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Maja Milicic4, Ralf Möller5, Riccardo Rosati2,

Ulrike Sattler3, Michael Wessel5

1 Free University of Bozen-Bolzano,
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Abstract

This report summarizes the reasoning techniques and algorithms developed in the TONES project
that realize the reasoning services identified as fundamental for ontology-based access, processing,
and usage. In addition to a detailed presentation of the algorithms, we report on their computational
properties and investigate solutions for the expressivity and data scalability problems.
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1 Introduction

In this deliverable, we describe techniques and algorithms used for performing tasks for ontology-based
access, processing, and usage, that have been identified in the previous deliverable (see [29]). We start
with an overview on the mentioned tasks and present in the next sections our main contributions for this
working package.

1.1 Tasks

Query Answering Query answering with respect to an ontology means to find tuples of individuals
that satisfy certain conditions. For specifying conditions, various kinds of query languages with different
expressivity have been investigated. We focus on query languages in the context of ontologies based
on description logics. Query languages based on so-called grounded conjunctive queries restrict the
variables in queries to be bound to individual names in the ABox only. Query languages supporting
unrestricted conjunctive queries for very expressive ontology languages have been investigated recently.

With the expressive power of ontologies, queries can be posed w.r.t. the vocabulary of the user rather
than have to be specified w.r.t. the low-level vocabulary of the data model of a particular information
source. For information access we distinguish two different scenarios: i) Data descriptions are already
available, i.e. query answering is to be defined w.r.t. explicitly given data or data descriptions. Depending
on the context, focus is on inferred information (the standard view, no distinction between explicitly
given information and derived information) or focus is on explicitly stated information only (aka told
information access); ii) information is implicit in media data, and logical descriptions of the content
must be derived in beforehand.

Query Formulation Support In the context of access to data sources mediated by ontologies users
should be guided towards the precise formulation of their queries, in order to obtain only relevant an-
swers. This process is supported by automated reasoning tasks which make use of the ontologies de-
scribing the data sources.

Information Extraction Query answering w.r.t. ontologies requires that explicit descriptions are avail-
able. In one of the standard ontology settings with description logics these explicit descriptions are avail-
able as an ABox. However, it is not always possible to easily transform a given information source into
an ABox. In particular, if the information source contains media data such as still images, audio and
video files, or natural language text, it is an open research problem how to automatically represent media
content. In this case, it is assumed that information objects, e.g., a particular image, is annotated with
so-called meta data that can be seen as (part of) an ABox. If meta data is not available, in order to support
ontology-based query answering, meta data must be derived automatically.

Semantic Service Discovery and Selection In addition to static information, the Web also offers ser-
vices which allow their users to effect changes in the world. As in the case of static information, anno-
tations describing the semantics of the service should facilitate discovery of the right service for a given
task. Since services create changes of the world, a faithful representation of its functionality should deal
with this dynamic aspect in an appropriate way. In addition to atomic services, we also consider simple
composite services, which are sequences of atomic services.

Configuration of Technical Devices The key idea is to use an ontology (TBox) to describe the con-
figuration space and an initial configuration (ABox) to be automatically completed such that given con-
straints are met. The goal is to derive a formalization of ontology-based configuration as a formal deci-
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sion problem in order to avoid the error-prone development of special-purpose programs. However, early
approaches were based on inexpressive ontology languages, i.e., many constraints could not be expressed
in a declarative way, and a lot of programming was still required.

Ontology-based information systems provide a framework for studying representation languages as
well as query languages from a theoretical and a practical point of view. Many of the above-mentioned
tasks for ontology access, processing, and usage must be realized in ontology-based information systems.
In this deliverable the techniques for tasks query answering and semantic service discovery and selection
are discussed in detail. Techniques used for solving tasks of information extraction and configuration of
technical devices are described e.g., in [91] and [53].

1.2 Ontology-based Information Systems (OBISs)

It is now widely accepted that ontologies will play an important role for the next generation of informa-
tion systems (ISs). The use of ontologies for ISs will not only enable “better” and “smarter” retrieval
facilities than current ISs based on the predominant relational data model (cf. the vision of the Semantic
Web [21]), but also play a key role in supporting data and information quality checks, IS interoperability,
and information integration [41, 42, 22]. Ontologies provide the means for solving problems raised by
semantic heterogeneity in ISs based on different conceptual or logical data models, because ontologies
inherently work on a semantic rather than on a syntactic level and thus support a seamless incorporation
of conceptual domain constraints into the machinery of an information system [151].

Mostly for performance reasons, retrieval systems nowadays still use rather simple thesaurus-based
retrieval models (possibly based on statistical information) [50]. From a logical point of view, a
thesaurus-based system uses a rather inexpressive representation formalism. Recent developments in
Description Logic inference technology have shown that expressive formalisms can indeed be used for
building practical systems in general, and practical information systems in particular. For instance, infor-
mation retrieval systems based on Description Logics are described in [80, 110]. We broaden this view
and describe in the next sections a formal generic framework for building ontology-based information
systems (OBISs). As such, our framework must offer the means for (i) the extensional layer, (ii) the
intensional layer, and (iii) the query component. Being ontology-based, our framework is strongly influ-
enced by Description Logics (DLs) and offers novel solutions for certain problems we have encountered
during our endeavor of implementing OBISs with a standard DL system.

We make these problems transparent by means of a case study: design and implementation of an
ontology-based geographic information system (GIS). Based on our framework we present empirically
successful solutions for problems in this specific IS domain. The focus in the case study is on ontology-
based query answering. The DLMAPS system supports ontology-based spatio-thematic query answer-
ing for city maps [157, 156].

Up to now the number of implemented OBISs is rather small, however. Consequently, experience
with the scalability of the DL approach is limited. This is not surprising, since DL systems are a rather
new technology compared to databases and, as we will see in the following, some problems remain to be
solved in today’s DL technology.

1.2.1 Problem Identification

We have identified 7 main problems P1 – P7 which contribute to the difficulties we encountered regarding
the use of DL systems for building OBISs (also see [32]). The problems P1, P2 are DL-specific, whereas
P3 – P6 are specific to the APIs of contemporary DL systems. P7 concerns the software architecture of
DL systems.

We believe that DLs have their deficiencies regarding expressivity and are not a panacea for arbitrary
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information modeling and representation (of course, this holds for all formalisms). DLs are very well
suited for the representation of semi-structured (or even incomplete/uncertain) information [38], but
things become more complicated if special “non-abstract” domains such as space are considered (→ P1:
DL applicability problem). We say “non-abstract” since space has a rich inner natural structure which is
not “man-made”, but is given by the laws of physics. Here, either non-standard DLs or non-trivial logical
encodings are needed. For these non-standard DLs, no working systems exist, and in our experience,
complex logical encodings are very likely to decrease the performance of the reasoning component.

Due to the well-known expressivity vs. complexity tradeoff, sound and complete reasoning with ex-
pressive DLs is not a trivial task. Data scalability is not always easy to achieve for expressive DLs. There
exist inexpressive ontology languages such as, for instance, RDF(S) [106, 26, 34] which scale well re-
garding data complexity. However, these approaches fail to scale regarding expressivity and problems
then have to be solved outside the information system by resorting to programming. We believe that a
generic framework for building OBISs should be parameterizable in both dimensions: data scalability
and expressivity scalability (→ P2: data and expressivity scalability problem) [63, 112]. If high expres-
sivity is required, it should be supported. However, if only low expressivity is needed, then the user
should not have to pay the higher price if a reasoner was used which implements a much more expressive
logic (see, e.g., the case study in [90]). This implies that a reasoner should be selected that implements
just the required logic, so that the lower complexity bound is sufficient, and the upper bound is tight.

DL systems somehow live in their own realm and are thus not really interoperable with the rest of the
more conventional IS infrastructure, e.g., existing relational database technology (→ P3: interoperability
and middleware problem). However, due to the inherent intellectual complexity of building DL system,
existing DL systems must be reused and exploited as componentware if possible.

Even though standards such as DIG exist [19], it can be observed that for building practical OBIS
some API functionality is still missing, only part of which is currently about to be standardized in DIG2.0

[145]. Compared with the APIs found in relational database management systems (RDMSs), one can
observe that functionality regarding the management of the physical schema or storage layer of a DL
system is missing (→ P4: missing storage-layer-functionality problem).

Moreover, as for RDMSs, plug-in mechanisms or “stored procedures” would be beneficial in order
to open up the server architectures for applications as well as to achieve high-bandwidth communication.
Extensibility and openness is not yet achieved in standard DL systems [157, 145] (→ P5: extensibility
and openness problem). Even though there is an extension proposal for DIG2.0, which we believe is a
very promising idea, DIG2.0 still does not support functionality or API functions to be added to a DL
system by users (i.e., application builders). It is clear that this problem can only be addressed by some
kind of programming facility or plug-in mechanism.

Only recently, expressive query languages (QLs) have been investigated and incorporated into DL
systems (→ P6: missing QL problem) [47, 97, 84, 156, 56]. However, these are indispensable for OBIS.

The last problem (P7) is closely related to P2 and concerns the software architecture of a reasoner.
Although reasoners implementing highly expressive logics are also capable to processing KBs utiliz-
ing only a (less expressive) sub-logic, one can sometimes observe that specialized reasoners crafted to
support smaller logics perform better than reasoners supporting more expressive logics. From the per-
spective of the more expressive reasoner, the more efficient (and more specialized) inference algorithm
implemented by the less expressive reasoner can be seen as an optimization technique. In principle, the
performance of the more expressive reasoner can become comparable once a specialized optimization
is built in. With more and more dedicated optimizations, whose applicability must be automatically de-
tected, however, the maintenance of the DL system software becomes a serious problem. We believe
that it is important to have appropriate software abstractions which help to maintain the software and
manage the complexity introduced by language-specific optimization techniques.

Specialized reasoning algorithms are not only needed in order to realize special optimizations, but
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also to implement certain inference tasks. From a theoretical perspective, most expressive DL systems
“only” have to implement a reasoner to decide one core inference problem, e.g., an ABox satisfiability
checker since the other inference problems are reducible to the core problem. However, from a com-
putational perspective, this seems inadequate because highly dedicated algorithms for special inference
problems have to be used to ensure scalability, e.g., for the instance retrieval problem [61]. These algo-
rithms are sometimes even more complex than tableau calculi [17], and thus deserve a clean separation
from other parts of the system code in order to achieve maintainability. Again, appropriate domain-
specific software abstractions are needed. We thus call P7 the “software-abstraction problem”.

1.2.2 Layered vs. Integrated Approaches

Practical description logic systems play an ever-growing role for knowledge representation and reasoning
research. Although description logics become more and more expressive (e.g., [72]), it is also necessary
to be able to deal with huge amounts of data descriptions very effectively. Thus, in practice, description
logic systems offering high expressivity must also be able to handle large bulks of data descriptions de-
rived from database content. Users expect that DL systems scale w.r.t. these practical needs. We consider
two kinds of scalability problems: scalability w.r.t. large sets of data descriptions (data description scal-
ability), i.e., runtimes scale well with increased data sizes but unchanged conceptual descriptions, and
scalability w.r.t. increased expressivity (expressivity scalability), i.e., a reasoner can still process an on-
tology in reasonable time if the data size remains unchanged but more complex conceptual descriptions
(e.g., full negation, disjunction) were added.

In the literature, the data description scalability problem has been tackled from different perspectives.
We see two main approaches, the layered approach and the integrated approach. In the layered approach
the goal is to use databases for storing and accessing data. From the point of view of the RDMS, the
inference algorithms then have to reside in the application layer.1 Description logic ontologies are then
exploit for convenient query formulation. The main idea is to support ontology-based query translation
to relational query languages (SQL, datalog). See, e.g., [162, 59] (DLDB), [18] (Instance Store), [152]
(deductive databases), or [30] (DL-Lite). We notice that these approaches are only applicable if reduced
expressivity for conceptual descriptions does not matter. Despite the most appealing argument of reusing
database technology (in particular services for persistent data), at the current state of the art it is not clear
how expressivity can be increased to, e.g., SHIQ without losing the applicability of transformation
approaches. Hence, while data description scalability is achieved, it is not clear how to extend these
approaches to achieve expressivity scalability (at least for some parts of the data descriptions). In fact,
since ontology-based query answering requires inference, the assertions in the database are used as input
assertions for the inference algorithm. Unfortunately, the question which assertions to retrieve from the
database can only be resolved at runtime by the inference algorithm itself. But if there is no way to
tell in advance which assertions will contribute to the final answer of the query and which will not, then
database indices are of no great help in order to reduce the set of candidate assertions to consider.

Thus, for expressive ontology languages, a layered architecture results in a lot of communication
overhead, and the retrieved candidate results from the database must be combined and reasoned about to
get the final query answer. Obviously, it would be better if this computation and integration of required
sub-results could be done in the RDMS itself by means of a single query. This is possible as the authors
of the QUONTO system have shown, but “only” for rather inexpressive DLs. In the case of QUONTO,
ontology-based query answering can be performed by the RDMS query answering engine on its own,
since the inexpressivity of the underlying DL makes it possible to expand the original query in such a
way that it takes the ontology into account [2].

1We think it is unrealistic to assume that a system as complex as a tableaux reasoner can be realized as a stored procedure
within a RDMS.
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Figure 1: A small example ontology in UML-like notation (the association is described by a cardinality
restriction 1..*).

1.3 Grounded vs. Unrestricted Queries in Description Logics

As we have discussed above, for future ontology-based information systems, query answering is essen-
tial. For different practical purposes, different formal semantics of query languages are introduced in the
sequel. With respect to ontologies, the class of conjunctive queries is investigated, and – as mentioned
above – we distinguish between so-called grounded conjunctive queries and unrestricted conjunctive
queries. Grounded queries can be seen as restricted since in grounded queries, variables occurring in
queries are bound to named individuals only whereas in unrestricted conjunctive queries, variables not
mentioned in the query head are bound to possibly unnamed domain objects. The distinction between
both kinds of queries investigated in this report can be explained with an example.

Consider the following ontology specifiied using the description logics. The role controlledBy has
MortgageLender as the domain, and Bank as a range. A Bank is a specific MortgageLender, and
a MortgageLender is controlled by at least one Bank. Then, it is explicitly stated that the individual
Halifax is controlled by LeedsBS. In addition, the individual RBS is an instance of Bank.

∃controlledBy.> v MortgageLender
> v ∀controlledBy.Bank
Bank v MortgageLender
MortgageLender v ∃controlledBy.Bank

controlledBy(Halifax , LeedsBS)
Bank(RBS)

A graphical display of the constraints imposed by the Tbox is shown in UML notation in Figure 1.
Now, let us consider the query ans(X) ← Bank(X), controlledBy(X,Y ). In this query, all ob-
jects are searched that are Banks and are controlled by some object. Due to the domain and range
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restrictions of the role controlledBy it follows that Halifax is a MortgageLender and LeedsBS
is a Bank, respectively. Since LeedsBS is a Bank it is also a MortgageLender. Thus, we
have three MortgageLenders, Halifax , LeedsBS, and, by definition, RBS. Due to the Tbox, all
MortgageLenders are controlled by some Bank, which is possible not mentioned using a name in the
ontology. Thus, for the conjunctive query given above, the result set contains LeedsBS, and RBS since
Halifax is not necessarily a Bank. The example clearly demonstrates that with ontologies, implicit
information comes into play.

The fact thatRBS is returned as a member of the query result set might be somewhat surprising since
the Bank which controls RBS is not explicitly known (i.e., there is no named domain object known).
If one expects that variables are bound to named domain objects, grounded conjunctive queries can be
used. In this case the result set contains only LeedsBS. The ontology is still important since only with
the ontology it is possible to derive that LeedsBS is a Bank. In this example, this is a very simple
inference, though.

The implementation of a query ansering engine for grounded conjunctive queries is “easier” because
query answering can be reduced to standard concept-based instance retrieval operations. Unrestricted
conjunctive queries are much more complex to handle, in particular for expressive description logics. In
this report we start with grounded conjunctive queries and treat unrestricted conjunctive queries after-
wards.
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2 Grounded Conjunctive Queries: Scalable Instance Retrieval for Ex-
pressive DLs

In the introduction, we discussed two possible approaches for building ontology-based information sys-
tems, the layered approach and the integrated approach, that address scalability problems in practical
OBISs: scalability w.r.t. large data and scalability w.r.t. expressivity. To solve the data description scal-
ability problem, e.g., an RDMS could be used as the storage layer of an OBIS. This would result in a
classical layered architecture. However, the drawback of this layered approach is that it is not obvious
how to account for expressivity scalability. Therefore, for investigating solutions to both scalability prob-
lems, we pursue the integrated approach that considers query answering with a tableau-based description
logic system augmented with new techniques inspired from database systems. For the time being we
ignore the persistency problem.

The contribution of this section is twofold. By introducing and analyzing practical instance re-
trieval algorithms tested in one of the mature, sound, and complete description logic systems (RACER
[60]), which is used in many research projects all over the world, the development of even more pow-
erful semantic web query engines is directly supported. RACER implements the very expressive DL
ALCQHIR+(D−), also known as SHIQ(D−) [74, 60], and offers multiple TBoxes, ABoxes as well
as expressive concrete domains (of which the OWL “datatypes” are only a subset). Even though it is not
clear under which circumstances a reasoning system can be called empirically successful, we claim the
RACER is such a system given the evidence that it has many academic as well as commercial users.

This section is partially based on [61] but combines and extends the previously reported results with
new optimization techniques and new insight derived from other real-world ontologies. On the other hand
the contribution also presents and analyzes the main results we have found about how to start solving the
scalability problem with tableau-based prover systems given large sets of data descriptions for a large
number of individuals and grounded conjunctive queries. The optimization techniques might very well
be appropriate for general conjunctive queries.

2.1 Preliminaries

2.1.1 The Description Logic SHIQ

For sake of completeness and readability we briefly introduce the description logic SHIQ (see the tables
in Figure 2) using a standard Tarski-style semantics based on an interpretation I = (∆I , ·I). We assume
a set of concept names C and a set of role names R. The mutually disjoint subsets P and T of R denote
non-transitive and transitive roles, respectively (R = P ∪ T ).

If R,S ∈ R are role names, then the terminological axiom R v S is called a role inclusion axiom.
A role hierarchy R is a finite set of role inclusion axioms. In order to preserve decidability a syntactic
restriction holds for the combinability of number restrictions and transitive roles in SHIQ. Number
restrictions are only allowed for simple roles, i.e., a role is called simple if it has no transitive super-role.
The concept name > (⊥) is used as an abbreviation for C t ¬C (C u ¬C).

If C and D are concept expressions, then C v D (generalized concept inclusion or GCI) is a termino-
logical axiom. A finite set of terminological axioms TR is called a terminology or Tbox w.r.t. to a given
role hierarchyR.2 We use C ≡ D as an abbreviation for {C v D, D v C}.

The concept satisfiability problem is to decide whether a given concept expression C is satisfiable
w.r.t. to T andR, i.e., whether there exists an interpretation I such that I satisfies T andR and CI 6= ∅.

Let C be a concept expression, R be a role name, O be the set of individual names (disjoint from
the set of concepts names and the set of role names), a, b ∈ O be individual names, then a :C is called

2The reference toR is omitted in the following.
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Syntax Semantics
Concepts
A AI ⊆ ∆I , A is a concept name
¬C ∆I \ CI

C u D CI ∩ DI

C t D CI ∪ DI

∃R .C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R .C {a ∈ ∆I | ∀ b : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S .C {a ∈ ∆I | S](a,C) ≥ n}
∃≤m S .C {a ∈ ∆I | S](a,C) ≤ m}
Roles
R RI ⊆ ∆I ×∆I

R− {(a, b) ∈ ∆I ×∆I | (b, a) ∈ RI}

Terminological Axioms
Syntax Satisfied if
R ∈ T RI = (RI)+

R v S RI ⊆ SI

C v D CI ⊆ DI

Assertional Axioms
Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

a
.= b aI = bI

a 6 .= b aI 6= bI

Figure 2: Syntax and Semantics of SHIQ (n,m ∈ N, n > 1,m > 0, ‖ · ‖ denotes set cardinality, S is a
simple role, S](a,C) = ‖{b ∈ ∆I | (a, b) ∈ SI , b ∈ CI}‖).

an instance assertion, (a, b) :R a role assertion, and a
.= b (a 6 .= b) an individual equality (disjointness)

assertion.
A finite set of assertional axiomsA w.r.t. a Tbox TR is called an Abox. If (a, b) :R ∈ A the a is called

a R-predecessor of b and b a R-successor (or role filler) of a. An Abox A is consistent iff there exists an
interpretation I which satisfies all assertions in A and all axioms in T w.r.t.R.

2.1.2 Individual Pseudo Model Merging

In this part we review the individual pseudo model merging technique [67] for sake of completeness and
readability. The technique of using an individual model merging test (see [67]) is based on the observa-
tion that individuals are usually members of only a small number of concepts and the Aboxes resulting
from instance testing are proven as consistent in most cases. This was the motivation for devising the
individual pseudo model merging technique. The basic idea is to have a fast, sound but possibly incom-
plete test for a focused individual i and a concept term ¬D without the need to explicitly consider role and
concept assertions for all other individuals occurring in A. These possible “interactions” are reflected in
the definition of an “individual pseudo model” of i (see below).

For instance, in the DL ALC a pseudo model for an individual i mentioned in a consistent initial
Abox A w.r.t. a Tbox T is defined as follows. Since A is consistent, there exists a set of completions
C of A. Let A′ ∈ C. An individual pseudo model M for an individual i in A is defined as the tuple
〈MD,M¬D,M∃,M∀〉 w.r.t. A′ and A using the following definition.

MA = {A | i :A ∈ A′, A is a concept name}
M¬A = {A | i :¬A ∈ A′, A is a concept name}
M∃ = {R | i :∃R.C ∈ A′} ∪ {R | (i, j) :R ∈ A}
M∀ = {R | i :∀R.C ∈ A′}
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The pseudo model of a concept D is defined analogously by using the completion of an initial Abox
A = {i :D}. Note the distinction between the initial Abox A and its completion A′. Whenever a role
assertion exists, which specifies a role successor for the individual i in the initial Abox, the referenced
role name is added to the set M∃. This is based on the rationale that the cached pseudo model of i should
not refer to individual names occurring already in the initial AboxA. However, it is sufficient to reflect a
role assertion (i, j) :R ∈ A by adding the role name R to M∃. This guarantees that possible interactions
via the role R are reflected. The function pmodels mergable? is defined in Algorithm 1.

Algorithm 1 pmodels mergable?(M1,M2)

return atoms mergable(M1,M2) ∧ roles mergable(M1,M2)

The algorithm atoms mergable tests for a possible concept interaction between a pair of pseudo
models. It is applied to these pseudo models and returns false if (MD

1 ∩M¬D
2 ) 6= ∅ or (M¬D

1 ∩MD
2 ) 6= ∅.

Otherwise it returns true .
The algorithm roles mergable tests for a possible role interaction between a pair of pseudo models.

It returns false if (M∃1 ∩M∀2) 6= ∅ or (M∀1 ∩M∃2) 6= ∅. Otherwise it returns true . The reader is referred
to [67] for the proof of the soundness of this technique and for further details.

The algorithm ind model merge poss? (used in the following sections) can be reduced to a pseudo
model merging test as follows. It is assumed that imodel(i,A) returns the pseudo model of individual i
w.r.t. A and cmodel(D) the pseudo model of concept D.

Algorithm 2 ind model merge poss?(i,D,A):
return pmodels mergable?(imodel(i,A), cmodel(D))

2.1.3 GCI Absorption and Lazy Unfolding

Another standard optimization technique, GCI absorption [78, 77], tries to transform GCIs in a satisfia-
bility preserving way in order to facilitate the application of the lazy unfolding technique [9]. In general,
a Tbox can be divided into two sets of axioms. The set TU contains axioms of the form A v C or¬A v D,
where A is a concept name and C and D are concept expressions. The concept names occurring on the
left-hand size of the axioms in TU are called unfoldable. The second set TG contains axioms of the form
C v D where C and D are concept expressions (see [77] for a more detailed analysis of GCI absorption).
The lazy unfolding technique works as follows. Whenever a tableau procedure encounters in an Abox
an assertion of the form a :A (a :¬A) for the first time and an axiom of the form A v C (¬A v D) can
be found in TU , it adds a :C (a :D) to the Abox. The GCI absorption technique tries to maximize the
efficacy of lazy unfolding by transforming axioms in TG in such a way that they can be moved to TU .
If possible, the set TG should become empty after the application of GCI absorption. If axioms remain
in TG, they have to be considered as possible disjunctions for every individual encountered during a
satisfiability test (again, see [77] for more details). The number of remaining axioms in TG is usually a
good indication for the hardness of a given Tbox. Some of the optimization techniques presented in the
following sections rely on subsumption tests which might become expensive if TG is not empty after the
absorption preprocessing step.

2.2 Optimization Techniques for Instance Retrieval

For applications, which either generate Aboxes on the fly as part of their problem-solving processes
and/or ask a few queries w.r.t. an Abox, computing index structures by realization might not be worth
the effort. Thus, in this section we discuss answering strategies for instance retrieval which is not based
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Figure 3: An example for contracting an Abox. The Abox part in the rectangle is replaced with a concept
assertion (see the lower part for the resulting Abox).

on realization. However, as we will see later, these techniques can also be exploited if index structures
are to be computed (possibly off-line).

2.2.1 Transformation of Aboxes

In order to make realization as fast as possible we investigated ways to maximize the effect of caching
techniques supplied by RACER’s Abox consistency checking architecture. We transform the original
Abox in such a way that acyclic “chains” formed by role assertions are represented by an appropriate
exists restriction (see [65] for a formal definition of the transformation rules). The corresponding concept
and role assertions representing the chains are deleted from the Abox. We illustrate this contraction idea
by an example presented in Figure 3. The idea is to transform tree-like role assertions (or “chains”) start-
ing from the individuals i and a into assertions with existential restrictions such that an equisatisfiable
Abox is derived (see [65] for details). This transformation is similar to rolling-up techniques developed
for conjunctive query answering (e.g., [56]). The contraction might be useful in situations where RACER
supports caching of the satisfiability status of existential concept expressions (see also [65] for a discus-
sion of a sound caching technique). Contracting an Abox is part of the process to build internal data
structures for Abox reasoning.

2.2.2 Linear Instance Retrieval

One possible alternative for implementing instance retrieval is to consider one individual at a time.
Hence, the standard Abox inference service instance retrieval(Cq,A) can be implemented by using the
following procedure call: linear retrieval(Cq, contract(i,A), individuals(A)), where contract(i,A)
computes the contracted variant of Abox A w.r.t. the individual i and individuals(A) returns the set of
individuals mentioned in Abox A. Except for the contraction idea, linear instance retrieval was also
implemented in a similar way in first generation DL systems (see, e.g., [117]).

We assume that SAT (ASAT ) is the standard concept (Abox) satisfiability test implemented by an
optimized tableau calculus [75, 62]. The function linear retrieval is specified by Algorithm 3.
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Algorithm 3 linear retrieval(C,A, candidates):
result := {}
for all ind ∈ candidates do

if instance?(ind,C,A) then
result := result ∪ {ind}

end if
end for
return result

2.2.3 Obvious Non-Instances: Exploiting Completion Information

The function call instance?(i,C,A) could be implemented in a standard way as ¬ASAT (A ∪ {i :¬C}).
However, although this implementation of instance? is sound and complete, it is quite inefficient. A
faster variant uses sound but incomplete initial tests for detecting “obvious” non-instances: the individual
pseudo model merging test (see [67] and Section 2.1.2) and possibly a subsumption test involving the
negation of the query concept. These two tests (also referred to as “guards” for avoiding to invoke the
tableau algorithm) are used in Algorithm 4.

Algorithm 4 obv non instance?(i,C,A):
if ind model merge poss?(i,negated concept(C),A) then

return true
else if use subsumption test on negated concept then

return subsumes?(negated concept(C), individual concept(i,A))
else

return false
end if

The function negated concept used in obv non instance? returns the negation of its input concept
whereas the function individual concept returns for an individual i and an Abox A the conjunction
of concepts occurring in all Abox concept assertions for i. If role assertions mentioning i are present
in A, additional concepts are added to i’s individual concept. For role assertions of the form (i, j) :R
and (j, i) :R either concepts of the form (∃≥1 R) and (∃≥1 R−) are added or, provided the unique name
assumptions holds, ∃≥n R and ∃≥n R− are generated by individual concept where n depends on the
number of different individual names jk occurring in (i, jk ) :R and (jk , i) :R.

Algorithm 5 subsumes?(C,D):
if pmodels mergable?(cmodel(negated concept(C)), cmodel(D)) then

return false
else

return ¬SAT (D u ¬C)
end if

The subsumption test subsumes? is implemented in Algorithm 5. Experience has shown that
for some KBs a SAT test with an individual concept is often faster compared to a corresponding
ASAT (although both are of the same worst-case complexity class). The reason is that better op-
timization techniques are available for SAT than for ASAT tests. However, if the GCIs contained
in an KB are “difficult”, i.e., enforce a high amount of runtime, the subsumes? test in Algorithm 4
might become too expensive. A good indication seems to be if the set TG of Tbox axioms which
could not be absorbed is not empty (see Section 2.1.3). In general, our findings suggest to initialize
use subsumption test on negated concept with false .

Let us turn back to the function obv non instance? now. If one of the “guards” in
obv non instance? returns true , the result of instance? is false . Although the obv non instance?
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test is often successful, we devised another non-instance test reusing the saved completion information.
The function completion ASAT (see Algorithm 6) invokes ASAT but uses a saved completion A′ in-
stead of the original input Abox A. If completion ASAT is unsuccessful, an “expensive” instance test
using the original Abox A is performed as shown in Algorithm 7.

Algorithm 6 completion ASAT (i, C,A)

return ASAT (completion(A) ∪ {i : ¬C})

The function completion(A) returns an associated completion A′ for an Abox A. The completion
technique is sound but incomplete because if the completion A′ extended by the assertion i :¬C is satis-
fiable, then the individual i is obviously not an instance of C. However, if the extended completion A′
is unsatisfiable, an ASAT test, where the original input Abox A is extended, might still find a different
completion A′′ that also satisfies the assertion i :¬C.

With these auxiliaries, the function instance? can be optimized for the average case but is still sound
and complete.

Algorithm 7 instance?(i,C,A):
if obv non instance?(i, C,A) ∨ completion ASAT (i, C,A) then

return false
else

return ¬ASAT (A ∪ {i :¬C})
end if

Although for many queries the result often consists of a small set of individuals, other individuals
might still cause the “expensive” ASAT test to be invoked, regardless of the “guards” in Algorithm 7.
Thus, the number of ASAT test should be further reduced in order to further improve the performance
of instance retrieval.

2.2.4 Obvious Instances: Exploiting Precompletion Information

Another central optimization technique to ensure data description scalability – required for ontologies
such as LUBM – is to also find “obvious” instances with minimum effort. Given an initial Abox con-
sistency test and a completion one can consider all deterministic restrictions, i.e., one considers only
those completion data structures (from now on called constraints) for which there are no choice points in
the tableau proof (in other words, one considers only those constraints that do not have or-dependency
information attached). These constraints constitute a so-called precompletion. Note that in a precomple-
tion, no restrictions are violated because we assume that the precompletion is computed from an existing
completion.

Given the precompletion constraints, for an individual i an approximation of its most-specific concept
(MSC ) is computed (the approximation is called MSC ′). The generation of MSC ′ is identical to the
generation of an individual concept (see the previous section) but is is based on a precompletion instead
of a completion. If MSC ′i is subsumed by a query concept C, then i must be an instance of C. In the case
of LUBM many of the assertions lead to deterministic constraints in the tableau proof which, in turn,
results in the fact that for many instances of a query concept C (e.g., Faculty as in query Q9) the instance
problem is decided with a subsumption test based on the MSC ′ of each individual. Subsumption tests are
known to be usually fast due to caching and model merging. The more precisely MSC ′i approximates
MSC i, the more often an individual can be determined to be an obvious instance of a query concept.
Obviously, it might be possible to determine obvious instances by directly considering the precompletion
data structures. However, at this implementation level a presentation would be too detailed. The main
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point is that, due to our findings, the crude approximation with MSC ′ suffices to solve many instance
tests in KBs such as LUBM.

If atomic concepts are used as testers in the case of LUBM, a large number of tests for obvious
non-instances or obvious instances can determine the result. However, for some individuals (e.g., i) and
query concepts (e.g., C) both tests might not determine whether i is (not) an instance of C (e.g., this is
the case for Chair). Since both of these “cheap” tests are incomplete, for these individuals (e.g., i) a
refutational Abox consistency test where the assertion i :¬C has been added to the Abox must be decided
with a sound and complete tableau prover. For some concepts, the set of candidates might become quite
large. Considering the volume of assertions in LUBM , it is easy to see that the Abox consistency test
should not start from the initial, unprocessed Abox in order to ensure scalability.

For large Aboxes and many repetitive instance tests it is a waste of resources to “expand” the very
same initial constraints over and over again. Therefore, the precompletion resulting from the initial
Abox consistency test is used as a starting point for refutational instance tests. The tableau prover keeps
the precompletion in memory. All deterministic constraints have been already expanded, so, if some
constraint is added, only a limited amount of work needs to be done.

2.2.5 Binary Instance Retrieval

How can Abox satisfiability tests be avoided at all? The observation is that only very few additions to
A of the kind {i :¬C} lead to an inconsistency in the function instance? (i.e., in very few situations i is
indeed an instance of C). Thus, it might advantageous to combine several individual (non-)instance tests
into one Abox consistency test based on a standard divide-and-conquer strategy. This scheme is based
on splitting a set of individuals into binary partitions for instance retrieval as shown in Algorithm 8.

Algorithm 8 binary retrieval(C,A, candidates):
if candidates = ∅ then

return ∅
else
〈partition1 , partition2 〉 := partition(candidates)
return partition retrieval(C,A, partition1 , partition2 )

end if

We assume now that instance retrieval(Cq,A) is implemented by calling the procedure
binary retrieval(Cq, contract(i,A), individuals(A)). The function partition is defined in Algo-
rithm 9. It divides a set into two partitions of approximately the same size. Given the partitions,
binary retrieval calls partition retrieval . The idea of partition retrieval (see Algorithm 11) is to
first check whether none of the individuals in a partition is an instance of the query concept C. This is
done with the function non instances? (see Algorithm 10).

Algorithm 9 partition(s): /* s[i] refers to the i th element of the set s */
if |s| ≤ 1 then

return 〈s, ∅〉
else

return 〈{s[1], . . . , s[bn/2c]}, {s[bn/2c+ 1], . . . , s[n]}〉
end if

Algorithm 10 non instances?(cands,C,A):
return ASAT (A ∪ {i :¬C | i ∈ cands ∧ ¬obv non instance?(i,C,A)})
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The potential performance gain is based on the observation that the non instances? test is successful
in many cases. Hence, with one “expensive” Abox test a large set of candidates can be eliminated.
The underlying assumption is that, in general, the computational costs of checking whether an Abox
(A ∪ {i :¬C, j :¬C, . . .}) is consistent is largely dominated by A alone. Hence, it is assumed that the
size of the set of constraints added toA has only a limited influence on the runtime. For knowledge bases
with, for instance, cyclic GCIs or a non-empty set TG of unabsorbed GCIs, this may not be the case,
however. Partitioning a set of candidates in two parts of approximately the same size can be controlled
by heuristics. This has not yet been fully explored. Thus, further performance gains might be possible.

Algorithm 11 partition retrieval(C,A, part1 , part2 ):
if |part1| = 1 then

let i be the only member of part1
if instance?(i,C,A) then

return {i} ∪ binary retrieval(C,A, part2 )
else

return binary retrieval(C,A, part2 )
end if

else if non instances?(part1 ,C,A) then
return binary retrieval(C,A, part2 )

else if non instances?(part2 ,C,A) then
return binary retrieval(C,A, part1 )

else
return binary retrieval(C,A, part1 ) ∪ binary retrieval(C,A, part2 )

end if

2.2.6 Dependency-based Instance Retrieval

Although binary retrieval is found to be faster than linear retrieval in the average case, one can do better.
If the function non instances? returns false , one can analyze the dependencies of the tableau structures
(“constraints”) involved in all clashes of the tableau branches. Analyzing dependency information for
a clash reveals the “original” Abox assertions responsible for the clash. If the clashes in all attempts
to construct a completion are due to an added constraint i :¬C, then, as a by-product of the test, the
individual i is known to be an instance of the query concept C. The individual can be eliminated from the
set of candidates to be investigated, and it is definitely part of the solution set. Dependency information
is kept for other optimization purposes as well [78] and dependency analysis does not involve much
overhead.

Eliminating candidate individuals detected by dependency analysis prevents the reasoner from de-
tecting the same clash over and over again until a partition of cardinality 1 is tested. If the solution set is
large compared to the set of individuals in an Abox, there is some overhead compared to linear instance
retrieval because only one individual is removed from the set of candidates at a time as well with the
additional cost of collecting dependency information during the tableau proofs.

2.3 Static Index-based Instance Retrieval

The techniques introduced in the previous sections can also be exploited if indexing techniques are used
for instance retrieval (see, e.g., [117, p. 108f]). Basically, the idea is to reduce the set of candidates
that have to be tested by computing the direct types of every individual. An index is constructed by
deriving a function associated inds defined for each concept name C mentioned in the Tbox such that
i ∈ associated inds(C) iff C ∈ direct types(i,A). The optimizations used in RACER are inspired by
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the marking and propagation techniques described in [15, 14] for exploiting explicitly given information
as much as possible.

In the following we assume that CN is the set of all concept names mentioned in a given Tbox
(including the name >). Furthermore, it is assumed that the function children(C) (parents(C)) re-
turns the least specific subsumees (most specific subsumers) of C whereas the function descendants(C)
(ancestors(C)) returns all subsumees (subsumers) of C. The descendants and ancestors of C include C.
Subsumers and subsumees of a concept C are concept names from CN . The function synonyms(C)
returns all concept names from CN which are equivalent to C.

The standard way to compute the index is to compute the direct types for each individual mentioned
in the Abox separately (one-individual-at-a-time approach). In order to compute the direct types of
individuals w.r.t. a Tbox and an Abox, the Tbox must be classified first. Static index-based instance
retrieval was investigated in [117, p. 108f.] and is implemented as follows.

Algorithm 12 static index based retrieval(C,A):
if ∃N ∈ CN : N ∈ synonyms(C) then

return
S

D∈descendants(C) associated inds(D)
else

known :=
S

D∈descendants(C) associated inds(D)

candidates :=
S

P∈parents(C)

S
D∈descendants(P) associated inds(D) (*)

return known ∪ instance retrieval(C,A, candidates \ known)
end if

It is obvious that instance retrieval can be implemented by any of the techniques introduced in the
previous sections.

Computing the index structures (i.e., the function associated inds) is known to be time-consuming.
Our findings indicate that for many applications this might take several minutes or even hours, i.e. index
computation is only possible in a setup phase. Since for many applications this is not tolerable, new tech-
niques had to be developed. The main problem is that for computing the index structure associated inds
the direct types are computed for every individual in isolation. Rather than looping over all individuals
and asking for the direct types of each individual in a separate query, we investigated the idea of using
sets of individuals which are “sieved” into the taxonomy.

We call this approach the sets-of-individuals-at-a-time approach (see Algorithms 13 and 14).
The traverse procedure (Algorithm 13) sets up the index has member . For a given concept
name A the function has member returns the set of A’s known instances. The procedure
compute index sets of inds at a time (Algorithm 14) uses has member in order to check if the in-
stances of a concept name are not instances of the children of the concept name. Being this the case, the
concept name is marked as one of the direct types of each of the instances. This is done by setting up the
index associated inds appropriately.

Algorithm 13 traverse(inds,C,A, has member):
if inds 6= ∅ then

for all D ∈ children(C) do
if has member(D) = unknown then

instances of D := instance retrieval(D, inds,A)
has member(D) := instances of D
traverse(instances of D ,D,A, has member)

end if
end for

end if
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Algorithm 14 compute index sets of inds at a time(A):
for all C ∈ CN do

has member(C) := unknown
associated inds(C) := ∅

end for
traverse(individuals(A), top,A, has member)
has member(top) := individuals(A)
for all C ∈ CN do

if has member(C) 6= unknown then
for all ind ∈ has member(C) do

if ¬∃D ∈ children(C) : ind ∈ has member(D) then
associated inds(C) := associated inds(C) ∪ {ind}

end if
end for

end if
end for

2.3.1 Dynamic Index-based Instance Retrieval

Computing a complete index (realization) as described in the previous subsection is possible if many
queries are posed w.r.t. a “fixed” Abox (and Tbox). However, sometimes realization is too time-
consuming. Therefore, we investigated a new strategy that exploits (i) explicitly given information (e.g.,
from Abox assertions of the form i :A where A is a concept name) and (ii) the results of previous instance
retrieval queries.

The idea can be explained as follows. The function associated inds associates a set Inds of in-
dividuals with each concept name C such that for each i ∈ Inds it holds that i is an instance of C, for
each D ∈ descendants(C) the individual i 6∈ associated inds(D), and for each D ∈ ancestors(C) the
individual i 6∈ associated inds(D).

The function associated inds is updated due to the results of queries. Let us assume
i ∈ associated inds(C) and C ∈ ancestors(E). If it turns out that i is an instance of E, the function
associated inds is changed accordingly. Thus, the index evolves as instance retrieval queries are an-
swered. Therefore, we call this strategy dynamic index-based instance retrieval.

In this new approach, the function associated inds(C) returns an individual i even if C is not “most
specific”, i.e., even if there might exist a subconcept D of C such that i is also an instance of D. The
consequence is that Algorithm 12 is no longer complete. The idea of only considering the parents of
the query concept (see the line marked with an asterisk in Algorithm 12) must be dropped. Before we
give a complete algorithm for dynamic index-based instance retrieval, further optimization techniques
are introduced.

Let us assume concept D is a subsumer of C. In addition, let us assume in order to answer some
previous query the direct types for an individual i are computed. If it is known for an individual i ∈
associated inds(D) that D ∈ direct types(i), then i is removed from the set of candidates for the query
concept C. Since D is a subsumer of C and D is a direct type (i.e., D is most specific), i cannot be an
instance of C.

With each concept name we also associate a set of non-instances. The non-instances are found
by queries for the direct types of an individual (the non-instances are associated with the chil-
dren of each direct type) or by exploiting previous calls to the function instance retrieval . If
an individual i is found not to be an instance of a query concept D, this is recorded appropri-
ately by including i in associated non instance(D) if there is no E ∈ ancestors(D) such that
i ∈ associated non instance(E) (non-redundant caching). The non-instances of a query concept can
then be discarded from the set of candidates. The new algorithm for instance retrieval is shown in Algo-
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rithm 15.

Algorithm 15 dynamic index based retrieval(C,A):
known :=

S
D∈descendants(C) associated inds(D)

possible candidates :=
S

D∈(ancestors(C)\{C}) associated inds(D)

candidates := possible candidates \
S

D∈ancestors(C) associated non instances(D)

return known ∪ instance retrieval(C,A, candidates \ known)

Note that instead of testing the parents as done in Algorithm 12 (see the line marked with an asterisk),
in Algorithm 15 the descendants of the query concept C are taken into consideration for possible candi-
dates. In other words, it is not a problem if an individual i is returned by associated inds(D) although
there exist subconcepts of D of which i is also an instance.

2.3.2 OWL-DL Datatype Properties

RACER supports concrete domain reasoning as defined in [62] and reasoning about fillers of OWL-
DL datatype properties can be easily mapped on concrete domain reasoning using appropriate concrete
domains for strings, booleans, and integers. However, this mapping turns out to be too expensive for
datatype properties unless some of them are restricted by number restrictions. RACER analyzes sub-
mitted KBs and dynamically enables a special and simpler reasoning method for datatype properties if
permitted. Fillers of datatype properties adhere to a locality restriction, e.g., if two different individuals
i and j have fillers “joe” and “bill” for a datatype property has name, the reasoning remains local w.r.t. i
and j respectively. In other words: there cannot exist an interaction between the datatype property filler
of i and j. This optimization technique seems to be quite effective for very large Aboxes such as LUBM
containing many assertions about datatype properties.

2.3.3 Re-use of Role Assertions

Standard tableau methods for DLs avoid the expansion of assertions of the form i :∃R.C if there already
exists a R-role filler for i that is known to be an instance of concept C. This re-use of already existing role
fillers is useful but might be expensive for large Aboxes if appropriate indexes for fast role filler lookup
do not exist. RACER implements corresponding index structures enabling a role filler lookup in almost
constant time. This technique is advantageous for very large Aboxes such as UOBM.
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2.4 Optimizations for Grounded Conjunctive Queries

LUBM queries are modeled as grounded conjunctive queries referencing concept, role, and individual
names from the Tbox. Below, LUBM queries 9 and 12 are shown in order to demonstrate LUBM query
answering problems – note that ‘www.University0.edu’ is an individual and subOrganizationOf is a
transitive role. Please refer to [58, 59] for more information about the LUBM queries.

Q9 : ans(x , y , z )← Student(x ),Faculty(y),Course(z ),
advisor(x , y), takesCourse(x , z ), teacherOf (y , z )

Q12 : ans(x , y)← Chair(x ),Department(y),memberOf (x , y),
subOrganizationOf (y ,www.University0.edu)

In order to investigate the data description scalability problem, we used a Tbox provided with the LUBM
benchmarks. Tboxes uses inverse and transitive roles as well as domain and range restrictions, but no
number restrictions, value restrictions or disjunctions. Among other axioms, the LUBM Tbox contains
axioms that express necessary and sufficient conditions for some concept names. For instance, the Tbox
contains an axiom for Chair: Chair ≡ Person u ∃headOf.Department.

If grounded conjunctive queries are answered in a naive way by evaluating subqueries in the sequence
of syntactic notation, acceptable answering times can hardly be achieved. For efficiently answering
queries, a query execution plan is determined by a cost-based optimization component (c.f., [54, p.
787ff.], see also [45]) which orders query atoms such that queries can be answered effectively. Query
execution plans are specified in the same notation as queries (whether a query is seen as an execution
plan will be clear from context). We assume that the execution order of atoms is determined by the order
in which they are textually specified.

Let us consider the execution plan ans(x, y) ← C(x), R(x, y), D(y). Processing the atoms from
left to right will start with the atom C(x). Since there are no bindings known for the variable x, the atom
C(x) is mapped into an instance retrieval query instance retrieval(C,A). The elements in the result
set of the retrieval query are possible bindings for x. C(x) is called a generator. The next query atom
in the execution plan is R(x, y). There are bindings known for x but no bindings for y. Thus, R(x, y)
is also a generator (for y-bindings). Given the atom R(x, y) is handled by a role filler query for each
binding of x, there are possible bindings for y generated. Afterwards, the atom D(y) is treated. Since
there are bindings for y available, the atom is mapped to an instance test (for each binding). We say, the
atom D(y) acts as a tester.

Determining all bindings for a variable (with a generator) is much more costly than verifying a
particular binding (with a tester). Treating the one-place predicates Student , Faculty , and Course from
query Q9 (see above) as generators for bindings for corresponding variables results in combinatorial
explosion (cross product computation). Optimization techniques are required that provide for efficient
query answering in the average case.

2.4.1 Query Optimization

The optimization techniques that we investigated are inspired by database join optimizations, and exploit
the fact that there are few Faculties but many Students in the data descriptions. For instance, in case
of query Q9, the idea is to use Faculty as a generator for bindings for y and then generate the bindings
for z following the role teacherOf . The heuristics applied here is that the average cardinality of a set
of role fillers is rather small. For the given z bindings we apply the predicate Course as a tester (rather
than as a generator as in the naive approach). Given the remaining bindings for z, bindings for x can be
established via the inverse of takesCourse . These x bindings are then filtered with the tester Student .
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If z was not mentioned in the set of variables for which bindings are to be computed (in the head
of the query), and the tester Course was not used, there would be no need to generate bindings for z at
all. One could just check for the existence of a takesCourse role filler for bindings w.r.t. x. This way,
further optimization is possible.

In the second example, query Q12, the constant (individual) named www .University0 .edu is men-
tioned. Starting from this individual the inverse of the role subOrganizationOf is applied as a generator
for bindings for y which are filtered with the tester Department . With the inverse of memberOf , bind-
ings for x are computed which are then filtered with Chair . Since for the concept Chair sufficient
conditions are declared in the Tbox, instance retrieval reasoning is required if Chair is a generator.
Thus, it is advantageous that Chair is applied as a tester (and only instance tests are performed).

For computing a query execution plan, a total order relation on query atoms with respect to a given
set of data descriptions (assertions in an Abox) is required. For determining the order relation, we need
information about the number of instances of concept and role names. An estimate for this information
can be computed in a preprocessing step by considering given data descriptions, or could be obtained by
examining the result set of previously answered queries (we assume that Abox realization is too costly,
so this alternative is ruled out).

In Section 2.3 we have discussed that it is advantageous to compute an index associated inds that al-
lows us to find “obvious” instances by exploiting precompletion information. The index associated inds
is organized in such a way that retrieving the instances of a concept A, or one of its ancestors, requires
(almost) constant time (in combination with the descendants, see Algorithm 12). This kind of index
is particularly useful to provide bindings for variables if, despite all optimization attempts for deriving
query execution plans, concept names must be used as generators. In addition, the index is used to esti-
mate the cardinality of concept extensions. The estimates are used to compute an order relation for query
atoms. The less the cardinality of a concept or a set of role fillers is assumed to be, the more priority is
given to the query atom. Optimizing LUBM query Q9 with the techniques discussed above yields the
following query execution plan.

Q9 ′ : ans(x , y , z )← Faculty(y), teacherOf (y , z ),Course(z ),
advisor−(y , x ),Student(x ), takesCourse(x , z )

Using this kind of rewriting, queries can be answered much more efficiently.
If the Tbox contains only GCIs of the form A v A1 u . . . u An, i.e., if the Tbox forms a hierar-

chy, the index-based retrieval discussed in this section is complete (see [18]). However, this is not
the case for LUBM. In LUBM, besides domain and range restrictions, axioms are also of the form
A
.= A1 u A2 u . . . u Ak u ∃R1.B1 u . . . u ∃Rm.Bm (actually, m = 1). If sufficient conditions with ex-

ists restrictions are specified as in the case of Chair , optimization is much more complex. In LUBM
data descriptions, no individual is explicitly declared as a Chair and, therefore, reasoning is required,
which is known to be rather costly. If Chair is used as a generator and not as a tester such as in the
simple query ans(x )← Chair(x ), optimization is even more important. The idea to optimize instance
retrieval is to detect an additional number of obvious instances by transforming sufficient conditions into
conjunctive queries.

2.4.2 Transforming Sufficient Conditions into Conjunctive Queries

Up to now we can detect obvious instances based on told and taxonomical information (almost constant
time, see the previous section) as well as information extracted from the precompletion (linear time
w.r.t. the number of remaining candidate individuals and a very fast test, see Section 2.2.4). Known
non-instances can be determined with model merging techniques applied to individual pseudo models
(also a linear process w.r.t. the number of remaining candidate individuals but with a very fast test,
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see Section 2.2.3). However, there might still be some candidates left. Using the results presented
in Section 2.2 it is possible to use dependency-directed instance retrieval and binary partitioning. Our
findings suggest that in the case of LUBM, for example for the concept Chair , the remaining refutational
tableau proofs are very fast. However, for Chair quite many candidates remain since there are many
Persons in LUBM. In application scenarios such as those we investigate with LUBM, we have 200 000
individuals and more with many Persons . Even if each single instance test lasts only a few dozen
microseconds, query answering will be too slow, and hence additional techniques should be applied to
solve the data description scalability problem.

The central insight for another optimization technique is that conjunctive queries can be optimized
according to the above-mentioned arguments whereas for concept-based retrieval queries, optimization
is much harder to achieve. Let us consider the query ans(x )← Chair(x ). For Chair , sufficient condi-
tions are given as part of the Tbox (see above). Thus, in principle, we are looking for instances of the
concept Person u ∃headOf.Department. The key to optimizing query answering becomes apparent if
we transform the definition of Chair into a conjunctive query and derive the optimized version Q15′:

Q15 : ans(x)← Person(x ), headOf (x , y),Department(y)
Q15′ : ans(x)← Department(y), headOf −(y , x ),Person(x )

Because there exist less Departments than Persons in LUBM, search for bindings for x is substantially
more focused in Q15′ (which is the result of automatic query optimization, see above). In addition,
in LUBM, the extension of Department can be determined with simple index-based tests only (only
hierarchies are involved).

In addition, there in the Tbox is a domain restriction Professor for the role headOf, which can be
exploited to further optimize the query by making atoms as specific as possible. Due to the domain
restriction for headOf, the variable x in Q15’ must refer to a Professor instance, which can be made ex-
plicit. If we further exploit that Professor is subsumed by Person, it is clear that the atom Person(x) can
be dropped. We do not present the algorithm for determining the most-specific atoms w.r.t. a particular
variable, though.

Q15′′ : ans(x)← Department(y), headOf −(y , x ),Professor(x )

With the Chair example one can easily see that the standard approach for instance retrieval can be
optimized dramatically with rewriting concept query atoms if certain conditions are met.

The idea of the transformation is to implement the inverse of the contraction or rolling-up technique
(see [56] and also Section 2.2.1). Here, however, existential restrictions are “rolled-down” to conjunctive
queries. The transformation is reminiscent of a transformation introduced in [23]. In this work, descrip-
tion logic concepts are translated to first-order logic formulae. The transformation approach discussed
in this section is also reminiscent to a transformation approach discussed in [113]. Note, however, that
in our approach, we additionally consider domain and range restrictions for roles in order to maximize
information that can be used for exploiting for indexes.

Algorithm 16 rewrite(tbox, concept, var):
if unabsorbed gcis(tbox) 6= ∅ ∨ definition(concept) = > then

return (concept(var))
else
{atom1, . . . , atomn} := rewrite 0(tbox, concept , var, {})

return (atom1, . . . , atomn)
end if

The rewriting algorithm is defined in Algorithms 16, 17, and 18. Every concept query atom C(x) used in
a conjunctive query is replaced with rewrite(query tbox ,C , x ) (and afterwards, the query is optimized
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Algorithm 17 rewrite 0(tbox, concept, var, exp):
if definition(concept) = > ∨ concept ∈ exp then

return {concept(var)}
else

;; catch installs a marker to which the control flow can be thrown
catchnot rewritable

rewrite 1(tbox, concept , definition(tbox, concept), var, {concept} ∪ exp)
end if

Algorithm 18 rewrite 1(tbox, concept name, definition, var, exp):
if (definition = A) where A is an atomic concept then

return rewrite 0(tbox, definition, var, {definition} ∪ exp)
else

if (definition = ∃R.C) then
filler var := fresh variable()
return {R(var, filler var)} ∪ rewrite 0(tbox,C, filler var, exp)

∪ rewrite 0(tbox, role domain(R), var, exp)
∪ rewrite 0(tbox, role range(R), filler var, exp)

else
if (definition = C1 u . . . u Cn) then

return rewrite 1(tbox, concept name,C1, var, exp)
∪ . . . ∪
rewrite 1(tbox, concept name,Cn, var, exp)

else
;; throw the control flow out of rewrite 1 recursion
;; back to the call to rewrite 1 in rewrite 0 and
;; return {concept name(var)}
throw not rewritable {concept name(var)}

end if
end if

end if

with the techniques describe above). If the transformation approach is applied to Q15, the query Q15′′

is derived.
Some auxiliary functions are used. The function definition(C) returns sufficient conditions for a

concept name C (the result is a concept), and the function unabsorbed gcis(tbox) indicates whether
there are some unabsorbed GCIs left after GCI transformation, i.e., TG 6= ∅ (see Section 2.1.3, the result
is a set of concepts). In addition, we use a function fresh variable that generates a new variable that was
not used before. The functions role domain and role range return the domain and range restrictions
of a role (after GCI absorption).

If there is no specific definition or there are meta constraints, rewriting is not applied (see Algo-
rithm 16). It is easy to see that the rewriting approach is sound. However, it is complete only under
specific conditions, which can be automatically detected. If we consider the Tbox T = {D ≡ ∃R.C},
the Abox A = {i :∃R.C} and the query ans(x )← D(x ), then due to the algorithm presented above the
query will be rewritten as ans(x )← R(x , y),C (y). For variable bindings, the query language nRQL
(see above) considers only those individuals that are explicitly mentioned in the Abox. Thus i not be
part of the result set because there is no binding for y in the Abox A. Examining the LUBM Tbox and
Abox it becomes clear that in this case for every ∃R.C which is applicable to an individual i there already
exist constraints (i, j) :R and j :C in the original Abox (LUBM was derived from a database schema).
Existential restrictions are fulfilled by named individuals (see Section 2.3.3). However, even if this is not
the case, the technique can be employed under some circumstances.

Usually, in order to construct a model (or a completion to be more precise), tableau provers create a
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new individual for each constraint of the form i :∃R.C and add corresponding concept and role assertions
(if not already present). These newly created individuals are called anonymous individuals. Let us
assume, during the initial Abox consistency test a completion is found. As we have discussed above,
a precompletion is computed by removing all constraints that depend on a choice point. If there is no
such constraint, the precompletion is identical to the completion that the tableau prover computed. Then,
the set of bindings for variables generated by fresh variable() is extended to the anonymous individuals
found in the precompletion. The rewriting technique for concept query atoms is applicable (i.e., is
complete) under these conditions. Even if the rewriting technique is not complete (because something
has been removed from a completion to derive a precompletion), it can be employed to reduce the set of
candidates for binary partitioning techniques that can speed of this process considerably in the average
case.
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3 An Architectural Framework for Building OBISs

The section is structured as follows. We first describe the overall framework and explain how the identi-
fied problems in the introduction (P1–P7) are addressed. Next we describe the substrate QL framework
SUQL, which plays a crucial role in this work. The NRQL ABox QL [68, 69] is discussed as a concrete
instantiation of SUQL.

In this section we first describe the framework from the knowledge level perspective [118]. From
a logical point of view, a so-called substrate data model is introduced, and the main principles of the
associated query language SUQL are presented. We also briefly remark on implementation aspects, the
symbol level perspective. We believe that both perspectives on a reasoning system are of equal impor-
tance in order to guarantee empirical success. A “good design” should encompass both perspectives in
order to avoid performance bottlenecks and impedance mismatches. After having presented the frame-
work, we discuss how the problems P1 – P7 are tackled. Please recall that P1 – P7 provide the motivation
for the whole approach; more precisely, P1, P2 address the knowledge level, whereas the problems P3 –
P7 address the symbol level.

We do not claim that the substrate model is interesting from a theoretical perspective. Its generic
character is of course also its weakness. Thus, it must be specifically instantiated. An instantiation of the
model results in a specific substrate type, e.g. a substrate type ABox. The formalization presented here is
only as detailed and formally elaborated as is beneficial and required for the description of the semantics
of the services, especially of the query answering service. We claim that the presented formalization is
sufficient for our purpose.

From the knowledge level perspective, the data model is partially inspired by the work on E-
Connections [94], tableaux data structures [74], as well as by RDF(S). However, it would be inap-
propriate to claim that this is an E-Connection application, since we are basically just using labeled
graphs, defined by means of first order logic, and similar knowledge models have been used in AI since
the 1960s [8, Chapter 4] (although the substrate model is primarily an extensional knowledge model).
SUQL is inspired by [47].

From the symbol level perspective, our approach is related to JENA [107], but we have a somewhat
broader scope, and the underlying knowledge (data) models are more general than RDF(S), as will
become clear in the following.

3.1 The Knowledge Level Perspective

Formally, we base our framework on a graph-based data model which provides the required flexibility
and extensibility for the extensional component, the so-called substrate data model. A generic substrate
query language called SUQL for this data model provides the required flexibility and extensibility on
the QL side. The definition of SUQL is only prepared in this section and continued and elaborated on in
Section 3.5.

The substrate model serves both as a mediator and as an abstraction layer (“semantic middleware”).
It enables us to specify and build extensional representation layers for special-domain and hybrid repre-
sentations and is sufficiently general to also encompass ABoxes and RDF(S) graphs. A substrate is thus
defined as a very general notion:

Definition 1. A substrate is an edge- and node-labeled directed graph
(V,E,LV , LE ,LV ,LE), with V being the set of substrate nodes, and E being a set of substrate
edges. The node labeling function LV : V → LV maps nodes to descriptions in an appropriate node
description language LV , and likewise for LE : E → LE , where LE is an edge description language.

If (i, j) ∈ E, then j is called a successor of i, and i is called a predecessor of j. In case R ∈
LE((i, j)), we can (more specifically) talk of an R-successor resp. -predecessor. 4
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The languages LV and LE are not fixed and can be seen as subsets of first-order predicate logic,
FOPL, (denoted in variable-free syntax), e.g., some modal logic, description logic, or propositional logic.
Using this FOPL perspective, V is a set of constant symbols, and LV and LE are indexing functions into
sets of closed FOPL formulas.

Let us illustrate this with an example. Consider an ALC ABox A. We can consider this ABox as a
substrate S = (V,E, LV , LE ,LV ,LE) if we identify V with the ABox individuals, V = inds(A),E with
the set of pairs of individuals mentioned as arguments in role assertions, E = { (i, j) | (i, j) : R ∈ A},
with LV = ALC, and LE = (NR,u) would be the set of ALC role names NR closed un-
der conjunction, such that C ∈ LV (i) iff i : C ∈ A, and R1 u · · · u Rn = LE((i, j)) iff
{R1, . . . , Rn | Ri ∈ NR, (i, j) : Ri ∈ A}. From the FOPL perspective, LV (i) and LE((i, j)) cor-
respond to {Φ(C)x←i, . . . , R1(i, j), . . . , Rn(i, j)}, where Φ(C) returns the FOPL standard transla-
tion [8, pp. 50] of the concept C, which is a first order formula with one free variable, x, e.g.
Φ(∃R.C) = ∃yR(x, y) ∧ C(y).

However, for many substrates, the corresponding FOPL set will simply contain ground atoms (facts).
An associated TBox of an ABox manifests itself in additional FOPL sentences. Formally, we simply

define a substrate with a background theory (having an additional set of closed FOPL axioms). These
additional FOPL sentences are obtained by applying the standard translation to the TBox axioms.

The SUQL framework allows for the definition of specialized substrate QLs, tailored for special sub-
strate classes (e.g., ABoxes, SBoxes). The SUQL framework is based on the general notion of (ground)
query atom entailment. All that matters here is that a notion of logical entailment between a substrate S
and a query atom for S is defined and decidable. Query atoms are, conceptually slightly simplified, again
FOPL formulas with one or two free FOPL variables (we use x and y in the remaining paper for these);
the atoms are thus called unary (resp. binary) query atoms. Thus, S |= Px←i must be decidable for the
unary atom P and the node i ∈ V , and S |= Qx←i,y←j must be decidable for the binary atom Q and the
nodes i, j ∈ V .

The SUQL framework provides a great deal of flexibility, extensibility and adaptability, since spe-
cialized query atoms (resp. P and Q) can be tailored for specific substrate classes.

3.2 The Symbol Level Perspective

A substrate is an instance of a CLOS (Common Lisp Object System) class [137] – a substrate class
thus provides the implementation of a substrate type (or kind). On the one hand, a substrate is thus a
representation on the knowledge level, but on the other hand also – and much more importantly in this
work – a structure on the symbol (or implementation) level.

We have already used the phrase instantiation of the substrate data model informally. More specif-
ically, from now on this means that a new substrate class is defined (tailored for certain representation
tasks) by means of subclassing. In the same sense we are using the phrase SUQL instantiation to refer to
a specialized substrate QL, e.g., one that offers substrate-specific, tailored query atoms. Last but not least,
an instantiation of the framework encompasses all kinds of instantiations; for example, the DLMAPS
system is an instantiation which contains specific substrate types and specialized SUQL instantiations.

Since CLOS offers multiple inheritance (i.e., allows a class to have multiple parent classes), it be-
comes possible to define combinations of substrates. For example, one can define a substrate class spatial
ABox having the substrate classes ABox and SBox as parents. As a result, instances in such a spatial ABox
are, on the one hand, ABox individuals, and instances of spatial datatypes on the other hand [157]. This
can eliminate the need for a hybrid representation in favor of an integrated representation. However, the
substrate data model also supports hybrid representations.

Another important idea is that the nodes and edges in a substrate can be “virtual”, i.e., the substrate
is simply used as a mediation layer or “facade” that provides a graph perspective on a different represen-
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tation, e.g. a RACER ABox. In this case, the API functions of the substrate just pass through to the API
functions of RACER. Thus, a substrate class may or may not correspond to a physical store.

Not only substrates, but also SUQL query atoms are instances of CLOS classes. This enables the
definition of the |= relation as a (binary) CLOS multi-method substrate-entails-atom-p. A
multi-method is polymorphic (does late binding) according to the types of all its arguments [137], unlike
languages like Java, where only the type of the first argument is used for dispatching. Thus, depending on
the class of substrate and atom, different inference algorithms will be called for (e.g., a DL system API
function in case an ABox is queried, and a geometric algorithm performing some kind of spatial model
checking if an SBox is queried). Furthermore, intrinsically encoded axioms can be taken into account in
the implementation of a substrate-entails-atom-p method, simply by means of programming.
For example, the Clark completion axioms must not be explicitly present as sentences. They are only
needed for a description of the semantics on the knowledge level, but not on the symbol level.3

The generic SUQL query answering engine immediately supports the evaluation of specialized atoms
once a substrate-entails-atom-p method is applicable, since there are generic enumerator and
tester methods defined. However, these will not exhibit good performance, since they only implement
linear retrieval algorithms (instances are retrieved using “enumerate and test”). However, good per-
formance can be achieved if dedicated generators and tester are defined for specialized atoms. These
methods will also exploit indices and caches, and so the performance can be very good as we have demon-
strated with the NRQL instantiation. Also the cost-based SUQL query optimizer is easily configurable
(some methods must be overridden).

In order to decide entailment (as needed for query answering), inference algorithms which “work
on substrates” must be called. In order to realize the integrated approach (and to address P1 – P7), our
framework includes the MIDELORA4 toolkit for DL system crafting. MIDELORA allows for the defi-
nition of specialized provers for certain tasks, working on specialized substrates. Provers are conceived
as regions (or single points) in the three-dimensional MIDELORA space:

Definition 2 (MIDELORA Space). The MIDELORA space is the cartesian product S × L × T , where
S is the set of substrate classes, L is the set of supported (DL) languages, and T is a set of prover tasks.

4

For example, T can contain the DL standard inference problems [8]: T =
{abox consistent?, concept instances, . . .}. Again, substrates, languages and tasks are modeled as
CLOS classes. A MIDELORA prover is a ternary multi-method with arguments 〈S,L, T 〉 ∈ S ×L×T .
Polymorphism is exploited for all three arguments. Since inheritance is exploited for the definitions of
the classes (elements) in the sets S , L, and T , a single MIDELORA prover defined for a point (S,L, T )
can cover a whole region in the MIDELORA space.

3.3 Benefits of the Framework

The problems P1 – P7 are tackled as follows:
P1, “DL applicability problem”. For some IS domains, there may be informational aspects which

cannot be represented in a single representational framework (e.g., an ABox) or their representation
is difficult or impossible with a standard DL ABox. Different substrate classes thus provide different
extensional representation means. Substrates can also be hybrid and thus allow creation of layered repre-
sentations: In a hybrid substrate, a DL ABox can be combined with some other arbitrary substrate, e.g.,
an SBox. Thus, the DL applicability problem can be defused pragmatically.

3However, this is not meant to reopen the “declarative vs. procedural” debate; instead, our framework shows that both
approaches can and have to live together well, given that appropriate abstractions are provided which are “on the right level”
for both perspectives.

4Michael’s Description Logic Reasoner Architecture

c©2007/TONES – July, 2007 31/143 TONES-D18– v.1.1



FP6-7603 – TONES Thinking ONtologiES WP4

P2, “Data and Expressivity Scalability Problem”. DLs form a whole family of representation
languages. In principle, DLs account for expressivity scalability. Data scalability can nowadays be
achieved for simpler DLs, or RDF(S). In order to achieve data scalability, not only the knowledge level,
but also the symbol level must also be considered. A (persistent) database substrate can be used if
the extensional data is extensive (substrate graphs are then stored in an RDMS). Thus, the framework
accounts for data scalability. It also accounts for expressivity scalability, since MIDELORA allows
for the definition of language-specific provers. However, the services of standard DL systems such as
RACER are also available to the framework.

P3, “Interoperability and Middleware Problem”. The substrate data model can provide an ab-
straction layer on top of which the OBIS is built. This abstraction layer can, for example, shield the
client code of the OBIS from details in the APIs of different DL systems (see also the Design Patterns
Adapter, Bridge and Facade in [52]). A substrate can offer caching mechanisms, abstract from remote
vs. local API procedure calls, etc. A substrate can thus also play the role of a mediator or semantic mid-
dleware. The remote componentware system need not even be a DL system, but can also be an RDF(S)
triple store, an RDMS on which a graph view is established, etc.

Since substrates are CLOS classes utilizing inheritance which implement interfaces, additional ser-
vices can easily be offered by means of substrate sub-classing. For example, a RACER substrate class
will offer unique RACER services as methods in addition to the methods that are inherited from its DL
system substrate superclass.

P4, “Missing Storage Layer Functionality Problem”. Given that a substrate is not only a concep-
tual data model (an abstract data type on the knowledge level) but also implemented as a CLOS class, it is
obvious that, by means of programming, the framework offers the flexibility to address and parameterize
the storage layer. made persistent in a file or a MYSQL database.

P5, “Extensibility Problem”. Extensibility and openness of the architecture is obviously realized,
since object-orientation supports the well-known “Open-Closed Principle”. However, reuse in frame-
works has been identified as problematic in some cases, because inheritance-based reuse is “white box
reuse” which thus requires knowledge about the internals of the class machinery. It is known that domain
specific languages (DSLs) can resolve some of these problems [150].

P6, “Missing QL Problem”. To address this problem, the SUQL engine is provided, which is as
open, extensible and parameterizable as the rest of the framework. Decidability is guaranteed given
that the required entailment relationship is decidable. From a theoretician’s point of view, SUQL offers
unions of grounded conjunctive queries (see Section 3.5).

P7, “Software-Abstraction Problem”. We have argued that appropriate domain-specific software
abstractions shall be provided in order to ensure maintainability and comprehensibility of a DL system
and to avoid the “big ball of mud” (as understood in Software Engineering) syndrome in the life of a DL
system.

Our approach is to define many small, comprehensible and specific provers for specific problems
instead of just one big prover (implementing the core inference problem for a very expressive DL). The
MIDELORA space provides the general structure for pinpointing provers. It provides a domain-specific
software abstraction. The different provers are more comprehensible and concise than one big prover,
since optimization techniques can be better localized (see Section 1.2.1). However, a big number of
smaller provers can only be more maintainable and comprehensible if appropriate software abstractions
are provided. MIDELORA offers prover definition languages, which can be understood as DSLs. Provers
defined in these DSLs are almost as concise and comprehensible as the mathematical tableaux calculi
used for DLs [74, 17].
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Figure 4: The MAP VIEWER and QUERY INSPECTOR of the DLMAPS System

3.4 Application Example DLMAPS: Ontology-Based Queries to City Maps

We now describe the digital city maps scenario. As mentioned, we are primarily using RACER as our
standard DL component reasoner, but other setups are possible as well (some of these are described in
the following).

3.4.1 The DISK Data

We are using digital vector maps of the city of Hamburg provided by the land surveying office (“Amt
für Geoinformation und Vermessungswesen Hamburg”); these maps are called the DISK (“Digitale
Stadtkarte”). Part of the DISK is visualized by the MAP VIEWER component of our system in Fig. 4.
Each map object (also called geographic feature) is thematically annotated. The basic thematic anno-
tations (TAs) have been established by the land surveying office itself. These TAs say something about
the “theme” or semantics of the map objects. Simple concept names such as “green area”, “meadow”,
“public park”, “lake” are used. A few hundred TAs are used and documented in a so-called thematic
dictionary (TD), which is organized in so-called (thematic) layers (e.g., one layer for infrastructure, one
for vegetation, etc.).

Sometimes, only highly specific TAs are available, such as “Cemetery for Non-Christians”, and gen-
eralizing common sense vocabulary, e.g. “Cemetery”, is missing. This is unfortunate, since it prevents
the intuitive usage of common sense natural language vocabulary for query formulation, especially for
non-casual users. We have repaired this defect by adding a background ontology (in the form of a TBox)
providing generalizing TAs by means of taxonomic relationships.

On the other hand, defined concepts (“if and only if”) can be added and exploited to automatically
enrich the given basic annotations. Thus, we might define our own required TA “public park containing
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a lake” as a “park which is public and contains a lake” with a TBox axiom such as
public park containing a lake≡̇park u public u ∃contains.lake

bird sanctuary park≡̇park u ∀contains.¬building
and we might want to retrieve the instances of these concepts. This means that such in-

stances must be recognized automatically, and this is what ontology-based query answering is all
about. Obviously, inference is required to obtain these instances, since there are no told instances of
public park containing a lake. For simple queries, simple instance retrieval queries might be suf-
ficient. However, for reasons of expressivity and because we want to retrieve constellations5 of map
objects, a QL with variables is needed whose answer tuples can be visualized as in Fig. 4.

A definition such as public park containing a lake refers to thematic as well as to spatial aspects
of the map objects:

Thematic aspects: the name of the park, that the park is public, the amount of water contained in the
lake, etc.

Spatial aspects: the spatial attributes such as the area of the park (or lake), the concrete shape, qual-
itative spatial relationship such as “contain”, quantitative (metric) spatial relationships such as
distance, etc.

We use the following terminology: a thematic concept refers only to thematic aspects, whereas a
spatial concept refers solely to spatial aspects. A spatio-thematic concept refers to both. In the same
sense we are using the terminology thematic, spatial and spatio-thematic queries.

Thus, there are different thematic and spatial aspects one would like to represent in the extensional
component and subsequently query. Since the concrete geometry is given in the map, the spatial aspects
of the map objects are in principle intrinsically represented and available. This mainly concerns the
spatial relationships which are depicted in the map. However, spatial attributes such as the area or length
of a map object can in principle also be derived (computed from the geometry), although this will not
be very accurate. A function which exploits the map geometry to compute or verify a certain spatial
aspect (for example, whether a certain qualitative relationship holds between two map objects) is called
an inspection method in the following. This notion is defined as follows:

Definition 3 (Inspection Method). Let S be an SBox, and P be a spatial FOPL formula without free
variables (for example, an RCC ground atom such as EC(a, b), where a, b ∈ V ). An inspection method
is a (geometric) algorithm which exploits the geometry of S to decide whether S |= P holds. 4

It is obvious that qualitative spatial descriptions are of great importance. On the one hand, they are
needed for the definitions of concepts in the TBox such as “public park containing a lake”. On the other

5We use the term “constellation” to stress that a certain spatial arrangement of map objects is requested with a query.
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hand, they are needed in the spatio-thematic QL (“retrieve all public parks containing a lake”). A popular
and well-known set of qualitative spatial relationships is given by the RCC8 relations [126], see Fig. 5.

On the other hand, since the concrete geometry is given by means of the map, in principle, no
qualitative representation is needed in the extensional component, since it can be reconstructed at query
answering time by means of inspection methods. However, if we want to use a (standard-DL) ABox for
the extensional component, then the spatial representation options are limited, and we must primarily
resort to qualitative descriptions.

3.4.2 Representing and Querying the DISK

Representing qualitative spatial aspects and reasoning with this information is important in many appli-
cation scenarios. Spatial representations are possible e.g.., with the already mentioned RCC8 calculus.
Computational complexity of the RCC8 calculus is well studied and it is known that reasoning in the
full RCC8 is NP-hard ([129]). Maximal tractable fragments of RCC8 were identified that includes all
base relations but are satisfiable in polynomial time. The practical application of these fragments is still
under investigation ([130]). In the domain of specialized logics, spatial representations can be done with
expressive spatial concrete domains (CDs) [64, 102] or specialized DLs [154] or spatial modal logics
[104]. However, many of these logics are either undecidable, or if they are decidable, no mature DL
system supporting these non-standard DLs exists. In principle, MIDELORA allows for the definition of
tableaux provers for such specialized languages. However, in this paper we focus on more pragmatic
representations which incorporate RACER.

It is clear that the kind of representation we will devise for the DISK in the extensional component
also determines what and how we can query. Without doubt, the thematic aspects of the DISK map ob-
jects can be represented satisfactorily with a standard DL. To solve the spatial representation problem of
the DISK in the extensional component, we consecutively consider four different representation options
and analyze their impacts.

3.4.3 Representation Option 1 – Simply Use an ABox

We can try to represent as many spatial aspects as possible in the ABox, given the DL supported by the
exploited DL system, e.g. ALCQHIR+(D−) in the case of RACER. Regarding the spatial relationships,
we can only represent qualitative relationships. We can compute a so-called RCC network from the
geometry of the map and represent this by means of RCC role assertions in the ABox, e.g. (i, j) : TPPI
etc. In Fig. 3.4.2(a) a “geometric scene” and its corresponding RCC8 network is depicted. Such a
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network will always take the form of an edge-labeled complete graph6, due to the JEPD property of the
RCC base relations: The base relations are jointly exhaustive and pairwise disjoint). Moreover, an RCC
network derived from a geometric scene will always be RCC consistent (see Section 4.4).

Moreover, selected spatial attributes such as area and length can be represented in the ABox utilizing
the concrete domain by means of concept assertions such as i : ∃(has area). =12.345.

Since the represented spatial aspects are accessible to RACER, this supports spatio-thematic concept
definitions in the TBox, for example

public park containing a lake≡̇park u public u ∃contains.lake
(∃contains.lake is short for (∃TPPI .lake)t(∃NTPPI .lake) for reasons of readability), the frame-

work recognizes these qualitative spatial relationships and rewrites the query accordingly). Obviously,
an individual i in the ABox can only be recognized as an instance of that concept if appropriate RCC
role assertions are present as well.

In principle, the specific properties of qualitative spatial (RCC) relationships cannot be captured
completely within ALCQHIR+(D−) as roles (we will elaborate on this point below when we discuss
qualitative spatial reasoning with the RCC substrate). This means that the computed taxonomy of the
TBox will not correctly reflect the intended subsumption relationships. However, MIDELORA also
supports ALCIRCC [154, 153]. Even though this DL is undecidable [104], the corresponding prover has
successfully computed taxonomies of ALCIRCC8 TBoxes. Moreover, the deduced implied subsumption
relationships can be made syntactically explicit by means of additional TBox implication axioms, and
this augmented TBox can be used instead of the original one in RACER.

Much more important in our scenario is the observation that ontology-based query answering can
still be achieved in a way that correctly reflects the semantics of the spatial (RCC) relationships with
RACER. Consider the instance retrieval query public park containing a lake(?x) on the ABox

A = {i : park u public, k : lake, j : meadow, (i, j) : TPPI , (j, k) : NTPPI , . . .}
Since this ABox has been computed from the concrete geometry of the map, it must also contain

(i, k) : NTPPI , because a RCC network which is computed from a spatial constellation that shows
(i, j) : TPPI and (j, k) : NTPPI must necessarily also show (i, k) : NTPPI .

In order to retrieve the instances of public park containing a lake , we consider and check
each individual separately. Let us consider i. Verifying whether i is an instance of
public park containing a lake is reduced to checking the unsatisfiability of A ∪ {(i, k) : NTPPI }∪
{i : ¬public park containing a lake}, or

A ∪ {(i, k) : NTPPI } ∪
{i : (¬park t ¬public t ((∀NTPPI .¬lake) u (∀TPPI .¬lake)))}

This ABox is unsatisfiable; thus, i is a public park containing a lake.
Regarding query concepts that contain or imply a universal role or number restriction, we can answer

queries completely only if we turn on a “closed domain reasoning mode”. We must close the ABox w.r.t.
the RCC role assertions and enable the Unique Name Assumption (UNA)7 in order to keep the semantics
of the RCC roles. To close the ABox A w.r.t. the RCC role assertions, we count the number of RCC
role successors of each individual for each RCC role: for i ∈ individuals(A) and the RCC role R,
we determine the number of R-successors n = |{ j | (i, j) : R ∈ A}| and add the so-called number
restrictions i : (≤n R) u (≥n R) to A. This concept assertion is satisfied in an interpretation I iff
n = {x | (iI , x) ∈ RI }; thus, imust have exactly n R successors in every model. In combination with
the Unique Name Assumption (UNA), this turns on a closed domain reasoning on the individuals which
are mentioned in the RCC role assertions and thus prevents the reasoner from the generation of “new
anonymous RCC role successors” in order to satisfy an existential restriction such as ∃NTPPI .lake.

6Such a graph is called a Kn in graph theory.
7The UNA enforces that different individuals i, j are interpreted as different domain individuals in the interpretation: iI 6=

jI .
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In order to satisfy ∃NTPPI .lake, the prover must thus necessarily reuse one of the existing RCC role
fillers from the ABox [157].

Let us demonstrate this technique using the query concept
bird sanctuary park≡̇park u ∀contains.¬building.

Assuming that both lake and meadow imply ¬building, we can show that i is an instance of a
bird sanctuary, since the ABox

A ∪ {(i, k) : NTPPI } ∪
{i : (≤1 TPPI ) u (≥1 TPPI ), i : (≤1 NTPPI ) u (≥1 NTPPI ), . . .} ∪
{i : (¬park t ((∃TPPI .building) u (∃NTPPI .building)))}

is again unsatisfiable, because the alternative i : ¬park immediately produces an inconsis-
tency. Thus, the alternative i : (∃TPPI .building) u (∃NTPPI .building) is considered. Due to
i : (≤1 TPPI ) u (≥1 TPPI ), only j can be used to satisfy ∃TPPI .building, and only k to satisfy
∃NTPPI .building. Since j : meadow and thus j : ¬building, k : lake and thus k : ¬building, the
ABox must be unsatisfiable.

Thus, we have argued that spatio-thematic ontology-based query answering can be done on such an
ABox representation of the DISK, and that this is to some extent – using some logical encoding tricks –
possible even with simple instance retrieval queries.

Using an Expressive ABox Query Language We now demonstrate that the RACER ABox query
language NRQL [68, 69] offers valuable additional query formulation facilities in this scenario. For
now, we are using grounded conjunctive queries in mathematical (Horn-logic) syntax and assume that
the reader has an intuitive understanding (in addition to our explanations). The semantics of SUQL (and
NRQL) will be defined formally in Section 5 (Section 5.1). We demonstrate that NRQL’s negation as
failure (NAF negation) enables a great deal of differentiation possibilities for query formulation. For
example, we can query for living areas adjacent to parks which contain a lake . . .

(1) . . . which are provably not adjacent to industrial areas. Thus, all adjacent areas are provably not
industrial areas (note that adjacent is recognized as synonym for EC):

ans(?living area, ?park, ?lake)←
living area(?living area), park(?park), lake(?lake),
contains(?park, ?lake), adjacent(?living area, ?park),
(∀adjacent.¬industrial area)(?living area)

(2) . . . for which there are no adjacent industrial areas known (NAF negation):

ans(?living area, ?park, ?lake)←
living area(?living area), park(?park), lake(?lake),
contains(?park, ?lake), adjacent(?living area, ?park),
\(∃adjacent.industrial area(?living area))

Slightly simplified, the subquery \(∃adjacent.industrial area(?living area)) first retrieves the in-
stances of the concept ∃adjacent.industrial area, and then simply builds the complement set (this
explains the use of “\”). Thus, a candidate binding for ?living area must be in that complement set.
Please note that the instances of ∀adjacent.¬industrial area form a subset of this set.

(3) . . . for which there are no known adjacent industrial areas known:
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ans(?living area, ?park, ?lake)←
living area(?living area), park(?park), lake(?lake),
contains(?park, ?lake), adjacent(?living area, ?park),
\(π(?living area) adjacent(?living area, ?i), industrial area(?i))

The subquery \(π(?living area) adjacent(?living area, ?i), ind. area(?i)) returns the complement
set of the answer to the query

ans(?living area)← adjacent(?living area, ?i), ind. area(?i)).8

So, an instance is in \(π(?living area) adjacent(?living area, ?i), ind. area(?i) iff for
?living area there is no known adjacent industrial area present. However, in principle ?living area
might have an unknown adjacent industrial area (in case there is no corresponding ABox individual) –
thus, this query returns a superset of \(∃adjacent.industrial area(?living area)), and the query is
therefore more general than (2).

Drawbacks of the ABox Representation Even though ontology-based query answering is sort of
possible using the just discussed ABox representation, it nevertheless has the following drawbacks:

1. The size of the generated ABoxes is significant. Since the RCC network is explicitly encoded in
the ABox, the number of required role assertions is quadratic in the number of map objects, |V |2
(several million role membership assertions for the DISK).

2. Most spatial aspects cannot be handled that way. For example, distance relations are very important
for map queries. It is thus not possible to retrieve all subway stations within a distance of 100
meters from a certain point.

3. Query processing will not be efficient for queries which mention spatial aspects, since spatial index
structures are missing.

4. In the DLMAPS system, the geometric representation of the map is needed anyway, at least for
presentation purposes. Thus, from a non-logical point of view, the ABox cannot be the only
representation used in the extensional component of such a system. Thus, it seems plausible to
exploit this geometric representation for query answering as well.

5. Most importantly, we have demonstrated that this kind of ontology-based query answering works
only if the domain is “RCC closed”. However, DL systems are not really good at closed domain
reasoning, since the Open Domain Assumption (ODA) is made in DLs. This will be illustrated in
Section 4.3.

In contrast, since the geometry of the map is completely specified, there is neither unknown nor
underspecified spatial information. This motivates the classification of such a map as spatial data.
We thus switch to a hybrid representation incorporating an SBox.

3.4.4 Representation Option 2 – Use a Map Substrate:

Due to the problems with spatio-thematic concepts and since closed domain reasoning is all that we can
achieve here anyway, it seems more appropriate to represent the spatial aspects primarily in the SBox (a
kind of “spatial database”), and associate an ABox with that SBox. We have already mentioned that the
geometry of the map must be represented in the extensional component anyway (at least for presentation

8Please note that π is called the body projection operator, see Section 5.
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purposes). If we say that the spatial aspects are primarily represented in the SBox, then this does not
necessarily exclude the (additional) representation possibilities of dedicated spatial aspects in the ABox
as just discussed.

The resulting hybrid (SBox,ABox) representation is illustrated in Fig. 3.4.2(b); we call it a map
substrate. The figure illustrates that some ABox individuals have corresponding instances in the SBox,
and vice versa. A partial and injective mapping function “∗” which maps nodes in the SBox to nodes in
the ABox (and vice versa, ∗−1) is used. Thus, we first define a hybrid substrate and a map substrate as
follows:

Definition 4. A hybrid substrate is a triple (S1, S2, ∗), with Si, i ∈ {1, 2} being substrates
(Vi, Ei, LVi , LEi) using LV i and LE i, ∗ being a partial and injective function ∗ : V1 7→ V2. A map
substrate is a hybrid substrate (S1, S2, ∗), where S1 is an SBox, and S2 is an ABox. 4

If the spatial aspects of the DISK are now primarily kept in the SBox, then they are no longer
necessarily available for ABox reasoning and retrieval. Thus, NRQL (or instance retrieval) queries are
no longer sufficient to address these spatial aspects – we will thus extend NRQL to become a hybrid
spatio-thematic QL, also offering spatial query atoms to query the SBox: SNRQL.

The SNRQL query answering engine will combine the retrieved results from the SBox with results
from the ABox. The thematic part of such a SNRQL query is given by a plain NRQL query, and the
spatial part utilizes spatial query atoms which are evaluated on the SBox by means of inspection methods.
The SBox provides a spatial index, supporting the efficient evaluation of inspection methods by means of
spatial selection operations. Computed spatial aspects can also be materialized in order to avoid repeated
re-computation (e.g., RCC relations can be materialized as edges).

Given a hybrid substrate, a hybrid query now contains two kinds of query atoms: Those for S1, and
those for S2. In order to distinguish atoms meant for S1 from atoms meant for S2, we simply prefix
variables in query atoms for S2 with a “?∗” instead of “?”; the same applies to individuals. Intuitively,
the bindings which will be established for variables must also reflect the ∗-function: If ?x is bound to
i ∈ V1, then ? ∗ x will automatically be bound to ∗(i) ∈ V2 (if defined), and vice versa (w.r.t. ∗−1).
Such a binding is called ∗-consistent. We will only consider such ∗-consistent bindings. The notion of
a ∗-consistent binding is also depicted in Fig. 3.4.2.

Assume we are using a map substrate for the DISK representation. Let us consider the example
query given in Section 3.4.3 again. Since the RCC network is now no longer represented in the ABox,
the SBox must be queried for spatial relationships. Queries (1) and (2) from Section 3.4.3 thus no longer
work.

However, query (3) has a “SNRQL equivalent” which looks as follows. Note that NRQL query
atoms now use ∗-prefixed variables, since the ABox is S2, and the SBox is S1:

ans(?living area, ?park, ?lake)←
living area(? ∗ living area), park(? ∗ park),
contains(?park, ?lake), adjacent(?living area, ?park),
\ ( π(?living area) ( adjacent(?living area, ?industrial area),

industrial area(? ∗ industrial area)))

Thus, we not only gain, but also lose something here (queries (1) and (2) cannot be expressed). This
is an important insight. On the positive side, we are now able to define and evaluate spatial predicates
which are richer than RCC predicates, since the geometry of the map is represented. We can thus design
dedicated spatial query atoms. These spatial atoms (e.g., distance query atoms) are discussed in Section
5.2.
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3.4.5 Representation Option 3 – Use a Spatial ABox

Using the MIDELORA toolkit, we can define provers working on specialized substrate classes. We
already mentioned in Section 3.1 that MIDELORA offers so-called spatial ABoxes. There is then no
longer a need for a hybrid map representation, since ABox individuals are also instances of spatial
datatypes (like SBox nodes). From the point of view of a standard DL prover in MIDELORA, the
spatial aspects of these nodes are invisible. However, dedicated “spatial” MIDELORA provers or query
answering procedures (implementations of spatial query atoms) can be defined which exploit the spatial
aspects of the nodes.

With a spatial ABox, the RCC role assertions need not be precomputed and added as assertions at
all. They can be computed by means of inspection methods and materialized on the fly if needed during
the tableau proof. Thus, there is no need to explicitly store an |V |2 number of RCC role assertions in the
ABox, as they are “intrinsically represented”. However, this requires a dedicated prover which can be
defined in MIDELORA.

In Section 4.1 we have closed the ABox w.r.t. the RCC role assertions. As explained, the
i : (≤ R n) u (≥ R n) number assertions force the tableaux prover to reuse existing ABox indi-
viduals when existential (successor generating) concepts are expanded which reference an RCC role.
This forces RACER into a closed domain reasoning mode; however, this is a two-step process in the
ALCQHIR+(D−) tableau calculus. First, a fresh node satisfying the existential concept is created.
Then, later on in the tableaux expansion process, it is found that this fresh node contradicts the (≤ R n)
assertion. Thus, the so-called merge rule identifies and merges the superfluous successors with an already
existingR successor (mentioned in a role assertion). However, this is a highly non-deterministic process.
Thus we stated in Section 4.1.2 (5) that DL reasoners are not very good at closed domain reasoning.

It is obvious that this behavior of the tableaux prover could also be achieved in a more direct way
if the generating rules were modified in such a way that first the reuse of an existing successor is tried
before a fresh successor is generated for an RCC role. (However, the generating rules become non-
deterministic with that modification). The tableaux rules of MIDELORA can be parameterized to work
in such a way.

3.4.6 Representation Option 4 – Use an ABox + RCC Substrate

Finally, we can discuss a fourth option. The primary motivation for this option is to make some spatial
functionality available to other users of the RACER system. Thus, in order to offer a comparable spatio-
thematic query answering functionality to other users of the RACER system without having to add the
whole SBox functionality to RACER (spatial datatypes), we devise yet another kind of substrate, the RCC
substrate, which captures the semantics of the RCC relations by exploiting techniques from qualitative
spatial reasoning. Unlike the |= relation for the SBox, which only exploits spatial model checking by
means of inspection methods, spatial inference is thus required here. The RCC substrate is, on the one
hand, more expressive then the SBox, since also vague or unknown RCC relations can be expressed. On
the other hand, the geometry of the map cannot be preserved (as in Option 1).

Users of RACER can associate an ABox A with an RCC substrate RCC by means of a hybrid sub-
strate (A,RCC, ∗) and query this hybrid substrate with NRQL + RCC query atoms (see Section 5.3).
Unlike for the map substrate, the ABox is the primary substrate S1, since the RCC substrate is an “add
on” from the perspective of the RACER user. Let us describe the RCC substrate:

Definition 5. LetR =def {EQ ,DC ,EC ,PO ,TPP ,TPPI ,NTPP ,NTPPI } be the set of RCC8 base
relations. An RCC substrate RCC is a substrate such that V is a set of RCC nodes with LV = ∅, and
LE = 2R. 4
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The RCC base relations have already been discussed. An edge label represents a disjunction of RCC
base relations, representing coarser or even unknown knowledge regarding the spatial relation (where
the set is not a singleton). Disjunctions of base relations are thus RCC relations as well. The properties
of the RCC relations are captured by the so-called JEPD property (see Page 36) as well as the so-called
RCC composition table. This table is used for solving the following basic inference problem: Given:
RCC relations R(a, b) and S(b, c). Question: Which relation T holds between a and c? The table
thus lists, at column for base relation R and row for base relation S, the RCC relation T . In general, T
will not be a base relation, but a set denoting a disjunctive RCC relation: {T1, . . . Tn}. The RCC table is
given as a setRCCT of sentences of the form {R ◦ S = {T1, . . . , Tn}, . . .}.

An RCC substrate RCC containing only base relations can be viewed as a set of FOPL ground
atoms. Such a RCC network is said to be relationally consistent iffRCC′ is satisfiable:

RCC′ = RCC ∪ {∀x : EQ(x, x)} ∪
{ ∀x, y, z : R(x, y) ∧ S(y, z)→ T1(x, z) ∨ · · · ∨ Tn(x, z) |

R ◦ S = {T1, . . . , Tn} ∈ RCCT } ∪
{∀x, y :

∨
R∈RR(x, y)} ∪ {∀x, y :

∨
R,S∈R,R 6=S R(x, y) ∧ ¬S(x, y)}

For example, the network RCC = {NTPPI (a, b),DC (b, c),PO(a, c)} is inconsistent, because if a
is contained in b (atom NTPPI (a, b)), and b is disconnected from c (atom DC (b, c)), then a must be
disconnected from c as well. The RCC8 composition table contains the axiom NTPPI ◦DC = {DC}.
Thus,RCC′ |= DC(a, c), which contradicts PO(a, c), due to the JEPD property.

Let us briefly define some more notions. Entailment of RCC relations or RCC ground query atoms
can be reduced to inconsistency checking as follows: RCC′ |= R(a, b) iff RCC′ ∪ {(R \ R)(a, b)} is
unsatisfiable. A (general) RCC network is relationally consistent iff at least one of its configurations is
relationally consistent. A configuration of an RCC network is obtained by choosing (and adding) one
disjunct / base relation out of every non-base relation in that network (thus, a configuration contains only
base relations).

For example, considerRCC = {NTPP(a, b),DC (b, c)}. We haveRCC′ |= DC (a, c), sinceRCC′∪
{EQ ,EC ,PO ,TPP ,TPPI ,NTPP ,NTPPI }(a, c) is not relationally consistent, because none of its
configurationsRCC′ ∪ {EQ(a, c)} . . .RCC′ ∪ {NTPPI (a, c)} is relationally consistent.

Since the RCC substrate defines a notion of logical entailment, the semantics of the RCC relations
will be correctly captured for query answering. Consider the hybrid substrate (A,RCC, ∗) with

A = {hamburg : german city, paris : french city, fr : country, ger : country} ,
RCC = {NTPP(∗hamburg , ∗ger),EC (∗ger , ∗fr),NTPP(∗paris, ∗fr)}

and with the obvious mapping ∗(x) = ∗x for x ∈ {hamburg , paris, fr , ger}. Then, the query
ans(?city1, ?city2)← city(?city1), city(?city2),DC (? ∗ city1, ? ∗ city2)

correctly returns ?city1 = hamburg , ?city2 = paris , and vice versa, even though
DC (∗paris, ∗hamburg) is not present inRCC.

3.5 SUQL – The Substrate Query Language Framework

In the following we describe the core design principles underlying the generic substrate query language
SUQL, its instantiations (NRQL, SNRQL), as well as the features and core optimizations found in the
query answering engine.

Some ideas of the SUQL framework have already been outlined, and additionally some examples
for queries using abstract Horn-logic syntax have been given. In the following, we will use the concrete
syntax of the query language framework in order to make it less abstract.9 The query

ans(?x, ?y)← woman(?x), has child(?x, ?y)
9The prefix Lisp syntax is as readable and as formal as the mathematical syntax.
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takes the following form in concrete syntax:

(retrieve (?x ?y) (and (?x woman) (?x ?y has-child))).

The expression (?x ?y) is called the head, and (and (?x woman) (?x ?y has-child)) the
body of the query. SUQL offers substrate-specific unary and binary query atoms (whose concrete syntax
may be defined accordingly), from which complex queries can be constructed using the (generic) body
constructors and, or, neg and project-to; neg corresponds to “\”, and project-to to “π”.

If we assume that (?x woman) is a concept query atom, – a specialized unary query atom for
substrates of class ABox –, and (?x ?y has-child) is a role query atom – a specialized binary query
atom for for substrates of class ABox –, then, if posed to a substrate of type ABox, the query returns all
mother-child pairs from that ABox.

SUQL has the following peculiarities which we want to discuss briefly before syntax and semantics
is specified:

Variables and individuals can be used in query atoms. Both variables and individuals are called ob-
jects. The variables range over V , the nodes of the substrate. Thus, SUQL offers only so-called
distinguished or must-bind variables [84]. Variables are bound to nodes which satisfy the query
– a variable binding satisfies a query iff the ground query – that is obtained from replacing all
variables with their bindings – is logically entailed by the substrate. For example, the atom P (x)
is satisfied in substrate S if x = i, i ∈ V and S |= P (x)x←i. Thus, a variable is only bound to a
substrate node iff it can be proven that this binding holds in all models of the substrate.

Returning to the example body (and (?x woman) (?x ?y has-child)), ?x is only bound
to those individuals which are instances of the concept woman having a known child ?y in all
models of the KB.

Negation as Failure (NAF) Operator The neg operator implements a
Negation as Failure Semantics (NAF). For example, (neg (?x woman)) returns all sub-
strate nodes for which it cannot be proven that they are instances of woman. Thus, (neg (?x

woman)) returns the complement set of (?x woman) (w.r.t. V , the set of all substrate nodes). If
a binary query atom is NAF negated, e.g. (neg (?x ?y has-child)), then the complement
is two-dimensional. Thus, all pairs of individuals are returned which are not in the has-child

relation.

Let us define the extension of a unary (binary) query atom P (?x) (Q(?x, ?y)) as the query answer
of the query ans(?x) ← P (?x) (resp. ans(?x, ?y) ← Q(?x, ?y), and denote that extension as
P (?x)E (resp. Q(?x, ?y)E ). It is obvious that the following equalities must hold, for any substrate
S with nodes V :

V = P (?x)E ∪ (\P (?x))E

V × V = V 2 = Q(?x, ?y)E ∪ (\Q(?x, ?y)).E

Let us consider the ABox query language case again. We would like to stress that (?x (not

woman)) has a different semantics from (neg (?x woman)), since the former returns the in-
dividuals for which the DL system can prove that they are not instances of woman, whereas the
latter returns all instances for which the DL system cannot prove that they are instances of woman.
Also note that neg and not are equivalent on substrates which employ the CWA (e.g., the SBox).

Different Notions of Equality are Available Equality atoms can either use syntactic or semantic equal-
ity predicates: “=syn” or “=sem”; these notions coincide if the UNA is used.10

10The predicate =sem is the standard equality predicate in FOPL with equality.
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The Body Projection Operator (project-to) This operator is required in order to reduce the “di-
mensionality” of the extension of a subbody in a query body before the complement set is com-
puted with neg. It allows to “fold in” subbodies for which dedicated horn rules would have to be
written otherwise. For example, in order to retrieve those individuals which do not have a known
child, we have to use (neg (project-to (?x) (?x ?y has-child))), since the extension
of (neg (?x ?y has-child)) is a two-dimensional set.

3.5.1 Syntax and Semantics

We only specify syntax and semantics for non-hybrid queries. The extension to hybrid queries is straight-
forward, but does not really add to this paper.

Definition 6 (Syntax of SUQL). The head and body of a SUQL query,
(retrieve head body), are defined by the following grammar ({a|b} means a or b):

head := (object∗)
object := variable | individual

variable := a symbol beginning with ?
individual := a symbol

body := atom | ( {and | union} body∗) | (neg body) |
(project-to (object∗) body)

atom := unary atom | binary atom | equality atom
unary atom := (object unary atom predicate)
binary atom := (object object binary atom predicate)

equality atom := (object object {=syn | =sem})
The predicates unary atom predicate and binary atom predicate are conceived as FOPL formu-

las with one (resp. two) free variables x and y; however, the concrete syntax may offer a variable-free
syntax for them.

The function obs(q) returns the objects (individuals and variables) referenced
in q and is defined inductively as follows: obs(unary atom) =def {x1} if
unary atom = (x1 unary atom predicate), obs(binary atom) =def {x1, x2}
if binary atom = (x1 x2 Q) with Q ∈ {binary atom predicate,=syn

,=sem}, obs(({ and | union | neg } q1 . . . qm)) =def
⋃

1≤i≤m obs(qi), but
obs((project-to (x1 . . . xm) . . .)) =def {x1 . . . xm}. Thus, obs “stops at projections”. 4

Before we can define the semantics we need some auxiliary operations. Let T be a set of n-ary tuples
〈t1, . . . , tn〉 and 〈i1, . . . , im〉 be an index vector with 1 ≤ ij ≤ n for all 1 ≤ j ≤ m. Then we denote the
set T ′ of m-ary tuples with

T ′ =def { 〈ti1 , . . . , tim〉 | 〈t1, . . . , tn〉 ∈ T } = π〈i1,...,im〉(T ),
called the projection of T to the components mentioned in the index vector 〈i1, . . . , im〉. For exam-

ple, π〈1,3〉{〈1, 2, 3〉, 〈2, 3, 4〉} = {〈1, 3〉, 〈2, 4〉}.
Let ~b = 〈b1, . . . , bn〉 be a bit vector of length n, bi ∈ {0, 1}. Let m ≤ n. If ~b is a bit vector

which contains exactly m 1s, and B is some set (“the base”), and T is a set of m-ary tuples, then the
n-dimensional cylindrical extension T ′ of T w.r.t. B and~b is defined as
T ′ =def { 〈i1, . . . , in〉 | 〈j1, . . . , jm〉 ∈ T , 1 ≤ l ≤ m, 1 ≤ k ≤ n

and ik = jl if bk = 1 and bk is the lth “1” in~b,
and ik ∈ B otherwise. }

and denoted by χB,〈b1,...,bn〉(T ). For example, χ{a,b},〈0,1,0,1〉({〈x, y〉}) =
{〈a, x, a, y〉, 〈a, x, b, y〉, 〈b, x, a, y〉, 〈b, x, b, y〉}.
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We denote an n-dimensional bit vector having 1s at positions specified by the index set I ⊆ 1 . . . n as
~1n,I . For example, ~14,{1,3} = 〈1, 0, 1, 0〉. Moreover, with IDn,B we denote the n-dimensional identity
relation over the set B.

Definition 7 (Semantics of SUQL). Let S = (V,E, LV , LE ,LV ,LE) be a substrate, and q be a body.
The semantics of a query is given by the set of tuples it returns if posed to a substrate S. This set of

answer tuples is called the extension of q and denoted by qE .
First we add equality atoms for query atoms which reference individuals. The query body q is thus

first rewritten. We define Θ(q) for atom with obs(atom) ∩ V = {v1, . . . , vn}, n ∈ {1, 2} as
Θ(atom) =def (and atom (xv1 v1 = ) . . . (xvn vn = )),

(please note that = ∈ {=syn,=sem}, as previously discussed, and that xvi is the representative
variable for vi) and extend the definition of Θ in the obvious (inductive) way to complex query bodies as
well. Moreover, Θ replaces all occurrences of individuals in the projection list of project-to and in
the query head with their representative variables.

Let q′ = Θ(q) be the rewritten query. So we simply declare qE =def q
′E . Let us specify q′E . Let

〈x1,q′ , . . . , xn,q′〉 be some fixed enumeration of obs(q′) (so n = |obs(q′)|).
We define ·E inductively. We start with the query atoms:

(xi ,q ′ P)
E =def χV,~1n,{i}({< v > | v ∈ V, S |= Px←v } )

(xi ,q ′ xj ,q ′ Q)E =def χV,~1n,{i,j}({< u, v > | u, v ∈ V, S |= Qx←u,y←v } )

(please note that due to Θ, all unary and binary query atoms which are not equality atoms now have
one and two variables correspondingly). The semantics of the equality predicates is fixed as follows:
S |= i =syn i and S 6|= i =syn j, and S |= i =sem j iff for all models I of S (I |= S): iI = jI . Thus
we define:

(xi,q′ xj ,q′ =syn)E =def χV,~1n,{i,j}
({< u, v > | u, v ∈ V,

if xi,q′ ∈ V , then u = xi,q′ , if xj,q′ ∈ V , then v = xj,q′ })
(xi,q′ xj ,q′ =sem)E =def χV,~1n,{i,j}

({< u, v > | u, v ∈ V, S |= u =sem v,
if xi,q′ ∈ V , then u = xi,q′ , if xj,q′ ∈ V , then v = xj,q′ }).

We extend the definition of ·E inductively for complex (sub)bodies in q′:

(and q ′1 . . . q
′
i)
E =def

⋂
1≤j≤i q

′
j
E

(union q ′1 . . . q
′
i)
E =def

⋃
1≤j≤i q

′
j
E

(neg q ′1)
E =def V n \ q′1

E

(project-to (xi1,q′ . . . xik,q′) q ′1)
E =def π〈i1,...,ik〉(q

′
1
E)

To get the final answer of a query, the head has to be considered, for a final projection. Thus, the
result of (retrieve head q) is simply given as

(retrieve head q)E =def (project-to Θ(head) Θ(q)).E

4

3.5.2 The NRQL Instantiation of the SUQL

In addition to the basic retrieval inference service, expressive query languages are required in practical
applications. Well-established is the class of conjunctive queries. A conjunctive query consists of a
head and a body. The head lists variables for which the user would like to compute bindings. The
body consists of query atoms (see below) in which all variables from the head must be mentioned. If
the body contains additional variables, they are seen as existentially quantified. A query answer is a set
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of tuples representing bindings for variables mentioned in the head. A query is a structure of the form
ans(X1, . . . , Xn)← atom1, . . . , atomm.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X,Y )), same-as query atoms
(X = Y ) as well as so-called concrete domain query atoms. The latter are introduced to provide support
for querying the concrete domain part of a knowledge base. Complex queries are built from query atoms
using boolean constructs for conjunction (indicated with comma) or union (∨).

In standard conjunctive queries, variables (in the head and in query atoms in the body) are bound to
(possibly anonymous) domain objects. A system supporting (unions of) standard conjunctive queries is
QuOnto. In so-called grounded conjunctive queries, C(X), R(X,Y ) or X = Y are true if, given some
bindings α for mapping from variables to individuals mentioned in the Abox A, it holds that (T ,A) |=
α(X) : C, (T ,A) |= (α(X), α(Y )) : R, or (T ,A) |= α(X) = α(Y ), respectively. In grounded
conjunctive queries the standard semantics can be obtained for so-called tree-shaped queries by using
corresponding existential restrictions in query atoms. Due to space restrictions, we cannot discuss the
details here. In the following, we consider only grounded conjunctive queries. RACER’s Abox query
language is described in [155]. The language is called nRQL (pronounce: “niracle” and hear it as
“miracle”).

NRQL [68, 69] is a specialized SUQL. It offers dedicated query atoms for ALCQHIR+(D−), e.g.
atoms addressing the concrete domain part of an ABox. The NRQL atoms are: concept query atoms,
e.g. (?x (some has-child human)); role query atoms, e.g. (?x ?y has-child), and (binary)
constraint query atoms. All atoms have been discussed already, with the exception of constraint query
atoms. The following query uses all kinds of NRQL atoms:

(retrieve (?x)
(and (?x (and woman (min age 40))) (?x ?y has-child)

(?y ?y (constraint (has-father age) (has-mother age)
(<= (+ age-2 8) age-1)))))

This query returns thus instances of the concept women which are older than 40 and which have
children whose fathers are at least 8 years older than their mothers. Note that (has-father age)

denotes a role chain ended by a so-called concrete domain attribute, a kind of “path expression”: starting
from the individual bound to ?y (the child), we retrieve “the value” of the concrete domain attribute age
of the individual which is the filler of the has-father role (feature) of this individual. In a similar
way, the age of the mother of ?y is retrieved. These concrete domain values are then used as actual
arguments to check whether the predicate (<= (+ age-2 8) age-1) holds for them; age-2 refers to
(has-mother age), and age-1 refers to (has-father age).11 However, these “values” are in fact
variables in a concrete domain constraint network (which can be left unspecified, i.e., no syntactically
specified so-called told value must exist).

Also more general role terms are admissible in role and constraint query atoms; a role term is an
element in the set of role names closed under the operators {not, inv}. Thus, NRQL offers not only
NAF negated roles, but also classical negated roles, which are not provided by ALCQHIR+(D−).

Given the generic semantics definition, it should be clear how the semantics of the dedicated NRQL
atoms can be defined. Basically, we just need to define S |= Px←v as well as S |= Qx←u,y←v; note
that S is now an ABox A. However, this is easy using the standard translation Φ of DL into FOPL [8];
e.g., for a concept query atom predicate P = C this boils down to ordinary instance checking or an
instance retrieval query: A |= Φ(C)x←i iff A |= i : C iff A ∪ {i : ¬C} is unsatisfiable (basically, just
one of the RACER API functions concept instances or individual instance? need to be called), and for
positive roles R in role atoms we get A |= Φ(R)x←i,y←j iff A |= (i, j) : R iff A∪ {i : ∀R.M, j : ¬M}

11Note that the suffixes -1, -2 have been added to the age attribute in order to differentiate the two values (the mecha-
nism is not needed where the two chains end in different attributes).
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is unsatisfiable, for some fresh concept name M (again, there are standard API functions: role fillers
and individuals related?). However, for negated roles, we need to perform an ABox satisfiability (con-
sistency) check, since negated roles are not supported in ALCQHIR+(D−): A |= Φ(¬R)x←i,y←j iff
A∪{(i, j) : R} is unsatisfiable. These “reduction tricks” are well known [111]. Particular API functions
are called for constraint query atoms as well.

3.5.3 Concrete SUQL Instantiations for the DLMAPS System

We have discussed four representation options in the DLMAPS system. Although the principal ideas
have been laid out, we briefly present the resulting spatio-thematic query languages in the SUQL frame-
work for the DLMAPS system. Which spatio-thematic QL is now applicable for the different represen-
tation options (1–4) in the DLMAPS system?

Option 1: We can use plain NRQL, as explained.

Option 2: The resulting hybrid QL is called SNRQL. It provides the following additional spatial atoms
(note that it does not really add to the message of this text to define these here formally); the
extensions of the atoms are computed on the fly by means of inspection methods.

RCC atoms: Atoms such as (?x ?y (:tppi :ntppi)); (:tppi :ntppi) denotes the dis-
junctive RCC relation {TPPI ,NTPPI }. A rich set of common sense natural lan-
guage spatial prepositions such as :contains, :adjacent, :crosses, :overlaps,

:flows-in is available. The Θ function rewrites these into (the closest possible) RCC
relation.

Distance Atoms: (?x ?y (:inside-distance <min> <max>)), where
<min>, <max> specifies an interval [min;max]; NIL can be used for 0 (or ∞); this
applies to the subsequent interval specifications as well. For example, the extension of
(i ?x (:instance-distance nil 100)) consists of all SBox objects which are not
further than 100 meters from i. Either the shortest distance or the distance between the
centroids of these objects is used.

Epsilon Atoms: (?x ?y (:inside-epsilon <min> <max>)). With that atom, all objects
?y are retrieved, such that ?y is contained within the buffer zone of a size specified by the
interval [min;max] around ?x. This buffer zone consists of all points (x, y) whose shortest
distance to the fringe of (the individual bound to) ?x is contained within [min;max].

Geometric Attribute Atoms: Atoms regarding geometric attributes, e.g. length and area: The
extension of (?x (:area 100 1000)) consists of all nodes of type polygon in V whose
area is in [100; 1000]. Also :length is understood for linear objects. Moreover, simple type
checking atoms such as (?x :is-polygon), (?x :is-line) etc. are available (these are
needed in order to guard the application of certain spatial operators).

Here is a query which selects an appropriate home for a millionaire:

(retrieve (?villa ?living-area ?golf-club ?church)
(and (?*living-area (and living-area

(or (all classification first-class-area)
(string= name "Beverley Hills"))))

(?living-area ?villa :contains)
(?*villa (and villa

(all status for-sale) (> has-price 10000000)
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(some has-comfort swimming-pool)))
(?church ?living-area (:inside-epsilon nil 200))
(?living-area ?golf-club :adjacent)
(?*golf-club (and golf-club (all members millionaire)))))

Option 3: In principle like SNRQL, but the queries are no longer hybrid. Moreover, the MIDELORA

prover currently does not offer concrete domains. Thus, the ABox query language part is reduced
to concept and role query atoms.

Option 4: The resulting hybrid QL is called NRQL + RCC atoms. This language can only offer RCC
atoms in addition to NRQL, since the geometry of the map is not represented. The same syntax
is used as for the SNRQL RCC atoms (but the implementation obviously differs, since geometric
computations are required in one case, and RCC constraint checking in the other case).

Building OBIS with enabling DL technology is a non-trivial task, especially for IS in non-standard
domains. The space of design decisions is very large. Thus we have designed a flexible and generic
framework which offers appropriate abstractions that are able to cover regions in these design spaces
instead of just points.

Since decidability and scalability is not always easy to achieve for OBIS, we believe that it is of even
more importance to identify practical solutions which, even though they do not exploit or advance the
latest theoretical state-of-the-art techniques in DL research, can nevertheless be considered an advance
regarding the current state-of-the-art IS technology and provide guidance and “road maps” for similar
designs.

We claim that our framework for building pragmatic combinations of specialized representation lay-
ers (including DL ABoxes) for which orthogonal specialized substrate QLs and dedicated provers can be
defined, provides a great deal of flexibility for building similar OBIS. Moreover, some of the functionality
described here is immediately available for other users (of the RACER system). We claim that the iden-
tified software abstractions are valuable, also for non-Lisp developers, as are the identified optimization
techniques for ontology query answering engines.
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4 Leveraging the Expressivity of Grounded Conjunctive Query Lan-
guages

In this section, we present a pragmatic extension of a Semantic Web query language (including so-called
grounded conjunctive queries) with a termination safe functional expression language. This addresses
problems encountered in daily usage of Semantic Web query languages for which currently no stan-
dardized solutions exist, e.g., how to define aggregation operators or expressive procedural predicates,
and how to specify so-called combined TBox/ABox queries. We claim that the solution is very flexible,
since users can define and execute ad hoc extensions efficiently on the server without having to compile
specialized “plugins” in advance. We also address the scalability aspect by showing how efficient ag-
gregation operators can be realized. We claim that the flexibility offered by the approach promises to
enhance the applicability of Semantic Web query languages to real world problems.

Nowadays, so-called Description Logics (DLs) provide the basis for SEMANTIC WEB technology,
and in particular, for the de facto standards for SEMANTIC WEB ontology languages such as OWL [147].
DL systems can thus be used as SEMANTIC WEB repositories. They offer a set of standard reasoning
services, such as consistency checking, automatic computation of the concept (class) hierarchy (the so-
called taxonomy), and the basic retrieval services (e.g., instance retrieval) [12]. In the context of the
SEMANTIC WEB, especially expressive query languages (which go beyond the basic retrieval services)
are of great importance to realize the vision of semantic information retrieval.

In order to enhance the expressivity of SEMANTIC WEB query languages in general and of NRQL
(query language of RACER, [155]) in particular, we claim that a kind of server-side programming or
procedural extensions are often required. So-called stored procedures are well-known in the relational
database realm. However, standard relational database technology is not directly applicable to realize
expressive SEMANTIC WEB information retrieval, if expressive background ontologies (e.g., in SHIQ
or OWL) are involved. Moreover, the use of stored procedures can result in unsafe, non-terminating
queries. Since decidability is crucial in the SEMANTIC WEB context, we think that any kind of procedural
extension facility should be expressive and efficiently computable, but still remain termination safe.

The so-called MiniLisp extension of NRQL is designed to meet these requirements. With MiniLisp
a user can write a simple, termination safe, “program” which is executed on the RACER server. Such
MiniLisp programs can be used to improve the flexibility of the query language. MiniLisp allows a
restricted kind of server-side programming and can thus be used to realize, among others, user-defined
query predicates, efficient aggregation operators (e.g., sum, avg, like in SQL), user-defined output
formats for query results, as well as certain kinds of so-called combined ABox/TBox queries, etc. We
will present these expressive means in this paper.

4.1 Background: Grounded Conjunctive Queries

In addition to the basic retrieval inference service, expressive query languages are required in prac-
tical applications. Well-established is the class of conjunctive queries. A conjunctive query consists
of a head and a body. The head lists variables for which the user would like to compute bindings.
The body consists of query atoms in which all variables from the head must be mentioned. If the
body contains additional variables, they are seen as existentially quantified. A query answer is a set
of tuples representing bindings for variables mentioned in the head. A query is a structure of the form
ans(X1, . . . , Xn)← atom1, . . . , atomm.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X,Y )), same-as query atoms
(X = Y ) as well as so-called concrete domain query atoms. The latter are introduced to provide support
for querying the concrete domain part of a knowledge base. Complex queries are built from query atoms
using boolean constructs for conjunction (indicated with comma) or union (∨).
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In standard conjunctive queries, variables (in the head and in query atoms in the body) are bound
to (possibly anonymous) domain objects. In so-called grounded conjunctive queries, C(X), R(X,Y )
or X = Y are true if, given some bindings α for mapping from variables to individuals mentioned in
the ABox A, it holds that (T ,A) |= α(X) : C, (T ,A) |= (α(X), α(Y )) : R, or (T ,A) |= α(X) =
α(Y ), respectively. In grounded conjunctive queries the standard semantics can be obtained for so-called
tree-shaped queries by using corresponding existential restrictions in query atoms [85]. Due to space
restrictions, we cannot discuss the details here. In the following, we consider only grounded conjunctive
queries, which are implemented by NRQL.

NRQL supports the following atoms for querying the ABox: concept query atoms, e.g. (?x (some

has-child human)); role query atoms, e.g. (?x ?y has-child), and (binary) constraint query atoms.
The following query uses all kinds of NRQL atoms:

(retrieve (?x)
(and (?x (and woman (min age 40))) (?x ?y has-child)

(?y ?y (constraint (has-father age) (has-mother age)
(<= (+ age-2 8) age-1)))))

This query returns thus instances of the concept woman which are older than 40 and which have children
whose fathers are at least 8 years older than their mothers. Note that (has-father age) denotes a role
chain ended by a so-called concrete domain attribute, a kind of “path expression”: starting from the
individual bound to ?y (the child), we retrieve “the value” of the concrete domain attribute age of the
individual which is the filler of the has-father role (feature) of this individual. In a similar way, the
age of the mother of ?y is retrieved. These concrete domain values are then used as actual arguments
to check whether the predicate (<= (+ age-2 8) age-1) holds for them; age-2 refers to (has-mother

age), and age-1 refers to (has-father age).
In addition to the standard classical negation operator of

ALCQHIR+(D−) which can be applied to concepts and also to roles in NRQL, also a so-called
negation as failure (NAF) semantics is supported. This means that any of the discussed atoms can appear
as NAF-negated in a query body as well.

4.2 Server-Side Programming with Lambda Head Operators

Let us consider an example which demonstrates that server-side programming is some-
times necessary. Consider an ABox representing objects in a geographic informa-
tion system having width and length, and we want to compute and return the area of
these objects with a query. In principle, one can conceive a ternary atom such as
compute-area(?w,?l,?area); if ?w and ?l are bound to concrete width and length values, then, in
order to satisfy the atom, ?area must be bound to ?w * ?l. However, the list of such conceivable
procedural atoms will be endless and it should thus be possible for users to extend it. Obviously,
then either a plug-in mechanism [73] allowing for the specification of user-defined predicates, or a
definition language being part of the query language is required. This is the approach we are taking
here. The basic idea is simple: In order to keep the semantics of the query body clean and to avoid
computational problems (e.g., non-termination of a query caused by a malicious user-defined atom), we
are not allowing user-defined procedural atoms in query bodies. Instead, only retrieval conditions can be
specified in a body, and in a final mapping step, user-defined projections resp. predicates can be applied
to the computed query result tuples.

A so-called (lambda) head projection operator is a function which is applied to the current binding
of the variable (the current individual), and the result of this application is included in the answer tuple.
The application of a head projection operator can be understood as a function application. So-called
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lambda expressions can denote (anonymous) functions. NRQL allows for the specification of lambda
expressions in the head of a query; NRQL uses a Lisp dialect which we call MiniLisp. MiniLisp is a
termination-safe expression language.

Consider the following ABox in which the individual box1 is defined, having width of 10 and length
of 20:

(define-concrete-domain-attribute width :type integer)
(define-concrete-domain-attribute length :type integer)
(instance box1 (and (equal width 10) (equal length 20)))

We can then query for the areas of the objects in this ABox as follows:

? (retrieve
(?x
((lambda (w l) (* (first w) (first l)))
(told-value-if-exists (width ?x))
(told-value-if-exists (length ?x))))

(?x (and (a width) (a length))))

> (((?x box1) 200))

The query body (?x (and (a width) (a length))) selects all ABox individuals which have specified
fillers of the concrete domain attributes width and length. However, only in certain cases it is possible
to actually retrieve these values. In case such fillers are explicitly known as in our example, the retrieval of
concrete values is supported by means of the functional expressions (told-value-if-exists (width

?x)) (analogously for height). We call these expressions projection operators. In general, it is thus also
not possible to bind such fillers to variables, e.g., to ?w, ?l. On the one hand, this is caused by the open
world assumption employed in DLs, and is on the other hand a consequence of the concrete domains
which allow for the specification of constraint systems that need not have unique solutions. Returning
to the example, the function / lambda application is performed by substituting the formal parameters w,
l with the actual arguments supplied by the two told-value-if-exists projection operators. These
operators return lists of (told) values; thus, the first function is applied before * is applied to yield the
total area.

MiniLisp is easy to understand and use for readers which have some COMMON LISP experience. In
a nutshell, MiniLisp supports numbers, symbols, strings and lists (and thus also trees), offers conditional
execution, structure mapping functions (e.g., higher-order functions which apply a function to a list or a
tree such as maptree), as well as standard functions (e.g., standard arithmetic, list and string processing,
comparison and sorting functions) borrowed from the host language COMMON LISP. In order to grant
termination, lambdas as required for higher-order functions such as maptree etc. are not first order
objects. Thus, no unbounded loops can be specified.

Importantly, all RACER API functions can be called from within a lambda body. This also applies to
retrieve itself, the basic NRQL API query answering function. So, queries can be nested in arbitrary
depth, which allows for powerful subquerying. Nested queries allow to achieve a better scalability of
expressivity, for example, aggregation operators can be realized in that way (see below). In many cases,
inner subqueries shall be constructed based on variable bindings established by outer queries. For this
purpose, query templates can be constructed using the backquote-comma template mechanisms from
COMMON LISP (similar template construction mechanisms are, for example, known from dynamic web
page construction frameworks). We will illustrate this template mechanism in the following sections.
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4.3 Predefined Lambda Expressions

Certain commonly used lambda expressions are available as “macros”, facilitating idiomatic usage. For
example, the RACER API function direct-types can be applied to an ABox individual to include the set
of direct types the individual is an instance of in the query result. Thus, the lambda expression ((lambda

(?x) (direct-types ?x *current-abox*)) ?x)) can be abbreviated as (direct-types ?). Other
important operators are types, describe, and individual-synonyms.

For example, on the ABox

(instance i c)

the subsequent queries return the following results, if (implies c d) is in the TBox:

? (retrieve (?x (types ?x)) (?x top) :include-lambdas-p t)
> (((?x i)

(((lambda (?x) (instantiators ?x *current-abox*)) ?x)
((c) (d) (*top* top)))))

? (retrieve (?x (all-types-flat ?x)) (?x top)
:include-lambdas-p t)

> (((?x i)
(((lambda (?x)

(sort-symbol-name-lessp
(flatten (instantiators ?x *current-abox*))))

?x)
((c d *top* top)))))

In the next sections we present several examples which demonstrate the usefulness of MiniLisp for
leveraging the expressivity of query languages.

4.4 Aggregation Operators

First we show how queries with aggregation operators can be implemented. Consider the following KB
which models the compositional structure of a car, see Figure 8. A car has certain parts, and each part
has a certain weight:

Figure 8: Compositional structure of mycar
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(define-primitive-role has-part :transitive t)
(define-concrete-domain-attribute weight :type real)

(instance mycar car)
(related mycar engine1 has-part)
(related engine1 cylinder-1-4 has-part)
(related mycar wheel-1-4 has-part)
(related mycar chassis1 has-part)
(instance engine1 (= weight 200.0))
(instance chassis1 (= weight 400.0))
(instance wheel-1-4 (= weight 30.0))

Using MiniLisp, we can compute the overall weight as well as identify its number of components:

? (retrieve1 (?car car)
(((lambda (car)

(let ((car-weight
(reduce ’+

(flatten
(retrieve1 ‘(and (,car car)

(,car ?part has-part)
(?part (a weight)))

‘(((lambda (car-weight)
car-weight)

(told-value-if-exists
(weight ?part))))))))

(car-parts
(length
(retrieve ‘(?part)

‘(,car ?part has-part)))))

‘((?car ,car) (?no-of-parts ,car-parts)
(?total-weight ,car-weight))))

?car)))

> ((((?car mycar) (?no-of-parts 4) (?total-weight 630.0))))

Please note that retrieve1 is like retrieve, but with head and body argument positions flipped (in
order to enhance the “left to right” readability of complex query nestings). The body of the query
consists of the concept query atom (?car car). The lambda expression is then applied to the cur-
rent binding of ?car. So, within the lambda, car is bound to the binding of ?car. First, the total
weight is computed. For this purpose, a subquery is constructed. If ?car = mycar, then the query
(retrieve1 ‘(and (mycar car) (mycar ?part has-part) (?part (a

weight))) ...) is constructed and posed, asking for the parts of mycar. The head of the sub
query consists of yet another lambda, which simply applies the told-value-if- exists head pro-
jection operator to retrieve the told values of the weight attribute of ?part. The subquery result
is returned as a nested list; the list if then flattened, and its items are summed using (reduce ’+

...). The result is bound to the local variable car-weight. Similarly, the number of car-parts

is computed (by posing yet another subquery). Finally, the result of the lambda expression is con-
structed and returned. The constructed and returned value will become the result tuple. So, if
car is mycar, and no-of-parts is 4, and car-weight is 630.0, then the template ‘((?car ,car)

(?no-of-parts ,car-parts) (?total-weight ,car-weight)) constructs the result tuple (((?car

mycar) (?no-of-parts 4) (?total-weight 630.0))).
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4.5 Efficient Aggregation Operators using Promises

Although the previous query demonstrated the power and utility of MiniLisp, the aggregation is not
computed efficiently. Obviously, this is a problem if the approach is expected to scale. The reason is that
for each binding of ?car, two new subqueries are constructed. Each query has to be parsed, compiled and
optimized, and is then maintained as a query object. Since the structures of the subqueries do not change
during query execution it would be better to construct these subqueries in advance. This can be achieved
using so-called promises. A promise declares that certain variables have to be treated as individuals.
Such variables are then handled in a very efficient way by the query evaluation engine at runtime. A
query containing variables which have been declared by a promise may only be executed if bindings for
these variables are established beforehand. A more efficient version of the pervious aggregation query
therefore looks as follows:

(with-future-bindings (?car)
(prepare-abox-query (?part)

(and (?car car) (?car ?part has-part))
:id :parts-of-car-query)

(prepare-abox-query
(((lambda (weight) weight)
(told-value-if-exists (weight ?part))))

(and (?car car)
(?car ?part has-part)
(?part (a weight)))

:id :weights-of-parts-of-car-query))

This prepares two queries named :parts-of-car-query and :weights-of-parts- of-car-query.
The queries are compiled and optimized, but not executed yet. Since NRQL supports full life cycle
management for queries, these queries are from now on available as query objects, ready for execution.
Due to the surrounding lexical promise with-future-bindings, the query optimizer has treated the
?car variable as an individual. Thus, we have “promised” NRQL that we will only execute these queries
if we supply a binding for ?car in advance. We can establish such a binding during query execution
using with-nrql-settings as follows:

? (retrieve1 (?car car)
(((lambda (car)

(with-nrql-settings (:bindings ‘((?car ,car)))
(let ((weight-of-car

(reduce ’+
(flatten
(execute-or-reexecute-query

:weights-of-parts-of-car-query))))
(parts-of-car

(length
(execute-or-reexecute-query

:parts-of-car-query))))

‘((?car ,weight-of-car)
(?total-weight ,weight-of-car)))))

?car)))

> ((((?car mycar) (?no-of-parts 4) (?total-weight 630.0))))

This results in a very efficient query execution, since (re)execution of a prepared query is immediate
(only a function call to the compiled query evaluation function is required).
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4.6 Miscellaneous Features

User Defined Query Result Format As already demonstrated, the value re-
turned by a lambda body is included in the binding list. In the previous
query, the lambda body returns a structured list using the template ‘((?car ,car)

(?total-weight ,weight-of-car)); this is equivalent to (list (list ’?car car) (list

’?total-weight weight-of-car)). It is also easy to specify natural language output. If we
replace ‘((?car ,car) (?total-weight ,weight-of-car)) in the previous query with

(format nil "Car with name ˜A weights ˜A kg and has ˜A parts."
car weight-of-car parts-of-car)

and execute the query again, then the query result is not returned as a list of variable bindings, but as a
list of formatted strings such as

"Car with name mycar weights 630.0d0 kg and has 4 parts."

Writing Query Results to Files In practical scenarios, file output of query results is important as
well. MiniLisp offers the with-open-output-file operator which realizes this functionality. Within
the dynamic scope of this environment, output to the *output-stream* is sent to the specified file. For
example, if the previous query format statement is replaced by the

(format *output-stream*
"Car with name ˜A weights ˜A kg and has ˜A parts."
car weight-of-car parts-of-car)

and this is executed in the dynamic scope of an
(with-open-output-file ("minilisp-output.txt") ...) environment, then the query result
will be written to the file minilisp-output.txt.

Filtering Result Tuples Sometimes, certain query predicates cannot be specified in the query body
due to the “decidability vs. expressivity trade-off” of the ALCQHIR+(D−) concept language. For
example, there is no concrete domain predicate searching for substrings, or, returning to our example, it
is not possible to exclude all boxes whose area satisfies width ∗ length ≤ 200. Fortunately, MiniLisp can
help here as well, since lambda bodies can also work as filters. If the special token :reject is returned
from the lambda body, then the result is ignored, i.e., will not appear in the query answer. We can easily
identify all parts which have no subparts as follows:

? (retrieve1 (?part top)
(((lambda (part)

(let ((parts
(length
(retrieve ‘(?part) ‘(,part ?part has-part)))))

(if (zerop parts) :reject ‘(,part has ,parts parts))))
?part)))

> (((engine1 has 1 parts)) ((mycar has 4 parts)))

Please note that the combination of MiniLisp and :reject token gives you the ability to define
arbitrary, used-defined filter predicates which are executed efficiently since they are directly on the
RACER server.

c©2007/TONES – July, 2007 54/143 TONES-D18– v.1.1



FP6-7603 – TONES Thinking ONtologiES WP4

Combined TBox / ABox Queries Finally, let us present an example which demonstrates how to com-
bine TBox queries and ABox queries. Sometimes, one wants to retrieve only the direct instances of a
concept / OWL class. An individual is called a direct instance of a concept / OWL class if there is no
subconcept / subclass of which the individual is also an instance of.

Let us create two concepts c and d such that d is a subconcept (child concept) of c. Thus, the TBox
contains

(define-concept c (some r top))
(define-concept d (and c e))

We can easily verify that d has been recognized as a child concept of c, using a so-called TBox query:

? (tbox-retrieve (?x) (c ?x has-child))
> (((?x d)))

Let us create two individuals i and j in the ABox which are instances of c; moreover, j is also an instance
of d:

(related i j r)
(related j k r)
(instance j e)

We can easily check for the instances of c and d as follows:

? (retrieve (?x) (?x c))
> (((?x j)) ((?x i)))

? (retrieve (?x) (?x d))
> (((?x j)))

The previous queries demonstrated that both i and j are c instances. However, only i is a direct c
instance. Unfortunately, retrieval of direct instances is not a standard DL inference problem; thus, there
is no RACER API function. But using a combined ABox/TBox query it is indeed possible to retrieve the
direct instances of c as follows:

? (retrieve1 (?x c)
(((lambda (x)

(if (some (lambda (subclass)
(retrieve () ‘(,x ,subclass)))

(flatten
(tbox-retrieve1 ‘(c ?subclass has-child)
‘(((lambda (subclass) subclass) ?subclass)))))

:reject
‘(?x ,x)))

?x)))
> (((?x i)))

In this query, ?x is bound to a c instance. Using this binding, it is checked by means of a TBox subquery
(tbox-retrieve1) whether the individual bound to ?x is also an instance of any subclass of c. If this
is the case, the result tuple (resp. the current binding of ?x) is rejected (see the special :reject token);
otherwise, the result tuple is constructed and returned. The returned result tuples make up the final result
set.
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4.7 Conclusion

We have presented a pragmatic extension of a SEMANTIC WEB query language (including so-called
grounded conjunctive queries) by lambda expressions. The termination safe functional expression lan-
guage MiniLisp offers solutions to problems encountered in daily usage of SEMANTIC WEB query lan-
guages for which currently no standardized solutions exist. NRQL is the first and only SEMANTIC WEB

query language that offers used-defined ad hoc predicates, aggregation operators, as well as combined
ABox+TBox queries. Moreover, the proposed solution is technically sound, since the query body is
kept clean from user defined predicates which might result in unsafe queries. The solution is very flexi-
ble, since users can define define and execute ad hoc extensions efficiently on the server without having
to compile specialized “plugins” in advance. We have also addressed the scalability aspects by show-
ing how efficient aggregation operators can be realized in this framework by exploiting the notion of
promises. Standard aggregation operators could also be made accessible as macros (idioms). We believe
that the flexibility offered by MiniLisp greatly enhances the applicability of the query language to real
world problems.
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5 Unrestricted Conjunctive Queries for Expressive Description Logics

5.1 Introduction

Description Logics (DLs) [8] are a well-established family of logic-based knowledge representation for-
malisms that have recently gained increased attention due to their usage as the logical underpinning
of ontology languages such as DAML+OIL and OWL [83]. A DL knowledge base (KB) consists of a
TBox, which contains intensional knowledge such as concept definitions and general background knowl-
edge, and an ABox, which contains extensional knowledge and is used to describe individuals. Using a
database metaphor, the TBox corresponds to the schema, and the ABox corresponds to the data.

In data-intensive applications, querying KBs plays a central role. Essentially, there are two forms
of querying. The first one is instance retrieval, which allows the retrieval of all certain instances of a
given (possibly complex) concept C, i.e., it returns all individuals from the ABox that are an instance of
C in every model of the KB. Technically, instance retrieval is well-understood. For the prominent DL
SHIQ, which underlies DAML+OIL and OWL Lite, it is EXPTIME-complete [143], and, despite this
high worst-case complexity, efficient implementations are available. On the other hand, instance retrieval
is a rather poor form of querying: concepts are used as queries, and thus we can only query for structures
that are invariant under (guarded) bisimulations. For this reason, many applications require conjunctive
query answering as a stronger form of querying, i.e., computing the certain answers to a conjunctive
query over a DL knowledge base.

Until now it was an open problem whether conjunctive query answering is decidable in SHIQ. In
particular, the presence of transitive and inverse roles makes the problem rather tricky [55], and results
were only available for two restricted cases. The first case is obtained by stipulating that the variables
in queries can only be bound to individuals that are explicitly mentioned in the ABox. The result is a
form of closed-domain semantics, which is different from the usual open-domain semantics in DLs. It
is easily seen that conjunctive query answering in this setting can be reduced to instance retrieval. In the
second case, the binary atoms in conjunctive queries are restricted to roles that are neither transitive nor
have transitive sub-roles, and it is known that conjunctive query answering in this setting is decidable
[37, 44] and co-NP-complete regarding data complexity [119].

In this section, we show that unrestricted conjunctive query answering in SHIQ is decidable. More
precisely, we devise a decision procedure for the entailment of a conjunctive query by a SHIQ knowl-
edge base, which is the decision problem corresponding to conjunctive query answering. It is well-known
that decidability and complexity results carry over from entailment to answering. Our decision procedure
for query entailment consists of a rather intricate reduction to KB consistency in SHIQu, i.e., SHIQ
extended with role conjunction. The latter is easily seen to be decidable. The resulting (deterministic)
algorithm for conjunctive query entailment in SHIQ needs time double exponential in the size of the
query and single exponential in the size of the KB. This result concerns the combined complexity, i.e.,
it is measured in the size of all inputs: the query, the ABox, and the TBox. Since query and TBox are
usually small compared to the ABox, the data complexity (measured in the size of the ABox, only) is
also a relevant issue. We show that (the decision problem corresponding to) conjunctive query answering
in SHIQ is co-NP-complete regarding data complexity, and thus not harder than instance retrieval [86].

5.2 Conjunctive Queries

Let NV be a countably infinite set of variables disjoint from NC, NR, and NI. An atom is an expression
A(v) (concept atom) or r(v, v′) (role atom), where A is a concept name, r is a role, and v, v′ ∈ NV. A
conjunctive query q is a non-empty set of atoms. Intuitively, such a set represents the conjunction of its
elements. We use Var(q) (Var(at)) to denote the set of variables occurring in the query q (atom at). Let
I be an interpretation, q a conjunctive query, and π : Var(q)→ ∆I a total function. We write
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• I |=π C(v) if (π(v)) ∈ CI ;

• I |=π r(v, v′) if (π(v), π(v′)) ∈ rI ;

If I |=π at for all at ∈ q, we write I |=π q and call π a match for I and q. We say that I satisfies q and
write I |= q if there is a match π for I and q. If I |= q for all models I of a KB K, we write K |= q and
say that K entails q.

The query entailment problem is defined as follows: given a knowledge baseK and a query q, decide
whether K |= q. It is well-known that query entailment and query answering can be mutually reduced
and that decidability and complexity results carry over [31, 76]. In what follows, we concentrate on
query entailment.

For convenience, we assume that conjunctive queries are closed under inverses, i.e., if r(v, v′) ∈ q,
then Inv(r)(v′, v) ∈ q. If we add or remove atoms from a query, we silently assume that we do this such
that the resulting query is again closed under inverses. We will also assume that queries are connected.
Formally, a query q (closed under inverses) is connected if, for all v, v′ ∈ Var(q), there exists a sequence
v0, . . . , vn such that v0 = v, vn = v′, and for all i < n, there exists a role r such that r(vi, vi+1) ∈ q.
A collection q0, . . . , qk of queries is a partitioning of q if q = q0 ∪ · · · ∪ qk, Var(qi) ∩ Var(qj) = ∅ for
i < j ≤ k, and each qi is connected. The following lemma shows that connectedness can be assumed
w.l.o.g.

Lemma 8. Let K be a knowledge base, q a conjunctive query, and q0, . . . , qn a partitioning of q. Then
K |= q iff K |= qi for all i ≤ n.

5.3 Forests and Trees

In this section, we carefully analyze the entailment of queries by knowledge bases and establish a set of
general properties that will play a central role in our decision procedure. We start by showing that, in
order to decide whether K |= q, it suffices to check whether I |= q for all models I of K that are of a
particular shape. Intuitively, these models are shaped like a forest (in the graph-theoretic sense), modulo
the fact that transitive roles have to be interpreted in transitive relations.

Let IN∗ be the set of all (finite) words over the alphabet IN. A tree T is a non-empty, prefix-closed
subset of IN∗. For w,w′ ∈ T , we call w′ a successor of w if w′ = w · c for some c ∈ IN, where “·”
denotes concatenation. We call w′ a neighbor of w if w′ is a successor of w or w is a successor of w′.

Definition 9. A forest base for K is an interpretation I that interpretes transitive roles in unrestricted
(i.e., not necessarily transitive) relations and, additionally, satisfies the following conditions:

T1 ∆I ⊆ Ind(A)× IN∗ such that, for all a ∈ Ind(A), the set {w | (a,w) ∈ ∆I} is a tree;

T2 if ((a,w), (a′, w′)) ∈ rI , then either w = w′ = ε or a = a′ and w′ is a neighbor of w;

T3 for all a ∈ Ind(A), aI = (b, ε) for some b ∈ Ind(A).

A model I of K is canonical if there exists a forest base J for K such that J is identical to I except
that, for all non-simple roles r, we have

rI = rJ ∪
⋃

sv∗r, s∈Trans

(sJ )+.

In this case, we say that J is a forest base for I. 4
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Observe that, in canonical models I, each individual a is mapped to a pair (b, ε), where a = b does not
necessarily hold. We need this since we do not adopt the uniqe name assumption (UNA): if a, b ∈ NI with
a 6= b, then we allow that aI = bI . If desired, the UNA can easily be adopted by adding an assertion
a 6= b for each pair of individual names in Ind(A) to the ABox.

Lemma 10. K 6|= q iff there exists a canonical model I of K such that I 6|= q.

Lemma 10 shows that, when deciding whether K |= q, it suffices to check whether I |= q for all
canonical models I of K. As a next step, we would like to show that, for canonical models I, to check
whether I |= q, we can restrict our attention to a particular kind of match π for I and q. A match π for
I and q is a forest match if, for all r(v, v′) ∈ q, we have one of the following:

• π(v), π(v′) ∈ NI × {ε};

• π(v), π(v′) ∈ {a} × IN∗ for some a ∈ Ind(A).

Alas, it is not sufficient to only consider forest matches for I and q. Instead, we show the following: we
can rewrite q into a set of queriesQ such that, for all canonical models I, we have that I |= q iff I |=π q′

for some q′ ∈ Q and forest match π. Intuitively, this complication is due to the presence of transitive
roles.

Definition 11. A query q′ is called a transitivity rewriting of q w.r.t.K if it is obtained from q by choosing
atoms r0(v0, v

′
0), . . . , rn(vn, v′n) ∈ q and roles s0, . . . , sn ∈ TransH such that si v∗H ri for all i ≤ n,

and then replacing ri(vi, v′i) with

si(vi, ui), si(ui, v′i)
or

si(vi, ui), si(ui, u′i), si(u
′
i, v
′
i)

for all i ≤ n, where ui, u′i 6∈ Var(q). We use trK(q) to denote the set of all transitivity rewritings of q
w.r.t. K. 4

We assume that trK(q) contains no isomorphic queries, i.e., differences in (newly introduced) variable
names are neglected.

Together with Lemma 10, the following lemma shows that, on canonical models, we have I |= q iff
there is a forest match π and a q′ ∈ trK(q) such that I |=π q′.

Lemma 12. Let I be a model of K.

1. If I is canonical and I |= q, then there is a q′ ∈ trK(q) such that I |=π′ q′, with π′ a forest match.

2. If I |= q′ with q′ ∈ trK(q), then I |= q.

The most important property of forest matches is the following: if I |=π q with π a forest match, then π
splits the query q into several subqueries: the base subquery q0 contains all role atoms that are matched
to root nodes:

q0 := {r(v, v′) ∈ q | π(v), π(v′) ∈ NI × {ε}};

Moreover, for each (a, ε) ∈ NI × {ε} which occurs in the range of π, there is an object subquery qa:

qa := {at | ∀v ∈ Var(at) : π(v) ∈ {a} × IN∗} \ q0.
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Clearly, q = q0 ∪
⋃
a qa. Although the resulting subqueries are not a partitioning of q in the sense of

Section 2, one of the fundamental ideas behind our decision procedure is to treat the different subqueries
more or less separately. The main benefit is that the object subqueries can be rewritten into tree-shaped
queries which can then be translated into concepts. This technique is also known as “rolling up” of tree
conjunctive queries into concepts and was proposed in [31, 76]. Formally, a query q is tree-shaped if
there exists a bijection σ from Var(q) into a tree T such that r(v, v′) ∈ q implies that σ(v) is a neighbor
of σ(v′) in T . Before we show how to rewrite the object subqueries into tree-shaped queries, let us
substantiate our claim that tree-shaped queries can be rolled up into concepts. The result of rolling
up is not a SHIQ-concept, but a concept formulated in SHIQu, the extension of SHIQ with role
intersection. More precisely, SHIQu is obtained from SHIQ by admitting the concept constructors
∃α.C, ∀α.C, 6 α.C, and > α.C, where α is a role conjunction r1u· · ·urk with the ri (possibly inverse)
roles.

Let q be a tree-shaped query and σ a bijection from Var(q) into a tree T . Inductively assign to each
v ∈ Var(q) a SHIQu-concept Cq(v):

• if σ(v) is a leaf of T , then Cq(v) := u
A(v)∈q

A

• if σ(v) has successors σ(v1), . . . , σ(vn) in T , then

Cq(v) := u
A(v)∈q

A u u
1≤i≤n

∃
( u
r(v,vi)∈q

r
)
.Cq(vi).

Then the rolling up Cq of q is defined as Cq(vr), where vr is such that σ(vr) = ε. (Recall that σ is a
bijection, hence, such a vr exists.) The following lemma shows the connection between the query and
the rolled up concept.

Lemma 13. Let q be a tree-shaped query and I an interpretation. Then I |= q iff CIq 6= ∅.

We now show how to transform a query q into a set Q of tree-shaped ones. To describe the exact goal
of this translation, we need to introduce tree matches as a special case of forest matches: a match π for
a canonical model I and q is a tree match if the range of π is a subset of {a} × IN∗, for some a ∈ NI.
Now, our tree transformation should be such that

(∗) whenever I |=π q with I a canonical model and π a tree match, then I |=π′ q′ for some
(tree-shaped) query q′ ∈ Q and tree match π′.

Recall the splitting of a query into a base subquery and a set of object subqueries qa, induced by a forest
match π. It is not hard to see that for each qa, the restriction of π to Var(qa) is a tree match for I and qa.
Thus, object subqueries together with their inducing matches π satisfy the precondition of (∗).

The rewriting of a query into a tree-shaped one is a three stage process. In the first stage, we derive
a collapsing q0 of the original query q by (possibly) identifying variables in q. This allows us, e.g.,
to transform atoms r(v, u), r(v, u′), r(u,w), r(u′, w) into a tree shape by identifying u and u′. In the
second stage, we derive an extension q1 of q0 by (possibly) introducing new variables and role atoms
that make certain existing role atoms r(v, v′) redundant, where r is non-simple. In the third stage, we
derive a reduct q′ of q1 by (possibly) removing redundant role atoms, i.e., atoms r(v, v′) such that there
exist atoms s(v0, v1), . . . , s(vn−1, vn) ∈ q with v0 = v, vn = v′, s v∗ r, and s ∈ Trans. Combining
the extension and reduct steps allows us, e.g., to transform a non-tree-shaped “loop” r(v, v) into a tree
shape by adding a new variable v′ and edges s(v, v′), s(v′, v) such that s v∗ r and s ∈ Trans, and then
removing the redundant atom r(v, v).

In what follows, the size |q| of a query q is defined as the number of atoms in q.
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Definition 14. A collapsing of q is obtained by identifying variables in q. A query q′ is an extension of
q w.r.t. K if:

1. q ⊆ q′;

2. A(v) ∈ q′ implies A(v) ∈ q;

3. r(v, v′) ∈ q′ \ q implies that r occurs in K;

4. |Var(q′)| ≤ 4|q|;

5. |{r(v, v′) ∈ q′ | r(v, v′) /∈ q}| ≤ 171|q|2.

A query q′ is a reduct of q w.r.t. K if:

1. q′ ⊆ q;

2. A(v) ∈ q implies A(v) ∈ q′;

3. if r(v, v′) ∈ q \ q′, then there is a role s such that s v∗ r, s ∈ Trans, and there are v0, . . . , vn such
that v0 = v, vn = v′, and s(vi, vi+1) ∈ q′ for all i < n.

A query q′ is a tree transformation of q w.r.t. K if there exist queries q0 and q1 such that

• q0 is a collapsing of q,

• q1 is an extension of q0 w.r.t. K, and

• q′ is a tree-shaped reduct of q1.

We use ttK(q) to denote the set of all tree transformations of q w.r.t. K. 4

We remark that Condition 5 of query extensions is not strictly needed for correctness, but it ensures that
our algorithm is only single exponential in the size of K. As in the case of trK(q), we assume that ttK(q)
does not contain any isomorphic queries.

The next lemma states the central properties of tree transformations. Before we can formulate it, we
introduce two technical notions. Let q′ ∈ ttK(q), I |=π q, and I |=π′ q′. Then π and π′ are called
ε-compatible if the following holds: if v ∈ Var(q), v was identified with variable v′ ∈ Var(q′) during the
collapsing step, and at least one of π(v), π′(v′) is in NI × {ε}, then π(v) = π′(v′). Furthermore, we call
π an a-tree match if π(v) ∈ {a} × IN∗ for all v ∈ Var(q).

Lemma 15. Let I be a model of K.

1. If I is canonical and π an a-tree match with I |=π q, then there is a q′ ∈ ttK(q) and an a-tree
match π′ such that I |=π′ q′ and π, π′ are ε-compatible.

2. If q′ ∈ ttK(q) and I |=π′ q′, then there is a match π with I |=π q and π, π′ are ε-compatible.
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Intuitively, using a-tree matches and ε-compatibility in Lemma 15 ensures that, if we are given a
match for the base subquery and a tree match for a tree transformation of each object subquery, then we
can construct a forest match of the original query.

5.4 The Decision Procedure

Let K be a knowledge base and q a conjunctive query such that we want to decide whether K |= q. A
counter model for K and q is a model I of K such that I 6|= q. In the following, we show how to convert
K and q into a sequence of knowledge bases K1, . . . ,K` such that (i) every counter model for K and q
is a model of some Ki, (ii) every canonical model of a Ki is a countermodel for K and q, and (iii) each
consistent Ki has a canonical model. Thus, K |= q iff all the Ki are inconsistent. This gives rise to two
decision procedures: a deterministic one in which we enumerate all Ki and which we use to derive an
upper bound for combined complexity; and a non-determinstic one in which we guess a Ki and which
yields a tight upper bound for data complexity.

Since the knowledge bases Ki involve concepts obtained by rolling up tree-shaped queries, they are
fomulated in SHIQu rather than in SHIQ. More precisely, each KB Ki is of the form (T ∪Tq,H,A∪
Ai), where

• (T ,H,A) is a SHIQ knowledge base;

• Tq is a set of GCIs > v C with C a SHIQu concept;

• Ai is a generalized SHIQu-ABox12 such that Ind(Ai) ⊆ Ind(A).

In what follows, we call knowledge bases of this form extended knowledge bases. Using a standard
unravelling argument, it is easy to establish Property (iii) from above, i.e., every consistent extended
knowledge base K has a canonical model.

The actual construction of the extended knowledge bases is based on the analysis in Section 5.3. To
start with, Lemma 10 and 12 imply the following: to ensure that a canonical model of an extended KB
is a counter model for K and q, it suffices to prevent forest matches of all queries q′ ∈ trK(q). In order
to prevent such matches, we use the parts Tq and Ai of extended knowledge bases.

More precisely, we distinguish between two kinds of forest matches: tree matches and true forest
matches, i.e., forest matches that are not tree matches. Preventing tree matches of a q′ ∈ trK(q) in a
canonical model is relatively simple: by Lemmas 15 and 13, it suffices to ensure that, for all q′′ ∈ ttK(q′),
the corresponding concept Cq′′ does not have any instances. Therefore, Tq is defined as follows:

Tq = {> v ¬Cq′′ | q′′ ∈ ttK(q′) for some q′ ∈ trK(q)}.

It is easily seen that true forest matches π always involve at least one ABox individual (i.e., π(v) ∈
NI × {ε} for at least one variable v). In order to prevent true forest matches, we thus use an ABox Ai.
Intuitively, we obtain the ABoxes A1, . . . ,A` by considering all possible ways of adding assertions to
K such that, for all queries q′ ∈ trK(q), all true forest matches are prevented. This gives rise to the
knowledge bases K1, . . . ,K`.

As suggested in Section 5.3, we can prevent a true forest match π of q′ ∈ trK(q) by splitting π into a
base subquery and a number of object subqueries and then making sure that either the base query fails to
match (this involves only individual names from the ABox) or at least one of the object subqueries fails
to have a tree match. In Section 5.3, however, we used a concrete forest match π to split a query into
subqueries. Here, we do not have a concrete π available and must consider all possible ways in which a
forest match can split a query.

12Recall that an ABox is generalized if it admits assertions C(a) with C an arbitrary concept.
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Let q′ ∈ trK(q). A splitting candidate for q′ is a partial function τ : Var(q′) → Ind(A) with non-
empty domain. For a ∈ Ind(A), we use Reach(a, τ) to denote the set of variables v ∈ Var(q′) for which
there exists a sequence of variables v0, . . . , vn, n ≥ 0, such that

• τ(v0) = a and vn = v;

• for all i ≤ n, τ(vi) = a or τ(vi) is undefined;

• for all i < n, there is a role r s.t. r(vi, vi+1) ∈ q′.

We call τ a split mapping for q′ if, for all a, b ∈ Ind(A), a 6= b implies Reach(a, τ) ∩ Reach(b, τ) = ∅.
Intuitively, each split mapping τ for q′ represents the set of forest matches π of q′ such that π(v) =
(τ(v), ε) for all v in the domain of τ . Each injective split mapping for q′ induces a splitting of q′ into
a base query and object queries. Split mappings τ need not be injective, however, and thus the general
picture is that they induce a splitting of the collapsing q′′ of q′ obtained by identifying all variables v, v′

with τ(v) = τ(v′). This splitting is as follows:

qτ0 := {r(v, v′) ∈ q′′ | τ(v), τ(v′) is defined}
qτa := {at ∈ q′′ | Var(at) ⊆ Reach(a, τ)} \ qτ0

for all a ∈ NI that are in the range of τ . Observe that the condition which distinguishes splitting candi-
dates and split mappings ensures that a 6= b implies Var(qτa) ∩ Var(qτb ) = ∅. This condition is satisfied
by the splittings described in Section 3, and it is needed to independently roll up the subqueries qτa into
concepts.

In the following, we use sub(q) to denote the set of subqueries of q, i.e., the set of non-empty subsets
of q. Let

Q := {q3 |∃q1, q2 : q1 ∈ trK(q), q2 ∈ sub(q1), q3 ∈ ttK(q2)}

and let cl(q) be the set of rolled up concepts Cq′ , for all q′ ∈ Q. A SHIQu ABox A′ is called a q-
completion if it contains only assertions of the form

• ¬C(a) for some C ∈ cl(q) and a ∈ Ind(A) and

• ¬r(a, b) for a role name r occurring in Q and a, b ∈ Ind(A).

Let τ be a split mapping for q′ ∈ trK(q) and A′ a q-completion. We say that A′ spoils τ if one of the
following holds:

(a) there is an r(v, v′) ∈ qτ0 such that ¬r(τ(v), τ(v′)) ∈ A′;

(b) there is an a in the range of τ such that ¬C(a) ∈ A′, where

C := t
q′′∈ttK(qτa)

Cq′′ .

Intuitively, (b) prevents tree matches of the object subqueries, c.f. Lemmas 15 and 13.
Finally, a q-completion A′ is called a counter canidate for K and q if for all q′ ∈ trK(q) and all split

mappings τ for q′, A′ spoils τ . LetA1, . . . ,A` be all counter candidates for K and q and K1, . . . ,K` the
associated extended KBs.

Lemma 16. K |= q iff K1, . . . ,K` are inconsistent.
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We now define the two decision procedures for query entailment in SHIQ: in the deterministic version,
we generate all q-completions A′ of A and return “K |= q” if all generated A′ that are a counter candi-
date give rise to an inconsistent extended KB. Otherwise, we return “K 6|= q”. In the non-deterministic
version, we guess a q-completionA′ ofA, return “K 6|= q” ifA′ is a counter candidate and the associated
extended KB is consistent, and “K |= q” otherwise. To show that these algorithms are decision proce-
dures, it remains to show that the consistency of extended knowledge bases is decidable. The following
theorem can be proved by a reduction to the DLALCQIb and using results from [143]. In the following,
the size |Γ| of an ABox, TBox, role hierarchy or (extended) knowledge base Γ is simply the number of
symbols needed to write Γ (with numbers written in binary).

Theorem 17. There is a polynomial p such that, given an extended knowledge baseK′ = (T ∪Tq,H,A∪
A′) with |K′| = k, |A ∪ A′| = a, |T ∪ Tq ∪ H| = t, and where the maximum length of concepts in Tq
and A′ is `, we can decide consistency of K′ in

• deterministic time in 2p(k)2p(`);

• non-deterministic time in p(a) · 22p(t) .

We now discuss the complexity of our algorithms. We start by establishing some bounds on the number
and size of transitivity rewritings, tree transformations, etc.

Lemma 18. Let |q| = n and |K| = m. Then there is a polynomial p such that
(a) |trK(q)| ≤ 2p(n)·log p(m);

(b) for all q′ ∈ trK(q), |q′| ≤ 3n;

(c) for all q′ ∈ trK(q), |ttK(q′)| ≤ 2p(n)·log p(m);

(d) for all q′ ∈ trK(q) and q′′ ∈ ttK(q′), |q′′| ≤ p(n);

(e) |cl(q)| ≤ 2p(n)·log p(m); and

(f) for all C ∈ cl(q), |C| ≤ p(n).

Let k = |cl(q)|. We first show that the deterministic version of our algorithm runs in time exponential in
m and double exponential in n. This follows from Theorem 17 together with the following observations:

(i) The number of q-completions is bounded by 2k·m+k·m2
, which, by Lemma 18(e), is exponential

in m and double exponential in n;

(ii) Checking whether a q-completion is a counter candidate can be done in time exponential in n and
polynomial in m;

(iii) By Lemma 18, the cardinality of Tq and of each q-completion is exponential in n and polynomial
in m, and the maximum length of concepts in Tq and A′ is polynomial in n (and independent of
m).

Now for the non-deterministic version. Since we aim at an upper bound for data complexity, we only need
to verify that the algorithm runs in time polynomial in the size of |A|, and can neglect the contribution
of T , H, and q to time complexity. The desired result follows from Theorem 17 and Points (ii) and (iii)
above. This bound is tight since conjunctive query entailment is already co-NP-hard regarding data
complexity in the AL fragment of SHIQ. Summing up, we thus have the following.

Theorem 19. Conjunctive query entailment in SHIQ is data complete for co-NP, and can be decided
in time exponential in the size of the knowledge base and double exponential in the size of the query.
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6 Answering Regular Path Queries in Expressive Description Logics:
An Automata-Theoretic Approach

6.1 Introduction

Description Logics (DLs) [13] are a well-established branch of logics for knowledge representation and
reasoning, and the premier logic-based formalism for modeling concepts (i.e., classes of objects) and
roles (i.e., binary relationships between classes). They have gained increasing attention in different
areas including the Semantic Web, data and information integration, peer-to-peer data management, and
ontology-based data access. In particular, some of the standard Web ontologies from the OWL family
are based on DLs [70].

In DLs, traditionally reasoning tasks had been studied that deal with taxonomic issues like classifi-
cation and instance checking. Recently, however, the widening range of applications has led to extensive
studies of answering queries over DL knowledge bases (KBs) that require, beyond simple instance re-
trieval, to join pieces of information in finding the answer. Specifically, conjunctive queries have been
studied in several papers, cf. [37, 44, 35, 87, 88, 120, 57].

As shown therein, answering (classes of) conjunctive queries is decidable for several DLs, including
expressive ones. [57] proved this for arbitrary conjunctive queries over SHIQ KBs, while [87, 88]
showed this for conjunctive queries without transitive roles and [120] for unions of such queries.13

At present, (unions of) conjunctive queries over SHIQ KBs is among the most expressive decidable
settings. In this paper, we push the frontier and establish decidability of query answering for the yet
more expressive class of positive (existential) two-way regular path queries (in short, P2RPQs) over
the expressive DL ALCQIbreg , which is close to SHIQ. P2RPQs are queries inductively built, using
conjunction and disjunction, from atoms that are regular expressions over direct and inverse roles (and
allow for testing of concepts). They not only subsume conjunctive queries and unions of conjunctive
queries, but also unions of conjunctive regular path queries [43].

More specifically, we make the following contributions.
• Different from previous works, which rely on resolution-based transformations to disjunctive dat-

alog or on tableaux-based algorithms, we use automata techniques for query answering in expressive
DLs. While the application of automata techniques in DLs is not novel, cf. [40, 143], previous work was
concerned with deciding satisfiability of a KB consisting of a TBox only. Here we address the much
more involved task of query answering over a KB, which has data in an ABox; incorporating the query
is non-obvious.
• The technique we apply is more accessible than the existing ones based on tableaux and resolution.

Indeed, it is computational in nature, and directly works on the models of the KB. In this way, we are
also able to obtain more general results, which seems more difficult using the other approaches.
• As a first result, we present an automata-based algorithm for checking the satisfiability of a KB

(consisting of TBox and ABox) in EXPTIME. This is worst-case optimal.
• Our main result then shows that answering positive existential queries over ALCQIbreg KBs is

feasible in 2EXPTIME. By a reduction of SHIQ to ALCQIbreg , a similar result follows for SHIQ.
This compares well to the N3EXPTIME bound for union of conjunctive queries in [120], and the 2EXP-
TIME bounds for (classes of) conjunctive queries that emerge from [57, 87]. On the other hand, we
establish an EXPSPACE lower bound for positive existential queries.

Our results indicate that automata-techniques have high potential for advancing the decidability fron-
tier of query answering over expressive DLs, and are a useful tool for analyzing its complexity.

13Note that the technique in [37] for unions of conjunctive regular path queries is actually incomplete.
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6.2 Preliminaries

6.2.1 ALCQIbreg

Concepts and roles in ALCQIbreg obey the following syntax:

C,C ′ −→ A | ¬C | C u C ′ | C t C ′ | ∀R.C |
∃R.C | > nQ.C | 6 nQ.C

Q,Q′ −→ P | P− | Q ∩Q′ | Q ∪Q′ | Q \Q′

R,R′ −→ Q | R ∪R′ | R ◦R′ | R∗ | id(C)

where A denotes an atomic concept, P an atomic role, C an arbitrary concept, and R an arbitrary role.
We use Q to denote basic roles, which are those roles which may occur in number restrictions. W.l.o.g.,
we assume that “\” is applied only to atomic roles and their inverses.

AnALCQIbreg knowledge base (KB) is a pairK = 〈A, T 〉whereA (the ABox) is a set of assertions
of the form A(a), P (a, b), and a 6= b, with A an atomic concept, P an atomic role, and a, b individuals;
and T (the TBox) is a set of concept inclusion axioms C v C ′ for arbitrary concepts C and C ′. W.l.o.g.
all concepts occurring in A occur in T . We denote by CK the set of atomic concepts occurring in K, by
RK the set of atomic roles occurring in K and their inverses, and by JK the individuals in K.

The semantics is the standard one [13]. We note that we do not adopt the unique name assumption.
KB satisfiability consists in determining whether some interpretation I = (∆I , ·I) satisfies all asser-

tions in A and all concept inclusion axioms in T . By internalization [134], this is reducible to finding
an interpretation I satisfying A and such that each individual in A is in the extension of a concept CT
representing T .

Definition 20 (P2RPQs). A positive 2-way regular path query (P2RPQ) over a KB K is a formula
∃~x.ϕ(~x), where ϕ(~x) is built using ∧ and ∨ from atoms of the form C(z) and R(z, z′), with z, z′

variables from ~x or individuals, C is an arbitrary concept, R is an arbitrary role, and where all atomic
concepts and roles in ϕ occur in K. 4

Note that positive (regular path) queries naturally generalize unions of conjunctive (regular path)
queries [43] by allowing for an unrestricted interaction of conjunction and disjunction14, thus being in
general also exponentially more compact.

Example 21. Consider the query q over a genealogy KB K:

∃x, y, z. parent∗·parent−∗(x, y) ∧ parent−(x, z) ∧ parent−(y, z)
∧male(x) ∧ ¬male(y) ∧ (¬deity(x) ∨ ¬deity(y))

Informally, q is true if there are relatives x and y that have a common child, z, and if not both of them
are deities.

Let q be a P2RPQ, and let varind(q) denote the set of variables and individuals in q. Given an
interpretation I, let π : varind(q) → ∆I be a total function such that π(a) = aI for each individual
a ∈ varind(q).

We write I, π |= C(z) if π(z) ∈ CI , and I, π |= R(z, z′) if (π(z), π(z′)) ∈ RI . Let γ be the
Boolean expression obtained from ϕ by replacing each atom α in ϕ with TRUE, if I, π |= α, and with
FALSE otherwise. We say that π is a match for I and q, denoted I, π |= q, if γ evaluates to TRUE. We

14Instead, no negation is allowed, whence the name.
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say that I satisfies q, written I |= q, if there is a match π for I and q. A KB K entails q, denoted K |= q,
if I |= q for each model I of K.

Query entailment consists in verifying, given a KB K and a P2RPQ q, whether K |= q. Note that,
w.l.o.g., we consider here query entailment for Boolean queries, i.e., queries without free variables, since
query answering for non-Boolean queries is polynomially reducible to query entailment.

6.2.2 Automata on Infinite Trees

Infinite trees are represented as prefix-closed (infinite) sets of words over IN (the set of positive integers).
Formally, an infinite tree is a set of words T ⊆ IN∗, such that if x·c ∈ T , where x ∈ IN∗ and c ∈ IN, then
also x ∈ T . The elements of T are called nodes, the empty word ε is its root. For every x ∈ T , the nodes
x·c, with c ∈ IN, are the successors of x. By convention, x·0 = x, and x·i·−1 = x. The branching
degree d(x) of a node x is the number of its successors. If d(x) ≤ k for each node x of T , then T has
branching degree k. An infinite path P of T is a prefix-closed set P ⊆ T where for every i ≥ 0 there
exists a unique node x ∈ P with |x| = i. A labeled tree over an alphabet Σ is a pair (T, V ), where T is
a tree and V : T → Σ maps each node of T to an element of Σ.

Let B(I) be the set of positive Boolean formulas built inductively from TRUE, FALSE, and atoms
from a set I applying ∧ and ∨. A set J ⊆ I satisfies ϕ ∈ B(I), if assigning TRUE to the atoms in J and
FALSE to those in I \ J makes ϕ true.

A two-way alternating tree automaton (2ATA) running over infinite trees with branching degree k,
is a tuple A = 〈Σ, Q, δ, q0, F 〉, where Σ is the input alphabet; Q is a finite set of states; δ : Q × Σ →
B([k] × Q), where [k] = {−1, 0, 1, . . . , k}, is the transition function; q0 ∈ Q is the initial state; and F
specifies the acceptance condition.

The transition function δ maps a state q ∈ Q and an input letter σ ∈ Σ to a positive Boolean formula
ϕ. Intuitively, each atom (c, q′) in ϕ corresponds to a new copy of the automaton going in the direction
given by c and starting in state q′. E.g., let k = 2 and δ(q1, σ) = (1, q2) ∧ (1, q3) ∨ (−1, q1) ∧ (0, q3).
If A is in the state q1 and reads the node x labeled with σ, it proceeds by sending off either two copies,
in the states q2 and q3 respectively, to the first successor of x (i.e., x·1), or one copy in the state q1 to the
predecessor of x (i.e., x·−1) and one copy in the state q3 to x itself (i.e., x·0).

Informally, a run of a 2ATA A over a labeled tree (T, V ) is a labeled tree (Tr, r) in which each node
n is labeled by an element r(n) = (x, q) ∈ T ×Q and describes a copy of A that is in the state q and
reads the node x of T ; the labels of adjacent nodes must satisfy the transition function of A. Formally, a
run (Tr, r) is a T×Q-labeled tree satisfying:

1. ε ∈ Tr and r(ε) = (ε, q0).

2. Let y ∈Tr, with r(y) = (x, q) and δ(q, V (x)) = ϕ. Then there is a set S= {(c1, q1) , . . . ,
(ch, qh)} ⊆ [k]×Q s.t.

• S satisfies ϕ and

• for all 1 ≤ i ≤ h, we have that y·i ∈ Tr, x·ci is defined, and r(y·i) = (x·ci, qi).

A run (Tr, r) is accepting, if it satisfies the parity condition that for every infinite path π, there is an even
i such that Inf(π) ∩ Gi 6= ∅ and Inf(π) ∩ Gi−1 = ∅, where F = (G1, . . . , Gm) is a finite sequence of
sets of states with G1 ⊆ · · · ⊆ Gm = Q, and Inf(π) ⊆ Q denotes the states that occur infinitely often in
π (as second components of node labels). The nonemptiness problem for 2ATAs is deciding whether the
set L(A) of trees accepted by a given 2ATA A is nonempty. We make use of the following result.

Theorem 22. [149] For any 2ATA A with n states, parity condition of lengthm, and input alphabet with
` elements, nonemptiness of A is decidable in time exponential in n and polynomial in m and `. There is
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a one-way nondeterministic tree automaton (1NTA) A1 with 2O(n) states and parity condition of length
O(m) such that L(A) = L(A1).

6.3 Deciding KB Satisfiability via Automata

For many DLs including ALCQIbreg , the standard reasoning tasks are naturally solvable by tree-
automata, thanks to their tree model property: each satisfiable concept C has a tree-shaped model. This
is similar in the presence of a TBox. For an ABox A this fails, since the assertions in A may arbitrarily
connect individuals. While a satisfiable ALCQIbreg KB K = 〈A, T 〉 may lack a tree-shaped model,
it always has a forest-shaped canonical model, in which each individual is the root of a tree-shaped
model of T . This property is usually sufficient to adapt algorithms for concept satisfiability to decide
KB satisfiability. In particular, automata-based algorithms have been adapted using the precompletion
technique [143], in which after a reasoning step on the ABox, automata are used to verify the existence
of a tree-shaped model rooted at each ABox individual.

Our approach is different. We represent forest-shaped interpretations as trees T, and encode K into
an automaton AK that accepts T iff T corresponds to a canonical model of K. To the best of our
knowledge, this is the first algorithm that deals with ABox assertions and individuals directly in the
automaton. This enables us to extend the automata-based algorithm also to query answering.

We denote by CL(CT ) the (syntactic) closure of CT as defined in [40]. Intuitively, it contains all
the concepts and roles that may occur when CT is decomposed during a run of an automaton on a tree
representing a model of K. It contains CT and it is closed under subconcepts and their negations. It also
contains some basic roles (with their corresponding subroles and negations), and some concepts that may
occur when decomposing a subconcept of CT in which complex concepts occur (e.g., if ∃(R ◦ R′).C ∈
CL(CT ) then ∃R.∃R′.C ∈ CL(CT )). We assume that CL(CT ) also contains ai and ¬ai for each ABox
individual ai, plus d and ¬d, where d is a new dummy symbol. Note that |CL(CT )| is linear in the length
ofK. Sometimes we consider expressionsE in negation normal form, denoted nnfE, in which negations
are pushed inside as much as possible. We let CLnnf (CT ) = {nnfE | E ∈ CL(CT )}.

Every satisfiable ALCQIbreg concept CT has a tree-model with branching degree kCT =
O(|CL(CT )|) [40, 143].

Satisfiable ALCQIbreg KBs have a weaker property:

Theorem 23. Every satisfiable ALCQIbreg KB K = 〈T ,A〉 has a canonical model I that comprises a
set of tree-shaped models of CT with branching degree kCT , whose roots are the individuals inA (which
might be interconnected).

We represent such a canonical model I as a tree TI . Let JK = {a1, . . . , am}, and let S =
{t1, . . . , tn} be the set of tree-shaped models of CT in I (each with branching degree kCT ). As in [40],
we represent each such tj as a labeled tree. Each node x is labeled with a set σ that contains the atomic
concepts that are true in x, and the basic roles that connect the predecessor of x to x. The label of the root
of tj also contains the names of the individuals in JK which it interprets, but no basic roles. The root of
TI is a new node whose children are the roots of all trees tj . Its label is {r} ∪ {Pij | 〈aIi , aIj 〉 ∈ P I}.
Since each tj is rooted at some ai, we have n ≤ m. If n<m, the root has m−n dummy children
labeled d. Note that the branching degree is |JK| at the root and kCT at all other levels.

We now construct from K a 2ATA AK that accepts a given tree T iff T = TI for some
canonical model I of K. [40] presented an automaton AK= (ΣK, S, δ, s0, F ) for deciding con-
cept satisfiability in ALCQIbreg . We adapt and expand AK to handle the ABox. The alphabet is
ΣK = 2CK∪RK∪JK∪{r}∪{d}∪PI , where PI = {Pij | ai, aj ∈ JK and P ∈ RK}; the set of states
is S = {s0} ∪ CLnnf (CT ) ∪ SA ∪ SQ where s0 is the initial state. The acceptance condition is

c©2007/TONES – July, 2007 68/143 TONES-D18– v.1.1



FP6-7603 – TONES Thinking ONtologiES WP4

F = (∅, {∀R∗.C ∈ CLnnf (CT )}) (concepts ∃R∗.C are not included in the acceptance condition, and
are satisfied in all accepting runs, see [40]).15

Intuitively, when AK is in a state s ∈ CLnnf (CT ) and visits a node x of the tree, it must check that
s holds in x. The set SA contains states of the form Qij to verify whether ABox individuals ai and aj
are related by a role Q, and states of the form 〈j,∃Q.C〉 and 〈j,∀Q.C〉 to check whether aj satisfies
a concept of the form ∃Q.C and ∀Q.C. The set SQ contains states of the form 〈≷ nQ.C, i, j〉 and
〈k,≷ nQC, i, j〉 for ≷∈ {>,6}, which check the number restrictions. Intuitively, i stores how many
successors of the current node have been navigated, and j how many of them are reached through Q and
labeled with C. Similarly, the states 〈k,≷ nQC, i, j〉 are used to verify that an individual ak satisfies the
concept ≷ nQC.

The transition function δ is as follows. First, for each σ ∈ ΣK with r ∈ σ we define δ(s0, σ) =
F1 ∧ · · · ∧ F7 from the initial state s0, which verifies that the root contains r; that the level one nodes
properly represent the individuals in the ABox (F1–F3); that all ABox assertions are satisfied (F4–F6);
and that every non-dummy node at level one is the root of a tree representing a model of CT (F7):

F1 =
∧

1≤i≤|JK|((
∨

1≤j≤|JK|(i, aj) ∧ (i,¬d)) ∨ (i, d))
F2 =

∧
1≤i≤|JK|

∨
1≤j≤|JK|(j, ai)

F3 =
∧

1≤i<j≤|JK|(
∧

1≤k≤|JK|(i,¬ak) ∨ (j,¬ak))
F4 =

∧
ai 6=aj∈A(

∧
1≤k≤|JK|(k,¬ai) ∨ (k,¬aj))

F5 =
∧
A(aj)∈A(

∨
1≤i≤|JK|(i, aj) ∧ (i, A))

F6 =
∧
P (ai,aj)∈A(0, P ij)

F7 =
∧

1≤i≤|JK|((i, nnfCT ) ∨ (i, d))

Additional transitions ensure that r and each ai do not occur anywhere else in the tree. Then, for each
concept in CLnnf (CT ) and each σ ∈ ΣK, there are transitions that recursively decompose concepts and
roles, and move to appropriate states of the automaton and nodes of the tree.

Concepts ∀R∗.C and ∃R∗.C are propagated using the equivalent concepts C u ∀R.∀R∗.C and C t
∃R.∃R∗.C, respectively. Most of these transitions are as in [40]. To verify that a concept of the form
∀Q.C, ∃Q.C, > nQ.C or 6 nQ.C is satisfied by a node x, all the nodes that reach or are reachable from
x must be navigated. We need different transitions for a node x (i) at level one and (ii) at all other levels.
In case (ii), the predecessor and the successors of x are navigated as usual. In case (i), the transitions must
consider the other individual nodes that are connected to x via some role, which are stored in the root
label. Therefore, the transitions must send suitable copies of the automaton to navigate the successors,
and send a copy of the automaton up to the root. As an example, we provide the transitions for the
quantifiers; the number restrictions are handled similarly. If σ ∩ (JK ∪ {d}) 6= ∅, we have transitions:

δ(∃Q.C, σ) =
∨
aj∈σ(−1, 〈j,∃Q.C〉) ∨

∨
1≤i≤kCT

((i, Q) ∧ (i, C))

δ(∀Q.C, σ) =
∧
aj∈σ(−1, 〈j,∀Q.C〉) ∧∧
1≤i≤kCT

((i, nnfQ) ∨ (i, C))

Further, for each σ ∈ ΣK and 〈j,∃Q.C〉, 〈j,∀Q.C〉 in SA,

15We could also use a Büchi condition {∀R∗.C ∈ CLnnf (CT )}.

c©2007/TONES – July, 2007 69/143 TONES-D18– v.1.1



FP6-7603 – TONES Thinking ONtologiES WP4

δ(〈j,∃Q.C〉, σ) =
∨

0≤i≤|JK|

(
∨

0≤k≤|JK|

((0, Qjk) ∧ (i, ak) ∧ (i, C)))

δ(〈j,∀Q.C〉, σ) =
∧

0≤i≤|JK|

(
∧

0≤k≤|JK|

((0, nnfQjk) ∨ (i,¬ak) ∨ (i, C)))

Concepts and roles are recursively decomposed. When reaching the atomic level, it is checked
whether the node label σ contains the corresponding atomic symbol. Thus, for each s ∈ CK∪RK∪JK∪d:

δ(s, σ) =

{
TRUE, if s ∈ σ
FALSE, if s 6∈ σ

δ(¬s, σ) =

{
TRUE, if s 6∈ σ
FALSE, if s ∈ σ

Further transitions verify whether ABox individuals are connected via some atomic role by checking the
label of the root. For each σ ∈ ΣK and Pij ∈ SA with P ∈ RK:

δ(Pij, σ) =

{
TRUE, if (Pij ∈ σ) or (P−ji ∈ σ)
FALSE, otherwise

A run of AK on an infinite tree T starts at the root, and moves to each individual node to check that
CT holds there. To this end, nnfCT is recursively decomposed while appropriately navigating the tree,
until AK arrives at atomic elements, which are checked locally.

Given a labeled tree T = (T, V ) accepted by AK, we define an interpretation IT for K. The domain
∆IT is given by the nodes x in T with ai ∈ V (x) for some individual ai, and the nodes in T that are
reachable from any such x through the roles. The extensions of concepts and roles are determined by the
labels of the nodes in T.

Lemma 24. Let T be a labeled tree accepted by AK. Then IT is a model of K.

Conversely, given a canonical model I of K, we can construct from it a labeled tree TI that is
accepted by AK.

Lemma 25. AK accepts TI for each canonical model I of K.

From Lemmas 24 and 25 and Theorem 23, we get:

Theorem 26. An ALCQIbreg KB K is satisfiable iff the set of trees accepted by AK is nonempty.

Under unary encoding of numbers in restrictions, the number of states of AK is polynomial in the
size of K. Since ΣK is single exponential in the size of K, by Theorems 22 and 26 we get an optimal
upper bound for KB satisfiability (a matching lower bound holds already for much weaker DLs [13]).

Corollary 27. For ALCQIbreg , KB satisfiability is EXPTIME-complete.

6.4 Query Answering via Automata

We address now the problem of entailment of P2RPQs in ALCQIbreg KBs. Consider a (Boolean)
P2RPQ q over a KB K. We first show that, in order to check whether K |= q, it is sufficient to restrict
attention to canonical models. This is a consequence of the possibility to unravel an arbitrary counterex-
ample model for entailment into a canonical model (cf. Theorem 23), and the fact that since the query
does not contain negative information, there will still be no match for the unraveled model and the query.

Lemma 28. K 6|= q if and only if there is a canonical model I of K such that I 6|= q.
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This result allows us to exploit tree-automata based techniques also for query entailment. Specifi-
cally, we consider trees representing canonical models over an alphabet extended with additional atomic
concepts, one for each variable in q, each of which is satisfied in a single node of the tree. The intuition
behind the use of such trees is that, since the existentially quantified “variables” appear explicitly in the
tree, a 2ATA Aq can easily check the existence of a match for (the interpretation corresponding to) the
tree and q. We show now how to construct such a 2ATA.

Let q = ∃~x.ϕ(~x) be a P2RPQ overK, and let atomsq be the set of atoms appearing in q. We consider
CK to be enriched by the set X = {x1, . . . , xn} of variables in ~x, and additionally may make use of the
ABox individuals in JK in place of atomic concepts.16

Let then U = (
⋃
P∈R(P ∪ P−))∗. For each α ∈ atomsq, we define

Cα =

{
∃U .(C u z), if α = C(z)
∃U .(z1 u ∃R.z2), if α = R(z1, z2)

where z, z1, z2 ∈ JK ∪ X .
We define the 2ATA Aq = (Σq, Sq, δ, s0, F ) as follows

• Σq = ΣK ∪ X ;

• Sq is defined similarly as for AK, except that we use
⋃
α∈atomsq CLnnf (Cα) instead of CLnnf (CT ).

• The transitions from the initial state are defined for all labels σ containing the symbol r (identifying
the root node) as δ(s0, σ) = F1 ∧ F2 ∧ F3 ∧ Fq ∧ Fv, where:

– F1, F2, and F3 are as for AK;

– Fq is obtained from ϕ(~x) by replacing each atom α with (0, Cα) (and by considering ∧ and
∨ as the analogous connectives in a 2ATA transition);

– Fv checks that each atomic concept x∈X appears exactly once in the tree (this requires new
states in Aq);

• F is defined as for AK.

When Aq is in a state Cα in the root node (the only node labeled r), it does not “decompose” Cα as
usual. Instead, it checks that the concept Cα is satisfied starting from a node at level one representing
ABox individuals. This is done by the following transitions, one for each α∈ atomsq and σ containing
α:

δ(Cα, σ) =
∨

1≤i≤|JK|(i, Cα)

Then, Aq contains transitions analogous to those of AK to check that the various concepts Cα are satis-
fied. Exploiting that the concepts representing variables are enforced to be satisfied in a single node of
the tree, and that under this assumption the concepts Cα correctly represent the atoms of q, we can show
the following result.

Lemma 29. Let IT be the canonical interpretation defined from a tree T as above. Then Aq accepts T
iff there is a match for IT and q in which each variable x of q is mapped to the (only) object that is an
instance of concept x.

16We do not need to enrich the alphabet of atomic concepts by the ABox individuals though, since they are already in it.
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We then convert Aq into an equivalent 1NTA A1
q . By Theorem 22, the number of states (resp., parity

condition) of A1
q is exponential (resp., polynomial) in the number of states of Aq, i.e., in the sum of the

size of q and K.
We project out variables from A1

q obtaining a 1NTA A2
q of size not larger than that of A1

q . By
construction, since A2

q is a one-way automaton and it has been obtained from A1
q by projecting away the

variable symbols X , we have that a tree T is accepted by A2
q iff there is a match for IT and q.

We complement A2
q , obtaining a 1NTA A¬q. The number of states (resp., acceptance condition) of

A¬q is exponential (resp., polynomial) in the number of states of A2
q [92], i.e., double exponential (resp.,

polynomial) in the size of q and K. We have that a tree T is accepted by A¬q iff there is no match for
IT and q.

We construct a 1NTA AK6|=q that accepts the intersection of the languages accepted by AK and A¬q.
This can be done by first converting AK to a 1NTA whose number of states (resp., acceptance condition)
is exponential (resp., linear) in the size ofK, and then constructing the product automaton with A¬q. The
number of states (resp., acceptance condition) of AK6|=q is still double exponential (resp., polynomial) in
the size of q and K.17

Since a tree T is accepted by AK iff IT is a canonical model of K, while it is accepted by A¬q iff
there is no match for IT and q, every tree accepted by AK6|=q represents a counterexample to K |= q. On
the other hand, if a tree T is not accepted by AK6|=q, then either it is not accepted by AK, in which case
IT is not a model of K, or it is not accepted by A¬q, in which case it is accepted by A2

q , i.e., there is a
match for IT and q. Hence the tree does not represent a counterexample to K |= q. As a consequence,
we get:

Lemma 30. There exists a canonical counterexample to K |= q iff the set of trees accepted by AK6|=q is
not empty.

By Lemma 28, and the fact that non-emptiness of 1NTAs can be decided in time linear in the number
of states of the automaton and exponential in the acceptance condition, see [149], we get the following
result.

Theorem 31. For everyALCQIbreg knowledge base K and P2RPQ query q, we have that K |= q iff the
set of trees accepted by AK6|=q is not empty. Moreover, K |= q is decidable in double exponential time
in the size of q and the number of atomic concepts, roles, and individuals in K and single exponential in
the size of K.

Our results apply also to SHIQ. Given a SHIQ KB K, it can be rewritten as an ALCQIbreg KB
K′ expressing the role hierarchy with role conjunction (complex roles are not allowed in the ABox, thus
it must be closed w.r.t. the hierarchy) and propagating value restrictions over transitive roles by means of
TBox axioms [143]. Although this reduction does not preserve query entailment, the models of K and
K′ differ only in the interpretation of transitive roles. For a query q, deciding K |= q can be reduced to
deciding K′ |= q′, where q′ is obtained from q by replacing every transitive role R in q with R ◦R∗.

6.5 EXPSPACE-Hardness of Query Answering

In this section, we provide a lower bound on answering PRPQs (i.e., P2RPQs without inverses) over
ALC KBs.

Theorem 32. Given a PRPQ q and a ALC knowledge base K, deciding whether K |= q is EXPSPACE-
hard.

17Note that, if only atomic concepts and (regular expressions over) atomic roles are used in q, then the number of states of
AK6|=q is single exponential in the size of K.
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The proof is by a reduction from tiling problems, inspired by a similar reduction to query containment
over semi-structured data [43].

A tiling problem consists of a finite set ∆ of tile types, two binary relations H and V over ∆,
representing horizontal and vertical adjacency relations, respectively, and two distinguished tile types
tS , tF ∈ ∆. Deciding whether for a given a number n in unary, a region of the integer plane of size
2n×k, for some k, can be tiled consistently with H and V , such that the left bottom tile of the region has
type tS and the right upper tile has type tF , can be shown to be EXPSPACE-complete [146].

We construct an ALC KB K and a query q such that K |= q iff there is no correct tiling, as follows.
A tiling is spanned row by row by a sequence of objects. Each object represents one tile and is connected
by a specific role to the next tile. For the connections, we use the following two roles:

• N connecting tiles within the same row;

• L connecting the last tile of row i to the first of row i+1.

The properties (i.e., the atomic concepts) attached to an object are the n bits B1, . . . , Bn of a counter
for its address within the row, and its type. For that, we use pairwise disjoint conceptsD1, . . . , Dk, where
∆ = {t1, . . . , tk}.

We encode in K the following two conditions:

1. The first ensures that the counters progress correctly. It consists ofO(n) standard axioms involving
B1, . . . , Bn and N , which encode a counter bit by bit. Further axioms ensure that, if at least one
bit is 0, there is an N successor but no L successor, and reset the counter otherwise.

¬B1 t · · · t ¬Bn v ∃N .> u ∀L.⊥
B1 u · · · uBn v ∃L.(¬B1 u · · · u ¬Bn) u ∀N .⊥

2. The second ensures that there are no errors w.r.t. the horizontal adjacency relation H . For each tile
type Di,

Di v t
(Di,Dj)∈H

(∀N .Dj u ∀L.Dj).

The query q checks the failure of the vertical adjacency V on the candidate tilings given by the
models of K. It asks whether two objects exist at distance 2n (i.e., representing vertically adjacent tiles)
with an error according to V . That the objects are exactly 2n steps apart is achieved by ensuring that
they have the same n bits and are connected by a (possibly void) sequence of N -steps, followed by one
L-step, and by a (possibly void) sequence of N -steps. We have

q = ∃x, y.Vert ∧ Err ∧G1 ∧ · · · ∧Gn, where

Vert = (N∗ ◦ L ◦N∗)(x, y),
Err =

∨
(Di,Dj) 6∈V (Di(x) ∧Dj(y)),

Gi = (Bi(x) ∧Bi(y)) ∨ (¬Bi(x) ∧ ¬Bi(y)), for 1 ≤ i ≤ n.

The complete KB K entails q iff there is no correct tiling. Note that only Vert uses a regular expression.
If we have transitive roles and role hierarchies, we can replace it in q by

Vert ′ = (Nt(x, z1) ∧ L(z1, z2) ∧Nt(z2, y)) ∨
(Nt(x, z1) ∧ L(z1, y)) ∨ (L(x, z2) ∧Nt(z2, y))
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where Nt is a transitive super-role of N , and z1 and z2 are existentially quantified variables. This shows
that answering positive (existential) queries without regular expressions over KBs inALC plus transitive
roles and role hierarchies, and hence in SH, is EXPSPACE-hard.

Finally, using an encoding closer to [43] where each tile is a block of n+ 1 objects, and the bits and
tile types are encoded by roles, one can show that answering conjunctive regular path queries over KBs
which only use existential roles and disjunction is EXPSPACE-hard.

6.6 Conclusion

In this paper, we have substantially pushed the frontier of decidable query answering over expressive
DLs, which is an active area of research driven by the growing interest to deploy DLs to various appli-
cation areas related to AI. As we have shown, the rich class of positive two-way regular path queries
(P2RPQs) is decidable for ALCQIbreg KBs by means of automata-techniques; on the other hand, query
answering has an EXPSPACE-lower bound already in settings where one of K and Q is rather plain.

Recent results show that the 2EXPTIME upper bound we provide in this paper is indeed tight [105].
However, such a hardness result makes essential use of inverse roles, and the precise complexity of
PRPQs remains open. Finally, it would be interesting to see how far automata-based techniques similar
to the ones in this paper can be utilized to push the decidability frontier of query answering in expressive
DLs, both on the side of the query and the KB.
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7 Unrestricted Conjunctive Queries Data-Oriented Description Logics

One of the most important research directions in Description Logics (DLs) is concerned with the trade-
off between expressive power and computational complexity of sound and complete reasoning. Research
carried out in the past on this topic has shown that many DLs with efficient, i.e., worst-case polynomial
time, reasoning algorithms lack modeling power required in capturing conceptual models and basic on-
tology languages, while most DLs with sufficient modeling power suffer from inherently worst-case
exponential time behavior of reasoning [8, 24].

Although the requirement of polynomially tractable reasoning might be less stringent when deal-
ing with relatively small ontologies, we believe that the need for efficient reasoning algorithms is of
paramount importance when the ontology system is to manage large amount of objects (e.g., from thou-
sands to millions of instances). This is the case of several important applications where the use of ontolo-
gies is advocated nowadays. For example, in the Semantic Web, ontologies are often used to describe the
relevant concepts of Web repositories, and such repositories may incorporate very large data sets, which
constitute the instances of the concepts in the ontology. In such cases, two requirements emerge that
are typically overlooked in DLs. First, the number of objects in the knowledge base requires managing
instances of concepts (i.e., ABoxes) in secondary storage. Second, significant queries to be posed to the
knowledge base are more complex than the simple queries (i.e., concepts and roles) usually considered
in DL research. Another interesting context where these requirements are relevant is data integration,
where an ontology is used as a conceptual, unified view of data stored in a collection of heterogeneous
sources. Again, queries posed to this unified representation are usually more complex than just simple
concept and role expressions, and the amount of data accessed through the ontology is likely to be of
significant size. Unfortunately, in these contexts, whenever the complexity of reasoning is exponential in
the number of instances (as for example in Fact18, RACER19, and in [39]), there is little hope for effective
instance management and query answering algorithms.

In this section we deal with reasoning in the DL-Lite family, a family of DLs specifically tailored to
capture basic ontology languages, while keeping all reasoning tasks tractable, in particular, with poly-
nomial time complexity with respect to the size of the knowledge base. Notably, reasoning here means
not only computing subsumption between concepts, and checking satisfiability of the whole knowledge
base, but also answering complex queries, i.e., unions of conjunctive queries, over the set of instances
maintained in secondary storage.

Our specific contributions are the following:

1. We define the DL-Lite family, and show that the DLs of this family are rich enough to capture
significant ontology languages. As usual, a knowledge base expressed in any logic of the DL-
Lite family is constituted by a TBox and an ABox, where the first component specifies general
properties of concepts and roles, whereas the second component specifies the instances of con-
cepts and roles. The basic logic of the family is called DL-Litecore , and allows for expressing
(cyclic) ISA assertions on concepts, disjointness between concepts, role-typing, participation con-
straints, i.e., assertions stating that all instances of a concept participate to a specified role, and
non-participation constraints. The two other logics studied in this section are called DL-LiteF
and DL-LiteR, respectively. The former adds to the core the possibility of expressing function-
ality restrictions on roles, whereas the latter adds ISA and disjointness assertions between roles.
Although at first sight both DL-LiteF and DL-LiteR appear to be very simple DLs, the kind of
modeling constructs in these logics makes them suitable for expressing a variety of representation
languages widely adopted in different contexts, such as basic ontology languages, conceptual data

18http://www.cs.man.ac.uk/˜horrocks/FaCT/
19http://www.sts.tu-harburg.de/˜r.f.moeller/racer/
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models (e.g., Entity-Relationship [46]), and object-oriented formalisms (e.g., basic UML class
diagrams20).

2. For all DLs of the DL-Lite family, we present techniques for the usual reasoning tasks of DLs,
such as concept and role subsumption, instance checking, and knowledge base satisfiability. We
show that all these tasks are computationally tractable. More precisely, the time complexity of
both concept and role subsumption is polynomial in the size of the knowledge base, whereas both
knowledge base satisfiability and instance checking are in polynomial time with respect to the size
of the knowledge base, and in LOGSPACE with respect to the size of the ABox only, i.e., in what
we can call data complexity [148]. We call description logics with LOGSPACE data complexity
data-oriented description logics.

3. For all DLs of the DL-Lite family, we present algorithms for answering unions of conjunctive
queries posed to knowledge bases expressed in such DLs, and we show that their complexity is
polynomial with respect to the size of the whole knowledge base, and in LOGSPACE with respect
to the size of the ABox only. Note that this is one of the few results on answering complex queries
(i.e., not corresponding simply to a concept or a role) over a DL knowledge base [39]. In fact,
answering conjunctive queries in DLs is a challenging problem, even in the case of DL-Litecore ,
where the combination of constructs expressible in the knowledge base does not pose particular
difficulties to TBox reasoning. Indeed, in spite of the simplicity of DL-Litecore TBoxes, the ability
of taking TBox knowledge into account during the process of answering (unions of) conjunctive
queries goes beyond the two-variable fragments (with counting) of first-order logic represented by
DLs [8]. Finally, we observe that the worst-case complexity of query answering is exponential in
the size of the queries, but this is unavoidable, as the complexity of database query evaluation is
already exponential. Overall, our complexity results show that, despite the expressive power of
the DLs of the DL-Lite family, the complexity of query answering in these logics is no worse than
traditional query evaluation in relational databases.

A notable consequence of the results presented in this report is that our approach is perfectly suited
to representing ABox assertions as relations managed in secondary storage by a Data Base Management
System (DBMS). Indeed, our query answering algorithms are based on the idea of expanding the original
query into a set of queries that can be directly evaluated by an SQL engine over the ABox, thus taking
advantage of well-established query optimization strategies supported by current industrial strength re-
lational technology. Note that this was one of the motivations behind several research works done on
CLASSIC in the 80’s [25].

We finally point that from the results on the data complexity of DLs given in the TONES Deliverable
D10 [29], it follows in particular that the DLs of the DL-Lite family are essentially the maximal DLs for
which conjunctive query answering can be computed in LOGSPACE, and allowing one to delegate query
evaluation to a relational engine. Indeed, even slight extensions to DL-LiteF and DL-LiteR make query
answering (actually already instance checking, i.e., answering atomic queries) at least NLOGSPACE in
data complexity, and thus rule out the possibility of using off-the-shelf relational technology for query
processing. In this sense, the DL-Lite family includes the first DLs specifically tailored for effective
query answering over large amounts of instances.

The results presented in this report are part of our investigation carried out within the entire Work
Package 4 (“Ontology access, processing, and usage”) on reasoning, and in particular on query answer-
ing, over less expressive DLs. Specifically, after establishing how difficult is the problem of query an-
swering (and instance checking) from a computational point of view in the TONES Deliverable D10 [29],

20See http://www.omg.org/uml/.
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we define here techniques for answering of expressive queries (namely, conjunctive queries) over those
DLs for which this task is in LOGSPACE, thus allowing for the exploitation of database technique, as
mentioned above.

We point out that a first description of some members of the DL-Lite family already appeared in
some previous TONES deliverables, namely, in the TONES Deliverable D06 “Formalisms for Repre-
senting Ontologies: State of the Art Survey” [7], where a first description of DL-LiteF has been provided,
and its property have been informally described; in the TONES Deliverable D08 “Common Framework
for Representing Ontologies” [33], where a DL called DL-LiteA, which generalizes both DL-LiteF and
DL-LiteR, has been presented as an instantiation of the tones framework for stand-alone and situated
ontologies; in the TONES Deliverable D13 “Techniques for Ontology Design and Maintenance” [6],
where satisfiability, disjointness, and containment of queries posed over DL-LiteF KBs have been dis-
cussed. However, in the present report, we provide for the first time a complete picture of DL-LiteF
and DL-LiteR, the basic DLs of the entire DL-Lite family. Also, the technical development on DL-LiteF
and DL-LiteR presented in this document constitutes the theoretical foundation for all the logics in this
family.

We notice also that the material included in the present document has been recently accepted for
publication in an international journal [36].

The rest of this section is organized as follows. The next subsection defines the DL-Lite family and
the associated reasoning services, arguing that the DLs of this family are indeed interesting logics for
capturing the basic modeling constructs of ontology languages. Section 7.2 deals with traditional DL
reasoning services for the DL-Lite family, such as knowledge base satisfiability, concept and role sub-
sumption, and instance checking. In Section 7.3, we discuss preliminary properties of query answering
in the DL-Lite family, while in Sections 7.4 and 7.5 we address the problem of query answering for
DL-LiteF and DL-LiteR, respectively.

7.1 The DL-Lite Family

In this section, we focus on a family of DLs, called the DL-Lite family. In particular, we deal with three
DLs of this family, called DL-Litecore , DL-LiteF , and DL-LiteR, respectively.

7.1.1 DL-Litecore

The language of DL-Litecore is the core language for the whole family. Concepts and roles are formed
according to the following syntax:

B −→ A | ∃R
C −→ B | ¬B

R −→ P | P−

E −→ R | ¬R

where A denotes an atomic concept, P an atomic role, and P− the inverse of the atomic role P . B
denotes a basic concept, i.e., a concept that can be either an atomic concept or a concept of the form ∃R,
and R denotes a basic role, i.e., a role that is either an atomic role or the inverse of an atomic role. Note
that ∃R is the standard DL construct of unqualified existential quantification on basic roles. Sometimes
we write R− with the intended meaning that R− = P− if R = P , and R− = P , if R = P−. Finally, C
denotes a (general) concept, which can be a basic concept or its negation, whereas E denotes a (general)
role, which can be a basic role or its negation. Sometimes we write ¬C (resp., ¬E) with the intended
meaning that ¬C = ¬A if C = A (resp., ¬E = ¬R if E = R), and ¬C = A, if C = ¬A (resp.,
¬E = R, if E = ¬R).

A DL knowledge base (KB) K = 〈T ,A〉 represents the domain of interest in terms of two parts, a
TBox T , specifying the intensional knowledge, and an ABox A, specifying extensional knowledge.
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A TBox is formed by a finite set of inclusion assertions of the form

CL v C

i.e., we allow general concepts to occur on the right-hand side of inclusion assertions, whereas only basic
concepts may occur on the left-hand side of inclusion assertions. As we said before, such an inclusion
assertion expresses that all instances of concept CL are also instances of concept C. We observe that we
might include CL1tCL2 in the constructs for the left-hand side of inclusion assertions (where t denotes
union) and C1 uC2 in the constructs for the right-hand side (where u denotes conjunction). In this way,
however, we would not extend the expressive capabilities of the language, since these constructs can be
simulated by considering that CL1 t CL2 v C is equivalent to the pair of assertions CL1 v C and
CL2 v C, and that CL v C1 u C2 is equivalent to CL v C1 and CL v C2. Similarly, we might add
⊥ (denoting the empty set) to the constructs for the left-hand side and > (denoting the whole domain) to
those for the right-hand side.

An ABox is formed by a finite set of membership assertions on atomic concepts and on atomic roles,
of the form

A(a) P (a, b)

stating respectively that the object denoted by the constant a is an instance of A and that the pair of
objects denoted by the pair of constants (a, b) is an instance of the role P .

In this section, we will not consider membership assertions involving general concepts and roles.
However, it can be shown that, with respect to the forms of reasoning considered here, a membership
assertion C(a) can be simulated in DL-Litecore by adding A v C to the TBox, and A(a) to the ABox,
where A is a new atomic concept. Membership assertions of the form E(a, b), can be simulated with the
same mechanisms, in those extensions of DL-Litecore (see later) that allow for inclusion assertions on
roles.

The semantics of a DL is given in terms of interpretations, where an interpretation I = (∆I , ·I)
consists of a non-empty interpretation domain ∆I and an interpretation function ·I that assigns to each
concept C a subset CI of ∆I , and to each role R a binary relation RI over ∆I . In particular, for the
constructs of DL-Litecore we have:

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬B)I = ∆I \BI

(¬R)I = ∆I ×∆I \RI

An interpretation I is a model of an inclusion assertion CL v C, if CLI ⊆ CI . We extend the
notion of model also to inclusion assertions of more general forms with respect to the one allowed in DL-
Litecore . An interpretation I is a model of C1 v C2, where C1, C2 are general concepts, if CI1 ⊆ CI2 .
Similarly, I is a model of E1 v E2, where E1, E2 are general roles, if EI1 ⊆ EI2 .

To specify the semantics of membership assertions, we extend the interpretation function to con-
stants, by assigning to each constant a a distinct object aI ∈ ∆I . Note that this implies that we enforce
the unique name assumption on constants [8]. An interpretation I is a model of a membership assertion
A(a), (resp., P (a, b)) if aI ∈ AI (resp., (aI , bI) ∈ P I).

Given an (inclusion, or membership) assertion α, and an interpretation I, we denote by I |= α the
fact that I is a model of α. Given a (finite) set of assertions κ, we denote by I |= κ the fact that I is a
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model of every assertion in κ. A model of a KB K = 〈T ,A〉 is an interpretation I such that I |= T and
I |= A. With a little abuse of notation, we also write I |= K. A KB is satisfiable if it has at least one
model. A KB K logically implies an assertion α, written K |= α, if all models of K are also models of α.
Similarly, a TBox T logically implies an assertion α, written T |= α, if all models of T are also models
of α.

7.1.2 DL-LiteR and DL-LiteF

We now present two DLs that extend DL-Litecore , and that are the subject of our investigation in the
following sections.

The first DL that we consider is DL-LiteR, which extends DL-Litecore with the ability of specifying
inclusion assertions between roles of the form

R v E

where R and E are defined as above. The semantics of this kind of assertions has been already specified
in the previous subsection.

In fact, DL-LiteR might be enhanced with the capability of managing qualified existential quantifi-
cation on the right-hand side of inclusion assertions on concepts [35]. This construct, however, can be
simulated by suitably making use of inclusions between roles and unqualified existential quantification
of concepts in inclusions between concepts, and therefore we do not consider it explicitly.

The second extension of DL-Litecore we consider is called DL-LiteF , which extends DL-Litecore with
the ability of specifying functionality on roles or on their inverses. Assertions used to this aim are of the
form

(funct R)

where R is defined as above.
An interpretation I is a model of an assertion (funct R) if the binary relation RI is a function, i.e.,

(o, o1) ∈ RI and (o, o2) ∈ RI implies o1 = o2.
Despite the simplicity of the language and of the assertions allowed, the DLs in the DL-Lite family

are able to capture the main notions (though not all, obviously) of both ontologies and conceptual mod-
eling formalisms used in databases and software engineering (i.e., Entity-Relationship and UML class
diagrams). In particular, DL-Lite assertions allow us to specify:

• ISA, e.g., stating that concept A1 is subsumed by concept A2, using A1 v A2;

• disjointness, e.g., between concepts A1 and A2, using A1 v ¬A2;

• role-typing, e.g., stating that the first (resp., second) component of the relation P is an instance of
A1 (resp., A2), using ∃P v A1 (resp., ∃P− v A2);

• mandatory participation, e.g., stating that all instances of concept A participate to the relation P
as the first (resp., second) component, using A v ∃P (resp., A v ∃P−);

• mandatory non-participation, using A v ¬∃P or A v ¬∃P−;

• functionality restrictions on roles, using (funct P ) or (funct P−).

Notice that DL-LiteF is a strict subset of OWL21 (in fact of OWL Lite). Notice that, the latter includes
constructs (e.g., some kinds of role restrictions) and forms of inclusion assertions that are not expressible
in DL-Lite, and that make reasoning (already in OWL Lite) non-tractable in general.

21http://www.w3.org/TR/owl-features/
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Instead, DL-LiteR can be seen as an extension of (the DL-like part of) the ontology language RDFS22.
Indeed, DL-LiteR adds to RDFS the ability of expressing disjointness of concepts and roles, and manda-
tory participation and non-participation.

Example 33. Consider the atomic concepts Professor and Student , the roles TeachesTo and
HasTutor , and the following DL-Litecore TBox T :

Professor v ∃TeachesTo
Student v ∃HasTutor

∃TeachesTo− v Student
∃HasTutor− v Professor

Professor v ¬Student

Such a TBox states that professors do teach to students, that students have a tutor, which is also a
professor, and that no student is also a professor (and vice-versa).

Notice that in DL-LiteR we could add the assertion

HasTutor− v TeachesTo

stating that a tutor also teaches the student s/he is tutoring.
On the other hand, in DL-LiteF we could add the assertion

(funct HasTutor)

stating that everyone has at most one tutor.
Finally, we show a simple ABox A:

Student(John), HasTutor(John,Mary), TeachesTo(Mary,Bill).

We conclude this subsection with a brief discussion on the finite model property [8]. We remind
the reader that a DL enjoys the finite model property if every satisfiable KB expressed in this logic
admits a model with a finite domain. It is interesting to observe that, while DL-LiteR has the finite
model property [131], DL-LiteF does not, as the following example shows. Consider the DL-LiteF KB
K = 〈T ,A〉 with

T = { A v ∃P, ∃P− v A, (funct P−), B v ∃P B v ¬A }

and A = {B(a)}. It is easy to see that K admits only infinite models.

7.1.3 Queries

We start with a general notion of queries in first-order logic, and then we move to the definition of queries
over a DL KB.

A query is an open formula of first-order logic with equalities (FOL in the following). We denote a
(FOL) query q as follows

{ ~x | φ(~x) }
22http://www.w3.org/RDF/
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where φ(~x) is a FOL formula with free variables ~x. We call the size of ~x the arity of the query q. Given
an interpretation I, qI is the set of tuples of domain elements that, when assigned to the free variables,
make the formula φ true in I [1].

A boolean query is a query that does not involve any free variable (i.e., it is a closed formula). Given
a boolean query q = { | φ}, we may denote it simply by φ. Given an interpretation I, φI consists of the
only empty tuple, i.e., the tuple of arity 0, in the case in which φ is true in I, whereas φI is obviously
empty if φ is false in I.

Among the various queries, we are interested in conjunctive queries and union of conjunctive queries.
A conjunctive query (CQ) q is a query of the form

{ ~x | ∃~y.conj (~x, ~y) }

where conj (~x, ~y) is a conjunction of atoms and equalities, with free variables ~x and ~y. A union of
conjunctive queries (UCQ) q is a query of the form

{ ~x |
∨

i=1,...,n

∃~yi.conj i(~x, ~yi) }

where each conj i(~x, ~yi) is, as before, a conjunction of atoms and equalities with free variables ~x and ~yi.
Obviously, the class of union of conjunctive queries contains the class of conjunctive queries.

Sometimes, we use the standard datalog notation (see e.g., [1]) to denote conjunctive queries and
unions of conjunctive queries. Namely, a conjunctive query q = { ~x | ∃~y.conj (~x, ~y) } is denoted in
datalog notation as

q(~x′)conj ′(~x′, ~y′)

where conj′(~x′, ~y′) is the list of atoms in conj (~x, ~y) obtained after having equated the variables ~x, ~y
according to the equalities in conj (~x, ~y). As a result of such equality elimination, we have that ~x′ and ~y′

can actually contain constants and multiple occurrences of the same variable. We call q(~x′) the head of
q, and conj ′(~x′, ~y′) the body. Moreover, we call the variables in ~x′ the distinguished variables of q and
those in ~y′ the non-distinguished variables.

The datalog notation is then extended to unions of conjunctive queries as follows. A union of con-
junctive queries

q = { ~x |
∨

i=1,...,n

∃~yi.conj i(~x, ~yi) }

is denoted in datalog notation as
q = { q1, . . . , qn }

where each qi is the datalog expression corresponding to the conjunctive query qi =
{ ~x | ∃~yi.conj i(~x, ~yi) }.

With the general notion of query in place, we can now define queries over a DL KB. In particular, we
will concentrate on conjunctive queries and unions of conjunctive queries. A conjunctive query over a KB
K is a conjunctive query whose atoms are of the formA(z) or P (z1, z2), whereA and P are respectively
an atomic concept and an atomic role of K, and z, z1, z2 are either constants in K or variables. Similarly,
we define unions of conjunctive queries over a KB K.

Given a query q (either a conjunctive query or a union of conjunctive queries) and a KB K, the
answer to q over K is the set ans(q,K) of tuples ~a of constants appearing in K such that ~aM ∈ qM,
for every modelM of K. Notice that by definition ans(q,K) is finite since K is finite, and hence the
number of constants appearing in K is finite. Notice also that the tuple ~a can be the empty tuple in the
case in which q is a boolean conjunctive query. More precisely, in this case the set ans(q,K) consists of
the only empty tuple if and only if the formula q is true in every model of K.

Observe that, ifK is unsatisfiable, then ans(q,K) is trivially the set of all possible tuples of constants
in K whose arity is the one of the query. We denote such a set by AllTup(q,K).
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7.1.4 Reasoning Services

In studying the DL-Lite family, we are interested in several reasoning services. Obviously, we want to
take into account traditional DL reasoning services, and in particular, for both DL-LiteR and DL-LiteF
KBs, we consider the following problems:

• knowledge base satisfiability, i.e., given a KB K, verify whether K admits at least one model;

• logical implication of KB assertions, which consists of the following subproblems:

– instance checking, i.e., given a KB K, a concept C and a constant a (resp., a role E and a
pair of constants a and b), verify whether K |= C(a) (resp., K |= E(a, b));

– subsumption of concepts or roles, i.e., given a TBox T and two general concepts C1 and C2

(resp., two general roles E1 and E2), verify whether T |= C1 v C2 (resp., T |= E1 v E2).

– checking functionality, i.e., given a TBox T and a basic role R, verify whether T |=
(funct R).

In addition we are interested in:

• query answering, i.e., given a KB K and a query q (either a conjunctive query or a union of
conjunctive queries) over K, compute the set ans(q,K).

The following decision problem, called recognition problem, is associated to the query answering prob-
lem: given a KB K, a query q (either a conjunctive query or a union of conjunctive queries), and a tuple
of constants ~a of K, check whether ~a ∈ ans(q,K). When we talk about the computational complexity
of query answering, in fact we implicitly refer to the associated recognition problem.

In analyzing the computational complexity of a reasoning problem over a DL KB, we distinguish
between data complexity and combined complexity [148]: data complexity is the complexity with respect
to the size of the ABox only, while combined complexity is the complexity with respect to the size of all
inputs to the problem.

7.1.5 The Notion of FOL-Reducibility

We now introduce the notion of FOL-reducibility for both satisfiability and query answering, which will
be used in the sequel.

First, given an ABox A (of the kind considered above), we denote by db(A) = 〈∆db(A), ·db(A)〉 the
interpretation defined as follows:

• ∆db(A) is the non-empty set consisting of all constants occurring in A,

• adb(A) = a, for each constant a,

• Adb(A) = {a | A(a) ∈ A}, for each atomic concept A, and

• P db(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P .

Observe that the interpretation db(A) is a minimal model of the ABox A.
Intuitively, FOL-reducibility of satisfiability (resp., query answering) captures the property that we

can reduce satisfiability checking (resp., query answering) to evaluating a FOL query over the ABox A
considered as a relational database, i.e., over db(A). The definitions follow.

Definition 34. Satisfiability in a DL L is FOL-reducible, if for every TBox T expressed in L, there
exists a boolean FOL query q, over the alphabet of T , such that for every non-empty ABox A, 〈T ,A〉 is
satisfiable if and only if q evaluates to false in db(A). 4
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Definition 35. Query answering in a DL L for unions of conjunctive queries is FOL-reducible, if for
every union of conjunctive queries q and every TBox T expressed in L, there exists a FOL query q1,
over the alphabet of T , such that for every non-empty ABox A and every tuple of constants ~a occurring
in A, ~a ∈ ans(q, 〈T ,A〉) if and only if ~adb(A) ∈ qdb(A)

1 . 4

7.2 Techniques for DL Reasoning

In this section, we study traditional DL reasoning services for KBs expressed using the DL-Lite family. In
particular, we consider knowledge base satisfiability and logical implication, which means (concept/role)
instance checking, (concept/role) subsumption, and implication of functionality assertions. We show that
all such reasoning services are in PTIME w.r.t. combined complexity, and that instance checking and
satisfiability (which make use of the ABox) are FOL-reducible, and hence in LOGSPACE with respect to
data complexity. We start our investigation from KB satisfiability, and then we tackle logical implication.
In fact, logical implication can be basically reduced to KB satisfiability, and therefore we first give
algorithms for KB satisfiability and then we show how to reduce logical implication to such a service.
Finally, we provide the complexity results mentioned above.

Hereinafter, we call positive inclusions (PIs) assertions of the formB1 v B2 or of the formR1 v R2,
whereas we call negative inclusions (NIs) assertions of the form B1 v ¬B2 or R1 v ¬R2.

7.2.1 Knowledge Base Satisfiability

Our goal in this subsection is to show that knowledge base satisfiability is FOL-reducible. To this aim,
we resort to two main constructions, namely the canonical interpretation and the closure of the negative
inclusions. We present them in turn below.

Canonical Interpretation The canonical interpretation of a KB expressed either in DL-LiteR or in
DL-LiteF is an interpretation constructed according to the notion of chase [1]. In particular, we adapt
here the notion of restricted chase adopted by Johnson and Klug in [89].

We start by defining the notion of applicable positive inclusion assertions (PIs), and then we exploit
applicable PIs to construct the chase for DL-LiteR and DL-LiteF knowledge bases. Finally, with the
notion of chase in place, we give the definition of canonical interpretation.

In the following, as usual, we denote an atomic concept with the symbol A, possibly with subscript,
an atomic role with the symbol P , possibly with subscript, and a basic role with the symbol R, possibly
with subscript. Furthermore, for easyness of exposition, we make use of the function ga that takes as
input a basic role and two constants and returns a membership assertion, as specified below

ga(R, a, b) =

{
P (a, b), if R = P

P (b, a), if R = P−

Definition 36. Let S be a set of DL-LiteR or DL-LiteF membership assertions, and let Tp be a set of
DL-LiteR or DL-LiteF PIs. Then, a PI α ∈ Tp is applicable in S to a membership assertion f ∈ S if

• α = A1 v A2, f = A1(a), and A2(a) /∈ S;

• α = A v ∃R, f = A(a), and there does not exist any constant b such that ga(R, a, b) ∈ S;

• α = ∃R v A, f = ga(R, a, b), and A(a) /∈ S;

• α = ∃R1 v ∃R2, f = ga(R1, a, b), and there does not exist any constant c such that
ga(R2, a, c) ∈ S;
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• α = R1 v R2, f = ga(R1, a, b), and ga(R2, a, b) /∈ S.
4

Applicable PIs can be used, i.e., applied, in order to construct the chase of a KB. Roughly speaking,
the chase of a DL-LiteR or DL-LiteF KB K = 〈T ,A〉 is a (possibly infinite) set of membership asser-
tions, constructed step-by-step starting from the ABoxA. At each step of the construction, a PI α ∈ T is
applied to a membership assertion f belonging to the current set S of membership assertions. Applying
a PI means adding a new suitable membership assertion to S, thus obtaining a new set S ′ in which α
is not applicable to f anymore. For example, if α = A1 v A2 is applicable in S to f = A1(a), the
membership assertion to be added to S is A2(a), i.e., S ′ = S ∪A2(a). In some cases (i.e., α = A v ∃R
or α = ∃R1 v ∃R2), to achieve an analogous aim, the new membership assertion has to make use of a
new constant symbol that does not occur in S .

Notice that such a construction process strongly depends on the order in which we select both the PI
to be applied at each step and the membership assertion to which such a PI is applied, as well as on which
constants we introduce at each step. Therefore, a number of syntactically distinct sets of membership
assertions might result from this process. However, it is possible to show that the result is unique up to
renaming of constants occurring in each such a set. Since we want our construction process to come out
with a unique chase of a certain knowledge base, along the lines of [89], we assume in the following to
have a fixed infinite set of constants, whose symbols are ordered in lexicographic way, and we select PIs,
membership assertions and constant symbols in lexicographic order. More precisely, given a knowledge
base K = 〈T ,A〉, we denote with ΓA the set of all constant symbols occurring in A. Also, we assume
to have an infinite set ΓN of constant symbols not occurring in A, such that the set ΓC = ΓA ∪ ΓN is
totally ordered in lexicographic way. Then, our notion of chase is precisely given below.

Definition 37. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB, let Tp be the set of positive inclusion
assertions in T , let n be the number of membership assertions in A, and let ΓN be the set of constants
defined above. Assume that the membership assertions in A are numbered from 1 to n following their
lexicographic order, and consider the following definition

• S0 = A

• Sj+1 = Sj ∪{fnew}, where fnew is a membership assertion numbered with n+ j+ 1 in Sj+1 and
obtained as follows

let f be the first membership assertion in Sj such that
there exists a PI α ∈ Tp applicable in Sj to f

let α be the lexicographically first PI applicable in Sj to f
let anew be the constant of ΓN that follows lexicographically

all constants occurring in Sj
case α, f of

(cr1) α = A1 v A2, f = A1(a)
then fnew = A2(a)

(cr2) α = A v ∃R and f = A(a)
then fnew = ga(R, a, anew )

(cr3) α = ∃R v A and f = ga(R, a, b)
then fnew = A(a)

(cr4) α = ∃R1 v ∃R2 and f = ga(R1, a, b)
then fnew = ga(R2, a, anew )

(cr5) α = R1 v R2 and f = ga(R1, a, b)
then fnew = ga(R2, a, b).
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Then, we call chase of K, denoted chase(K), the set of membership assertions obtained as the infinite
union of all Sj , i.e.,

chase(K) =
⋃
j∈N
Sj .

4

In the above definition, cr1, cr2, cr3, cr4, and cr5 indicate the five rules that are used for constructing
the chase, each one corresponding to the application of a PI. Such rules are called chase rules, and we say
that a chase rule is applied to a membership assertion f if the corresponding PI is applied to f . Notice
that rules cr1, cr2, cr3, cr4 are applied in the construction of the chase of both DL-LiteR and DL-LiteF
KBs, whereas cr5 is meaningful only for DL-LiteR KBs, since PIs of the form R1 v R2 do not occur
in DL-LiteF KBs. Observe also that NIs and functionality assertions in K have no role in constructing
chase(K). Indeed chase(K) depends only on the ABox A and the PIs in T .

In the following, we will denote with chasei(K) the portion of the chase obtained after i applications
of the chase rules, selected according to the ordering established in Definition 37, i.e., chasei(K) =⋃
j∈{0,..,i} Sj = Si.

The following property shows that the notion of chase of a knowledge base is fair.

Proposition 38. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB, and let α be a PI in T . Then, if
there is an i ∈ N such that α is applicable in chasei(K) to a membership assertion f ∈ chasei(K), then
there is a j ≥ i such that chasej+1(K) = chasej(K) ∪ f ′, where f ′ is the result of applying α to f in
chasej(K).

With the notion of chase in place we can introduce the notion of canonical interpretation. We define
the canonical interpretation can(K) as the interpretation 〈∆can(K), ·can(K)〉, where:

• ∆can(K) = ΓC ,

• acan(K) = a, for each constant a occurring in chase(K),

• Acan(K) = {a | A(a) ∈ chase(K)}, for each atomic concept A, and

• P can(K) = {(a1, a2) | P (a1, a2) ∈ chase(K)}, for each atomic role P .

We also define cani(K) = 〈∆can(K), ·cani(K)〉, where ·cani(K) is analogous to ·can(K) but it refers to
chasei(K) instead of chase(K). According to the above definition, it is easy to see that can(K) (resp.,
cani(K)) is unique. Notice also that can0(K) is tightly related to the interpretation db(A). Indeed, while
∆db(A) ⊆ ∆can(K), we have that ·db(A) = ·can0(K).

Now, we are ready to show a notable property that holds for can(K).

Lemma 39. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB and let Tp be the set of positive inclusion
assertions in T . Then, can(K) is a model of 〈Tp,A〉.

Since 〈Tp,A〉 does not contain NIs, to prove the above Lemma it is sufficient to show that can(K)
satisfies all membership assertions in A and all PIs in Tp. The fact that can(K) satisfies all membership
assertions in A follows from the fact that A ⊆ chase(K), whereas to prove that can(K) |= Tp it is
possible proceed by contradiction considering all possible forms of PIs.

As a consequence of Lemma 39, every DL-LiteR or DL-LiteF KB K = 〈T ,A〉 with only positive
inclusions in the TBox, i.e., such that T = Tp, is always satisfiable, since we can always construct
can(K) which is a model for K. Now, one might ask if and how can(K) can be exploited for checking
the satisfiability of a KB with also negative inclusions and, for DL-LiteF KBs, functionality assertions.

As for functionality assertions, the following lemma shows that, to establish that they are satisfied by
can(K), we have to simply verify that the interpretation db(A) satisfies them (and vice-versa).
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Lemma 40. Let K = 〈T ,A〉 be a DL-LiteF KB, and let Tf be the set of functionality assertions in T .
Then, can(K) is a model of 〈Tf ,A〉 if and only if db(A) is a model of 〈Tf ,A〉.

The “only if direction” of the above Lemma is easy to prove, whereas for the “if direction” it is
possible to proceed by induction on the construction of chase(K).

NI-closure Let us now consider negative inclusions. In particular, we look for a property which is
analogous to Lemma 40 for the case of NIs. Notice that, in this case, even if db(A) satisfies the NIs
asserted in the KB K = 〈T , A〉, we have that can(K) may not satisfy K. For example, if T contains
the inclusion assertions A1 v A2 and A2 v ¬A3, and A contains the membership assertions A1(a) and
A3(a), it is easy to see that db(A) |= A2 v ¬A3, but can(K) 6|= A2 v ¬A3.

However, as suggested by the simple example above, we get that to find the property we are looking
for, we need to properly take into account the interaction between positive and negative inclusions. To
this aim we construct a special TBox by closing the NIs with respect to the PIs.

Definition 41. Let T be a DL-LiteR or a DL-LiteF TBox. We call NI-closure of T , denoted by cln(T ),
the TBox defined inductively as follows:

1. all negative inclusion assertions in T are also in cln(T );

2. all functionality assertions in T are also in cln(T );

3. if B1 v B2 is in T and B2 v ¬B3 or B3 v ¬B2 is in cln(T ), then also B1 v ¬B3 is in cln(T );

4. if R1 v R2 is in T and ∃R2 v ¬B or B v ¬∃R2 is in cln(T ), then also ∃R1 v ¬B is in cln(T );

5. if R1 v R2 is in T and ∃R−2 v ¬B or B v ¬∃R−2 is in cln(T ), then also ∃R−1 v ¬B is in
cln(T );

6. if R1 v R2 is in T and R2 v ¬R3 or R3 v ¬R2 is in cln(T ), then also R1 v ¬R3 is in cln(T ).

7. (a) in the case in which T is a DL-LiteF TBox, if one of the assertions ∃R v ¬∃R, or ∃R− v
¬∃R− is in cln(T ), then both such assertions are in cln(T );
(b) in the case in which T s a DL-LiteR TBox, if one of the assertions ∃R v ¬∃R, ∃R− v ¬∃R−,
or R v ¬R is in cln(T ), then all three such assertions are in cln(T ).

4

Notice that in the construction of the NI-closure of DL-LiteF TBoxes, we make use only of
Rules 1, 2, 3, and 7(a) whereas for DL-LiteR TBoxes, we make use only of Rules 1, 3, 4, 5, 6, and 7(b).

It is possible then to prove that, provided we have computed cln(T ), the analogous of Lemma 39
and Lemma 40 holds also for NIs.

Lemma 42. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB. Then, can(K) is a model of K if and
only if db(A) is a model of 〈cln(T ),A〉.

As for proving the “only if direction” of the above Lemma, we exploit the property that cln(T )
for DL-LiteR (resp. DL-LiteF ) KBs does not imply new negative inclusions (resp. negative inclusions
and functionality assertions) not implied by T . The “if direction” can be proved by induction on the
construction of the chase.

The following corollary is an interesting consequence of the lemma above.

Corollary 43. Let T be a DL-LiteR or a DL-LiteF TBox, and α a negative inclusion assertion or a
functionality assertion. We have that, if T |= α, then cln(T ) |= α.
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FOL-Reducibility Before providing the main theorems of this subsection, we need also the following
property, which asserts that to establish satisfiability of a knowledge base, we can resort to constructing
the canonical interpretation.

Lemma 44. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB. Then, can(K) is a model of K if and
only if K is satisfiable.

The “only if direction” is of the above lemma is trivial, whereas for the “if direction” we exploit
Lemma 42 and the property that cln(T ) for DL-LiteR (resp. DL-LiteF ) KBs does not imply new negative
inclusions (resp. negative inclusions and functionality assertions) not implied by T .

Notice that, the construction of can(K) is in general neither convenient nor possible, since can(K)
may be infinite. However, by simply combining Lemma 42 and Lemma 44, we obtain the notable result
that to check satisfiability of a knowledge base, it is sufficient (and necessary) to look at db(A) (provided
we have computed cln(T )). More precisely, the next theorem shows that a contradiction on a DL-LiteR
or a DL-LiteF KB may hold only if a membership assertion in the ABox contradicts a functionality
assertion or a NI implied by the closure cln(T ).

Theorem 45. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB. Then, K is satisfiable if and only if
db(A) is a model of 〈cln(T ),A〉.

At this point, it is not difficult to show that verifying if db(A) is a model of 〈cln(T ),A〉 can be
done by simply evaluating a suitable boolean FOL query over db(A) itself. In particular we define a
translation function δ from assertions in cln(T ) to FOL formulas, as follows:

δ((funct P )) = ∃x, y, z.P (x, y) ∧ P (x, z) ∧ y 6= z

δ((funct P−)) = ∃x, y, z.P (x, y) ∧ P (z, y) ∧ x 6= z

δ(B1 v ¬B2) = ∃x.γ1(x) ∧ γ2(x)
δ(R1 v ¬R2) = ∃x, y.ρ1(x, y) ∧ ρ2(x, y)

where in the last equations γi(x) = Ai(x) if Bi = Ai, γi(x) = ∃yi.Pi(x, yi) if Bi = ∃Pi, and γi(x) =
∃yi.Pi(yi, x) if Bi = ∃P−i ; and ρi(x, y) = Pi(x, y) if Ri = Pi, and ρi(x, y) = Pi(y, x) if Ri = P−i .

The algorithm Consistent, described in Figure 9, takes as input a DL-LiteR or a DL-LiteF KB,
computes db(A) and cln(T ), and evaluates over db(A) the boolean FOL query obtained by taking
the union of all FOL formulas returned by the application of the above function δ to every assertion
in cln(T )23. In the algorithm, the symbol ⊥ indicates a predicate whose evaluation is false in every
interpretation. Therefore, in the case in which neither functionality assertions nor negative inclusion
assertions occur in K, qdb(A)

unsat = ⊥db(A), and therefore Consistent(K) returns true .

Lemma 46. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB. Then, the algorithm Consistent(K)
terminates, and K is satisfiable if and only if Consistent(K) = true .

Proof. Since cln(T ) is a finite set of membership and functionality assertions, the algorithm terminates.
By Theorem 45, we have that db(A) is a model of all assertions in cln(T ) if and only if K is satisfiable.
The query qunsat verifies whether there exists an assertion α that is violated in db(A), by expressing its
negation as a FOL formula δ(α) and evaluating it in db(A). o

As a direct consequence of Lemma 46, we get:

Theorem 47. Knowledge base satisfiability in DL-LiteR and DL-LiteF is FOL-reducible.

23A first version of the algorithm Consistent, limited to checking satisfiability of only DL-LiteF KBs, has been already
presented in [6].
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Algorithm Consistent(K)
Input: DL-Lite knowledge base K = 〈T ,A〉
Output: true if K is satisfiable, false otherwise
begin
qunsat = ⊥;
for each α ∈ cln(T ) do
qunsat = qunsat ∨ δ(α);

if qdb(A)
unsat = ∅ return true;

else return false;
end

Figure 9: The algorithm Consistent

Example 48. We now check satisfiability of the DL-Litecore KB K = 〈T ,A〉 in Example 33. To this aim,
we first compute cln(T ), which is as follows:

Professor v ¬Student
∃TeachesTo− v ¬Professor
∃HasTutor− v ¬Student .

Next, we apply the translation function δ to each NI above, getting:

δ(Professor v ¬Student) = ∃x.Professor(x) ∧ Student(x)
δ(∃TeachesTo− v ¬Professor) = ∃x.(∃y.TeachesTo(y, x)) ∧ Professor(x)
δ(∃HasTutor− v ¬Student) = ∃x.(∃y.HasTutor(y, x)) ∧ Student(x).

The union of such queries is qunsat , which evaluated over db(A) returns false, thus showing satisfiability
of K.

As a further example, consider now the DL-LiteR TBox T ′ obtained from T by adding the inclusion
assertion HasTutor− v TeachesTo. In this case cln(T ′) includes cln(T ) plus the following NIs:

∃HasTutor v ¬Professor
∃TeachesTo v ¬Student .

So q′unsat includes the disjuncts of qunsat plus the following:

δ(∃HasTutor v ¬Professor) = ∃x.(∃y.HasTutor(x, y)) ∧ Professor(x)
δ(∃TeachesTo v ¬Student) = ∃x.(∃y.TeachesTo(x, y)) ∧ Student(x).

Since (q′unsat)
db(A) is false, we conclude that K′ = 〈T ′,A〉 is satisfiable.

Finally, if we instead add the functionality assertion (funct HasTutor) to T , we obtain a DL-LiteF
TBox T ′′, whose NI-closure cln(T ′′) includes cln(T ) plus (funct HasTutor).

In this case, q′′unsat includes the disjuncts of qunsat plus:

δ((funct HasTutor)) = ∃x, y, z.HasTutor(x, y) ∧HasTutor(x, z) ∧ y 6= z.

Again, (q′′unsat)
db(A) is false, and hence also K′′ = 〈T ′′,A〉 is satisfiable.
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7.2.2 Logical Implication

We start by showing that both instance checking and subsumption can be reduced to knowledge base
satisfiability. We first consider the problem of instance checking for concept expressions, and provide a
suitable reduction from this problem to knowledge base satisfiability.

Theorem 49. Let K be either a DL-LiteR or a DL-LiteF KB, C a general concept, d a constant appear-
ing in K, and A an atomic concept not appearing in K. Then K |= C(d) if and only if the KB

KC(d) = 〈K ∪ {A v ¬C}, {A(d)}〉

is unsatisfiable.

The analogous of the above theorem holds for the problem of instance checking for role expressions.
We first consider DL-LiteR KBs.

Theorem 50. Let K be a DL-LiteR KB, E a general role, a and b two constants appearing in K, and P
an atomic role not appearing in K. Then K |= E(a, b) if and only if the KB

KE(a,b) = 〈K ∪ {P v ¬E}, {P (a, b)}〉

is unsatisfiable.

Also, for DL-LiteF KBs we provide the following theorem.

Theorem 51. Let K = 〈T ,A〉 be a DL-LiteF KB, R a basic role, and a and b two constants appearing
in K. Then

• K |= R(a, b) if and only if either K is unsatisfiable, or ga(R, a, b) ∈ A.

• K |= ¬R(a, b) if and only if 〈T ,A ∪ {ga(R, a, b)}〉 is unsatisfiable.

In the above theorem, the second item and the “if” direction of the first item are obvious. As for the
“only-if” direction of the first item, it can be easily reached the contradiction that both can(K) 6|= R(a, b)
and can(K) |= R(a, b) starting from the (wrong) assumption that K |= R(a, b) but K is satisfiable and
ga(R, a, b) 6∈ A.

We now address the subsumption problem and provide different reductions of this problem to the
problem of knowledge base satisfiability. The case of subsumption between concepts is dealt with by
the following theorem, and the case of subsumption between roles, is considered in the two subsequent
theorems.

Theorem 52. Let T be either a DL-LiteR or a DL-LiteF TBox, C1 and C2 two general concepts, A an
atomic concept not appearing in T , and d a constant. Then, T |= C1 v C2 if and only if the KB

KC1vC2 = 〈T ∪ {A v C1, A v ¬C2}, {A(d)}〉,

is unsatisfiable.

Theorem 53. Let T be a DL-LiteR TBox, E1 and E2 two general roles, P an atomic role not appearing
in T , and a, b two constants. Then, T |= E1 v E2 if and only if the KB

KE1vE2 = 〈T ∪ {P v E1, P v ¬E2}, {P (a, b)}〉

is unsatisfiable.
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Theorem 54. Let T be a DL-LiteF TBox,R1 andR2 two basic roles,A an atomic concept not appearing
in T , and d a constant. Then,

1. T |= R1 v R2 or T |= ¬R1 v ¬R2 if and only if (a) R1 = R2, or (b) the KB

K∃R1v¬∃R1 = 〈T ∪ {A v ∃R1}, {A(d)}〉

is unsatisfiable, or (c) the KB

K∃R−1 v¬∃R−1 = 〈T ∪ {A v ∃R−1 }, {A(d)}〉

is unsatisfiable;

2. T |= ¬R1 v R2 if and only if T is unsatisfiable.

3. T |= R1 v ¬R2 if and only if either (a) the KB

K∃R1v¬∃R2 = 〈T ∪ {A v ∃R1, A v ∃R2}, {A(d)}〉

is unsatisfiable, or (b) the KB

K−∃R1v¬∃R2
= 〈T ∪ {A v ∃R−1 , A v ∃R

−
2 }, {A(d)}〉,

is unsatisfiable.

Notice that, according to item 1 of the above theorem, a DL-LiteF TBox T implies a subsumption
R1 v R2 if and only if R1 = R2 or either the subsumption ∃R1 v ¬∃R1 or the subsumption ∃R−1 v
¬∃R−1 is implied by T . Similarly for item 3, whereas, according to item 2, a DL-LiteF TBOX T implies
a subsumption of the form ¬R1 v R2 if and only if T is unsatisfiable.

The following theorem characterizes logical implication of a functionality assertion in DL-LiteR and
DL-LiteF , in terms of subsumption between roles.

Theorem 55. Let T be a DL-LiteR or a DL-LiteF TBox and R a basic role. Then, T |= (funct R) if
and only if either (funct R) ∈ T (in the case where T is a DL-LiteF KB), or T |= R v ¬R.

Notice that the role inclusion assertion we are using in Theorem 55 is of the form T |= R v
¬R, and thus expresses the fact that role R has an empty extension in every model of T . Also, by
Theorems 53 and 54, logical implication of role inclusion assertions can in turn be reduced to knowledge
base satisfiability.

7.2.3 Computational Complexity

From the results in the previous subsections we can establish the computational complexity characteri-
zation for the classical DL reasoning problems for DL-LiteR and DL-LiteF .

Theorem 56. In DL-LiteR and DL-LiteF , knowledge base satisfiability is LOGSPACE in the size of the
ABox (data complexity) and PTIME in the size of the whole knowledge base (combined complexity).

Proof. First, LOGSPACE data complexity follows directly from FOL-reducibility, since evaluating FOL
queries/formulas over a model is LOGSPACE in the size of the model [148]. As for the combined com-
plexity, we have that cln(T ) is polynomially related to the size of the TBox T and hence qunsat defined
above is formed by a number of disjuncts that is polynomial in T . Each disjunct can be evaluated sepa-
rately and contains either 2 or 3 variables. Now, each disjunct can be evaluated by checking the formula
under each of the n3 possible assignments, where n is the size of the domain of db(A) [148]. Finally,
once an assignment is fixed the evaluation of the formula can be done in LOGSPACE [148]. As a result,
we get the PTIME bound. o
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Taking into account the reductions in Theorems 49, 50, 51, 52, 53, 54, and 55, as a consequence of
Lemma 46, we get the following results.

Theorem 57. In DL-LiteR and DL-LiteF , (concept/role) subsumption and logical implication of func-
tionality assertions are both PTIME in the size of the TBox, while (concept/role) instance checking is
LOGSPACE in the size of the ABox and PTIME in the size of the whole knowledge base.

7.3 Query Answering: Preliminary Properties

In this subsection we start studying query answering in DL-LiteR and DL-LiteF , and establish some
preliminary properties which will be used in the next subsection.

First, we recall that, in the case where K is an unsatisfiable KB, the answer to a union of conjunctive
queries Q is defined as the finite set of tuples AllTup(Q,K). Therefore, in the following we focus on the
case where K is satisfiable.

Then, let K = 〈T ,A〉 be a satisfiable DL-LiteR or DL-LiteF KB, it is possible to show, by induction
on the construction of chase(K), that, for every modelM of K, there is a homomorphism from can(K)
toM that maps the objects in the extension of concepts and roles in can(K) to objects in the extension
of concepts and roles inM.

Based on the above property, we now prove that the canonical model can(K) of a satisfiable KB K
is able to represent all models of K with respect to unions of conjunctive queries.

Theorem 58. Let K be a satisfiable DL-LiteF or DL-LiteR KB, and let Q be a union of conjunctive
queries over K. Then, ans(Q,K) = Qcan(K).

The above property shows that the canonical model can(K) is a correct representative of all the
models of a DL-LiteR (or DL-LiteF ) KB with respect to the problem of answering unions of conjunctive
queries. In other words, for every union of conjunctive queries Q, the answers to Q over K correspond
to the evaluation of Q in can(K).

In fact, this property holds for all positive FOL queries, but not in general. Consider for example the
DL-Litecore KB K = 〈∅, {A1(d)}〉, and the FOL boolean query q = { | ∃x.A1(x) ∧ ¬A2(x)}. We have
that chase(K) = {A1(d)}, and therefore q is true in can(K), but the answer to q over K is false, since
there exists a model M for K such that q is false in M. Assume, for instance, that M has the same
interpretation domain as can(K), and that aM = a, AM1 = {a}, and AM2 = {a}. It is easy to see that
M is a model for K and q is false inM.

We point out that the canonical interpretation is in general infinite, consequently it cannot be effec-
tively computed in order to solve the query answering problem in DL-LiteF or DL-LiteR.

Now, given the limited expressive power of DL-LiteR and DL-LiteF TBoxes, it might seem that, in
order to answer a query over a KB K, we could simply build a finite interpretation IK that allows for
reducing answering every union of conjunctive queries (or even every single conjunctive query) over K
to evaluating the query in IK. The following theorem shows that this is not the case.

Theorem 59. There exists a DL-Litecore KB K for which no finite interpretation IK exists such that, for
every conjunctive query q over K, ans(q,K) = qIK .

Proof. Let K be the DL-Litecore KB whose TBox consists of the cyclic concept inclusion ∃P− v ∃P
and whose ABox consists of the assertion P (a, b).

Let IK be a finite interpretation. There are two possible cases:

1. There is no cycle on the relation P in IK, i.e., the maximum path on the relation P IK has a finite
length n. In this case, consider the boolean conjunctive query qP (x1, x2), . . . , P (xn, xn+1) that
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represents the existence of a path of length n + 1 in P . It is immediate to verify that the query
q is false in IK, i.e., qIK = ∅, while the answer to q over K is true, i.e., ans(q,K) 6= ∅ (indeed
ans(q,K) consists of the empty tuple). This last property can be easily seen by noticing that
qcan(K) is true.

2. IK satisfies the TBox cycle, so it has a finite cycle. More precisely, let us assume that IK is such
that (o1, o2) ∈ P IK , (o2, o3) ∈ P IK , . . . , (on, o1) ∈ P IK . In this case, consider the boolean con-
junctive query qP (x1, x2), . . . , P (xn, x1). It is immediate to verify that such a query is true in IK,
while the answer to q over K is false. This last property can be easily seen by noticing that qcan(K)

is false, since chase(K) does not contain a set of facts P (a1, a2), P (a2, a3), . . . , P (an, a1), for
any n, and therefore in can(K) there does not exist any cycle on the relation P .

Consequently, in both cases ans(q,K) 6= qIK . o

The above property demonstrates that answering queries in DL-Litecore , and hence both in DL-LiteR
and in DL-LiteF , goes beyond both propositional logic and relational databases.

Finally, we prove a property that relates answering unions of conjunctive queries to answering con-
junctive queries.

Theorem 60. LetK be either a DL-LiteR or a DL-LiteF KB, and letQ be a union of conjunctive queries
over K. Then, ans(Q,K) =

⋃
qi∈Q

ans(qi,K).

Informally, the above property states that the set of answers to a union of conjunctive queries Q in
DL-LiteR and DL-LiteF corresponds to the union of the answers to the various conjunctive queries in Q.

7.4 Query Answering in DL-LiteR
In this subsection we discuss query answering in DL-LiteR. More precisely, based on the properties
shown in the previous subsection, we define an algorithm for answering unions of conjunctive queries in
DL-LiteR, and analyze its computational complexity.

In a nutshell, our query answering method strongly separates the intensional and the extensional level
of the DL-LiteR KB: the query is first processed and reformulated based on the TBox axioms; then, the
TBox is discarded and the reformulated query is evaluated over the ABox, as if the ABox were a simple
relational database (cf. subsection 7.1.5). More precisely, given a query q over K = 〈T ,A〉, we compile
the assertions of T (in fact, the PIs in T ) into the query itself, thus obtaining a new query q′. Such a new
query q′ is then evaluated over db(A), thus essentially reducing query answering to query evaluation
over a database instance. Since the size of q′ does not depend on the ABox, the data complexity of the
whole query answering algorithm is the same as the data complexity of evaluating q′. We show that, in
the case where q is a conjunctive query, the query q′ is a union of conjunctive queries. Hence, the data
complexity of the whole query answering algorithm is polynomial.

In the following, we first define an algorithm for the reformulation of conjunctive queries. Then, we
describe a technique for answering unions of conjunctive queries in DL-LiteR and we prove correctness
of such a technique. Finally, we analyze the computational complexity of query answering over DL-
LiteR KBs.

7.4.1 Query Reformulation

We start our presentation by giving some preliminary definitions.
We say that an argument of an atom in a query is bound if it corresponds to either a distinguished

variable or a shared variable, i.e., a variable occurring at least twice in the query body, or a constant.
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Instead, an argument of an atom in a query is unbound if it corresponds to a non-distinguished non-
shared variable. As usual, we use the symbol ‘ ’ to represent non-distinguished non-shared variables.

A PI I is applicable to an atom A(x), if I has A in its right-hand side.
A PI I is applicable to an atom P (x1, x2), if: (i) x2 = and the right-hand side of I is ∃P ; or

(ii) x1 = and the right-hand side of I is ∃P−; or (iii) I is a role inclusion assertion and its right-hand
side is either P or P−. Roughly speaking, an inclusion I is applicable to an atom g if the predicate of
g is equal to the predicate in the right-hand side of I and, in the case when I is an inclusion assertion
between concepts, if g has at most one bound argument and corresponds to the object that is implicitly
referred to by the inclusion I .

We indicate with gr(g, I) the atom obtained from the atom g by applying the applicable inclusion I .
Formally:

Definition 61. Let I be an inclusion assertion that is applicable to the atom g. Then, gr(g, I) is the atom
defined as follows:

• if g = A(x) and I = A1 v A, then gr(g, I) = A1(x);
• if g = A(x) and I = ∃P v A, then gr(g, I) = P (x, );
• if g = A(x) and I = ∃P− v A, then gr(g, I) = P ( , x);
• if g = P (x, ) and I = A v ∃P , then gr(g, I) = A(x);
• if g = P (x, ) and I = ∃P1 v ∃P , then gr(g, I) = P1(x, );
• if g = P (x, ) and I = ∃P−1 v ∃P , then gr(g, I) = P1( , x);
• if g = P ( , x) and I = A v ∃P−, then gr(g, I) = A(x);
• if g = P ( , x) and I = ∃P1 v ∃P−, then gr(g, I) = P1(x, );
• if g = P ( , x) and I = ∃P−1 v ∃P−, then gr(g, I) = P1( , x);
• if g = P (x1, x2) and either I = P1 v P or I = P−1 v P−, then gr(g, I) = P1(x1, x2);
• if g = P (x1, x2) and either I = P1 v P− or P−1 v P , then gr(g, I) = P1(x2, x1).

4

In Figure 10, we provide the algorithm PerfectRef, which reformulates a conjunctive query taking
into account the PIs of a TBox T .

In the algorithm, q[g/g′] denotes the conjunctive query obtained from q by replacing the atom g with
a new atom g′. Furthermore, τ is a function that takes as input a conjunctive query q and returns a new
conjunctive query obtained by replacing each occurrence of an unbound variable in q with the symbol .
Finally, reduce is a function that takes as input a conjunctive query q and two atoms g1 and g2 occurring
in the body of q, and returns a conjunctive query q′ obtained by applying to q the most general unifier
between g1 and g2. We point out that, in unifying g1 and g2, each occurrence of the symbol has to
be considered a different unbound variable. The most general unifier substitutes each symbol in g1

with the corresponding argument in g2, and vice-versa (obviously, if both arguments are , the resulting
argument is ).

Informally, the algorithm first reformulates the atoms of each conjunctive query q ∈ PR′, and pro-
duces a new query for each atom reformulation (step (a)). Roughly speaking, PIs are used as rewriting
rules, applied from right to left, which allow one to compile away in the reformulation the intensional
knowledge (represented by T ) that is relevant for answering q. At step (b), for each pair of atoms
g1, g2 that unify and occur in the body of a query q, the algorithm computes the conjunctive query
q′ = reduce(q, g1, g2). Thanks to the unification performed by reduce, variables that are bound in q may
become unbound in q′. Hence, PIs that were not applicable to atoms of q, may become applicable to
atoms of q′ (in the next executions of step (a)). Notice that the use of τ is necessary in order to guarantee
that each unbound variable is represented by the symbol .
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Algorithm PerfectRef (q, T )
Input: conjunctive query q, TBox T
Output: union of conjunctive queries PR
PR := {q};
repeat

PR′ := PR;
for each q ∈ PR′ do
(a) for each g in q do

for each PI I in T do
if I is applicable to g
then PR := PR ∪ { q[g/gr(g, I)] }

(b) for each g1, g2 in q do
if g1 and g2 unify
then PR := PR ∪ {τ(reduce(q, g1, g2))};

until PR′ = PR;
return PR

Figure 10: The algorithm PerfectRef

Example 62. Consider the query

q(x)TeachesTo(x, y),TeachesTo( , y)

over the TBox of Example 33. In such a query, the atoms TeachesTo(x, y) and TeachesTo( , y) unify,
and by executing reduce(q,TeachesTo(x, y),TeachesTo( , y)), we obtain the atom TeachesTo(x, y).
The variable y is unbound, and therefore the function τ replaces it with . Now, the PI Professor v
∃TeachesTo can be applied to TeachesTo(x, ), whereas, before the reduction process, it could not be
applied to any atom of the query.

It is not difficult to show that the algorithm PerfectRef terminates, when applied to a conjunctive
query and a DL-LiteR TBox.

In the following we give a couple of examples of application of the algorithm PerfectRef.

Example 63. Referring to the DL-Litecore TBox T in Example 33, consider the conjunctive query q:

q(x)TeachesTo(x, y),HasTutor(y, )

asking for professors that teach to students that have a tutor.
Let us analyze the execution of the algorithm PerfectRef(q, T ). At the first execution of step (a), the

algorithm inserts in PR the new query

q(x)TeachesTo(x, y),Student(y)

by applying to the atom HasTutor(y, ) the PI Student v ∃HasTutor . Then, at a second execution of
step (a), the query

q(x)TeachesTo(x, y),TeachesTo( , y)

is added to PR, according to application of the PI ∃TeachesTo− v Student to the atom Student(y).
Since the two atoms of the second query unify, step (b) of the algorithm inserts the query

q(x)TeachesTo(x, )
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Algorithm Answer(Q,K)
Input: UCQ Q, KB K = 〈T ,A〉
Output: ans(Q,K)
if not Consistent(K)
then return AllTup(Q,K)
else return (

⋃
qi∈Q

PerfectRef(qi, T ))db(A);

Figure 11: The algorithm Answer

into PR. Notice that the variable y is unbound in the new query, hence it has been replaced by the
symbol . At a next iteration, step (a) produces the query

q(x)Professor(x)

by applying Professor v ∃TeachesTo to TeachesTo(x, ), and then, at a further execution of step (a),
it generates the query

q(x)HasTutor( , x)

by applying ∃HasTutor− v Professor to Professor(x). The set constituted by the above five queries
and the original query q is then returned by the algorithm.

Example 64. As a further example, consider now the DL-LiteR TBox T ′ obtained from T by adding the
inclusion assertion HasTutor− v TeachesTo, and the conjunctive query q′ defined as follows:

q′(x)Student(x)

Then, the result of PerfectRef(q′, T ′) is the union of:

q′(x)Student(x)
q′(x)TeachesTo( , x)
q′(x)HasTutor(x, )

Notice that, without considering the new inclusion assertion between roles, we would have obtained only
the union of the first two conjunctive queries as result of the algorithm PerfectRef(q′, T ).

We note that the union of conjunctive queries produced by PerfectRef is not necessarily minimal,
i.e., it may contain pairs of conjunctive queries that are one contained into the other. Though this does
not affect the worst-case computational complexity, for practical purposes this set of queries can be
simplified, using well-known minimization techniques for relational queries.

7.4.2 Query Evaluation

In order to compute the answers to q over the KBK = 〈T ,A〉, we need to evaluate the set of conjunctive
queries PR produced by the algorithm PerfectRef over the ABoxA considered as a relational database.

In Figure 11, we define the algorithm Answer that, given a KB K and a union of conjunctive queries
Q of arity n, computes ans(Q,K).

The following theorem easily follows from termination of both the algorithm Consistent and the
algorithm PerfectRef.

Theorem 65. Let K = 〈T ,A〉 be a DL-LiteR KB, let Q be a union of conjunctive queries. Then, the
algorithm Answer(Q,K) terminates.
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Example 66. Let us consider again the query of Example 63

q(x)TeachesTo(x, y),HasTutor(y, )

expressed over the KB K = 〈T ,A〉, where A contains the assertions:

Student(John), HasTutor(John,Mary), TeachesTo(Mary,Bill).

By executing Answer(q,K), since K is satisfiable (see Section 7.2), it executes PerfectRef(q, T ), which
returns the union of conjunctive queries described in Example 63. Let Q be such a query, then it is easy
to see that Qdb(A) is the set {Mary}.

Let us now consider the query
q′(x)Student(x),

expressed over the KB K′ = 〈T ′,A′〉, where T ′ is as in Example 64, and A′ contains the assertions

HasTutor(John,Mary), TeachesTo(Mary,Bill).

Obviously, K′ is satisfiable, and by executing Answer(q′,K′) we obtain the answer set {John,Bill} by
the evaluation of the union of conjunctive queries returned by PerfectRef(q′, T ′), and which we have
described in Example 64. Notice that, without considering the new inclusion assertion between roles, we
would have obtained only {Bill} as answer to the query.

7.4.3 Correctness

We now prove correctness of the above described query answering technique. As discussed in the previ-
ous subsection, from Theorem 58 it follows that query answering can in principle be done by evaluating
the query over the model can(K). However, since can(K) is in general infinite, we obviously avoid the
construction of can(K). Rather, as we said before, we are able to compile the TBox into the query, thus
simulating the evaluation of the query over can(K) by evaluating a finite reformulation of the query over
the ABox considered as a database.

By induction on the construction of the chase, and by induction on application of rules of the algo-
rithm PerfectRef it is possible to show that given a DL-LiteR TBox T and a conjunctive query q over
T , then for every DL-LiteR ABox A such that 〈T ,A〉 is satisfiable, we have that ans(q, 〈T ,A〉) =
PRdb(A), where PR is the union of conjunctive queries returned by PerfectRef(q, T ).

Based on the above property, we are finally able to establish correctness of the algorithm Answer.

Theorem 67. Let K = 〈T ,A〉 be a DL-LiteR KB, Q a union of conjunctive queries, and ~t a tuple of
constants in K. Then, ~t ∈ ans(Q,K) if and only if ~t ∈ Answer(Q,K).

proof (sketch) In the case where K = 〈T ,A〉 is satisfiable, the proof follows immediately from the
property that ans(q, 〈T ,A〉) = PRdb(A) and from Theorem 60. In the case where K is not satisfiable, it
is immediate to verify that the set AllTup(Q,K) returned by Answer(Q,K) corresponds to ans(Q,K),
according to the semantics of queries given in Section 7.1.

As an immediate corollary of the above properties, it follows that the problem of answering unions
of conjunctive queries over satisfiable DL-LiteR KBs is FOL-reducible. Moreover, it is easy to see that
such a FOL-reducibility also extends to the case of arbitrary (both satisfiable and unsatisfiable) DL-LiteR
KBs. Indeed, the whole query answering task can be encoded into a single union of conjunctive queries,
obtained by adding to the query

⋃
qi∈Q PerfectRef(qi, T )) a finite number of conjunctions encoding the

fact that every tuple in AllTup(Q,K) is in the answer set of the query if K is unsatisfiable. (For details
on the construction of such a query see e.g. [28], which defines an analogous encoding in the context of
relational database integrity constraints.) We therefore get the following theorem.

Theorem 68. Answering unions of conjunctive queries in DL-LiteR is FOL-reducible.
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7.4.4 Computational Complexity

We first notice that, for a given DL-LiteR TBox T , and conjunctive query q over T , the algorithm
PerfectRef (q, T ) runs in time polynomial in the size of T .

Based on the above property, we are able to establish the complexity of answering unions of con-
junctive queries in DL-LiteR.

Theorem 69. Answering unions of conjunctive queries in DL-LiteR is PTIME in the size of the TBox,
and LOGSPACE in the size of the ABox (data complexity).

proof (sketch) In the proof we make use of the results provided by Theorem 67 and Theorem 56, of the
polynomial time complexity of the algorithm PerfectRef, and of the fact that the evaluation of a union
of conjunctive queries over a database can be computed in LOGSPACE with respect to the size of the
database (since unions of conjunctive queries are a subclass of FOL queries).

We are also able to characterize the combined complexity (i.e., the complexity w.r.t. the size of K
and Q) of answering unions of conjunctive queries in DL-LiteR.

Theorem 70. Answering unions of conjunctive queries in DL-LiteR is NP-complete in combined com-
plexity.

Proof. To prove membership in NP, observe that a version of the algorithm PerfectRef that nonde-
terministically returns only one of the conjunctive queries belonging to the reformulation of the input
query, runs in nondeterministic polynomial time in combined complexity, since every query returned
by PerfectRef can be generated after a polynomial number of transformations of the initial conjunctive
query (i.e., after a polynomial number of executions of steps (a) and (b) of the algorithm). This allows the
corresponding nondeterministic version of the algorithm Answer to run in nondeterministic polynomial
time when the input is a boolean query. NP-hardness follows from NP-hardness of conjunctive query
evaluation over relational databases. o

Summarizing, the above results show a very nice computational behavior of queries in DL-LiteR:
reasoning in DL-LiteR is computationally no worse than standard conjunctive query answering (and
containment) in relational databases.

7.5 Query Answering in DL-LiteF
In this subsection, we discuss query answering in DL-LiteF , and analyze its computational complexity.
In a nutshell, the technique for query answering closely resembles that for DL-LiteR, hence, it is also
based on reformulating the query based on the TBox assertions. The differences with respect to the case
of DL-LiteR are the following. (i) On the one hand, the PIs that can appear in a DL-LiteF TBox are just a
subset of those allowed for a DL-LiteR TBox, namely inclusions of a basic concept in a concept, but no
role inclusions. As a consequence, the reformulation rules that can be applied to the atoms of the query
are just a subset of those for DL-LiteR in Definition 61. (ii) On the other hand, a DL-LiteF TBox may
contain functionality assertions, which may interact with the inclusion assertions in the TBox. However,
this interaction is only of a limited form. Indeed, as already shown in Lemma 40, if a functionality
assertion (funct R) is satisfied in the interpretation db(A) corresponding to the ABoxA of a KBK, then
(funct R) is also satisfied in the canonical interpretation can(K). Hence, (the simplified form of) the
reformulation technique of DL-LiteR can also be applied to DL-LiteF query answering, provided that we
take into account also functionality assertions when we check satisfiability of the knowledge base. We
now show this formally.

Given a DL-LiteF KBK = 〈T ,A〉 and a conjunctive query q, the reformulation PR of q is computed,
just as for DL-LiteR, by the algorithm PerfectRef, considering that inclusion assertions between roles
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are not present in T , and hence the rules in Definition 61 for such inclusions assertions will never be
applied.

Similarly, in order to compute the answer ans(Q,K) to the union of conjunctive queries Q over a
DL-LiteF KB K, we can simply invoke Answer on Q and K, noticing that now the satisfiability check
takes into account also functionality assertions in K. It is easy to see that also in the case when K is a
DL-LiteF KB the algorithm Answer(Q,K) terminates (cf. Theorem 65).

The following theorem, which follows easily from the already proved results, establishes that this
way of proceeding is indeed correct.

Theorem 71. Let K = 〈T ,A〉 be a DL-LiteF KB, Q a union of conjunctive queries, and ~t a tuple of
constants in K. Then, ~t ∈ ans(Q,K) if and only if ~t ∈ Answer(Q,K).

As an immediate consequence of the theorem above, we get the following property, which is the
analogous of Theorem 68, given for DL-LiteR.

Theorem 72. Answering unions of conjunctive queries in DL-LiteF is FOL-reducible.

As for computational complexity we get the same bounds as those shown in Section 7.4.

Theorem 73. Answering unions of conjunctive queries in DL-LiteF is PTIME in the size of the TBox,
LOGSPACE in the size of the ABox (data complexity), and NP-complete in combined complexity.
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8 Updating Description Logic ABoxes

8.1 Introduction

Description logic ABoxes have the purpose to describe a snapshot of the world. For example, the follow-
ing ABox, which is formulated in ALC, says that John is a parent with only happy children, that Peter is
his child, and that Mary is a person:

john:Person u ∃has-child.Personu

∀has-child.(Person u Happy)

has-child(john, peter)

mary:Person

In many applications of DLs, an ABox is used to represent the current state of affairs in the application
domain [8]. In such applications, it is necessary to update the ABox in the case that the state has changed.
Such an update should incorporate the information about the new state while retaining all knowledge that
is not affected by the change (as demanded by the principle of inertia, see e.g. [114]). For example, if
Mary is now unhappy, we should update the above ABox to the following one. This updated ABox
is formulated in ALCO, the extension of ALC with nominals (i.e., individual names inside concept
descriptions):

john:Person u ∃has-child.Personu

∀has-child.(Person u (Happy t {mary}))

has-child(john, peter)

mary:Person u ¬Happy

To see that this ABox is obtained by the update operation, note that ABoxes adopt the open world
assumption and thus represent the domain in an incomplete way [8]. In the example above, we have no
information about whether or not Mary is a child of John. However, because we cannot exclude that this
is the case, John may now have an unhappy child (which is Mary). Thus, the new information concerning
Mary also resulted in an update of the information concerning John.

In applications, ABoxes are usually updated in an ad-hoc way, and effects such as the information
change for John above are simply ignored. The purpose of the current section is to provide a formal
analysis of ABox updates in many common description logics, concentrating on the most basic kind of
updates. The basic kind of update we consider is as follows: the new information to be incorporated
into the ABox is a set of possibly negated assertions a:A and r(a, b), where A is an atomic concept.
As discussed in more detail later, there are both semantic and computational problems with unrestricted
updates that are avoided by adopting these restrictions.

We consider ABox updates in the expressive DL ALCQIO and its fragments. It turns out that,
in many natural DLs such as ALC, the updated ABox cannot be expressed. As an example, consider
the ALC ABox given above. To express the ABox obtained by the update with mary:¬Happy, we had
to resort to the more expressive DL ALCO. But even the introduction of nominals does not suffice to
guarantee that updated ABoxes are expressible. Only if we further add the “@” concept constructor
from hybrid logic [5] or Boolean ABoxes (we show that these two are equivalent in the presence of
nominals), updated ABoxes can be expressed. Here, the @ constructor allows the formation of concepts
of the form @aC expressing that the individual a satisfies C, and Boolean ABoxes are a generalization of
standard ABoxes: while the latter can be thought of as a conjunction of ABox assertions of the form a:C
and r(a, b), Boolean ABoxes are a Boolean combination of such ABox assertions. Our expressiveness
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results do not only concern ALC: similar proofs as those given in this section can be used to show that,
in any standard DL in which nominals and the “@” constructor are not expressible, updated ABoxes
cannot be expressed.

We show that updated ABoxes exist and are computable inALCQIO@, the extension ofALCQIO
(which includes nominals) with the @ constructor. The proposed algorithm can easily be adapted to the
fragments ALCO@, ALCIO@, and ALCQO@. An important issue is the size of updated ABoxes: the
updated ABoxes computed by our algorithm may be of size exponential both in the size of the original
ABox and in the size of the new information (henceforth called the update). We show that an exponential
blowup cannot be completely avoided by proving that, even in the case of propositional logic, the size
of updated theories is not polynomial in the size of the (combined) input unless every PTIME-algorithm
is LOGTIME-parallelizable (the “P vs. NP” question of parallel computation).24 In the update literature,
an exponential blowup in the size of the update is viewed as much more tolerable than an exponential
blowup in the size of the original ABox since the former tend to be small compared to the latter. We
believe that, in the case of ALCQIO@ and its two fragments mentioned above, the exponential blowup
in the size of the original ABox cannot be avoided. While we leave a proof as an open problem, we
exhibit two ways around the blowup: the first is to allow the introduction of new concept definitions in
an acyclic TBox when computing the update. The second is to move to extensions of ALCQIO@ that
allow Boolean operators on roles, thus eliminating the asymmetry between concepts and roles found in
standard DLs. In both cases, we show how to compute updated ABoxes that are polynomial in the size
of the original ABox (and exponential in the size of the update). Thus, the blowup induced by updates
in these expressive DLs is not worse than in propositional logic. We also show that the blowup produced
by iterated updates is not worse than the blowup produced by a single update.

The results presented in this section are published as a part of [100] and the full proofs can be found
in the accompanying technical report [101].

8.2 Description Logic ALCQIO@

In DLs, concepts are inductively defined with the help of a set of constructors, starting with a set NC of
concept names and a set NR of role names, and (possibly) a set NI of individual names. In this section,
we introduce the DLALCQIO@, whose concepts are formed using the constructors shown in Figure 12.

There, the inverse constructor is the only role constructor, whereas the remaining seven constructors
are concept constructors. In Figure 12 and in what follows, we use #S to denote the cardinality of a set
S, a and b to denote individual names, r and s to denote roles (i.e., role names and inverses thereof),
A,B to denote concept names, and C,D to denote (possibly complex) concepts. As usual, we use >
as abbreviation for an arbitrary (but fixed) propositional tautology, ⊥ for ¬>, → and ↔ for the usual
Boolean abbreviations, ∃r.C (existential restriction) for (> 1 r C), and ∀r.C (universal restriction) for
(6 0 r ¬C).

The DL that allows only for negation, conjunction, disjunction, and universal and existential re-
strictions is called ALC. The availability of additional constructors is indicated by concatenation of a
corresponding letter: Q stands for number restrictions; I stands for inverse roles, O for nominals and
superscript “@” for the @ constructor. This explains the name ALCQIO@ for our DL, and also allows
us to refer to its sublanguages in a simple way.

24In contrast to the results by Cadoli et al. [27], our result even applies to the restricted form of updates, i.e., updates in
propositional logic where the update is a conjunction of literals. Thus, our argument provides further evidence for the claims
in [27], where it is shown that, with unrestricted updates, an exponential blowup in the size of the update cannot be avoided
unless the first levels of the polynomial hierarchy collapse.
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Name Syntax Semantics

inverse role r− (rI)−1

nominal {a} {aI}

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

at-least restriction (> n r C) {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI} ≥ n}

at-most restriction (6 n r C) {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI} ≤ n}

@ constructor @aC ∆I if aI ∈ CI , and ∅ otherwise

Figure 12: Syntax and semantics of ALCQIO@.

The semantics of ALCQIO@-concepts is defined in terms of an interpretation I = (∆I , ·I). The
domain ∆I is a non-empty set of individuals and the interpretation function ·I maps each concept name
A ∈ NC to a subset AI of ∆I , each role name r ∈ NR to a binary relation rI on ∆I , and each individual
name a ∈ NI to an individual aI ∈ ∆I . The extension of ·I to inverse roles and arbitrary concepts is
inductively defined as shown in the third column of Figure 12.

An ALCQIO@ assertional box (ABox) is a finite set of concept assertions C(a) and role assertions
r(a, b) and ¬r(a, b) (where r may be an inverse role). For readability, we sometimes write concept
assertions as a:C. Observe that there is no need for explicitly introducing negated concept assertions as
negation is available as a concept constructor inALCQIO@. An ABoxA is simple if C(a) ∈ A implies
that C is a concept literal, i.e., a concept name or a negated concept name.

An interpretation I satisfies a concept assertion C(a) iff aI ∈ CI , a role assertion r(a, b) iff
(aI , bI) ∈ rI , and a role assertion ¬r(a, b) iff (aI , bI) /∈ rI . We denote satisfaction of an ABox
assertion α by an intepretation I with I |= α. An interpretation I is a model of an ABox A (written
I |= A) if it satisfies all assertions in A. An ABox is consistent iff it has a model. Two ABoxes A and
A′ are equivalent (written A ≡ A′) iff they have the same models. We use M(A) to denote the set of all
models of the ABox A.

Various reasoning problems are considered for DLs. For the purpose of this paper, it suffices to
introduce concept satisfiability and ABox consistency:

• the concept C is satisfiable w.r.t. the TBox T iff there exists a model I of T such that CI 6= ∅;

• the ABox A is consistent w.r.t. the TBox T iff there exists an interpretation I that is a model of
both T and A.

8.3 ABox Updates

We introduce a simple form of ABox update where complex concepts are not allowed in the update
information.

Definition 74 (Interpretation Update). An update U is a simple ABox that is consistent. Let U be
an update and I, I ′ interpretations such that ∆I = ∆I

′
and I and I ′ agree on the interpretation of
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individual names. Then I ′ is the result of updating I with U , written I =⇒U I ′, if the following hold
for all concept names A and role names r:

AI
′

= (AI ∪ {aI | A(a) ∈ U}) \ {aI | ¬A(a) ∈ U}

rI
′

= (rI ∪ {(aI , bI) | r(a, b) ∈ U})
\{(aI , bI) | ¬r(a, b) ∈ U}

It is easily seen that, for each fixed update U , the relation “=⇒U” is functional. Therefore, we can write
IU to denote the unique I ′ with I =⇒U I ′. 4

Based on the relation “=⇒U”, we can now define ABox updates.

Definition 75 (ABox Update). LetA be an ABox and U an update. An ABoxA′ is the result of updating
A with U , in symbols A ∗ U ≡ A′, if

M(A′) = {IU | I ∈M(A)}.

We then call A the original ABox and A′ the updated ABox. 4

Note that updated ABoxes are unique up to logical equivalence. This justifies talking of the result of
updating A with U .

There are at least two advantages of disallowing complex concepts in updates: first, the semantics
given above is uncontroversial and coincides with all standard semantics for updates considered in the
literature, see e.g., [142, 133, 160, 128]. In contrast, several different and equally natural semantics be-
come available as soon as we allow disjunction (or even non-Boolean constructors) in updates, see e.g.
[160, 51, 99, 141, 161, 71, 128]. Second, it follows from the results in [10] that, at least under Winslett-
style PMA semantics [160], unrestricted ABox updates in relatively simple DLs are not computable. It
seems very likely that the other available semantics suffer from similar computational problems. Practi-
cally, our restriction means that the user has to describe updates at an atomic level.

We now give a more involved example of updating ABoxes than that given in the introduction. The
following ALCO ABox expresses that John and Mary are married. We also know that (at least) one of
them is unhappy, but we do not know which of the two this is. Moreover, Peter and Sarah both have a
happy parent:

spouse(john,mary)

peter:∃parent.Happy

sarah:∃parent.Happy

john:¬Happy t ∀spouse.({mary} → ¬Happy)

Suppose that, because one of them is unhappy, John and Mary have an argument. This results in both
John and Mary being unhappy now. Hence, we should apply the following update to the above ABox:

¬Happy(john), ¬Happy(mary).

Then, the updated ABox can be expressed in ALCO@ as follows. Here and in what follows, we assume
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that the @ constructor has higher precedence than conjunction:

spouse(john,mary)

dummy:
(
@peter∃parent.(Happy t {john})u

@sarah∃parent.(Happy t {john})
)
t(

@peter∃parent.(Happy t {mary})u

@sarah∃parent.(Happy t {mary})
)

¬Happy(john)

¬Happy(mary)

The only surprising assertion in the updated ABox is the second one. Intuitively, it represents the update
of the second and third assertion of the original ABox:25 the first disjunct captures the case where John
was unhappy and Mary was happy, and the second disjunct captures the case when it was the other way
around. In the remaining that both Mary and John were unhappy, the update of the second and third
assertions is

dummy:@peter∃parent.Happy u@sarah∃parent.Happy

(because nothing has changed through the update). A corresponding disjunct in the second assertion of
the updated ABox is not needed since it would imply each of the first two disjuncts.

Also note that the last line of the original ABox is subsumed by the last two lines of the updated
ABox.

We shall later refer back to this example as the “spouse example” and prove that the updated ABox
cannot be expressed in ALCO.

8.4 Description Logics without Updates

We say that a description logic L has ABox updates iff, for every ABox A formulated in L and every
update U , there exists an ABox A′ formulated in L such that A ∗ U ≡ A′. In this section, we show that
a lot of basic DLs are lacking ABox updates.

8.4.1 Updates in ALC

We analyze the basic description logic ALC and show that it does not have ABox updates. Consider the
following ALC ABox A, update U , and ALCO ABox A′:

A := {∀r.A(a)}

U := {¬A(b)}

A′ := {¬A(b), ∀r.(A t {b})(a)}.

The following is not difficult to verify using Definition 75.

Lemma 76. A ∗ U ≡ A′.

25Note that the individual name dummy in front of the colon does not carry any information: we could exchange it with any
other individual name without changing the meaning of this assertion.
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To show that ALC does not have ABox updates, it thus suffices to prove that there is no ALC ABox
equivalent to theALCO ABoxA′. This is an easy exercise: find two models I and I ′ that are bisimilar26

such that I |= A′ and I ′ 6|= A′. Then use the fact that ALC concepts cannot distinguish between
bisimilar models to show the desired result. Details of this and following proofs can be found in [101].

Lemma 77. There is no ALC ABox equivalent to A′.

Note that our proof applies to the case where the update contains only concept assertions, but no role
assertions.

Theorem 78. ALC does not have ABox updates, even if updates contain only concept assertions.

The fact that the updated ABox A′ used in this section is actually an ALCO ABox may give rise to the
conjecture that adding nominals to ALC recovers the existence of updates. Unfortunately, as shown in
the following section, this is not the case.

8.4.2 Updates in ALCO

To show thatALCO does not have ABox updates, we proceed in two steps: we first give a straightforward
proof of the non-existence of updated ABoxes in ALCO that relies on the use of role assertions in
updates. In the second step, we use a slightly more complex construction to show that ALCO does not
have ABox updates even if only concept assertions are allowed in updates.

Consider the following ALC ABox A (which thus also is an ALCO ABox), update U , and ALCO@

ABox A′:
A := {∃r.A(a)}

U := {¬r(a, b)}

A′ = {(∃r.(A u ¬{b}) t@bA)(a),¬r(a, b)}.
Again, the following is not difficult to verify:

Lemma 79. A ∗ U ≡ A′.

We now show that there exists no ALCO ABox that is equivalent to the ALCO@ ABox A′. It follows
that ALCO does not have ABox updates.

Consider the interpretations I, I ′ and I ′′ depicted in Figure 13. We assume that the individual
names a, b, and c are mapped to the individuals of the same name, and that all other individual names are
mapped to the individual c. Moreover, the concept name A is interpreted as shown in the figure and all
other concept names are interpreted as the empty set in all three interpretations. Then we have I |= A′,
I ′ |= A′ and I ′′ 6|= A′. We will show that, if anALCO ABox B is equivalent toA′, then I ′′ |= B, which
is a contradiction.

Lemma 80. There is no ALCO ABox that is equivalent to the ALCO@ ABox A′ = {(∃r.(A u ¬{b}) t
@bA)(a),¬r(a, b)}.

Proof. Assume there is an ALCO ABox B that is equivalent to A′. Then I |= B, I ′ |= B, and I ′′ 6|= B.
We show that, for all assertions ϕ ∈ B, we have I ′′ |= ϕ, thus obtaining a contradiction to I ′′ 6|= B.
First, B does not contain any positive role assertion since I |= B and I does not satisfy any positive
role assertions. Second, if ϕ is a negative role assertion, then I ′′ |= ϕ since I ′′ satisfies all negative role
assertions. Finally, let ϕ be a concept assertion. Then, I ′′ |= ϕ is a consequence of I |= ϕ, I ′ |= ϕ, and
the fact that the truth of an assertion C(â) in a model J , C an ALCO-concept, only depends on the set
of points reachable from âJ by role paths. o

26W.r.t. the standard notion of bisimilarity for ALC that is independent of individual names [93].
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Figure 13: Interpretations for Lemma 80
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Figure 14: Interpretations for Lemma 82

Note that our proof also shows that ALC does not have ABox updates even if we restrict ourselves to
updates containing only role assertions.

Theorem 81. ALC and ALCO do not have ABox updates, even if updates contain only role assertions.

This result raises the question whether or not restricting updates to concept assertions regains the exis-
tence of updated ABoxes in ALCO. We answer this question to the negative by returning to the spouse
example. LetA, U , andA′ denote the original ABox (formulated inALCO), update, and updated ABox
(formulated in ALCO@) from this example. We have already argued that A ∗ U ≡ A′. It suffices to
prove that there is no ALCO ABox equivalent to A′.

Consider the interpretations I, I ′ and I ′′ depicted in Figure 14 where we abbreviate the individual
names from the spouse example using their initial letter, x denotes an individual, all horizontal edges
are for the role spouse, and all vertical edges are for the role parent. We assume that the four individual
names j,m, p, s are mapped to individuals of the same name, and that all other individual names are
mapped to the individual x. Moreover, H is interpreted as indicated and all other concept names are
interpreted as the empty set.

The proof of the following lemma uses the facts that I |= A′, I ′ |= A′, but I ′′ 6|= A′. It is quite
similar to the proof of Lemma 80.

Lemma 82. There is no ALCO-ABox that is equivalent to the updated ABox from the spouse example.

Thus, we obtain the following result:

Theorem 83. ALCO does not have ABox updates, even if updates contain only concept assertions.

8.4.3 Updates in ALC@ and Boolean ABoxes in ALC

The proofs of Theorems 81 and 83 suggest that there is a connection between ABox updates and the
“@” constructor. Indeed, we will later see that the DL ALCO@ has ABox updates. Here, we show that
adding only the @ constructor to ALC does not suffice to guarantee the existence of updated ABoxes.
Indeed, we even consider Boolean ABoxes [3], which are closely related to the @ constructor but strictly
more expressive.
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Boolean ABox assertions are Boolean combinations of ABox assertions expressed in terms of the
connectives ∧ and ∨. Then, a Boolean ABox is simply a finite set of Boolean ABox assertions. We do
not need to explicitly introduce negation since we admit negated role assertions and concept negation is
contained in every DL considered in this section. For example, the following is a Boolean ABox:

{B(a), (A(a) ∧ r(a, b)) ∨ ¬∃s.A(b)}.

An interpretation I is a model of a Boolean ABox A if every Boolean ABox assertion in A evaluates to
true. The following lemma relates Boolean ABoxes and the @ constructor. It shows that non-Boolean
ALCO@ ABoxes have exactly the same expressive power as BooleanALCO-ABoxes, and that the same
does not hold for ALC: while every ALC@ ABox can be translated into an equivalent Boolean ALC
ABox, there are Boolean ALC ABoxes for which no equivalent non-Boolean ALC@ ABox exists.

Lemma 84.
(i) For every Boolean ALC@ ABox (ALCO@ ABox), there exists an equivalent Boolean ALC ABox
(ALCO ABox);
(ii) For every Boolean ALCO ABox, there exists an equivalent non-Boolean ALCO@ ABox;
(iii) There exists no non-Boolean ALC@ ABox that is equivalent to the Boolean ALC ABox {A(a) ∨
r(b, c)}.

Since, when added to ALC, Boolean ABoxes are more expressive than the @ constructor, it is more
general to consider the former when proving the lack of ABox updates.

Theorem 85. There exists an ALC ABox A and an update U such that there exists no Boolean ALC
ABox A′ with A ∗ U ≡ A′.

The proof of Theorem 85 uses the ABoxes A, A′ and the update U that have been used in the proof
that ALC does not have ABox updates. To show that no Boolean ABox B is equivalent to A, B is
first converted into disjunctive normal form and then proceeds similar to the non-Boolean case. By
Lemma 84, we obtain the following corollary.

Corollary 86. ALC@ does not have ABox updates.

Observe that both Theorem 85 and Corollary 86 remain true if we restrict updates to only concept asser-
tions.

8.5 Computing Updates in ALCQIO@

Straightforward extensions of the results obtained in the previous section show that none of the standard
DLs betweenALC andALCQIO has ABox updates. In this section, we show that adding nominals and
the @ constructor to such DLs suffices to have ABox updates. More presicely, we prove that the expres-
sive DL ALCQIO@ has ABox updates. The proof is easily adapted to the fragments of ALCQIO@

obtained by dropping number restrictions, inverse roles, or both.
Our construction of updated ABoxes is an extension of the corresponding construction for proposi-

tional logic described in [160], and proceeds as follows. First, we consider updates of concepts on the
level of interpretations. More precisely, we show how to convert a concept C and an update U into a
concept CU such that the following holds:

(∗) for all interpretations I and I ′ such that I satisfies no
assertion in U and I =⇒U I ′, we have CI = (CU )I

′
.

So intuitively, CU can be used after the update to describe exactly those objects that have been in the
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Figure 15: Constructing CU

extension of C before the update. Our aim is to use the translation CU to update concept assertions in
ABoxes. We will later see how to overcome the restriction that I has to satisfy no assertion in U .

For defining the concepts CU , we first introduce a bit of notation. For an ABox A, we use Obj(A)
to denote the set of individual names in A, and sub(A) to denote the set of subconcepts of the concepts
occurring in A. For an ABox A, we use ¬A to denote {¬ϕ | ϕ ∈ A}. The inductive translation that
takes a concept C and an update U to a concept CU as explained above is given in

Lemma 87. The translation of concepts C into concepts CU given in Figure 15 satisfies (∗).

We now extend the update of concepts to the update of ABoxes. LetA be an ABox and U an update.
Then define the ABox AU by setting

AU := {CU (a) | C(a) ∈ A} ∪

{r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ U} ∪

{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ U}.

We can now establish a property that corresponds to (∗), but concerns ABoxes instead of concepts.

Lemma 88. Let A be an ABox and U an update. For every interpretation I with I |= ¬U , we have
I |= A iff IU |= AU .

Similar to the concepts CU , the ABox update AU works only if the interpretations I of A satisfy no
assertion in U . For a fixed interpretation I, we can overcome this problem by replacing CU with CU

′
,

where U ′ is the set of those assertions in U that are violated in I. However, in general we are confronted
with the problem that an ABox can have many different models, and these models can violate different
assertions of the update U . Hence, there is no unique way of moving from CU to CU

′
as described above.
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(∃r.C)U = ( u
a∈Obj(U)

¬{a} u ∃r.CU ) t ∃r.( u
a∈Obj(U)

¬{a} u CU )

t t
a,b∈Obj(U),r(a,b)6∈U

({a} u ∃r.({b} u CU )) t t
¬r(a,b)∈U

({a} u@bC
U )

(∀r.C)U = ( u
a∈Obj(U)

¬{a} → ∀r.CU ) u ∀r.( u
a∈Obj(U)

¬{a} → CU )

u u
a,b∈Obj(U),r(a,b)6∈U

({a} → ∀r.({b} → CU )) u u
¬r(a,b)∈U

({a} → @bC
U )

Figure 16: Constructing CU for existential and universal restrictions

The solution is to produce an updated ABox for each subset U ′ ⊆ U of violated assertions separately,
and then simply take the disjunction.

Let A be an ABox and U an update. A simple ABox D is called a diagram for U if it is a maximal
consistent subset of LU , where LU = {ψ,¬ψ | ψ ∈ U} is the set of literals over U . Intuitively, a diagram
gives a complete description of the part of a model of A that is “relevant” for the update U . Let D be
the set of all diagrams for U and consider for D ∈ D the set DU := {ψ | ¬ψ ∈ D and ψ ∈ U} which
corresponds to taking a subset of U as described above: we retain only those parts of U that are violated
by interpretations whose relevant part is described by D. We now define the updated ABox A′ as

A′ =
∨
D∈D

∧
ADU ∪ DU ∪ (D \ ¬DU ).

Here, we use Boolean ABox operators only as an abbreviation for the “@” constructor. The expansion
of this abbreviation does not substantially increase the size of the updated ABox: the translation from
Boolean ABoxes to non-Boolean ones described in [101] is linear. To achieve a less redundant ABox, it
is possible to drop from A′ those disjuncts for which the diagram D is not consistent w.r.t. A. This is,
however, not strictly necessary since the ABox D \ ¬DU ensures that these disjuncts are inconsistent.

Lemma 89. A ∗ U ≡ A′.

It is easy to adapt the construction of updated ABoxes to the DLs ALCO@, ALCIO@, ALCQO@. For
the former two, we have to treat existential and universal restrictions in the CU translation rather than
number restrictions. The corresponding clauses are shown in Figure 16. The lemmas proved above for
ALCQIO@ are then easily adapted.

Theorem 90. All of the following DLs have ABox updates: ALCO@, ALCIO@, ALCQO@, and
ALCQIO@.

Now that we know that updated ABoxes always exist in the above DLs, we should have a look at their
size. Let us first make precise what we mean with this. The length of a concept C, denoted by |C|, is the
number of symbols needed to write C. Note that it makes a considerable difference whether we assume
the numbers inside number restrictions to be written in unary or in binary: if written in unary, we have
|(6 n r C)| ∈ O(n), and if written in binary, we have |(6 n r C)| ∈ O(log n). In the following, we
will always point out to which coding our results apply.27 The size of an ABox assertion C(a) is |C|, the
size of r(a, b) and ¬r(a, b) is 1. Finally, the size of an ABox A, denoted by |A|, is the sum of the sizes
of all assertions in A.

27In fact, all results except Theorems 99 and 100 apply to both unary and binary coding.
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A close inspection of our construction reveals the following: first, the size the concepts CDU is
exponential in the size of A and polynomial in the size of U ; and second, the number of disjuncts in A′
is exponential in the size of U . These bounds hold regardless of the coding of numbers.

Theorem 91.
Let L ∈ {ALCO@,ALCIO@,ALCQO@,ALCQIO@}. Then there are polynomials p1, p2, and q such
that, for every L ABox A and every update U , there is an L ABox A′ such that

• A ∗ U ≡ A′;

• |A′| ≤ 2p1(|A|) · 2p2(|U|);

• A′ can be computed in time q(|A′|).

There are applications in which the domain of interest evolves continuously. In such an environment, it
is necessary to update an ABox over and over again. Then, it is clearly important that the exponential
blowups of the individual updates do not add up. The following theorem, which can be proved by care-
fully investigating our update construction, shows that this is indeed not the case. It holds independently
of the coding of numbers.

Theorem 92. There are polynomials p1, p2 such that the following holds: for all ABoxes A0, . . . ,An
and updates U1, . . . ,Un, ifAi is the ABox computed by our algorithm whenAi−1 is updated with Ui, for
0 < i ≤ n, then

|An| ≤ 2p1(|A0|) · 2p2(|U1|+···+|Un|).

8.5.1 Conditional Updates

For the sake of simplicity, we have defined ABox updates to be unconditional: the assertions in the
update U are unconditionally true after the update and we cannot express statements such as “A(a) is
true after the update if C(b) was true before”. In some applications such as reasoning about actions with
DLs [10], it is more useful to have conditional updates, where the initial interpretation determines the
changes that are triggered.

A conditional update U is a finite set of expressions ϕ/ψ, where the precondition ϕ is an ABox
assertion (possibly involving non-atomic concepts) and the postcondition ψ is an assertion of the form

A(a),¬A(a), r(a, b),¬r(a, b)

with A a concept name. Intuitively, an expression ϕ/ψ means that if ϕ holds in the initial interpretation,
thenψ holds after the update. As in the case of unconditional updates, we require a consistency condition:
if ϕ/ψ and ϕ′/¬ψ are both in U , then the ABox {ϕ,ϕ′} has to be inconsistent.

The definition of “=⇒U” is easily adapted to the case of conditional updates: for U a conditional
update, we write I =⇒U I ′ if the following hold:

• for all concept names A,

AI
′

= (AI ∪ {aI | ϕ/A(a) ∈ U ∧ I |= ϕ}) \ {aI | ϕ/¬A(a) ∈ U ∧ I |= ϕ}

• for all role names r,

rI
′

= (rI ∪ {(aI , bI) | ϕ/r(a, b) ∈ U ∧ I |= ϕ}) \ {(aI , bI) | ϕ/¬r(a, b) ∈ U ∧ I |= ϕ}.
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Then the result of updating an ABox is defined exactly as in the case of unconditional updates. Clearly,
conditional updates generalize unconditional once since assertions ψ of unconditional updates can be
expressed as >(a)/ψ, with a an arbitrary individual name.

We now show how to adapt our construction of updated ABoxes to conditional updates. For U a
conditional update, we use rhs(U) to denote {ψ | ϕ/ψ ∈ U}, and lhs(U) for {ϕ | ϕ/ψ ∈ U}. In the
original algorithm, the updated ABox A′ is assembled by taking one disjunct for every diagram for U .
The intuition is that, when a diagramD is satisfied by an interpretation I, then we know which assertions
in U have already been satisfied in I before U is applied. We generalize this idea to conditional updates
by taking one disjunct for each pair (D,U ′), where D is a diagram for rhs(U), and U ′ is a subset of
U . Intuitively, U ′ determines the set of assertions from U whose preconditions are satisfied in the initial
model, and D determines the post-conditions that actually cause a change.

Let D be the set of all diagrams for rhs(U). Let D ∈ D and U ′ ⊆ U . We define

DU ′ := {ψ | ¬ψ ∈ D and ϕ/ψ ∈ U ′}.

Then we can assemble the updated ABox A′ as follows:

A′ =
∨
D∈D

∨
U ′⊆U

∧
{ϕ | ϕ/ψ ∈ U ′}DU′

∪ {¬ϕ | ϕ/ψ ∈ U \ U ′}DU′

∪ ADU′ ∪ DU ′ ∪ (D \ ¬DU ′).

The notion of a description logic L having conditional ABox updates is defined in the obvious way.

Theorem 93. All of the following DLs have conditional ABox updates: ALCO@,ALCIO@,ALCQO@,
and ALCQIO@.

Concerning the size and computability of updated ABoxes, we obtain the same bounds as in Theorem 91,
independently of the coding of numbers.

8.6 A Lower Bound for the Size of Updated ABoxes

In the following sections, we are interested in the question whether or not the exponential blowup ob-
served in Theorems 91 and 92 can be avoided. In this section, we consider updates of propositional
logic theories where the updates are of the restricted form considered in this section, i.e., conjunctions of
literals. We prove that, even in this case, an exponential blowup in the size of the whole input (original
ABox + update) cannot be avoided unless the complexity classes PTIME and NC coincide. As discussed
in [122], this is believed to be similarly unlikely as PTIME = NP. It is not difficult to prove that this
lower bound on the size of updated ABoxes transfers to all DLs considered in this section.

For the following definitions, we fix an individual name a. A propositional ABox A is of the form
{C(a)} with C a propositional concept, i.e., a concept that uses only the concept constructors ¬, u,
and t. A propositional update U contains only assertions of the form A(a) and ¬A(a). Observe that
propositional ABoxes and propositional updates are only allowed to refer to the single, fixed individual
name a.

For the semantics, we fix a single individual x. Since we are dealing with propositional ABoxes and
updates, we assume that interpretations do not inteprete role names, and that interpretation domains have
only a single element xwith aI = x. We introduce a couple of notions. For a conceptC, let C(C) denote
the set of concept names used in C. For an interpretation I and a set of concept names Γ, let I|Γ denote
the restriction of I that interpretes only the concept names in Γ. Let C be a concept and Γ ⊆ C(C). Then
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a conceptD is called a uniform Γ-interpolant ofC iff C(D) ⊆ Γ and {I|Γ | x ∈ CI} = {I|Γ | x ∈ DI}.
It is easily seen that, for any propositional concept C and subset Γ ⊆ C(C), the uniform Γ-interpolant of
C exists and is unique up to equivalence. The following lemma establishes a tight connection between
uniform interpolants and propositional updates.

Lemma 94. Let A = {C(a)} be a propositional ABox, U a propositional update, Γ the set of concept
names in C not occurring in U , Ĉ the shortest uniform Γ-interpolant of C, and

A′ = {a : (Ĉ u u
A(a)∈U

A)}.

Then we have the following:

(i) A ∗ U ≡ A′;
(ii) if A ∗ U ≡ A′′, then |A′| ≤ |U|+ |A′′|.

It thus remains to show that the size of (smallest) uniform interpolants of propositional concepts is not
bounded polynomially in the size of the interpolated concept unless PTIME = NC.

The size of uniform interpolants of propositional concepts is closely related to the relative succinct-
ness of propositional logic (PL) formulas and Boolean circuits. We remind that both PL formulas and
Boolean circuits compute Boolean functions and refer, e.g., to [122] for exact definitions. We use |c| to
denote the number of gates in the Boolean circuit c, and |ϕ| to denote the length of the PL formula ϕ.
It is known that, unless PTIME = NC, there exists no polynomial p such that every Boolean circuit c
can be converted into a PL formula ϕ that computes the same function as ci and satisfies |ϕ| ≤ p(|ci|),
see e.g. Exercise 15.5.4 of [122]. In the following, we show that non-existence of such a polynomial p
implies that uniform interpolants are not bounded polynomially in the size of the interpolated concept.
Take a Boolean circuit c with k inputs. Then c can be translated into a propositional concept Dc by
introducing concept names I1, . . . , Ik for the inputs and, additionally, one auxiliary concept name for the
output of every gate. Let G be the set of concept names introduced for gate outputs, and let O ∈ G be the
concept name for the output of the gate computing the final output of c. It is not difficult to see that this
translation can be done such that there exists a polynomial q such that, for all Boolean circuits c,

(i) |Dc| ≤ q(|c|) and

(ii) for all interpretations I and all x ∈ DIc , x ∈ OI iff c outputs “true” on input b1, . . . , bk, where bj = 1
if x ∈ IIj and bj = 0 otherwise.

Now, set Γ := G \ {O}. Then the uniform Γ-interpolant D̂c of Dc also satisfies (ii). Thus, D̂c is a
(notational variant of a) propositional logic formula computing the same Boolean function as c. If the
size of D̂c would be bounded polynomially in the size of Dc, we thus had obtained a contradiction to our
assumption on the non-existence of the polynomial p. Together with Lemma 94, we obtain the following
theorem.

Theorem 95. Unless PTIME = NC, there exists no polynomial p such that, for all propositional ABoxes
A and propositional updates U , there exists a propositional ABox A′ such that

• A ∗ U ≡ A′ and

• |A′| ≤ p(|A|+ |U|).
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Our result is closely related to a result of [27] who prove an analogue of Theorem 95 under the
complexity-theoretic assumption that the polynomial hierarchy does not collapse. However, Cadoli et
al.’s technique does not appear to work with the restricted form of updates (conjunctions of literals)
considered in this section.

8.7 Small(er) Updated ABoxes

Theorem 91 does not differentiate between exponential blowups in the size of the original ABox and
exponential blowups in the size of the update. In contrast to the former, the latter is usually considered
acceptable since updates will usually be small compared to the original ABox A. We believe that, in the
DLs mentioned in Theorem 90, the exponential blowup in the size of A is unavoidable. However, we
have to leave a proof as an open problem. In the following, we exhibit three different ways to extend
ALCQIO@ and its fragments such that it becomes possible to compute updated ABoxes that are only
polynomial in the size of the original ABox.

A first, rather restrictive solution is to admit only concept assertions in updates. Then, in all DLs
captured by Theorem 90, computing the concepts CU becomes a lot simpler: just replace every concept
name A in C with

A t t
¬A(a)∈B

{a} u ¬( t
A(a)∈B

{a}).

If modified in this way, our original construction yields updated ABoxes that are only polynomial in the
size of the original ABox (but still exponential in U). The bound is independent of the coding of numbers
and also applies to iterated updates.

8.7.1 Small Updates Through TBoxes

We show how to produce smaller updated ABoxes by allowing the introduction of auxiliary concept
names via an acyclic TBox. In the propositional case, this corresponds to admitting additional variables
for defining abbreviations. In the terminology of Cadoli et al. [27], we thus move from logical equiva-
lence to query equivalence. In this way, we obtain updates that are polynomial in the size of the original
ABox.

In the following, we assume that the set of concept names is partitioned into a set of primary concept
names and a set of auxiliary concept names. The latter are used only for defining abbreviations in a TBox.
A concept definition is of the form A ≡ C, where A is an auxiliary concept name and C is a concept.
An (acyclic) TBox T is a finite set of concept definitions with unique left-hand sides and without cyclic
definitions [8], page 52. We call a concept name A defined in a TBox T and write A ∈ def(T ) if A
occurs on the left-hand side of a concept definition in T . A knowledge base (KB) is a pair K = (T ,A)
consisting of a TBox T and an ABox A such that every auxiliary concept name used in K is in def(T ).
An interpretation I satisfies a concept definition A ≡ C if AI = CI . I is a model of a TBox T , written
I |= T , if I satisfies all concept definitions in T . An interpretation I is a model of a KB K = (T ,A),
written I |= K, if I is a model of T and A. The set of all models of a KB K is denoted M(K).

An update U is a simple and consistent ABox that does not use auxiliary concept names. We disallow
auxiliary concept names because they can be defined in a TBox and thus allowing them is equivalent to
admitting updates with complex concepts. Let U be an update and let I and I ′ be interpretations that
agree on the interpretation of individual names. We define an update relation I =⇒p

U I ′ (where p stands
for “primary”) as in Definition 74, but restrict the condition on concept names to primary concept names.
This restriction is not harmful since we require auxiliary concept names that are used in a knowledge base
to be defined in the TBox, and this means that their extension is uniquely determined by the extensions
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of the primary concept names and role names. Still, as a result of the restriction, the relation =⇒p
U is not

functional (in contrast to the case without TBoxes).

Definition 96 (Knowledge Base Update). Let K1 and K2 be knowledge bases, Ki = (Ti,Ai), and U an
update. Then K2 is a result of updating K1 with U if

M(K2) = {I ′ | ∃I ∈M(K1) : I =⇒p
U I
′ ∧ I ′ |= T2}.

In this case, we write K1 ∗ U ≡p K2. 4

Observe that the TBox of the updated KBK2 can contain new abbreviations, i.e., definitionsA .= C with
A an auxiliary concept names that does not occur in K1. Since there is more than a single way to define
such abbreviations, the result of updating a knowledge base is not unique up to logical equivalence.
However, we have this uniqueness when restricting our attention to what the updated ABox expresses
regarding the primary concept names and role names, only.

In the equality in Definition 96, the conjunct I ′ |= T2 has no impact on the “⊆” direction since all
models of K2 are models of T2 anyway. For the “⊇” direction, the conjunct is essential: dropping it
would mean to require that every possible interpretation of the auxiliary concept names in I ′ satisfies
T2. Moreover, since T2 is part of the updated knowledge base K2, interpretations not satisfying T2 are
irrelevant.

We now establish a relationship between updates of ABoxes and updates of knowledge bases. Let
T be an acyclic TBox, and C a concept. The concept CT obtained from C by exhaustively replacing
defined concept names in C with their definitions from T is called the unfolding of C w.r.t. T . If A is
an ABox, then the unfolding of A w.r.t. T is the ABox AT obtained by replacing each concept assertion
C(a) in A with CT (a). If (T ,A) is a knowledge base, then the unfolding AT contains only primary
concept names. The following lemma shows that updated knowledge bases are just updated ABoxes with
abbreviations.

Lemma 97. Let K1 and K2 be knowledge bases, Ki = (Ti,Ai), and U an update. Then

K1 ∗ U ≡p K2 iff AT11 ∗ U ≡ A
T2
2 .

For the moment, the purpose of Lemma 97 is only to clarify the relation between ABox updates and
knowledge base updates. Although we could compute knowledge base updates using Lemma 97 together
with our construction for ABox updates, this would not help to obtain smaller updates.

Therefore, we now show how to directly construct updated knowledge bases in ALCQIO@ and its
fragments. Let K = (T ,A) be a knowledge base, and let U be an update. Diagrams for U and the sets
D and DU are defined as in the previous section. We use sub(K) to denote the set of all subconcepts
of concepts occurring in K. To construct the result of updating K with U , we introduce a new concept
name ADC for every diagram D ∈ D and every C ∈ sub(K). Let trans(C,D) denote the concept on the
right-hand side of the clause for CDU in Figure 15, with all subconcepts ED replaced by the concept
name ADE . For example, trans(C uD,D) = ADC uADD. For each diagram D ∈ D, define a TBox

T Dsub := {ADC ≡ trans(C,D) | C ∈ sub(K) \ def(T )}.

Then, we define the TBox

T ′ :=
⋃
D∈D

(T Dsub ∪ {ADA ≡ ADC | A ≡ C ∈ T }).
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For every D ∈ D, let

ADU := {ADC(a) | C(a) ∈ A} ∪ ∪

{r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ DU} ∪

{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ DU}

Now we can define the ABox A′ by setting

A′ =
∨
D∈D

∧
ADU ∪ DU ∪ (D \ ¬DU ).

and finally assemble the updated knowledge base by setting K′ := (T ′,A′). It can be proved that this
knowledge base is as required:

Lemma 98. K ∗ U ≡p K′

We now formulate the main result on updates with acyclic TBoxes. In constrast to updates without
TBoxes, updated knowledge bases are polynomial in the size of the original KB. Thus, Lemma 97 im-
plies that we can use acyclic TBoxes to obtain a more succinct presentation of updated ABoxes. In the
following, the size |T | of a TBox T is

∑
A≡C∈T |C|, and the size |K| of a knowledge base K = (T ,A)

is the sum of |T | and |A|.

Theorem 99.
Let L ∈ {ALCO@,ALCIO@,ALCQO@,ALCQIO@}. Then there are polynomials p1, p2, and q such
that, for every L-knowledge base K = (T ,A) and every update U , there is an L-knowledge base K′
such that

• K ∗ U ≡p K′;

• |K′| ≤ p1(|K|) · 2p2(|U|);

• K′ can be computed in time q(|K′|).

It is important to note that Theorem 99 is true only if we assume unary coding of numbers: with binary
coding, already the translation CU results in an exponential blowup in the size of the original ABox
since we have |(6 n r C)U | ∈ O(2n). Thus, the updated ABox will not be polynomial in the size of the
original one.

As in the case without TBoxes, it can be shown that iterated updates do not produce a blowup of the
size of updated ABoxes that is worse than the blowup produced by a single update.

Theorem 100. There are polynomials p1, p2 such that the following holds: for all knowledge bases
K0, . . . ,Kn and updates U1, . . . ,Un, if Ki is the ABox computed by our algorithm when Ki−1 is updated
with Ui, for 0 < i ≤ n, then

|Kn| ≤ p1(|K0|) · 2p2(|U1|+···+|Un|).
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8.7.2 Small Updates in ALCQIO+

We have argued above that, if the update contains no role assertions, then updated ALCQIO@ ABoxes
are polynomial in the size of the original ABox even without introducing TBoxes. Intuitively, updates
with only concept assertions do not lead to an exponential blowup because we have available nominals,
the @-operator, and the Boolean operators on concepts. In standard DLs, none of these operators is
available for roles: we can neither construct the union of roles, nor their complement, nor a “nominal
role” {(a, b)} with a and b nominals. In this section, we explore the possibility of constructing updated
ABoxes in a language in which such constructors are available. The language we consider is of almost
the same expressive power as C2, the two-variable fragment of first-order logic with counting quantifiers
[103].

Denote byALCQIO+ the description logic extendingALCQIO@ by means of the role constructors
∩ (role intersection), − (set-theoretic difference of roles), and {(a, b)} (nominal roles). In this language,
complex roles are constructed starting from role names and nominal roles, and then applying ∩, −, and
the inverse role operator ·−. The interpretation of complex roles is as expected:

• {(a, b)}I = {(aI , bI)}, for all a, b ∈ NI;

• (r1 ∩ r2)I = rI1 ∩ rI2 ;

• (r1 − r2)I = rI1 − rI2 .

We note that reasoning in ALCQIO+ is decidable: this DL can easily be embedded into C2 and,
therefore, ABox consistency is decidable in NEXPTIME even if the numbers inside number restrictions
are coded in binary [121, 125]. We now formulate the main result of this section:

Theorem 101. There are polynomials p1, p2, and q such that, for every ALCQIO+ ABox A and every
update U , there is an ALCQIO+ ABox A′ such that

• A ∗ U ≡ A′;

• |A′| ≤ p1(|A|) · 2p2(|U|);

• A′ can be computed in time q(|A′|).

Proof. We modify the proof of Theorem 91. For ALCQIO+, the construction of the concepts CU is
much simpler: it suffices to replace every concept name A in C with

A t t
¬A(a)∈U

{a} u ¬( t
A(a)∈U

{a})

and every role name r in C with

r ∪
⋃

¬r(a,b)∈U

{(a, b)} \ (
⋃

r(a,b)∈U

{(a, b)}).

The concepts CU are of size polynomial in the size of C and U . The ABox A′ can then be constructed
in the same way as in the proof of Theorem 91 and is polynomial in the size of A, but exponential in the
size of the update U . o
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Clearly, Theorem 101 is independent of the coding of numbers, and, also with iterated updates, updated
ABoxes remain polynomial in the size of the original ABox. An alternative to working with a description
logic such as ALCQIO+ is to work directly in the two-variable fragment with counting C2. Then, a
result analogous to Theorem 101 is easily obtained.

8.8 Outlook

There are two obvious directions for future work. The first direction is to alleviate the syntactic restriction
posed on concepts appearing in updates in a controlled way. For example, research on propositional
updates containing disjunctions [161, 71, 99, 141] suggests the feasibility of ABox updates with Boolean
combinations of concept names. We conjecture that natural generalizations of the semantics proposed
in the propositional case lead to useful notions of an ABox update under which the updates are still
computable. The second direction for future work is to incorporate cyclic TBoxes into our framework.
However, this direction appears to be considerably more difficult than the first one. As discussed in [10],
it is not even clear if a satisfactory semantics can be defined in this case.
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9 Semantic Service Discovery and Selection

9.1 Introduction

Description logics play an important rôle in the Semantic Web since they are the basis of the W3C-
recommended Web ontology language OWL [16, 83], which can be used to create semantic annotations
describing the content of Web pages [139].

In addition to this static information, the Web also offers services, which allow their users to effect
changes in the world, such as buying a book or opening a bank account. As in the case of static informa-
tion, annotations describing the semantics of the service should facilitate discovery of the right service
for a given task. Since services create changes of the world, a faithful representation of its functionality
should deal with this dynamic aspect in an appropriate way.

The OWL-S initiative [138] uses OWL to develop an ontology of services, covering different aspects
of Web services, among them functionality. To describe their functionality, services are viewed as pro-
cesses that (among other things) have pre-conditions and effects. However, the faithful representation of
the dynamic behaviour of such processes (what changes of the world they cause) is beyond the scope of
a static ontology language like OWL.

In AI, the notion of an action is used both in the planning and the reasoning about action communities
to denote an entity whose execution (by some agent) causes changes of the world (see e.g. [128, 140]).
Thus, it is not surprising that theories developed in these comunities have been applied in the context
of Semantic Web services. For example, [108, 109] use the situation calculus [128] and GOLOG [96]
to formalize the dynamic aspects of Web services and to describe their composition. In [136], OWL-S
process models are translated into the planning language of the HTN planning system SHOP2 [115],
which is then used for automatic Web service composition.

The approach used in this paper is in a similar vein. We are interested in the faithful description of
the changes to the world induced by the invocation of a service. To this purpose, we describe services
as actions that have pre-conditions and post-conditions (its effects). These conditions are expressed with
the help of description logic assertions, and the current state of the world is (incompletely) described
using a set of such assertions (a so-called ABox). In addition to atomic services, we also consider simple
composite services, which are sequences of atomic services. The semantics of a service is defined using
the possible models approach developed in the reasoning about action community [159, 160, 158, 48, 71],
and is fully compatible with the usual DL semantics. However, we will also show that this semantics can
be viewed as an instance of Reiter’s approach [127, 123, 95, 128] for taming the situation calculus. In
particular, our semantics solves the frame problem in precisely the same way.

Then, we concentrate on two basic reasoning problems for (possibly composite) services: executabil-
ity and projection. Executability checks whether, given our current and possibly incomplete knowledge
of the world, we can be sure that the service is executable, i.e., all pre-conditions are satisfied. Pro-
jection checks whether a certain condition always holds after the successful execution of the service,
given our knowledge of the current state of the world. Both tasks are relevant for service discovery.
It is obviously preferable to choose a service that is guaranteed to be executable in the current (maybe
incompletely known) situation. In addition, we execute the service to reach some goal, and we only want
to use services that achieve this goal. Though these reasoning tasks may not solve the discovery problem
completely, they appear to be indispensable subtasks.

The main contribution of this paper is an analysis of how the choice of the DL influences the complex-
ity of these two reasoning tasks for services. For the DLs L considered here, which are all sublanguages
of the DL ALCQIO, the complexity of executability and projection for services expressed in this DL
coincides with the complexity of standard DL reasoning in L extended with so-called nominals (i.e.,
singleton concepts). The reason is that we can reduce both tasks for services to the standard DL task of
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checking consistency of an ABox w.r.t. an acyclic TBox, provided that we can use nominals within con-
cept descriptions. This reduction is optimal since our hardness results show that the complexity increase
(sometimes) caused by the addition of nominal cannot be avoided. We also motivate the restrictions we
impose: we discuss the semantic and the computational problems that arise when these restrictions are
loosened. Most importantly, we prove that allowing for complex concepts in post-conditions not only
yields semantic problems, but also the undecidability of the two service reasoning problems.

The results from this section are publishad as a part of [10] Because of the space constraints, all
proofs and a more detailed discussion of the relationship to the situation calculus must be omitted. They
can be found in [11].

9.2 Service Descriptions

The framework for reasoning about Web services proposed in this section is not restricted to a particular
description logic, but can be instantiated with any description logic that seems appropriate for the appli-
cation domain at hand. For our complexity results, we consider the DL ALCQIO and a number of its
sublanguages. The reason for choosing ALCQIO is that it forms the core of OWL-DL, the description
logic variant of OWL. The additional OWL-DL constructors could be easily added, with the exception
of transitive roles which are discussed in Section 9.5.

We now introduce the formalism for reasoning about Web services. For simplicity, we concentrate
on ground services, i.e., services where the input parameters have already been instantiated by individual
names. Parametric services, which contain variables in place of individual names, should be viewed as a
compact representation of all its ground instances. The handling of such parametric services takes place
“outside” of our formalism and is not discussed in detail in the current paper. We may restrict ourselves to
ground services since all the reasoning tasks considered in this paper presuppose that parametric services
have already been instantiated. For other tasks, such as planning, it may be more natural to work directly
with parametric services.

Definition 102 (Service). Let T be an acyclic TBox. An atomic service S = (pre, occ, post) for an
acyclic TBox T consists of

• a finite set pre of ABox assertions, the pre-conditions;

• a finite set occ of occlusions of the form A(a) or r(a, b), with A a primitive concept name w.r.t.
T , r a role name, and a, b ∈ NI;

• a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ is an ABox assertion and
ψ is a primitive literal for T , i.e., an ABox assertion A(a), ¬A(a), s(a, b), or ¬s(a, b) with A a
primitive concept name in T and s a role name.

A composite service for T is a finite sequence S1, . . . , Sk of atomic services for T . A service is a
composite or an atomic service. 4

Intuitively, the pre-conditions specify under which conditions the service is applicable. The conditional
post-conditions ϕ/ψ say that, if ϕ is true before executing the service, then ψ should be true afterwards.
If ϕ is tautological, e.g. >(a) for some individual name a, then we write just ψ instead of ϕ/ψ. By the
law of inertia, only those facts that are forced to change by the post-conditions should be changed by
applying the service. However, it is well-known in the reasoning about action community that enforcing
this minimization of change strictly is sometimes too restrictive [98, 132]. The rôle of occlusions is to
describe those primitive literals to which the minimization condition does not apply.

To illustrate the definition of services, consider a Web site offering services for people who move
from Continental Europe to the United Kingdom. Among its services are getting a contract with an
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electricity provider, opening a bank account, and applying for child benefit. Obtaining an electricity
contract b for customer a does not involve any pre-conditions. It is described by the service S1, which
has an empty set of pre-conditions, an empty set of occlusions, and whose post-conditions are defined as
follows:

post1 = {holds(a, b), electricity contract(b)}.

Suppose the pre-condition of opening a bank account is that the customer c is eligible for a bank account
in the UK and holds a proof of address. Moreover, suppose that, if a letter from the employer is available,
then the bank account comes with a credit card, otherwise not. This service can be formalised by the
service description S2, which has an empty set of occlusions and the following pre- and post-conditions:

pre2 = {Eligible bank(a),∃holds.Proof address(a)}
post2 = {holds(a, c),

∃holds.Letter(a)/B acc credit(c),
¬∃holds.letter(a)/B acc no credit(c)}

Suppose that one can apply for child benefit in the UK if one has a child and a bank account. The service
S3 that offers this application then has the following pre- and post-conditions, and again an empty set of
occlusions:

pre3 = {parent of(a, d), ∃holds.B acc(a)}
post3 = {receives c benef for(a, d)}

The meaning of the concepts used in S1, S2, and S3 are defined in the following acyclic TBox T :

T = {Eligible bank ≡ ∃permanent resident.{UK},
Proof address ≡ Electricity contract,

B acc ≡ B acc credit t B acc no credit}

To define the semantics of services, we must first define how the application of an atomic service changes
the world, i.e., how it transforms a given interpretation I into a new one I ′. Our definition follows the
possible models approach (PMA) initially proposed in [159] and further elaborated e.g. in [160, 158,
48, 71]. Equivalently, we could have translated description logic into first-order logic and then define
executability and projection within Reiter’s framework for reasoning about deterministic actions [128].
We discuss this approach in Section 9.2. The idea underlying PMA is that the interpretation of atomic
concepts and roles should change as little as possible while still making the post-conditions true. Since
the interpretation of defined concepts is uniquely determined by the interpretation of primitive concepts
and role names, it is sufficient to impose this minimization of change condition on primitive concepts
and roles names. We assume that neither the interpretation domain nor the interpretation of individual
names is changed by the application of a service.

Formally, we define a precedence relation 4I,S,T on interpretations, which characterizes their “prox-
imity” to a given interpretation I. We use M1OM2 to denote the symmetric difference between the sets
M1 and M2.

Definition 103 (Preferred Interpretations). Let T be an acyclic TBox, S = (pre, occ, post) a service for
T , and I a model of T . We define the binary relation 4I,S,T on models of T by setting I ′ 4I,S,T I ′′ iff

• ((AIOAI
′
) \ {aI | A(a) ∈ occ}) ⊆ AIOAI′′ ;

• ((sIOsI
′
) \ {(aI , bI) | s(a, b) ∈ occ}) ⊆ sIOsI′′ .
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for all primitive concepts A, all role names s, and all domain elements d, e ∈ ∆I . When T is empty, we
write aber preceq sieht anders aus 4I,S instead of 4I,S,∅. 4

Intuitively, applying the service S transforms the interpretation I into the interpretation I ′ if I ′ satisfies
the post-conditions and is closest to I (as expressed by 4I,S,T ) among all interpretations satisfying the
post-conditions. Since we consider conditional post-conditions, defining when they are satisfied actually
involves both I and I ′. We say that the pair of interpretations I, I ′ satisfies the set of post-conditions
post (I, I ′ |= post) iff the following holds for all post-conditions ϕ/ψ in post: I ′ |= ψ whenever I |= ϕ.

Definition 104 (Service Application). Let T be an acyclic TBox, S = (pre, occ, post) a service for
T , and I, I ′ models of T sharing the same domain and interpretation of all individual names. Then
S may transform I to I ′ (I ⇒TS I ′) iff

1. I, I ′ |= post, and

2. there does not exist a model J of T such that I,J |= post, J 6= I ′, and J 4I,S,T I ′.

The composite service S1 . . . , Sk may transform I to I ′ (I ⇒TS1,...,Sk
I ′) iff there are models I0, . . . , Ik

of T with I = I0, I ′ = Ik, and Ii−1 ⇒TSi Ii for 1 ≤ i ≤ k. If T is empty, we write⇒S1,...,Sk instead
of⇒TS1,...,Sk

. 4

Note that this definition does not check whether the service is indeed executable, i.e., whether the pre-
conditions are satisfied. It just says what the result of applying the service is, irrespective of whether it
is executable or not.

Because of our restriction to acyclic TBoxes and primitive literals in the consequence part of post-
conditions, services without occlusions are deterministic, i.e., for any model I of T there exists at most
one model I ′ such that I ⇒TS I ′. First note that there are indeed cases where there is no successor model
I ′. In this case, we say that the service is inconsistent with I . It is easy to see that this is the case iff there
are post-conditions ϕ1/ψ, ϕ2/¬ψ ∈ post such that both ϕ1 and ϕ2 are satisfied in I. Second, assume
that S is consistent with I. The fact that there is exactly one model I ′ such that I ⇒TS I ′ is an easy
consequence of the next lemma, whose proof we leave as an easy exercise.

Lemma 105. Let T be an acyclic TBox, S = (pre, ∅, post) a service for T , and I ⇒TS I ′ for models
I, I ′ of T . If A is a primitive concept and s a role name, then

AI
′

:=
(
AI ∪ {bI | ϕ/A(b) ∈ post and I |= ϕ}

)
\

{bI | ϕ/¬A(b) ∈ post and I |= ϕ},

sI
′

:=
(
sI ∪ {(aI , bI) | ϕ/s(a, b) ∈ post and I |= ϕ}

)
\

{(aI , bI) | ϕ/¬s(a, b) ∈ post and I |= ϕ}.

Since the interpretation of the defined concepts is uniquely determined by the interpretation of the prim-
itive concepts and the role names, it follows that there cannot exist more than one I ′ such that I ⇒TS I ′.

In principle, we could have started with this more transparent definition of the relation I ⇒TS I ′ (with
some adaptations to deal with occlusions). However, in Section 9.5 we will discuss possible extensions of
our approach: for example, to cyclic TBoxes or post-conditionsϕ/ψ with more complex ABox assertions
ψ. In these cases, services are no longer deterministic, and thus the above lemma does not hold. The PMA
approach even yields a well-defined semantics for these services (though not necessarily a satisfactory
one).
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Reasoning about Services

Assume that we want to apply a composite service S1, . . . , Sk for the acyclic TBox T . Usually, we do
not have complete information about the world (i.e., the model I of T is not known completely). All we
know are some facts about this world, i.e., we have an ABoxA, and all models ofA together with T are
considered to be possible states of the world.

Before trying to apply the service, we want to know whether it is indeed executable, i.e., whether
all pre-conditions are satisfied. If the service is executable, we may want to know whether applying
it achieves the desired effect, i.e., whether an assertion that we want to make true really holds after
executing the service. These problems are basic inference problems considered in the reasoning about
action community, see e.g. [128]. In our setting, they can formally be defined as follows:

Definition 106 (Reasoning Services). Let T be an acyclic TBox, S1, . . . , Sk a service for T with Si =
(prei, occi, posti), and A an ABox.

• Executability: S1, . . . , Sk is executable in A w.r.t. T iff the following conditions are true in all
models I of A and T :

– I |= pre1 and

– for all i with 1 ≤ i < k and all interpretations I ′ with I ⇒TS1,...,Si
I ′, we have I ′ |= prei+1.

• Projection: an assertion ϕ is a consequence of applying S1, . . . , Sk inA w.r.t. T iff, for all models
I of A and T , and all I ′ with I ⇒TS1,...,Sk

I ′, we have I ′ |= ϕ.

If T is empty, we simply drop the phrase “w.r.t. T ” instead of writing “w.r.t. the empty TBox ∅”. 4

Note that executability alone does not guarantee that we cannot get stuck while executing a composite
service. It may also happen that the service to be applied is inconsistent with the current interpretation.
This cannot happen if we additionally know that all services Si are consistent with T in the following
sense: Si is not inconsistent with any model I of T . Summing up, to achieve an effect ϕ (an ABox
assertion) starting from a world description A and given a TBox T , we need a service S1, . . . , Sk such
that S1, . . . , Sk is executable inA w.r.t T , Si is consistent with T for 1 ≤ i ≤ k, and ϕ is a consequence
of applying S1, . . . , Sk in A w.r.t. T .

We do not view consistency with the considered TBox T as a reasoning task, but rather as a condition
that we generally expect to be satisfied by all well-formed services. Still, we should be able to decide
whether a service is consistent with a TBox. This can be done by a reduction to standard DL reasoning:
given the characterization of consistency with a model stated above Lemma 105, it is not difficult to see
that an atomic service S with post-conditions posti is consistent with a TBox T iff {ϕ1/ψ, ϕ2/¬ψ} ⊆
posti implies that the ABox {ϕ1, ϕ2} is inconsistent w.r.t. T .

In our example, all three services are consistent with T . Given the ABox

A = {parent(a, d), permanent resident(a, UK)},

it is easily checked that the composite service S = S1, S2, S3 is executable, and that
receives c benef for(a, d) is a consequence of applying S in A w.r.t. T . Note that the presence
of the TBox is crucial for this result.

The main aim of this paper is to show how the two reasoning tasks executability and projection can
be computed, and how their complexity depends on the description logic used within our framework.
There is one particularly simple case: for atomic services S, computing executability boils down to
standard DL reasoning: S is executable inA w.r.t. T iffA∪{¬ϕ} is inconsistent w.r.t. T for all ϕ ∈ pre.
Executability for composite services is less trivial, and the same holds for projection of both atomic and
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composite services. We show now that the two reasoning services can be mutually polynomially reduced
to each other. This allows us to concentrate on projection when proving decidability and complexity
results. The following lemma is proved in [10]:

Lemma 107. Executability and projection can be reduced to each other in polynomial time.

Relationship with SitCalc

We have chosen a possible models approach to define the effects of our services. More established and
widely used in the reasoning about action community is the situation calculus [128]. In contrast to the
PMA, the situation calculus uses an axiomatic approach to define the effects of actions. However, if
we consider services without occlusions, then our approach can be seen as an instance of the situation
calculus.

Suppose an ABox A, an acyclic TBox T , and a composite service S1, . . . , Sk are given. First,
we can get rid of the TBox by expanding it and then replacing in A and the services S1, . . . , Sk the
defined concepts with their definitions.28 Consider now the simple description of the relation⇒TS given
in Lemma 105. By taking the standard translation of ALCQIO into first-order logic [8], we can easily
translate this description into action pre-conditions and successor state axioms in the sense of [128]. In
this setting, primitive concepts and role names are regarded as fluents. We take the first-order translation
of the ABox as the initial state, and then we can show that our notions of executability and projection are
instances of Reiter’s definitions (see [11] for details).

The translation of our approach into a situation calculus axiomatization à la Reiter shows that our
formalism is firmly based on research on reasoning about action. However, this does not mean that
the inference problems introduced above can be solved using an implemented system for reasoning
about action, such as GOLOG [96]. In fact, in Reiter’s approach, regression [128] is used to solve the
executability and the projection problem. However, when applied to (the translation of) our services,
regression yields a standard first-order theory, which is not in the scope of what GOLOG can handle
without calling a general first-order theorem prover. Thus, the translation into situation calculus does not
directly provide us with decidability or complexity results for our reasoning problems.

9.3 Decision Procedures

We develop reasoning procedures for the reasoning services introduced in Section 9.2 and analyze the
computational complexity of executability and projection of different fragments ofALCQIO. Through-
out this section, we assume that all services are consistent with their TBox, and that TBoxes are acyclic.

By Lemma 107, we can restrict the attention to the projection problem. We solve this problem by
an approach that is similar to the regression operation used in the situation calculus approach [128]: the
main idea is to reduce projection, which considers sequences of interpretations I0, . . . , Ik obtained by
service application, to standard reasoning tasks for single interpretations I. Concerning the standard
reasoning tasks, we consider two options:

Firstly, we show that the theory we obtain can again be expressed by a description logic TBox and ABox.
This way, projection is reduced to the inconsistency of DL ABoxes, from which we obtain decidability
results and upper complexity bounds. Interestingly, when taking this approach, we cannot always stay
within the DL we started with since we need to introduce nominals in the reduction. We prove lower
complexity bounds for projection showing that the increase in complexity that is sometimes obtained by
introducing nominals cannot be avoided.

28Alternatively, we could handle the TBox as state constraints.
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Secondly, we show that we can express the resulting theory in C2, the two-variable fragment of first-
order logic extended with counting quantifiers. This way, projection is reduced to satisfiability in C2.
We obtain a simpler reduction, but less sharp complexity results since satisfiability in C2 is NEXPTIME-
complete [121, 124], and thus quite costly from a computational perspective. However, there are two
exceptional cases where we obtain a tight upper bound using the second translation, but not the first:
ALCQI andALCQIO with numbers in number restrictions coded in binary, i.e., the size of (> n r C)
and (6 n r C) is assumed to be log(n) + 1 plus the size of C.

The following results are proved in this section:

Theorem 108. Executability and projection of composite services w.r.t. acyclic TBoxes are

1. PSPACE-complete for ALC, ALCO, ALCQ, and ALCQO if numbers in number restrictions are
coded in unary;

2. EXPTIME-complete for ALCI and ALCIO;

3. co-NEXPTIME-complete for ALCQI and ALCQIO, regardless of whether numbers in number
restrictions are coded in unary or binary.

Thus, in all cases considered, the complexity of executability and projection for a description logic L
coincides with the complexity of inconsistency of ABoxes in LO, the extension of L with nominals.

Reduction to DL Reasoning

We reduce projection in fragments L of ALCQIO to ABox (in)consistency in the extension LO of
L with nominals. Here, we assume unary coding of numbers in number restrictions, i.e., the size of
(6 n r C) and (> n r C) is assumed to be n+ 1 plus the size of C.

Theorem 109. Let L ∈ {ALC,ALCI,ALCO,ALCIO,ALCQ,ALCQO,ALCQI,ALCQIO}.
Then projection of composite services formulated in L can be polynomially reduced to ABox incon-
sistency in LO w.r.t. acyclic TBoxes.

Let L be one of the languages listed in Theorem 109, and let A be an ABox, S1, . . . , Sn a composite
service with Si = (prei, occi, posti), T an acyclic TBox, and ϕ0 an assertion, all formulated in L. We
are interested in deciding whether ϕ0 is a consequence of applying S1, . . . , Sn in A0 w.r.t. T . Without
loss of generality, we assume that ϕ0 is of the form A0(a0), for a concept name A0:

1. Assertions r(a, b) and ¬r(a, b) can be replaced with (∃r.{b})(a) and (∀r.¬{b})(a), respectively.
This presupposes nominals, but nominals will be used in our reduction, anyway.

2. If ϕ = C(a) with C not a concept name, we add a concept definition A0 ≡ C to the TBox T , and
then consider ϕ = A0(a).

In the following, we call A, T , S1, . . . , Sn, and ϕ0 the input. We devise a reduction ABox Ared, an
(acyclic) reduction TBox Tred, and a reduction assertion ϕred such that

ϕ0 is a consequence of applying S1, . . . , Sn in A w.r.t. T iff Ared is inconsistent w.r.t. Tred.

The main idea of the reduction is to define Ared and Tred such that each single model of them encodes
a sequence of interpretations I0, . . . , In obtained by applying S1, . . . , Sn in A (and all such sequences
are encoded by reduction models). To ensure this, we use the following intuitions:
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• The reduction ABox states that (i) the “I0-part” of a reduction model I is a model of A, and that
(ii) the Ii-part of I satisfies the post-conditions posti, for 1 ≤ i ≤ n.

• The reduction TBox states that the Ii-part of I is a model of T , for each i ≤ n.

• We need to describe the law of inertia, i.e., the fact that we want to minimize the changes that are
performed when applying a service. This task is split among the reduction ABox and TBox.

To understand the splitting mentioned in the third item, it is important to distinguish two kinds of ele-
ments in interpretations: we call an element d ∈ ∆I named if aI = d for some individual a used in the
input, and unnamed otherwise. Intuitively, the minimization of changes on named elements can be de-
scribed in a direct way through the ABoxAred, while the minimization of changes on unnamed elements
is achieved through a suitable encoding of T in Tred. Indeed, minimizing changes on unnamed elements
boils down to enforcing that changes in concept (non)membership and role (non)membership involving
(at least) one unnamed domain element never occur: due to the restriction to primitive concept names in
post-conditions, our services are not expressive enough to enforce such changes.

In the reduction, we use the following concept names, role names, and individual names:

• The smallest set that contains all concepts appearing in the input and is closed under taking sub-
concepts is denoted with Sub. For every C ∈ Sub and every i ≤ n, we introduce a concept name
T

(i)
C . It will be ensured by the TBox Tred that the concept name T (i)

C stands for the interpretation
of C in the i-th interpretation Ii.

• We use a concept nameA(i) for every primitive concept nameA used in the input and every i ≤ n.
Intuitively, A(i) represents the interpretation of the concept name A in Ii, but only with respect to
the named domain elements. Since concept membership of unnamed elements never changes, the
“unnamed part” of the interpretation of A in Ii can be found in A(0), for any i ≤ n.

• We use a role name r(i) for every role name r used in the input and every i ≤ n. Similarly to con-
cept names, r(i) stands for the interpretation of r in Ii but only concerning those role relationships
where both involved domain elements are named. All other role relationships never change and
are stored in r(0).

• We use a concept name N to denote named elements of interpretations.

• The set of individual names used in the input is denoted with Obj. For every a ∈ Obj, we introduce
an auxiliary role name ra.

• Finally, we use an auxiliary individual name ahelp /∈ Obj.

The reduction TBox Tred consists of several components. The first component simply states that N
denotes exactly the named domain elements:

TN :=
{
N ≡ t

a∈Obj
{a}
}
.

The second component Tsub contains one concept definition for every i ≤ n and every concept C ∈
Sub that is not a defined concept name in T . These concept definitions ensure that T (i)

C stands for the
interpretation of C in Ii as desired. Details are given in Figure 17, where r−(i) denotes (r(i))− in the
concept definitions for number restrictions. The first concept definition reflects the fact that concept
names A(i) only represent the extension of A in Ii for named domain elements. To get T (i)

A , the full
extension of A in Ii, we use A(i) for named elements and A(0) for unnamed ones. A similar splitting
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C )) u (> (m− j) r(0) (¬N u T (i)
C ))

))
t
(
¬N u (> m r(0) T

(i)
C )
)

T
(i)
(6m r C) ≡

(
N u t

0≤j≤m

((
(6 j r(i) (N u T (i)

C )) u (6 (m− j) r(0) (¬N u T (i)
C ))

))
t
(
¬N u (6 m r(0) T

(i)
C )
)

Figure 17: The TBox Tsub.

of role relationships into a named part and an unnamed part is reflected in the translation of number
restrictions given in the last two concept definitions.

Now we can assemble the reduction TBox Tred:

Tred := Tsub ∪ TN ∪ {T
(i)
A ≡ T

(i)
E | A ≡ E ∈ T , i ≤ n}.

The last summand of Tred ensures that all definitions from the input TBox T are satisfied by I0, . . . , In.

The reduction ABox Ared also consists of several components. The first component ensures that, for
each individual a occurring in the input, the auxiliary role ra connects each individual (including ahelp)
with a, and only with a. This construction will simplify the definition of the other components of Ared:

Aaux :=
{
a :
(
∃rb.{b} u ∀rb.{b}

)
|a ∈ Obj ∪ {ahelp}, b ∈ Obj

}
.

To continue, we first introduce the following abbreviations, for i ≤ n:

pi(C(a)) := ∀ra.T (i)
C

pi(r(a, b)) := ∀ra.∃r(i).{b}
pi(¬r(a, b)) := ∀ra.∀r(i).¬{b}.

The next component of Ared formalizes satisfaction of the post-conditions. Note that its formulation
relies on Aaux. For 1 ≤ i ≤ n, we define

A(i)
post :=

{
ahelp :

(
pi−1(ϕ)→ pi(ψ)

)
| ϕ/ψ ∈ posti

}
.

We now formalize the minimization of changes on named elements. For 1 ≤ i ≤ n the ABox A(i)
min

contains

– the following assertions for every a ∈ Obj and every primitive concept name A with A(a) /∈ occi:

a:
((
A(i−1) u u

ϕ/¬A(a)∈posti
¬pi−1(ϕ)

)
→ A(i)

)
a:
((
¬A(i−1) u u

ϕ/A(a)∈posti
¬pi−1(ϕ)

)
→ ¬A(i)

)
;
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– the following assertions for all a, b ∈ Obj and every role name r with r(a, b) /∈ occi:

a:
((
∃r(i−1).{b} u u

ϕ/¬r(a,b)∈posti
¬pi−1(ϕ)

)
→ ∃r(i).{b}

)
a:
((
∀r(i−1).¬{b} u u

ϕ/r(a,b)∈posti
¬pi−1(ϕ)

)
→ ∀r(i).¬{b}

)
.

The ABoxAini ensures that the first interpretation of the encoded sequence is a model of the input ABox
A:

Aini := {T (0)
C (a) | C(a) ∈ A} ∪

{r(0)(a, b) | r(a, b) ∈ A} ∪

{¬r(0)(a, b) | ¬r(a, b) ∈ A}.

We can now assemble Ared:
Ared := Aini ∪ Aaux ∪

A(1)
post ∪ · · · ∪ A

(n)
post∪

A(1)
min ∪ · · · ∪ A

(n)
min ∪

{¬T (n)
A0

(a0)}.

The proof of the following lemma can be found in [11].

Lemma 110. A0(a0) is a consequence of applying S1, . . . , Sn in A w.r.t. T iff Ared is inconsistent w.r.t.
Tred.

Since the size ofAred, Tred, and ϕred are clearly polynomial in the size of the input (recall that we assume
unary coding of numbers in number restrictions), Lemma 110 immediately yields Theorem 109. Thus,
for the DLsL considered in Theorem 109, upper complexity bounds for ABox inconsistency in LO carry
over to projection in L. Many such upper bounds are available from the literature. Indeed, there is only
one case where we cannot draw upon existing results: the complexity of ABox consistency in ALCQO
w.r.t. acyclic TBoxes. For the sake of completeness, we prove that this problem is PSPACE-complete
in Appendix A of [11]. Lower complexity bounds carry over from ABox inconsistency in a DL L to
projection in the same DL: A is not consistent w.r.t. T iff a : ⊥ is a consequence of applying the empty
service (∅, ∅, ∅) in A w.r.t. T . Thus, we obtain tight bounds for projection in those DLs L that allow for
nominals or where the addition of nominals does not increase the complexity of reasoning. Using the
known lower complexity bounds for ABox (in)consinstency [135, 4, 144, 121], we obtain the following
Corollary:

Corollary 111. Executability and projection w.r.t. acyclic TBoxes are

1. PSPACE-complete for ALC, ALCO, ALCQ, ALCQO;

2. in EXPTIME for ALCI;

3. EXPTIME-complete for ALCIO;

4. in co-NEXPTIME for ALCQI;

5. co-NEXPTIME-complete for ALCQIO.

Points 1, 4, and 5 presuppose that numbers in number restrictions are coded in unary.
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In Section 9.4, we prove matching lower bounds for Points 2 and 4 of Corollary 108.

Reduction to C2

Alternatively to reducing to standard DL reasoning, we can reduce projection to satisfiability in C2. This
yields a simpler translation and a co-NEXPTIME upper bound for projection in ALCQI and ALCQIO
with numbers in number restrictions coded in binary—in contrast to the reduction given in the previous
section which requires unary coding to yield co-NEXPTIME upper bounds (otherwise, the last two lines
of Figure 17 yield an exponential blow-up). However, we cannot get any PSPACE or EXPTIME upper
bounds from the C2-translation since satisfiability in C2 is NEXPTIME-complete [121, 124].

The intuitions underlying the reduction to C2 are very similar to those given in the previous section,
apart from one significant simplification: since C2 is more expressive thanALCQIO, it is not necessary
to split the interpretations of concept and role names into a named part and an unnamed part. Full details
are given in [11]. We obtain the following result:

Theorem 112. Projection of composite services formulated in ALCQIO can be polynomially reduced
to satisfiability in C2.

Together with the reduction from executability to projection, this yields the following result, which
sharpens Points 4 and 5 of Corollary 111 to cover also the case of binary coding of numbers inside
number restrictions.

Corollary 113. Executability and projection w.r.t. acyclic TBoxes are in co-NEXPTIME for ALCQIO
even if the numbers in number restrictions are coded in binary.

A matching lower bound for ALCQIO is obtained from Point 5 of Corollary 111. As shown in the fol-
lowing subsection, Corollary 113 also yields a tight upper bound for the fragmentALCQI ofALCQIO.

9.4 Hardness Results

We show that the upper bounds for executability and projection obtained in the previous two subsections
cannot be improved. In Section 9.3, we have already obtained matching lower bounds for DLs L where
the complexity of ABox inconsistency coincides in L and LO (L’s extension with nominals). It thus
remains to consider cases where ABox inconsistency in LO is harder than in L: we prove an EXPTIME

lower bound for projection in ALCI and a co-NExpTime lower bound for projection in ALCQI with
numbers coded in unary. By Lemma 107, these bounds carry over to executability, thus matching Points 2
and 4 of Corollary 108. The results established in this subsection show that the additional complexity
that is obtained by introducing nominals in the reduction of projection to ABox consequence cannot be
avoided.

The idea for proving the lower bounds is to reduce, for L ∈ {ALCI,ALCQI}, unsatisfiability
of LO concepts to projection in L. In the case of ALCQI, we can even obtain a slightly stronger
result by reducing concept unsatisfiability in ALCFIO to projection in ALCFI, where ALCFIO is
ALCQIO with numbers occurring in number restrictions limited to {0, 1}, and ALCFI is obtained
from ALCFIO by dropping nominals.29 Observe that the coding of numbers, i.e. unary vs. binary, is
not an issue in ALCFIO and ALCFI, and thus a lower bound for projection in ALCFI implies the
same bound for projection inALCQI with unary coding of numbers. Our aim is to prove the following.

Theorem 114. There exists an ABox A and an atomic service S formulated in ALCI (ALCFI) such
that the following tasks are EXPTIME-hard (co-NEXPTIME-hard): given an ABox assertion ϕ,

29We admit the number 0 to preserve the abbreviation ∀r.C that stands for (6 0 r ¬C).
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• decide whether ϕ is a consequence of applying S in A;

• decide whether S, ({ϕ}, ∅, ∅) is executable in A.

Note that we cannot obtain the same hardness results for executability of atomic services: (i) executability
of atomic services in any DL L can be trivially reduced to ABox (in)consistency in L, and (ii) the
complexity of ABox consistency is identical to the complexity of concept satisfiability in ALCI and
ALCFI.

For the proof of Theorem 114, let L ∈ {ALCIO,ALCFIO} and C an L-concept whose unsatisfi-
ability is to be decided. For simplicity, we assume that C contains only a single nominal {n}. This can
be done w.l.o.g. since the complexity of unsatisfiability in ALCIO (resp. ALCFIO) is already EXP-
TIME-hard (resp. co-NEXPTIME-hard) if only a single nominal is available and TBoxes are not admitted
[4, 144, 143]. For the reduction, we reserve a new concept name O and a role name u that do not occur
in C. Let

rol(C) := {r, r− | r ∈ NR used in C}

and let C[O/{n}] denote the result of replacing each occurrence of the nominal {n} in C with the
concept name O. We define an ABox A, an atomic service S = (∅, ∅, postS), and a concept DC as
follows:

AC := {a : (¬O u ∀u.¬O u ∀u. u
r∈rol(C)

∀r.∃u−.¬O)}

postS := O(a)

DC := ∃u.C[O/{n}] u (∀u. u
r∈rol(C)

∀r.∀u−.O)

Let I and I ′ be models witnessing that ¬DC(a) is not a consequence of S, i.e., I |= AC , I ⇒S I ′, and
I ′ |= DC(a). The reduction rests on the following ideas:

• By the first conjunct of (the concept in) AC , the post-condition, and Lemma 105, the only differ-
ence between I and I ′ is that aI = aI

′ ∈ OI′ \OI ;

• By the first conjunct of (the concept in) AC and the post-condition, the only difference between I
and I ′ is that aI = aI

′ ∈ OI′ \OI ;

• Using the first and third conjunct of AC together with the post-condition and the second conjunct
of DC , it can be shown that (aI , x) ∈ uI = uI

′
for each x from the relevant part rel of ∆I , where

rel is defined as the smallest set that contains aI and is closed under taking successors for the roles
from rol(C);

• Thus, the second conjunct of AC ensures that OI ∩ rel = ∅ and OI
′ ∩ rel = {aI}.

• Due to the first conjunct of DC , C[O/{n}] is satisfied in the relevant part of I ′. By the previous
item, the concept name O behaves like a nominal.

In [11], we prove the following lemma, which immediately yields Theorem 114.

Lemma 115. The following statements are equivalent:

1. C is satisfiable.

2. ¬DC(a) is not a consequence of applying S in AC .

3. the composite service S, ({¬DC(a)}, ∅, ∅) is not executable in AC .
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9.5 Problematic Extensions

In the DL framework for reasoning about services proposed in this paper, we have adopted several
syntactic restrictions:

1. we do not allow for transitive roles, which are available in OWL-DL;

2. we only allow for acyclic TBoxes rather than arbitrary (also cyclic) ones or even so-called general
concept inclusions (GCIs), which are also available in OWL-DL;

3. in post-conditions ϕ/C(a), we require C to be a primitive concept or its negation, rather than
admitting arbitrary, complex concepts.

The purpose of this section is to provide a justification for these restrictions: we show that removing the
first restriction leads to semantic problems, while removing the second and third restriction leads to both
semantic and computational problems.

Transitive Roles

Transitive roles are offered by most modern DL systems [79, 66], and also by the ontology languages
OWL, DAML+OIL, and OIL [83, 81, 49]. They are added to ALCQIO by reserving a subset of roles
NtR of NR such that all r ∈ NtR are interpreted as transitive relations rI in all models I. We show that
admitting the use of transitive roles in post-conditions yields semantic problems.

By Lemma 105, services without occlusions S = (pre, ∅, post) are deterministic in the sense that
I ⇒TS I ′, and I ⇒TS I ′′ implies I ′ = I ′′. This is not any more the case for services referring to
transitive roles: consider the service S = (∅, ∅, {has-part(car, engine)}) that adds an engine to a car. Let
has-part be a transitive role and take the model

∆I := {car, engine, valve}

has-partI := {(engine, valve)}

zI := z for z ∈ ∆I .

Then we have both I ⇒S I ′ and I ⇒S I ′′, where I ′ is obtained from I by setting

has-partI
′

:= {(car, engine), (engine, valve), (car, valve)}

and I ′′ is obtained from I by setting

has-partI
′′

:= {(car, engine)}.

Observe that, in I ′′, the valve is no longer part of the engine since adding only (car, engine) to has-partI

violates the transitivity of has-part. Hence, in contrast to our intuition, has-part(engine, valve) is not a
cosequence of applying S in {has-part(engine, valve)}.

In the area of reasoning about actions, it is well-known that non-determinism of this kind requires
extra effort to obtain sensible consequences of action/service executions [99, 141]. Thus, we need a
mechanism for eliminating unwanted outcomes or preferring the desired ones. We leave such extensions
as future work.
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Cyclic TBoxes and GCIs

Assume that we admit arbitrary (also cyclic) TBoxes as defined in Section 8.2. Then semantic problems
arise due to a crucial difference between cyclic and acyclic TBoxes: for acyclic TBoxes, the interpretation
of primitive concepts uniquely determines the extension of the defined ones, while this is not the case
for cyclic ones. Together with the fact that the preference relation between interpretations 4I,S,T only
takes into account primitive concepts, this means that the minimization of changes induced by service
application does not work as expected. To see this, consider the following example:

A := {Dog(a)}

T := {Dog ≡ ∃parent.Dog}

post := {Cat(b)}

Then, Dog(a) is not a consequence of applying S = (∅, ∅, post) in A w.r.t. T , as one would intuitively
expect. This is due to the following countermodel. Define an interpretation I as follows:

∆I := {b} ∪ {d0, d1, d2, . . .}

DogI := {d0, d1, d2, . . .}

CatI := ∅

parentI := {(di, di+1) | i ∈ IN}

aI := d0

bI := b

The interpretation I ′ is defined as I, with the exception that CatI
′

= {b} and DogI
′

:= ∅. Using the
fact that Dog is a defined concept and thus not considered in the definition of 4I,S,T , it is easy to see
that I |= A, I ⇒TS I ′, and I ′ 6|= Dog(a).

There appear to be two possible ways to solve this problem: either include defined concepts in the
minimization of changes, i.e., treat them in the definition of 4I,S,T in the same way as primitive concepts,
or use a semantics that regains the “definitorial power” of acyclic TBoxes, namely that an interpretation
of the primitive concepts uniquely determines the interpretation of defined concepts. The first option is
infeasible since minimizing a defined conceptAwith TBox definitionA ≡ C corresponds to minimizing
the complex concept C, and it is well-known that even the minimization of arbitrary Boolean concepts
(in particular of disjunctions) induces technical problems and counterintuitive results [98]. The second
option seems more feasible: if we adopt the least or greatest fixpoint semantics for TBoxes as first pro-
posed by Nebel [116], it is indeed the case that primitive concepts uniquely determine defined concepts.
Thus, it may be interesting to analyze services with cyclic TBoxes under fixpoint semantics as future
work.

Even more general than admitting cyclic TBoxes is to allow general concept inclusions (GCIs). A
GCI is an expression C v D, with C and D (possibly complex) concepts. An interpretation I satisfies
a GCI C v D iff CI ⊆ DI . As we can rewrite a concept equation A ≡ C as two GCIs A v C
and C v A, it should be obvious that (sets of) GCIs strictly generalize (also cyclic) TBoxes. When
admitting GCIs in connection with services, we thus run into the same problems as with cyclic TBoxes.
However, the problems are even more serious in the case of GCIs: first, GCIs do not allow an obvious
partitioning of concept names into primitive and defined ones. Thus, in the definition of 4I,S,T , the only
choice is to minimize all concept names, which corresponds to the problematic minimization of complex
concepts mentioned above. Second, the missing distinction between primitive and defined concepts
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means that we can no longer restrict concepts C in post-conditions ϕ/C(a) to literals over primitive
concept names. The best we can do is to restrict such concepts to literals over arbitrary concept names.
However, together with the two GCIs A v C and C v A with C a complex concept, the literal post-
condition ϕ/A(a) is equivalent to the complex one ϕ/C(a). Thus, it seems that GCIs cannot be admitted
without simultaneously admitting arbitrarily complex concepts in post-conditions. As we will discuss in
the following section, this step induces additional semantic problems as well as computational problems.

Complex Concepts in Post-Conditions

Let a generalized service be a service where post-conditions are of the form ϕ/ψ for arbitrary assertions
ϕ and ψ. In other words, ψ is no longer restricted to be a literal over primitive concepts. For simplicity,
further assume that occlusions are disallowed and that neither TBoxes nor GCIs are admitted. As we shall
discuss in the following, there are both semantic and computational problems with generalized services:
firstly, they offer an expressivity that is difficult to control and often yields unexpected consequences.
Secondly, reasoning with generalized services easily becomes undecidable.

We start by presenting semantic problems induced by complex concepts in post-conditions. Clearly,
generalized services such as S = (∅, ∅, {a : A tB}) are not deterministic and thus introduce similar
complications as discussed for transitive roles. However, disjunction is not the only constructor to intro-
duce non-determinism when allowed in post-conditions:

• If a post-condition contains a : ∃r.A and this assertion was not already satisfied before the execu-
tion of the service, then the non-determinism lies in the choice of a witness object, i.e., any domain
element x ∈ ∆I may be chosen to satisfy (aI , x) ∈ rI and x ∈ AI after execution of the service.

The fact that any domain element is a potential witness object implies that, e.g., Female(mary) is
not a consequence of applying the service

(∅, ∅, {mary : ∃has-child.¬Female})

in the ABox {Female(mary)}.

• If a post-condition contains a : ∀r.A and this assertion was not already satisfied before the execu-
tion of the service, we also have a non-deterministic situation: for each object x ∈ ∆I such that
(aI , x) ∈ rI and x 6∈ AI holds before the execution of the service, we have to decide whether
(aJ , x) /∈ rJ or x ∈ AJ should be satisfied after execution of the service.30

Similarly to the existential case, we may obtain surprising results due to the fact that any domain
element x ∈ ∆I may satisfy (aI , x) ∈ rI and x ∈ AI unless explicitly stated otherwise. This
means that, e.g., Filled(tire2) is not a consequence of applying the service

(∅, ∅, {car1:∀tire.Filled})

in the ABox {tire(car2, tire2), ¬Filled(tire2)}.

Complex concepts with many nested operators may obviously introduce a rather high degree of non-
determinism. While simple non-determinism such as the one introduced by transitive roles or post-
conditions a : C tD may be dealt with in a satisfactory way [99, 141], none of the mainstream action
formalisms allows arbitrary formulas in post-conditions. Indeed, most formalisms such as the basic sit-
uation calculus restrict themselves to literals in post-conditions [128, 140]—just as our non-generalized
services do.

30There may even be cases where it is intended that both conditions are satisfied after service execution; this is, however, not
justified by the PMA semantics of generalized services.
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We continue by presenting computational problems which occur in the presence of complex con-
cepts in post-conditions of actions. Namely, executability and projection for generalized services easily
become undecidable. To illustrate this, we prove undecidability of these reasoning tasks for the DL
ALCFI that has been introduced in Section 9.4.31 This result should be contrasted with the fact that,
by Theorem 108, reasoning with non-generalized services is decidable even for powerful extensions of
ALCFI. Note thatALCFI may be viewed as a fragment of OWL light, the weakest OWL dialect [82].

Theorem 116. There exists a generalized atomic service S and an ABox A formulated in ALCFI such
that the following problems are undecidable: given a concept C,

• decide whether the assertion C(a) is a consequence of applying S in A;

• decide whether the composite service S, S′ is executable in A, where S′ = ({C(a)}, ∅, ∅).

The proof of Theorem 116 is by reduction of the well-known undecidable domino problem [20] to non-
consequence and non-executability. For details, see [11].

9.6 Conclusion

The main technical result presented in this section is that standard problems in reasoning about ac-
tion (projection, executability) become decidable if one restricts the logic for describing pre- and post-
conditions as well as the state of the world to certain decidable description logics L. The complexity of
these inferences is determined by the complexity of standard DL reasoning in L extended by nominals.

This is only a first proposal for a formalism describing the functionality of Web services, which can
be extended in several directions. First, instead of using an approach similar to regression to decide
the projection problem, one could also try to apply progression, i.e., to calculate a successor ABox that
has, as its models, all the successors of the models of the original ABox. Results on ABox updates are
presented in Section 8. Second, the expressiveness of the basic action formalism introduced by Reiter has
been extended in several directions, and we need to check for which of these extensions our results still
hold. Third, we have used only composition to construct composite services, whereas OWL-S proposes
also more complex operators. These could, for example, be modeled by appropriate GOLOG programs.
Finally, to allow for automatic composition of services, one would need to look at how planning can be
done in our formalism.

31Recall that ALCFI is obtained from ALCQI by limiting numbers occurring in number restrictions to {0, 1}.
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Rosati, B. Suntisrivaraporn, and S. Tessaris. Formalisms for representing Ontologies: State of the
art survey. Technical Report TONES-D06, Tones Consortium, May 2006. Available at http:
//www.tonesproject.org/.

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The Descrip-
tion Logic Handbook – Theory, Implementaion and Applications. Cambridge University Press,
2003.

[9] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An empirical analysis of
optimization techniques for terminological representation systems or: Making KRIS get a move
on. Applied Artificial Intelligence. Special Issue on Knowledge Base Management, 4:109–132,
1994.

[10] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description logics and ac-
tion formalisms: First results. In Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI-05), Pittsburgh, PA, USA, 2005.

[11] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description logics and action
formalisms for reasoning about web services. LTCS-Report 05-02, TU Dresden, Germany, 2005.
See http://lat.inf.tu-dresden.de/research/reports.html.

[12] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

c©2007/TONES – July, 2007 133/143 TONES-D18– v.1.1



FP6-7603 – TONES Thinking ONtologiES WP4

[13] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applications.
2003.

[14] Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard Nebel, and Hans-Jürgen Profitlich.
An empirical analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on Knowledge Base
Management, 4:109–132, 1994.

[15] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jürgen Profitlich, and Enrico Franconi.
An empirical analysis of optimization techniques for terminological representation systems. In
Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’92),
pages 270–281. Morgan Kaufmann, 1992.

[16] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics as Ontology Languages for
the Semantic Web. In Dieter Hutter and Werner Stephan, editors, Festschrift in honor of Jörg
Siekmann, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2003.

[17] Franz Baader and Ulrike Sattler. Tableau algorithms for description logics. In R. Dyckhoff, editor,
Proc. of the 9th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2000), volume 1847 of Lecture Notes in Artificial Intelligence, pages 1–18. Springer,
2000.

[18] S. Bechhofer, I. Horrocks, and D. Turi. The OWL instance store: System description. In Proceed-
ings CADE-20, LNCS. Springer Verlag, 2005.

[19] Sean Bechhofer, R. Möller, and Peter Crowther. The DIG Description Logic Interface. In Pro-
ceedings of the International Workshop on Description Logics (DL-2003), Rome, Italy, September
5-7, 2003.

[20] R. Berger. The undecidability of the dominoe problem. Memoirs of the American Mathematical
Society, 66:1–72, 1966.

[21] Tim Berners Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American, May
2001.

[22] A. Borgida, M. Lenzerini, and R. Rosati. Description logics for databases. In Franz Baader,
Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors,
The Description Logic Handbook: Theory, Implementation, and Applications, pages 462–484.
Cambridge University Press, 2003.

[23] Alexander Borgida. On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence, 82(1–2):353–367, 1996.

[24] Alexander Borgida and Ronald J. Brachman. Conceptual modeling with description logics. In
Baader et al. [8], chapter 10, pages 349–372.

[25] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin Resnick.
CLASSIC: A structural data model for objects. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 59–67, 1989.

[26] Dan Brickley and R. V. Guha. Resource description framework (rdf) schema specification 1.0.
Technical report, World Wide Web Consortium, March 2000.

c©2007/TONES – July, 2007 134/143 TONES-D18– v.1.1



FP6-7603 – TONES Thinking ONtologiES WP4

[27] Marco Cadoli, Francesco M. Donini, Paolo Liberatore, and Marco Schaerf. The size of a revised
knowledge base. Artificial Intelligence, 115(1):25–64, 1999.

[28] Andrea Calı̀, Domenico Lembo, and Riccardo Rosati. Query rewriting and answering under con-
straints in data integration systems. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2003), pages 16–21, 2003.

[29] D. Calvanese, E. Franconi, B. Glimm, B. Cuenca Grau, I. Horrocks, A. Kaplunova, D. Lembo,
M. Lenzerini, C. Lutz, R. Möller, R. Rosati, U. Sattler, S. Tessaris, and A.-Y. Turhan. D10:
Tasks for Ontology Access, Processing, and Usage. Project deliverable, TONES, 2006.
http://www.tonesproject.org.

[30] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of query
answering in description logics. In Proc. of the 2005 Description Logic Workshop (DL 2005).
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2005.

[31] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment
under constraints. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 1998), pages 149–158. ACM Press, 1998.

[32] D. Calvanese, B. Cuenca Grau, E. Franconi, I. Horrocks, A. Kaplunova, C. Lutz, R. Möller,
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