL:

(((s/(np\s))/n : every ◦ (n/n : nice ◦ n : student)) ◦ np\s : left) ⊢ s : φ

by using the proper lambda terms, through the proof of the above entailment, φ results
to be ∀x.(nice(x) ∧ student(x))→ left(x).

15.4.2 CG-Lite

Our task is to find syntactic categories that lexically control the restrictions imposed by
the DL-Lite constructs. We proceed step by step, by first looking at the requests of
DL-Litecore and consider the two constraints regarding the use of negation:

1. negation of atomic concepts can occur in the Cr part (i.e., Cr −→ A | ¬A) but not
in the Cl part (i.e., Cl −→ A);

2. an unqualified existential can occur both in Cl and in Cr , but its negation can occur
only in Cr (i.e., Cl −→ ∃r, Cr −→ ∃r | ¬∃r).

The Cl and Cr parts correspond to the restrictive scope (the NOUN), and nuclear scope
(the VP) of every, respectively. We need to constrain the linguistic structures that occur in
them. In particular, we need to block the occurrences of the negation in Cl and express the
fact that NOT cannot have its scope on any VP occurring in the restrictive scope of every.
As emphasised in [Ber02], in CG scope is determined by the sentential categories s of the
complex formulas, and different scope distribution can be accounted for by differentiating
the sentential levels of the scope constructors at work, and exploiting the derivability
relations among categories.

We mark the structures that can occur in the two parts of the DL-Lite clauses and
the negative and positive ones, by means of the four sentential levels scl, scr, s¬, and s,
respectively, and establish the derivability relation below.27 They state that a negated
sentence can be in the Cr construct (s¬ ⇒ scr) while it cannot be in the Cl part (s¬ 6⇒ scl)
and a positive sentence can be in both (s⇒ scl, s⇒ scr).

s¬ 6⇒ scl s¬ ⇒ scr s⇒ scl s⇒ scr and scl 6⇔ scr

These constraints are lexically anchored by means of the lexical assignments below.

Example 15.4 [Lexicon for DL-Litecore ] The lexicon entries to use are as below28

• Every ∈ (st/(np\scr))/n: λX.λY.∀x.X(x)→ Y (x)
27We actually use residuated unary operators to carry out these derivability relations [KM95] exploiting

their logical properties: ♦j�js⇒ s⇒ �i♦is etc. Examples of residuated unary operators are “possibility
in the past” and “necessity in the future”.

28Notice, in the present work we do not handle features of any sort (morphological etc). Their usage
will make the lexical entries more complex but won’t have any effect on the main idea we are presenting.
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• is a ∈ (np\s)/n: λX.λz.X(z)

• is not a ∈ (np\s¬)/n: λX.λz.¬X(z)

• does not ∈ (np\s¬)/(np\s): λX.λz.¬X(z)

• left ∈ np\s: λz.left(z)

• studies ∈ np\s: λz.∃x.study(z, x)

• student ∈ n: λz.student(z)

• everyone: (st/(np\scr))/(np\swho): λX.λY.∀x.X(x)→ Y (x)

• who: (np\swho)/(np\scl), λP.λz.P (z)

• something: ((np\s∃)/np)\(np\s), λZ.λy.∃x.Z(y, x)

• studies: (np\s∃)/np, λx.λz.studies(z, x)

First of all, notice that the categories assigned to every and everyone rule out the
possibility for them to occur in object position –they can only be in a subject position.
Moreover, since they are the only entries yielding a TBox sentence (st), only sentences
starting with them will be considered as grammatical. The negation brings sentences to
the negative sentential level, and once they are there they are blocked from occurring in
the restrictive scope of every and everyone.

Finally, recall, that since, in this fragment we do not have the ⊓ on the Cl part,
the introduction of the unqualified existential ∃R in it can be performed only by means
of the quantifier everyone followed by the relative pronoun “who” and a transitive verb
composed with something. The introduction of ∃R on the Cr part correspond to the use
of a transitive verb followed by an existential quantifier, something. The lexical entries
for everyone, who, something and studies above account for these facts. The need of the
swho categories is due to the fact that everyone must be followed by a relative clause, i.e.,
sentences like everyone left or everyone walks and speaks cannot be part of the grammar.
Similarly, transitive verbs can occur on the Cr part but only if followed by something,
hence we use the category s∃ to guarantee this request.29 Finally, the category assigned
to “something” is such that it can occur only in object position.

The described fragment recognises as grammatical all the structures in (1)-(8) above.
The reader can gain a better understanding of the mechanisms involved by checking

how the lexicon predicates the ungrammaticality of the sentences below whose meaning
representations are not in DL-Lite.

(15) Everyone who does not know something left [¬∃Know ⊑ left]

(16) Everyone who is not a boy left. [¬Boy ⊑ left]

We now move to DL-LiteR,⊓, and account for the following additions

1. the conjunction can occur in the Cl part (i.e., Cl −→ Cl1 ⊓ Cl2)

2. the qualified existential can occur in the Cr part (i.e., Cr −→ ∃r.A

29Since we have neither np nor np/n entries we could also avoid the use of this extra sentential level
s∃ in the sample example we are considering.
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Example 15.5 [Lexicon extension for DL-LiteR,⊓ ] In order to move to DL-LiteR,⊓, we
need to add into the lexicon the following lexical entries.

• nice: ncl/ncl, λX.λz.X(z) ∧ nice(z)

• who: (ncl\ncl)/(np\scl), λX.λY.λz.X(x) ∧ Y (z)

• and: ((np\scl)\(np\scl))/(np\scl), λX.λY.λz.X(z) ∧ Y (z)

• a: (((np\s∃)/np)\(np\scr))/n, λY.λZ.λy.∃x.Z(y, x) ∧ Y (x)

Again, we use sentential levels to control the occurrence of these constructs. The
extended lexicon accounts also for the structures in (9)-(14). Notice, the need of having the
conjunction operating at the sentential level scl: this blocks the composition of negation
(does not) with a verb phrase built by and, that would wrongly give: does not walk and
speak with not having wide scope over and, viz. λz.¬(walk(z) ∧ speak(z)) that is not
part of DL-Lite. For similar reasons, we have to block the composition of is not a with
noun phrases built by means of an adjective. Again this composition would result into
terms with the negation having scope over the conjunction, e.g., is not a nice student with
term: λz.¬(nice(z) ∧ student(z)). The introduction of the category ncl with n ⇒ ncl

helps blocking the construction of these terms. Furthermore, we have considered the
version of DL-Lite with qualified existential of the form ∃r.A, rather than ∃r.C, hence
the argument taken by the determiner a can only be a bare noun n.

Finally, notice, that the lexical entries for the adjective, conjunction and qualified
existential are the ones that bring recursion into the language.

The fragment of sentences whose meaning representation belongs to a DL-Lite ABox
is rather easy to build since an ABox consists only of unary or binary predicates whose
arguments are constants. In other words, the lexicon is built only with noun, intransitive
verbs, the copula (i.e., unary predicates), transitive verbs (i.e., binary predicates), and
personal nouns. Since we can see any subset of ABox assertion as conjunction of such
clauses, we could have in our lexicon also adjectives and relative pronoun.

15.5 Related Work

Our work is quite close to the research presented in [ST06] in that our Controlled Natural
Language expressions have meaning representations that can be expressed in a DL. The
difference lies on the one hand in the kind of DL we have considered, and on the other
hand in the Grammar. With respect to the kind of DL, we have focused our attention
on DL-Lite, which is a DL studied in the context of ontology-based access to (relational)
databases [CDGL+05a, CDGL+05b]. As opposed to OWL-DL, which is the DL considered
in [ST06], DL-Lite is specifically optimised with respect to the size of the data (rather
than the size of the intensional descriptions in the ontology), when considering the trade-
off between expressive power and computational complexity of inference. Indeed, it is, in
a precise technical sense [CDGL+06], the maximal DL that has the ability to efficiently
and effectively manage very large data repositories by relying on industrial-strength re-
lational database management systems (RDBMS). Moreover, DL-Lite can capture the
essential features of the most commonly used formalisms for conceptual modeling, such
as UML class diagrams and entity-relationship schemas [CDGL+05a]. Hence, our work
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is particularly relevant in all those contexts where NLIs to data-intensive systems need
to be provided, and where the expressive power granted by richer DLs (e.g., OWL-DL)
does not provide a sufficient guarantee for effectiveness. As for the formal grammar, we
have used a logical grammar whose categories are recursively defined and are mapped to
typed lambda terms. We believe this logical approach to parsing could help addressing
the issue of defining also the fragments of natural language suitable for other relevant
tasks of interest in the context of ontologies, such as querying or updating an ontology,
or establishing mappings between different ontologies.

c©2007/TONES – January 30, 2007 168/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley Publ. Co., 1995.

[AL04] J. Angele and G. Lausen. Ontologies in F-logic. In S. Staab and R. Studer,
editors, Handbook on Ontologies in Information Systems, pages 29–50.
Springer Verlag, Berlin, Germany, 2004.

[Alh03] R. Alhajj. Extracting an extended entity-relationship model from a legacy
relational database. Information Systems, 26(6):597–618, 2003.

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Communica-
tions of the ACM, 26(11):832–843, 1983.

[ALRR04] M. H. A. L. Rector, N. Drummond and J. E. Rogers. Owl pizzas: Common
errors & common patterns from practical experience of teaching owl-dl.
In Proc. European Knowledge Acquisition Workshop (EKAW-2004)., Aug.
2004.

[APTP03] K. Amir, S. Park, R. Tewari, and S. Padmanabhan. Scalable template-
based query containment checking for web semantic caches. In Proc. of the
19th IEEE Int. Conf. on Data Engineering (ICDE 2003), pages 493–504,
2003.

[ART95] I. Androutsopoulos, G. Ritchie, and P. Thanish. Natural language interface
to databases – An introduction. Natural Language Engineering, 1:29–81,
1995. Cambridge University Press.

[ASU79a] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient optimization of a class of
relational expressions. ACM Trans. on Database Systems, 4:297–314, 1979.

[ASU79b] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalence among relational
expressions. SIAM J. on Computing, 8:218–246, 1979.

[Baa91] F. Baader. Augmenting Concept Languages by Transitive Closure of Roles:
An Alternative to Terminological Cycles. In Proc. of IJCAI-12, Sydney,
1991.

[Baa96] F. Baader. Using automata theory for characterizing the semantics of ter-
minological cycles. Annals of Mathematics and Artificial Intelligence, 18(2–
4):175–219, 1996.

[Baa03a] F. Baader. Computing the least common subsumer in the description logic
EL w.r.t. terminological cycles with descriptive semantics. In Proceed-
ings of the 11th International Conference on Conceptual Structures, ICCS
2003, volume 2746 of Lecture Notes in Artificial Intelligence, pages 117–130.
Springer-Verlag, 2003.

c©2007/TONES – January 30, 2007 169/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3

[Baa03b] F. Baader. Least common subsumers and most specific concepts in a de-
scription logic with existential restrictions and terminological cycles. In
G. Gottlob and T. Walsh, editors, Proceedings of the 18th International
Joint Conference on Artificial Intelligence, pages 319–324. Morgan Kauf-
mann, 2003.

[Baa03c] F. Baader. Terminological cycles in a description logic with existential
restrictions. In G. Gottlob and T. Walsh, editors, Proceedings of the 18th
International Joint Conference on Artificial Intelligence, pages 325–330.
Morgan Kaufmann, 2003.

[BBB+05] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull,
M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet.
Semantic Web Services Language (SWSL), September 2005. W3C member
submission.

[BBL05] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In IJCAI-05,
Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

[BBL07] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. Artificial
Intelligence, 2007. Submitted.

[BBN+93] F. Baader, H.-J. Bürckert, B. Nebel, W. Nutt, and G. Smolka. On the
Expressivity of Feature Logics with Negation, Functional Uncertainty, and
Sort Equations. Journal of Logic, Language and Information, 2:1–18, 1993.

[BC02] P. Balbiani and J.-F. Condotta. Computational complexity of propositional
linear temporal logics based on qualitative spatial or temporal reasoning.
In Frontiers of Combining Systems (FroCoS 2002), number 2309 in LNAI,
pages 162–176. Springer, 2002.

[BCM+03a] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider.
The Description Logic Handbook. Cambridge Univ. Press, Cambridge, UK,
2003.

[BCM+03b] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[BCN92] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design. An
Entity-Relationship Approach. Benjamin/Cummings Publishing Company,
Inc., 1992.

[Ben87] J. v. Benthem. Categorial grammar and lambda calculus. In D. Skordev,
editor, Mathematical Logic and its Applications, pages 39–60. Plenum, New
York, 1987.

[Ben97] B. Bennett. Modal logics for qualitative spatial reasoning. J. of the Interest
Group in Pure and Applied Logic, 4(1), 1997.

c©2007/TONES – January 30, 2007 170/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3

[Ber02] R. Bernardi. Reasoning with Polarity in Categorial Type Logic. PhD thesis,
UiL, OTS, Utrecht University, 2002.

[BFH+99] A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P. Patel-
Schneider. Explaining alc subsumption. In Proceedings of DL-99, 1999.

[BGSS06] F. Baader, B. Ganter, U. Sattler, and B. Sertkaya. Completing descrip-
tion logic knowledge bases using formal concept analysis. LTCS-Report
LTCS-06-02, Chair for Automata Theory, Institute for Theoretical Com-
puter Science, Dresden University of Technology, Germany, 2006. See
http://lat.inf.tu-dresden.de/research/reports.html.

[BGSS07] F. Baader, B. Ganter, U. Sattler, and B. Sertkaya. Completing description
logic knowledge bases using formal concept analysis. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-
07). AAAI Press, 2007.

[BH91] F. Baader and P. Hanschke. A schema for integrating concrete domains
into concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI’91), pages 452–457, 1991.

[BH00] P. Burmeister and R. Holzer. On the treatment of incomplete knowledge in
formal concept analysis. In Proceedings of the 8th International Conference
on Conceptual Structures, (ICCS 2000), volume 1867 of Lecture Notes in
Computer Science, pages 385–398. Springer-Verlag, 2000.

[BH05] P. Burmeister and R. Holzer. Treating incomplete knowledge in formal
concept analysis. In Formal Concept Analysis, volume 3626 of Lecture Notes
in Computer Science, pages 114–126. Springer-Verlag, 2005.

[BHGS01] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A Reason-
able ontology editor for the semantic web. In Proc. of the Joint Ger-
man/Austrian Conf. on Artificial Intelligence (KI 2001), number 2174 in
Lecture Notes in Artificial Intelligence, pages 396–408. Springer, 2001. Ap-
peared also in Proc. of the 2001 Description Logic Workshop (DL 2001).

[BHS02] F. Baader, I. Horrocks, and U. Sattler. Description logics for the semantic
web. KI – Künstliche Intelligenz, 2002(4), 2002.

[BHS03a] F. Baader, I. Horrocks, and U. Sattler. Description logics. In S. Staab and
R. Studer, editors, Handbook on Ontologies, International Handbooks in
Information Systems, pages 3–28. Springer–Verlag, Berlin, Germany, 2003.

[BHS03b] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology
languages for the semantic web. In D. Hutter and W. Stephan, editors,
Festschrift in honor of Jörg Siekmann, Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, 2003.

c©2007/TONES – January 30, 2007 171/187 TONES-D13 – v.3.0



FP6-7603 – TONES Thinking ONtologiES WP3
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