
Analysis of Test-Results on Individual Test
Ontologies

Deliverable TONES-D23

G. De Giacomo2, E. Franconi, B. Cuenca Grau3, V. Haarslev5,
A. Kaplunova5, A. Kaya5, D. Lembo2, C. Lutz4, M. Miličić4, R. Möller5,

U. Sattler3, B. Sertkaya4, B. Suntisrivaraporn4, A.-Y. Turhan4,
S. Wandelt5, M. Wessel5

1 Free University of Bozen-Bolzano
2 Università di Roma “La Sapienza”

3 The University of Manchester
4 Technische Universität Dresden

5 Technische Universität Hamburg-Harburg

Project: FP6-7603 – Thinking ONtologiES (TONES)

Workpackage: WP7 – Experimentation and Testing of the Framework

Lead Participant: TU Dresden

Reviewer: Ralf Möller

Document Type: Deliverable

Classification: Public

Distribution: TONES Consortium

Status: Final

Document file: D23 TestsOntologies.pdf

Version: 2.0

Date: August 31, 2007

Number of pages: 73

FP6-7603 – TONES Thinking ONtologiES WP7

Document Change Record

Version Date Reason for Change

v.0.1 July 13, 2007 Outline

v.1.0 August 17, 2007 First complete version

v.2.0 August 31, 2007 Final version

c©2007/TONES – August 31, 2007 1/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Contents

1 Introduction 4

2 Ontologies 6
2.1 AEO . 6
2.2 FERMI . 6
2.3 FungalWeb . 7
2.4 Galen . 7
2.5 GO Daily . 7
2.6 InfoGlue . 7
2.7 Lehigh University Benchmark . 7
2.8 OntoCAPE . 8
2.9 Pizza . 8
2.10 Role . 9
2.11 SoftEng . 9
2.12 University Ontology Benchmark . 9
2.13 Web Mining Ontologies . 9
2.14 Wordnet . 9

3 Standard Reasoning in Expressive DLs 10
3.1 FaCT++ . 10
3.2 Racer . 10
3.3 External Reasoners . 12

3.3.1 PELLET . 12
3.3.2 KAON2 . 12

3.4 Test Setup . 13
3.5 Test Results . 14

4 Standard Reasoning in Lightweight DLs 16
4.1 CEL . 16
4.2 Test Setup . 16
4.3 Test Results . 17

5 Query Answering 18
5.1 Racer . 18

5.1.1 Tool Description . 18
5.1.2 Test Setup . 18
5.1.3 Test Results . 24

5.2 QuOnto . 35
5.2.1 Tool Description . 36
5.2.2 Test Setup . 37
5.2.3 Test Results . 40

c©2007/TONES – August 31, 2007 2/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

6 Query Formulation Support 42
6.1 QueryTool . 44
6.2 Test Setup . 45

6.2.1 The domain and the users . 45
6.2.2 Designing experiments . 46

6.3 Test Results . 49
6.4 Final considerations . 51

7 Information Extraction via Abduction 51
7.1 The Media Interpretation Framework . 53
7.2 Test Setup . 56
7.3 Test Results . 57

8 Non-Standard Inferences 58
8.1 Sonic . 59
8.2 Test Setup . 59

8.2.1 Test data . 60
8.3 Test Results . 61

8.3.1 Evaluation of the precision of common subsumers 61
8.3.2 Performance of the computation of common subsumers 63

9 Knowledge Base Completion 65
9.1 InstExp . 65
9.2 Test Setup . 65
9.3 Test Results . 66

9.3.1 Results on the Semintec ontology 66
9.3.2 Results on the UBA-generated ontology 67
9.3.3 Usability of InstExp . 67

10 Conclusion 68

References 69

c©2007/TONES – August 31, 2007 3/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

1 Introduction

The purpose of this deliverable is to report about the results of testing and evaluating
techniques that have been developed within the TONES project. We concentrate on tech-
niques from the workpackages that, at the time of writing, are in their final phase. These
are WP3 (Ontology Design and Maintenance) and WP4 (Ontology Accessing, Process
and Usage). The techniques developed within WP5 and WP6, which have started signifi-
cantly later, will be evalutated in deliverable D27. Thus, the techniques evaluated in this
deliverable are those presented in deliverables D13 [BBC+07] and D18 [CGG+07a]. To
achieve an efficient and practically useful implementation, the basic reasoning techniques
have been enriched with a large number of implementation and optimization techniques,
which are (partly) described in the reports accompanying the software deliverables D15
[CGF+07] and D21.

The techniques evaluation in this deliverable are implemented in eight different tools.
Many of these tools are multi-purpuse, and they implement much more than a single
technique and contribute to more than one workpackage. In particular, several of the
tools used within this deliverable also contribute to the later workpackages WP5 and
WP6. This will be discussed in detail in deliverable D27.

The tests carried out in this deliverable can be split into two groups. First, there are
tests of so-called “standard” reasoning services, i.e., services that have a long tradition
within the field of logic-based ontologies. Examples of such services include TBox classifi-
cation on the intensional level of reasoning and ABox query answering on the extensional
level. For these tests, we concentrate on evaluating optimization techniques with the goal
of demonstrating practical feasibility and scalability, also in the context of ontologies and
instance data of massive size. Second, there are tests of novel reasoning services that have
been developed within the TONES project or not long before the start of this project. For
these tests, the purpose of is to establish a proof of concept for usability of the reasoning
techniques, i.e., to show that it is possible to implement the techniques so that they are
sufficiently performant to be used on reasonable size data, and that their use is beneficial
for ontology design and usage. In this latter case, it was usually not the aim to tease out
the last bit of efficiency.

More specifically, the first group is comprised of tests of the following tools.

• Racer is a multi-purpose tool that mainly addresses standard reasoning tasks such
as ontology classification and ABox query answering, and puts an emphasis on uni-
versality and efficiency. Our tests demonstrate two things. First, Racer allows to
very efficiently classify ontologies formulated in expressive logics. It scales seamlessly
to ontologies of large size and outperforms other state-of-the-art tools. Second, a
suitable combination of the several optimization techniques developed within the
TONES project allows to turn the tableau algorithm-based Racer into a very effi-
cient and scalable tool for ABox query answering, while single optimizations fail to
achive this goal.

• FaCT++ is a tool for classifying ontologies formulated in expressive logics. In
particular, FaCT++ is currently the only reasoner that can handle the description

c©2007/TONES – August 31, 2007 4/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

logic SROIQ, which underlies the upcoming OWL 1.1 standard ontology language.
Despite being able to handle this very high expressive power, FaCT++ is also a
highly efficient and scalable reasoner.

• CEL. In contrast to Racer and FaCT++, the CEL tool focusses on classifying
ontologies formulated in lightweight, relatively inexpressive logics. The purpose of
this approach is to gain polytime reasoning and scalability to an even better degree
than achieved by tools such as Racer and FaCT++. Our tests use massive-scale
ontologies and demonstrate that the stated goal is very successfully achieved.

• QuOnto focusses, like CEL, on the processing of ontologies formulated in
lightweight logics. Unlike CEL, QuOnto concentrates on ABox query answer-
ing rather than classification. The main idea of QuOnto is to achieve very good
scalability by exploiting mature relational database technology for ontology reason-
ing. Indeed, our tests show that the performance of QuOnto is comparable to
that of established database systems, and thus scales extremely well.

The second group consists of tests of the following tools.

• Sonic provides a variety of novel reasoning service such as the computation of least
common subsumers and approximation concepts. Our tests show that even a not
fully optimized implementation of the developed algorithm are usable on realistic
ontologies from practical applications, that the runtimes are surprisingly good, and
that the implemented approximation techniques typically do not lose significant
information.

• We have also tested an approach to abduction in description logic. This tool is
tailored towards a specific application, which is media interpretation, i.e., an on-
tology is used to interpret, generate, and improve annotations of a media file. Our
tests show that ontology reasoning can significantly improve the quality of auto-
matic scene interpretation and provides valuable feedback for the lower level image
processing tools.

• InstExp is a tool that allows the interactive completion of an ontology by a do-
main expert. It relies on an underlying reasoner for classification such as Racer
and FaCT++. Our tests show that a straightforward implementation is already
very useful. However, they also show that incremental reasoning by the underlying
standard reasoner is of great importance to improve performance, and suggests a
number of extensions to the framework (such as allowing a domain expert to defer
a question posed to him by InstExp).

• The query tool is meant to support a user in formulating a precise query even in the
case of complete ignorance of the ontology vocabulary of the underlying information
system holding the data. We perform a well-founded usability evaluation of the tool.
The main goal of this experiment is to demonstrate the easy of use of the Query
tool independently of the domain user experience.

c©2007/TONES – August 31, 2007 5/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

2 Ontologies

Selecting a set of ontologies for testing and evaluating a reasoning technique is a diffi-
cult task. It is important to test multiple ontologies to demonstrate that systems are
not tailored towards specific ontologies. It is necessary to use ontologies from practical
applications because they provide the most realistic input; it is also necessary to use arti-
ficially generated ontologies and/or instance data because there is only a limited supply
of ontologies from practical applications and those ontologies often have a very simple
structure and may not be adequate to test a feature at hand. Some requirements for
testing reasoning services on single ontologies are summarized in [WLLB06, WLL+07].

Within TONES, we have collected and made available a library of test ontologies,
which includes mostly hand-crafted ontologies, but also a couple of artificially generated
ones. Each ontology has been checked for expressivity (i.e., the logic in which it is for-
mulated) and syntactic conformance, translated into DIG syntax (which is easy to work
with for benchmarking purposes), and included (whenever possible) additional informa-
tion such as the derived class hierarchy to support testing the correctness of reasoning
systems. Currently, our library contains over 300 ontologies. Only 18% of the ontologies
make full use of the expressivity of the DL ALC or its extensions, which confirms that
the majority of real-world ontologies are not very complex. On the other hand, we are
still left with a sufficient number of challenging examples.

Most of the ontologies that are used in this deliverable are from this library. However,
there are a number of exceptions due to the fact that some of the ontologies that we
have used for testing are confidential, and the TONES ontology library is being made
publically available. More of the relevant ontologies have been introduced and described
in Deliverable D14 [CGG+07b], and we refer the interested reader to that document for
details. In the remainder of this section, we introduce additional ontologies that are used
in this deliverable, but have not been mentioned in D14. We list them in alphabetical
order together with a short description.

2.1 AEO

The Athletics Event Ontology1 contains concepts, relations, axioms and rules that for-
mally represent the domain of Athletics in the BOEMIE project2. The ontology is written
in SHIN (D) and it has 179 concept names, 158 properties and contains 523 axioms.

2.2 FERMI

The FERMI3 ontology was generated in the context of a project about formalization and
experimentation on the retrieval of multimedia information. It is represented in EL and
it contains both a TBox and an ABox. More information on FERMI can be found in
Table 2.

1http://www.boemie.org/d3 2 domain ontologies
2http://www.boemie.org
3http://www.dcs.gla.ac.uk/fermi/

c©2007/TONES – August 31, 2007 6/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

2.3 FungalWeb

The FungalWeb4 ontology is an outcome of a project using DL technology in the context
of fungal genomics [SNBHB05, BSNS+06]. It is represented in ALCH(D) and it contains
both a TBox and an ABox. More information on FungalWeb can be found in Table 2.

2.4 Galen

Galen5 is concerned with the computerisation of clinical terminologies. It allows clinical
information to be captured, represented, manipulated, and displayed in a more powerful
way. The full Galen ontology is a large and complex medical ontology, represented in the
Description Logic SHIF , designed for supporting clinical information systems. In fact, it
does not use the logical constructors: negation, disjunction and value restrictions, which
makes large part of it (97.75%) expressible in the lightweight Description Logic EL+.

2.5 GO Daily

The Gene Ontology (GO)6 project is a collaborative effort to address the need for consis-
tent descriptions of gene products in different databases. The GO project has developed
three structured controlled vocabularies (ontologies) that describe gene products in terms
of their associated biological processes, cellular components and molecular functions in
a species-independent manner. There are three separate aspects to this effort: first, the
development and maintenance of the ontologies themselves; second, the annotation of
gene products, which entails making associations between the ontologies and the genes
and gene products in the collaborating databases; and third, development of tools that
facilitate the creation, maintenance and use of ontologies. The ontology is represented in
EL−R+ and contains 49523 axioms, 20528 concept names, and 20 role names.

2.6 InfoGlue

The InfoGlue OWL DL ontology is the by-product of a DL-based approach to support the
comprehension and maintenance of software systems [RZH+07]. Program comprehension
is seen as a knowledge intensive activity, requiring a large amount of effort to synthesize
information obtained from different sources. The InfoGlue approach aims to reduce the
comprehension effort by automatically identifying concept instances and their relations
in different software artifacts. The ontology has ALCH expressivity and it contains both
a TBox and an ABox. More information on InfoGlue can be found in Table 2.

2.7 Lehigh University Benchmark

The Lehigh University Benchmark (LUBM, [GHP03, GPH04, GPH05]) 7 ontology repre-
sents the structural organization of an university (with all departments).

4http://www.cs.concordia.ca/FungalWeb/
5http://www.co-ode.org/galen/
6http://www.geneontology.org/
7http://swat.cse.lehigh.edu/projects/lubm/index.htm

c©2007/TONES – August 31, 2007 7/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

In this report LUBM will used with two different TBoxes (lite and normal) and 6
different ABox sizes ranging from 5 to 50 universities (with all departments). The original
LUBM TBox is in ELH. However, due to some preprocessing strategies (GCI absorption)
some of the reasoners that are used in this report (e.g., Racer) disjunctions might be
added to the axioms resulting in a TBox which is in ALCH. In the case of LUBM another
absorption is possible that avoids the addition of disjunctions but this is currently not
supported by some reasoners (e.g., Racer). However, a slight modification to the original
LUBM TBox can avoid the unnecessary addition of disjunctions. Thus, we decided to
investigate two variants of LUBM, the original one, called LUBM, and the modified one,
called LUBM-Lite. The characteristics of the LUBM KBs are described in detail in Table
2.

In the spirit of LUBM, another set of ABoxes representing the engineering department
of the University of Rome was derived (including a LUBM-like TBox). Due to confiden-
tiality problems, the benchmark ABoxes are not publicly accessible. Thus, they are not
tested with all reasoners.

2.8 OntoCAPE

The OntoCAPE is an ontology developed based on CLiP, a comprehensive data model for
process engineering. The ontology is organized to cover both common CAPE (Computer-
Aided Process Engineering) concepts as well as those which are application/purpose-
specific. Concretely, the former part presents concepts of chemical process materials and
chemical process systems, as well as mathematical and computer software concepts which
are often applied in various CAPE tasks. In the latter part, concepts that support appli-
cations including process design and modeling are considered. The OntoCAPE ontology
is designed in the layered fashion, see [MYM07]. It contains 575 (in most cases primitive)
concept definitions.

Originally, this TBox uses the DL SHIQ(D), i.e., concept constructors from ALCQ
in combination with data types, role declarations for inverse roles and transitivity and
domain and range restrictions for roles and attributes. Moreover, it contains GCIs and
cyclic definitions. For testing some of the systems we had to use variants of the OntoCAPE
TBox that use only concept constructors the respective inferences and services can han-
dle. Different versions of the knowledge base exist (see the details in the benchmarking
sections).

2.9 Pizza

An example ontology that contains all constructs required for the various versions of the
Pizza Tutorial run by Manchester University. 8 The ontology is represented in ALCHf
and it contains 173 axioms, 42 concept names, and 26 role names.

8http://www.co-ode.org/resources/tutorials/

c©2007/TONES – August 31, 2007 8/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

2.10 Role

The Role or Bio-Zen9 ontology is an ontology for the life sciences. In its current version,
it is focused on the representation and mathematical modeling of molecular structures,
biochemical and physiological processes and interaction networks. Bio-Zen is based on
foundational ontologies and metadata standards (DOLCE, SKOS, Dublin Core). It is
unique in that it unifies a high degree of ontological consistency with a maximum of
flexibility and simplicity in its design, and it uses synonyms for roles in the ontology. The
ontology is written in SHIN and contains 170 axioms, 47 concept names, and 85 role
names.

2.11 SoftEng

The SoftEng ontology was created by a reverse engineering approach [ZRH06] where Java
code is represented in an abstract way as a KB and DL inference services are used to
reason about security concerns. It is represented in L−HR+ and it contains both a TBox
and an ABox. More information on SoftEng can be found in Table 2.

2.12 University Ontology Benchmark

The UOBM or UOB ontology [MYQ+06] was derived from LUBM but has a more compli-
cated TBox and ABox structure. It represents the structural organization of an university
(with all departments). For benchmarking the variant based on OWL-Lite is used with 5
different ABox sizes ranging from 1 to 5 universities (with all departments). The charac-
teristics of the UOBM KBs are shown in Figure 14.

2.13 Web Mining Ontologies

The two Web Mining ontologies (WebMin 1 and 2) are proprietary and were contributed
by users of Racer. WebMin 1 and WebMin 2 are written in ALEHf(D−). To a large
extent, they use datatype values (e.g., strings). The characteristics of the Web Mining
ontologies are shown in Table 2.

2.14 Wordnet

The Wordnet knowledge base (version 1.7.1)10 is an OWL-DL KB representing the Word-
Net 1.7.1 lexical database. The characteristics of the Wordnet KB are given in Figure 7.
Wordnet contains 84K concept names, 269K individual names, 548K individual assertions,
and 304K role assertions.

9http://neuroscientific.net/semantic
10http://taurus.unine.ch/files/wordnet171.owl.gz

c©2007/TONES – August 31, 2007 9/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

3 Standard Reasoning in Expressive DLs

With “standard reasoning”, we refer to testing satisfiability and subsumption of concept
descriptions, which are the most traditional reasoning services offered by description logic
reasoning systems. In this section, we test two systems that have been developed within
TONES and support standard reasoning: FaCT++ and Racer. We evaluate their
performance against each other, and against the non-TONES reasoners PELLET and
KAON2.

3.1 FaCT++

FaCT++ is a sound and complete DL reasoner designed as a platform for experimenting
with new tableaux algorithms and optimisation techniques.11 It incorporates most of the
standard optimisation techniques, but also employs many novel ones.

DL systems take as input a knowledge base (equivalently an ontology) consisting of a
set of axioms describing constraints on the conceptual schema (often called the TBox) and
a set of axioms describing some particular situation (often called the ABox). They are
then able to answer both “intensional” queries (e.g., regarding concept satisfiability and
subsumption) and “extensional” queries (e.g., retrieving the instances of a given concept)
w.r.t. the input knowledge base (KB). For the expressive DLs implemented in modern
systems, these reasoning tasks can all be reduced to checking KB satisfiability.

When reasoning with a KB, FaCT++ proceeds as follows. A first preprocessing stage
is applied to the KB when it is loaded into reasoner; it is normalised and transformed into
an internal representation. During this process several optimisations (that can be viewed
as a syntactic re-writings) are applied.

The reasoner then performs classification, i.e., computes and caches the subsumption
partial ordering (taxonomy) of named concepts. Several optimisations are applied here,
mainly involving choosing the order in which concepts are processed so as to reduce the
number of subsumption tests performed.

The classifier uses a KB satisfiability checker in order to decide subsumption problems
for given pairs of concepts. This is the core component of the system, and the most highly
optimised one.

FaCT++ can be downloaded at the following address: http://owl.man.ac.uk/

factplusplus/. Within TONES FaCT++ has been extended with new optimization
techniques and to support SROIQ, the logic underlying OWL 1.1.

3.2 Racer

Racer [HM01a, EHK+07, EKM+07] is under continuous development since 1998 (at the
time of this writing, commercial support is available for two years). The system is used
for ontology design and maintenance (offline usage of ontologies) as well as for using
ontologies in running applications that rely on reasoning (online usage of ontologies).
Since ontologies get larger and larger, and new application fields use ontologies these

11FaCT++ is available at http://owl.man.ac.uk/factplusplus.

c©2007/TONES – August 31, 2007 10/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

days, the demands on system architecture ever increase. Racer has been designed for
optimized TBox as well as optimized ABox reasoning.

Basically, the system implements the description logic SHIQ(Dn) with TBoxes and
ABoxes (see [BBC+07] for details about syntax and semantics of description logics). All
standard DL inference services for ontology design and maintenance are provided by
Racer. In order to assist the creation of practical applications, the Racer system
includes several extensions the development of which has been partially supported by
TONES project. The wide spectrum of supported inference services, e.g., classification,
answering grounded conjunctive queries (see Section 5.1), some non-standard inferences,
abductive query answering (see Section 7) makes Racer unique.

Several interfaces are available for Racer. As usual, the reasoner supports file-based
interaction as well as socket-based communication with end-user applications or graphical
interfaces for ontology development and maintenance. Input can be specified in various
syntaxes, e.g., KRSS (TCP), DIG 1.1 (HTTP), or OWL DL (HTTP). A parser for DIG 2.0
[TBK+06] is in preparation. As an extension to DIG 1.1, Racer already supports an
XML-based interface for conjunctive queries. The specification of this interface is also
proposed as part of DIG 2.0 with some slight modifications [TBK+06]. The Racer
implementation of DIG 2.0 will support also expressive constraints. Unparsers from the
internal meta model to a textual representation of ontologies are available for all syntaxes.

In particular, for DIG 2.0 it will be the case that not all syntactic constructs might be
implemented by a certain reasoner. For instance, DIG 2.0 includes nominals as part of the
TBox (this also holds for OWL DL). Currently, Racer fully supports nominals as part of
ABoxes. Nominals in the TBox are approximated by concept names. For fully supporting
the OWL 1.1. fragment of DIG 2.0, also acyclic role axioms have to be provided by the
Racer implementation. It is well known, however, that for some purposes, even DIG 2.0
is not expressive enough. Further extensions are described in subsequent paragraphs.

Rule specifications are well-known (e.g., from the W3C SWRL specification12), but
different systems support different semantics (for details of the Racer semantics for
rules, see the Racer reference manual13). In Racer, rules can be seen as a convenient
specification about how to extend the set of assertions in an ABox. In addition, rules can
be used as named queries that can be reused in other queries. Rule design is also part
of ontology design. Rule bodies can be checked for subsumption (grounded semantics).
Rules in Racer can be specified with a KRSS or SWRL syntax.

In some sense, OWL is rather inexpressive in that it does not support constraints
between attribute values of different individuals. For instance, in OWL it is not possible
to state that Mike’s brother, called John, is ten years older than Mike, and Mike is a
car driver (and the ontology says that car drivers must be older than 18). Does this
mean that, concerning the age, John is allowed to drive a car as well? Racer supports
inequations about linear polynomials over the reals and over positive integers. In addition,
Racer allows for expressing min/max restrictions over integers as well as (in)equalities
over strings. If individuals are part of the ontology (and OWL even supports nominals in
the TBox), consistency checking is an important issue at ontology-development time. At
the time of this writing, constraints between different individuals are still not supported

12http://www.w3.org/Submission/SWRL/
13http://www.racer-systems.com/products/racerpro/manual.phtml

c©2007/TONES – August 31, 2007 11/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

by the latest proposal for the new OWL language: OWL 1.114. They are supported by
DIG 2.0, however.

3.3 External Reasoners

3.3.1 PELLET

PELLET is an open source, OWL DL reasoner in Java, originally developed at the
University of Marylands Mindswap Lab. PELLET is now commercially supported by
Clark & Parsia LLC. PELLET is publicly available at http://pellet.owldl.com/.

Based on the tableaux algorithms developed for expressive Description Logics (DL),
PELLET supports the full expressivity of OWL-DL, including reasoning about nominals
(enumerated classes). As of version 1.4, PELLET supports all the features proposed in
OWL 1.1, with the exception of n-ary datatypes. It also incorporates various optimization
techniques described in the DL literature and contains several novel optimizations for
nominals, conjunctive query answering, and incremental reasoning.

PELLET provides standard and cutting-edge reasoning services. In particular, PEL-
LET provides all the standard reasoning services for ontologies, such as ontology con-
sistency, concept satisfiability, concept subsumption, and instance checking. In addition,
it also incorporates other more innovative services, such as Conjunctive ABox query an-
swering, datatype reasoning, axiom pinpointing and debugging, among others.

3.3.2 KAON2

KAON2 is an infrastructure for managing OWL-DL, SWRL, and F-Logic ontologies.
It was produced by the joint effort of the following institutions: the Information Pro-
cess Engineering (IPE) at the Research Center for Information Technologies (FZI), the
Institute of Applied Informatics and Formal Description Methods (AIFB) at the Univer-
sity of Karlsruhe, and the Information Management Group (IMG) at the University of
Manchester.

The API of KAON2 is capable of manipulating OWL-DL ontologies. For reasoning,
KAON2 supports the SHIQ(D) subset of OWL-DL. This includes all features of OWL-
DL apart from nominals (also known as enumerated classes). Since nominals are not a
part of OWL Lite, KAON2 supports all of OWL Lite.

KAON2 also supports the so-called DL-safe subset [3] of the Semantic Web Rule
Language (SWRL). The restriction to the DL-subset has been chosen to make reasoning
decidable.

KAON2 supports answering conjunctive queries, albeit without true non-
distinguished variables. This means that all variables in a query are bound to individuals
explicitly occurring in the knowledge base, even if they are not returned as part of the
query answer.

Contrary to most currently available DL reasoners, such as FaCT, FaCT++, RACER,
DLP or PELLET, KAON2 does not implement the tableaux calculus. Rather, reasoning
in KAON2 is implemented by novel algorithms which reduce a SHIQ(D) knowledge base

14http://www.webont.org/owl/1.1/

c©2007/TONES – August 31, 2007 12/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Ontology Expressivity Size in KByte (OWL file)
Galen SHf 2300

GODaily EL−R+ 9800
Indivi LU 1
Neuron L− 538
Pizza ALCHf 20
Role SHIN 11

Figure 1: Ontologies used for TBox classification tests.

to a disjunctive datalog program. The system is available for download at the following
URL: http://kaon2.semanticweb.org/.

3.4 Test Setup

We have tested TBox classification with respect to the collection of OWL ontologies shown
in Figure 1. We have selected ontologies from quite different sources such that a reasoning
system cannot benefit from particularities of a single test ontology. Furthermore, we tried
to ensure representativity of our collection by:

• Having a broad range of expressivity: from L− to SHIN .

• Having ontologies of different input size: from 1 KByte to almost 10 MByte.

While, at a first glance, 10 MByte does not seem a lot nowadays, it turned out, that
(expressive) ontologies of that size can already take current reasoning systems to their
limits - with respect to classification.

To conduct tests with FaCT++ and Racer, we have transformed each OWL ontology
into a reasoner specific Lisp-like format respectively. For the sake of completeness we will
describe the transformation process for both reasonings.

For FaCT++ the transformation is mandatory, since it does not sup-
port OWL directly. A conversion tool is provided as a Web service at
http://www.mygrid.org.uk/OWL/Converter. Unfortunately, this service was unavail-
able several times while performing our tests.

For Racer we performed a conversion of each ontology file as follows:

(owl-read-file "KB.owl")

(save-kb "KB.racertbox")

Conversion times for all ontologies are shown in Figure 2. Notice, that this table is not
intended as a comparison between Racer and FaCT++. In fact, it would not be a fair
competition anyways, since for FaCT++ the whole ontology was sent via the Internet to
a web service and back, while for Racer everything was done locally.

All the tests were performed on an Intel Pentium 4 with 2.80 GHz and 1 GB main
memory with a Linux-based operating system (Linux kernel for version 2.6.20 on x86
32bit). We have used JRE 1.5 to run the Java-based reasoning systems.

To enable reproducibility of our tests, we will show next, how we made each reasoning
system classify an input ontology.

c©2007/TONES – August 31, 2007 13/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Ontology Convert to Fact++ (ms) Convert to Racer (ms)
GODaily 39138 31980

Galen 6946 6360
Indivi 109 180
Neuron 5703 2880
Pizza 164 420
Role 1560 1320

Figure 2: Conversion times for FaCT++ and Racer.

(racer-read-file "Ontology.racertbox" :KB-NAME MyOnto)
(classify-tbox)

Figure 3: Input file for TBox classification with Racer.

• Racer : For each ontology we run the command ./RacerPro -f infile.racer on the
input file shown in Figure 3.

• FaCT++ : For each ontology, we have modified the standard options.default
file by adding ‘TBox=Ontology.tbox‘ and then run the command ./FaCT++ op-
tions.default

• PELLET : For each ontology we run the command java -Xss4m -Xms30m -
Xmx200m -jar lib/pellet.jar “Ontology.owl”

• KAON2 : Since we have found no way to perform TBox classification with the
standard KAON2 package, we used the small Java program shown in Figure 4.
Our program uses the KAON2 API to load an ontology file and compute the
subsumption hierarchy.

For our tests, we did not only measure the time necessary to compute the classification
of each ontology, but also (an indication) for the memory footprint of each reasoner. This
is done by computing the amount of free main memory plus the free swap space, like 20
times a second, while the reasoner is processing the input. Since no other process was
running on the machine during the tests, we claim that we can read off an indication of
the maximum memory usage of each reasoning system for every ontology.

3.5 Test Results

This sections presents the results for standard TBox reasoning. First of all, we want to
emphasize that it is hard to interpret these results in detail, when we have all reasoning
systems only as a black box.

Figure 5 shows the time needed for classification of each ontology. For all ontologies
but Neuron, PELLET is the slowest of all compared reasoners. For Neuron, PELLET
throws a NullPointer-Exception, that might be related to one import file in the ontology.
The results of FaCT++ and Racer are usually close to each other. Just for Galen and
GODaily, the differences are more clear for each reasoner respectively.

We also compared the actually classification hierarchy for each ontology and it turned
out, that there are some differences in the Pizza ontology, that are mainly caused by

c©2007/TONES – August 31, 2007 14/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

[...]
KAON2Connection connection=KAON2Manager.newConnection();
DefaultOntologyResolver resolver=new DefaultOntologyResolver();

resolver.registerReplacement(ontologyURL,KAON2Directory+"KBs/myOntology.owl");
Ontology ontology=connection.openOntology(ontologyURL, new HashMap<String,Object>());
Object hierarchy=ontology.createReasoner().getSubsumptionHierarchy();
[...]

Figure 4: Java file for TBox classification with KAON2.

Figure 5: TBox classification - time (in sec).

different handling of nominals. Furthermore, FaCT++ has a problem with the Role
ontology by missing one concept parent.

Figure 6 shows (an indication of) the memory needed for classification of each ontol-
ogy. For all ontologies, PELLET needs the highest amount of memory to compute the
classification. This might well be related to the fact that it is written in Java.

With the exception of GODaily, Racer has the lowest memory footprint of all tested
reasoning systems. FaCT++ needs an average amount of memory, while the results are
usually more close to the one of Racer, than of PELLET.

Originally we intended to provide test results for KAON2 as well. After running
all the tests, we decided to not mention KAON2 in the result charts. The reason is,
that for the majority of ontologies, KAON2 has thrown some unexpected exceptions or
complained about the syntax of the OWL input. Since all other reasoners were able to
work with the input files, we conjecture, that the fault is with KAON2. For the sake of
completeness, we list the errors that KAON2 produced for each ontology here:

c©2007/TONES – August 31, 2007 15/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Figure 6: TBox classification - maximum memory usage (in MByte).

• Indivi: KAON2Exception - Nominals are not supported yet

• Pizza: KAON2Exception - ObjectHasValue is not supported yet

• Neuron: KAON2Exception - Cannot parse the descriptor

4 Standard Reasoning in Lightweight DLs

4.1 CEL

CEL is the first reasoner for the lightweight description logic EL+, supporting as its main
reasoning task the computation of the subsumption hierarchy induced by EL+ ontologies.
The most distinguishing feature of CEL is that, unlike other modern DL reasoners, it
implements a polynomial-time algorithm. The supported Description Logic EL+ offers a
selected set of expressive means that are tailored towards the formulation of medical and
biological ontologies.

4.2 Test Setup

The aim of our experiments in this section is to demonstrate scalability of the polytime
algorithm and reasoner in comparison to highly complex algorithms and reasoners for
much more expressive description logics. To this end, we measure the time required for
building up the concept hierarchy, i.e., classification time. We have performed a number
of experiments with the lightweight reasoner CEL (version 1.0b), as well as the OWL-DL
reasoners FaCT++ (version 1.1.0) and Racer (version 1.9.1b). All the experiments have
been carried out on a standard PC: 2.8 GHz Pentium-4 processor and 1 GB of physical
memory.

c©2007/TONES – August 31, 2007 16/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

ONCI ONotGalen OGalen OSnomed

]Concept names 27 652 2,748 23 136 379 691
]Role names 70 413 950 62
]Concept axioms 46 800 3 937 35 531 379 691
]Role axioms 140 442 1 016 11 + 1

CEL 6.74 8.25 527.30 1 671.23
FaCT++ 3.11 136.63 unattainable 3 206.69
Racer 24.74 13.43 unattainable 3 529.43

Table 1: Lightweight Ontologies and Classification Times

We consider some large-scale medical ontologies that are represented in EL+.
SNOMED CT and NCI have been entirely designed in this lightweight logic, while Galen
is represented in SHIF . Large part (97.75%) of the full Galen is nevertheless expressible
in the lightweight description logic EL+, which we used in our experiments. For compari-
son purposes, we also considered the EL+ fragment of NotGalen (a.k.a. simplified Galen).
For detailed descriptions of these ontologies, please refer to Deliverable D14. To make
the experiments self-contained, however, we also include some concise information on the
structure and size of these ontologies in the upper part of Table 1. Note in the case of
OSnomed that the only existing right-identity rule was not passed to Racer, as it does not
support this.

In order to suppress noise in our experimental results, we performed each experiment
for five times, i.e., five runs of each reasoner on each ontology. The measured classification
times were sorted, and the average of the three middle values was calculated.

4.3 Test Results

These average classification times are shown in second in the lower part of Table 1, where
all classification times are in seconds and unattainable means the reasoner either failed
due to memory exhaustion or did not terminate after 24 hours. Interesting remarks on
our experimental results are highlighted in order:

• CEL outperforms all the reasoners in all benchmarks, except for the case of ONCI,
where CEL is slower than FaCT++ but still faster than Racer. The main reason
for this is that ONCI comprises only primitive concept definitions, for which the
optimization technique of “completely defined concepts” is effective. This technique
has been implemented in FaCT++ but not in Racer and CEL.

• The largest ontology OSnomed is classified by CEL in only half the time needed by
FaCT++ and Racer.

• CEL is the only reasoner that can classify OGalen.

The main reason that no reasoners based on a tableau algorithm can classify OGalen

is that the ontology is highly complex with thousands of GCIs, many of which cannot

c©2007/TONES – August 31, 2007 17/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

be absorbed into concept definitions or role constraints. CEL however does not show
degradation of performace on this kind of ontology, and we view this as an indication
that CEL’s computational behavior is more robust than that of tableau-based reasoners,
of course, given that the ontology is formulated in the lightweight language EL+. Finally,
we could view the CEL reasoner as an empirical evidence of scalibility of the polytime
algorithm described in Deliverable D13.

5 Query Answering

5.1 Racer

5.1.1 Tool Description

Racer has already been described in the previous section. In addition to the basic re-
trieval inference service, expressive query languages are required in practical applications.
Well-established is the class of conjunctive queries. Reasoning algorithms, optimization
techniques and systems for answering conjunctive queries have been extensively described
in [CGG+07a]. We give a short introduction to conjunctive queries here for the sake of
completeness, though.

A conjunctive query consists of a head and a body. The head lists variables for which
the user would like to compute bindings. The body consists of query atoms (see below)
in which all variables from the head must be mentioned. If the body contains additional
variables, they are seen as existentially quantified. A query answer is a set of tuples
representing bindings for variables mentioned in the head. A query is a structure of the
form ans(X1, . . . , Xn)← atom1, . . . , atomm.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X, Y)), same-
as query atoms (X = Y) as well as so-called concrete domain query atoms. The latter
are introduced to provide support for querying the concrete domain part of a knowledge
base and will not be covered in detail here. Complex queries are built from query atoms
using boolean constructs for conjunction (indicated with comma) or union (∨).

In standard conjunctive queries, variables (in the head and in query atoms in the
body) are bound to (possibly anonymous) domain objects (see the Section 5.2). In so-
called grounded conjunctive queries, C(X), R(X, Y) or X = Y are true if, given some
bindings α for mapping from variables to individuals mentioned in the Abox A, it holds
that (T ,A) |= α(X) : C, (T ,A) |= (α(X), α(Y)) : R, or (T ,A) |= α(X) = α(Y),
respectively. In grounded conjunctive queries the standard semantics can be obtained
for so-called tree-shaped queries by using corresponding existential restrictions in query
atoms. Due to space restrictions, we cannot discuss the details here. Racer supports
grounded conjunctive queries [WM05]. The language implemented in Racer is called
nRQL (pronounce: “niracle” and hear it as “miracle”).

5.1.2 Test Setup

We selected two sets of knowledge bases for benchmarking. The first set consists of ten
KBs with large ABoxes that were derived from various applications of DL technology

c©2007/TONES – August 31, 2007 18/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Knowledge Base TBox Logic Concept Names Roles Axioms
SoftEng L−H 37 30 76
SEMINTEC FL0f 59 24 345
FungalWeb ALCH(D) 3 601 77 7 209
InfoGlue ALCH 41 37 83
WebMin 1 ALEHf(D−) 444 175 1 714
WebMin 2 ALEHf(D−) 520 204 1 893
LUBM ALCH 43 41 85
FERMI L 5 136 15 10 265
UOBM-Lite ALCHf 51 49 101
VICODI L−H 194 10 387

Knowledge Base Abox Logic Inds Ind. Assertions Role Assertions
SoftEng L−HR+ 6 735 5 595 25 896
SEMINTEC FL0f 17 941 17 941 41 174
FungalWeb ALCH(D) 12 556 12 705 1159
InfoGlue SH 15 464 15 937 88 316
WebMin 1 ALCHf(D−) 1 427 9 193 1 146
WebMin 2 ALCHf(D−) 6 532 28 676 15 915
LUBM SH(D−) 17 174 51 207 49 336
FERMI EL 700 9 998 650
UOBM-Lite SHf(D−) 5 674 10 790 11 970
VICODI L−H 16 942 16 942 36 704

Table 2: Characteristics of the 10 application KBs used for Abox benchmarking.

within the semantic web community. The second set contains three knowledge bases with
very large ABoxes. The ontologies are briefly described in Section 2.

The first set of OWL knowledge bases contains relatively simple TBoxes but large
ABoxes. The characteristics of these KBs are summarized in Table 2. The second column
in Table 2 characterizes the TBox logic determined by Racer after TBox classification.
The TBox logic of the input file might be different because Racer might add disjunctions
to the processed KB due to GCI absorption (e.g., this is the case for the LUBM KB). The
third column shows the number of concept names, the fourth the number of roles, and the
fifth the number of TBox axioms. The sixth column gives the ABox logic determined by
Racer after testing ABox consistency. The seventh to ninth columns show the number
of individuals, individual assertions, and role assertions. It is interesting to note that the
ABox logic is sometimes slightly more complex than the TBox logic.

The TBox/ABox logic is indicated using the standard DL terminology (see [Baa03]
for details). We additionally denote the DL supporting only conjunction and primitive
negation by L, whereas L− stands for L without primitive negation. Both variants of L
also admit simple concept inclusions whose left-hand sides consist only of a name. The
notation “(D)” is used to denote the use of concrete domain expressiveness (see [HM01b,
Baa03] for details). The occurrence of “(D)” is caused by OWL datatype properties
that are restricted by number restrictions (and Racer applies concrete domain reasoning

c©2007/TONES – August 31, 2007 19/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

to these constructs) whereas “(D−)” denotes “(D)” without number restricted datatype
properties. Furthermore, the use of functional roles is denoted as f and of transitive roles
as R+ (or S).

It is also important to mention that Racer computes the TBox/ABox logic of a KB
by analyzing it in detail. For instance, if a KB declares a transitive (inverse) role (as in
the case of LUBM) but never uses this role within an axiom or, in the case of an inverse
role, there does not exist an interaction between a role and its inverse (e.g., ∃R.(∀R−.C)),
then the TBox logic does not refer to transitive or inverse roles. The same methodology
is applied to ABoxes but the logic of the ABox is always at least as expressive as the one
of its TBox.

For implementing sound and complete inference algorithms, tableau-based algorithms
are known to provide a powerful basis. Nowadays, almost all practical systems for (su-
persets of) SHIQ(Dn)− employ highly optimized versions of tableau-based algorithms.
It should be emphasized that the research approach behind Racer is oriented towards
applications and strives to provide a good overall performance and reliability. The term
“applications” refers in this context to knowledge bases which were generated or con-
tributed by persons or organizations using DL technology. In this context we deliberately
ignore whether a knowledge base is considered as “synthetic” or “realistic” because the
presented optimization techniques should work well for any kind of knowledge base.

We evaluate the optimization techniques presented in the following sections in the con-
text of ABox realization and instance retrieval problems for application knowledge bases.
In particular, we consider applications for which ABox reasoning is actually required,
i.e., implicit information must be derived from ABox statements and TBox axioms, and
ABoxes are not only used to store relational data. Thus, instance retrieval cannot be re-
duced to computing queries for (external) relational databases (see, e.g., [BB93], [Bre95],
[BHT05]).

For evaluation purposes we do not extensively compare query answering speed with
other DL systems but investigate the effect of optimization techniques that could be
exploited by any (tableau-based) DL inference system that already exists or might be
built. In addition, from a methodological point of view, performance comparisons with
other systems (e.g., see [MS06]) are not as informative as one might think. The reason
is that, in general, it is hard to operate systems in the same mode with optimization
techniques switched on and off. In addition, whether a certain system seems to be slow
for some specific knowledge base and query might be the result of various effects that can
hardly be tracked down from an external point of view, and those effects tell us nothing
about the usefulness of the optimization techniques under investigation. For the sake of
completeness we compare the standard settings of the Racer engine with the standard
settings of the KAON2 system and rerun the benchmarks used in [MS06] with a newer
version of Racer (see below).

Recently, various optimization techniques for partitioning ABoxes into independent
parts and/or creating condensed (summary) ABoxes [FKM+06, GH06, DFK+07] have
been reported. The advantages of ABox partitioning are not the topic of this investigation.
Racer employs a straight-forward ABox partitioning technique [HM99] which is based on
pure connectedness of graphs because an ABox can be viewed as a possibly cyclic graph
defined by a set of role assertions. More precisely, if an ABox can be partitioned into

c©2007/TONES – August 31, 2007 20/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

independent parts which are also not related via assertions involving concrete domains),
Racer employs a divide-and-conquer strategy which applies the algorithms described
below to each partition and combines the results afterwards.

We like to emphasize that the optimization techniques mentioned in this section are
still very useful in the presence of more refined ABox partitions schemes because they
are still applicable to single partitions. Moreover, our techniques are even more vital
for scenarios where ABoxes cannot be partitioned or still contain large partitions. All
these techniques are applicable in two general application scenarios: (i) ABox realization
and (ii) instance retrieval or, more general, query answering (without precomputing a
realization). The techniques are evaluated on the basis of these two scenarios.

For the evaluation we selected a set of 10 application knowledge bases (see also Section
5.1.2 for more details) with usually small and simple TBoxes but large ABoxes whose
sizes are varying between 700 and 18K individuals, 9K and 51K individual assertions,
and between 650 and 88K role assertions. Furthermore we tested three ontologies with
very large ABoxes. LUBM [GPH05] is used with two different TBoxes (LUBM-Lite and
LUBM) and 6 different ABox sizes (5 to 50 universities) which result for 50 universities
in 1 082K individuals, 3 355K individual assertions, and 3 298K role assertions. UOBM
[MYQ+06] was derived from LUBM. It exhibits a more complicated TBox and ABox
structure but smaller ABox sizes (1-5 universities) which results for 5 universities in
138K individuals, 509K individual assertions, and 563K role assertions. Wordnet (version
1.7.1) is an OWL-DL KB representing the WordNet 1.7.1 lexical database and contains
84K concept names, 269K individual names, 548K individual assertions, and 304K role
assertions. All these ontologies are tested with various sets of optimization settings which
disable or enable particular optimization techniques.

LUBM queries are modeled as grounded conjunctive queries referencing concept, role,
and individual names from the TBox. Below, LUBM queries 9 and 12 are shown in order
to demonstrate LUBM query answering problems – note that ‘www.University0.edu’ is an
individual and subOrganizationOf is a transitive role. Please refer to [GHP03, GPH04,
GPH05] for more information about the LUBM queries.

Q9 : ans(x , y , z)← Student(x),Faculty(y),Course(z),

advisor(x , y), takesCourse(x , z), teacherOf (y , z)

Q12 : ans(x , y)← Chair(x),Department(y),memberOf (x , y),

subOrganizationOf (y , www.University0.edu)

In order to investigate the data description scalability problem, we used a TBox provided
with the LUBM benchmarks. The TBox declares (and sometimes uses) inverse and tran-
sitive roles as well as domain and range restrictions, but no number restrictions, value
restrictions or disjunctions. Among other axioms, the LUBM TBox contains axioms that
express necessary and sufficient conditions for some concept names. For instance, the
TBox contains an axiom for Chair: Chair ≡ Person u ∃headOf .Department . For evalu-
ating our optimization techniques for query answering we consider runtimes for a whole
query set (queries 1 to 14 in the LUBM case).

If grounded conjunctive queries are answered in a naive way by evaluating subqueries
in the sequence of syntactic notation, acceptable answering times can hardly be achieved.

c©2007/TONES – August 31, 2007 21/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

For efficiently answering queries, a query execution plan is determined by a cost-based
optimization component (c.f., [GMUW02, p. 787ff.], see also [CM77]) which orders query
atoms such that queries can be answered effectively. Query execution plans are specified
in the same notation as queries (whether a query is seen as an execution plan will be clear
from context). We assume that the execution order of atoms is determined by the order
in which they are textually specified.

Let us consider the execution plan ans(x , y)← C (x),R(x , y),D(y). Processing
the atoms from left to right will start with the atom C(x). Since there are
no bindings known for the variable x, the atom C(x) is mapped into a query
instance retrieval(C,A, individuals(A)). The elements in the result set of the retrieval
query are possible bindings for x. C(x) is called a generator. The next query atom in the
execution plan is R(x, y). There are bindings known for x but no bindings for y. Thus,
R(x, y) is also a generator (for y-bindings). Given the atom R(x, y) is handled by a role
filler query for each binding of x, there are possible bindings for y generated. Afterwards,
the atom D(y) is treated. Since there are bindings for y available, the atom is mapped to
an instance test (for each binding). We say, the atom D(y) acts as a tester.

Determining all bindings for a variable (with a generator) is much more costly than
verifying a particular binding (with a tester). Treating the one-place predicates Student ,
Faculty , and Course from query Q9 (see above) as generators for bindings for correspond-
ing variables results in a combinatorial explosion (cross product computation). Optimiza-
tion techniques are required that provide for efficient query answering in the average
case.

As outlined earlier we evaluate the 10 application KBs using the inference service of
Abox realization which heavily relies on the techniques introduced in the previous sections.
This kind of ABox indexing w.r.t. to concept names is stress-testing these techniques and
it is especially suitable if a sufficient number of specific benchmark queries for the selected
ontologies are not available. Another argument for realization are RDF query languages
such as SPARQL, which heavily relies on concept names for querying. In case a reasonable
number of queries were available (as in the case of LUBM and UOBM) we additionally
tested these KBs with these sets of queries (as detailed in Section 5.1.3).

Experimental Settings All experiments were conducted by switching on or off selected
optimization techniques (as introduced in the previous sections) in order to assess the
positive (and sometimes also negative) impact of these techniques on the runtimes. The
tests were conducted on a Sun server V890 with 8 dual core processors and 64 GB of main
memory (although all these tests usually require less than 2 GB of memory usage and
each test was executed on a single processor). For each setting the average runtimes of the
10 application KBs were sequentially computed (without restarting Racer) where each
KB test was repeated 5 times. The runtimes using the “standard” optimization setting
of Racer are presented in Table 3. The second column shows the time for loading the
KB, the third for classification, and the fourth for realization (including the time for the
initial Abox consistency test). It can be clearly seen that the classification times can
be neglected (as expected) and the realization times vary between less than 2 seconds
and almost 3 minutes (since TBox classification times are neglectable, not all TBoxes
mentioned here have been used in Section 3). The average runtimes are usually inflated

c©2007/TONES – August 31, 2007 22/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Knowledge Base Load TBox Abox
SoftEng 7.43 0.03 5.61
SEMINTEC 7.25 0.07 18.6
FungalWeb 3.20 1.71 59.2
InfoGlue 28 0.04 161
WebMin 1 1.57 0.90 14.8
WebMin 2 8.63 0.74 104
LUBM 14.2 0.04 46.4
FERMI 7.56 3.35 1.33
UOBM-Lite 4.73 0.05 61.6
VICODI 5.65 0.07 34.1

(Load = load time, TBox = TBox classification time, Abox = Abox realization time)

Table 3: Processing times of application KBs using the std. opt. setting (in secs).

by the overhead caused by garbage collection.
For the evaluation of the application KBs the following 11 parameters were used

to switch optimization techniques on or off. The parameters are described in detail in
[CGG+07a] (see also [MHW06]).

P1 Individual pseudo model merging (see [CGG+07a, Section 2.1.2]): switched on by
default.

P2 ABox contraction (see [CGG+07a, Section 2.2.1]): switched on by default.

P3 Sets-of-individuals-at-a-time instance retrieval (see [CGG+07a, Section 2.3]):
switched on by default. If it is switched off, linear instance retrieval is selected.

P4 ABox completion (see [CGG+07a, Section 2.2.3]): switched on by default.

P5 ABox precompletion (see [CGG+07a, Section 2.2.4]): switched on by default.

P6 Binary instance retrieval (see [CGG+07a, Section 2.2.5]): switched on by default.

P7 Dependency-based instance retrieval (see [CGG+07a, Section 2.2.6]): switched on
by default.

P8 Static index-based instance retrieval (see [CGG+07a, Section 2.3]): switched off by
default (time and memory demands can be excessive in general).

P9 Dynamic index-based retrieval (see [CGG+07a, Section 2.3.1]): switched off by de-
fault (time and memory demands can be excessive in general).

P10 OWL-DL datatype properties simplification (see [CGG+07a, Section 2.3.2]):
switched on by default.

P11 Re-use of role assertions for existential restrictions (see [CGG+07a, Section 2.3.3]):
switched on by default.

c©2007/TONES – August 31, 2007 23/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

On the basis of these 11 parameters we created 17 different benchmark settings as
shown in Table 4. The rows in Table 4 define the following settings numbered 1-17 from top
to bottom. These settings were selected to demonstrate the positive (and sometimes also
negative) effect of optimization techniques. Many settings switch off only one optimization
technique (compared to the standard setting) but several settings switch off up to three
techniques which are interrelated to one another.

1. Standard setting with only static (P8) and dynamic index-based retrieval (P9) dis-
abled. All the following settings are based on this standard setting.

2. ABox completion (P4) switched off.

3. ABox precompletion (P5) switched off.

4. ABox completion (P4) and precompletion (P5) switched off.

5. Individual pseudo model merging (P1) switched off.

6. ABox contraction (P2) switched off.

7. Sets-of-individuals-at-a-time (P3) switched off.

8. Sets-of-individuals-at-a-time (P3) and binary instance retrieval (P6) switched off.

9. Sets-of-individuals-at-a-time (P3), binary instance retrieval (P6), and dependency-
based instance retrieval (P7) switched off.

10. OWL-DL datatype simplification (P10) switched off.

11. Re-use of role assertions (P11) switched off.

12. Static index-based instance retrieval (P8) switched on.

13. Dynamic index-based instance retrieval (P9) switched on.

14. Dependency-based instance retrieval (P7) switched off.

15. Binary instance retrieval (P6) switched off.

16. ABox precompletion (P5) and dependency-based instance retrieval (P7) switched
off.

17. ABox precompletion (P5) and binary instance retrieval (P6) switched off.

5.1.3 Test Results

In this section we discuss the impact of the optimization techniques mentioned previously
by considering runtimes for the traditional inference service of ABox realization and for
KB specific queries. The runtimes we present here are used to demonstrate the order of
magnitude of time resources that are required for solving inference problems when the
complexity of the input problem is increased. They allow us to analyze the impact of the
presented optimization techniques.

c©2007/TONES – August 31, 2007 24/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Setting P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
1
√ √ √ √ √ √ √

× ×
√ √

2
√ √ √

×
√ √ √

× ×
√ √

3
√ √ √ √

×
√ √

× ×
√ √

4
√ √ √

× ×
√ √

× ×
√ √

5 ×
√ √ √ √ √ √

× ×
√ √

6
√

×
√ √ √ √ √

× ×
√ √

7
√ √

×
√ √ √ √

× ×
√ √

8
√ √

×
√ √

×
√

× ×
√ √

9
√ √

×
√ √

× × × ×
√ √

10
√ √ √ √ √ √ √

× × ×
√

11
√ √ √ √ √ √ √

× ×
√

×
12

√ √ √ √ √ √ √ √
×

√ √

13
√ √ √ √ √ √ √

×
√ √ √

14
√ √ √ √ √ √

× × ×
√ √

15
√ √ √ √ √

×
√

× ×
√ √

16
√ √ √ √

×
√

× × ×
√ √

17
√ √ √ √

× ×
√

× ×
√ √

Table 4: Composition of the selected 17 different optimization settings. Setting 1 is the
standard setting,

√
= switched on, × = switched off.

Evaluation Using the Realization Inference Service The first series of evaluations
were performed with most of the KBs introduced in Section 2. For all KBs the direct
types for all individuals mentioned in the associated ABox were computed and verified.
Each test was performed with all 17 settings described above. Each ABox realization was
repeated five times and the average of these five runs is shown in the Tables 5 and 6. In
the following we analyze the results by focusing on (i) the best and worst settings per
KB, and (ii) for each setting the KB having the most positive and negative impact.

The SoftEng KB is only affected by S5 which disables individual pseudo model merging
and results in an increase of runtime by a factor of 100. A similar observation holds for the
SEMINTEC KB, which timed out after 1000 secs. Its best runtimes are for S7-S9, which
switch the sets-of-individuals-at-a-time technique off. This indicates a 50% overhead for
this technique.

The FungalWeb KB also timed out for setting S5. Otherwise it remains mostly unaf-
fected if 10% variations are ignored.

The InfoGlue KB’s best setting is S15, which switches off binary instance retrieval.
This indicates that the partitioning scheme only causes overhead in this case. The second-
best one is S2 (no completion). This indicates that the completion tests are mostly
unsatisfiable and thus wasted due to the incompleteness of this technique. InfoGlue
timed out for S3-S5, S7-S9, and S16-S17. The size of this KB and its TBox/ABox logics
(ALCH/SH) explain the timeout for S3-S4, which switch off the precompletion technique
and cause the overhead of recomputation of assertions making up the precompletion. A
similar effect as for SEMINTEC also occurs for InfoGlue for S5. The disabled sets-of-
individuals-at-a-time technique explains the timeout for S7-S9 because the then enabled

c©2007/TONES – August 31, 2007 25/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Knowledge
Base

S1 S2 S3 S4 S5 S6 S7 S8

SoftEng 5.6 5.4 5.4 5.5 480 5.4 6.0 5.7
SEMINTEC 18.6 18.9 17.6 18.9 1000 18.8 12.2 11.5
FungalWeb 59.2 66.6 59.1 58.9 461 59.0 64.5 53.8
InfoGlue 160 113 1000 1000 1000 161 1000 1000
WebMin 1 14.8 14.9 14.5 15.0 45.4 14.8 13.2 13.5
WebMin 2 104 57.7 215 215 1000 57.8 124 67.9
LUBM 46.4 49.9 133 136 1000 58.8 185 189
FERMI 1.33 1.33 1.3 1.37 6.90 1.31 1.19 1.28
UOBM-lite 61.6 68.4 914 935 834 61.6 1000 1000
VICODI 34.1 22.3 23.5 23.0 1000 33.0 21.8 26.0

S1 = standard, S2 = completion off, S3 = precompletion off,
S4 = completion+precompletion off, S5 = ind. pseudo model merging off,
S6 = contraction off, S7 = sets-of-inds-at-a-time off,
S8 = sets-of-inds-at-a-time+binary instance retrieval off.

Table 5: Abox realization with opt. settings 1-8 (in secs, timeout after 1000 secs).

Knowledge
Base

S9 S10 S11 S12 S13 S14 S15 S16 S17

SoftEng 5.67 5.42 5.45 5.47 5.45 5.6 5.5 6.45 6.23
SEMINTEC 11.6 18.3 16.2 18.9 18.8 18.1 18.0 18.9 22.9
FungalWeb 53.2 59.4 56.7 59.8 59.5 60.2 57.8 65.3 59.5
InfoGlue 1000 133 158 162 159 207 96.0 1000 1000
WebMin 1 13.5 22.3 14.8 14.8 14.8 15.2 14.4 14.9 14.5
WebMin 2 68.0 140 55.2 57.7 88.3 78.1 64.3 202 200
LUBM 191 68.7 66.6 59.3 58.7 59.1 40.6 170 200
FERMI 1.19 1.27 1.2 1.3 1.32 1.34 1.36 1.27 1.26
UOBM-lite 1000 66.8 66.2 61.5 61.8 55.9 58.1 1000 915
VICODI 25.7 33.1 21.0 33.2 32.9 23.7 28.6 29.8 23.4

S9 = sets-of-inds-at-a-time+binary+dependency-based instance retrieval off,
S10 = datatype simplification off, S11 = Re-use of role assertions off,
S12 = static index-based instance retrieval on,
S13 = dynamic index-based instance retrieval on,
S14 = dependency-based instance retrieval off, S15 = binary instance retrieval off,
S16 = precompletion+dependency-based instance retrieval off,
S17 = precompletion+binary instance retrieval off.

Table 6: Abox realization with opt. settings 9-17 (in secs, timeout after 1000 secs).

c©2007/TONES – August 31, 2007 26/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

linear instance retrieval causes too much overhead.
The WebMin 1 KB remains mostly unaffected except by S5 (3 times slower) and

S10 (50% slower), which disables the datatype simplification. The best settings for the
WebMin 2 KB are S2, S6, S11, where the overhead of these techniques is saved, and S12,
where the static index-based instance retrieval compensates for the overhead of the other
techniques. WebMin 2’s worst settings are S3-S4, which switch the precompletion off.

Due to its size LUBM timed out for S5 and its best runtime is for S15, which is 10%
faster than the standard one. A factor of 4 in the increase of the runtime can be noticed
for S7-S9 due to the overhead of linear instance retrieval.

The observations for the FERMI KB are similar to SoftEng, although S5 only causes
an increase of a factor of 5. This is due to the very simple structure of this KB.

For UOMB-Lite the best is S14, which disabled dependency-based instance retrieval.
S3-S4 cause an increase of a factor of 15 because they switch off the precompletion. A
similar observation can be made for S5. Both can be explained by the size of the KB.
S7-S9 timed out because sets-of-individuals-at-a-time was disabled and linear instance
retrieval enabled.

The VICODI KB timed out for setting S5 and shows a variation of up to 50% in the
other settings.

The standard setting (S1) was selected with the goal to ensure a good overall per-
formance. This is generally confirmed by these benchmarks. For S2 some KBs (e.g.,
WebMin2) have smaller runtimes than in S1. The positive effect can be explained by the
low success rate of the completion test (e.g., 0% for WebMin 2, 66% for InfoGlue) and
the incompleteness of this technique in case it reported an (possibly unavoidable) incon-
sistency. For some KBs such as LUBM and UOBM-Lite we notice a slowdown of 10%.
S3 shows that the ABox precompletion technique is advantageous for most KBs and even
essential for InfoGlue and UOBM-ite. This is due to the reduced overhead in rebuilding
initial data structures. S4 indicates that the missing precompletion dominates the increase
in runtime. S5 has a very detrimental effect on the runtime. This clearly demonstrates
the effectiveness of the individual pseudo model merging technique for ABox realization.
S6 is virtually identical to the standard setting except for WebMin 2, where we observe a
speed-up of almost 50%. These results indicates that this technique does not seem to be
very effective for these KBs. S7 mostly shows the positive effect of the sets-of-individuals-
at-a-time technique. It is essential for InfoGlue and UOBM-Lite, which both timed out.
LUBM is 3 times slower but VICODI is 30% faster. S8-S9 demonstrate that the disabled
sets-of-individuals-at-a-time technique dominates the slowdown. The results for S10 are
mixed. Some KBs such as InfoGlue show a performance gain due to reduced overhead
while others such as WebMin 1/2 have an increased runtime. S11 shows a similar pattern
where WebMin 2 is twice as fast as in the standard setting but others slowed down. S12
and S13 are different from the previous ones because they switch techniques on that are
disabled by default. The only exception for S12 is WebMin 2, which doubled in speed.
All others are in the range of the standard setting.

The next section discusses scenarios where these 2 settings are very favorable. S13
behaves similarly to S12 but WebMin 2 has only a speed-up of 20%. S14 shows also
mixed results. InfoGlue slowed down by 25% while VICODI and WebMin 2 increased in
speed. So, dependency-based instance retrieval is sometimes favorable because it helps

c©2007/TONES – August 31, 2007 27/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Tbox
Logic CN R A Abox Logic Inds Ind. Ass. Role Ass.

L− 84 609 40 85 664 ELR+(D−) 269 684 548 578 304 362
(CN = no. of concept names, R = no. of roles, A = no. of axioms)

Load Tbox
130 90.44

(Load = load time, Tbox = Tbox classification time)
Set 5 = ind. pseudo model merging off, Set 10 = datatype simplification off

Figure 7: Characteristics of the Wordnet 1.7.1 knowledge base.

to separate “clash culprits” and sometimes it causes unnecessary overhead. S15 shows
clearly that binary instance retrieval does not improve the runtimes for realization of
the 10 KBs. S16-S17 need to be compared to S3, which also switches off precompletion.
LUBM slowed down by 30-50% and UOBM-Lite timed out for S16. In these cases S16
and S17 have a positive effect due to the disabled precompletion. All other results are
similar to S3.

Evaluation of Very Large Knowledge Bases The previous section evaluated the
presented optimization techniques for instance retrieval mostly on the basis of ABox
realization. In this section the evaluation of instance retrieval is continued with very
large knowledge bases. The first very large KB is Wordnet, which is evaluated with ABox
realization only due to lack of a sufficient number of specific benchmark queries. The
other two very large KBs are LUBM and UOBM. They are evaluated using the execution
of grounded conjunctive queries, which were designed by the developer of these KBs.
Both KBs are tested for ABox size scalability using the standard optimization setting.
Furthermore, they are also evaluated against the 17 settings from the previous section.

Wordnet The Wordnet OWL-DL KB consists of three files with a total size of 102MB.
Its characteristics are shown in Figure 7. The L− TBox consists of 84K concept names
and 85K axioms defining a given taxonomy. The ABox logic is ELR+(D−) and indicates

c©2007/TONES – August 31, 2007 28/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Knowledge Base Tbox Logic Abox Logic
LUBM-Lite ELH ELHR+(D−)
LUBM ALCH SH(D−)

U Individuals Ind. Assertions Role Assertions Load Prep
5 102 368 315 139 309 393 90 60

10 207 426 641 822 630 753 196 153
20 437 555 1 356 017 1 332 029 472 456
30 645 954 2 001 556 1 967 308 726 946
40 864 222 2 676 802 2 630 656 990 1 417
50 1 082 818 3 355 749 3 298 813 1 296 1 758

U = no. of universities, Load = load time, Prep = KB preparation time.

Table 7: LUBM Abox characteristics (time in secs).

the use of transitive roles and OWL-DL datatype properties. By analogy to the previous
section we evaluated ABox realization using the 17 settings. The results are displayed
in the lower part of Figure 7. The runtimes for most settings are in the range for 8 000
seconds and do not vary much. Setting S5 timed out after 30 000 seconds. This result
is in line with the lessons learnt from testing large KBs. S10 is the other exception with
a runtime increased by a factor of 2.5. This clearly demonstrates the advantage of the
datatype property optimization technique. S15-S17 show a speedup of roughly 10% due
to the reduced overhead of the disabled techniques.

LUBM The LUBM benchmark has the big advantage of being scalable. LUBM was
tested with 5-50 university, each with all departments. This results for 50 universities in
1082K individuals, 3355K individual assertions, and 3298K role assertions. Two different
TBoxes were used in order to investigate the influence of the GCI absorption technique (see
also the discussion in [CGG+07a, Section 2.1.3]. An overview about the characteristics
and sizes of the LUBM benchmarks is given in Table 7.

Each benchmark was evaluated with 14 grounded conjunctive queries designed by the
authors of LUBM. The benchmark log recorded the runtime for the following phases: (i)
loading the input files; (ii) data structure setup for the KB. These runtimes are identical
for both TBox variants. The other recorded runtimes are (see the second to fifth columns
in Figures 8 and 9): (iii) time for the initial ABox consistency test that precedes the first
query execution and initializes appropriate data structures and indexes; (iv) nRQL ABox
index generation time; (v) time to execute all 14 queries; (vi) total time consumed by the
benchmark. The right part of Figures 8 and 9 shows a graph displaying curves for the
runtime of the ABox consistency test (dashed line), query execution (dotted line), and
the total benchmark time (solid line).

The graph for LUBM-Lite in Figure 8 gives evidence of Racer’s linear scalability for
this benchmark type. The total runtime is even dominated by the load and preparation
time while ABox consistency and query execution exhibit a straight line with a much
smaller gradient than that of the total runtime.

The gradients of the straight lines shown in the graph in Figure 9 are similar for query

c©2007/TONES – August 31, 2007 29/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

U C I Q T
5 67 39 228 478

10 128 153 363 982
20 391 307 857 2 460
30 600 487 1 274 4 003
40 798 669 1 642 5 487
50 1 055 859 2 100 7 000

U = no. of universities, C = time for initial Abox consistency test,
I = nRQL Abox index generation time, Q = nRQL query execution time,
T = total benchmark time.

Figure 8: LUBM-Lite query runtimes (in secs).

execution but steeper for the ABox consistency test and the total runtime. The more
complex TBox causes no penalty for query execution. On the contrary, the query execu-
tion is even faster by roughly 30%. The ABox consistency test requires now more than
50% of the total runtime and dominates the benchmark results. This can be explained
by the treatment of disjunctions in axioms that were added by the GCI absorption.

We also conducted a second study with LUBM (using both TBox variants) and a
selected ABox size of 10 universities. The 14 queries were executed using the 17 settings
from the previous section. The Figures 10 and 11 show in the left part the recorded
runtimes and in the right part a bar chart illustrating the results (using dark grey for
consistency, middle grey for queries, light grey for total runtime). Please note the use of
the logarithmic scale in the graph.

The obtained results for LUBM-Lite (see Figure 10) demonstrate that the ABox consis-
tency test is mostly unaffected. Its runtime tripled for setting S10 (datatype simplification
switched off) and increased by 30% for S11 (re-use of role assertion switched off). The
execution of the queries timed out for S5 (individual pseudo model merging switched off),
although ABox realization has not been performed. This emphasizes the importance of
this technique also for query-based instance retrieval. The query runtime tripled for S3-S4
and S16-S17, which switch precompletion off. It indicates the effectiveness of the precom-
pletion technique. The other notable slowdown occurred for S12 (factor of 2), which
switches on the static index-based instance retrieval. It is obvious that the overhead to
build and maintain the index is too high and does not pay off for the execution of the
queries.

The runtimes for the ABox consistency test for LUBM (see Figure 11) have tripled
compared to LUBM-Lite as expected due to the added disjunctions in the transformed
axioms. The recorded runtimes are rather uniform. Setting S10 shows an almost doubled

c©2007/TONES – August 31, 2007 30/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

U C I Q T
5 118 38 208 510

10 412 81 351 1 183
20 1 542 158 746 3 359
30 3 422 255 934 6 259
40 5 058 326 1 156 8 915
50 7 579 427 1 512 12 541

U = no. of universities, C = time for initial Abox consistency test,
I = nRQL Abox generation time, Q = nRQL query execution time,
T = total benchmark time.

Figure 9: LUBM query runtimes (in secs).

runtime and S11 a slight increase. The efficiency of these techniques is compensated by
the increased overhead for dealing with disjunctions. Query execution timed out again
for S5. Setting S3-S4 and S16-S17, which switch off precompletion, are now a factor
4-5 slower than the standard setting. By analogy to LUBM-Lite S12 demonstrates an
increased overhead (factor of 2).

c©2007/TONES – August 31, 2007 31/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

S C Q T
1 135 387 1 039
2 132 371 1 003
3 133 1 326 1 962
4 133 1 340 1 979
5 132 10 000 10 000
6 135 381 1 026
7 136 379 1 033
8 135 385 1 034
9 131 377 1 007

10 391 410 1 247
11 184 339 1 002
12 135 890 1 541
13 125 348 955
14 136 386 1 035
15 127 360 971
16 126 1 331 1 941
17 125 1 322 1 927

S = selected optimization setting, C = time for initial Abox consistency test,
Q = nRQL query execution time, T = total benchmark time.

Figure 10: LUBM-Lite (10 universities) queries (in secs, timeout after 10 000 secs).

S C Q T
1 433 345 1 210
2 431 353 1 216
3 429 1 691 2 556
4 430 1 704 2 598
5 427 10 000 10 000
6 435 357 1 229
7 427 360 1 216
8 434 359 1 224
9 431 343 1 205

10 769 337 1 537
11 504 356 1 284
12 432 744 1 610
13 408 315 1 138
14 433 348 1 214
15 406 349 1 168
16 408 1 736 2 556
17 410 1 730 2 556

S = selected optimization setting, C = time for initial ABox consistency test,
Q = nRQL query execution time, T = total benchmark time.

Figure 11: LUBM (10 universities) queries (in secs, timeout after 10 000 secs).

c©2007/TONES – August 31, 2007 32/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

In [MS06] it was conjectured that a transformation of retrieval queries for description
logic ABoxes to disjunctive datalog programs is beneficial in particular if large ABoxes
are queried. We reran the tests performed in [MS06] on an AMD 64bit processor under
Linux with 4GB main memory. In order to check whether KAON2 is faster than Racer
we also ran Racer on this machine (standard settings). As can be seen in Figure 12
the runtimes for answering all 15 LUBM queries are roughly the same for KAON2 and
Racer. In Figure 13 the time required for loading the OWL files as well as for setting
up index data structures etc. are indicated. Racer requires more time. It performs an
ABox consistency test, however, which is not performed by KAON2.

Figure 12: Answering times of KAON2 and Racer for the LUBM queries with a different
number of universities.

Figure 13: Setup times of KAON2 and Racer for the LUBM queries with a different
number of universities.

c©2007/TONES – August 31, 2007 33/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

TBox Logic CN R Axioms ABox Logic
ALCf 51 49 101 ALCf(D−)
(CN = no. of concept names, R = no. of roles)

U Inds Ind. Ass. Role Ass. L P Cons I Q T
1 43 642 116 092 129 695 35 16 100 15 446 608
2 66 900 200 018 222 492 61 35 353 13 1 571 2 041
3 85 055 272 663 302 425 84 59 482 28 3 272 3 920
4 109 919 378 956 419 364 115 111 1 096 31 13 791 15 132
5 138 452 509 902 563 699 160 197 7 670 40 30 000 30 000

U = no. of universities, L = load time, P = KB preparation time,
Cons = time for initial ABox consistency test, I = query index generation time,

Q = nRQL query execution time, T = total benchmark time.

Figure 14: UOBM-Lite benchmark characteristics and runtimes (time in secs, timeout
after 30 000 secs).

UOBM The third and last very large KB discussed in this section is the UOBM-Lite
benchmark. It is also scalable and was tested with 1-5 universities, each with all depart-
ments. The characteristics of the KB and the benchmarks are shown in Figure 14. The
logic of UOBM is ALCf after GCI absorption and the ABox adds datatype properties.
The size of the benchmark for 5 universities results in 138K individuals, 509K individual
assertions, and 563K role assertions.

Each benchmark was evaluated with 15 grounded conjunctive queries designed by the
authors of UOBM. The benchmark has the same structure as for LUBM. The runtimes
given in Figure 14 show that Racer’s ABox consistency performance scales well for up to
3 universities. The runtime increased by a factor of 2 for 4 universities and a factor of 7 for
5 universities. This degradation of performance is caused by functional roles that enforce
the identification of ABox individuals due to non-deterministic restrictions. This type of
reasoning is repeated again and again for thousands of individuals. In contrast to LUBM
the UOBM benchmark does not allow the unique name assumption. The query execution

c©2007/TONES – August 31, 2007 34/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Figure 15: UOBM-Lite (3 universities) queries (in secs, timeout after 30 000 secs).

time also scales well for up to 3 universities. However, for 4 universities it increased by
a factor 4 and timed out for 5 universities after 30 000 seconds. The graph in the lower
part of Figure 14 displays the curves for the ABox consistency test (dashed line), query
execution (dotted line), and the total benchmark time (solid line). The non-linear trend
can be easily noticed. It is interesting to remark that 99.86% of the query runtime is
spent for 3 of the 15 queries. This performance asks for a refinement of existing or design
of new optimization techniques. This is a topic for future work.

For these reasons the second study conducted with UOBM was restricted to a size of
3 universities. We tested the 15 queries using the 17 settings. The results are displayed
in Figure 15 where the left bar chart uses a linear and the right one a logarithmic scale
(using dark grey for consistency, middle grey for queries, light grey for total runtime).
Setting S12, which switches static index-based instance retrieval on, timed out after 30 000
seconds. This result clearly demonstrates that in the case of these 15 queries ABox re-
alization is not worth the effort. S5 switches individual pseudo model merging off and
caused an increase of runtime by a factor of 5. Again, this gives evidence for the effective-
ness of this technique for instance retrieval without realization. By analogy to LUBM one
can notice a slight increase for S3-S4 and S16-S17, which switch off the precompletion,
and S10, which disables datatype property simplification. S11 doubled the runtime due
to the disabled re-use of role assertions.

5.2 QuOnto

In this subsection we will discuss the experimentation carried out on the QuOnto (Query-
ing Ontologies) tool, a reasoner for the DLs of the DL-Lite family [CDGL+07]. We will
provide a short description of the tool, and give details on the test setup and the test
results.

c©2007/TONES – August 31, 2007 35/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

5.2.1 Tool Description

QuOnto 15 is a free (for non-commercial use) Java-based reasoner for DL-Lite with GCIs.
QuOnto is able to manage a large amount of concept and role instances (from

thousands to millions) through relational database technology, and implements a query
rewriting algorithm for both consistency checking and query answering of complex queries
(unions of conjunctive queries) over DL-Lite knowledge bases, whose ABox is managed
through relational database technology. Currently, it supports its own Java-based inter-
face, and accepts inputs in a proprietary XML format.

TBox Specification in QuOnto As already said, Knowledge Bases (KBs) managed
in QuOnto are specified in the DLs of the DL-Lite family. DLs of this family are able
to capture the main notions of conceptual modeling formalism used in databases and
software engineering such as ER and UML class diagrams. Basically, DL-Lite assertions
allow for specifying (in a controlled way) ISA and disjointness between concepts and roles,
role-typing, participation and non-participation constraints between a concept and a role,
functionality restrictions on roles, attributes on roles and concepts. The DLs of the DL-
Lite family differ one another for the kind of assertions they allow (among those mentioned
above), and for the way in which such assertions can be combined. All such DLs, however,
allow for tractable reasoning. Notably, answering unions of conjunctive queries over DL-
Lite KBs is in LOGSPACE in data complexity, i.e., the complexity measured only w.r.t.
the size of the ABox, and the tuning in the use of the assertions in each DL of the DL-Lite
family is aimed at guaranteeing such a nice computational behavior.

We do not provide here details on the syntax and semantics of the DLs of the DL-Lite
family, and refer the reader to [CDGL+07, BCG+06, CGG+06, BBC+07] for a in depth
and formal description of these matters. We only point out that in QuOnto the TBox
is provided in a proprietary XML format.

ABox Specification in QuOnto In QuOnto, the extensional level of the knowledge
base is a DL-Lite ABox, i.e., a set of plain membership assertions [CDGL+07, BCG+06,
CGG+06, BBC+07]. For example, for DLs of the DL-Lite family that do not allow for
the specification of attributes on concepts and roles, an ABox is a set of assertions of the
form

A(c), R(c, b),

where A is an atomic concept, R is an atomic role, c and b are constants. These assertions
state respectively that the object denoted by c is an instance of the atomic concept A,
and that the pair of objects denoted by (c, b) is an instance of the atomic role R.

One of the distinguishing features of QuOnto is that the ABox is stored under the
control of a DBMS, in order to effectively manage objects in the knowledge base by means
of an SQL engine. To this aim, QuOnto constructs a relational database which faithfully
represents an ABox A: for each atomic concept A, a relational table tabA of arity 1 is
defined, such that 〈c〉 ∈ tabA iff A(c) ∈ A, and for each role R, a relational table tabR of

15http://www.dis.uniroma1.it/ quonto/

c©2007/TONES – August 31, 2007 36/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

arity 2 is defined, such that 〈c, b〉 ∈ tabR iff R(c, b) ∈ A (analogously in the presence of
membership assertions involving concept or role attributes).

We point out that the above construction is completely transparent for the user,
and that ABoxes in input to QuOnto are simply sets of plain membership assertions,
represented in a proprietary XML format.

Query Answering in QuOnto In order to take advantage of the fact that the ABox
is managed in secondary storage by a Data Base Management System (DBMS), the query
answering algorithm used in the QuOnto system is based on the idea of reformulating
the original query into a set of queries that can be directly evaluated by an SQL engine
over the ABox. Note that this allows us to take advantage of well established query
optimization strategies.

Query reformulation is therefore at the heart of our query answering method. The
basic idea of our method is to reformulate the query taking into account the TBox: in
particular, given a union of conjunctive queries q over a DL-Lite knowledge base K, we
compile the assertions of the TBox into the query itself, thus obtaining a new union of
conjunctive queries q′. Such a new query q′ is then evaluated over the ABox of K, that is
over the relational database representing the ABox. Since the size of q′ does not depend
on the ABox, the data complexity of the whole query answering algorithm is LOGSPACE
in data complexity (i.e., the data complexity of evaluating a union of conjunctive queries
over a database instance). We refer the reader to [CDGL+07] for more details on the
query answering algorithm implemented in QuOnto. We simply point out here that our
tool is also equipped with some optimization techniques that aim at “minimizing” each
disjunct occurring in the rewritten query q′, i.e., each disjunct in the query q′ is further
rewritten in order to drop some of its atoms to avoid useless join computations.

5.2.2 Test Setup

The main aim of our tests is to show scalability of query answering in QuOnto w.r.t. the
growing of the size of the underlying ABox. To this aim, we consider a DL-Lite TBox,
a set of DL-Lite ABoxes of different size, and a set of conjunctive queries posed over
the TBox. We then measure the behavior of QuOnto in terms of both the size of the
resulting answer sets (i.e., the number of tuples returned by the processing of each query),
and the overall time that QuOnto takes to produce these answer sets.

In our experiments, we also compare these time measures with the time measures
obtained from evaluating each query directly over each ABox (disregarding the TBox),
which, of course, provides a sound but incomplete answer set to each query. This com-
parison shows that the overhead required by our method w.r.t. simple query evaluation
over an ABox is not onerous, and that we can get a complete answer in an efficient way,
even on ABoxes of big size.

We finally point out that possible usage scenarios for the reasoning task and the
technique (ABox query answering) that we test in these experiments are the online usage
scenarios for ABox Access described in the TONES Deliverable D14 [CGG+07b].

All experiments have been carried out on an Intel Pentium IV Dual Core machine,
with 3 GHz processor clock frequency, equipped with 1 Gb of RAM, under the operating

c©2007/TONES – August 31, 2007 37/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

system Windows XP professional.
In the following, we provide more details on our test setting.

Ontology TBox To perform our experiments, we considered the OWL Lehigh Univer-
sity Benchmark (LUBM) 16. LUBM consists of an OWL ontology for modeling universities;
i.e., the ontology contains concepts for persons, students, professors, publications, courses,
etc., as well as appropriate relationships for such a universe of discourse (see also the brief
description provided in the TONES Deliverable 14 [CGG+07b]).

In fact, in our experiments, we considered an approximation of the OWL LUBM TBox
that is expressed in DL-LiteA, a DL of the the DL-Lite family that has as distinguish-
ing features the ability of specifying attributes on concepts and roles, and ISA on such
attributes, and also, analogously to other DLs of the DL-Lite family, allows for spec-
ifying functionalities on roles (and on the inverse of roles), ISA between concepts and
roles (with some suitable limitations), participation and non-participation constraints,
etc. [CGG+06].

Notice that we also enriched the resulting DL-LiteA TBox by adding some TBox
assertions to capture particular aspects of the domain that were not caught by the original
TBox. For example, we added the role hasExam, to model also the courses for which
a student has passed the exam. Also, we introduced role attributes, which cannot be
expressed in OWL. For instance, we added the role attributes eventY ear, examY ear,
and degreeY ear, to allow the specification of the year in which, respectively, an event
occurred, a student passed an exam, and a student took a degree. Note that we also
imposed that years of both an exam and a degree are years in which some event occurred.
This is expressed by means of the following TBox assertions:

examY ear v eventY ear
degreeY ear v eventY ear

It is worth noting that the TBox that we consider in our experiments presents some
forms of cyclic dependencies, as shown the following subset of TBox assertions:

Student v ∃takesCourse ∃takesCourse− v Course
Course v ∃teacherOf− ∃teacherOf v Faculty
Faculty v ∃worksForUniv ∃worksForUniv− v University
University v ∃hasAlumnus ∃hasAlumnus− v Student

It is possible to show that, given an ABox A, there exists no finite first-order structure
S such that, for every conjunctive query q, the set of answers to q over the knowledge base
constituted by the above TBox and the ABox A, is the result of evaluating q over S. This
property demonstrates that answering queries in DL-Lite goes beyond both propositional
logic and relational databases.

Ontology ABox Rather than using the benchmark generator available for the LUBM
ontology, which generates synthetic extensional data corresponding to the LUBM ontol-
ogy, we considered ABoxes constructed from real data concerning the university domain.

16http://swat.cse.lehigh.edu/projects/lubm/

c©2007/TONES – August 31, 2007 38/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Name ABox size Data description
(number of assertions)

ABox1 118075 Before 1995 (concerning students living in Rome)
ABox2 165049 Before 1995
Abox3 202305 Before 1997 (concerning students living in Rome)
ABox4 280578 Before 1997
ABox5 328256 Before 1999 (concerning students living in Rome)
ABox6 482043 Before 1999

Table 8: ABoxes used for tests

These data are taken from the information systems of the Faculty of Engineering of the
University of Rome “La Sapienza”, and refers to the period 1990-1999. Starting from
these data, we constructed six different ABoxes of growing size. These are presented in
Table 8 (before 199x means that the ABox concerns only data from 1990 to 1995).

Queries In order to show the benefits of using QuOnto, we consider the following
queries:

Query 1 : It asks for all persons living in Rome that obtained at least a ’30’ as exam mark:

q(x) : −Person(x), address(x,′ ROMA′), examRating(x, y,′ 30′).

Query 2 : It asks for the names of all students that took a course, together with the name
of such a course:

q(z, w) : −Student(x), name(x, z), takesCourse(x, y), name(y, w).

Query 3 : It asks for the names of all persons that passed at least an exam:

q(x) : −Person(x), hasExam(x, y).

Query 4 : It asks for the names of all persons whose address is the same as the address of
the place for which their advisor works:

q(z) : −Person(y), name(y, z), address(y, w), advisor(y, x), worksFor(x, v), address(v, w).

Query 5 : It asks for all students that took a course together with the address of the orga-
nization for which the course teacher works:

q(x, c) : −Student(x), takesCourse(x, y), teacherOf(z, y), worksFor(z, w), address(w, c).

c©2007/TONES – August 31, 2007 39/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

0

5000

10000

15000

20000

25000

30000

35000

40000

Abox 1 Abox 2 Abox 3 Abox 4 Abox 5 Abox 6

ABoxes

M
ill
is
ec
o
n
d
s Q1

Q2

Q3

Q4

Q5

Figure 16: QuOnto execution time for query answering

5.2.3 Test Results

The main results of our experiments are given in Figure 16 and Figure 17, which respec-
tively show the performance (execution time) for answering each query w.r.t. the growth
of the size of the ABox, and the number of tuples returned by each query.

To make the results more readable, we provide below also a table providing exact
times for query answering in QuOnto (values are in milliseconds).

Q1 Q2 Q3 Q4 Q5
Abox 1 78 2422 78 422 657
Abox 2 94 4875 140 516 938
Abox 3 140 6844 296 421 2266
Abox 4 844 23891 532 454 3860
Abox 5 1031 18687 359 453 3875
Abox 6 1110 34094 18 453 6828

For each query, the execution time comprises the time needed for rewriting the input
query, minimizing it, and evaluating it over the ABox. We point out that the time needed
for query rewriting and query minimization is negligible w.r.t. the overall execution time,
and that the major time consuming process is the evaluation of the rewritten query over
the ABox (for which we have always increasing values at the growth of the underlying
ABox). This depends both on the number of disjuncts occurring in the rewritten query
(which is a union of conjunctive queries), and the number of membership assertions of
the ABox involving concepts, roles, and attributes occurring as predicates of the query

c©2007/TONES – August 31, 2007 40/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

0

20000

40000

60000

80000

100000

120000

Abox 1 Abox 2 Abox 3 Abox 4 Abox 5 Abox 6

ABoxes

N
u

m
b

er
 o

f
F

ac
ts Q1

Q2

Q3

Q4

Q5

Figure 17: number of tuples returned by QuOnto for each query

atoms. As an example, we provide below the rewriting of the query Q2 (expressed in
Datalog notation), for which we measure the highest execution times for each underlying
ABox.

q(Z,W) : − name(Y,W), examRating(X, Y, n0), name(X,Z)
q(Z,Z) : − takesGraduateCourse(X, X), name(X, Z)
q(Z,W) : − name(Y,W), takesGraduateCourse(X, Y), name(X, Z)
q(Z,W) : − name(Y,W), hasExam(X, Y), name(X, Z)
q(Z,Z) : − examRating(X, X, n0), name(X,Z)
q(Z,Z) : − takesCourse(X,X), name(X,Z)
q(Z,Z) : − hasExam(X, X), name(X, Z)
q(Z,W) : − name(Y,W), takesCourse(X, Y), name(X, Z)

We notice that QuOnto shows good scalability w.r.t. the growth of the size of the
ABox, and that execution times are always small, even for answering queries that are
rewritten in union of conjunctive queries with several disjuncts (e.g., the rewriting of
query Q5 contains around 40 disjuncts). The ability of QuOnto to provide efficient query
answering is made also evident by the fact that the overhead required by the QuOnto
query answering strategy w.r.t. simple query evaluation over the ABox (that can be seen
as a flat relational database) is not onerous, i.e., for query answering in QuOnto we
get results comparable to standard query evaluation over relational databases. The table
below provides time measures obtained from the evaluation of each of our test query
directly over each of our ABoxes, disregarding the TBox (values are in milliseconds).

c©2007/TONES – August 31, 2007 41/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Q1 Q2 Q3 Q4 Q5
Abox 1 1 1047 1 1 171
Abox 2 62 2438 1 94 343
Abox 3 31 3235 1 79 875
Abox 4 47 6890 2 46 1546
Abox 5 31 5704 2 63 1562
Abox 6 31 8640 2 63 2844

6 Query Formulation Support

While designing a tool, its usability evaluation is an essential step of a User Centred
Design Methodology, together with the identification of users and of their needs, the
correct exploitation of this information to develop a system that, through a suitable
interface, meets the users’ needs, and, obviously, the system usability evaluation. In fact,
by analysing the experiment results, we can improve the interaction between the users
and the system.

Several different definitions of usability exist; we adopt from the ISO 9000 the following
very comprehensive definition of usability: “the extent to which a product can be used
with efficiency, effectiveness and satisfaction by specific users to achieve specific goals in
specific environment”. From this point of view, the usability is the quality of interaction
between the user and the overall system. It can be evaluated by assessing three factors:

• effectiveness, i.e., the extent to which the intended goals of the system can be
achieved;

• efficiency, i.e., the time, the money, the mental effort spent to achieve these goals;

• satisfaction, i.e., how much the users feel themselves comfortable using the system.

It is worth noting that the usability depends on the overall system, i.e., the context,
which consists of the types of users, the characteristics of the tasks, the equipment (hard-
ware, software, and materials), and the physical and organisational (e.g., the working
practises) environment. Usability is an essential quality of Software Systems.

An important element in any usability evaluation is the classification of the differences
among the skills of evaluators (i.e., the persons evaluating the usability of an interaction
design); in particular we deal with two main criteria, Expert-based criteria and User-
based criteria. In the former, experts are requested to evaluate a prototype, comparing
it w.r.t. existing rules and guidelines; in the latter evaluators assess usability through
real users, having them using a prototype. User-based criteria include, among others,
Observational evaluation method, Survey evaluation method, and Controlled experiment
method.

The observational evaluation method involves real users that are observed when per-
forming tasks with the system (depending on the stage of the project, what “the system is”
ranges from paper mock-ups to the real product). This method offers a broad evaluation
of usability. Depending on the specific situation, we may either apply the Observational

c©2007/TONES – August 31, 2007 42/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Evaluation by direct observation or record the interaction between the users and the sys-
tem (using Usability Lab). Recording (done by video camera) is more valuable, since it
allows storing a lot of information, for example the critical points during the interaction
(when the user has to consult the manual, when and where s/he is blocked, etc.), the
time a user spends to perform a task, the mistakes a user makes, and so on. Obviously,
recording, using camera, is much expensive (especially for the time required to analyse
the recorded data). Various protocols are possible while observing users:

• The think aloud protocol provides the evaluator with information about cognitions
and emotions of a user while the user performs a task or solves a problem. The
user is instructed to articulate what s/he thinks and feels while working with a
prototype. The utterances are recorded either using paper and pencil or using audio
and/or video recording. By using the Think Aloud Protocol, the evaluator obtains
information about the whole user interface. This protocol is oriented towards the
investigation of the user’s problems and decisions while working with the system.

• Verbal protocols aim at eliciting the user’s (subjective) opinions. Examples are
interviews and questionnaires. The difference between oral interview techniques
and questionnaire based techniques lies mainly in the effort for setup, evaluating
the data, and the standardisation of the procedure.

In the survey evaluation method, structured questionnaires and/or interviews are used
to get feedback from the users. This method offers a broad evaluation of usability since
from the user’s viewpoint it is possible to identify the critical aspects in user-system.

The controlled experiment method is particularly valid to test how a change in the
design project could affect the overall usability. It may be applied in any phase during the
development of a system; it provides more advantages when it is possible to test separately
the alternative designs, independently by the whole system. This method mainly aims at
checking some specific cause-effect relations, and this is possible by controlling as many
variables as we can.

The usability evaluation we have carried on is composed by the following steps:

• User Analysis. A user classification method identifies a certain number of features,
which permits the labelling of a homogeneous group of users. The number and the
kinds of groups differ depending on the specific classification. However, there is at
least a general agreement on the initial splitting of the users into two large groups:
those who have had a certain instruction period and have technical knowledge,
and those who do not have specific training in computer science. Actually, in the
experiment we call those two groups skilled and unskilled users respectively. The
several features roughly characterise the unskilled user: s/he interacts with the
computer only occasionally, s/he has little, if any, training on computer usage, s/he
has low tolerance for technical aspects, s/he is unfamiliar with the details of the
internal organisation of an information system. Usually, this user does not want
to spend extra time in order to learn how to interact with a system, and finds it
irritating to have to switch media, e.g., to manuals, in order to learn how to interact
with the system. Moreover, the unskilled user wants to know where s/he is and

c©2007/TONES – August 31, 2007 43/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

what to do at any given moment of the interaction with the system. Notice that
the unskilled user is very similar to Cuff’s casual users. On the other hand, skilled
users possess knowledge of considered systems, information systems, etc., and often
like to acquire a deep understanding of the system they are using.

• Experiment Design. The main goal of the experiment design is to propose a
complexity model and to validate the metrics used to measure the system usability.
In order to estimate the usability, the evaluators provide not only to define precisely
what one is going to watch/measure, but also they provide to develop tasks for
users to perform; moreover, they measure relevant parameters (metrics) of user
performance, and they validate values collected during the experiments.

• User Teaching. The goal of the usability evaluation experiments is to measure
the effectiveness and the efficiency of the system and the user’s satisfaction using
it, discarding each aspect involving the learning time of the different environments.
For this reason, this step aims at making users aware of system functionality and
experiments modalities. Following this guideline during the teaching users step, we
set up exhaustive explanation about each tool. In this way the users were totally
acquainted with the usage of the system and, during the final test, they were free
of concentrating exclusively on the tasks execution.

• Experiment Execution. During this step, the evaluators provide to explain users
about the experiment and to assign users the developed task. Moreover, they take
notes of any conditions or events, which occur during the experiment.

• Usability Analysis. The evaluators collect the information on each performed
test and in order to obtain statistically significant metric values, is very important
validate such results with an Anova test (AN analysis Of Variance test). While the
analysis of results is in charge of the evaluators, all people involved in the experiment,
as mentioned in the User Centred Design Methodology perform the evaluation of
the usability.

6.1 QueryTool

We recall here very briefly the man idea behind the query tool. Details can be found in
previous deliverables.

The query tool is meant to support a user in formulating a precise query – which
best captures her/his information needs – even in the case of complete ignorance of the
vocabulary of the underlying information system holding the data. The final purpose
of the tool is to generate a conjunctive query (or a non nested Select-Project-Join SQL
query) ready to be executed by some evaluation engine associated to the information
system.

The intelligence of the interface is driven by an ontology describing the domain of the
data in the information system. The ontology defines a vocabulary which is richer than
the logical schema of the underlying data, and it is meant to be closer to the user’s rich
vocabulary. The user can exploit the ontology’s vocabulary to formulate the query, and

c©2007/TONES – August 31, 2007 44/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

she/he is guided by such a richer vocabulary in order to understand how to express her/his
information needs more precisely, given the knowledge of the system. This latter task –
called intensional navigation – is the most innovative functional aspect of our proposal.
Intensional navigation can help a less skilled user during the initial step of query formu-
lation, thus overcoming problems related with the lack of schema comprehension and so
enabling her/him to easily formulate meaningful queries. Queries can be specified through
an iterative refinement process supported by the ontology through intensional navigation.
The user may specify her/his request using generic terms, refine some terms of the query
or introduce new terms, and iterate the process. Moreover, users may explore and discover
general information about the domain without querying the information system, giving
instead an explicit meaning to a query and to its sub-parts through classification.

Query expressions are compositional, and their logical structure is not flat but tree
shaped; i.e. a node with an arbitrary number of branches connecting to other nodes. This
structure corresponds to the natural linguistic concepts of noun phrases with one or more
propositional phrases. The latter can contain nested noun phrases themselves.

The focus paradigm is central to the interface user experience: manipulation of the
query is always restricted to a well defined, and visually delimited, sub-part of the whole
query (the focus). The compositional nature of the query language induces a natural
navigation mechanism for moving the focus across the query expression (nodes of the
corresponding tree). A constant feedback of the focus is provided on the interface by
means of the kind of operations which are allowed. The system pro-actively suggests
only the operations which are consistent with the current query expression; in the sense
that do not cause the query to be unsatisfiable. This is verified against the formal model
describing the data sources.

6.2 Test Setup

The method we use for the experiments is the observational evaluation method and, in
particular, the Think Aloud and Verbal Protocols. Also, we record the tests with a video
camera in order to valuate rigorously a lot of information, for example the critical points
during the interaction (when the user has to consult the manual, when and where s/he is
blocked, etc.), the time a user spends to perform a task, the mistakes a user makes, and
so on.

6.2.1 The domain and the users

The evaluation of the query tool presented in this chapter is mainly a follow-up to the
outcome of the European IST RTD project SEmantic Webs and AgentS in Integrated
Economies (SeWAsIE, IST-2001-34825), in which a first version of the query tool was
developed. For this reason, the applicative scenario and the ontology are derived from
the SeWAsIE project, which was about supporting the textile industry . The project’s
ontology used in this evaluation is written in the description logicALCQI and it comprises
around 300 concepts and 70 roles. Since in this case we are not evaluating the ontology
itself, but the user interface of the query tool, the details of the involved ontology are not
relevant here. On the other hand, it is important that we have evaluated the query tool

c©2007/TONES – August 31, 2007 45/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Figure 18: Sample query

in a real world scenario, that we know well due to our past research projects.
Three people are involved in this session of the usability evaluation experiment. In

particular, while two people are very skilled in computer science, the other one is unskilled
in computer science and he uses the computer only at work. These users belong to the em-
ployees of provincial and municipal offices class, and they well represent the end-users for
the Query tool environments. In the SeWAsIE scenario, provincial and municipal offices
work together with the textile industries giving trade-union help, economic strategies and
other services required. These employees are constantly kept updated about all relevant
news and regulations, and they work in a flexible structure to provide services and op-
portunities; their main activity is to provides services to craftsmen and small businesses;
their main services are: personnel administration; management consulting; management
training.

We consider the end-users as Domain Expert users, differently from the five students
that perform the complexity model experiment session, that we classified as Non Domain
Expert (NDE). This classification in NDE and DE is very important in our context; in
fact, the main goal of our experiment is to demonstrate the easy of use of the Query tool
independently from the previous deep knowledge of the domain.

6.2.2 Designing experiments

The objective of our study is to measure and understand the use complexity of the Query
tool. More specifically, we are interested in determining how much is difficult for the
users to construct queries, and to understand its results. In order to evaluate which is
the quality of the interaction between the domain expertise of the users and the query
paradigm used in the Query tool environment to construct queries, we develop different
tasks for the users (the query writing and query reading tasks); moreover, we design a
model of complexity, a number of query of increasing complexity, and a questionnaire to
capture relevant aspects of the interface interaction.

In the model of complexity, to each query we assign a complexity tree: nodes are
associated to concepts of the query and are identified by their relative order within a level
of the tree, and edges are associated to the property/compatible relation among concepts
in the query with weight cn

l , where cn
l = 0.1 if there is a property relation and cn

l = 0.2 if
there is a compatible relation; the tree has depth lmax and each level l has nl total nodes.

c©2007/TONES – August 31, 2007 46/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Query_i
Num
Level

Num
Node

Avr_num
suc_per_node

Avr_num
node_per_level Complexity

Query_1 2 2 1,00 1,00 0,30
Query_2 3 3 1,00 1,00 0,60 Low Complexity
Query_3 2 3 2,00 1,50 0,80
Query_4 3 4 1,25 1,33 0,80
Query_5 5 8 1,39 1,60 2,45 Medium Complexity
Query_6 6 9 1,20 1,50 2,80
Query_7 6 11 1,50 1,83 4,00
Query_8 7 12 1,42 1,71 5,60 High Complexity
Query_9 8 11 1,39 1,38 6,05

Figure 19: Test queries complexity

Starting from the query tree, we define a function to calculate the complexity of the
query, expressed with the following formula:

lmax∑
l=1

l ·

(
nl∑

n=1

cn
l · n

)
· nl+1

nl

(with c1
1 = 0.1, and if nl+1 is undefined then nl+1 = nl)

For example, the query “Tell me the suppliers situated in a warehouse, and which are
multinationals selling trousers”, shown in Figure 18, has the following complexity:

1 · (0.1 · 1) · 2 + 2 · (0.2 · 1 + 0.1 · 2) · 0.5 + 3 · (0.1 · 1) · 1 = 0.9

Using this model, we devised a list of queries with increasing complexity; the values
of increasing complexity are showed in the Figure 19, where we highlight several charac-
teristics of the queries (e.g. number of levels, the average number of successors per node,
etc.).

The values of the metrics we use to describe the performance for the usability evalua-
tion are: the time spent to compose the query, the number of steps used to compose the
queries, the number of focus change, the number of mistakes, the number of cancellations,
and the number of clicks on the Query Manipulation Pane.

In order to validate the complexity model, the performance metrics, the queries, and
the questionnaire, we have done a preliminary session of the experiment performed with
the Non Domain Expert users. It is interesting to note that the query complexity (pink
line of the Figure 20) has the same increasing behaviour of the metrics observed during
this preliminary test session. By inspecting the time spent values in the Figure makes
clear that the users have learnt the system by using it; in fact, for the queries of high
complexity (Query-7, 8, 9), the function of the time spent metric increases more slowly
than the other metrics.

The proper experiment session involved the three Domain Expert end-users above
mentioned. Each user has a workstation.

This test is composed by two sub-sessions: the first for the two skilled people and
the second for the unskilled user. For each sub-session, we design two tasks set to be
performed by the users:

c©2007/TONES – August 31, 2007 47/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Query_i

Time_per_query

Complexity_query

Num_change_focus

Num_step

Num_mistake

NUm_cancel

Nnm_click_QP

Figure 20: Complexity vs average values of metrics

• skilled users tasks: to compose different queries (Query-1, 4, 9 for the User-1; Query-
2, 5, 8 for the User-2), and to read the results of the assigned queries, analysing
them;

• unskilled users tasks: to propose thinking the queries that the user composes usually,
constructing them using the Query tool, and to read the results of these queries,
analysing them.

Before performing the tests, we set up the training session, instructing users about the
tasks to perform. During the performance, we observe the users and collect the measures
of the metrics defined above. In this phase, we ask the users to think aloud, by describing
their intentions, expectations, and their problems. In particular:

• the engineers instruct the skilled users about modalities of the experiment and they
introduce the main goal of the Query tool without describing the functionalities of
the tool;

• the users interact with the tool to understand how it works. During this auto-
training session, the engineers record with a camera relevant performances. After
that, each subject was presented with tasks;

• while the first user perform the tasks, the engineers observe the session of test, and
they record the users’ utterance using camera (Think Aloud Protocol);

• the engineers propose to the users the designed questionnaire and users make it.
The engineers collect questionnaires;

• while the second user perform the tasks, the engineers observe the session of test,
and they record the users’ utterance using camera (Think Aloud Protocol);

c©2007/TONES – August 31, 2007 48/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Query_i
Num
Level

Num
Node

Avr_num
suc_per_node

Avr_num
node_per_level Complexity

Query_1 2 2 1,00 1,00 0,30 Low Complexity
Query_4 3 4 1,25 1,33 0,80 Medium Complexity
Query_9 8 11 1,39 1,38 6,05 High Complexity
Query_2 3 3 1,00 1,00 0,60
Query_5 5 8 1,39 1,60 2,45 User_1 skilled
Query_8 7 12 1,42 1,71 5,60 User_2 skilled
Query_10 3 6 2,13 2,00 1,20 User_3 unskilled
Query_11 4 6 1,44 1,50 1,70

Figure 21: Complexity of the performed queries

Time
spent

Num
change focus

Num
step

Num
mistake

Num
cancellation

Num
QMP click

Utente_1 Query_1 0,40 0 2 0 0 0
Utente_1 Query_4 1,17 0 3 0 0 1
Utente_1 Query_9 12,20 1 10 1 1 2
Utente_2 Query_2 1,30 0 2 0 0 2
Utente_2 Query_5 9,00 1 4 1 1 2
Utente_2 Query_8 14,00 1 9 2 1 3
Utente_3 Query_10 8,30 0 4 0 0 2
Utente_3 Query_11 10,15 0 6 1 1 4

Figure 22: Values of the metrics of the performed queries for each User

• the engineers propose to the users the designed questionnaire and users make it.
The engineers collect questionnaires;

• the engineers teach the unskilled user about modalities of the experiment, and they
describe the user the Query tool functionalities. After this training session, the
subject was presented with Query tool tasks;

• while the user perform the tasks, the engineers observe the session of test, and they
record the users’ utterance using a camera (Think Aloud Protocol);

• the engineers propose to the user the questionnaire and the users compose it. The
engineers collect the questionnaire.

6.3 Test Results

We calculated the complexity of queries defined by the unskilled users, in particular, in
the Figure 21, we highlight some characteristics of the queries performed in this section
of the experiments

For the queries performed by the end users, we show the values of the metrics de-
scribing the performance for the usability evaluation (see Figure 22). These measures are
calculated using the video recorded during the experiments session.

c©2007/TONES – August 31, 2007 49/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

1 2 3 4 5 6 7 8 9 10 11

Questionnaire queries

Figure 23: Histogram describing the results of the questionnaire

The auto-training session of the skilled users turned out some usability aspects, in
particular it is not very clear: the conceptual difference between Add a compatible term
button and Add a propriety button (see the Figure 21); why some proprieties are present
two or more times in the Add a propriety list; why it is impossible clicking freely on the
tab that represent the main activities to construct the query; why the system takes a long
time to answer a query.

Different observations come up from the unskilled user that asked for: biggest fonts
for the natural language query representation (in the text box); a method to compact the
query manipulation pane; the possibility to customise the values in the add concept list.

The Figure 23 shows the histogram containing the results of the questionnaire assigned
to the end users, (Non-domain expert users vs Domain expert users). In particular, we
use a colour code to identify the Non Domain Expert and the Domain Expert users.
We calculated the histogram in order to understand the relationship between the users’
satisfaction and their domain experience.

Nevertheless, the observations of the skilled users, done during the auto-training ses-
sion, these users after the brief training are able to perform the requested writing and
reading tasks. In the case of unskilled user, easily, he proposes two valid queries, and the
values of time spent to build these queries is relatively low (see Figure 22); moreover, the
number of mistakes is irrelevant. Therefore, we conclude that the overall functionality
and philosophy of the Query tool interface are well understood by all users.

Moreover, we highlight that the value of time spent to construct queries is independent
from the domain expertise of users. In fact, this performance measure is only function
of queries complexity. In order to demonstrate that, we calculated the average values of
time-spent to construct the low complexity queries, the medium complexity queries, and
the high complexity queries for the two classes of users (Non Domain Expert = NDE, and
Domain Expert = DE), collected in the Figure 24, validating such results with an Anova
test.

Finally, it is worth noting that the questionnaire highlights that the user satisfaction

c©2007/TONES – August 31, 2007 50/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

 Low Medium Hight
NDE 1,06 9,31 13,56
DE 1,05 8,87 13,10

Figure 24: Average values of the users time-spent for each class of users

to achieve the specific writing tasks is independent of the user domain experience; in
fact observing the histogram in the Figure 24, we note that there are non significant gap
between the values representing the average of result values of the Non Domain Expert
users (orange col-or) and the same values of the Domain Expert users (pink col-or).

In our context, this aspect is a very strong point, because it demonstrates that the
system can be used independently of the user domain expertise, in others words each class
of user is able to construct queries using the interface of the Query tool.

6.4 Final considerations

The main goal of our experiment was to demonstrate the easy of use of the Query tool
independently of the domain user experience. Wee used the observational evaluation
method and, in particular, the Think Aloud and Verbal Protocols. We described the
evaluation experiments adopting a general user-based criteria schema.

The designed aspects (e.g., the model complexity) have been validated by a prelimi-
nary session of experiment performed with the non-domain expert users (five students).
In particular, the test session highlighted that the query complexity has the same increas-
ing behaviour of the metrics and that the users learnt the system using it. Moreover,
these results validated the query complexity mode and the questionnaire. Considered
the positive results, we have performed the usability experiments session, starting from
the training session, instructing users about the tasks to perform, and observing them in
order to collect the required figures.

Concluding, the users were able to perform the requested writing and reading tasks.
Therefore, we have concluded that the overall functionality and philosophy of the Query
tool interface was well understood by all users. Moreover, we have observed that the
value of time spent to construct queries is independent of the domain expertise of users,
validating such results with an Anova test. Finally, the questionnaires have highlighted
that the user satisfaction to achieve the specific writing tasks is independent of the user
domain experience; this aspect is a very strong point, because it demonstrates that the
system can be used independently of the user domain expertise, confirming that the
Query tool system is usable by both end users (domain-expert users) and non-domain
expert users.

7 Information Extraction via Abduction

In this section we present a framework for media interpretation that leverages low-level
information extraction to a higher level of abstraction and, therefore, enables the auto-
matic annotation of documents through high-level content descriptions. The availability

c©2007/TONES – August 31, 2007 51/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

of high-level content descriptions for documents will enable information retrieval using
more abstract terms, which is crucial for providing more valuable services. The media in-
terpretation framework exploits various reasoning services whereas the abductive retrieval
inference service offered by Racer plays the key role. The overall goal of the framework
is to maximize precision and recall of semantics-based information retrieval [MHN98].

Abduction is usually described as a form of reasoning from effects to causes. Another
widely accepted definition of abduction considers it as inference from observations to
explanations. In this view, abduction aims to find explanations for observations. In
general, abduction is formalized as follows: Σ∪∆ |= Γ where background knowledge (Σ),
and observations (Γ) are given and explanations (∆) are to be computed.

If DLs are used as the underlying knowledge representation formalism [Baa03], Σ is a
knowledge base (KB): Σ = (T ,A) that consists of a TBox T and an ABox A. ∆ and Γ
are ABoxes and they contain sets of concept instance and role assertions.

We consider ABox abduction in DLs as the key inference service for media interpre-
tation. We assume A to be empty and modify the previous equation to Σ∪Γ1 ∪∆ |= Γ2,
by splitting the assertions in Γ into two parts: bona fide assertions (Γ1) and assertions
requiring fiats (Γ2). Bona fide assertions are assumed to be true by default, whereas fiat
assertions are aimed to be explained.

In order to compute explanations, ABox abduction can be implemented as a non-
standard retrieval inference service in DLs. Different from the standard retrieval inference
services, answers to a given query cannot be found by simply exploiting the knowledge
base. In fact, the abductive retrieval inference service has the task of acquiring what
should be added to the knowledge base in order to positively answer a query.

To answer a given query, the abductive retrieval inference service can exploit non-
recursive DL-safe rules with autoepistemic semantics in a backward-chaining way. In this
approach, rules are part of the knowledge base and are used to extend the expressivity
of DLs. In order to extend expressivity and preserve decidability at the same time, the
safety restriction is introduced for rules. Rules are DL-safe if they are only applied to
ABox individuals, i.e., individuals explicitly named in the ABox [MN07]. In [PKM+07]
we presented a detailed discussion of the abductive retrieval inference service in DLs.

The output of the abductive retrieval inference service should be a set of explanations
∆ that are consistent w.r.t. Σ and Γ. This set, which is called ∆s, is transformed into a
poset according to a preference score. We propose the following formula to compute the
preference score of each explanation: S(∆) := Si(∆)−Sh(∆) where Si and Sh are defined
as follows:

Si(∆) := |{i|i ∈ inds(∆) and i ∈ inds(Γ1)}|
Sh(∆) := |{i|i ∈ inds(∆) and i ∈ newInds}|

The set newInds contains all individuals that are hypothesized during the generation of
an explanation (new individuals). The function inds returns the set of all individuals
found in a given ABox or a set. The preference score reflects the two criteria proposed
by Thagard for selecting explanations [Tha78], namely simplicity and consilience. In
fact, the less hypothesized individuals an explanation contains (simplicity) and the more
observations an explanation involves (consilience), the higher its preference score gets.

c©2007/TONES – August 31, 2007 52/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

7.1 The Media Interpretation Framework

The media interpretation framework aims to compute high-level content descriptions of
media documents from lower level information extraction results. For this purpose, it ex-
ploits conceptual and contextual knowledge (see Figure 25). Here, the contextual knowl-
edge refers to specific prior knowledge relevant for the high-level interpretation, which
we will discuss later. The conceptual knowledge is represented in a formal ontology that
consists of a TBox and a set of non-recursive DL-safe rules about the domain of interest.
The formal representation of the conceptual knowledge enables the framework to compute
interpretations using various reasoning services such as the abductive retrieval inference
service presented below.

annotation
data

enriched
annotation

data

Low-Level Semantics
Extraction

High-Level
Interpretation

a media
document

Conceptual
Knowledge

Contextual
Knowledge

Figure 25: Architecture of the media interpretation framework

The high-level interpretation of a media document requires an ABox as input (anal-
ysis ABox), which contains the results of the low-level semantics extraction. It produces
another ABox as output (interpretation ABox), which contains high-level content de-
scriptions. The analysis ABox corresponds to Γ in the abduction formula (see Section
7). The interpretation ABox is computed in an iterative process, and at the end of this
process it contains all possible interpretations of the media document. Each iteration of
the interpretation process consists of the following steps:

First, Γ is split into bona fide and fiat assertions. Currently, all role assertions in the
analysis ABox are selected as fiat assertions (Γ2), and all other assertions as bona fide
ones (Γ1). Second, each assertion from Γ2 is transformed into a corresponding query to
exploit the abductive retrieval inference service. Consequently, the abductive retrieval
inference service returns all possible consistent explanations. Third, for each explanation
it is checked whether new information can be inferred through deduction.

The interpretation process selects new assertions as fiat assertions from each generated
explanation, and repeats these steps until no new explanation can be generated.

Additionally, contextual knowledge can be used to enhance the results obtained by
the interpretation process: A set of aggregate concepts can be defined as target concepts.

c©2007/TONES – August 31, 2007 53/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Target concepts serve as an additional termination criteria to omit the computation of
interpretations which are useless in practice. Consequently, the framework terminates the
cyclic interpretation process, once a generated explanation contains an instance of the
target concepts.

In the future the contextual knowledge can be extended. E.g., more appropriate
(probably domain-specific) strategies for identifying fiat assertions can be developed and
integrated into the framework.

After the presentation of the media interpretation framework, we discuss the details of
the underlying interpretation process using an image and the athletics ontology AEO (see
Section 2). The athletics ontology that serves as the background knowledge Σ consists of
a TBox and a set of non-recursive DL-safe rules. Some axioms of the TBox, which are
relevant for our example are shown below:

Person v ∃hasPart.PersonFace u
∃hasPart.PersonBody u
¬PersonFace u . . .

Jumper v Person
SportsTrial v ∃hasPerformance.

Performance u
∃hasRanking.Ranking u
∃hasParticipant.Person
¬Person u . . .

JumpingEvent v SportsTrial u
∃≤1hasParticipant.Jumper

PoleV ault v JumpingEvent u
∃hasPart.Pole u
∃hasPart.Bar

HighJump v JumpingEvent u
∃hasPart.Bar

In this TBox, some concepts such as Person are more abstract than others, and are
designed as aggregates, which consist of parts such as PersonFace and PersonBody. Fur-
thermore, the TBox contains several disjointness axioms between concepts, which are
not shown here completely for brevity. The disjointness axioms are necessary to avoid
’awkward’ explanations, which would otherwise be generated.

Additionally, the background knowledge contains a set of non-recursive DL-safe rules
that are used to model several characteristic constellations (relations) of objects in the
athletics domain as follows:

adjacent(Y, Z) ← Person(X), hasPart(X, Y),
P ersonFace(Y), hasPart(X, Z),
P ersonBody(Z)

adjacent(Y, Z) ← PoleV ault(X), hasPart(X, Y),
Bar(Y), hasPart(X, W),
Pole(W), hasParticipant(X, Z),
Jumper(Z)

adjacent(Y, Z) ← HighJump(X), hasPart(X, Y),
Bar(Y), hasParticipant(X, Z),
Jumper(Z)

adjacent(X, Z) ← hasPart(X, Y), adjacent(Y, Z)

c©2007/TONES – August 31, 2007 54/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

To better illustrate the interpretation process and the use of the background knowl-
edge, we continue with the stepwise interpretation of an athletics image. The image below
shows a pole vault trial:

Assume that for this image low-level image analysis delivers an analysis ABox with the
following concept instance and role assertions:

Γ = {pface1 : PersonFace, pole1 : Pole, bar1 : Bar, pbody1 : PersonBody, (pface1, pbody1) : adjacent,
(pbody1, bar1) : adjacent}

To begin with the interpretation, all role assertions are selected as fiat assertions and,
therefore, Γ2 becomes:

Γ2 = {(pbody1, bar1) : adjacent, (pface1, pbody1) : adjacent}

In the second step, the role assertions are transformed into corresponding queries and the
abductive retrieval inference service is asked for explanations. Only the query derived from
the role assertion (pface1, pbody1) : adjacent results in the generation of an explanation.
It explains the adjacency of the face and the body by hypothesizing a person instance to
whom they both belong to (see the first adjacent rule). Note that other adjacent rules are
considered as well, however they cause the generation of explanations that are inconsistent
(due to the disjointness axioms in the TBox). The interpretation process discards such
explanations. Assume that the newly inferred person instance is named new ind1. In
the third step, the interpretation process applies the rules forwards to check whether
new information can be deduced. This yields the following assertions: (bar1, new ind1) :
adjacent, (pbody1, new ind1) : adjacent.17 At this state, the interpretation process defines
a new Γ2 by selecting all newly inferred role assertions as fiat assertions and repeats the
whole cycle. Here, only the query derived from the role (bar1, new ind1) : adjacent
results in the generation of explanations:

• ∆1 = {new ind2 : PoleV ault, (new ind2, bar1) : hasPart, (new ind2, pole1) : hasPart,
(new ind2, new ind1) : hasParticipant, new ind1 : Jumper}

17See the fourth adjacent rule

c©2007/TONES – August 31, 2007 55/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

• ∆2 = {new ind3 : HighJump, (new ind3, bar1) : hasPart,
(new ind3, new ind1) : hasParticipant,
new ind1 : Jumper}

At this point, no further explanations can be generated and the interpretation process
terminates. Observe that both explanations are consistent and represent possible interpre-
tations of the image. However, in practice one would like to get ‘preferred’ explanation(s)
only. For this purpose, the preference score presented in Section 7 can be used. The
preference score of ∆1 is calculated as follows: ∆1 incorporates the individuals bar1, pole1

and new ind1, and therefore Si(∆1)=3. Furthermore, it hypothesizes only one new indi-
vidual, namely new ind2, such that Sh(∆1)=1. The preference score of ∆1 is therefore
S(∆1) = Si(∆1) - Sh(∆1) = 2. Analogously, the preference score of the second explana-
tion is S(∆2)=1. Consequently, ∆1 becomes the ‘preferred’ explanation for the image. In
fact, the result is plausible, since this image should better be interpreted as showing a
pole vault and not a high jump, due to the fact that image analysis could detect a pole,
which should not be ignored as in the high jump explanation (consilience).

7.2 Test Setup

The overall goal of the framework is to provide high-level content descriptions of media
documents for maximizing precision and recall of semantics-based information retrieval.
In this subsection, we provide an empirical evaluation of the results of the framework on
a collection of athletics images in order to analyze the utility of the framework.

For this purpose, we implemented the media interpretation framework shown in Fig-
ure 25. The core component of this implementation is the DL-reasoner Racer [HMW07]
that supports various inference services. The abductive retrieval inference service, which
is the key inference service for media interpretation, is integrated into the latest version
of Racer. The framework gets analysis ABoxes, exploits various inference services of
Racer, and returns interpretation ABoxes as high-level content descriptions. For the
time being, the computation of preference scores is not implemented and, therefore, in-
terpretation ABoxes contain all possible explanations.

To test the implementation, we used an ontology about the athletics domain and an
image corpus. The corpus consists of images showing either a pole vault or a high jump
event. The images have been manually annotated with annotation tools in order to train
low-level feature extractors for prospective athletics corpora. I.e., using the annotation
tools, annotators manually annotated regions of images (as visual representations of con-
cepts), with corresponding concepts from the ontology such as Pole, Bar and PersonFace.
Afterwards, annotated images have been analyzed automatically to detect relations be-
tween concept instances. Finally, for each image in the corpus an analysis ABox with
corresponding assertions has been generated.

We tested the implementation in the following setup: the aggregate concepts PoleVault
and HighJump from the domain ontology are defined as target concepts. Analysis ABoxes
of pole vault and high jump images are used as input for high-level media interpretation.

c©2007/TONES – August 31, 2007 56/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

7.3 Test Results

The results obtained for pole vault and high jump images are shown in Figure 26 and
27, respectively. To analyze the usefulness of the results for information retrieval, in
both figures interpretation ABoxes are categorized w.r.t. the existence (or absence) of
aggregate concept instances: A) contains no aggregate concept instances at all B) contains
an aggregate concept instance but no target concept instance C) contains a HighJump
and a PoleVault instance D) contains a PoleVault instance E) contains more than one
PoleVault instances and one or no HighJump instances

At first sight, only interpretation ABoxes that fall into the category D in Figure 26
look like ‘good’ interpretation results for pole vault images, because the corresponding
images are annotated with a single PoleVault instance. However, if the implementation
would be enhanced to include preference scores, as discussed in Section 7.1 for an example
pole vault image, all interpretation ABoxes of category C and E would include the most
‘preferred’ explanation only (in this case a single PoleVault instance), and hence fall into
the category D, too.

1

2

6

24

26

A

B

C

D

E

c
a
te

g
o
ry

 o
f

in
te

rp
re

ta
ti
o
n
 A

b
o
x

number of images

Figure 26: Results for pole vault images.

Both in Figure 26 and 27, category A interpretation ABoxes are identical to the corre-
sponding analysis ABoxes and indicate that no new knowledge could be inferred through
high-level interpretation. For other images (category B interpretation ABoxes) high-level
interpretation infers new knowledge (including an aggregate concept instance) but fails
to derive an instance of the target concepts.

In fact, category B interpretation ABoxes contain a Person instance to explain the
existence of PersonBody and PersonFace instances and their constellation in the image.

c©2007/TONES – August 31, 2007 57/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

Deeper analysis of category A and B interpretation ABoxes showed that insufficient in-
terpretation results are caused by the failure of image analysis to extract some of the
existing relations in the corresponding images. Taking into account the ambiguity and
uncertainty involved in the image analysis process, this information (the failure of ad-
equate interpretation) can be used to create a valuable feedback for the image analysis
tools.

5

4

69

A

B

C

c
a
te

g
o
ry

 o
f
in

te
rp

re
ta

ti
o
n
 A

b
o
x

number of images

Figure 27: Results for high jump images.

Figure 27 shows that every high jump image is interpreted as either showing a high jump
or a pole vault event (category C), besides incompletely analyzed ones, which fall into the
categories A or B. Different from pole vault images, interpretations of high jump images
cannot be disambiguated through preference scores. This result indicates that necessary
rules are missing in the background knowledge due to the fact that, currently, image
analysis cannot extract distinctive features of high jump images.

Our experiments showed that, if provided with an appropriate ontology and low-
level annotations, the existing implementation of the media interpretation framework
delivers promising results for images and can be used for maximizing precision and recall
of semantics-based information retrieval systems.

8 Non-Standard Inferences

The name Sonic stands for “simple ontology non-standard inference component”. This
system implements a whole collection of non-standard inferences.

c©2007/TONES – August 31, 2007 58/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

8.1 Sonic

In its current version Sonic implements a range of so-called non-standard inferences.
Sonic comprises basically two parts. One is the Sonic reasoner, which implements the
non-standard inferences. The other part is ontology editor component that realizes a
graphical user interface to access the inferences in an easy way. We will concentrate in
this deliverable and report on those inferences that are helpful in realizing ontology design
and maintenance tasks as described in the TONES deliverable D05.

Generating Concept Descriptions. The ontology designer wants to add a new concept
to the ontology, but finds it difficult to describe it. To obtain a starting point for the
concept description, the designer wants to automatically generate an initial description of
the new concept that is based on the position of this concept in the subsumption hierarchy.

Structuring the Ontology. The ontology designer wants to improve the structure of
an ontology by inserting intermediate concepts into the subsumption hierarchy. He needs
support to decide where to add such concepts and how to describe them.

Bottom-up Construction. The ontology designer wants to design the ontology bottom-
up, i.e., by proceeding from the most specific concepts to the most general ones. This
should be supported by automatically generating concept descriptions from descriptions
of typical instances of the new concept.

Ontology Customization. An ontology user wants to adapt an existing ontology to her
purposes by making simple modifications. Since she is not an expert in ontology languages,
she works with a simpler language than the one used to formulate the ontology and/or
with graphical frame-like interfaces.

Concept Inspection. The ontology designer wants to display a concept description in
a way that facilitates understanding of the concept’s meaning.

The inference central to most of these tasks is the computation of common subsumers—
either the computation of least common subsumers for the structuring of the ontology and
the bottom-up construction or the computation of good common subsumers employed in
ontology customization. In case disjunction is present in the DL in use, the least common
subsumer is simply the disjunction of the input concepts. The disjunction is not a good
starting point for the modeler to edit the concept description, since it does not extract the
commonalities from the input concepts, but merely enumerates them. To remedy this two
approaches have been proposed on which we concentrated in our testing. More precisely,
we tested our implementation of the approximation-based method to obtain “meaningful”
common subsumers in the presence of disjunction and two methods for obtaining good
common subsumers for the customization of background ontologies.

8.2 Test Setup

For our tests we concentrated on the computation of common subsumers. More precisely,
we tested our implementation of the approximation-based method to obtain “meaningful”
common subsumers in the presence of disjunction and two methods for obtaining good
common subsumers for the customization of background ontologies.

c©2007/TONES – August 31, 2007 59/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

nr. of concepts nr. of definitions nr. of test tuples

DICE 3500 3249 75
OntoCAPE 588 575 60

Table 9: Sonic test data overview.

8.2.1 Test data

We tested Sonic on two ontologies from practical applications:

• The DICE ontology models concepts from the medical domain, more precisely it
describes reasons for the admission to intensive care. This ontology was introduced
in the TONES deliverable 14 [CGG+07b].

• The OntoCAPE ontology models concepts from the domain of chemical process en-
gineering and was described in Section 2.8.

For both TBoxes we used versions that pruned the expressivity to the concept constructors
that Sonic can handle, i.e., role declarations were omitted and number restrictions were
removed in the versions of the TBoxes used in our tests.

To evaluate the approaches for the computation of common subsumers in presence of
disjunction and the inferences that realize them, we need sets of concepts that we can use
as input for the common subsumer inferences in our tests. We selected these input sets
by first classifying the test ontology and then identifying concepts with many concept
children, i.e., direct subsumees. From this set of direct subsumees we picked subsets
randomly, which are the input test data for our evaluation of the common subsumer
inferences.

The idea behind this way of selecting the input is to simulate the application of
the bottom-up approach, where unbalanced concept hierarchies are augmented with new
concepts to obtain a more tree-like concept hierarchy by introducing a new parent concept
for sibling concepts. So, by identifying concepts with many concept children, we focus on
a part of the concept hierarchy that a knowledge engineer might select for an extension by
an intermediate concept. Moreover, by this way of selecting the input sets, we guarantee
that no trivial common subsumers are obtained, that collapse to >. We would always
obtain at least the common parent concept—thus the computation is not completely
trivial.

We picked 75 such concept sets in the above described fashion randomly from the
ALC-version of the DICE ontology and 60 such sets from ALC-version of the OntoCAPE
ontology. Each of the sets contains 2 to 7 concept names.

We ran our tests on a standard PC with 500MB of memory under Linux. The Lisp
source code for the inferences was compiled and ran under ACL 8.0. As the underlying
standard reasoner we used RacerPro (Version 1.9.1) also compiled under ACL 8.0.

c©2007/TONES – August 31, 2007 60/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

8.3 Test Results

8.3.1 Evaluation of the precision of common subsumers

To evaluate the usefulness of the concept descriptions obtained by the inferences for
computing common subsumers, we concentrate on the precision of the obtained result.
Here, precision is to be understood in terms of information loss between the disjunction
of the input concepts—the trivial least common subsumer—and the concept description
obtained by applying one of the techniques for the ‘meaningful common subsumer’. We
proceed by evaluating the precision of the two approaches individually.

To assess the precision of the concept descriptions obtained by the common subsumer
we proceed by testing whether the trivial lcs, i.e., the disjunction of the input concepts, is
equivalent to the common subsumer obtained by the approximation-based approach, the
scs or the acs. If not, we can estimate which information was lost for the approximation-
based approach in a second step by computing the difference for the unfolded trivial lcs and
the approximation-based lcs, i.e., the concept description obtained by first approximating
each input concept description in ALE and then computing their lcs.

In our setting the acs yields equivalent concept descriptions to the ones obtained by
the approximation-based approach. The acs is obtained by unfolding the ALE(T)-input
concepts18 completely, yielding ALC-concept descriptions and then applying the ALE-
approximation to the disjunction of the unfolded input concept descriptions. Although
the concept descriptions obtained by the two methods need not be the same syntactically,
the evaluation of the approximation-based approach carry over to the acs to some extent.

For the subsumption closure-based common subsumers (scs) computed w.r.t. a back-
ground terminology we cannot use the difference operator to asses the information loss,
in case the common subsumer obtained by these methods is more general than the triv-
ial lcs. To see the reason for this, consider the following example where the TBox is
T = {A = B tC} and we are interested in the lcs of C1 = B u ∃r.D and C2 = C u ∃r.E.
Then the lcsALC(C1, C2) = C1 tC2, while the scsALE(T)(C1, C2) = A u ∃r.D u ∃r.E. Both
concept descriptions are equivalent, but the difference operator would return the syntactic
difference, between them. The syntactic difference is in this case misleading to assess the
information loss. Applying the difference operator to the unfolded concept description ob-
tained by the scs is not possible either, since it is an ALC-concept descriptions for which
we would need a difference operator that can compute the syntactic difference between
ALC-concept descriptions.

Precision of the approximation-based approach To evaluate the precision of the
approximation-based approach, we computed for each concept set S = {C1, . . . , Cn} in
the test data the following concept descriptions:

1. the trivial lcs: the disjunction of the concepts in the concept set unfolded w.r.t. the

underlying TBox: lcsALC(C1, . . . , Cn) = unfold(t
1≤i≤n

Ci).

18Recall that the concept descriptions use concept concept constructors from ALE , but may used
concept names from the background TBox.

c©2007/TONES – August 31, 2007 61/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

lcsALC @ lcsapprox

DICE 36 (48,0%)
OntoCAPE 8 (12,3%)

Table 10: Comparison of lcsALC and lcsapprox .

|lcsALC| |lcsapprox| |diff(lcsALC, lcsapprox)| diff(. . .) ≡ >
DICE 68,1 7,4 14,7 39 (52,0%)

OntoCAPE 32,2 2,2 15,4 50 (83,3%)

Table 11: Applying the difference operator to lcsALC and lcsapprox .

2. the approximation-based lcs: the ALE-lcs of the set of ALE-approximations of each
ALC-concept from the concept set:
lcsapprox(C1, . . . , Cn) = lcsALE

(
{approxALE(Ci) | 1 ≤ i ≤ n}

)
.

3. the syntactic difference of the trivial lcs and the approximation-based lcs:
Dapprox = diff(lcsALC(C1, . . . , Cn), lcsapprox(C1, . . . , Cn)).

We ran these tests for the ALC-variants of the DICE and the OntoCAPE test ontology.
Table 10 shows in the first column the number of cases where the trivial lcs is strictly
more specific than the concept description obtained by the approximation-based approach.
In these cases information captured in the trivial lcs, common to all input concept de-
scriptions was lost when computing the lcs of the ALE-aproximations of the concept
descriptions. It shows that information is lost in 48% of the cases tested for the DICE
TBox and 12,3% for the OntoCAPE TBox.

The Table 11 shows the average concept size of the trivial lcs of the approximation-
based lcs and of their difference obtained by the heuristic for computing the difference. It
shows for both test TBoxes that the difference between the lcsALC and the lcsapprox results
in concept descriptions a couple of times larger that the lcsapprox itself. This might seem a
daunting result at first, but recall that the heuristic for computing the difference applied
to concept description with redundancy yields a syntactic difference with redundancies.
In fact, we obtained a difference equivalent to > in the vast majority of the cases for both
TBoxes (see last column). Thus the concept sizes for the difference give a biased picture
of the quality of lcsapprox .

In 11 of the test cases for the DICE TBox we obtained a concept name as the result
of applying the approximation-based approach, which indicates that the common parent
concept of the concepts from the tuple was obtained as their common subsumer. For
the OntoCAPE knowledge base 11 such cases were found. in regard of our application
scenario these are the cases where no new node is introduced in the concept hierarchy
and the modeler would have to revise her choice of input concepts.

Precision of the common subsumers for background ontologies For the evalua-
tion of the precision of the common subsumers computed for the customization of back-
ground terminologies we examine the same quality criteria as above for the computation

c©2007/TONES – August 31, 2007 62/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

lcsALC @ scs lcsALC @ acs scs @ acs

DICE - 36 (48,0%) 36 (48,0%)
OntoCAPE 2 (3,1%) 8 (12,3%) 52 (80,0%)

Table 12: Subsumption relationships between lcsALC, acs and scs.

of the scs and the acs.
To asses the precision in this setting, we can only refer to the subsumption relationships

between the obtained concept descriptions, since the difference operator does not yield
meaningful results in this setting for the reasons explained earlier. We computed for each
concept set S = {C1, . . . , Cn} in the test data:

1. the trivial lcs: the disjunction of the concepts in the concept set unfolded w.r.t. the

underlying TBox: lcsALC(C1, . . . , Cn) = unfold(t
1≤i≤n

Ci).

2. the approximation-based gcs: the acs of the disjunction of ALE(T)-concepts from
the concept set:

acs(C1, . . . , Cn) = approxALE(t
1≤i≤n

Ci)

3. the subsumption closure-based gcs: the scs of the concept set:
scs(C1, . . . , Cn)

We computed these concept descriptions for the tuples from the DICE and the OntoCAPE
test data. We checked for the subsumption relations between the obtained concept de-
scriptions. The results are displayed in Table 12. The first two columns show the number
of cases, where scs (acs) is more general then the trivial lcs. It shows, that the scs is only
in two cases more general than the lcs and thus does result in hardly any information loss
for our test data.

For the acs, we obtain the same information loss, as for the approximation-based
approach. Interestingly, the scs results always in a more specific concept description than
the acs, if the two are not equivalent. This is somewhat different from the results in
[BST07], where also cases appeared in which the acs was more specific than the scs.

In this setting we obtained only 8 trivial acs concept descriptions, i.e., concepts that
collapsed to the common parent concept. For the scs this number of collapsed concepts is
2. Regarding the precision of common subsumers, the scs showed the best performance
on our test data.

8.3.2 Performance of the computation of common subsumers

In Table 13 we see the average run-times measured for the different ways to obtain common
subsumers. These run-times were obtained by using an implementation that realizes
lazy unfolding. It shows that with this optimization technique applied alone the run-
times for our examples from practical applications are in most cases below 1,5 seconds.
This is already an acceptable run-time for interactive use—where run-time measured for
lcsapprox might be seen as an exception. However, it is, again the scs that shows the

c©2007/TONES – August 31, 2007 63/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

best performance, when comparing the three approaches to obtain non-trivial common
subsumers. It only uses a fraction of the run-times of the other common subsumers.
Surprisingly, the computation of the scs is even faster than the trivial lcs. This effect is
due to ALE-unfolding, where the input concept description is not necessarily unfolded
completely (if concept definitions are encountered that cannot be transformed into an
ALE-concept by De Morgan’ rules), while the trivial lcs is obtained by unfolding the
disjunctions of the input concepts completely.

The results also indicate that concept approximation is the inference that would ben-
efit most from an optimized implementation. In order to be able to apply conjunct-wise
computation for approximation, we have to test whether a concept description is nice–
according to conditions specified in [TB07]. Although the conditions for this test have
been relaxed, the question still is: do the concept definitions from application knowledge
bases contain nice concepts? An investigation of the DICE and the OntoCAPE knowledge
base showed that nice concepts do appear in knowledge bases from applications [TB07]. In
case of the DICE knowledge base, 13,2% of the concepts are nice. The OntoCAPE knowl-
edge base contains even about 35% of nice concepts. Thus conjunct-wise approximation
might help to obtain better run-times for approximation computed w.r.t. knowledge bases
obtained from practical applications.

Our evaluation of the common subsumer approaches showed that the common subsumers
obtained by applying the lcs to the concepts obtained by approximation performs well.
In more than half of the cases the approximation-based approach captures the full infor-
mation of the trivial lcs. Similarly, the here proposed approaches for the computation of
common subsumers w.r.t. a background knowledge base performed well w.r.t. precision
of the result. While the acs yielded concept descriptions that capture the information
common to all input concepts completely in at least more than the half of the cases, the
scs turned out to miss hardly any information on our test cases. Moreover, comparing the
two approaches for obtaining good common subsumers w.r.t. a background knowledge
base, it showed that the scs yields a more specific concept description than the acs in up
to 80% of the cases.

All of the three implementations showed run-times suitable for interactive use, de-
spite their high computational complexity. The scs showed also the best performance
for computation times of the three common subsumers. To sum up, the scs seems to be
an excellent alternative for the ALE(T)-lcs for which we could not devise a constructive
computation method so far.

lcsALC lcsapprox acs scs

DICE 1,34 6,52 1,39 0,23
OntoCAPE 0,15 0,29 0,15 0,03

Table 13: Average run-times of lcsALC, lcsapprox , acs and scs (in s).

c©2007/TONES – August 31, 2007 64/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

9 Knowledge Base Completion

9.1 InstExp

InstExp (Instance Explorer) is a DL knowledge base completion tool developed as
an extension to version v2.3 beta 3 of the Swoop ontology editor [KPS+06]. It is im-
plemented in the Java programming language, and it communicates with the reasoner
over the OWL API [BVL03]. InstExp is available under http://lat.inf.tu-dresden.
de/~sertkaya/InstExp/. The development of InstExp was partially supported by the
EU projects TONES (IST-2005-7603 FET) and Semantic Mining (NoE 507505), and the
German Research Foundation DFG (GRK 334/3).

InstExp aims to support enriching an ontology by asking questions to a domain ex-
pert. It asks questions of the form “Is it true that objects that instances of the classes A,B
and C also instances of D and E?”. The domain expert is then expected to answer “yes”
or “no”. If she answers with “no”, then she is expected to provide a counterexample, and
this counterexample is added to the ontology. If she answers “yes”, then the ontology is
updated with a new inclusion axiom. When the process stops, the ontology is complete in
a certain sense. InstExp implements an extension of the well-known knowledge acquisi-
tion method of Formal Concept Analysis, namely attribute exploration. The advantage of
this method is that it guarantees to ask the minimum number of questions to the expert
in order to acquire the missing part of the knowledge. The theoretical background of
InstExp was explained in detail in [BGSS06, BGSS07].

A DL knowledge base completion process using InstExp can briefly be sketched as
follows: After loading a knowledge base into Swoop and classifying it, the user can start
InstExp from the Swoop menu. At this point InstExp displays the concept hierarchy
of the loaded knowledge base, and waits the user to select the “interesting” concepts that
should be involved in the completion process. As soon as the user finishes selecting these
concepts, InstExp displays the individuals in the ABox that are instances of these con-
cepts, and the completion process starts with the first question. The user can confirm or
reject the questions by clicking the relevant buttons. If she rejects a question, InstExp
displays a counterexample editor, which contains the “potential counterexamples” to the
current question, i.e., individuals in the ABox that can be modified to act as a coun-
terexample to this question. The user can either modify one of these existing individuals
and turn it into a counterexample, or introduce a new individual into the ABox. During
counterexample preparation, InstExp tries to guide the user as follows: If she makes the
description of an individual inconsistent, InstExp gives a warning and does not allow
her to provide this as the description of a counterexample. Once she has produced a
description that is sufficient to act as a counterexample, InstExp notifies the user about
it, and allows this description to be added to the ABox.

9.2 Test Setup

The aims of our tests were to evaluate performance and usability of InstExp . More
precisely, in our tests we aimed for evaluating performance of InstExp both in terms of
runtime and memory usage, and also usability of InstExp in general.

c©2007/TONES – August 31, 2007 65/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

In D14, it was mentioned that InstExp has its rôle in the ontology completion usage
scenario. As input, this usage scenario expects a well established ontology written in a
DL that supports conjunction and negation, and has a TBox formalism that allows for
GCIs. Also, an expert from the application domain is required to answer the questions
asked. The expected output for the scenario is the input ontology enriched with new
subsumption relationships and new instances that are acquired from the expert as answer
to the questions asked. The ontology given as input is expected to have an ABox, and
usually a large number of individuals in the ABox. For this reason from the ontologies
mentioned in D14, we evaluted our tool on the ontologies that are mentioned to have
ABox, namely Semintec ontology about financial services, and an ontology generated
by the Data Generator(UBA) of Lehigh University Benchmark. Using the generator,
we generated an ontology with 14 concept definitions, and 1555 individuals in the DL
AL(D). We also made tests on two smaller fragments of the Semintec ontology that
were provided on the Semintec project web page. The first fragment19 is the part of the
Semintec financial ontology, containing information only about gold credit card holders.
It contains 39 concept definitions and 297 individuals. The expressivity of the DL used
is shown to be ALCIF by Pellet. The second one20 obtained from the first fragment by
removing disjunctions contains also 39 concept defintions and 297 individuals.

We performed the tests on a computer with 1.4MHz Intel(R) Pentium(R) M processor
and 512MB of main memory, running a GNU/Linux operating system with 2.6.18-4 kernel.

9.3 Test Results

In our tests, we have observed that the performance of InstExp heavily depends on the
knowledge base to be completed, and the efficiency of the DL reasoner used. As already
mentioned, whenever a question is accepted, a new GCI is added to the TBox. This
requires the knowledge base to be reclassified. Depending on the size and complexity
of the knowledge base, and efficiency of the underlying DL reasoner, this can take long
time for knowledge bases of big sizes, which means that the user may have to wait several
minutes between two consecutive questions. To some extent this problem can be overcome
by using a DL reasoner that can do incremental reasoning, i.e., that can efficiently handle
the added GCI and reclassify the knowledge base without starting from the scratch. Pellet
can do incremental reasoning to some extent.

9.3.1 Results on the Semintec ontology

Our tests showed that classification of the Semintec ontology takes around 3 minutes
using the Pellet reasoner. Since our completion tool is using Pellet as the underlying
reasoner, the waiting time between two consequetive questions for this ontology were
around 3 minutes on average. Upon starting exploration, the memory usage was 402MB,
and after answering 5 questions, it was around 470MB. However, we were not able to
measure precisely how much of this memory is required by InstExp , since it is built
into Swoop, and is not running as a seperate process.

19available under http://www.cs.put.poznan.pl/alawrynowicz/goldDLP.owl
20available under http://www.cs.put.poznan.pl/alawrynowicz/goldDLP2.owl

c©2007/TONES – August 31, 2007 66/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

In order to avoid the long waiting times between questions, we also evaluated Inst-
Exp on the two smaller fragments of the Semintec ontology mentioned above. The first
fragment, which contains 39 concept definitions and 297 individuals, was classified in 1-2
seconds by Pellet. As a result, the waiting times between two consequetive questions asked
by InstExp were also around 1-2 seconds on the average. When we started InstExp ,
the memory usage was around 56MB. After answering around 10 questions, the memory
usage was 64MB. Due to the reason mentioned above, we were not able to measure how
much of this memory is used by InstExp , and how much is used by Swoop.

The second fragment is obtained from the first one by removing disjunctions. As the
first one, it also contains 39 concept definitons, 297 individuals, and 1 GCI axiom. The
test results on this ontology were similar to the first fragment of Semintec in the previous
paragraph. Classifying it with Pellet took around 1 second, thus waiting time between
two questions asked by InstExp was also around 1 second. Upon starting InstExp ,
memory usage was around 58MB, and after 10 questions, it was around 65MB.

9.3.2 Results on the UBA-generated ontology

This ontology was classified by Pellet in in 2 seconds, thus waiting time between two
questions asked by InstExp was also around 2 seconds. The memory usage upon starting
InstExp was 76MB, after answering 10 questions, it was around 84MB. Due to the reason
mentioned above, we were not able to measure precisely whether the increase was due to
Swoop, or due to InstExp .

9.3.3 Usability of InstExp

One important point we have observed is that during completion, unsurprisingly the
expert sometimes makes errors when answering the questions. In the simplest case, the
error makes the knowledge base inconsistent, which can easily be detected by DL reasoning
and the expert can be notified about it. However, in this case an explanation for the reason
of inconsistency is often needed to understand and fix the error. The situation gets more
complicated if the error does not immediately lead to inconsistency, but the expert realizes
in the later steps that she has done something wrong in one of the previous steps. In this
case the tool should be able to help the expert to detect which one of the previous answers
leads to the error. Once the source of the error is found, the next task is to correct it
without producing extra work for the expert. More precisely, the naive idea of going
back to the step where the error was made, and forgetting the answers given after this
step will result in asking some of the questions again. The tool should avoid this. More
sophisticated approach to minimize the effort for fixing the error cannot be achieved by
ad hoc methods, it requires completion algorithm to be modified accordingly.

We have also observed that, in some cases the expert might want to skip a question,
and proceed with another one. On the Formal Concept Analysis theory side, this is not
an easy task. It needs the particular lexical order used in the algorithm to be modified.
Doing it in a naive way might result in loss of soundness or completeness of the algorithm.

c©2007/TONES – August 31, 2007 67/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

10 Conclusion

We have evaluated the tools developed within Workpackages 3 and 4. Our tests of the
standard reasoning techniques show that reasoning about ontologies as proposed within
the TONES project scales rather well. This holds true in the case of very expressive
ontology languages and, to an even larger degree, also for lightweight ontology languages.
Our evaluation of the novel reasoning services shows that the computational complexity
of the underlying reasoning problems does not prohibit their use on realistic ontologies
from practical applications. Although in-depth case studies are out of the scope of this
deliveable, which concentrates on testing efficiency, our experiments also suggest that
the novel reasoning services provide very useful information and assistance to ontology
designers. In several cases, they point out directions for future reasearch that may lead
to an even better usability of these services.

c©2007/TONES – August 31, 2007 68/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

References

[Baa03] F. Baader. Description logic terminology. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, pages 485–
495. Cambridge University Press, 2003.

[BB93] A. Borgida and R. Brachman. Loading Data into Description Reasoners.
ACM SIGMOD Record, 22(2):217–226, 1993.

[BBC+07] F. Baader, R. Bernardi, D. Calvanese, A. Cal̀ı, B. C. Grau, M. Garcia,
G. de Giacomo, A. Kaplunova, O. Kutz, D. Lembo, M. Lenzerini, L. Lubyte,
C. Lutz, M. Milicic, R. Möller, B. Parsia, R. Rosati, U. Sattler, B. Sertkaya,
S. Tessaris, C. Thorne, and A.-Y. Turhan. Techniques for ontology design
and maintenance. Project Deliverable TONES-D13, TONES Consortium,
2007. Available at http://www.tonesproject.org/.

[BCG+06] F. Baader, D. Calvanese, G. D. Giacomo, P. Fillottrani, E. Franconi,
B. C. Grau, I. Horrocks, A. Kaplunova, D. Lembo, M. Lenzerini, C. Lutz,
R. Möller, B. Parsia, P. Patel-Schneider, R. Rosati, B. Suntisrivaraporn, and
S. Tessaris. Formalisms for representing Ontologies: State of the art survey.
Project Deliverable TONES-D06, TONES Consortium, 2006. Available at
http://www.tonesproject.org/.

[BGSS06] F. Baader, B. Ganter, U. Sattler, and B. Sertkaya. Completing description
logic knowledge bases using formal concept analysis. LTCS-Report LTCS-06-
02, Chair for Automata Theory, Institute for Theoretical Computer Science,
Dresden University of Technology, Germany, 2006. See http://lat.inf.tu-
dresden.de/research/reports.html.

[BGSS07] F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing description
logic knowledge bases using formal concept analysis. In M. M. Veloso, editor,
Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 230–235. AAAI Press, 2007.

[BHT05] S. Bechhofer, I. Horrocks, and D. Turi. The OWL Instance Store: System
Description. In Proc. of the 20th Int. Conf. on Automated Deduction (CADE-
20), Lecture Notes in Artificial Intelligence, pages 177–181. Springer, 2005.

[Bre95] P. Bresciani. Querying Databases from Description Logics. In Proceedings of
Knowledge Representation Meets Databases (KRDB’95), Saarbrücken, Ger-
many, DFKI-Research-Report D-95-12, pages 1–4, 1995.

[BSNS+06] C. Baker, A. Shaban-Nejad, X. Su, V. Haarslev, and G. Butler. Semantic
Web Infrastructure for Fungal Enzyme Biotechnologists. Journal of Web
Semantics, 4(3):168–180, 2006.

[BST07] F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common
subsumer w.r.t. a background terminology. J. of Applied Logics, 2007.

c©2007/TONES – August 31, 2007 69/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

[BVL03] S. Bechhofer, R. Volz, and P. W. Lord. Cooking the semantic web with the
owl api. In D. Fensel, K. P. Sycara, and J. Mylopoulos, editors, Proceedings of
the Second International Semantic Web Conference, (ISWC 2003), volume
2870 of Lecture Notes in Computer Science, pages 659–675. Springer, 2003.

[CDGL+07] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. of Automated Reasoning, 2007. To appear.

[CGF+07] D. Calvanese, B. C. Grau, E. Franconi, I. Horrocks, A. Kaplunova, C. Lutz,
R. Möller, B. Sertkaya, B. Suntisrivaraporn, S. Tessaris, and A.-Y. Turhan.
Software tools for ontology design and maintenance. Project Deliver-
able TONES-D15, TONES Consortium, 2007. Available at http://www.

tonesproject.org/.

[CGG+06] D. Calvanese, B. C. Grau, G. D. Giacomo, E. Franconi, I. Horrocks,
A. Kaplunova, D. Lembo, M. Lenzerini, C. Lutz, D. Martinenghi, R. Möller,
R. Rosati, S. Tessaris, and A. Turhan. Common framework for represent-
ing ontologies. Project Deliverable TONES-D08, TONES Consortium, 2006.
Available at http://www.tonesproject.org/.

[CGG+07a] D. Calvanese, G. D. Giacomo, B. Glimm, B. C. Grau, V. Haarslev, I. Hor-
rocks, A. Kaplunova, D. Lembo, M. Lenzerini, C. Lutz, M. Milicic, R. Möller,
R. Rosati, U. Sattler, and M. Wessel. Techniques for Ontology Access, Pro-
cessing, and Usage. Project Deliverable TONES-D18, TONES Consortium,
2007. Available at http://www.tonesproject.org/.

[CGG+07b] D. Calvanese, G. D. Giacomo, B. C. Grau, A. Kaplunova, D. Lembo,
M. Lenzerini, R. Möller, R. Rosati, U. Sattler, B. Sertkaya, B. Suntisrivara-
porn, S. Tessaris, A. Turhan, and S. Wandelt. Ontology-based services: Us-
age scenarios and test ontologies. Project Deliverable TONES-D14, TONES
Consortium, 2007. Available at http://www.tonesproject.org/.

[CM77] A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunctive
Queries in Relational Data Bases. In Proceedings of the Nineth ACM Sym-
posium on Theory of Computing, pages 77–90, 1977.

[DFK+07] J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma, E. Schonberg,
and K. Srinivas. Scalable Semantic Retrieval Through Summarization and
Refinement. In 21st Conference on Artificial Intelligence (AAAI), pages 299–
304, 2007.

[EHK+07] S. Espinosa, V. Haarslev, A. Kaplunova, A. Kaya, S. Melzer, R. Möller, and
M. Wessel. Reasoning Engine Version 1 and State of the Art in Reasoning
Techniques. Technical report, Hamburg University Of Technology, 2007.
BOEMIE Project Deliverable D4.2.

c©2007/TONES – August 31, 2007 70/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

[EKM+07] S. Espinosa, A. Kaya, S. Melzer, R. Möller, T. Näth, and M. Wessel. Reason-
ing Engine Version 2. Technical report, Hamburg University Of Technology,
2007. BOEMIE Project Deliverable D4.5.

[FKM+06] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas. The
Summary Abox: Cutting Ontologies Down to Size. In Proc. of International
Semantic Web Conference (ISWC), pages 343–356, 2006.

[GH06] Y. Guo and J. Heflin. A Scalable Approach for Partitioning OWL Knowledge
Bases. In Proc. of the 2nd International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2006), Athens, Georgia, USA, pages 47–60,
2006.

[GHP03] Y. Guo, J. Heflin, and Z. Pan. Benchmarking DAML+OIL repositories. In
Proc. of the Second Int. Semantic Web Conf. (ISWC 2003), number 2870 in
LNCS, pages 613–627. Springer Verlag, 2003.

[GMUW02] H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Com-
plete Book. Prentice Hall, 2002.

[GPH04] Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems
for Large OWL Datasets. In Proc. of the Third Int. Semantic Web Conf.
(ISWC 2004), volume 3298 of LNCS, pages 274–288. Springer Verlag, 2004.

[GPH05] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge
Base Systems. Journal of Web Semantics, 3(2):158–182, 2005.

[HM99] V. Haarslev and R. Möller. An Empirical Evaluation of Optimization Strate-
gies for ABox Reasoning in Expressive Description Logics. In Proc. of DL99,
International Workshop on Description Logics, Linköping, pages 115–119,
1999.

[HM01a] V. Haarslev and R. Möller. RACER System Description. In R. Goré,
A. Leitsch, and T. Nipkow, editors, International Joint Conference on Au-
tomated Reasoning, IJCAR’2001, June 18-23, Siena, Italy, pages 701–705.
Springer-Verlag, 2001.

[HM01b] V. Haarslev and R. Möller. The Description Logic ALCNHR+ Extended
with Concrete Domains: A Practically Motivated Approach. In R. Goré,
A. Leitsch, and T. Nipkow, editors, International Joint Conference on Au-
tomated Reasoning, IJCAR’2001, June 18-23, Siena, Italy, pages 29–44.
Springer-Verlag, 2001.

[HMW07] V. Haarslev, R. Möller, and M. Wessel. RacerPro User’s Guide and Reference
Manual Version 1.9.1, May 2007.

[KPS+06] A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. A. Hendler. Swoop:
A web ontology editing browser. Journal of Web Semantics, 4(2):144–153,
2006.

c©2007/TONES – August 31, 2007 71/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

[MHN98] R. Möller, V. Haarslev, and B. Neumann. Semantics-Based Information Re-
trieval. In Proc. IT&KNOWS-98: International Conference on Information
Technology and Knowledge Systems, 31. August- 4. September, Vienna, Bu-
dapest, pages 49–6, 1998.

[MHW06] R. Möller, V. Haarslev, and M. Wessel. On the Scalability of Description
Logic Instance Retrieval. In C. Freksa and M. Kohlhase, editors, 29. Deutsche
Jahrestagung für Künstliche Intelligenz, Lecture Notes in Artificial Intelli-
gence. Springer Verlag, 2006.

[MN07] R. Möller and B. Neumann. Ontology-based reasoning techniques for multi-
media interpretation and retrieval. In Semantic Multimedia and Ontologies:
Theory and Applications. 2007. To appear.

[MS06] B. Motik and U. Sattler. A Comparison of Reasoning Techniques for Query-
ing Large Description Logic ABoxes. In Proceedings of the 13th International
Conference on Logic for Programming Artificial Intelligence and Reasoning
(LPAR 2006), Phnom Penh, Cambodia, November 13-17, volume 4246 of
LNCS, pages 227–241. Springer, 2006.

[MYM07] J. Morbach, A. Yang, and W. Marquardt. OntoCAPE—A large-scale ontol-
ogy for chemical process engineering. Engineering Applications of Artificial
Intelligence, 20(2):147–161, 2007.

[MYQ+06] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards A Com-
plete OWL Ontology Benchmark. In Proc. of 3rd European Semantic Web
Conference (ESWC), pages 124–139, 2006.

[PKM+07] S. E. Peraldi, A. Kaya, S. Melzer, R. Möller, and M. Wessel. Multimedia
Interpretation as Abduction. In Proc. DL-2007: International Workshop on
Description Logics, 2007.

[RZH+07] J. Rilling, Y. Zhang, V. Haarslev, W. Meng, and R. Witte. A Unified
Ontology-Based Process Model for Software Maintenance and Comprehen-
sion. In Proceedings of the ACM/IEEE 9th International Conference on
Model Driven Engineering Languages and Systems (MoDELS/UML 2006),
T. Kühne (Ed.), LNCS 4364, Springer-Verlag, pages 56–65, 2007.

[SNBHB05] A. Shaban-Nejad, C. Baker, V. Haarslev, and G. Butler. The FungalWeb
Ontology: Semantic Web Challenges in Bioinformatics and Genomics. In
Semantic Web Challenge - Proceedings of the 4th International Semantic
Web Conference, Nov. 6-10, Galway, Ireland, Springer-Verlag, LNCS, Vol.
3729, pages 1063–1066, 2005.

[TB07] A.-Y. Turhan and Y. Bong. Speeding up approximation with nicer concepts.
In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, S. Tessaris,
and A.-Y. Turhan, editors, Proc. of DL 2007, 2007.

c©2007/TONES – August 31, 2007 72/73 TONES-D23 – v.2.0

FP6-7603 – TONES Thinking ONtologiES WP7

[TBK+06] A.-Y. Turhan, S. Bechhofer, A. Kaplunova, T. Liebig, M. Luther, R. Moeller,
O. Noppens, P. Patel-Schneider, B. Suntisrivaraporn, and T. Weithoener.
DIG 2.0 – Towards a Flexible Interface for Description Logic Reasoners. In
B. C. Grau, P. Hitzler, C. Shankey, and E. Wallace, editors, OWL: Experi-
ences and Directions 2006, 2006.

[Tha78] R. P. Thagard. The best explanation: Criteria for theory choice. The Journal
of Philosophy, 1978.

[WLL+07] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. v. Henke, and O. Nop-
pens. Real-world Reasoning with OWL. In Proc. European Semantic Web
Conference, 2007.

[WLLB06] T. Weithöner, T. Liebig, M. Luther, and S. Böhm. What’s Wrong with OWL
Benchmarks? In Second International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2006), Athens, GA, USA, 2006.

[WM05] M. Wessel and R. Möller. A High Performance Semantic Web Query An-
swering Engine. In Proc. of the 2005 Description Logic Workshop (DL 2005),
pages 84–95. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/,
2005.

[ZRH06] Y. Zhang, J. Rilling, and V. Haarslev. An Ontology Based Approach to Soft-
ware Comprehension - Reasoning about Security Concerns in Source Code. In
Proceedings of the 30th Annual International Computer Software and Appli-
cations Conference (COMPSAC 2006), IEEE Computer Society Press, pages
333–342, 2006.

c©2007/TONES – August 31, 2007 73/73 TONES-D23 – v.2.0

