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Abstract

In this deliverable we define a number of usage scenarios for tasks that have to be solved
during the whole life-cycle of ontologies. The detailed description of these tasks relevant
for, e.g., ontology design, maintenance, access, usage, interoperation were already provided
in previous deliverables. Now, we investigate the combination of various elementary tasks
for the above-mentioned processes, and we analyse the interplay of corresponding reasoning
services. We integrate and apply task-specific reasoning techniques to a set of test ontologies.
The selection of test ontologies and their specific purposes is presented in this report.
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1 Introduction

In previous deliverables of the TONES project, we defined several reasoning-based methods and
techniques for performing tasks relevant for ontology life-cyle stages such as design, maintenance,
access, and interoperation. Techniques build a set of inference services defined w.r.t. the logical
framework introduced in TONES. For showing the significance of the proposed framework, in
this report we investigate the application of techniques as part of larger usage scenarios. Usage
scenarios are seen as exemplified combinations of techniques in order to realize tasks identified in
previous deliverables. A number of test ontologies is selected for investigating the applicability
of reasoning services for realizing ontology-oriented tasks. We first describe the main ideas of
offline and online usage scenarios in general, and then present a detailed view on each usage
scenario based on the application of methods and techniques investigated in TONES.

For the sake of completeness, we start with an overview on reasoning-based techniques iden-
tified for tasks developed in previous work packages (no priority is induced by the order of
appearance).

1. Computing Subsumption Hierarchies

In order to understand the reasoning technique of computing subsumption hierarchy, we
need to recap the notion of subsumption of concepts. Concept subsumption is one of the
classical inference problems in description logic; the problem is to decide whether, given
two concept terms C and D, C is subsumed by D relative to the ontology O, written
C ⊑O D. Semantically, this means that CI ⊆ DI for all models I of O.

Computing the subsumption hierarchy of an ontology O, also known as classifying the
ontology O, is a reasoning technique that is used to re-arrange all the concept names in O
according to the subsumption relationships. To be more precise, it identifies the ordering
⊑O restricted to concept names that occur in the ontology. If the ontology O has n concept
names, then with a naive approach O can be classified by carrying out n2 subsumption
tests, i.e. one for each pair of concept names. However, one usually tries to avoid as many
subsumption tests as possible, as such tests are very expensive. In the literature, there
have been approaches to optimize classification by reusing subsumption results previously
computed and by using explicitly told information in the ontology.

2. Consistency Checking

The consistency problem is defined as follows. A concept C is called consistent w.r.t. a
TBox T if there exists a model of C that is also a model of T . An ABox A is consistent
w.r.t. a TBox T if A has model I which is also a model of T . A knowledge base (T , A)
is called consistent if there exists a model for A which is also a model for T .

For the definitions above, corresponding decision problems are defined as usual. In order
to solve these problems, practical description logic systems implement algorithms as so-
called inference services. Besides a basic reasoning service to compute the subsumption
relationship between every pair of concept names mentioned in a TBox as discussed above,
another important inference service for practical knowledge representation is to check
whether a certain concept name occurring in a TBox is inconsistent. Usually, inconsistent
concept names are the consequence of modeling errors. Checking the consistency of all
concept names mentioned in a TBox without computing the parents and children is called
a TBox coherence check.

3. Ontology Extraction
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The ontology extraction task consists in an automatic procedure to extract a conceptual
view from a relational database. This provides a bootstrap ontology which faithfully
describes the relational source to which the procedure has been applied. Subsequently,
the generated ontology can be enriched and maintained by means of techniques and tools
described in previous TONES deliverables.

The procedure for extracting a conceptual view from a relational database is based on
heuristics which analyze the actual constraints in the database. The wrapping of relational
data sources is provided by means of an extracted ontology where each term (classes and
relations) is associated with a view over the original data. To represent the extracted
ontology, instead of a graphical notation as often used in the database community, we
employ an ontology language thus providing a precise semantics to the extracted schema.
Our extraction procedure relies on information from the database schema, (i.e., key and
foreign key structure, restrictions on attributes and dependencies between relations), and
automatically extracts all the relevant semantics if an input relational schema was designed
using a well-founded methodology. The resulting ontology can be used to access the data
source by means of query rewriting using the defined views.

4. Module Extraction

Suppose that the user wants to extract a fragment Q1 of an ontology Q that satisfies some
given criteria w.r.t. an input signature S. For example, one may want Q1 to entail all the
consequences that hold in Q w.r.t. the input signature. In practice, we have exploited the
notion of locality for extracting modules. Given the signature S to be reused and the input
ontology Q, our algorithms check if each of the axioms in Q satisfies our locality condition
w.r.t. the input signature S. In case an axiom α ∈ P does not satisfy these conditions,
the algorithm includes α in the module and expands the signature S to S ∪ Sig(α). The
remaining axioms are tested for locality w.r.t. the expanded signature. The process is
repeated until a fixpoint is reached. This technique is described in detail in [22].

5. Error Repair

Suppose that an ontology contains a set of unsatisfiable concept names. Current tools
do not typically provide support for the user to repair these errors. In practice one can
use a set of heuristics for guiding the repair process. In particular, it is useful to filter
out and subsequently rank the axioms in the ontology according to a set of criteria. The
filtering out is done according to whether the axiom under consideration participates in an
inconsistency; this can be determined, for example, using axiom pinpointing. The ranking
is done according to the impact of removing the axiom from the ontology; for example, it is
reasonable to assume that removing the axiom invalidates as few subsumption relationships
as possible.

6. Computation of Commonalities

In addition to standard inference services and retrieval inference services discussed above,
recently another set of inference problems has been defined, decision problems have been
shown to be decidable, and practical inference algorithms as well as system implementa-
tions have been developed (cf., [46]). Depending on the ontology language, a solution for
the problems mentioned below need not necessarily exist. Furthermore, algorithms for the
problems are known only for non-expressive description logics in most cases.

Least-common subsumers (LCS) [5, 6, 8] represents the commonalities between a set of
concepts. For a given set of concepts C1,...,Cn their least-common subsumer E is defined
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as follows:

(a) Ci ⊑ E for all i = 1,...,n and

(b) If E′ is a concept satisfying Ci ⊑ E′ for all i = 1,...,n then E ⊑ E′.

Most-specific concept (MSC) [11]: Given a finite set of assertions in ABox A of the form
C(a) or r(a, b), where C is a concept and r is a role name, the concept E represents the
most-specific concept of the individual a in ABox A if it satisfies:

(a) A |= E(a), and

(b) If E′ is a concept satisfying A |= E′(a) then E ⊑ E′.

7. Matching

In its simplest form, a concept matching problem consists of a concept description C and a
concept pattern D, i.e., a concept description with concept variables. Matching D against
C means finding a substitution of variables in D by concept descriptions such that C is
equivalent to the instantiated concept pattern D.

It has been first introduced in [39] for the application of generating explanations. Intu-
itively, if a concept can be matched against a pattern P , then their syntax trees share the
“upper part”, i.e., where P is fully specified, while deviations may occur at leaves labeled
with variables. Hence, the set of all concepts that can be matched against P contains
infinitely many concepts structurally similar to P to some extent. In this sense, matching
P against several concepts and returning those which can be matched, can be seen as a
search with the fully specified part of P as search criterion.

8. Axiom Pinpointing

Axiom pinpointing is, in its simplest meaning, finding out which axioms are responsible
for a problem that has occurred in an ontology. Suppose the user has noticed that there
is a problem in his ontology, and he wants to find out the source of this problem. In this
setting, axiom pinpointing can be useful in finding the source of the problem, explaining
it in an understandable way, and making suggestions in order to solve the problem. It find
usage in the task of error management, which was mentioned in D13 [1].

9. Approximation

Intuitively, the technique for computing concept approximation provides means for “trans-
lation” from an expressive DL to a typically less expressive DL. The technique to compute
an actual approximation from a concept description is based on structural algorithms first
described in [14, 13]. These works devise computation algorithms for obtaining ALEN -
concept descriptions from ALCN -concept descriptions.

Approximation is useful in any setting where concept description from an expressive DL
have to be “simplified” to a user DL with only as little information loss as possible. Fur-
thermore, concept approximation can help to provide inference services that have only
computation methods for rather inexpressive DLs for concept descriptions in more expres-
sive DLs. The method here is to first approximate the concept descriptions in a DL for
which the inference service is available and then apply the inference.

10. Model Generation and Model Checking
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The model generation problem is a problem of finding interpretations I which satisfy all
axioms of T and A, where T is a TBox and A is a ABox of an ontology O. In case
of a model checking problem the goal is to prove whether a given interpretation I is a
model of O. Current tableau algorithms are not well applicable as model generation
procedures since they only return (a description of) a so-called single canonical model.
Instead, model finders are able to enumerate all models systematically. This can indeed
be useful for ontology design tasks. In order to support the ontology development process
in an incremental way, well-known model-generation tools can be adopted accordingly and
provide major benefits for human ontology designers.

The ontology designer is often not interested in just testing the satisfiability of an ontology
by checking whether one single model exists, but possibly wants to inspect a number of
generated models instead. This way, unintended models might be identified. Using model
finding service, the ontology engineer can adjust the ontology by examining automatically
generated relational model structures.

11. Abduction

Abduction, or finding the “best” explanation, is a method of reasoning employed in areas
in which one chooses which hypothesis would best explain the relevant evidence. In other
words, abduction is a reasoning process that starts from a set of assertions α and derives
their most likely explanations in terms of another set of assertions such that α is entailed
w.r.t. the background knowledge.

Formally described, the abduction inference service aims to construct a set of (minimal)
explanations ∆ for a given set of assertions Γ such that ∆ is consistent w.r.t. to the
ontology (T ,A) and satisfies following conditions [23]:

(a) T ∪ A ∪∆ |= Γ and

(b) If ∆′ is an ABox satisfying T ∪ A ∪∆′ |= Γ, then T ∪ A ∪∆′ |= ∆ (Minimality)

(c) ∆ 6|= Γ (Relevance)

12. Ontology Integration and Conservative Extension

The notion of a conservative extension has revealed as central for formalizing ontology
integration tasks. Intuitively, an ontology P ∪ Q is a conservative extension of Q for
a signature S if and only if every logical consequence α of P ∪ Q constructed using only
symbols from S is already a consequence ofQ. In practice, deciding conservative extensions
is hard or even undecidable for reasonably expressive description logics. No practical
algorithms are currently known. In practice, one may look for sufficient conditions for
conservative extensions—that is, if P,Q satisfy our conditions then we can guarantee
that P ∪ Q is a conservative extension of Q; the converse, however, does not necessarily
hold. These techniques can be implemented efficiently. In particular, in TONES we have
introduced and used the notion of locality of an ontology.

13. Query Answering w.r.t. ABoxes

Query answering w.r.t. an ontology is in general a deductive process of finding domain
objects that satisfy the query in all possible worlds constrained by the ontology. We
consider ontology-based information access in the scenarios where data is already available
in an ABox and an ABox as source of information is located. There are a number of
ABox query languages with different semantics and expressivities. In the literature (e.g.
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[33, 25, 47]), two different semantics for these kinds of queries are discussed. In standard
conjunctive queries, variables in the head and in query atoms in the body are bound to
(possibly anonymous) domain objects. In so-called grounded conjunctive queries, variables
are bound to named domain objects (object constants). In grounded conjunctive queries
the standard semantics can only be obtained for so-called tree-shaped queries by using
existential restrictions in query atoms.

DL-Lite is a family of DLs specifically tailored to deal with large amounts of data and
reasoning with queries. While the expressive power of the DLs in the DL-Lite family
is carefully selected to achieve a low complexity of reasoning problems, such DLs are
expressive enough to capture many notions of both ontologies, and conceptual modeling
formalisms used in databases and software engineering (i.e., ER and UML class diagrams).
We consider query answering for the class of unions of conjunctive queries (UCQs), which
is the most expressive class of queries for which decidability of query answering has been
proved in DLs [19, 41]. Notably, standard query answering of UCQs over a DL-Lite
knowledge base K can be solved by means of evaluation of suitable first-order logic queries
over the ABox of K considered as a flat relational database [17, 18]. This allows for using
well established Relational Data Base Management System (RDBMS) technology for query
answering in DL-Lite.

14. TBox Query Answering

In practical DL systems retrieval of the “structural” information from the ontology is an
essential part of the query language, e.g., retrieval of the concept names mentioned in a
knowledge base, retrieval of the set of roles, retrieval of the concept parents and children
(defined analogously to the role parents and children) and so on. In TBox queries, variables
are bound to objects of the taxonomy (concepts, roles). In this sense, the taxonomy of
the TBox is seen as a virtual ABox, which can be used in queries. Query answering w.r.t.
taxonomy ABoxes has been supported for several years now in mature description logic
inference systems. For instance, one can retrieve individuals that are instances of a certain
concept C but can be proven to be non-instances of subconcepts of C that are subsumed
by another concept D, say.

15. Access to External Data Sources

Accessing external data sources is the problem of accessing databases that are independent
from the ontology, and that are related to the ontology through suitable mappings. As
external sources we consider relational databases. As ontologies, we consider, for instance,
DL-Lite knowledge bases. Since relational databases store only values (not objects), ob-
jects that are instances of the concepts in the knowledge base need to be constructed from
such values. In other words, in order to specify an effective mapping between external
data sources and the ontology, we have to deal with the so-called “impedance mismatch”
problem.

16. Ontology Interoperation

Ontology interoperation concerns multiple independent ontologies that are operating with
each other. We consider ontologies expressed in, for instance, DL-Lite, and analyze dif-
ferent forms of interoperation: (i) Ontology-to-data storage, where ontologies are used to
design and access a data storage (the ontology and the underlying database are tightly re-
lated, but the impedance mismatch problem mentioned above is of concern); (ii) Ontology-
based data integration, i.e., access to external sources, already discussed above; (iii)
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Ontology-to-ontology, where information flows through a mapping from a source ontology
to a target one; (iv) Network of ontologies, i.e., peer-to-peer ontology-based interopera-
tion, where no constraints on the topology of the network and on the information flow are
posed.

17. ABox Updates

Ontologies can be changed during the development phase as well as when they are already
in use. At design time, these changes mostly concern the intensional part, the TBox,
whereas usage-time changes usually affect the extensional part, the ABox. Recent in-
vestigations on DL-based ontology updates pursue two different directions. While some
approaches study so-called syntactic updates and incremental reasoning ([31, 30, 28]), oth-
ers make an attempt to define a formal update semantics based on model theory rather
than information told at the syntactic level ([24, 38, 43, 42, 29]).

18. Query Formulation Support

The key idea underlying the support for query formulation is to access data sources by
means of an ontology describing the sources in a formal way. The purpose of the system
is to support a user in formulating a precise query – which best captures her/his informa-
tion needs – even in the case of complete ignorance of the vocabulary of the underlying
information system holding the data.

To this end the system relies on automated reasoning techniques in order to exploit the
implicit information conveyed by the ontology. In fact, the intelligence of the interface
in proposing the user-relevant refinement of the query being composed is driven by an
ontology describing the domain of the data in the information system.

The system uses a verbalization technique to present the conjunctive query as a natural
language expression closer to the user understanding. This is performed in an automatic
way by using meta-information associated with the ontology terms. The verbalization of
single ontology terms must be provided in advance by the ontology engineers.

The final purpose of the tool is to generate a conjunctive query ready to be executed by
some evaluation engine associated to the information system.

19. Query Subsumption Checking

Query subsumption checking is very significant for ontology design and maintenance, and
for online optimizations. Specifically, query subsumption checking is the problem of deter-
mining whether a query q1 expressed over an ontology is contained in a query q2 expressed
over the same ontology, i.e., establishing whether in all possible models of the ontology,
the result set of q1 is a subset of the result set of q2.
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2 General Usage Scenarios

We assume that in the whole life-cycle of an ontology or versions of an ontology, there are different
phases. Distinguishing between offline and online phases, i.e., phases in which the ontology is
designed or maintained and phases in which the ontology is used for problem solving tasks, we
anticipate corresponding usage scenarios for the techniques described in the previous section.
We first start with an integrated view on specific scenarios (offline and online) for giving an
overview about the interplay of various techniques for realizing various tasks or subtasks. Both,
offline and online usage scenarios introduced here are presented in more detail in Section 3. It
should be noted that for some tasks, such as e.g. ontology extraction, the associated techniques
mentioned in the literature might have the same name. It should be clear from context whether
we refer to the tasks or the techniques, however.

2.1 Offline Usage Scenarios

Offline scenarios are defined w.r.t. the viewpoint of “ontologies under development in the con-
struction workshop”. In general, a well-structured ontology can only be achieved through a
principled and systematic design process. To guarantee a high-quality structure of an ontology
throughout the whole life-cycle, it is necessary to carry out design and maintenance tasks in a
structured and systematic way (see Figure 1). We focus on ontology design in this section but
emphasize that we view maintenance as life-long design of ontologies.

DB

Ontology
Extraction
Ontology
Extraction

A1 An

IntegrationIntegration

Module
extraction
Module
extraction

B C D

MatchingMatching

Development /
evolution

Integrate/
extract

Final Tuning

CompletionCompletion

PinpointingPinpointing

AbductionAbduction Model
finding
Model
finding

Matching
Approximation
Matching
Approximation

Classic
reasoning
Classic
reasoning

ErrorRepair

WWW

Figure 1: General usage scenario for ontology design

Ontology design can be performed using different sources:

1. Existing ontologies

2. Existing database schemas and the database instances

3. Additional sources from the Web
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4. Building ontologies from scratch

For using existing database schemas we define usage scenarios for ontology extraction. The idea
is to obtain an ontology (TBox) as well as a set of DB-mappings describing transformations from
terms of the ontology to the given database schema by applying some transformation algorithms
and vice versa.

The first step of the design process yields a set of ontology versions A1 to An. These ontologies
may also contain ABox information (e.g., generated from the data in DB). The next step is to
obtain an ontology B from An by applying techniques such as, for instance, module extraction
and matching. Both scenarios might correlate with the integration usage scenario and might
also require some user interaction.

Ontology B is the starting point for the actual development/evolution phase. Hereby we do
apply several reasoning techniques and usage scenarios (e.g., axiom pinpointing, error repair,
abduction and model finding) to obtain an ontology C that is quite close to the expected re-
quirements. The result of the design process is ontology D. It is derived from C by doing some
fine-tuning that mostly involves the ontology completion usage scenario. The user also will be
supported in that part of ontology design by the non-standard inference services like matching
and approximation.

2.2 Online Usage Scenarios

Online usage scenarios are oriented towards the view of “ontologies at work”. For online usage
scenarios, runtimes for computational processing behind the techniques are even more important
than for offline scenarios.

TBox and ABox Access For the tasks in ontology-based access, processing and usage we
assume to have two distinct kinds of input. We do either have a complete ontology (TBox and
ABox) or a TBox together with a database covering the intensional part of the ontology (see
Figure 2).

DB

Query 
Formulation
Query 
Formulation

DL-Lite Data 
Access\
Consistency 
Checking

DL-Lite Data 
Access\
Consistency 
Checking

Query Answering \
Consistency 
Checking

Query Answering \
Consistency 
Checking

Abox UpdateAbox Update

Q

Figure 2: General Usage Scenario for Ontology Access
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When we have an ontology consisting of TBox and ABox, ABox query answering and consistency
checking can be applied. For defining queries, the usage scenario query formulation will be of
importance. For both cases we can define the usage scenario of updating ABoxes. Furthermore,
we can find additional usage scenarios depending on the ontology representation formalism. For
some reasons, users may be also interested in obtaining information about the taxonomical struc-
ture of the ontology. In these cases, the usage scenario of TBox query answering is applicable.
Combined TBox and ABox queries are also possible.

In case we have a TBox together with a database for the extensional part of the ontol-
ogy, ontology-based data-access in the context of relational databases can be performed (for
instance, with ontologies based on DL-Lite. In this usage scenario standard inference services
like consistency checking can be also involved.

Ontology Interoperation Ontology interoperation concerns multiple independent ontologies
that are in operation with each other. Ontology interoperation tasks do not require changes in
the single ontologies, but mappings have to be specified among the knowledge contained in each
of them. On the basis of these mappings each ontology can take advantage of the knowledge
in the others to give value-added services to its clients. The study on ontology interoperation
is recently started within the Work Package 6 of the TONES project. Among various inter-
operation tasks the focus has been initially posed on forms of extensional query answering,
intensional query answering, updating of extensional knowledge, in the four detailed usage sce-
narios mentioned in the next sections: ontology-to-data-storage, (ontology-based data access),
ontology-to-data-sources (ontology-based data integration), ontology-to-ontology (unidirectional
flow of information), and network of ontologies (peer-to-peer). More details on tasks and tech-
niques for ontology interoperation will be provided in the next deliverables D16 and D24.
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3 Detailed Usage Scenarios

In the following sections, we describe particular usage scenarios that refine certain parts of
general usage scenarios presented in Section 2. For defining a single usage scenario, we give a
general description of the usage scenario as well as mention how it relates to ontology-based
tasks identified in previous project deliverables. Moreover, for some of the scenarios we specify
which kind of input (e.g., well established ontology, database, query etc.) and which kind of
output (e.g., new ontology, query and so on) we expect for this usage scenario. If applicable,
we discuss also what are success indicators for testing the scenarios (e.g., performance data like
run time and memory, size of the answer, correctness of results, usability, feasibility of query
answering, efficiency etc.) We also mention candidate ontologies for testing the usage scenario.
An overview of test ontologies we are using can be found at the end of this deliverable.

3.1 Usage Scenarios for Ontology Design and Maintenance

3.1.1 TBox and ABox Extraction from a Database

DB

Ontology Extraction from
DB Schema
Ontology Extraction from
DB Schema

Small DL-Lite TBox

Large ABox

ABox Generation
fromDB

Consistency Check
nRQL/DL-Lite QA

Figure 3: Usage Scenario for Ontology Extraction from DB

This usage scenario can be summarized as follows.

1. We start from a relational database (with integrity constraints) and apply techniques
studied by FUB to extract a DL-Lite TBox (whose size comparable to the size of the
database schema, which typically is small). The corresponding ABox is extracted from
the data in the DB.

2. The knowledge base consisting of the ABox and TBox is refined by applying standard and
non-standard reasoning algorithms for ontology design and evolution (see general scenario
depicted in Figure 1).

3. On the resulting knowledge base query answering is performed.

The input for the usage scenario is a relational database. Both schema and data are considered.
The schema might, possibly be defined with integrity constraints. The output of the process
described above is a DL-Lite TBox, whose size is presumably not huge, if compared with the size
of the database instance, and an ABox, representing the data stored in the original database.
All reasoning services described in the general scenario of Figure 1 can be applied on the output
ontology. In particular, query management techniques will be applied in this scenario. Such
techniques are very significant for ontology design, since we can make use of queries to construct
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views that can be exploited for the task of view-based ontology design and maintenance. More
precisely, query satisfiability, disjointness, and subsumption checking will be considered.

3.1.2 TBox and DB-Mapping Extraction from a Database

DB

SmallDL-Lite TBox

Large Data,
Keep Database DB

Ontology Extraction from
DB Schema
Ontology Extraction from
DB Schema

Figure 4: Usage Scenario for TBox and DB-Mapping Extraction

1. We start from a relational database (with integrity constraints) and apply techniques
studied by FUB to extract a DL-Lite TBox. Based on the resulting TBox, mappings to
the original database are synthesized.

2. The TBox is refined by applying standard and non-standard reasoning algorithms for
ontology design and evolution (see general scenario). The mappings are adapted to take
into account TBox evolution.

3. The extracted TBox and mappings may be used to check quality of data stored in the
database by checking the satisfaction of properties expressed over the TBox. The proper-
ties to be checked are those that represent relevant domain knowledge.

4. On the resulting TBox that is mapped to the database (situated ontology), query answering
is performed.

3.1.3 Information Extraction via Abduction

A1 A2 Consistency CheckAbduction

Figure 5: Usage Scenario for Information Extraction via Abduction

In the Semantic Web context, information extraction is the process of analyzing existing
data and transforming a given information source into an ABox. We assume that an information
source contains media data such as still images, audio and video files, or natural language text.
Now suppose, the user wants to somehow summarize the content of the given data in an abstract,
high-level way. In this case, information extraction is required. A formalization of information
extraction can be given in an abductive context.
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In order to construct a high-level interpretation, the ABox part of the ontology is extended
with some new assertions describing individuals and their relations. These descriptions are
derived by media interpretation processes using the ontology (we assume that the ontology
axioms are denoted in a set Σ).

We consider the scenario of the interpretation process using still images as input. The output
is a symbolic description of the media content represented as an ABox. This ABox is the result
of an abduction process (s. Figure 5).

We illustrate this usage scenario using an example from the athletics domain (Figure 6.
Assuming that it is possible to detect a horizontal bar bar1, and a human human1 by image
analysis processes, the output of the analysis phase is represented as an ABox Γ. Assertions
for the individuals and (some of) their relations detected by analysing Figure 6 are shown in
Figure 7.

Figure 6: Image displaying a high jump or
a pole vault event.

bar1 : Horizontal Bar

human1 : Human

(bar1, human1) : near

Figure 7: ABox Γ representing the result of the
image analysis phase.

In order to continue the interpretation example, we assume that the ontology contains the
axioms shown in Figure 8 (the ABox of the ontology is assumed to be empty). For some
purposes, description logics are not expressive enough. Thus, some additional mechanism is
required without jeopardizing decidability. In order to capture constraints among aggregate
parts, we assume that the ontology is extended with DL-safe rules (rules that are applied to ABox
individuals only. In Figure 9 a set of rules for the athletics example is specified. Note that the
spatial constraints touches and near for the parts of a Pole V ault event (or a High Jump event)
are not imposed by the TBox in Figure 8. Thus, rules are used to represent additional knowledge.
Since spatial relations depend on the specific “subphases” of the events, corresponding clauses
are included on the right-hand sides of the rules. For instance, a jumper as part of a High Jump

is near the bar if the image shows a High Jump in the jump phase.
In the following we assume that rules such as those shown in Figure 9 are part of the TBox

Σ. In order to provide a high-level interpretation, i.e. to provide a description of the image
content in the form of high-level aggregates, we assume that spatial relations between certain
objects detected by low-level analysis processes are not arbitrary.

In order to construct an interpretation for the image in Figure 6, an explanation is computed
why it is the case that a human is near a horizontal bar. Such explanations are considered the
results of image interpretation processes. As mentioned above, the idea is to use the abduction
inference service for deriving these kinds of (minimal) explanations (in the sense of interpreta-
tions). Minimal explanations can be extended appropriately in order to match expectations and
task context.

We start with the computation of a minimal explanation in the athletics scenario. For this
purpose, we slightly modify the abduction equation by taking into consideration that initially the
ABox does not need to be empty. Thus, we divide Γ (see Figure 7) into a part Γ2 that the agent
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Athlete ≡ Human ⊓ ∃hasProfession.Sport

Jumper ⊑ Athlete

Pole ⊑ SportEquipment

Horizontal Bar ⊑ SportEquipment

Foam Mat ⊑ SportEquipment

Jumping Event ⊑ Event⊓
∃hasParticapant.Jumper⊓
∃≤1hasParticapant.Jumper

Pole V ault ⊑ Jumping Event⊓
∃hasPart.Pole⊓
∃hasPart.Horizontal Bar

∃hasPart.Foam Mat

High Jump ⊑ Jumping Event⊓
∃hasPart.Horizontal Bar

∃hasPart.Foam Mat

PV InStartPhase ⊑ ⊤
PV InEndStartPhase ⊑ ⊤

HJ InJumpPhase ⊑ ⊤

Figure 8: A tiny example TBox Σ for the athletics domain.

touches(Y,Z) ← Pole V ault(X),
PV InStartPhase(X),
hasParticapant(X,Y ), Jumper(Y ),
hasPart(X,Z), Pole(Z).

near(Y,Z) ← Pole V ault(X),
PV InEndStartPhase(X),
hasPart(X,Y ),Horizontal Bar(Y ),
hasParticapant(X,Z), Jumper(Z).

near(Y,Z) ← High Jump(X),
HJ InJumpPhase(X),
hasPart(X,Y ),Horizontal Bar(Y ),
hasParticapant(X,Z), Jumper(Z).

Figure 9: Additional restrictions for Pole V ault and High Jump in the form of rules.

would like to have explained, and a part Γ1 that the interpretation agent takes for granted. In
our case Γ2 is {(bar1, human1) : near} and Γ1 is {human1 : Human, bar1 : Horizontal Bar}.

Coming back to the abduction problem specified above, we need solution(s) for the equation
Σ ∪∆ ∪ Γ1 |= Γ2. In other words, given the background ontology Σ from Figures 8 and 9, the
query

Q1 := {() | near(bar1, human1)}

derived from Γ2 should return true.
Obviously, this is not the case if ∆ is empty. In order to see how an appropriate ∆ could be

derived, let us have a look at the rules in Figure 9. In particular, let us focus on the rules for
Pole V ault first. If we apply the rules to the query in a backward chaining way (i.e. from left
to right) and unify corresponding terms we get variable bindings for Y and Z. The “unbound”
variable X of the corresponding rules is instantiated with fresh individuals (e.g. pv1). It is easy
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to see that two possible solutions for the abduction equation can be derived. For this example
the output of the interpretation process are two interpretation ABoxes representing two possible
interpretations of the same image (see Figures 10 and 11).

human1 : Human

bar1 : Horizontal Bar

(bar1, human1) : near

hj1 : High jump

hj1 : HJ InJumpPhase

human1 : Jumper

(hj1, human1) : hasParticapant

(hj1, bar1) : hasPart

Figure 10: ABox representing the first result
of the abduction process.

human1 : Human

bar1 : Horizontal Bar

(bar1, human1) : near

pv1 : Pole V ault

pv1 : PV InEndStartPhase

human1 : Jumper

(pv1, human1) : hasParticapant

(pv1, bar1) : hasPart

Figure 11: ABox representing the second result
of the abduction process.

Note that due to the involvement of human1 in the pole vault event in Figure 10, human1

is now seen as an instance of Jumper, and, due to the TBox, also as an Athlete. Thus,
information from high-level events also influences information that is available about the related
parts. With queries for Jumpers the corresponding media objects would not have been found
otherwise. Thus, recognizing high-level events is of utmost importance in information retrieval
systems (and pure content-based retrieval does not help).

The example discussed here covers the interpretation of still images. It is necessary, however,
to keep in mind that each media object might consist of multiple modalities, each of which will
be the basis of modality-specific interpretation results (ABoxes). In order to provide for an
integrated representation of the interpretation of media objects as a whole, these modality-
specific interpretation results must be appropriately integrated.

3.1.4 Module Extraction / Integration

In this section, we focus on the use of modularity to support the partial reuse of ontologies. In
particular, we consider the scenario in which we are developing an ontology P and want to reuse
a set S of symbols from a “foreign” ontology Q.

For exposition, suppose that an ontology engineer wants to build an ontology about research
projects. The ontology defines different types of projects according to the research topics they
focus on. The ontology engineer in charge of the projects’ ontology may use terms such as
Cystic Fibrosis and Genetic Disorder in his descriptions of medical research projects. In order to
improve the precision of the ontology, he may want to add more details about the meaning of
these terms; for reasons of cost and accuracy he would prefer to do this by reusing information
from a medical ontology. The ontology engineer is supposed to be an expert on research projects;
he may be unfamiliar, however, with most of the topics the projects cover and, in particular,
with the terms Cystic Fibrosis and Genetic Disorder reused from the medical ontology Q. Since
the designer of the projects’ ontology is not an expert in medicine and relies on the designers
on Q, it is to be expected that the meaning of the reused symbols is completely specified in Q;
that is, the fact that these symbols are used in the projects ontology P should not imply that
their original meaning in Q changes. Therefore, it is reasonable to expect in our scenario that
P ∪Q yields the same consequences concerning the reused symbols as Q alone does.

• Input to the usage scenario: An ontology P being developed, an external ontology Q and
the set S of symbols that P reuses from Q.
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• Expected Output : An ontology P ∪Q.

• Success indicator : P ∪Q entails the same consequences over the signature of Q as Q does.

Moreover, in realistic application scenarios, it is often not reasonable to assume the foreign
ontology Q to be “fixed”; that is, Q may evolve beyond the control of the modelers of P. The
modelers of P may not be willing (or authorized) to modify Q or, most importantly, they may
decide at a later time to reuse the symbols Cystic Fibrosis and Genetic Disorder from a medical
ontology other than Q. Therefore, for application scenarios in which the external ontology
Q may change, it is reasonable to “abstract” from the particular Q under consideration. In
particular, the fact that the axioms in P do not change the meaning of the external symbols
should be independent of the particular meaning of these symbols.

• Input to the usage scenario: An ontology P being developed and a signature S.

• Expected Output : An ontology P ∪ Q, where Q can be any external ontology such that
P,Q only share symbols from S.

• Success indicator : P ∪Q entails the same consequences over the signature of Q as Q does.

Even if P “safely” reuses a set of symbols from an ontology Q, it may still be the case that Q
is a large ontology. In particular, in our example, it is typically the case that medical ontologies
are very large, and importing the whole ontology would make the consequences of the additional
information costly to compute and difficult for our ontology engineers (who are not medical
experts) to understand. In practice, therefore, we need to extract a module Q1 of Q that
includes just the relevant information. Ideally, this module should be as small as possible while
still guaranteeing to capture the meaning of the terms used; that is, when answering arbitrary
queries against the research projects ontology, importing the module Q1 would give us exactly
the same answers as if the whole medical terminology ontology Q had been imported; that is,
P ∪ Q1 should yield the same logical consequences in the signature of P as P ∪ Q does. In
this case, importing the module instead of the whole ontology will have no observable effect on
the projects. Furthermore, the fact that Q1 is a module in Q should be independent from the
particular Q under consideration: if Q1 “behaves” in the same way as Q for a given ontology P
but not for a different ontology P ′ , then Q1 should not be a module in Q.

• Input to the usage scenario: An ontology Q and a signature S.

• Expected Output : A subset Q1 ⊆ Q.

• Success indicator : P ∪Q1 entails the same consequences over the signature of P as P ∪Q
for every external ontology P that imports Q1 such that all the symbols that P and Q
share are in S.

3.1.5 Modularization

Suppose that Q is a well-established ontology, possibly very large. Suppose that an ontology
engineer is interested in a particular symbol A (set of symbols S) in the signature Sig(Q) of Q.
The ontology engineer wants to filter relevant axioms in the ontology Q according to a collection
of criteria.

For example, given a concept name A ∈ Sig(Q), the ontology engineer may be interested in
retrieving a set of axioms Q1 ⊆ Q sufficient to entail all the super-classes of A in Q; that is, if
Q entails A ⊑ B, then Q1 entails A ⊑ B. Analogously, given A ∈ Sig(Q), the ontology engineer
may be interested only in the sub-concepts of A in Q.
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Figure 12: Usage Scenario for Module Extraction / Integration

Modularization

Customized views

Well established Ontology

Figure 13: Usage Scenario for Modularization

• Input to the usage scenario: An ontology Q, a signature S and a collection of criteria (such
as a collection of entailment relations).

• Expected Output : A subset Q1 ⊆ Q.

• Success indicator : Q1 ⊆ Q meets the input criteria.

3.1.6 Ontology Matching / Integration

In its simplest form, concept matching is the problem of finding a substitution of variables in a
concept pattern D by concept descriptions such that a concept description C is equivalent to the
instantiated concept pattern D. It was first considered in [39] for the application of generating
explanations. In [7], it was shown that matching can also be used to find similarities in ontologies.
More precisely, it can be used to identify multiple concept descriptions that match the same
pattern. In a similar way, in [12] use of matching to support the integration of ontologies was
presented. In [15], concept matching was extensively investigated.

Ontologies with
overlapping
domains

Matching

Consistency Check
Classification
Pinpointing

Integration

Figure 14: Usage Scenario for Matching / Integration

Consider a scenario, in which several ontologies from the same application domain are to be
merged into a new ontology that captures the meaning of the original terms, and their inter-
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relationships. This scenario can be motivated by different applications. It can be the case that
these ontologies have been developed independently by multiple research groups, and an ontology
that merges these ontologies is desired. It can also be the case that there may be many examples
of heterogeneous information sources, such as databases or semi-structured data on the internet,
for which a uniform, combined ontology is desired. In such cases, it is possible that different
ontologies contain similarly defined, yet different concepts for the same notion in the application
domain. This would lead to redundancy in the resulting ontology, and spoil the clarity, which
is an important quality criteria for ontologies. To some extent, standard reasoning services can
be used to detect such cases. For instance, concepts coincide in the subsumption hierarchy if
they are equivalent. In cases where this is not possible, inter-ontology concept matching can be
used to detect similar concept definitions in different ontologies, and to avoid redundancy in the
resulting ontology.

In [15], a setting where matching can be used to avoid redundancy was described. Consider
a case where two ontologies independently intend to introduce the same concept but define it
differently. For instance, let

T1 := {Parent ≡ Person ⊓ ∃has-child.Person}

and let
T2 := {FatherOrMother ≡ Human ⊓ ∃has-child.Human}.

Clearly, both definitions intend to represent the same notion. If we want to merge these two
ontologies, the resulting ontology will redundantly contain two definitions for the notion of
parent. In such cases, redundancies can be detected by using matching. In the above example,
both ontologies can be queried for concepts matching the concept pattern X ⊓ ∃has-child.X to
detect that T1 and T2 contain a similar concept definition for the same notion.

As mentioned above, in this usage scenario the non-standard reasoning service concept
matching is used, which was mentioned in Section 3.4 of [26], and in Section 3.6 of [37]. The
input for this usage scenario is a concept pattern, and two acyclic ALE TBoxes. The expected
output is the set of concept descriptions that match the given pattern for each of the input on-
tologies. The relevant success indicators of our usage scenario are run-time, maximum amount
of memory used, and the complexity of the concept pattern as well as the TBox. The candidate
test ontology is a pruned version of DICE [21].

3.1.7 Model Generation

Suppose the ontology designer would like not just to check the consistency of the developed
ontology but also see all possible models by inspecting their graphical presentation. This way,
unwanted models can be discovered and the ontology designer can interactively adjust the on-
tology if required. Well-known model generation tools support the process of systematical
enumeration of all models quite well. Current tableau algorithms return just (a description of)
a so-called single canonical model [4]. However, for checking the satisfiability of ontologies and
computing the taxonomy, tableau algorithms have been proven to be very effective. Thus, the
idea is to benefit from a synergy between DL systems and model-generating tools by providing
a new reasoning service, a model finding service. Invoking this service, usage scenarios such as
analyzing concept subsumption and concept equivalence by model inspection become possible.
The applicability of finite model finders (by the example of Alloy Analyzer) for ontology design
tasks was studied in [1]. For applying model-checking techniques offered by the Alloy system,
translation rules from DL (ALC and some constructs of SHIQ and SROIQ) into Alloy have
been proposed.
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• Input for the usage scenario: An ontology (TBox), a counterexample for concept subsump-
tion (or concept equivalence), model finding tool (e.g., Alloy), configuration parameters
for the model finding tool (e.g., problem size).

• Expected Output : Model descriptions, model visualizations.

3.1.8 Authoring/Refining Concept Descriptions

As an ontology is essentially a pile of concept descriptions, ontology design and maintenance
repeatedly involve authoring new concept descriptions and refining existing ones. The addition
of new concept descriptions, as well as refinement of old concept descriptions, might very well
lead to changes in the structure of the ontology under development. These changes could be
local or global: A local change happens if the concept under consideration is classified to a
new position in the concept hierarchy or if the concept turns to be (un)satisfiable. A global
change happens if much – if not all – of the ontology structure is altered. An obvious example
of a global change made by concept authoring is that the new concept description is globally
inconsistent and thus makes the whole ontology inconsistent as well. This is an extreme scenario
where reasoning techniques for consistency checking have to be applied. In this section, we are
more concerned with the scenario where local changes to the ontology structure are made.

It is readily shown in the previous deliverables that authoring and refining concept descrip-
tions straightforwardly relate to the ontology-based task computing subsumption hierarchy. To
briefly recap, subsumption hierarchy is a directed acyclic graph (aka. a multiple tree) of concepts
occurring in the ontology. Concepts placed in a higher position are said to be subsumers (more
general concepts) of those placed in a lower position in the subsumption hierarchy. The com-
putation of the subsumption hierarchy out of an ontology is sometimes known as the ontology
classification, which is one of the most classic ontology-based tasks.

Automatically Generated Ontology as Input The ontology developers might have ob-
tained a preliminary version of their ontology in some way from existing data. A few possibilities
include to extract an ontology from a database schema (see Section 3.1.1), to structure text-
based resources from the Web, and to migrate and enrich an existing terminology or classification
system. The last approach is ubiquitous in the domains in which classification data is well stud-
ied and readily available, for instance, the biomedical domain. This preliminary ontology may
be considered the input to this usage scenario. Such an ontology is usually assumed to be of low
quality both in terms of structure and semantics. Since the ontology is likely to be automatically
generated by machine, it is usually sorely in need of expert refinement. The resulting structure
might not be perfect, nor might the subsumption hierarchy be ontologically correct according
to the domain of interest.

3.1.9 Support for Reuse

Using of Commonalities In the main usage scenario for computation of commonalities,
the user starts from an ontology that she wants to extend. Since the user is an expert in her
application domain, but not in the field of logic, the user needs support in formulating the
concept descriptions in the used DL that capture the intended notions. Suppose, the user starts
from an ontology, classifies it, but finds that a particular part of the concept hierarchy has too
many sibling concepts and is not capturing all notions from the application domain. In this
case the user would like to select a collection of somewhat closely related (sibling) concepts
from the ontology and introduce a new concept that subsumes the selected concepts. By this
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Figure 15: Usage Scenario for Reusing of Commonalities

procedure she would introduce an intermediate level in the concept hierarchy. Now, in order to
support the definition of such a new concept one can employ the computation of commonalities
for the selected concepts to obtain a candidate concept description. The concept description
obtained by computing the commonalities is then inspected by the user and, perhaps, edited by
her, assigned a new concept name and then added to the ontology. Or, if the returned concept
description does not complement the existing ontology nicely, the user picks a new collection of
concepts from the ontology. The main inference employed to realize this usage scenario is the
computation of least common subsumers (lcs).

The main usage scenario has two variants. One is described by the bottom-up approach in-
troduced in [6], where the TBox is extended by picking related and somewhat similar individuals
from the ABox to form a new concept in the TBox. To this end, each of the selected individuals
is first generalized into a concept description by computing their most specific concept (msc)
and then all of these concept descriptions are generalized by computing their lcs. In the second
variant of the base usage scenario described above the user starts from a background knowledge
base that she wants to extend and adapt to her application by a user knowledge base. Typically
the user knowledge base is written in a less expressive DL that the background knowledge base.
Now, in this setting the concept description may only use concept constructors present in the
user DL, but can refer to names that are defined in the background knowledge base. However,
we will concentrate on the base usage scenario here. To sum up, computing common subsumers
finds its usage in the tasks generating concept descriptions, bottom-up construction of ontolo-
gies, structuring the ontology, and ontology customization, which were previously mentioned in
[37].

The main usage scenario is based on the inference service of computing the lcs. It is important
to note that for DLs supporting concept disjunction, the computation of the lcs is trivial and
not of much use in our scenario, since the lcs of a collection of such concept descriptions is
simply their disjunction. So, in applying the lcs, the user does not learn new things about the
commonalities of the selected concept descriptions. A way to remedy this to some extend is to
first compute the concept approximation (see also Section 3.1.9 of this Deliverable) and then
apply the lcs, see [14].

In the setting where a background knowledge base is extended by a user knowledge base
appropriate techniques were introduced in [3]. Here the user builds a user ontology in the
user DL by extending a background ontology T written in an expressive DL and by using the
names from the signature of the background ontology. Thus, if the user DL offers all concept
constructors from ALE and the background DL is ALC, the user DL is called ALE(T ), since
it may use names defined in T . Results on the existence of the lcs in this setting can be found
in [45]. In more detail, the ALE(T )-lcs w.r.t. unfoldable ALC-TBoxes exists, while for ALC-
TBoxes with GCIs or even just ALC-TBoxes containing cyclic definitions the lcs does not need
to exist. However, the relaxed notion of a good common subsumer, that does return a common
subsumer of the input concept description, but not necessarily the least one, might still be
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helpful to solve the ontology tasks addressed above.
In our usage scenarios we expect an unfoldable ALEN -TBox and collections of concept

names that describe related concepts and to each of which the computation of commonalities
should be applied. Alternatively, for the setting of customizing a background ontology by a user
ontology, we expect an (unfoldable) ALC background TBox and an ALE(T ) user TBox and,
again, collections of concept names from the combined TBox.

We expect that the computation of commonalities yields a new concept description that
captures the common characteristics of the input concept descriptions. Success Indicators for
testing the computation of commonalities is the run-time needed, the memory needed during
computation. Regarding the inference we should take into account the size of the TBox and the
size of the output. Since we need unfoldable ontologies, we propose (a pruned version of) the
DICE ontology, see [21].

Concept Simplification For concept simplification the main usage scenario is to support
users who are domain experts, but no experts in knowledge representation. However, since the
user is not a DL expert, she employs a less expressive DL and needs support, for example through
the bottom-up approach when building this user-specific extension of an existing ontology. There
are several reasons for the user to employ a restricted DL in this setting:

1. a restricted DL may be easier to comprehend and use for a non-expert

2. it may allow for a more intuitive graphical or frame-like user interface [9, 36, 10]

3. to use the bottom-up approach, the lcs must exist and make sense, i.e., only DLs that do
not offer concept disjunction are of interest

4. it must be possible to compute it with reasonable effort

However, the existing ontology that the user wants to inspect or wants to extend is written in a
more expressive DL, which might be hard to understand for a user with little expertise in logic.
Now, in order to display the concept descriptions from the ontology in a more comprehensive way
to the user, the initial concept descriptions should be “transformed” into a concept description in
the user DL. This should not be done simply by pruning the concept description, i.e., removing
sub-concept descriptions that contain constructors present in the ontology DL, but not present
in the user DL. Instead one would need to compute a “close” (w.r.t. subsumption) concept
description in the user DL of the initial concept description and display this description to the
user. In our case the obtained concept description in the user DL generalizes the initial concept
description from the ontology only as much as necessary. The inference service to compute such
a concept description is called concept approximation.

Since the concept description returned by approximation can grow very large, it is necessary
to display the approximated concept description in a succinct way. This leads us to an extension
of the above usage scenario. In the extended scenario a minimal rewriting of the approximation
concept description is computed. A minimal rewriting is a concept description equivalent to the
original concept description of smaller, more precisely of minimal size. These kind of rewritings
(re-)introduce concept names from the TBox for sub-concept descriptions in the approximation
concept and thus are more succinct.

The basic usage scenario for concept simplification as well as the extended one illustrate the
ontology task of concept inspection mentioned in [37]. In case where the initial ontology is a
ready-made one, perhaps obtained by an ontology provider, the above usage scenario in addition
covers the ontology task of ontology customization also mentioned in [37]. In this setting the

c©2007/TONES – 13.04.2007 24/40 TONES-D14– v.0.0



FP6-7603 – TONES Thinking ONtologiES WP7

user employs the user DL not only for inspection, but adds new concepts to the ontology to
adapt it to her application.

In addition to the mentioned usage scenarios the two mentioned inferences are important
to extend other so-called non-standard inferences such as the computation of least common
subsumers (see Section 3.1.9) to more expressive DLs – at least by obtaining an approximative
solution by first approximating the in put concept description and then applying the desired
non-standard inference.

The two inference services, computing concept approximation and computing a minimal
rewriting, are so far mainly investigated for unfoldable TBoxes. Approximation was first inves-
tigated in [14] where an algorithm for computing ALE-approximations of ALC-concept descrip-
tions was devised. This method was extended to number restrictions in [13].

The approach of computing non-standard inferences w.r.t. a background ontology was intro-
duced in [3]. Here the user builds a user ontology in the user DL by extending a background
ontology T written in an expressive DL and by using the names from the signature of the
background ontology. Thus, if the user DL offers all concept constructors from ALE and the
background DL is ALC, the user DL is called ALE(T ), since it may use names defined in T . Re-
sults on the existence of the lcs in this setting can be applied to approximation, see [45]. In more
detail, the ALE(T )-approximation w.r.t. unfoldable ALC-TBoxes exists, while for ALC-TBoxes
with GCIs or even just ALC-TBoxes containing cyclic definitions the approximation does not
need to exist. However, similar to the case of the lcs, a relaxed notion of concept approximation,
that does not return the least generalization of the input concept in the target DL, but a more
general one, might still be helpful to solve the ontology tasks addressed above.

Regarding minimal rewriting we can realize the extended usage scenario by the results from
[2]. Here minimal rewriting is investigated for the DL ALE w.r.t. unfoldable TBoxes. Intuitively,
the algorithm proceeds in two phases. In the first phase redundant concept names from the
TBox are conjoined to sub-concept descriptions of the input concept description. In the second
phase redundant ALE- (sub-)concept descriptions are eliminated. Thus the resulting concept
description uses ALE-concept constructors and names from T . Unsurprisingly, the algorithm
devised in [2] for ALE directly transfers to the case for ALE(T ).

For our usage scenario we expect either an unfoldable ALCN -TBox (or a TBox of lesser
expressivity) to apply concept approximation to the concept descriptions. Alternatively, we can
start from an ALC background TBox and a user TBox of lesser expressivity to apply concept
approximation in the customization setting. In case we chose ALE (or ALE(T )) as the user
DL in each of the two scenarios, we can apply minimal concept rewriting to the approximated
concept descriptions.

The concept simplification scenario can be tested with the different inputs described above.
For this usage scenario it is essential to measure run-time, size of the concept descriptions
obtained by concept approximation and by minimal rewriting. To obtain meaningful measure-
ments in the end, the size of the TBox and the unfolded input concept description should also
be measured.

Any unfoldable ALCN TBox can be used to test concept simplification by approximation.
For example, a pruned version of the medical DICE ontology (see [21]) can be used for this
purpose.

3.1.10 Ontology Completion

DLs are employed in various application domains, such as natural language processing, config-
uration, databases, and bio-medical ontologies, but their most notable success so far is due to
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the fact that DLs provide the logical underpinning of OWL, the standard ontology language
for the semantic web [32]. As a consequence of this standardization, several ontology editors
support OWL [36, 40, 35], and ontologies written in OWL are employed in more and more
applications. As the size of these ontologies grows, tools that support improving their quality
become more important. The tools available until now use DL reasoning to detect inconsisten-
cies and to infer consequences, i.e., implicit knowledge that can be deduced from the explicitly
represented knowledge. There are also promising approaches that allow to pinpoint the reasons
for inconsistencies and for certain consequences, and that help the ontology engineer to resolve
inconsistencies and to remove unwanted consequences [44, 34] (see also Section 7 of [1]). These
approaches address the quality dimension of soundness of an ontology, both within itself (con-
sistency) and w.r.t. the intended application domain (no unwanted consequences). Here, we are
concerned with a different quality dimension: completeness. Ontology completion is a formally
well-founded technique that supports the ontology engineer in checking whether an ontology
contains all the relevant information about the application domain, and to extend the ontology
appropriately if this is not the case.

Completion

Domain Expert

Well established Ontology

Figure 16: Usage Scenario for Ontology Completion

Consider the following scenario: Suppose the user has a well established ontology from an
application domain, and she wants to find out whether the ontology contains all the relevant
information about the domain, i.e. she is looking for answers to the following questions:

• Are all the relevant constraints that hold between concepts in the domain captured by the
TBox?

• Are all the relevant individuals existing in the domain represented in the ABox?

As an example, consider the OWL ontology for human protein phosphatases that has been
described and used in [48]. This ontology was developed based on information from peer-
reviewed publications. The human protein phosphatase family has been well characterized
experimentally, and detailed knowledge about different classes of such proteins is available.
This knowledge is represented in the terminological part of the ontology. Moreover, a large
set of human phosphatases has been identified and documented by expert biologists. These
are described as individuals in the assertional part of the ontology. One can now ask whether
the information about protein phosphatases contained in this ontology is complete. Are all the
relationships that hold among the introduced classes of phosphatases captured by the constraints
in the TBox, or are there relationships that hold in the domain, but do not follow from the TBox?
Are all possible kinds of human protein phosphatases represented by individuals in the ABox,
or are there phosphatases that have not yet been included in the ontology or even not yet been
identified?

Such questions cannot be answered by an automated tool alone. Clearly, to check whether
a given relationship between concepts—which does not follow from the TBox—holds in the
domain, one needs to ask a domain expert, and the same is true for questions regarding the
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existence of individuals not described in the ABox. The role of the automated tool is to ensure
that the expert is asked as few questions as possible; in particular, she should not be asked trivial
questions, i.e., questions that could actually be answered based on the represented knowledge.
In the above example, answering a non-trivial question regarding human protein phosphatases
may require the biologist to study the relevant literature, query existing protein databases, or
even to carry out new experiments. Thus, the expert may be prompted to acquire new biological
knowledge.

In this usage scenario, the following reasoning services are used: computing the subsumption
hierarchy, and instance checking. Whenever the domain expert confirms a question to be true,
the relevant GCI is added to the TBox, and the subsumption hierarchy is recomputed. In order
to compute the right handsides of the questions, we need to do some instance checks (see Section
10 of [1]).

As input, the scenario expects a well established ontology written in a DL that supports
conjunction and negation, and has a TBox formalism that allows for GCIs. Also, an expert
from the application domain is required to answer the questions asked. The expected output
for the scenario is the input ontology enriched with new subsumption relationships and new
instances that are acquired from the expert as answer to the questions asked. The success
indicators relevant to this usage scenario are, the number of questions asked to the expert, the
understandability of the questions, the CPU time used, and the maximum amount of memory
used. By understandability of the question we mean whether the question contains redundancies
that make it difficult to be understood by the domain expert, and whether the question can be
shortened.

3.2 Usage Scenarios for Ontology Access, Processing and Usage

3.2.1 ABox Query Answering

Suppose the user wants to access some information from a given data source using a certain
background ontology. For this, the user poses a query that describes information he is looking
for in terms of the underlying ontology. This way, queries can be formulated in the vocabulary
closed to the high-level vocabulary of the user. This kind of information retrieval w.r.t. to an
ontology is one of main topics in [16].

In many practical application systems based on DLs, powerful ABox query answering is
one of the main requirements. The main usage scenario is to answer a user’s query to the
extensional part of a knowledge base. The base usage scenario is given as follows: As input
we have a conjunctive query. The output of the query is a set of assignments for free variables
in the query. The success indicators for query answering are similar to those of other usage
scenarios: e.g., CPU time for answering the query and amount of memory used. To rate the
efficiency w.r.t. scalability one can take into account size and complexity of the source ABox.
The only constraint on applicable test ontologies is that they have an extensional part (ABox).

Let us consider an example using grounded conjunctive queries. Suppose that we have the
following small TBox and ABox:
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Teacher ≡ Person ⊓ ∃teaches.Course

Student ≡ Person ⊓ ∃takes.Course

John : Person

Richard : Person ⊓ Famous

math : Course

biology : Course

teaches(Richard,math)
takes(John,math)
takes(John, biology)

An example query to determine all the courses that the student John takes which are taught by
a famous teacher:

Q := {(x) | Student(John), takes(John, x), Course(x), teaches(y, x), T eacher(y), F amous(y)}

The result for the query Q is {(math)}.
ABox query answering as shown above can be used, for instance, to implement information

retrieval systems based on high-level interpretations of media objects. Interpretations are seen
as annotations of media objects (metadata) and can be practically represented in RDF or OWL
format. In our view, annotations describe “real-world” objects and events. It is not the goal to
merely “classify” images and attach keywords but to construct a high-level interpretation of the
content of a media object.

A set of media objects with annotations attached to each media object can be made available
via a web server with standard application server technology. We assume that the web server
provides a query interface (for instance, using the XML-based DIG 1.2 or OWL-QL query
language).

human1 : Human

bar1 : Horizontal Bar

(bar1, human1) : near

pv1 : Pole V ault

pv1 : PV InEndStartPhase

human1 : Jumper

(pv1, human1) : hasParticapant

(pv1, bar1) : hasPart

(human1, url1) : hasURL

(bar1, url2) : hasURL

(url1) : ="http://www.img.de/image-1.jpg"

(url2) : ="http://www.img.de/image-1.jpg#(200,400)/(300/500)"

. . .

Figure 17: An example ABox representing the annotation of the image in Figure 6. The predicate
=string stands for a one-place predicate p(x) which is true for x = string.

Using the example from Figure 6 we sketch how media interpretations are used to implement a
media retrieval system. Figure 17 illustrates the main ideas about annotations for media objects
using ABoxes (we omit the TBox for brevity).
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A query which might be posed to an information system is shown in Figure 18. As a result,
the inference system returns the tuple (bar1, human1), and in order to show the image (and
highlight the area with the bar), the associated URL names can be retrieved (see also Figure 18).
The form value(x) returns a unique binding for a variable (in this case a string) if it exists, and
∅ otherwise. In case of URLQuery1 the answer is (url1, "http://www.img.de/image-1.jpg").
The result of URLQuery2 is defined analogously. The URLs can be used to actually retrieve the
image data. Subsequent queries w.r.t. the annotation individuals bar1 and human1 are certainly
possible. We do not discuss details here, however. In summary, it should be clear now, how
annotations with metadata are used in an ontology-based information retrieval system.

It is easy to see that annotations such as the ones shown in Figure 17 can be set up such that
the URLs are tied to the ABox individuals comprising the high-level descriptions. In particular,
one can easily imagine a situation in which there exist multiple interpretations of an image,
which results in multiple annotations being associated with an image. In addition, it is obvious
that a repository of media objects together with their annotations (metadata) gives rise to one
or more ABoxes that are managed by the ontology-based information system. Not so obvious is
how metadata can be automatically derived since manual annotation is too costly in almost all
practical scenarios. The derivation of metadata representing high-level interpretation of media
content has been already discussed in Section 3.1.3.

ImageQuery1 := {(X,Y ) | Horizontal Bar(X),Human(Y ), near(X,Y )}
URLQuery1 := {(X, value(X)) | hasURL(bar1,X)}
URLQuery2 := {(X, value(X)) | hasURL(human1,X)}

Figure 18: Query for “a human with a bar” and subsequent queries for retrieving the URLs
w.r.t. the result for ImageQuery1.

3.2.2 TBox Query Answering

Well-known query languages for description logics (e.g., nRQL, OWL-QL etc) allow for formulat-
ing so-called “structural queries” that ask for certain aspects of the taxonomy of the knowledge
base. The most APIs offer a set of predefined queries for asking about sub/superclass rela-
tionships of the TBox. However, these functions are typically restricted to known terms in the
knowledge base. Recent investigations on practical DL systems go in the direction to provide
a powerful TBox query language that offers the same flexibility as ABox query languages do.
TBox querying is supported in Racer 1.9 for several years now. Therefore, we use the Racer
syntax in this subsection for specifying TBox-related query examples.

Intuitively, whereas the ABox queries bind variables against ABox individuals, the variables
in a TBox query are bound against taxonomy nodes. Suppose the user wants to retrieve all
concepts equivalent to some concept C. For this query, e.g., the following construct in nRQL
can be used (C must be an atomic concept):

(tbox-retrieve (?x) (?x C))

From the technical point of view, in nRQL a special relational structure of the taxonomy (a
so-called taxonomy ABox) is constructed, which can be then queried. Under this perspective, a
TBox query is just an ordinary ABox query which is evaluated on the (virtual) taxonomy ABox.
As mentioned above, currently only atomic concepts are allowed in a TBox query. However,
recent investigations consider also the efficient implementation of TBox queries with complex
concepts involved such as the following example shows:
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(tbox-retrieve (?y) (and (?x ?y has-child) (?x (some R top)))

Here, we are looking for children of the concept (some R top). The problem is that in order
to answer this query, the TBox must be classified first, namely only for this one query.

Finally, let us present an example which demonstrates how to combine TBox queries and
ABox queries. Sometimes, the user wants to retrieve only direct instances of a concept / OWL
class. An individual is called a direct instance of a concept / OWL class if there is no subconcept
/ subclass of which the individual is also an instance. Let D be a subconcept of C defined as
follows:

(define-concept C (some r top))

(define-concept D (and C E))

We can verify that D is indeed a child concept of C, using the following TBox query:

(tbox-retrieve (?x) (C ?x has-child))

Let us create two individuals so that i and j are instances of C; moreover, j is also an
instances of D:

(related i j r)

(related j k r)

(instance j E)

(retrieve (?x) (?x C))

> (((?x j)) ((?x i)))

(retrieve (?x) (?x D))

> (((?x j)))

The previous queries demonstrated that both i as well as j are instances of C. However,
only i is a direct instance of C. We can retrieve direct instances of C as follows:

(retrieve1 (?x C)

(((:lambda (x)

(if (some (lambda (subclass)

(retrieve () ‘(,x ,subclass)))

(flatten

(tbox-retrieve1 ‘(C ?subclass has-child)

‘(((:lambda (subclass) subclass) ?subclass)))))

:reject

‘(?x ,x)))

?x)))

> (((?x i)))

As we see from the example above, a programming language (in this case MiniLisp expression
language of nRQL) is needed to specify arbitrary custom retrieval (filter) predicates. With
MiniLisp, e.g., a user can write a simple (termination safe) “program” which is executed on
the RacerPro server. MiniLisp programs give the flexibility to specify the format of the query
answers, write query answers to a file, start subqueries, etc.
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The base usage scenario for TBox query answering is similar to ABox query answering: As
input we have a TBox (or mixed TBox and ABox) query. The output of the query is a set
of assignments for free variables in the query. The success indicators are, e.g., CPU time and
memory usage.

3.3 Usage Scenarios for Ontology Interoperation

Ontology interoperation concerns both an ontology that interoperates with a data storage (which
can be tightly coupled with the ontology or external to the ontology), and multiple indepen-
dent ontologies that are operating with each other. We analyze different usage scenarios of
interoperation, which are described in the following.

3.3.1 Ontology-To-Data-Storage

Ontology

Data layer

Presentation
layer

Application
layer

Client

Database

Processes

Figure 19: Ontology-To-Data-Storage architecture

In this scenario, an ontology is used to design and access a data storage. We consider Rela-
tional Database Management Systems (RDBMSs) as data storage engines. A database managed
by the DBMS can be also accessed independently of the ontology. However, the ontology and the
database are tightly related, indeed, the database can be changed to accommodate the ontology.
The main problems to be faced in this scenario are the impedance mismatch between objects in-
stances of the ontology and values stored in the database, and the problem of answering queries
posed over the ontology in terms of data stored in the database. The first problem is dealt with
by means of suitable mappings that relate the database schema to the ontology. Such mappings
allow for generating abstract objects of the ontology and for populating (partially) their at-
tributes. The second problem is dealt with by means of suitable query reformulation techniques
that allow to rewrite queries specified in terms of the ontology in queries posed to the database.
Reasoning services which depends on data (e.g., DL-Lite query answering, consistency check,
update at instance level) will be considered in this scenario. The main measures for the success
of the applied ontology-based techniques will be soundness and completeness of the techniques,
and also the possibility of maintain reasoning tractable. More precisely, since database instances
may be very large, computation going beyond SQL (i.e., beyond LOGSPACE in data complex-
ity) is problematic, and a measure of success for us is to have reasoning techniques (e.g., query
answering techniques) that are reducible to SQL query evaluation over a DBMS.

3.3.2 Ontology-To-Data-Sources

This scenario represents an advanced form of data integration, where we access data sources
that are independent from the ontology, and that are related to the ontology through suitable
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Figure 20: Ontology-To-Data-Sources architecture

mappings. As external sources we consider relational databases. As ontologies, we consider DL-
Lite TBoxes. Differently from the scenario of ontology-to-data storage, sources cannot change
for accommodate the ontology. However, also in this case, the impedance mismatch problem and
the query answering problem described in the scenario above are of concern. Also, the problem
of reformulating updates/erasure over the ontology to updates over the sources is particularly
challenging. Again, maintaining reasoning in LOGSPACE, i.e., SQL reducible, is a measure of
success for us in this scenario.

3.3.3 Ontology-To-Ontology

C1 C2

C3

C1 C2

C3

DL-Lite KB DL-Lite KB

Mapping

Figure 21: Ontology-to-Ontology

We consider two different (possibly situated) ontologies with unidirectional mapping, i.e.,
information flows only from one ontology to the other. We call them source ontology and target
ontology. We consider exchanging of instances according to the mapping specification. This task
consists in establishing which ABox assertions need to be materialized in the target ABox on
the basis of the knowledge provided by the source ontology and the mapping. We then consider
query answering over the target ontology. After the exchange of the data, this task can be
performed locally, i.e., as the source ontology were not connected to the target one. We also
consider the task of virtual, i.e., on-demand, information integration, and perform again query
answering over the target ontology. In this case, the source ontology cannot be disregarded
during query answering, and the problem arises of establishing what needs to be asked to the
source ontology to provide the correct and complete answer to the original query. This scenario
can be easily generalized to the scenario in which a set of ontologies is hierarchically connected.
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Figure 22: Ontology-to-Ontology

3.3.4 Network Of Ontologies

In this scenario, ontologies are freely connected in a network of peer-ontologies (peer-to-peer
scenario). A peer ontology is a stand-alone or situated ontology that is part of system formed
by other peer ontologies. Interaction between the peer ontologies is modeled by explicit peer
mappings. No constraints are posed on the topology of the mappings, i.e., cycles in the mappings
are allowed. Besides reasoning services considered in the ontology-to-ontology scenario, also
epistemic reasoning over multiple ontologies is considered in this scenario. This allows us to
suitable model single peers as autonomous agents that exchange information in a peer-to-peer
network.
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4 Test Ontologies

In this section, ontologies for testing usage scenarios discussed in the previous sections are
listed. These ontologies were selected from sources outside of our project. For every ontology,
we provide a short description and mention at least some of the following features:

• DL fragment

• Number of concepts, roles

• Number of TBox axioms and type of the TBox (cyclic, with GCIs etc.)

• Number of ABox concept and roles assertions

• Number of objects

• Concrete domain predicates: owl-style or constraint system

• Format of ontology (OWL, DAML, DIG, KRSS etc.)

Ontology Domain TBox ABox

DICE Medical Yes No

SNOMED Medical Yes No

LUBM University Yes Yes

UOB University Yes Yes

VICODI History Yes Yes

SEMINTEC Financial Services Yes Yes

FMA Anatomy Yes No

NotGalen Medical Yes No

NCI Medical Yes No

TAMBIS Bioinformatics Yes No

BIOPAX Biological pathways Yes Yes

Table 1: Test Ontologies

The DICE Ontology The DICE (Diagnosis for intensive care evaluation) ontology is a med-
ical ontology that focuses on the modeling of reasons to admission of intensive care [21]. The
knowledge base consists only of a TBox. This ontology is particular interesting for reasoning
tasks that are mainly investigated for unfoldable ontologies, since it is neither cyclic nor does it
contain GCIs, see [20]. The DICE ontology uses the concept constructors: conjunction, existen-
tial restrictions, value restrictions, qualified number restrictions and disjointness statements for
concept names. This roughly corresponds to ALEQ. It contains 2490 concept definitions (1134
of which are primitive definitions) and about 30 roles. The DICE ontology is available in KRSS
and DIG format.

The SNOMED Ontology The SNOMED ontology is a medical ontology with expressivity
of EL+ (EL augmented with complex role inclusions) and consisting of 379,691 concepts and
52 roles. It contains 38,719 concept definitions, 340,972 primitive concept definitions, and 12
(complex) role inclusions. It’s an acyclic TBox without GCIs. No ABox concepts or role
assertions are provided. The ontology format is an extension of KRSS.
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The LUBM Ontology The so-called Lehigh University Benchmark (LUBM), available under
http://swat.cse.lehigh.edu/projects/lubm/, was developed to facilitate the evaluation and
comparison of OWL semantic web repositories with different reasoning and storage capabilities.
The LUBM consists of an OWL ontology for modeling universities; i.e., the ontology contains
concepts for persons, students, professors, publications, courses etc. as well as appropriate re-
lationships for such a universe of discourse. The ontology does not use disjunctions or number
restrictions, but it uses existential quantifiers, so it is in Horn-ALCHI fragment It currently
defines 43 classes and 32 properties (including 25 object properties and 7 datatype properties).
A benchmark generator can be used to generate synthetic extensional data corresponding to this
ontology; i.e., a set of descriptions for specific departments, professors, students, courses etc.
The dataset containing OWL files for 50 universities have over 6,800,000 triples in total. Cur-
rently, LUBM is de facto standard for benchmarking reasoners over huge ontologies. Although
the TBox is simple, much effort has been invested in the definition of an ABox generator that
produces instance descriptions that statistically match real-world scenarios.

The UOB Ontology The University Ontology Benchmark is extended form of the Lehigh
University Benchmark (LUBM). The ontology is available under http://www.alphaworks.ibm.
com/tech/semanticstk. Similar to LUBM, it is proposed for benchmarking reasoner systems
over ontologies with huge data repositories. Moreover, it extends LUBM with some additional
TBox axioms in order to use the full expressivity of OWL Lite and OWL DL.

The VICODI Ontology The VICODI ontology is a manually created ontology about euro-
pean history. The TBox consists of role and concept inclusion axioms, and domain and range
specifications; it does not contain disjunctions, existential quantification, or number restrictions.
However, the ABox is relatively large, with many interconnected instances. Currently, the on-
tology has around 170 concepts, 15 properties and more than 15,000 individuals. The ontology
can be downloaded under http://www.vicodi.org. The ontology is available in OWL format.

The SEMINTEC Ontology The Semintec ontology was originally created by the Sem-
intec project at the University of Poznan (http://www.cs.put.poznan.pl/alawrynowicz/
semintec.htm). This ontology is based on a real-world TBox and models financial services.
Like VICODI, this ontology is relatively simple. The TBox contains 222 axioms of simple struc-
ture that do not use existential quantifiers or disjunctions. However, functionality assertions
requiring equality reasoning and disjointness are using.

The Foundational Model of Anatomy (FMA) Ontology The Foundational Model of
Anatomy ontology (FMA) is an evolving ontology concerned with the representation of human
anatomy. Its ontological framework can be applied and extended to other species.

The Foundational Model of Anatomy ontology (FMA) is now open source and available for
general use (http://sig.biostr.washington.edu/projects/fm/AboutFM.html).

The Foundational Model of Anatomy ontology has four interrelated components:

1. The Anatomy Taxonomy classifies anatomical entities according to the characteristics they
share and by which they can be distinguished from one another.

2. The Anatomical Structural Abstraction specifies the part-whole and spatial relationships
that exist between the entities represented in the Anatomy Taxonomy;
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3. The Anatomical Transformation Abstraction specifies the morphological transformation of
the entities represented in the Anatomy Taxonomy and during prenatal development and
the postnatal life cycle;

4. The Metaknowledge ontology specifies the principles, rules and definitions according to
which classes and relationships in the other three components of FMA are represented.

The FMA ontology contains approximately 75,000 classes and over 120,000 terms. FMA has
been created using Protege-3.0. The structure of the ontology is simple and can be represented
using EL.

The GALEN Ontology GALEN is a large medical ontology, represented in the Description
Logic SHIF, designed for supporting clinical information systems. GALEN’s original goal was
to describe all and only what is medically sensible. The practical goal, however, has been to
design an ontology that is sufficiently expressive to capture the concepts commonly used by
clinicians and classify them correctly.

The full version of GALEN contains 23139 concept names and 950 role names. The ontology
does not contain concrete roles or individuals. The ontology can be downloaded from http:

//www.co-ode.org/ontologies/galen.
For testing purposes, we will consider a simplified version of GALEN which contains 2749

concept names, 413 role names and no concrete roles or individuals. This simplified version
is represented in the description logic SHF and thus, as opposed to the full version, does
not contain inverse roles. It is available online at http://www.cs.man.ac.uk/∼horrocks/OWL/
Ontologies/galen.owl.

The National Cancer Institute Ontology (NCI) The NCI ontology is a huge, carefully
designed, ontology dealing with the biomedical domain. NCI has become a reference terminol-
ogy covering areas of basic and clinical science, built with the goal of facilitating translational
research in cancer. It represents knowledge about a wide range of domains, such as diseases,
drugs, anatomy, genes, gene products, techniques, and biological processes, among others, all
with a cancer-centric focus in content, and originally designed to support coding activities across
the National Cancer Institute.

The OWL version of the NCI ontology we are considering can be downloaded at http://www.
mindswap.org/2003/CancerOntology/. This version is represented in the EL description logic;
it contains 27652 concept names, 70 roles and no concrete roles or individuals. The ontology is
simple in structure and contains only definitions.

The TAMBIS Ontology The TAMBIS (Transparent Access to Multiple Bioinformatics In-
formation Sources) OWL ontology is a biological science ontology developed by the TAMBIS2
project. The goal of the project was to use an ontology to enable biologists to ask questions over
multiple external databases using a common query interface. The TAMBIS ontology describes
a wide range of bioinformatics tasks and resources, and has a central role within the TAMBIS
system.

The version of the ontology we are considering can be downloaded from the following URI:
http://www.mindswap.org/ontologies/tambis-full.owl.

The ontology is represented in the description logic SHIN . It contains 395 concept names,
100 role names and no concrete roles or individuals.
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The BIOPAX Ontology The goal of the BioPAX group is to develop a common exchange
format for biological pathways data. This concerns exchanging chemical compound information,
followed by metabolic pathway representation. Different levels of the BIOPAX ontology can be
found at http://www.biopax.org/. The BIOPAX ontology is defined in OWL.
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